
Chapter 5
Distributed Query Processing under Safely
Composed Permissions1

The integration of information sources detained by distinct parties, either for se-
curity or efficiency reasons, is becoming of great interest. A crucial issue in this
scenario is the definition of mechanisms for the integration that correctly satisfy the
commercial and business policies of the organization owning the data. In this chap-
ter, we propose a new model based on the characterization of access privileges for
a set of servers on the components of a relational schema. The proposed approach
is based on three concepts: i) flexible permissions identify portions of the data be-
ing authorized, ii) relations are checked for release not with respect to individual
authorizations but rather evaluating whether the information release they (directly
or indirectly) entail is allowed by the permissions, and iii) each basic operation
necessary for query evaluation entails different data exchanges among the servers.
Access control is effectively modeled and efficiently executed in terms of graph col-
oring and composition. The query execution plan is checked against privileges to
evaluate if it can or cannot be exploited for query evaluation.

5.1 Introduction

More and more emerging scenarios require different parties, each withholding large
amounts of independently managed information, to cooperate with other parties in a
larger distributed system to the aim of sharing information and perform distributed
computations. Such scenarios range from: traditional distributed database systems,

1 Part of this chapter appeared under S. De Capitani di Vimercati, S. Foresti, S.
Jajodia, S. Paraboschi, and P. Samarati, “Assessing Query Privileges via Safe and Efficient
Permission Composition,” in Proc. of the 15th ACM Conference Conference on Computer and
Communications Security (CCS 2008), Alexandria, VA, October 2008 [42] ©2008 ACM, Inc.
Reprinted by permission http://doi.acm.org/10.1145/1455770.1455810; and under ©2008 IEEE,
reprinted, with permission, from S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
P. Samarati,“Controlled Information Sharing in Collaborative Distributed Query Processing,” in
Proc. of the 28th International Conference on Distributed Computing Systems (ICDCS 2008),
Beijing, China, June 2008 [43].

S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51, 135
DOI 10.1007/978-1-4419-7659-8_5, © Springer Science+Business Media, LLC 2011

136 5 Distributed Query Processing under Safely Composed Permissions

where a centrally planned database design is distributed to different locations; to
federated systems, where independently developed databases are merged together;
to dynamic coalitions and virtual communities, where independent parties may need
to selectively share part of their knowledge towards the completion of common
goals. Regardless of the specific scenario, a common point of such a merging and
sharing process is that it is selective: if on the one hand there is a need to share some
data and cooperate, there is on the other hand an equally strong need to protect those
data that, for various reasons, should not be disclosed.

The correct definition and management of protection requirements is therefore a
crucial point for an effective collaboration and integration of heterogeneous large-
scale distributed systems. The problem calls for a solution that must be expressive
to capture the different data protection needs of the cooperating parties as well as
simple and coherent with current mechanisms for the management of distributed
computations, to be seamlessly integrated in current systems and fully exploit the
availability of technical solutions that are the fruit of a large amount of research and
development. To this aim and for the sake of concreteness, in this chapter we ad-
dress the problem with specific consideration to distributed database systems, while
noting that our approach can be extended to other data models.

Current approaches for the specification and enforcement of authorizations in
relational databases claim flexibility and expressiveness because of the possibility of
referring to views. Users can be given access to a specific portion of the data by the
definition of the corresponding view (in the database schema) and the consequent
granting of the authorization on the view to the user. It is then responsibility of the
user to query the view itself. Queries on a table (base relation or view) are controlled
with respect to authorizations specified on the table and granted only if authorized.
When the diversity of users and possible views is considerable and dynamic such
an approach clearly results limiting as it: i) requests to explicitly define a view for
each possible access needed and ii) imposes on the user/application the burden of
knowing and directly querying the view. The evaluation of query compliance in
terms of existing authorization views has been considered in [71, 80, 81, 82].

We propose an expressive, flexible, and powerful, yet simple approach for the
specification and enforcement of permissions that overcomes such limitations. Our
permissions express privileges not on specific existing views but on stable com-
ponents of the database schema, exploiting both relations and joins between them,
effectively identifying the specific portion of the data whose access is being autho-
rized. Another important aspect of our approach is that we do not limit ourselves
to a simple relation-authorization control but allow data release whenever the infor-
mation carried by the relation (either directly or indirectly due to the dependence of
the attributes with other data not explicitly released) is legitimate according to the
specified permissions. This is an important paradigm shift with respect to current
solutions, departing from the need of specifying views to identify the portion of the
data to be authorized but explicitly supporting such a specification in the permis-
sions themselves.

A further novel aspect of the model is the definition of distinct access profiles
for the users in the system, with explicit support for a cooperative management of

5.2 Preliminary Concepts 137

queries. This is an important feature in distributed settings, where the minimization
of data exchanges and the execution of steps of the queries in locations where it
can be less costly is a crucial factor in the identification of an execution strategy
characterized by good performance.

5.1.1 Chapter Outline

The remainder of the chapter is organized as follows. Section 5.2 introduces
the preliminary concepts of distributed query evaluation, which are referred in
our approach. Section 5.3 illustrates our security model. Section 5.4 illustrates a
graph-based representation of the components of the proposed authorization model
(database schema, relation profiles, and permissions). Section 5.5 describes a safe
and efficient permission composition method, exploited for evaluating if a given re-
lease is to be authorized or denied. Section 5.6 discusses query planning and how
protection requirements stated by permissions should impact its execution to ensure
data are properly protected by the distributed computation. Section 5.7 proposes an
algorithm for determining whether a query plan can be executed in the respect of
the authorizations and determine, if it exists, a safe assignment of tasks to the dis-
tributed cooperating parties for the execution of the query plan. Finally, Sect. 5.8
concludes the chapter.

5.2 Preliminary Concepts

We consider a distributed system composed of different subjects, denoted S , some
of which act as servers storing different relations, denoted R. In this section, we
briefly introduce the basic concepts and assumptions on the data model and the
distributed query execution.

5.2.1 Data Model

We refer in this chapter to the relational database model discussed in Sect. 3.2,
which is basically composed of a set R of relations, each with a primary key, and
of a set of referential integrity constraints.

Example 5.1. Consider a distributed system managing medical data, whose schema
is represented in Fig. 5.1. The system is composed of four servers with one
relation each: Employee stored at server SE ; Patient stored at server SP;
Treatment stored at server ST , and Doctor, stored at server SD. Underlined
attributes denote primary keys. There are two referential integrity constraints:
⟨Treatment.SSN,Patient.SSN⟩, implying that treatments can only be given

138 5 Distributed Query Processing under Safely Composed Permissions

R EMPLOYEE(SSN,Job,Salary)
PATIENT(SSN,DoB,Race)
TREATMENT(SSN,IdDoc,Type,Cost,Duration)
DOCTOR(IdDoc,Name,Specialty)

I ⟨Treatment.SSN,Patient.SSN⟩
⟨Treatment.IdDoc,Doctor.IdDoc⟩

J ⟨Employee.SSN,Patient.SSN⟩

Fig. 5.1 An example of relations, referential integrity constraints, and joins

to patients (values appearing for SSN in Treatment can be only values appearing
for SSN in Patient), and ⟨Treatment.IdDoc,Doctor.IdDoc⟩, implying
that treatments can only be prescribed by doctors (values appearing for IdDoc in
Treatment can be only values appearing for IdDoc in Doctor).

Information in different relations can be combined by using the join operation,
which allows the combination of tuples belonging to different relations imposing
conditions on how tuples can be combined. For simplicity of exposition, we assume
that attributes that can be joined appear with the same name in the different rela-
tions, and consider then all joins to be natural joins, that is, joins whose conditions
are conjunctions of equality conditions that compare the value of two attributes with
the same name. We denote a conjunction of equality conditions with a pair ⟨Al ,Ar⟩,
where Al (Ar, resp.) is the list of attributes of the left (right, resp.) operand of the
join. Note that while possible joins obviously include all referential integrity con-
straints, other joins are possible; in the following we denote with J the set of pairs
representing the equality conditions of such additional joins. As an example, with
respect to the relations in Fig. 5.1, Employee and Patient can be joined over at-
tribute SSN (retrieving all people that are both employees and patients). Like the set
of relations and the referential integrity constraints, possible joins are also specified
at the time of database design [49].

We assume all attributes in the different relations to have distinct names, apart
from attributes that can be joined, which appear instead with the same name. The
intuitive rationale behind such a homonymity is that attributes that can be joined
actually represent the same concept of the real world. For instance, SSN denotes
social security numbers of people, who can then appear, for example, as patients
or employees. We adopt the usual dot notation when necessary to distinguish the
attribute in a specific relation (to refer to the occurrence of its specific values). For
instance, Employee.SSN denotes the social security numbers of employees and
Patient.SSN denotes the social security numbers of patients.

Different join operations can also be used to combine tuples belonging to more
than two relations. The following definition introduces a join path as a sequence of
natural join conditions.

Definition 5.1 (Join path). A join path over a sequence of relation schemas
R1,. . . ,Rn is a sequence of n − 1 joins J1, . . . ,Jn−1 such that ∀i = 1, . . . ,n − 1,

5.2 Preliminary Concepts 139

Ji = ⟨Jl i,Jri⟩ ∈ (I ∪J) and Jl i are attributes of a relation appearing in a join
Jk, with k < i.

Example 5.2. With reference to the relations in Fig. 5.1, an example of join path
(combining more than two relations) is, {⟨Patient.SSN,Treatment.SSN⟩,
⟨Treatment.IdDoc,Doctor.IdDoc⟩}, allowing combination of tuples of the
relations Patient, Treatment, and Doctor to retrieve, for example, the spe-
cialty of the caring doctor of patients of a given race.

While noting that the permission model we propose in the next section can be
applied to any schema, in this chapter we assume that the schema is acyclic and
lossless [1, 5, 9]. Acyclicity implies that the join path over any subset of the rela-
tions {R1,. . .,Rn} in the schema, denoted joinpath({R1,. . .,Rn}), is unique. Acyclic-
ity rules out schemas that present recursion or multiple independent join condi-
tions among the same relations. Acyclicity can be immediately evaluated on the
schema graph (see Sect. 5.4), considering arcs without orientation. Losslessness of
the schema guarantees that joins among relations produce only correct information
(according to the real world). Intuitively, two relations produce a lossless join if
the join among them does not produce spurious tuples. Losslessness can be evalu-
ated by means of attribute intersections and functional dependencies (see Sect. 5.4).
Acyclicity and losslessness assumptions are often used in relational databases, be-
cause they permit the realization of simple and efficient procedures on the data, at
the same time capturing the requirements of most real-word situations [9].

