
Chapter 4
Combining Fragmentation and Encryption to
Protect Data Privacy1

Traditional solutions for granting data privacy rely on encryption. However, dealing
with encrypted data makes query processing expensive. In this chapter, we propose a
solution to enforce privacy over data collections combining data fragmentation with
encryption. We model privacy requirements as confidentiality constraints expressing
the sensitivity of the content of single attributes and of their associations. We then
use encryption as an underlying (conveniently available) measure for making data
unintelligible, while exploiting fragmentation to break sensitive associations among
attributes. We introduce both exact and heuristic algorithms computing a fragmen-
tation that tries to minimize the impact of fragmentation on query efficiency.

4.1 Introduction

Information is probably today the most important and valued resource. Private and
governmental organizations are increasingly gathering vast amounts of data, which
are collected and maintained, and often include sensitive personally identifiable in-
formation. In such a scenario guaranteeing the privacy of the data, be them stored in
the system or communicated to external parties, becomes a primary requirement.

Individuals, privacy advocates, and legislators are today putting more and more
attention on the support of privacy over collected information. Regulations are in-
creasingly being established responding to these demands, forcing organizations to
provide privacy guarantees over sensitive information when storing, processing or
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sharing it with others. Most recent regulations (e.g., see [22] and [78]) require that
specific categories of data (e.g., data disclosing health and sex life, or data such as
ZIP and date of birth that can be exploited to uniquely identify an individual [83]) to
be either encrypted or kept separate from other personally identifiable information
(to prevent their association with specific individuals). Information privacy guaran-
tees may also derive from the need of preventing possible abuses of critical informa-
tion. For instance, the “Payment Card Industry (PCI) Data Security Standard” [77]
forces all the business organizations managing credit card information (e.g., VISA
and MasterCard) to apply encryption measures when storing data. The standard also
explicitly forbids the use of storage encryption as natively offered by operating sys-
tems, requiring access to the encryption keys to be separated from the operating
system services managing user identities and privileges.

This demand for encryption is luckily coupled today with the fact that the real-
ization of cryptographic functions presents increasingly lower costs in a computer
architecture, where the factor limiting system performances is typically the capacity
of the channels that transfer information within the system and among separate sys-
tems. Cryptography then becomes an inexpensive tool that supports the protection
of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted information
represents a burden since encryption makes it not always possible to efficiently
execute queries and evaluate conditions over the data. In fact, a straightforward
approach to guarantee privacy to a collection of data could consist in encrypting
all the data. This technique is, for example, adopted in the database outsourcing
scenario [35, 55], as discussed in Chaps. 2 and 3. The assumption underlying ap-
proaches applying such an encryption wrapper is that all the data are equally sensi-
tive and therefore encryption is a price to be paid to protect them. This assumption
is typically an overkill in many scenarios. As a matter of fact, in many situations
data are not sensitive per se; what is sensitive is their association with other data. As
a simple example, in a hospital the list of illnesses cured or the list of patients could
be made publicly available, while the association of specific illnesses to individual
patients is sensitive and must be protected. Hence, there is no need to encrypt both
illnesses and patients if there are alternative ways to protect the association between
them.

A promising approach to protect sensitive data or sensitive associations among
data is represented by the combined use of fragmentation and encryption. Frag-
mentation and encryption provide protection of data in storage or when dissemi-
nated ensuring no sensitive information is disclosed neither directly (i.e., present
in the database) nor indirectly (i.e., derived from other information present in the
database). With this design, the data can be outsourced and stored on an untrusted
server, typically obtaining lower costs, greater availability, and more efficient dis-
tributed access. The advantage of having only part of the data encrypted is that all
the queries that do not require to reconstruct confidential information will be man-
aged more efficiently and securely. Also, the idea that the higher-level privilege
is only used when strictly necessary represents a concrete realization of the “least
privilege” principle.
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We frame our work in the context of relational databases. The reason for this
choice is that relational databases are by far the most common solution for the man-
agement of the data subject of privacy regulations; also, they are characterized by a
clear data model and a simple query language that facilitate the design of a solution.
We note, however, that our model could be easily adapted to the protection of data
represented with other data models (e.g., records in files or XML documents).

As discussed in Chap. 2, the combined use of fragmentation and encryption to
protect confidentiality has been initially proposed in [2], where information is stored
on two separate servers and protection relies on the hypothesis that the servers can-
not communicate. This assumption is clearly too strong in any practical situation.
Our solution overcomes the above limitations: it allows storing data even on a sin-
gle server and minimizes the amount of data represented only in encrypted format,
therefore allowing for efficient query execution.

This chapter, after introducing confidentiality constraints as a simple, yet pow-
erful, way to capture privacy requirements, presents three different approaches for
the design of a fragmentation that looks carefully at performance issues. The first
approach tries to minimize the number of fragments composing the solution, the
second is based on the affinity between pairs of attributes, and the third exploits
a complete query workload profile of the system. Then, we introduce a complete
search algorithm that computes an optimal fragmentation satisfying confidentiality
constraints, which can be adapted to each of the three optimization models. Also, for
each cost model considered, we propose an ad hoc heuristic algorithm working in
polynomial time. Our approach also manages encrypted indexes, trying to analyze
the vulnerability of sensitive data due to their introduction. The experimental results
support the quality of the solutions produced by the three heuristics, with respect to
the result computed by the complete search strategy.

4.1.1 Chapter Outline

The remainder of the chapter is organized as follows. Section 4.2 formally defines
confidentiality constraints. Sections 4.3 presents our model for enforcing confiden-
tiality constraints by combining fragmentation and encryption. Section 4.4 intro-
duces the definition of minimal fragmentation and shows that it is a NP-hard prob-
lem. Section 4.5 describes a complete search approach that efficiently visits the
solution space lattice. Section 4.6 introduces the definition of vector-minimal frag-
mentation and presents a heuristic algorithm for computing a fragmentation sat-
isfying such a definition. Section 4.7 introduces the concept of attribute affinity.
Section 4.8 presents a heuristic algorithm for computing a fragmentation guided by
the affinity. Section 4.9 introduces the cost model based on query workload. Sec-
tion 4.10 presents an algorithm for computing a fragmentation guided by the cost
of query execution. Section 4.11 illustrates how queries formulated on the original
data are mapped into equivalent queries operating on fragments. Section 4.12 dis-
cusses the introduction of indexes on encrypted attributes. Section 4.13 presents the
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experimental results obtained by the implementation of both complete search and
heuristic algorithms. Finally, Sect. 4.14 presents our concluding remarks.

4.2 Confidentiality Constraints

We consider a scenario where, consistently with other proposals (e.g., [2, 83]) the
data to be protected are represented with a single relation r over a relation schema
R(a1,. . . ,an), containing all the information that need to be protected. For simplicity,
when clear from the context, we will use R to denote either the relation schema R or
the set of attributes in R (instead of using R.∗).

We model in a quite simple and powerful way the privacy requirements through
confidentiality constraints, which are sets of attributes, as follows.

Definition 4.1 (Confidentiality constraint). Let A be a set of attributes, a confi-
dentiality constraint c over A is:

1. a singleton set {a} ⊂ A , stating that the values of the attribute are sensitive
(attribute visibility); or

2. a subset of attributes in A , stating that the association among values of the given
attributes is sensitive (association visibility).