5.2.2 Distributed Query Execution

Since relations are distributed at different servers, query execution may require com-
munication and data exchanges among the different servers involved in the query
(i.e., on which the relations to be accessed are stored). We assume that each server
implements a relational engine able to compute queries and that it can require the
execution of queries to other servers. We assume communication relies on trusted
channels and that servers use robust authentication mechanism (e.g., SSL/TLS with
2-way authentication using certificates).

We consider simple select-from-where queries of the form: “SELECT A FROM
Joined relations WHERE C”, corresponding to algebra expression πA(σC(R1 ◃▹ . . . ◃▹
Rn)), where A is a set of attributes, C is the selection conditions, and R1 ◃▹ . . . ◃▹ Rn
are the joins in the FROM clause. Each query execution can be represented as a bi-
nary tree (called query tree plan) where leaves correspond to the physical relations
accessed by the query (appearing in the FROM clause), each non-leaf node is a rela-
tional operator receiving in input the result produced by its children and producing
a relation as output, and the root corresponds to the last operation and returns the
result of the query evaluation. To simplify and without loss of generality, we as-
sume the query plan to satisfy the usual minimization criteria, and, in particular,
we assume that projections are “pushed down” the tree, to eliminate unnecessary

140 5 Distributed Query Processing under Safely Composed Permissions

n0 πSSN,Salary,DoB

n1 ◃▹

LLLLLLL

sssssss

n2 ◃▹

JJJJJJJ

��
��

n3 πSSN

n4 πSSN,Salary n5 πSSN,DoB n6 σDuration>10

n7 Employee n8 Patient n9 Treatment

Fig. 5.2 An example of query tree plan

attributes as soon as possible. While usually adopted for efficiency, this assumption
is also important for security purposes, as it restricts the attributes being potentially
disclosed to those strictly needed for the computation.

Example 5.3. Consider the relations in Fig. 5.1, and consider the following query.

SELECT E.SSN, Salary, DoB
FROM Employee AS E JOIN Patient AS P ON E.SSN=P.SSN

JOIN Treatment AS T ON P.SSN=T.SSN
WHERE Duration> 10

The corresponding relational algebra expression is πSSN,Salary,DoB (σDuration>10
(Employee ◃▹ Patient ◃▹ Treatment)). An example of tree representing
the execution of this query is represented in Fig. 5.2, where the selection on
Duration> 10 on relation Treatment has been pushed down the tree (i.e., it
is executed before the join operation). Also, projections on necessary attributes are
added before join operations.

Queries may involve joins among relations stored at different servers, which
therefore need to cooperate, and possibly exchange data, for performing the compu-
tation. We therefore propose an authorization model to regulate the view that each
server (subject in general) can have on the data and ensure that query computation
exposes to each server only data that the server can view.

We assume that each server is responsible for the definition of the access policy
on its resources and permissions involving data stored at different servers are jointly
specified and administered. A centralized query optimizer is responsible for the con-
struction of the query plan, taking into account the schema and the permissions from
each server. This is compatible with all the proposals for distributed databases aim-
ing at a realization on concrete systems, which assume the use of a centralized op-
timizer; a purely distributed approach based on some form of negotiation protocol
among the servers is considered impractical.

5.3 Security Model 141

In the following, given an operation involving a relation stored at a server, we will
use the term operand to refer independently to the relation or to the server storing
it, when the semantics is clear from the context.

5.3 Security Model

We first present our simple, while expressive, permissions regulating how data can
be released to each server. We then introduce the concept of relation profile that
characterizes the information content of a relation.

5.3.1 Permissions

Consistently with standard practice in the security world, we assume a “closed”
policy, where data can be made visible only to parties explicitly authorized for that.

Different subjects in the system may be authorized to view portions of the whole
database content. We consider permissions in a simple, yet powerful form, specify-
ing visibility permissions for subjects to view certain schema components. Formally,
permissions are defined as follow.

Definition 5.2 (Permission). A permission p is a rule of the form [Att, Rels]→S
where:

• Att is a set of attributes, belonging to one or more relations, whose release is
being authorized;

• Rels is a set of relations such that for every attribute in Att there is a relation
including it;

• S is a subject in S .

Permission [Att, Rels]→S states that subject S can view the sub-tuples over
the set of attributes Att belonging to the join among relations Rels (on conditions
joinpath(Rels)).

Note that, according to the definition, only attribute names (without indication of
the relation) appear in the first component of the permission, whereas the relation
(or relations) to which the attribute belongs is specified in the second component.
This occurs even when the attribute appears in more than one relation (specified in
Rels), consistently with the semantics that all the occurrences represent the same
entity in the real world.

Example 5.4. Figure 5.3 illustrates some permissions on the relations in Fig. 5.1 that
give Alice the visibility of:

• SSN, Date of Birth, and Race of all patients (p1);

142 5 Distributed Query Processing under Safely Composed Permissions

p1: [(SSN,DoB,Race),(Patient)] →Alice
p2: [(SSN,Type,Cost,Duration),(Treatment)] →Alice
p3: [(Race,Specialty),(Treatment,Patient,Doctor)] →Alice
p4: [(SSN,Job,Salary),(Employee)] →Alice
p5: [(Name),(Treatment,Doctor)] →Alice

Fig. 5.3 Examples of permissions

• SSN of treated patients, together with Type, Cost, and Duration of their treat-
ments (p2);

• Race of patients and Specialty of their caring doctors (p3);
• SSN, Job, and Salary of all employees (p4);
• Name of doctors who have prescribed some treatment (p5).

Note that the presence of a relation (and therefore the enforcement of the corre-
sponding join condition) in a permission may decrease the set of tuples that are made
visible (to only those tuples that participate in the join). However, such an elimina-
tion of tuples does not correspond to less information, rather it adds information
on the fact that the visible tuples actually join with (i.e., have values appearing in)
other tuples of the joined relations. For instance, permission p5 while restricting the
set of doctor’s names visible to Alice to only the names of the doctors who have
prescribed treatments, it allows Alice to see that such doctors have prescribed
treatments (i.e., they appear in relation Treatment).

The only case where including an additional relation in the permission does not
influence the result, and therefore does not imply an indirect information disclo-
sure, occurs when the additional relations are reachable via referential integrity con-
straints (from the foreign to the primary key it references) from a relation in Rels.
For instance, permissions p2 in Fig. 5.3 and a permission with the same first compo-
nent as p2 and having (Treatment,Patient,Doctor) as a second component,
are completely equivalent as they permit (direct or indirect) release of exactly the
same information. Indeed, given the existing referential integrity constraints (see
I in Fig. 5.1), all SSN and all IdDoc appearing in Treatment also appear in
Patient and Doctor respectively. The added joins are therefore ineffective.

Note how the simple form of permissions above, with the specification of the
relations as a separate element, proves quite expressive. In particular, the Rels com-
ponent may also include relations whose attributes do not appear in the set Att of
attributes. This may be due to either:

• connectivity constraints, where these relations are needed to build the association
among attributes of other relations (i.e., the relations are in the join path). For
instance, in permission p3 in Fig. 5.3, Treatment relation appears in the join
path to establish the association between each patient and her caring doctors, but
none of its attributes is released. Note how the permission allows Alice to view
the speciality of patients’ doctors without need of knowing their treatment.

• instance-based restrictions, where the relations are needed to restrict the at-
tributes to be released to only those values appearing in tuples that can be asso-

5.3 Security Model 143

ciated with such relations. For instance, permission p5 in Fig. 5.3 allows Alice
to view the names of all the doctors who prescribed at least a treatment (i.e., tu-
ples in the Doctor relation satisfying Doctor.IdDoc=Treatment.IdDoc
condition) but not of those doctors who never prescribed a treatment. Note how
instance-based restrictions can also be used to support situations where some in-
formation can be released only if explicit input is requested (the input is viewed
in this case as a relation to be joined). For instance, we can define a permission
such that providing the employees’ SSN, the company can retrieve their treat-
ments.

5.3.2 Relation Profiles

Permissions restrict the data (view) that can be released to each subject. To deter-
mine whether a release should be authorized or not, we first need to capture the
information content of the released relation, which can be either base or computed
by a query. To this purpose, we introduce the concept of relation profile as follows.

Definition 5.3 (Relation profile). Given a relation R, the relation profile of R is a
triple [Rπ ,R◃▹,Rσ], where:

• Rπ is the set of attributes in R (i.e., R’s schema);
• R◃▹ is the, possibly empty, set of base relations joined for the defini-

tion/construction of R;
• Rσ is the, possibly empty, set of attributes involved in selection conditions in the

definition/construction of R.

According to the definition above, the relation profile of a base relation
R(a1, . . . ,an) is [{a1, . . . ,an},R, /0].

The reason why both i)the attributes being returned as result (i.e., the attributes
in the SELECT clause) and ii) the attributes on which the query imposes conditions
(i.e., the attributes in the WHERE clause) appear in the profile reflects the fact that the
query result returns indeed information on both (or, equivalently, the subject needs
permissions to view both for accessing the relation to be released).

Note also that, like for permissions, only attribute names (without indication of
the relation) appear in the first component of the query profile, while the relation
(or relations) to which the attributes belong is specified in the second component.
Indeed, if an attribute belongs to more than one relation (and therefore participates in
the join), the common values of such an attribute in all relations are released by the
query, regardless of the specific relation mentioned in the SELECT clause, which is
needed for disambiguating attribute names. The consideration of the attribute names
allows us to conveniently capture this aspect regardless of the specific way in which
the query has been written. For instance, with respect to the query in Example 5.3,
the set of social security numbers released by the query is the intersection of the
set of SSN values of patients, employees, and treatments as captured in the profile:

144 5 Distributed Query Processing under Safely Composed Permissions

Profile
Operation Rπ R◃▹ Rσ

R := πA(Rl) A R◃▹
l Rσ

l
R := σA(Rl) Rπ

l R◃▹
l Rσ

l ∪A
R :=Rl◃▹ jRr Rπ

l ∪Rπ
r R◃▹

l ∪R◃▹
r Rσ

l ∪Rσ
r

Fig. 5.4 Profiles resulting from operations

[(SSN,Salary,DoB), (Employee,Patient,Treatment), (Duration)]. As a
matter of fact, a query equal to the query in Example 5.3 but releasing P.SSN or
T.SSN instead of E.SSN, while slightly different in the syntax, would carry exactly
the same information content and, consequently, would have the same profile.

According to the semantics of the relational operators, the profile resulting from
a relational operation, summarized in Fig. 5.4,2 is as follows.

• Projection (π). A projection operation returns a subset of the attributes of the
operand. Hence, R◃▹ and Rσ of the resulting relation R are the same as the ones
of the operand, while Rπ contains only those attributes being projected.

• Selection (σ). A selection operation returns a subset of the tuples of the operand.
Hence, R◃▹ and Rπ of the resulting relation R are the same as the ones of the
operand, while Rσ needs to include also the attributes appearing in the selection
condition.