While simple, a confidentiality constraint supports the definition of different con-
fidentiality requirements that may need to be expressed, such as the following.

• The values assumed by some attributes are considered sensitive and therefore
cannot be stored in the clear. For instance, phone numbers or email addresses
can be considered sensitive values (even if not associated with any identifying
information).

• The association among values of given attributes is sensitive and therefore should
not be released. For instance, while the list of (names of) patients in a hospital as
well as the list of illnesses are by themselves not confidential, the association of
patient’s names with illnesses is considered sensitive.

Note that constraints specified on the association among attributes can derive
from different requirements: they can correspond to an association that explicitly
needs protection (as in the case of names and illnesses above) or to associations
that could cause inference on other sensitive information. As an example of the lat-
ter, consider a hospital database, suppose that the names of patients are considered
sensitive, and therefore cannot be stored in the clear, and that the association of
the Occupation together with the ZIP code can work as a quasi-identifier (i.e.,
Occupation and ZIP can be used, possibly in association with external informa-
tion, to help identifying patients and therefore to infer, or reduce uncertainty about,
their names) [30, 83]. This inference channel can be simply blocked by specifying
a constraint protecting the association of the Occupation with the ZIP code. As
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PATIENT

SSN Name Occupation Sickness ZIP
123-45-6789 A. Smith Nurse Latex al. 94140
987-65-4321 B. Jones Nurse Latex al. 94141
246-89-1357 C. Taylor Clerk Latex al. 94140
135-79-2468 D. Brown Lawyer Celiac 94139
975-31-8642 E. Cooper Manager Pollen al. 94138
864-29-7531 F. White Designer Nickel al. 94141

(a)

c0={SSN}
c1={Name,Occupation}
c2={Name,Sickness}
c3={Occupation,Sickness,ZIP}

(b)

Fig. 4.1 An example of plaintext relation (a) and its well defined constraints (b)

another example, consider the case where attribute Name is not considered sensi-
tive, but its association with Sickness is. Suppose again that the Occupation
together with the ZIP code can work as a quasi-identifier (then potentially leaking
information on names). In this case, an association constraint will be specified pro-
tecting the association among Occupation, ZIP, and Sickness, implying that
the three attributes should never be accessible together in the clear.

We are interested in enforcing a set of well defined confidentiality constraints,
formally defined as follows.

Definition 4.2 (Well defined constraints). A set of confidentiality constraints C =
{c1,. . . ,cm} is said to be well defined iff ∀ci,c j ∈ C , i ̸= j, ci ̸⊂ c j and c j ̸⊂ ci.

According to this definition, a set of constraints C over A cannot contain a
constraint that is a subset of another constraint. The rationale behind this property
is that, whenever there are two constraints ci, c j and ci is a subset of c j (or vice
versa), the satisfaction of constraint ci implies the satisfaction of constraint c j (see
Sect. 4.3), and therefore c j is redundant.

Example 4.1. Consider the Patient relation in Fig. 4.1(a), containing the infor-
mation about the patients of a hospital. The privacy requirements that the hospital
needs to enforce, either due to legislative or internal restrictions, are illustrated in
Fig. 4.1(b):

• c0 is a singleton constraint stating that the list of SSN of patients is considered
sensitive;

• c1 and c2 state that the association between Name and Occupation, and the
association between Name and Sickness, respectively, are considered sensi-
tive;

• c3 states that the association among Occupation, ZIP, and Sickness is
considered sensitive (the rationale for this is that Occupation and ZIP are a
quasi-identifier [83]).

Note that also the association of patients’ Name and SSN is sensitive and should
be protected. However, such a constraint is not specified since it is redundant, given
that SSN by itself has been declared sensitive (c0). As a matter of fact, protecting
SSN as an individual attribute implies automatic protection of its associations with
any other attribute.
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4.3 Fragmentation and Encryption for Constraint Satisfaction

Our approach to satisfy confidentiality constraints is based on the use of two tech-
niques: encryption and fragmentation.

• Encryption. Consistently with how the constraints are specified, encryption ap-
plies at the attribute level, that is, it involves an attribute in its entirety. Encrypting
an attribute means encrypting (tuple by tuple) all its values. To protect encrypted
values from frequency attacks [88], we assume that a salt, which is a randomly
chosen value, is applied to each encryption (similarly to the use of nonces in the
protection of messages from replay attacks).

• Fragmentation. Fragmentation, like encryption, applies at the attribute level, that
is, it involves an attribute in its entirety. Fragmenting means splitting sets of
attributes so that they are not visible together, that is, the associations among
their values are not available without access to the encryption key.

It is straightforward to see that attribute visibility constraints can be solved only
by encryption. By contrast, an association visibility constraint could be solved by
either: i) encrypting any (one suffices) of the attributes involved in the constraint, so
to prevent joint visibility, or ii) fragmenting the attributes involved in the constraint
so that they are not visible together. Given a relation r over schema R and a set of
confidentiality constraints C on it, our goal is to fragment R granting constraints
satisfaction. However, we must also ensure that no constraint can be violated by re-
combining two or more fragments. In other words, there cannot be attributes that can
be exploited for linking. Since encryption is differentiated by the use of the salt, the
only attributes that can be exploited for linking are the plaintext attributes. Conse-
quently, ensuring that fragments are protected from linking translates into requiring
that no attribute appears in clear form in more than one fragment. In the follow-
ing, we use the term fragment to denote any subset of a given set of attributes. A
fragmentation is a set of non overlapping fragments, as captured by the following
definition.

Definition 4.3 (Fragmentation). Let R be a relation schema, a fragmentation of
R is a set of fragments F={F1,. . .,Fm}, where Fi ⊆ R, for i = 1, . . . ,m, such that
∀Fi,F j ∈ F , i ̸= j : Fi ∩F j = /0 (fragments do not have attributes in common).

In the following, we denote with F j
i the i-th fragment in fragmentation F j (the

superscript will be omitted when the fragmentation is clear from the context). For
instance, with respect to the plaintext relation in Fig. 4.1(a), a possible fragmentation
is F={{Name},{Occupation},{Sickness,ZIP}}.

At the physical level, a fragmentation translates to a combination of fragmenta-
tion and encryption. Each fragment F is mapped into a physical fragment containing
all the attributes of F in the clear, while all the other attributes of R are encrypted.
The reason for reporting all the original attributes (in either encrypted or clear form)
in each of the physical fragments is to guarantee that any query can be executed by
querying a single physical fragment (see Sect. 4.11). For the sake of simplicity and
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f̂ 1

salt enc Name
s1 α A. Smith
s2 β B. Jones
s3 γ C. Taylor
s4 δ D. Brown
s5 ε E. Cooper
s6 ζ F. White

(a)

f̂ 2

salt enc Occupation
s7 η Nurse
s8 θ Nurse
s9 ι Clerk
s10 κ Lawyer
s11 λ Manager
s12 µ Designer

(b)

f̂ 3

salt enc Sickness ZIP
s13 ν Latex al. 94140
s14 ξ Latex al. 94141
s15 π Latex al. 94140
s16 ρ Celiac 94139
s17 σ Pollen al. 94138
s18 τ Nickel al. 94141

(c)

Fig. 4.2 An example of physical fragments for the relation in Fig. 4.1(a)

efficiency, we assume that all attributes not appearing in the clear in a fragment are
encrypted all together (encryption is applied on subtuples). Physical fragments are
then defined as follows.