• Join (◃▹). A join operation returns a relation that contains the association of the
tuples of the operands, thus capturing the information in both operands as well as
the information on their association (conditions in the join). Hence, Rσ , Rπ , and
R◃▹ of the resulting relation R are the union of those of the operands, implicitly
capturing the join path joinpath(R◃▹) among the relations composing R◃▹ and
consequently the set of conditions that each tuple in R satisfies.

5.4 Graph-based Model

We model database schema, permissions, and queries via mixed graphs, that is,
graphs with both undirected and directed arcs.

The schema graph of a set R of relations is a mixed graph whose nodes corre-
spond to the different attributes of the relations, whose non-oriented arcs correspond
to the possible joins (J), and whose oriented arcs correspond to the referential in-
tegrity constraints (I) and the functional dependencies between the primary key
of a relation and its non-key attributes. Attributes appearing with the same name in
more than one relation appear as different nodes. To disambiguate, nodes are identi-

2 For the sake of simplicity, with a slight abuse of notation, in the table we write σA(R) as a short
hand for any expression σcondition(R), where A is the set of attributes of R involved in condition.

5.4 Graph-based Model 145

Fig. 5.5 Schema graph for the relations in Fig. 5.1

fied with the usual dot notation by the pair relation.attribute. This is formalized by
the following definition.

Definition 5.4 (Schema graph). Given a set R of relations, a set I of referential
integrity constraints over R, and a set J of join conditions over R, a schema graph
is a graph G(N ,E) where:

• N = {Ri.∗ : Ri ∈ R}
• E = J ∪ I ∪ {(Ri.K,Ri.a) : Ri ∈ R∧a ̸∈ K}

Figure 5.5 represents the schema graph corresponding to the set of relations,
referential integrity constraints, and join conditions in Fig. 5.1 (for simplicity, we
only report the initials of the relations).

Permissions and relation profiles correspond to views over the set R of relations
and are characterized by a pair [A,R], corresponding to [Att,Rels] appearing in the
permissions, and to [Rπ∪Rσ ,R◃▹] in the relation profile of relation R, respectively.

Definition 5.5 (Entailed view). Given a set R of relations and a permission
p=[Att,Rels] over it, the view V =[A,R] entailed by p is defined as: A=Att and R=Rels.
Given a set R of relations and a relation profile [Rπ ,R◃▹,Rσ], the view V =[A,R] en-
tailed by the profile is defined as: A=Rπ∪Rσ and R=R◃▹.

In the characterization of the view, we take into consideration the fact that ref-
erential integrity constraints can be used to extend the relations in R to include all
relations reachable from the ones appearing in R by following referential integrity
connections from a foreign key to the referenced primary key. We can then include
such relations in the set R. Given a set R of relations, R∗ denotes the relations ob-
tained by closing R with respect to referential integrity constraints. For instance,
with respect to the schema graph in Fig. 5.5, the closure of R={Treatment} is
R∗={Treatment, Patient, Doctor}.

Given a relation profile/permission, we graphically represent the view entailed
through it as a view graph obtained by coloring the original schema graph with

146 5 Distributed Query Processing under Safely Composed Permissions

three colors: black for information that the view carries (i.e., it explicitly contains
or indirectly conveys); white for all the non-black attributes belonging to relations
in R∗ and the arcs connecting them to the primary key; and clear for any other
attribute or arc. Intuitively, clear nodes/arcs are attributes/arcs belonging to the orig-
inal graph that are ineffective with respect to the evaluation and composition of
permissions. The reason for maintaining them in the view graphs is so that every
query/permission is a coloring (in contrast to a subgraph) of the schema graph. View
graph is formally defined as follows.

Definition 5.6 (View graph). Given a set R of relations characterized by
schema graph G(N ,E) and a view V = [A,R] entailed by a permission/relation
profile on it, the view graph of V over G is a graph GV(N ,E ,λV), where
λV : {N ∪E }→{black,white,clear} is a coloring function defined as follows.

λV (n)=

black, n=R.a, R ∈ R∗ ∧ a ∈ A

white, n=R.a, R ∈ R∗ ∧ a ̸∈ A

clear, otherwise

λV (ni,n j)=

black, (ni,n j) ∈ joinpath(R∗) ∨
(ni=R.K, n j=R.a, R ∈ R∗,(a ∈ A ∨ R.a appears in joinpath(R∗)))

white, ni=R.K, n j=R.a, R ∈ R∗,
¬(a ∈ A ∨ R.a appears in joinpath(R∗))

clear, otherwise

According to this definition, a node is colored as: black if it appears in A, white
if it is not black and it belongs to a relation appearing in R∗, and clear otherwise.
An arc is colored: black if either it belongs to joinpath(R∗) or it is an arc going
from the key of a relation in R∗ to an attribute which either belongs to A or appears
in joinpath(R∗); white if it is an arc from the key of a relation in R∗ to one of its
attributes which neither belongs to A nor appears in joinpath(R∗); clear otherwise.

Figure 5.6 illustrates the ColorGraph function that given the schema graph G
and a pair [A,R] denoting either the view entailed by a permission or by a rela-
tion profile, implements Definition 5.6 and returns the corresponding view graph.
ColorGraph, whose interpretation is immediate, starts by assigning a clear color
to all nodes and arcs and proceeds by coloring black and white arcs and nodes as
prescribed by the definition.

Figure 5.7 reports the view graphs corresponding to the permissions in Fig. 5.3.
Figure 5.8 reports some examples of relations obtained through queries over the
schema in Fig. 5.5. The figure reports the queries originating the relations, the rela-
tion profiles, and the corresponding view graphs.

Before closing this section we introduce two dominance relationships between
view graphs that will be used in the remainder of the chapter.

5.5 Authorized Views 147

COLORGRAPH(G,[A,R])
NV := N
EV := E
for each n∈NV do λV (n) := clear
for each (ni,n j)∈EV do λV (ni,n j) := clear
for each R∈R∗ do

for each a∈R.∗ do /* color nodes */
if a∈A then

λV (R.a) := black
else

λV (R.a) := white
for each (ni,n j)∈joinpath(R∗) do /* color the join path */

λV (ni,n j) := black
for each (ni,n j)∈{(ni,n j): ∃R∈R∗, ni=R.K ∧n j⊆R.∗} do

if λV (n j)=black ∨ n j appears in joinpath(R∗) then
λV (ni,n j) := black

else
λV (ni,n j) := white

GV := (NV ,EV ,λV)
return(GV)

Fig. 5.6 Function for coloring a view graph

Definition 5.7 (≼N , ≼NE). Given a schema graph G(N ,E), and two view graphs
GVi(N ,E ,λVi) and GVj(N ,E ,λVj) over G, the following dominance relationships
are defined:

• GVi≼NGVj , when ∀n∈ N and ∀(nh,nk) ∈ (J ∪I):

– λVi(n) = black =⇒ λVj(n)=black, and
– λGi(nh,nk) = black ⇐⇒ λG j(nh,nk) = black.

• GVi≼NEGVj , when ∀n∈ N and ∀(nh,nk) ∈ E :

– λVi(n) = black =⇒ λVj(n)=black, and
– λGi(nh,nk) = black =⇒ λG j(nh,nk) = black.

According to this definition, given two graphs GVi and GVj on the same database
schema, GVi ≼N GVj if they have exactly the same black referential integrity and join
arcs and the black nodes of GVi are a subset of the black nodes of GVj . GVi ≼NE GVj

if the black arcs and nodes of GVi are a subset of the black arcs and nodes of GVj .
For instance, with reference to the view graphs in Figs. 5.7 and 5.8, it is easy to see
that: Gp3≼NGQ3 and that Gp1≼NEGQ2 .

5.5 Authorized Views

To evaluate a query requested by a subject against her permissions and to determine
if the query can be executed, we implement the following intuitive concept.

Principle 5.1 A relation (either base or resulting from a query evaluation) can be
released to a subject if she has permissions to view the information content carried
by the relation.

148 5 Distributed Query Processing under Safely Composed Permissions

p1:[(SSN,DoB,Race),(Patient)]→Alice p2:[(SSN,Type,Cost,Duration),(Treatment)]→Alice

p3:[(Race,Specialty),(Treatment,Patient,Doctor)]→Alice p4:[(SSN,Job,Salary),(Employee)]→Alice

p5:[(Name),(Treatment,Doctor)]→Alice

Fig. 5.7 Examples of permissions and their view graphs

We first discuss when a permission authorizes the release of a relation. We will
then address permission composition and cooperation in query evaluation.

In the reminder of this section we refer our discussion to permissions and rela-
tion profiles of a specific subject and omit, for simplicity, the subject component of
permissions in the formalization.

5.5 Authorized Views 149

Q1

SELECT E.SSN,Salary
FROM Employee AS E

JOIN Patient AS P
ON E.SSN=P.SSN
JOIN Treatment AS T
ON T.SSN=P.SSN

WHERE Cost> 250

[(SSN,Salary), (Employee,Patient,Treatment), (Cost)]

Q2

SELECT P.SSN,DoB
FROM Employee AS E

JOIN Patient AS P
ON E.SSN=P.SSN

WHERE Race=‘asian’

[(SSN,DoB), (Employee,Patient), (Race)]

Q3

SELECT P.SSN,Race
FROM Patient AS P

JOIN Treatment AS T
ON T.SSN=P.SSN
JOIN Doctor AS D
ON T.IdDoc=D.IdDoc

WHERE Specialty=‘cardiology’

[(SSN,Race), (Patient,Treatment,Doctor), (Specialty)]

Q4

SELECT E.SSN,Salary,DoB
FROM Employee AS E

JOIN Patient AS P
ON E.SSN=P.SSN
JOIN Treatment AS T
ON P.SSN=T.SSN

WHERE Duration> 10

[(SSN,Salary,DoB), (Employee,Patient,Treatment), (Duration)]

Fig. 5.8 Examples of queries, their relation profiles, and their view graphs

5.5.1 Authorizing Permissions

Intuitively, a permission authorizes a release if and only if the information (directly
or indirectly) entailed by the relation profile is a subset of the information that the

150 5 Distributed Query Processing under Safely Composed Permissions

permission authorizes to view. Note that this is different from saying that the relation
should contain only data that are a subset of the data authorized by the permission,
as this denotes only the information directly released. A correct enforcement should
also ensure that no indirect release occurs. There are two main sources of indirect
release:

• the presence, in the query generating the relation, of conditions on attributes that
are not returned (i.e., attributes that appear in the WHERE clause but do not appear
in the SELECT clause);

• the presence of join conditions restricting the tuples returned by the query.