Definition 4.4 (Physical fragment). Let R be a relation schema, and
F={F1,. . .,Fm} be a fragmentation of R. For each Fi={ai1 , . . . ,ain} ∈ F , the
physical fragment of R over Fi is a relation schema F̂i(salt,enc,ai1 , . . . ,ain), where
salt is the primary key, enc represents the encryption of all the attributes of R that
do not belong to the fragment, XORed (symbol ⊕) before encryption with the salt.

At the level of instance, given a fragment Fi={ai1 , . . . ,ain}, and a relation r over
schema R, the physical fragment F̂i of Fi is such that each plaintext tuple t ∈ r is
mapped into a tuple t̂ ∈ f̂ i where f̂ i is a relation over F̂i and:

• t̂[enc] = Ek(t[R−Fi] ⊕ t̂[salt])
• t̂[ai j ] = t[ai j ], for j = 1, . . . ,n

Figure 4.2 illustrates an example of physical fragments for the relation schema in
Fig. 4.1(a) that does not violate the well defined constraints in Fig. 4.1(b).

The algorithm in Fig. 4.3 shows the construction and population of physical frag-
ments. When the size of the attributes exceeds the size of an encryption block, we
assume that encryption of the protected attributes uses a Cipher Block Chaining
(CBC) mode [88], with the salt used as the Initialization Vector (IV); in the CBC
mode, the clear text of the first block is actually encrypted after it has been com-
bined in binary XOR with the IV. Note that the salts, which we conveniently use
as primary keys of physical fragments (ensuring no collision in their generation),
need not be secret, because knowledge of the salts does not help in attacking the
encrypted values as long as the encryption algorithm is secure and the key remains
protected.

4.4 Minimal Fragmentation

We first formally discuss the properties we require to candidate fragmentations to
ensure efficient query execution.
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INPUT
A relation r over schema R
C = {c1, . . . ,cm} /* well defined constraints */

OUTPUT
A set of physical fragments {F̂1,. . . ,F̂i}
A set of relations {f̂ 1,. . . ,f̂ i} over schemas {F̂1,. . . ,F̂i}

MAIN
C f := {c∈C : |c|>1} /* association visibility constraints */
A f := {a∈R: {a}̸∈C}
F := Fragment(A f , C f )
/* define physical fragments */
for each F={ai1 ,. . . ,ail } ∈F do

define relation F̂ with schema: F̂ (salt, enc, ai1 ,. . . ,ail )
/* populate physical fragments instances */

for each t∈r do
t̂[salt] := GenerateSalt(F ,t)
t̂[enc] := Ek(t[a j1 . . . a jp ] ⊕t̂[salt]) /* {a j1 . . . a jp}=R−F */
for each a∈F do t̂[a] := t[a]
insert t̂ in f̂

Fig. 4.3 Algorithm that correctly fragments R

4.4.1 Correctness

Given a schema R and a set of confidentiality constraints C on it, a fragmentation
satisfies all constraints if no fragment contains in the clear all the attributes which
visibility is forbidden by a constraint. The following definition formalizes this con-
cept.

Definition 4.5 (Fragmentation correctness). Let R be a relation schema, F be
a fragmentation of R, and C be a set of well defined constraints over R. F cor-
rectly enforces C iff ∀F ∈F ,∀c ∈C : c ̸⊆ F (each individual fragment satisfies the
constraints).

Note that this definition, requiring fragments not to be a superset of any con-
straint, implies that attributes appearing in singleton constraints do not appear in
any fragment (i.e., they are always encrypted). Indeed, as already noted, singleton
constraints require the attributes on which they are defined to appear only in en-
crypted form.

In this chapter, we specifically address the fragmentation problem and therefore
focus only on the association visibility (i.e., non singleton) constraints C f ⊆ C and
on the corresponding set A f of attributes to be fragmented, defined as A f = {a ∈ R
: {a} ̸∈ C }.

4.4.2 Maximal Visibility

The availability of plaintext attributes in a fragment allows an efficient execution
of queries. Therefore, we aim at minimizing the number of attributes that are not



4.4 Minimal Fragmentation 93

represented in the clear in any fragment, because queries using those attributes will
be generally processed inefficiently. In other words, we prefer fragmentation over
encryption whenever possible and always solve association constraints via fragmen-
tation.

The requirement on the availability of a plain representation for the maximum
number of attributes can be captured by imposing that any attribute not involved in
a singleton constraint must appear in the clear in at least one fragment. This require-
ment is formally represented by the definition of maximal visibility as follows.

Definition 4.6 (Maximal visibility). Let R be a relation schema, F be a fragmenta-
tion of R, and C be a set of well defined constraints over R. F maximizes visibility
iff ∀a∈A f : ∃F ∈ F such that a∈F .

Note that the combination of maximal visibility together with the definition of
fragmentation (Definition 4.3) imposes that each attribute that does not appear in a
singleton constraint must appear in the clear in exactly one fragment (i.e., at least for
Definition 4.6, at most for Definition 4.3). In the following, we denote with F the set
of all possible fragmentations maximizing visibility. Therefore, we are interested in
determining a fragmentation in F that satisfies all the constraints in the system.

4.4.3 Minimum Number of Fragments

Another important aspect to consider when fragmenting a relation to satisfy a set of
constraints is to avoid excessive fragmentation. In fact, the availability of more at-
tributes in the clear in a single fragment allows a more efficient execution of queries
on the fragment. Indeed, a straightforward approach for producing a fragmentation
that satisfies the constraints while maximizing visibility is to define as many (sin-
gleton) fragments as the number of attributes not appearing in singleton constraints.
Such a solution, unless demanded by the constraints, is however undesirable since
it makes any query involving conditions on more than one attribute inefficient.

A simple strategy to find a fragmentation that makes query execution efficient
consists in finding a minimal fragmentation, that is, a correct fragmentation that
maximizes visibility, while minimizing the number of fragments. This problem can
be formalized as follows.

Problem 4.1 (Minimal fragmentation). Given a relation schema R, a set C of well
defined constraints over R, find a fragmentation F of R such that all the following
conditions hold:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the two conditions above such that the number of fragments com-

posing F ′ is less than the number of fragments composing F .

The minimal fragmentation problem is NP-hard, as formally stated by the following
theorem.
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Theorem 4.1. The minimal fragmentation problem is NP-hard.

Proof. The proof is a reduction from the NP-hard problem of minimum hypergraph
coloring [50], which can be formulated as follows: given a hypergraph H (V,E),
determine a minimum coloring of H , that is, assign to each vertex in V a color such
that adjacent vertices have different colors, and the number of colors is minimized.

Given a relation schema R and a set C of well defined constraints, the cor-
respondence between the minimal fragmentation problem and the hypergraph
coloring problem can be defined as follows. Any vertex vi of the hypergraph
H corresponds to an attribute ai ∈ A f . Any edge ei in H , which connects
vi1 , . . . ,vic , corresponds to a constraint ci={ai1 ,. . . ,aic}, ci ∈ C f . A fragmentation
F={F1(a11 , . . . ,a1k), . . . ,Fp(ap1 , . . . ,apl )} of R satisfying all constraints in C cor-
responds to a solution S for the corresponding hypergraph coloring problem. Specif-
ically, S uses p colors and {v11 , . . . ,v1k}, corresponding to the attributes in F1, are
colored using the first color, vertices {vi1 , . . . ,vi j}, corresponding to the attributes in
Fi, are colored with the i-th color, and vertices {vp1 , . . . ,vpl}, corresponding to the
attributes in Fp, are colored using the p-th color. As a consequence, any algorithm
finding a minimal fragmentation can be exploited to solve the hypergraph coloring
problem.

The hypergraph coloring problem has been extensively studied in the literature,
reaching interesting theoretical results. In particular, assuming NP ̸= ZPP, there are
no polynomial time approximation algorithms for coloring k-uniform hypergraphs
with approximation ratio O(n1−ε) for any fixed ε > 0 [60, 65].2

4.4.4 Fragmentation Lattice

To characterize the space of possible fragmentations and the relationships among
them, we first introduce the concept of fragment vector as follows.

Definition 4.7 (Fragment vector). Let R be a relation schema, C be a set of well
defined constraints over R, and F= {F1, . . . ,Fm} be a fragmentation of R maxi-
mizing visibility. The fragment vector VF of F is a vector of fragments with an
element VF [a] for each a ∈ A f , where the value of VF [a] is the unique fragment
F j∈F containing attribute a.

Example 4.2. Let F = {{Name},{Occupation},{Sickness,ZIP}} be a frag-
mentation of the relation schema in Fig. 4.1(a). The fragment vector is the vector
VF such that:

• VF [Name]={Name};
• VF [Occupation]={Occupation};

2 In a minimization framework, an approximation algorithm with approximation ratio p guarantees
that the cost C of its solution is such that C/C∗ ≤ p, where C∗ is the cost of an optimal solution [50].
On the contrary, we cannot perform any evaluation on the result of a heuristic.
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Fig. 4.4 An example of fragmentation lattice

• VF [Sickness]=VF [ZIP]={Sickness,ZIP}.

Fragment vectors allow us to define a partial order between fragmentations as
follows.

Definition 4.8 (Dominance). Let R be a relation schema, C be a set of well defined
constraints over R, and F , F ′ be two fragmentations of R maximizing visibility.
We say that F ′ dominates F , denoted F≼F ′, iff VF [a]⊆VF ′ [a], ∀ a ∈ A f . We
say F ≺ F ′ iff F≼F ′ and F ̸= F ′.

Definition 4.8 states that fragmentation F ′ dominates fragmentation F if F ′

can be computed from F by merging two (or more) fragments composing F .

Example 4.3. Let F 1={{Name,ZIP}, {Occupation,Sickness}} and
F 2={{Name}, {Occupation,Sickness}, {ZIP}} be two fragmentations of
the relation schema in Fig. 4.1(a). Since F 1 can be obtained from F 2 by merging
fragments {Name} and {ZIP}, it results that F 2≺F 1.

The set F of all possible fragmentations maximizing visibility, together with the
dominance relationship just introduced, form a lattice, as formally stated in the fol-
lowing definition.

Definition 4.9 (Fragmentation lattice). Let R be a relation schema, and C be a set
of well defined constraints over R. The fragmentation lattice is a pair (F,≼), where
F is the set of all fragmentations of R maximizing visibility and ≼ is the dominance
relationship among them, as defined in Definition 4.8.

The top element F⊤ of the lattice represents a fragmentation where each at-
tribute in A f appears in a different fragment. The bottom element F⊥ of the lat-
tice represents a fragmentation composed of a single fragment containing all at-
tributes in A f . As an example, Fig. 4.4 illustrates the fragmentation lattice for the
example in Fig. 4.1, with A f ={Name, Occupation, Sickness, ZIP}. Here,
attributes are represented with their initials and fragments are divided by a vertical
line. Furthermore, fragmentations that correctly enforce (Definition 4.5) constraints
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in Fig. 4.1(b) appear as solid boxes, while fragmentations that violate at least a con-
straint appear as dotted boxes.

An interesting property of the fragmentation lattice is that given a non correct
fragmentation F i, any fragmentation F j such that F j≼F i is non correct.

Theorem 4.2. Given a fragmentation lattice (F,≼), ∀F i,F j ∈ F such that
F j≼F i, F i non correct =⇒ F j non correct.

Proof. If F i is not correct, then ∃c∈C f and ∃Fi∈F i such that c⊆Fi. Since
F j≼F i, by Definition 4.8, ∃F j∈F j such that Fi⊆F j. Then c⊆Fi⊆F j, and F j
is not correct.

By construction, each path in the lattice is characterized by a locally minimal
fragmentation, which is the fragmentation such that all its descendants in the path
correspond to non correct fragmentations. Intuitively, such locally minimal frag-
mentations can be determined either via a top-down visit or via a bottom-up visit
of the lattice. The number of fragmentations at level i (i.e., the solutions composed
of (n− i)+ 1 fragments) of the lattice is

{ n
n−i

}
, which is the number of Stirling of

the second kind [53]. As a consequence, |F|= ∑i = 0n
{ n

n−i

}
= Bn, which is the Bell

number [53]. The second level of the lattice then contains a quadratic number of
solutions (O(n2)), and an exponential number of fragmentations (O(2n)) resides in
the first to last level. The top-down strategy, exploiting the fact that the number of
fragments increases while going down in the lattice, seems then to be more conve-
nient. In the following section, we then propose an exact algorithm that performs
a top-down tree traversal of the lattice (i.e., each fragmentation is visited at most
once) and that generates only a subset of all possible fragmentations.

4.5 A Complete Search Approach to Minimal Fragmentation

Although the number of possible fragmentations in F is exponential in |A f |, the
set of attributes to be fragmented is usually limited in size and therefore a com-
plete search evaluating the different fragmentations maximizing visibility could be
acceptable. To ensure the evaluation of each correct fragmentation maximizing vis-
ibility exactly once, we define a fragmentation tree as follows.

Definition 4.10 (Fragmentation tree). Let (F,≼) be a fragmentation lattice. A
fragmentation tree of the lattice is a spanning tree of (F,≼) rooted in F⊤.

We propose here a method for building a fragmentation tree over a given frag-
mentation lattice. To this aim, we assume the set A f of attributes to be totally or-
dered, according to a relationship, denoted <A, and assume that in each fragment
F attributes are maintained ordered, from the smallest, denoted F.first, to the great-
est, denoted F.last. We then translate the order relationship among attributes into
an order relationship among fragments within a fragmentation, by considering frag-
ments to be ordered according to the order dictated by their smallest (.first) attribute.
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Fig. 4.5 A fragmentation tree for the fragmentation lattice in Fig. 4.4

Since, within a fragmentation, each attribute appears in exactly one fragment, the
fragments in each fragmentation are totally ordered. Each fragmentation F is then
a sequence, denoted F = [F1, . . . ,Fn], of fragments, where ∀i, j = 1, . . . ,n : i < j,
Fi.first <A Fj.first. In this case, we say that fragment Fi precedes fragment Fj in frag-
mentation F . Given two fragments Fi,Fj with i < j, we say that Fi fully precedes Fj
iff all attributes of Fi are smaller than all attributes in Fj, that is, Fi.last <A Fj.first.
Note that full precedence is only a partial ordering.