The first aspect is easily taken into consideration as it is already captured by the in-
clusion, in the relation profile (Definition 5.3), of Rσ component, which is included
in A for the entailed view definition (Definition 5.5). To illustrate the problem of the
second aspect, consider permission p1 in Fig. 5.7, which allows Alice to view the
complete information in Patient, and therefore the whole tuples representing all
patients. Permission p1 by itself is then sufficient to grant Alice the ability to view
the data of all patients (i.e., relation obtained through query “SELECT P.SSN,DoB
FROM Patient AS P WHERE Race=‘asian’ ”). Suppose instead that Alice is
interested in the relation resulting from Q2 in Fig. 5.8. This latter query returns a
subset of all the tuples of patients, and therefore only tuples that Alice, accord-
ing to p1, is authorized to see. However, permission p1 is not sufficient for granting
Alice such visibility on data, since the query result conveys the additional in-
formation that the returned tuples refer to patients who are also employees of the
considered company (information which permission p1 does not authorize).

As already commented in Sect. 5.4, the only case when joins do not add informa-
tion is when there is a referential integrity constraint among the involved relations.
Consider, for example, permission p2 authorizing the release of different attributes
in Treatment. For instance, query “SELECT T.SSN FROM Treatment AS T”
is clearly authorized by p2. Consider then the same query containing, in the FROM
clause, also relations Patient and Doctor with the corresponding joins. De-
spite the presence of the additional joins, such a query does not bear additional
information (indirect release) and should therefore be authorized by p2. As a matter
of fact, because of the referential integrity constraints between the involved rela-
tions, all SSN’s and IdDoc’s appearing in Treatment also appear in Patient
and Doctor, respectively, and therefore the joins do not impose restrictions. The
consideration of the peculiar characteristics of joins due to referential integrity con-
straints is easily taken into account, since it is already captured by the coloring, in
the view graph, of all the relations reachable from the ones appearing in the query,
by following referential integrity constraints (Definition 5.6).

Let us then proceed to formally define when a permission authorizes the release
of a relation. We start by identifying permissions applicable to a relation profile.
Intuitively, a permission applies to a relation when it refers to the complete set of
tuples composing the relation. Since tuple restriction is due to joins not following the
direction from a foreign key to the referenced key in a referential integrity constraint
(as commented above), this is equivalent to saying that the permission applies to a

5.5 Authorized Views 151

relation profile if it does not contain additional joins (apart from those corresponding
to referential integrity constraints). This is formalized by the following definition.

Definition 5.8 (Applicable). A permission [Att,Rels] is applicable to a relation pro-
file [Rπ ,R◃▹,Rσ] iff Rels∗⊆R◃▹∗.

In terms of view graphs, this definition is equivalent to say that the black and
white nodes of the view graph Gp of permission p should be a subset of the black
and white nodes of the view graph GR of the relation profile of R.

According to the discussion above, a permission authorizes the release of a rela-
tion if and only if the permission applies to the relation profile and authorizes the
release, either direct of indirect, of the information in the profile. This means that the
permission should include (at least) all attributes composing the relation or accessed
for its definition/computation as well as all the join conditions. In terms of the view
graphs, this is equivalent to say that the view graph GR of the relation profile and the
view graph Gp of the permission have exactly the same black referential integrity
and join arcs and that all nodes that are black in the view graph of the relation pro-
file are also black in the view graph of the permission, that is, GR≼NGp . This is
formally captured by the following definition.

Definition 5.9 (Authorizing permission). Given a permission p=[Att,Rels] applica-
ble to a relation profile R=[Rπ ,R◃▹,Rσ], p authorizes the release of R iff GR≼NGp .

As an example, with reference to the permissions in Fig. 5.7 and the relation
computed through query Q2 in Fig. 5.8, the set of permissions applicable includes
p1 and p4. However, neither p1 nor p4 authorize the release of the query result. By
contrast, considering query “SELECT P.SSN,DoB FROM Patient AS P WHERE
Race=‘asian’ ”, with profile [(SSN,DoB), (Patient), (Race)] permission p1 is
the only applicable permission that also authorizes the query.

5.5.2 Composition of Permissions

Checking relation profiles against individual permissions is not sufficient for a true
enforcement of Principle 5.1. Indeed, it might be that for a relation profile there is
no permission that singularly taken authorizes the release of the relation, however
information released (directly or indirectly) by the relation profile is authorized. As
an example, consider permissions p1 and p4 in Fig. 5.3 and suppose that Alice
requests the relation resulting from query Q2 in Fig. 5.8, returning the tuples as-
sociated with patients whose SSN appears also in the Employee relation. While
neither p1 nor p4 authorize the relation profile (as, for each of them, the relation
profile has the additional join condition that the permission does not authorize), it is
clear that the relation does not contain any information that Alice is not authorized
to see. As a matter of fact, Alice could indeed separately query both relations and
then join the two results. In the spirit of Principle 5.1, the release of the result of

152 5 Distributed Query Processing under Safely Composed Permissions

COMPOSE(G,pi,p j)
p := [Atti∪Att j ,Relsi∪Rels j]
Np := N
Ep := E
for each n∈Np do λV (n) := clear
for each (ni,n j)∈Ep do λV (ni,n j) := clear
for each n∈Np do

if λpi (n)=black∨λp j (n)=black then
λp (n)=black

else
if λpi (n)=white∨λp j (n)=white then

λp (n)=white
for each (nh,nk)∈Ep do

if λpi (nh,nk)=black∨λp j (nh,nk)=black∨ (λp (nh)=black∧λp (nk)=black) then
λp (nh,nk)=black

else
if λpi (nh,nk)=white∨λp j (nh,nk)=white then

λp (nh,nk)=white
return(p)

Fig. 5.9 Function composing two permissions

query Q2 to Alice should therefore be authorized. To enforce this principle, we
compose permissions and consider a release of a relation authorized if there exists a
composition of permissions that authorizes it.

Composition of permissions must however be performed carefully to ensure that
composition does not authorize additional queries that were authorized by neither
of the original permissions. To illustrate, consider again the permissions in Fig. 5.7
and suppose that Alice is interested in the relation resulting from query Q3. One
could think that such a release can be authorized by composing p1 in Fig. 5.7 (au-
thorizing the release of SSN’s and Race’s) and p3 (authorizing the release of the
race of patients together with the specialty of their caring doctor). However, such
a composition does not authorize the relation release. Indeed, the relation profile
conveys the associations between a patient and her caring doctor, which neither of
the individual permissions authorize and which Alice would not be able to recon-
struct by separately exploiting the privileges granted by the two permissions. The
problem, in this case, is that the composition of the two permissions returns more
information than that entailed by the two permissions individually taken. If this is
the case, the two permissions should not be composed.

To determine when two permissions can be composed, we exploit one of the
foundational results of the theory of joins for relational databases, expressed by the
theorem presented in [5], which states that two relations produce a lossless join if
and only if at least one of the two relations functionally depends from the intersec-
tion of their attributes. The relations that are considered in the theorem correspond
to generic projections on the set of attributes that characterizes the “universal rela-
tion” obtained joining all the relations of our lossless acyclic schema; this means
that each permission corresponds to a relation and that the composition of permis-
sions is correct only if the above requirement is satisfied. For instance, consider
the previous examples and the permissions in Fig. 5.7. Permissions p1 and p4 can
be combined because their intersection is represented by attribute SSN, which is a

5.5 Authorized Views 153

key for all the attributes in p1 (and p4). Permissions p1 and p3 cannot be combined
because their intersection is represented by attribute Race, and neither p1 nor p3
functionally depend on it.

The application of this basic result of the theory of joins in our scenario is slightly
complicated by the fact that the views corresponding to given permissions may in-
clude attributes from different relations. (We note here that intersection of permis-
sions is computed based only on the attribute names, without considering the re-
lation they belong to, since attributes with the same name represent the same real
world concept and natural joins impose them to be equal in all the resulting tu-
ples.) Given two permissions pi=[Atti,Relsi] and p j=[Att j,Rels j] their composability
depends on the intersection of their visible attributes (i.e., Atti ∩ Att j) but the func-
tional dependency of the visible attributes of one of the two permissions from the
common attributes needs to be evaluated by taking into account also the referen-
tial integrity constraints. This concept can be easily captured by analyzing the view
graphs Gpi and Gp j corresponding to the two permissions. The basic idea is that
there is a dependence between pi and p j when there is a black path from nodes cor-
responding to the attributes that are listed both in Atti and in Att j to all the black
nodes in Gpi or in Gp j . This intuitive concept of dependency is formalized as fol-
lows.

Definition 5.10 (Dependence). Given two permissions pi=[Atti,Relsi] and
p j=[Att j,Rels j] with view graphs Gpi(N ,E ,λpi) and Gp j(N ,E ,λp j), respec-
tively, let B j be the set of nodes corresponding to {Atti ∩ Att j} in Gp j . We say that
p j depends on pi, denoted pi→p j, iff ∀n j∈N such that λp j(n j)=black, ∃n ∈ B j
such that there is a path of only directed black arcs from n to n j in Gp j .

In the following, notation pi↔p j denotes that both pi→p j and p j→pi hold. Sim-
ilarly, pi ̸↔p j denotes that neither pi→p j nor p j→pi hold.

For instance, with reference to the permissions in Fig. 5.7, as already noted,
p2→p1, since common attribute SSN is key for the Patient relation authorized by
p1, and p1 ̸→p2, since the attributes released by p2 depend on the pair of attributes
SSN and IdDoc. We also note that p1↔p4, since the SSN attribute, common to the
two permissions, is the key of both the Patient and Employee relations. On the
contrary, as already pointed out, p1 ̸↔p3.

If pi→p j (or p j→pi, respectively), then the two permissions can be safely com-
posed, as formally stated by the following definition.

Definition 5.11 (Safe composition). Given two permissions pi=[Atti,Relsi] and
p j=[Att j,Rels j], pi and p j can be safely composed when pi→p j, or p j→pi, or both.

For instance, p1 can be safely composed with p2, since p2→p1. Also, since
p1↔p4, p1 can be safely composed with p4.

Similarly to the composition of relations presented in the theory of normal forms
for relational databases, the composition of pi with p j generates a new permission
that combines the viewing privileges of the two, as stated by the following definition.

154 5 Distributed Query Processing under Safely Composed Permissions

Gp1 Gp2 Gp1⊗p2

⊗ =

Gp1 Gp4 Gp1⊗p4

⊗ =

Gp1⊗p2 Gp1⊗p4 Gp1⊗p2⊗p4

⊗ =

Fig. 5.10 Examples of permission compositions

Definition 5.12 (Composed permission). Given two permissions
pi=[Atti,Relsi] and p j=[Att j,Rels j], their composition is the permission
pi⊗p j=[Atti∪Att j,Relsi∪Rels j].