To ensure tree traversal and therefore to avoid computing a fragmentation twice,
we exploit the precedence relationship among fragments and associate with each
fragmentation F = [F1, . . . ,Fn] a marker Fi that is the non singleton fragment such
that ∀ j > i, Fj is a singleton fragment. For the root, the marker is its first fragment.
Intuitively, the marker associated with a fragmentation denotes the starting point for
fragments to be combined to obtain children of the fragmentation (as a combination
with any fragment preceding it will produce duplicate fragmentations). We then
define an order-based cover for the lattice as follows.

Definition 4.11 (Order-based cover). Let (F,≼) be a fragmentation lattice. An
order-based cover of the lattice, denoted T (V,E), is an oriented graph, where
V = F, and ∀F p,F c ∈ V , (F p,F c) ∈ E iff, being F p

m the marker of F p, there
exists i, j with m ≤ i and F p

i fully preceding F p
j , such that:

• ∀l < j, l ̸= i, Fc
l = F p

l ;
• Fc

i = F p
i F p

j ;
• ∀l ≥ j, Fc

l = F p
l+1.

As an example, consider the order-based cover in Fig. 4.5, where <A is the
lexicographic order. It is built on the fragmentation lattice in Fig. 4.4 and the
underlined fragments are the markers. Given fragmentations F p=[N|O|S|Z] and
F c=[N|OS|Z], edge (F p,F c) belongs to T since for i = 2 and j = 3 we have that
Fc

1 =F p
1 =N; Fc

2 =F p
2 F p

3 =OS; and Fc
3 =F p

3+1=Z. The order-based cover so defined cor-
responds to a fragmentation tree for the lattice, as stated by the following theorem.

Theorem 4.3. The order-based cover T of a lattice (F,≼) is a fragmentation tree
for (F,≼) with root F⊤.
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Proof. T is a fragmentation tree for (F,≼) if: (1) each vertex at level i (but the root
F⊤) has exactly one parent at level i− 1, and (2) each edge of T is an edge in
(F,≼).

1. Each vertex has at most one parent. Suppose, by contradiction, that a vertex
F=[F1,. . . ,Fn−1] is a child of two different vertices in T , say F 1=[F1

1 ,. . . ,F1
n ]

and F 2=[F2
1 ,. . . ,F2

n ]. Therefore, there exists a fragment Fi1 in F obtained as
F1

i1 F1
j1 . Analogously, there exists a fragment Fi2 in F obtained as F2

i2 F2
j2 .

Suppose also, without loss of generality, i1 < i2. By Definition 4.11, for each
Fk in F , k ̸= i1, there exists a fragment F1

k1
in F 1 such that F1

k1
=Fk and k1 ≥ k

(either k1 = k or k1 = k + 1). Therefore, there exists a non singleton fragment
F1

l =Fi2 with l ≥ i2. As a consequence, l > i1, thus the marker for F 1 must be
greater than or equal to i1, by definition. This generates the contradiction.
Each vertex has at least one parent. Let F be a vertex at level i (i ̸= 1) in T
(F ̸=F⊤), Fm be its marker, and Fm.last be the highest attribute in Fm. Consider
fragmentation F p, containing all the fragments in F but Fm and the two frag-
ments obtained by splitting Fm into Fm−{Fm.last} and {Fm.last}. The marker of
F p precedes m, since all the fragments following Fm in F are singleton in F p
as well. Also, the additional fragment {Fm.last} is singleton and it follows F p

m ,
according to relationship <A (since it is the maximum attribute). Therefore, by
Definition 4.11, there is an edge (F p,F ) in T , then F p is parent of F and F p
has exactly one fragment more than F (i.e., F p is at level i−1).

2. Each edge in T is an edge in (F,≼). Let (F p,F c) be an edge in T . By Defini-
tion 4.11 it follows that F p≼F c, then (F p,F c) is an edge of (F,≼).

4.5.1 Computing a Minimal Fragmentation

Our complete search function, function Fragment in Fig. 4.6, performs a depth first
search on the fragmentation tree T built as an order-based cover. Besides exploit-
ing the tree structure, our proposal takes advantage of the result of Theorem 4.2
by pruning the fragmentation tree to avoid the visit of subtrees composed only of
fragmentations violating constraints (i.e., the children of a non correct parent).

The function takes as input the set A f of attributes to be fragmented and the
set C f of well defined non singleton constraints. The function uses variables:
marker[F ], representing the position of the marker within fragmentation F ; Min,
representing the current minimal fragmentation; and MinNumFrag, representing the
number of fragments composing Min. First, the function initializes variable Min to
F⊤ and variable MinNumFrag to the number of fragments in F⊤. Then, it calls
function SearchMin on F⊤ that iteratively builds the children of F⊤ according to
Definition 4.11. Function SearchMin(F p) is then recursively called on each frag-
mentation F c, child of F p, only if F c satisfies all the constraints (i.e., if function
SatCon returns true). The function exploits the fact that the number of fragments
decreases while going down the lattice and compares Min with a fragmentation only
if it does not have correct children (i.e., it is a candidate minimal fragmentation).
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FRAGMENT(A f ,C f )
for each ai∈A f do F⊤

i := {ai} /* root of the search tree F⊤ */
marker[F⊤] := 1
Min := F⊤ /* current minimal fragmentation */
MinNumFrag := Evaluate(Min)
SearchMin(F⊤) /* recursive call that builds the search tree */
return(Min)

SEARCHMIN(F p)
localmin := true /* minimal fragmentation */
for i:=marker[F p]. . . (|F p|-1) do

for j:=(i+1). . . |F p| do
if F p

i .last<AF p
j .first then /* F p

i fully precedes F p
j */

for l:=1. . . |F p| do
case:

(l<j ∧ l ̸=i): Fc
l := F p

l
(l>j): Fc

l−1 := F p
l

(l=i): Fc
l := F p

i F p
j

marker[F c] := i
if SatCon(Fc

i ) then
localmin := false
SearchMin(F c) /* recursive call on correct fragmentation */

if localmin then
nf := Evaluate(F p)
if nf<MinNumFrag then

MinNumFrag := nf
Min := F p

SATCON(F)
for each c∈C f do

if c⊆F then return(false)
return(true)

Fig. 4.6 Function that performs a complete search

It is interesting to note that, by substituting the definition of the Evaluate func-
tion with any other cost function monotonic with respect to the dominance relation-
ship, the given function Fragment can determine the minimum cost/maximum gain
fragmentation in F.

The fragmentation tree generated by function Fragment in Fig. 4.6 according
to the order-based cover introduced in Definition 4.11 is not balanced. Indeed, the
fragmentation tree is built by inserting the vertices in a specific order, starting from
F⊤ and inserting, at each level of the tree, the vertices from left to right. This
implies that each vertex in the tree at the i-th level has, as parent, the leftmost vertex
in the (i−1)-th level that satisfies Definition 4.11. Consequently, as it is visible from
Fig. 4.5 the length of the paths from F⊤ to the leaves of the fragmentation lattice
decreases when moving from the left to the right in the tree.

Example 4.4. Figure 4.7 illustrates the execution, step by step, of function Search-
Min applied to Example 4.1. The columns of the table in Fig. 4.7(a) represent
the call to SearchMin with its parameter F p; the fragments F p

i and F p
j merged;

the resulting fragmentation F c; the value of SatCon on Fc
i ; the possible recur-

sive call to SearchMin(F c); the result of function Evaluate(F p) (i.e., the num-
ber of fragments in F p), when computed; the updates to Min. Figure 4.7(b) illus-
trates the tree built by the recursive calls of function SearchMin on the consid-
ered example, with the number of fragments necessary for comparison with Min



100 4 Combining Fragmentation and Encryption to Protect Data Privacy

SearchMin(F p) F p
i F p

j F c SatCon(Fc
i ) SearchMin(F c) Evaluate(F p) Min

N|O|S|Z N O NO|S|Z false –
S NS|O|Z false –
Z NZ|O|S true NZ|O|S

O S N|OS|Z true N|OS|Z
Z N|OZ|S true N|OZ|S

S Z N|O|SZ true N|O|SZ
NZ|O|S NZ O – – –

S – – –
O S NZ|OS true NZ|OS

NZ|OS – – – – – 2 NZ|OS
N|OS|Z OS Z N|OSZ false – 3
N|OZ|S OZ S – – – 3
N|O|SZ – – – – – 3

(a)

N|O|S|Z

nnnnnnnnnn

}}
}}

}}

AA
AA

AA

PPPPPPPPPP

UUUUUUUUUUUUUUUU4

NO|S|Z NS|O|Z NZ|O|S N|OS|Z
3

N|OZ|S
3

N|O|SZ
3

NZ|OS
2

N|OSZ

(b)

Fig. 4.7 An example of the execution of function Fragment in Fig. 4.6

at the right of the corresponding fragmentations. At the beginning, variable Min
is initialized to [N|O|S|Z] and the corresponding MinNumFrag is set to 4. The
function then calls function SearchMin on [N|O|S|Z]. At the first iteration of the
two for loops in SearchMin([N|O|S|Z]), fragments F p

1 =N and F p
2 =O are merged,

thus generating the fragmentation [NO|S|Z] that violates constraint c1. The second
fragmentation generated is [NS|O|Z], which violates c3. The third fragmentation
[NZ|O|S] is correct and SearchMin([NZ|O|S]) is recursively called, which in turn
calls SearchMin([NZ|OS]). Since the two fragments in [NZ|OS] cannot be merged
(Z ̸<A O), SearchMin is not further called. Therefore, the function compares the
number of fragments composing [NZ|OS], which is 2, with MinNumFrag and up-
dates Min accordingly. The recursive calls on the other fragmentations are processed
in an analogous way. The final minimal fragmentation computed by the function is
[NZ|OS] with 2 fragments only.

4.5.2 Correctness and Complexity

Before proving the complexity of function Fragment in Fig. 4.6, we introduce a
lemma, proving that function Fragment computes all correct fragmentations, while
it never generates more than once the same solution.
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Lemma 4.1. Function Fragment in Fig. 4.6 visits all correct fragmentations in T
exactly once.

Proof. The function starts from the root of T and recursively visits it with a depth-
first strategy. At each call of SearchMin(F p) it generates all the children of F p,
according to Definition 4.11, by the first two for loops and the following if instruc-
tion. Since SearchMin is recursively called only on correct solutions, the subtrees
rooted at non correct children are not visited. However, by Theorem 4.2, no correct
solution belongs to these subtrees.

Theorem 4.4 (Correctness). Function Fragment in Fig. 4.6 terminates and finds a
minimal fragmentation (Problem 4.1).

Proof. Function Fragment in Fig. 4.6 always terminates since, at each recursive
call, it combines two of the fragments in the parent to compute its children. There-
fore, the maximum reachable depth is |A f |.

We now prove that a solution F computed by this function over A f and C f is
a minimal fragmentation. According to Problem 4.1, a fragmentation F is minimal
if and only if (1) it is correct, (2) it maximizes visibility, and (3)@F ′ composed of
less fragments than F and satisfying the two conditions above. A fragmentation F
computed by function Fragment in Fig. 4.6 satisfies these three properties.

1. The computed fragmentation F is correct since function SearchMin is recur-
sively called only on correct fragmentations F p (i.e., when SatCon is true).
Therefore only correct solutions are assigned to the returned solution F (i.e.,
Min).

2. F is a fragmentation of R maximizing visibility, since any solution generated by
the function is obtained by merging fragments in F⊤. F⊤ is a fragmentation
maximizing visibility, since it contains all attributes in A f and each a∈A f ap-
pears exactly in one fragment. The merge operation in the SearchMin function
simply concatenates two fragments into a single one, thus producing a fragmen-
tation F such that the condition of maximal visibility is satisfied.

3. F has minimum number of fragments, since the function visits all the correct
solutions in T and compares MinNumFrag with the number of fragments in so-
lutions having only non correct children. By Definition 4.8, the correct solutions
that are not compared with F have a number of fragments greater or equal than
F .

Therefore the solution F computed by function Fragment in Fig. 4.6 is a minimal
fragmentation.

Theorem 4.5 (Complexity). Given a set C ={c1,. . . ,cm} of constraints and a set
A ={a1,. . . ,an} of attributes the complexity of function Fragment(A ,C ) in Fig. 4.6
is O(Bn ·m) in time.

Proof. The proof comes directly from Lemma 4.1. In the worst case, each frag-
mentation in F, which are O(Bn) in number, is generated exactly once by function
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Fragment in Fig. 4.6. Also, function SatCon is called once for each solution gener-
ated and checks if all constraints, which are m in number, are satisfied. The overall
time complexity is therefore O(Bn ·m).

4.6 A Heuristic Approach to Minimize Fragmentation

In this section, we present a heuristic algorithm for Problem 4.1 to be applied when
the number of attributes in the schema does not allow a complete exploration of the
solution space. The heuristic is based on the definition of vector minimality, which
is then exploited to efficiently find a correct fragmentation maximizing visibility.

A vector-minimal fragmentation is formally defined as a fragmentation F that
is correct, maximizes visibility, and all fragmentations that can be obtained from F
by merging any two fragments in F violate at least one constraint.

Definition 4.12 (Vector-minimal fragmentation). Let R be a relation schema, C
be a set of well defined constraints, and F be a fragmentation of R. F is a vector-
minimal fragmentation iff all the following conditions are satisfied:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the two conditions above such that F≺F ′.

According to this definition of minimality, it easy to see that while a minimal
fragmentation is also vector-minimal, the vice versa is not necessarily true.

Example 4.5. Consider fragmentations F 1 and F 2 of Example 4.3, and the set of
constraints in Fig. 4.1(b). Since F 2≺F 1, F 2 is not vector-minimal. By contrast,
F 1 is vector-minimal. As a matter of fact, F 1 contains all attributes of relation
schema Patient in Fig. 4.1(a) but SSN (maximal visibility); satisfies all con-
straints in Fig. 4.1(b) (correctness); and no fragmentation obtained from it by merg-
ing any pair of fragments satisfies the constraints.

4.6.1 Computing a Vector-minimal Fragmentation

The definition of vector-minimal fragmentation allows us to design a heuristic ap-
proach for Problem 4.1 that works in polynomial time and computes a fragmentation
that, even if it is not necessarily a minimal fragmentation, it is however near to the
optimal solution, as the experimental results show (see Sect. 4.13).