It is easy to see that the view graph of the resulting composed permission is
obtained from the view graphs of the components as follows. A node in Gpi⊗p j is:
black if it is black in either Gpi or Gp j ; white if it is not black and it is white in either
Gpi or Gp j ; it is clear otherwise. An arc in Gpi⊗p j is: black if it is black in either Gpi

or Gp j or if it is incident on only black nodes in Gpi⊗p j ; white if it is not black and
is white in either Gpi or Gp j ; it is clear otherwise. Figure 5.10 represents the view
graphs resulting from a subset of the safe compositions of the privileges in Fig. 5.7,
that is, p1⊗p2, p1⊗p4, and p1⊗p2⊗p4.

A permission obtained by composing permissions pi and p j (pi⊗p j) can be com-
posed with a permission pk that did not satisfy the composition requirements with pi
nor with p j. In general, each new permission produces new opportunities for compo-
sition that have to be considered. The consideration of all the potential compositions
is modeled by the following concept.

Definition 5.13 (Composition closure). Given a set of permissions P , the closure
on composition of P , denoted P⊗, is the set of permissions obtained as a fixpoint

5.5 Authorized Views 155

by the procedure which repeatedly extends P with all permissions obtained by the
safe composition of the permissions in P .

For instance, with reference to the set of permissions in Fig. 5.7, their closure is
P⊗={p1, p2, p3, p4, p5, p1⊗p2, p1⊗p4, p2⊗p4, p1⊗p2⊗p4}.

The closure represents the greatest representation of the permissions available to
a subject. This concept permits to identify in a complete way if a specific relation
profile is authorized for a subject.

Definition 5.14 (Authorized release). Given a set P of permissions applicable to
a relation profile [Rπ ,R◃▹,Rσ], P authorizes R iff ∃p ∈ P⊗ such that p authorizes
R (according to Definition 5.9).

The computation of the closure on composition of permissions is potentially an
expensive procedure. In the following, we present an efficient algorithm that avoids
computing the whole set of permissions in the composition closure while ensuring
completeness of the control, needed to evaluate if a release is authorized.

5.5.3 Algorithm

Given a set P of n permissions of a subject S applicable to a relation profile
[Rπ ,R◃▹,Rσ], the control for the authorized release does not require to compute all
the possible 2n − 1 permission compositions, since given two permissions pi and
p j, if p j→pi then p j is subsumed by pi⊗p j, and whenever a permission pk can be
composed with p j, pk can also be composed with pi⊗p j, as stated by the following
theorem.

Theorem 5.1 (Permission implication). Given two permissions pi=[Atti,Relsi],
p j=[Att j,Rels j] ∈ P such that p j→pi, ∀pk=[Attk,Relsk] ∈ P:

1. p j→pk ⇒ (pi⊗p j)→pk;
2. pk→p j ⇒ pk→(pi⊗p j).

Proof. Let us consider the two cases above.

1. Let pi⊗p j=[Atti, j,Relsi, j]. Attributes in Att j∩Attk also appear in the intersection
between Atti, j and Attk. Therefore, there exists a path of only directed black arcs
from a node corresponding to some attributes in Att j∩Attk to each black node in
Gpk .

2. From the hypothesis, we know that there is a path of only directed black arcs
from a node corresponding to some attributes in Att j∩Attk to each black node in
Gp j . Also, we know that there is a path of only directed black arcs from a node
corresponding to some attributes in Atti∩Att j to each black node in Gpi . By com-
bining these paths, it follows that also pk→pi and, therefore, that pk→(pi⊗p j).

156 5 Distributed Query Processing under Safely Composed Permissions

AUTHORIZED(GR ,S)
Let Applicable be the set of permissions [Att, Rels]→Si such that:
{n∈Np :λp (n)=black∨white}⊆{n∈ NR :λR (n)=black∨white} ∧ Si=S
/* check individual permissions */
for each p∈Applicable do

if GR≼N Gp then return(true)
/* compose permissions */
maxid := |Applicable|
counter := 1
for each p∈Applicable do

p.id := counter
p.maxcfr := counter
counter := counter + 1

idmini := 1
repeat

Let pi be the permission with pi.id=idmini
idmin j := Min({p.id:p∈Applicable∧pi.maxcfr<p.id})
Let p j be the permission with p j .id=idmin j
dominated := NULL
if (Gpi ̸≼NE Gp j) ∧ (Gp j ̸≼NE Gpi) then

if p j→pi then dominated := dominated ∪ {p j}
if pi→p j then dominated := dominated ∪ {pi}

pi.maxcfr := p j .id
if dominated ̸=NULL then

maxid := maxid + 1
pmaxid := Compose(G,pi,p j)
pmaxid .id := maxid
pmaxid .maxcfr := maxid
Applicable := Applicable − dominated ∪ {pmaxid}

idmini := Min({p.id:p∈Applicable∧p.maxcfr<maxid})
until idmini=NULL
/* check resulting permissions */
for each p∈Applicable do

if GR≼N Gp then return(true)
return(false)

Fig. 5.11 Function that checks if a release is authorized

This theorem implies that permission p j can be removed from the set P without
compromising the composition process. It is also easy to see that since the com-
posed permission is again applicable to the relation profile [Rπ ,R◃▹,Rσ], the set of
permissions to be composed always contains at most n permissions (i.e., the com-
posed permission substitutes one, or both, of the composing permissions). Function
Authorized in Fig. 5.11 applies this observation to check whether a relation profile
release is authorized. The function takes as input the view graph GR representing
the relation profile and the subjects requesting the release; on the basis of the set
of applicable permissions, it returns true or false, depending on whether or not the
query is authorized.

Initially, Authorized determines the set Applicable of applicable permissions
and checks if one of these permissions dominates (≼N) GR . If this is the case, func-
tion Authorized returns true. Otherwise, the function starts the composition process
that exploits Theorem 5.1 according to which permission pi can be removed from
set Applicable if p j→pi. The applicable permissions are first ordered according to a
numeric identifier id, ranging from 1 to |Applicable|, which is associated with each
permission. In the repeat until loop, each permission pi is compared with a permis-

5.5 Authorized Views 157

sion p j such that pi.id<p j.id. If the set of black nodes and arcs of Gpi is not a subset
of the set of black nodes and arcs of Gp j (i.e., Gpi ̸≼NEGp j , meaning that p j has
not been computed in a previous iteration by composing pi with another authoriza-
tion) and viceversa, function Authorized checks whether pi and p j can be composed
(i.e., p j→pi or pi→p j). If this is the case, the identifier of the resulting composed
permission (if any) becomes equal to the current maximum identifier (maxid) incre-
mented by one. Each permission p is also associated with a variable p.maxcfr that
keeps track of the highest identifier of the permissions compared to p. This vari-
able avoids to check the same pair of permissions more than once. The composition
process terminates when maxcfr of all permissions is equal to the highest identifier
maxid. The function then checks if any of the permissions in Applicable dominates
(≼N) GR . If this is the case, function Authorized returns true; otherwise it returns
false.

Example 5.5. Consider the schema graph in Fig. 5.5, the set of permissions in
Fig. 5.7, and the relation R1 computed by query Q1 in Fig. 5.8. As it is visible
from the view graphs, all the five permissions are applicable to the profile of the
relation resulting from Q1. The table in Fig. 5.12 represents the execution, step by
step, of function Authorized on GQ1 by reporting the evolution of variable p.maxcfr
for both original and composed permissions. Each column in the table corresponds
to a permission, whose identifier is the label of the column itself. Note that when a
permission is removed from Applicable, its maxcfr is not reported anymore. Each
row in the table represents an iteration of the repeat until loop, reporting both the
dependence relationship between the composing permissions and the maxcfr for all
permissions. Also, in each row the maxcfr of the permissions checked for a possible
composition are reported in italic. When a permission is removed from Applicable
(because subsumed by an added composed permission), its maxcfr is not reported
anymore. Figure 5.10 represents the view graph of the permissions obtained by the
composition. We then conclude that the relation resulting from the evaluation of
query Q1 can be released to Alice, since p1⊗p2⊗p4 authorizes it.

The following theorems state the correctness and complexity of function Autho-
rized.

Theorem 5.2 (Correctness). Given a relation profile R=[Rπ ,R◃▹,Rσ] and a set Ap-
plicable of applicable permissions, function Authorized terminates and returns true
iff the release of R is authorized by Applicable⊗.

Proof. Termination. All the for loops terminate, since Applicable (by Theorem 5.1)
is composed of at most n permissions. At each iteration of the repeat until
loop, function Authorized evaluates a pair of permissions ⟨pi,p j⟩ such that
pi.maxcfr<p j.id. Two cases can occur: pi and p j cannot be composed, or pi and
p j can be composed (and we suppose, without loss of generality, that p j→pi). In the
first case, in the subsequent iterations pi and p j are no more checked, since pi.id and
p j.id do not change and pi.maxcfr is set to p j.id. In the second case, pi is removed
from Applicable, while the composed permission p=pi⊗p j is added to Applicable.

158 5 Distributed Query Processing under Safely Composed Permissions

id 1 2 3 4 5 6 7 8

p1 p2 p3 p4 p5
initialization 1 2 3 4 5
p2→p1 1 2 3 4 5 p1⊗p2
p1 ̸↔p3 2 3 4 5 6
p1↔p4 3 3 4 5 6 p1⊗p4
p3 ̸↔p5 3 5 6 7
p3 ̸↔(p1⊗p2) 5 5 6 7
p5 ̸↔(p1⊗p2) 6 5 6 7
p3 ̸↔(p1⊗p4) 6 6 6 7
p5 ̸↔(p1⊗p4) 7 6 6 7
(p1⊗p2)→(p1⊗p4) 7 7 6 7 p1⊗p2⊗p4
p3 ̸↔(p1⊗p2⊗p4) 7 7 7 8
p5 ̸↔(p1⊗p2⊗p4) 8 7 7 8
Gp1⊗p4≼NE Gp1⊗p2⊗p4 8 8 7 8

8 8 8 8

Fig. 5.12 An example of the execution of function Authorized

Since p j≼NEp, in the following iterations, when they are compared they do not gen-
erate new permissions. Since each possible combination is checked only once and
the number of possible combination is finite, the repeat until loop terminates.

Correctness. If there exists a permission p∈Applicable⊗ that authorizes the re-
lease of R, two cases can occur: p∈Applicable, or p is a composed permission. In the
first case, Authorized returns true since the first for loop iterates on all permissions
in Applicable. In the second case, the repeat until loop removes from Applicable
only non-necessary permissions (see Theorem 5.1) and checks all non-redundant
pairs of permissions in Applicable. The repeat until loop terminates when, for all
p in Applicable, p.maxcfr=maxid. Since p.maxcfr is initialized to p.id and updated
to the minimum pi.id such that p.maxcfr<pi.id, each permission is compared to all
the other permissions following it in the order established by id. Also, for each new
permission pi, maxid increases by 1 and p j.id is set to the new value of maxid. Since,
for each permission p but pi in Applicable, p.maxcfr is less than p j.id, the subse-
quent iterations of the repeat until loop check the new permission with all the other
permissions in Applicable. This means that the repeat until loop checks all possible
pairs of permissions and therefore it finds the permission authorizing the release of
R.

Note also that, if a permission pi removed from Applicable (because p j→pi)
authorizes R, the composed permission p j⊗pi=[Atti j,Relsi j] belongs to Applica-
ble and authorizes the release of R. In fact, Atti j=(Atti∪Att j)⊃(Rπ∪Rσ). Also,
Relsi j

∗=Relsi
∗=R◃▹∗.

Theorem 5.3 (Complexity). Given a relation profile R=[Rπ ,R◃▹,Rσ] and a set Ap-
plicable of n applicable permissions, the complexity of function Authorized is
O(n3) in time.

Proof. The function matches every permission with every other permission in the
Applicable set, to verify if they can be composed. Any time pi→p j, pi is removed
from Applicable, while pi⊗p j is added to the same. Since, thanks to the ordering
among permissions, no match between pairs of permissions is repeated, each per-

5.6 Safe Query Planning 159

Oper. [m,s] Operation/Flow Views(Sl) Views(Sr) View profiles
πX (Rl) [Sl ,NULL] Sl : πX (Rl)
σX (Rl) [Sl ,NULL] Sl : σX (Rl)

Rl◃▹Jlr Rr [Sl ,NULL] Sr: Rr→Sl Rr [Rπ
r ,R◃▹

r ,Rσ
r]

Sl : Rl◃▹Rr
[Sr ,NULL] Sl : Rl→Sr Rl [Rπ

l ,R◃▹
l ,Rσ

l]
Sr: Rl◃▹Rr

[Sl ,Sr] Sl : RJl := πJ(Rl)
Sl : RJl →Sr πJ(Rl) [J,R◃▹

l ,Rσ
l]

Sr: RJl r := RJl ◃▹ Rr
Sr: RJl r → Sl πJ(Rl)◃▹ Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
Sl : RJl r ◃▹ Rl

[Sr ,Sl] Sr: RJr := πJ(Rr)
Sr: RJr →Sl πJ(Rr) [J,R◃▹

r ,Rσ
r]

Sl : RlJr :=Rl◃▹ RJr

Sl : RlJr →Sr Rl◃▹ (πJ(Rr)) [Rπ
l ,R◃▹

l ∪R◃▹
r ,Rσ

l ∪Rσ
r]

Sr: RlJr ◃▹Rr

Fig. 5.13 Execution of operations and required views with corresponding profiles

mission is compared to at most n−1 permissions generating, at most n versions of
the same. Therefore the function makes at most n3 comparisons.

5.6 Safe Query Planning

To determine whether and how a query can be executed over the distributed system,
we need first to determine the data releases that the execution entails, so that only
executions implying authorized releases are performed. Since we can assume each
server to be authorized to view the relation it holds, each unary operation (projection
and selection) can be executed by the server itself, while a join operation can be
executed if all the data communications correspond to authorized releases.

The table in Fig. 5.13 summarizes the operations and data exchanges needed to
perform a relational operation reporting, for every data communication, the pro-
file of the relation being communicated (and hence the information exposure im-
plied by it); data access by a server on its own relation is implicit. For each op-
eration/communication we also show, before the “:”, the server executing it. For
join operations, we first note that a (natural) join operation Rl◃▹Rr, where Rl and Rr
represent the left and right input relations, respectively, can be executed either as a
regular join or a semi-join. We call master the server in charge of the join compu-
tation and slave the server that cooperates with the master during the computation.
We then distinguish four different cases resulting from whether the join is executed
as a regular join or as a semi-join and from which operand serves as master (slave,
respectively). The assignment is specified as a pair, where the first element specifies
the operand that serves as master and the second the operand that serves as slave. We

160 5 Distributed Query Processing under Safely Composed Permissions

briefly discuss the cases where the left operand serves as master (denoted [Sl ,NULL]
for the regular join and [Sl ,Sr] for the semi-join), with the note that the cases where
the right operand serves as master ([Sr,NULL] and [Sr,Sl]) are symmetric.

• [Sl ,NULL]: in the regular join processed by Sl , server Sr sends (i.e., needs to
release) its relation to Sl , and Sl computes the join. For execution, Sl needs to
hold a permission (either base or composed) authorizing it to view Rr, which has
profile [Rπ

r ,R◃▹
r ,Rσ

r].
• [Sl ,Sr]: the semi-join requires a longer sequence of steps. First, Sl computes the

projection RJl of the attributes J in its relation Rl participating in the join. Sec-
ond, Sl sends RJl to Sr; this operation entails a data release characterized by the
profile of RJl , which (according to Definition 5.3) is [J,R◃▹

l ,Rσ
l]. Third, Sr locally

computes RJlr as the join between RJl and its relation Rr. Fourth, Sr sends RJlr
to Sl ; this operation entails a data release characterized by the profile of RJlr,
namely [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r] (note that the first component contains only Rπ
r ,

since J must be a subset of Rπ
r). Fifth, Sl computes the join between RJlr and its

own relation Rl .

Semi-joins are usually more efficient than regular joins as they minimize com-
munication (which also benefits security): the slave server needs only to send those
tuples that participate in the join, instead of its complete relation.

For instance, consider the query in Example 5.3. If the join at node n2 in the
tree is executed as a regular join, SE sends the all the tuples in Employee relation,
restricted to attributes SSN and Salary, to SP (or vice versa). If the join is exe-
cuted as a semi-join where SE acts as a master, SE sends to SP the projection of the
Employee relation on SSN. SP then sends back to SE the SSN and DoB values in
Patient relation joined with the list of values of SSN received from SE .

A function εT assigns to each node n of a query tree plan T(NT ,ET) a server
or a pair of servers, called executor, responsible for the execution of the algebraic
operation represented by n. To formally capture this intuitive idea, the definition of
the executor assignment function εT is introduced as follows.

Definition 5.15 (Executor assignment). Given a query tree plan T(NT ,ET), an ex-
ecutor assignment function εT : NT → S ×{S∪NULL} is an assignment of pairs
of servers to nodes such that:

1. each leaf node (corresponding to a relation R) is assigned the pair [S,NULL],
where S is the server where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operands Rl (left
child) at server Sl , is assigned a pair [Sl ,NULL].

3. each non-leaf node n, corresponding to a join operation on operand Rl (left child)
at server Sl and Rr (right child) at server Sr, is assigned a pair [master,slave] such
that master∈ {Sl ,Sr}, slave∈ {Sl ,Sr,NULL}, and master ̸=slave.

Given a query plan, our algorithm determines an assignment of the computation
steps to different servers, in such a way that the execution given by the assignment
entails only releases allowed by the permissions.

5.6 Safe Query Planning 161

[m,s] Operation/Flow Views(Sl) Views(Sr) Views(St) View profiles
[St ,NULL] Sl : Rl→ St Rl [Rπ

l ,R◃▹
l ,Rσ

l]
Sr : Rr→ St Rr [Rπ

r ,R◃▹
r ,Rσ

r]
St : Rl◃▹ Rr

[St ,Sr] Sl : Rl→ St Rl [Rπ
l ,R◃▹

l ,Rσ
l]

St : RJl := πJ (Rl)
St : RJl → Sr πJ (Rl) [J,R◃▹

l ,Rσ
l]

Sr : RJl r := RJl ◃▹ Rr
Sr : RJl r → St πJ(Rl) ◃▹ Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
St : RJl r◃▹Rl

[St ,Sl] Sr : Rr→ St Rr [Rπ
r ,R◃▹

r ,Rσ
r]

St : RJr := πJ (Rr)
St : RJr → Sl πJ (Rr) [J,R◃▹

r ,Rσ
r]

Sl : RJr l :=Rl◃▹ RJr
Sl : RJr l → St Rl◃▹ (πJ(Rr)) [Rπ

l ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
St : RJr l◃▹Rr

[Sl ,St] Sl : RJl := πJ (Rl)
Sl : RJl → St πJ (Rl) [J,R◃▹

l ,Rσ
l]

Sr : Rr→ St Rr [Rπ
r ,R◃▹

r ,Rσ
r]

St : RJl r := RJl ◃▹ Rr
St : RJl r → Sl πJ(Rl) ◃▹ Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
Sl : RJl r ◃▹Rl

[Sr ,St] Sr : RJr := πJ (Rr)
Sr : RJr → St πJ (Rr) [J,R◃▹

r ,Rσ
r]

Sl : Rl→ St Rl [Rπ
l ,R◃▹

l ,Rσ
l]

St : RJr l := Rl◃▹ RJr
St : RJr l → Sr Rl◃▹ (πJ(Rr)) [Rπ

l ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
Sr : RJr l ◃▹ Rr

[St ,Sl Sr] Sl : RJl := πJ (Rl)
Sr : RJr := πJ (Rr)
Sl : RJl → St πJ (Rl) [J,R◃▹

l ,Rσ
l]

Sr : RJr → St πJ (Rr) [J,R◃▹
r ,Rσ

r]
St : RJl Jr := RJl ◃▹ RJr
St : RJl Jr → Sl (πJ(Rl)) ◃▹ (πJ(Rr)) [J,R◃▹

l ∪R◃▹
r ,Rσ

l ∪Rσ
r]

St : RJl Jr → Sr (πJ(Rl)) ◃▹ (πJ(Rr)) [J,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
Sl : RJlr l :=Rl◃▹ RJl Jr
Sr : RJlr r :=RJl Jr ◃▹Rr
Sl : RJlr l → St Rl◃▹((πJ(Rl)) ◃▹ (πJ(Rr))) [Rπ

l ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
Sr : RJlr r → St ((πJ(Rl)) ◃▹ (πJ(Rr)))◃▹Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r]
St : RJlr l ◃▹ RJlr r

Fig. 5.14 Different strategies for executing join operation, with the intervention of a third party

Definition 5.16 (Safe assignment). Given a query tree plan T(NT ,ET) and an ex-
ecutor assignment function εT , εT(n) is said to be safe when one of the following
conditions hold:

1. n is a leaf node;
2. n corresponds to a unary operation;
3. n corresponds to a join and all the releases derived by the assignment are autho-

rized.

εT is said to be safe iff ∀n ∈ NT , εT(n) is safe.

A query plan is then feasible iff there is a safe assignment for it.

Definition 5.17 (Feasible query plan). A query plan T(NT ,ET) is said to be feasi-
ble iff there exists an executor assignment function εT on T such that εT is safe.