Our heuristic method starts with an empty fragmentation and, at each step, se-
lects the attribute involved in the highest number of unsolved constraints. The ra-
tionale behind this selection criterion is to bring all constraints to satisfaction in a
few steps. The selected attribute is then inserted into a fragment that is determined
in such a way that there is no violation of the constraints involving the attribute. If
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FRAGMENT(A f ,C f )

A ToPlace := A f
C ToSolve := C f
Min := /0
for each a∈A ToPlace do /* initialize arrays Con[] and N con[] */

Con[a] := {c ∈ C ToSolve: a ∈ c}
N con[a] := |Con[a]|

repeat
if C ToSolve ̸= /0 then

let attr be an attribute with the maximum value of N con[]
for each c ∈ (Con[attr] ∩ C ToSolve) do

C ToSolve := C ToSolve − {c} /* adjust the constraints */
for each a ∈ c do N con[a] := N con[a]−1 /* adjust array N con[] */

else /* since all the constrains are satisfied, choose any attribute in A ToPlace */
let attr be an attribute in A ToPlace

A ToPlace := A ToPlace − {attr}
inserted := false /* try to insert attr into the existing fragments */
for each F ∈ Min do /* evaluate if F ∪ {attr} satisfies the constraints */

satisfies := true
for each c ∈ Con[attr] do

if c ⊆ (F ∪ {attr}) then
satisfies := false /* choose the next fragment */
break

if satisfies then
F := F ∪ {attr} /* attr has been inserted into F */
inserted := true
break

if NOT inserted then /* insert attr into a new fragment */
add {attr} to Min

until A ToPlace = /0
return(Min)

Fig. 4.8 Function that finds a vector-minimal fragmentation

such a fragment does not exist, a new fragment for the selected attribute is created.
The process terminates when all attributes have been inserted into a fragment. Fig-
ure 4.8 illustrates function Fragment that implements this heuristic method. The
function takes as input the set A f of attributes to be fragmented, and the set C f of
well defined non singleton constraints, used to initialize variables A ToPlace and
C ToSolve, respectively. It computes a vector-minimal fragmentation Min of A f as
follows.

First, the function initializes Min to the empty set and creates two arrays Con[]
and N con[] that contain an element for each attribute a in A ToPlace. Element
Con[a] contains the set of constraints on a, and element N con[a] is the number
of non solved constraints involving a (note that, at the beginning, N con[a] coin-
cides with the cardinality of Con[a]). The function then executes a repeat until
loop that, at each iteration, places an attribute attr into a fragment as follows. If
there are constraints still to be solved (C ToSolve̸= /0) attr is selected as an attribute
appearing in the highest number of unsolved constraints. Then, for each constraint
c in Con[attr]∩C ToSolve, the function removes c from C ToSolve and, for each
attribute a in c, decreases N con[a] by one. Otherwise, that is, if all constraints
are solved (C ToSolve= /0), the function chooses attr by randomly extracting an at-
tribute from A ToPlace and removes it from A ToPlace. Then, the function looks for
a fragment F in Min in which attr can be inserted without violating any constraint
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Min=/0
C ToSolve={c1,c2,c3}
A ToPlace={Name,Occupation,Sickness,ZIP}

c1 c2 c3 N con[ai]
Name × × 2
Occupation × × 2
Sickness × × 2
ZIP × 1
ToSolve yes yes yes

attr = Name
Con[Name]={c1,c2}

Min = {{Name}}
C ToSolve = {c3}
A ToPlace = {Occupation,Sickness,ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X × 1
Sickness X × 1
ZIP × 1
ToSolve X X yes

attr = Occupation
Con[Occupation]={c1,c3}

Min = {{Name},{Occupation}}
C ToSolve = /0
A ToPlace = {Sickness,ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

attr = Sickness
Con[Sickness]={c2,c3}

Min = {{Name},{Occupation,Sickness}}
C ToSolve = /0
A ToPlace = {ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

attr = Z
Con[Z]={c3}

Min = {{Name,ZIP},{Occupation,Sickness}}}
C ToSolve = /0
A ToPlace = /0

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

Fig. 4.9 An example of the execution of function Fragment in Fig. 4.8

including attr. If such a fragment F is found, attr is inserted into F , otherwise a
new fragment {attr} is added to Min. Note that the search for a fragment termi-
nates as soon as a fragment is found (inserted=true). Also, the control on constraint
satisfaction terminates as soon as a violation to constraints is found (satisfies=false).

Example 4.6. Figure 4.9 presents the execution, step by step, of function Fragment
in Fig. 4.8 applied to the example in Fig. 4.1. The left hand side of Fig. 4.9 illus-
trates the evolution of variables attr, Min, C ToSolve, and A ToPlace, while the right
hand side graphically illustrates the same information through a matrix with a row
for each attribute and a column for each constraint. If an attribute belongs to an un-
solved constraint ci, the corresponding cell is set to ×; otherwise, if ci is solved, the
cell is set to X. At the beginning, Min is empty, all constraints are unsolved, and
all attributes need to be placed. In the first iteration, function Fragment chooses
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attribute Name, since it is one of the attributes involved in the highest number of
unsolved constraints. The constraints in Con[Name] become now solved, N con[ai]
is updated accordingly (for all the attributes in the relation), and fragment {Name}
is added to Min. Function Fragment proceeds in an analogous way by choosing
attributes Occupation, Sickness, and Zip. The final solution is represented
by fragmentation Min={{Name,ZIP}, {Occupation,Sickness}}, which cor-
responds to the one computed by the complete search function in Fig. 4.6.

4.6.2 Correctness and Complexity

The correctness and complexity of function Fragment in Fig. 4.8 are stated by the
following theorems.

Theorem 4.6 (Correctness). Function Fragment in Fig. 4.8 terminates and finds a
vector-minimal fragmentation (Definition 4.12).

Proof. Function Fragment in Fig. 4.8 terminates since each attribute is considered
only once, and the repeat until loop is performed till all the attributes are extracted
from A ToPlace (which is initialized to A f ).

We now prove that a solution F computed by this function over A f and C f
is a vector-minimal fragmentation. According to Definition 4.12, a fragmentation
F is vector-minimal if and only if (1) it is correct, (2) it maximizes visibility, and
(3) @F ′:F≺F ′ that satisfies the two conditions above. A fragmentation F com-
puted by function Fragment in Fig. 4.8 satisfies these three properties.

1. Function Fragment inserts attr into a fragment F if and only if F∪{attr} satisfies
the constraints in Con[attr]. By induction, we prove that if F∪{attr} satisfies
constraints in Con[attr], it satisfies all constraints in C .
If {attr} is the first attribute inserted into F , F∪{attr}={attr}. Since attr ∈ A f ,
then the set {attr} satisfies all constraints in C . Otherwise, if we suppose that
F already contains at least one attribute and that it satisfies all constraints in
C , then, by adding attr to F the constraints that may be violated are only the
constraints in Con[attr]. Consequently, if F∪{attr} satisfies all these constraints,
it satisfies all constraints in C .
We can therefore conclude that F is a correct fragmentation.

2. Since each attribute a in A f is inserted exactly into one fragment, function Frag-
ment produces a fragmentation F such that the condition of maximal visibility
is satisfied.