162 5 Distributed Query Processing under Safely Composed Permissions

5.6.1 Third Party Involvement

As already discussed, the execution of joins necessarily requires some communica-
tion of information among the operands, which we check against permissions (base
or composed) and allow only if authorized. It may happen that, for a given join,
none of the four possible modes of execution corresponds to a safe assignment. In
such a case, we envision a third party can participate in the operation acting either as
a proxy for one of the two operands or as a coordinator for them. Table in Fig. 5.14
summarizes the different ways in which a third party can be involved. We briefly
comment them here.

• [St ,NULL]: the third party receives the relations from the operands and indepen-
dently computes the (regular) join.

• [St ,Sl] and [St ,Sr]: the third party replaces Sr (Sl , respectively) in the computation
with the role of master with Sl (Sr, respectively) in the role of slave.

• [Sl ,St] and [Sr,St]: the third party replaces Sr (Sl , respectively) in the computation
with the role of slave with Sl (Sr, respectively) in the role of master.

• [St ,SlSr]: the third party takes the role of master in charge of computing the join
with Sl and Sr both working as slaves. In this case, each of the operands computes
the projection of its attributes that participate in the join and sends it to the third
party. The third party computes the join between the two inputs and sends back
the result to each of the operands, each of which joins the input with its relation
and returns the result to the third party. The third party can now join the relations
received from the operands and compute the result.

Note that the first five scenarios are a simple adaptation of those already seen
in the previous section, with the third party only acting as proxy, which therefore
needs to have the permissions necessary to view the relation of the party for which
it acts as a proxy, as well as the view required by its role (master/slave). The latter
scenario [St ,SlSr] is instead a little more complex and, as it can be easily seen from
the table, entails different data views. In this scenario the third party is required to
only view the tuples of the operands that participate in the join (it does not need to
have the complete view on a relation as in the case it acts as a proxy). Also, each of
the slaves is required only to view the attributes of the other relation that joins with
itself (instead of the complete list).

The consideration of a third party requires to slightly change the executor assign-
ment definition (Definition 5.15) which becomes as follows.

Definition 5.18 (Executor assignment - with third party). Given a query plan
T(NT ,ET), an executor assignment function εT : NT →S ×{S ∪ [S ×S]∪NULL}
is an assignment of pairs of servers to nodes such that:

1. each leaf node (corresponding to a relation R) is assigned the pair [S,NULL],
where S is the server where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operands Rl (left
child) at server Sl , is assigned a pair [Sl ,NULL].

5.7 Build a Safe Query Plan 163

p6: [(SSN,Job,Salary),(Employee)] → SE
p7: [(SSN),(Patient)] → SE
p8: [(SSN,DoB,Race),(Patient)] → SP
p9: [(SSN,Job,Salary),(Employee,Patient)] → SP
p10: [(SSN,IdDoc,Type,Cost,Duration),(Patient,Treatment)] → SP
p11: [(SSN,IdDoc,Type,Cost,Duration),(Treatment)] → ST
p12: [(IdDoc,Name,Specialty),(Doctor)] → SD
p13: [(SSN,Type,Duration),(Treatment)] → SD
p14: [(SSN,DoB,Race),(Employee,Patient)] → SD

Fig. 5.15 An example of servers’ permissions

3. each non-leaf node n, corresponding to a join operation on operand Rl (left child)
at server Sl and Rr (right child) at server Sr, is assigned a pair [master,slaves] such
that master ∈S , slaves ∈ {S ∪ [Sl ,Sr]∪NULL}, master ̸=slave, and at least one
of the elements is in {Sl ,Sr,[Sl ,Sr],NULL}.

The definitions of safe assignment and feasible query plan remain unchanged.

Example 5.6. Consider the scenario of Example 5.3 and the permissions held by
servers storing data in Fig. 5.15. The outer join between (Employee◃▹Patient)
and Treatment can be safely assigned neither to SE and SP nor to ST . It is then
necessary to resort to the intervention of a third party. Specifically, a safe assign-
ment for the given operation is [SP,SD]. As a matter of fact, SD is authorized to ac-
cess attributes SSN, Type, and Duration of relation Treatment and attributes
SSN, DoB, and Race from the join of Employee with Patient. SP is authorized
to view the whole Treatment relation, provided join condition P.SSN=T.SSN
holds.

We can now state the problem as follows.

Problem 5.1. Given a query plan T(NT ,ET) and a set of permissions P: 1) deter-
mine if T is feasible and 2) retrieve a safe assignment εT for it.

In the next section we illustrate an algorithm for the solution of such a problem,
which exploits permissions composition technique already introduced, and given a
query plan and a set of base permissions determines if the plan is feasible and, if so,
returns a safe assignment for it.

5.7 Build a Safe Query Plan

The determination of the safe assignment follows two basic principles, in order to
minimize the cost of computation: i) we favor semi-joins (in contrast to regular
joins); ii) if more servers are candidate to safely execute a join operation (at a given
level in the tree), we prefer the server that is involved in a higher number of join

164 5 Distributed Query Processing under Safely Composed Permissions

INPUT
P
G(N ,e)
T(NT ,ET)

OUTPUT
εT (n) /* as n.executor */

/* n.left, n.right: left and right children */
/* n.operator, n.parameter: operation and its parameters */
/* [n.π ,n.◃▹,n.σ]: profile */
/* n.leftslave, n.rightslave: left and right slaves */
/* n.leftthirdslave: third party acting as left slave */
/* n.rightthirdslave: third party acting as right slave */
/* n.candidates: list of records of the form [server,fromchild,counter] stating candidate servers, the child

(left, right) it comes or proxies for, and the number of joins for which the server is candidate in the subtree */
/* n.executor.master, n.executor.slaves: executor assignment */

MAIN
FindCandidates(root(T))
AssignExecutor(root(T), NULL)
return(T)

Fig. 5.16 Algorithm computing a safe assignment for a query plan

operations. To this aim, we associate with each candidate server a counter that keeps
track of the number of join operations for which the server is a candidate.

The algorithm receives in input the set of permissions, the schema graph, and the
query plan T(NT ,ET), where each leaf node (base relation R) is already assigned to
executor [server,NULL], where server is the server storing the relation. It returns, if
it exists, a safe assignment for T .

The algorithm works by performing two traversals of the query tree plan. The
first traversal (procedure Find candidates) visits the tree in post-order. At each
node, the profile of the node is computed (as in Fig. 5.4) based on the profile of
the children and of the operation associated with the node. Also, the set of possible
candidate assignments for the node is determined based on the set of possible candi-
dates for its children as follows. If the node is a unary operation, the candidates for
the node are all the candidates for its unique child. If the node is a join operation,
procedure Find candidates calls function Authorized in Fig. 5.11 whenever it is
necessary to verify if a particular server can act as master, slave, or can calculate a
regular join. Authorized is called on the view graph representing the profile of the
views that should be made visible in the execution of an operation. The algorithm
considers candidates of the left child in decreasing order of join counter (GetFirst)
and stops at the first candidate found that can serve as left slave (inserting it into
local variable leftslave). The algorithm proceeds examining all the candidates of the
right child to determine if they can work as master for a semi-join (if a left slave
was found) or as a regular join (if no left slave was found). Note that while we need
to determine all servers that can act as master, as we need to consider all possible
candidates for propagating them upwards in the tree, it is sufficient to determine one
slave (a slave is not propagated upward in the tree). For each of such server candi-
dates a triple [server,right,counter] is added to the candidates list, where counter is
the counter that was associated with the server in the right child of the node incre-

5.7 Build a Safe Query Plan 165

FINDCANDIDATES(n)
l := n.left
r := n.right
if l ̸=NULL then FindCandidates(l)
if r ̸=NULL then FindCandidates(r)
case n.operator of

π: n.π := n.parameter; n.◃▹ := l.◃▹; n.σ := l.σ
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

σ : n.π := l.π; n.◃▹ := l.◃▹; n.σ := l.σ ∪ n.parameter
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

◃▹: n.π := l.π ∪ r.π; n.◃▹ := l.◃▹ ∪ r.◃▹ ∪ n.parameter; n.σ := l.σ ∪ r.σ
right slave view := [Jl , l.◃▹, l.σ]
left slave view := [Jr , r.◃▹, r.σ]
right master view := [l.π ∪ Jr , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ]
left master view := [Jl ∪ r.π , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ]
right full view := [l.π , l.◃▹, l.σ]
left full view := [r.π , r.◃▹, r.σ]
/* check case [Sr ,NULL] and [Sr ,Sl] */
n.leftslave := NULL
c := GetFirst(l.candidates)
while (n.leftslave=NULL)∧(c ̸=NULL) do

if Authorized(Gleft slave view, c.server) then n.leftslave := c
c := c.next

regular := NULL
rightmasters = NULL
for c in r.candidates do

if Authorized(Gright full view, c.server) then Add [c.server, right, c.count+1] to regular
if Authorized(Gright master view, c.server) then Add [c.server, right, c.count+1] to rightmasters

if n.leftslave̸=NULL then
Add rightmasters to n.candidates

else
Add regular to n.candidates

/* check case [Sl ,NULL] and [Sl ,Sr] */
n.rightslave := NULL
c := GetFirst(r.candidates)
while (n.rightslave=NULL)∧(c̸=NULL) do

if Authorized(Gright slave view, c.server) then n.rightslave := c
c := c.next

regular := NULL
leftmasters = NULL
for c in l.candidates do

if Authorized(Gleft full view, c.server) then Add [c.server, left, c.count+1] to regular
if Authorized(Gleft master view, c.server) then Add [c.server, left, c.count+1] to leftmasters

if n.rightslave ̸=NULL then
Add leftmasters to n.candidates

else
Add regular to n.candidates

/* check third party */
if n.candidates=NULL then n.candidates := FindThirdParty(n,leftmasters,rightmasters)
/* node cannot be executed */
if n.candidates=NULL then exit(n)

Fig. 5.17 Function that determines the set of safe candidates for nodes in T

mented by one (as candidate also for the join of the father, the server would execute
one additional join compared to the number it would have executed at the child
level). Then, the algorithm proceeds symmetrically to determine whether there is
a candidate from the right child (considering the candidates in decreasing order of
counter) that can work as slave, and then determining all the left candidates that can
work as master, adding them to the set of candidates. At the end of this process,

166 5 Distributed Query Processing under Safely Composed Permissions

ASSIGNEXECUTOR(n, from parent)
if from parent ̸=NULL then

chosen := Search(from parent, n.candidates)
else

chosen := GetFirst(n.candidates)
n.executor.master := chosen.server
case chosen.fromchild of

left: /* case [Sl ,NULL], [Sl ,Sr], [Sl ,St] */
if n.left ̸=NULL then AssignExecutor(n.left, n.executor.master)
if n.right̸=NULL then

if n.rightslave̸=NULL then
n.executor.slaves := {n.rightslave}
AssignExecutor(n.right, n.rightslave)

else n.executor.slaves := {n.rightthirdslave}
AssignExecutor(n.right, NULL)

right: /* case [Sr ,NULL], [Sr ,Sl], [Sr ,St] */
if n.left ̸=NULL then

if n.leftslave̸=NULL then
n.executor.slaves := {n.leftslave}
AssignExecutor(n.right, n.leftslave)

else n.executor.slaves := {n.leftthirdslave}
AssignExecutor(n.right, NULL)

if n.right̸=NULL then AssignExecutor(n.right, n.executor.master)

third left: /* case [St ,Sr] */
n.executor.slaves := {n.rightslave}
if n.left̸=NULL then AssignExecutor(n.left, NULL)
if n.right̸=NULL then AssignExecutor(n.right, n.rightslave)

third right: /* case [St ,Sl] */
n.executor.slaves := {n.leftslave}
if n.left ̸=NULL then AssignExecutor(n.left, n.leftslave)
if n.right̸=NULL then AssignExecutor(n.right, NULL)

third: /* case [St ,NULL], [St ,Sl Sr] */
n.executor.slaves := {n.leftslave, n.rightslave}
if n.left ̸=NULL then AssignExecutor(n.left, n.leftslave)
if n.right̸=NULL then AssignExecutor(n.right, n.rightslave)

Fig. 5.18 Function that chooses one candidate for each node in T

list candidates contains all the candidates coming from either the left or right child
that can execute the join in any of the execution modes of Fig. 5.13. If no candidate
was found, the algorithm determines whether the operation can be computed with
the intervention of a third party by calling function FindThirdParty in Fig. 5.19
that similarly for the cases above, simply implements the controls according to the
views that would be required for the execution (Sect. 5.6.1). If even such a call does
not return any candidate, the algorithm exits returning the node at which the process
was interrupted (i.e., for which no safe assignment exists) signaling that the tree is
not feasible.

If Find candidates completes successfully, the algorithm proceeds with the sec-
ond traversal of the query tree plan. The second traversal (procedure AssignExecu-
tor) recursively visits the tree in pre-order. At the root node, if more assignments
are possible, the candidate server with the highest join count is chosen. Hence,
the chosen candidate is pushed down to the child from which it was determined
during the preceding post-order traversal. The other child (if existing) is pushed
down the recorded candidate slave. If no slave was recorded as possible (i.e., right-

5.7 Build a Safe Query Plan 167

FINDTHIRDPARTY(n,leftmasters,rightmasters)
l := n.left; r := n.right; list := NULL
right slave view := [Jl , l.◃▹, l.σ]
left slave view := [Jr , r.◃▹, r.σ]
right master view := [l.π ∪ Jr , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ]
left master view := [Jl ∪ r.π , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ]
right full view := [l.π , l.◃▹, l.σ]
left full view := [r.π , r.◃▹, r.σ]
two slave view := [Jl∪Jr , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ]
/* check if a third party can act as a slave */
if leftmasters̸=NULL then /* case [Sl ,St] */

n.rightthirdslave := NULL
i := 1
while (n.rightthirdslave=NULL)∧(i< |S |) do

if Authorized(Gright slave view, Si) ∧ Authorized(Gleft full view, Si) then n.rightthirdslave := Si
i := i+1

if n.rightthirdslave̸=NULL then
for each c ∈ leftmasters do Add [c.server, left, c.count] to list

if rightmasters̸=NULL then /* case [Sr ,St] */
n.leftthirdslave := NULL
i := 1
while (n.leftthirdslave=NULL)∧(i< |S |) do

if Authorized(Gleft slave view, Si) ∧ Authorized(Gright full view, Si) then n.leftthirdslave := Si
i := i+1

if n.leftthirdslave ̸=NULL then
for each c ∈ rightmasters do Add [c.server, right, c.count] to list

if list ̸=NULL then return(list)
/* check if a third party can act as a master */
for i:=1 . . . |S | do

if n.leftslave ̸=NULL then /* case [St ,Sl] */
if Authorized(Gright master view, Si) ∧ Authorized(Gleft full view, Si) then Add [Si, third right, 1] to list

else
if n.rightslave̸=NULL then /* case [St ,Sr] */

if Authorized(Gleft master view, Si) ∧ Authorized(Gright full view, Si) then Add [Si, third left, 1] to list
if list ̸=NULL then return(list)
/* check if a third party can execute the regular join: case [St ,NULL] */
for i:=1 . . . |S | do

if Authorized(Gleft full view, Si) ∧ Authorized(Gright full view, Si) then Add [Si, third, 1] to list
if list ̸=NULL then return(list)
/* check if a third party can act as a coordinator: case [St ,Sl Sr] */
c:= GetFirst(l.candidates)
while (n.leftslave=NULL)∧(c ̸=NULL) do

if Authorized(Gtwo slave view, c.server) then n.leftslave := c.server
c := c.next

if n.leftslave̸=NULL then
c:= GetFirst(r.candidates)
while (n.rightslave=NULL)∧(c̸=NULL) do

if Authorized(Gtwo slave view, c.server) then n.rightslave:= c.server
c := c.next

if n.rightslave̸=NULL then
for i:=1 . . . |S | do

if Authorized(Gleft slave view, Si) ∧ Authorized(Gright slave view, Si)
∧ Authorized(Gleft master view, Si) ∧ Authorized(Gright master view, Si)
then Add Si to masterlist

if masterlist ̸=NULL then for each m∈masterlist do Add [m, third, 1] to list
if list ̸=NULL then return(list)

Fig. 5.19 Function that evaluates the intervention of a third party for join operations

slave/leftslave=NULL or the slave is a third party) a NULL value is pushed down. At
each children, the master executor is determined as the server pushed down by the

168 5 Distributed Query Processing under Safely Composed Permissions

n0 πSSN,Salary,DoB

n1 ◃▹

LLLLLLL

sssssss

n2 ◃▹

JJJJJJJ

��
��

n3 πSSN

n4 πSSN,Salary n5 πSSN,DoB n6 σDuration>10

n7 Employee n8 Patient n9 Treatment

Find candidates

Node Candidates Slaves
n7 [SE , , 0]∗

n4 [SE , left, 0]
n8 [SP, , 0]∗

n5 [SP, left, 0]
n2 [SP, right, 1] SE
n9 [ST , , 0]
n6 [ST , left, 0]
n3 [ST , left, 0]
n1 [SP, left, 2] SD
n0 [SP, left, 2]

Assign executor

Node εT(n) Calls to AssignExecutor
n0 [SP,] (n1, SP)
n1 [SP, SD] (n2, SP) (n3, NULL)
n2 [SP, SE] (n4, SE) (n5, SP)
n4 [SE ,] (n7, SE)
n7 [SE ,]∗

n5 [SP,] (n8, SP)
n8 [SP,]∗

n3 [ST ,] (n6, ST)
n6 [ST ,] (n9, ST)
n9 [ST ,]

Fig. 5.20 An example of execution of the algorithm in Fig. 5.16

parent (if it is not NULL) or the candidate server with the highest join count and the
process is recursively repeated, until a leaf node is reached.

Example 5.7. Consider the query plan in Fig. 5.2 of query Q4, reported in Fig. 5.20
for convenience, requested by Alice, who is authorized to view the query re-
sult (see composed permission p1⊗p2⊗p4 in Fig. 5.10). Consider also the set of
servers’ permissions in Fig. 5.15. Figure 5.20 illustrates the working of procedures
Find candidates and Assign executor reporting the nodes in the order they are
considered by them and the candidates/executors determined. Candidates/executors
with a “*” are those of the leaf nodes (already given in input). To illustrate
the working, let us look at some sample calls. Consider, for example, the call
Find candidates(n2). Among the candidates of the children (SE from left child
n4 and SP from right child n5) only the right child candidate SP survives as can-
didate for the join, which is executed as a semi-join since SE can act as a slave.
When Assign executor is called, the set of candidates at each node is as shown in
the table summarizing the results of Find candidates. Starting at the root node, the
only possible choice assigns to n0 executor [SP,], where SP was recorded as coming
from the left (and only) child n1, to which SP is then pushed with a recursive call.
At n1 the master is set as SP and, combining this with the slave field, the executor
is set to [SP,SD]. Hence, SP is further pushed down to the left child (from where it

5.8 Chapter Summary 169

was taken by Find candidates) n3, while SD is not pushed down to the left child
n2, since it was a third party helping in finding a correct assignment.

We conclude this section with a note regarding the integration of our approach
with existing query optimizers. Optimization of distributed queries operates in two-
steps [64]. First, the query optimizer identifies a good plan, analogous to the one
it would produce for a centralized system; second, it assigns operations to the dis-
tinct servers in the system. Our algorithm nicely fits in such a two phase structure.
In particular, while in the illustration of the algorithm we have assumed the com-
plete query plan to be provided as input, we note that our algorithm could be nicely
merged with the optimizers and perform its pre-order visit in conjunction with the
construction of the tree by the query optimizer, computing candidates while the op-
timizers builds the plan, and its post-order visit for computing executors for the
optimizers in the second phase.

5.8 Chapter Summary

We presented a simple, yet powerful, approach for the specification and enforce-
ment of permissions regulating data release among data holders collaborating in a
distributed computation, to ensure that query processing discloses only data whose
release has been explicitly authorized. Data disclosure has been captured by means
of profiles associated with each data computation that describe the information car-
ried by the released relation. Allowed data releases have instead been captured by
means of simple permissions, which can be efficiently composed without privacy
breaches. In this chapter we presented a simple graphical representation of both
permissions and profiles, allowing to easily enforce our secure chasing process. We
also presented an algorithm that, given a query plan, determines whether it can be
safely executed and produces a safe query planning for it. The main advantage of
our approach is its simplicity that, without impacting expressiveness, makes it nicely
interoperable with current solutions for collaborative computations in distributed
database systems.

	Chapter 5 Distributed Query Processing under Safely Composed Permissions¹
	5.1 Introduction
	5.1.1 Chapter Outline

	5.2 Preliminary Concepts
	5.2.1 Data Model
	5.2.2 Distributed Query Execution

	5.3 Security Model
	5.3.1 Permissions
	5.3.2 Relation Profiles

	5.4 Graph-based Model
	5.5 Authorized Views
	5.5.1 Authorizing Permissions
	5.5.2 Composition of Permissions
	5.5.3 Algorithm

	5.6 Safe Query Planning
	5.6.1 Third Party Involvement

	5.7 Build a Safe Query Plan
	5.8 Chapter Summary