3. By contradiction, let F ′ be a fragmentation satisfying the constraints in C f , max-
imizes visibility, and such that F ≺F ′. Let VF and VF ′ be the fragment vectors
associated with F and F ′, respectively.
First, we prove that F ′ contains a fragment VF ′ [ai] that is the union of two
different fragments, VF [ai] and VF [a j], of F . Second, we prove that function
Fragment cannot generate two different fragments whose union does not violate
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any constraint. These two results generate a contradiction since VF ′ [ai], which
contains VF [ai]∪VF [a j], is a fragment of F ′, and thus it does not violate the
constraints.

a. Since F ≺ F ′, there exists a fragment such that VF [ai] ⊂ VF ′ [ai], and then
there exists an attribute a j (with j ̸= i) such that a j ∈ VF ′ [ai] and a j ̸∈VF [ai].
Note that a j ̸=ai because, by definition, ai ∈ VF [ai] and ai ∈ VF ′ [ai].
VF [a j] and VF ′ [a j] are the fragments that contain a j. We now show that,
not only a j∈VF ′ [ai], but also the whole fragment VF [a j]⊂VF ′ [ai]. Since,
a j∈VF ′ [a j] and a j∈VF ′ [ai] we have that VF ′ [a j] = VF ′ [ai], but since VF [a j]
⊂ VF ′ [a j] we have that VF [a j]⊂VF ′ [ai] and therefore (VF [ai] ∪ VF [a j]) ⊆
VF ′ [ai].

b. Let Fh and Fk be the two fragments computed by function Fragment, cor-
responding to VF [ai] and VF [a j], respectively. Assume, without loss of gen-
erality, that h < k (since the proof in the case h > k immediately follows by
symmetry). Let ak1 be the first attribute inserted into Fk by the function. Re-
call that the function inserts an attribute into a new fragment if and only if the
attribute cannot be inserted into the already-existing fragments (e.g., Fh) with-
out violating constraints. Therefore, the set of attributes Fh∪{ak1} violates a
constraint as well as the set VF [ai] ∪ VF [a j] that contains Fh∪{ak1}.

This generates a contradiction.

Therefore the solution F computed by function Fragment in Fig. 4.8 is a vector-
minimal fragmentation.

Theorem 4.7 (Complexity). Given a set C ={c1,. . . ,cm} of constraints and a set
A ={a1,. . . an} of attributes the complexity of function Fragment(A ,C ) in Fig. 4.8
is O(n2m) in time.

Proof. To choose attribute attr from A ToPlace, in the worst case function Frag-
ment in Fig. 4.8 scans array N con[], and adjusts array N con[] for each attribute
involved in at least one constraint with attr. This operation costs O(nm) for each
chosen attribute. After the choosing phase, each attribute is inserted into a frag-
ment. Note that the number of fragments is O(n) in the worst case. To choose the
right fragment that will contain attr, in the worst case the function tries to insert it
into all fragments F∈F , and compares F∪{attr} with the constraints in Con[attr].
Since the sum of the number of attributes in all the fragments is O(n), then O(n)
attributes will be compared with the O(m) constraints containing attr, giving, in the
worst case, a O(nm) complexity for each attr. Thus, the complexity of choosing the
right fragment is O(n2m). We can then conclude that the overall time complexity is
O(n2m).
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4.7 Taking Attribute Affinity into Account

The computation of a minimal fragmentation exploits the basic principle according
to which the presence of a high number of plaintext attributes permits an efficient
execution of queries. Although this principle may be considered acceptable in many
situations, other criteria can also be applied for computing a fragmentation. Indeed,
depending of the use of the data, it may be useful to preserve the associations among
some attributes. As an example, consider the fragmentation in Fig. 4.2 and suppose
that the data need to be used for statistical purposes. In particular, suppose that
physicians should be able to explore the link between a specific Sickness and the
Occupation of patients. The computed fragmentation however does not make
visible the association between Sickness and Occupation, thus making the
required analysis not possible (as it would violate the constraints). In this case, a
fragmentation where these two attributes are stored in clear form in the same frag-
ment is preferable to the computed fragmentation. The need for keeping together
some specific attributes in the same fragment may not only depend on the use of the
data but also on the queries that need to be frequently executed on the data. Indeed,
given a query Q and a fragmentation F , the execution cost of Q varies according to
the specific fragment used for computing the query. This implies that, with respect
to a specific query workload, different fragmentations may be more convenient than
others in terms of query performance.

To take into consideration both the use of the data and the query workload in the
fragmentation process, we exploit the concept of attribute affinity traditionally ap-
plied to express the advantage of having pairs of attributes in the same fragment in
distributed DBMSs [76] and that is therefore adopted by schema design algorithms
using the knowledge of a representative workload for computing a suitable partition.
In our context, attribute affinity is also a measure of how strong the need of keeping
the attributes in the same fragment is. By considering the total order relationship <A
among attributes in A f and assuming ai to denote the i-th attribute in the ordered
sequence, the affinity between attributes is represented through an affinity matrix.
The matrix, denoted M, has a row and a column for each attribute appearing in non
singleton constraints, and each cell M[ai,a j] represents the benefit obtained by hav-
ing attributes ai and a j in the same fragment. Clearly, the affinity matrix contains
only positive values and is symmetric with respect to its main diagonal. Also, for all
attributes ai, M[ai,ai] is not defined. The affinity matrix can then be represented as
a triangular matrix, where only cells M[ai,a j], with i < j (i.e., ai<Aa j), are repre-
sented. Figure 4.10 illustrates an example of affinity matrix for relation Patient
in Fig. 4.1, where <A is the lexicographic order.

The consideration of attribute affinity naturally applies to fragments and frag-
mentations. Fragmentations that maintain together attributes with high affinity are
to be preferred. To reason about this, we define the concept of fragmentation affin-
ity. Intuitively, the affinity of a fragment is the sum of the affinities of the different
pairs of attributes in the fragment; the affinity of a fragmentation is the sum of the
affinities of the fragments in it. This is formalized by the following definition.
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N O S Z
N 10 15 5
O 5 10
S 20
Z

Fig. 4.10 An example of affinity matrix

Definition 4.13 (Fragmentation affinity). Let R be a relation schema, M be
an affinity matrix for R, C be a set of well defined constraints over R, and
F={F1,. . . ,Fn} be a correct fragmentation of R. The affinity of F , denoted
affinity(F ), is computed as:

affinity(F ) = ∑n
k=1 aff(Fk), where aff(Fk) = ∑ai,a j∈Fk,i< j M[ai,a j] is the affinity of

fragment Fk, k = 1 . . .n.

As an example, consider the affinity matrix in Fig. 4.10 and fragmen-
tation F={{Name,ZIP}, {Occupation,Sickness}}. Then, affinity(F ) =
aff ({Name,ZIP}) + aff ({Occupation,Sickness) = M[N,Z] + M[O,S] = 5+5
= 10. With the consideration of affinity, the problem becomes therefore to deter-
mine a correct fragmentation that has maximum affinity. This is formally defined as
follows.

Problem 4.2 (Maximum affinity). Given a relation schema R, a set C of well de-
fined constraints over R, and an affinity matrix M, find a fragmentation F of R such
that all the following conditions hold:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the conditions above such that affinity(F ′) > affinity(F ).

Like Problem 4.1, the maximum affinity problem is NP-hard, as formally stated
by the following theorem.

Theorem 4.8. The maximum affinity problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50],
which can be formulated as follows: given a collection C of subsets of a set S, find
the smallest subset S′ of S such that S′ contains at least one element from each subset
in C.

The reduction of the hitting set problem to the maximum affinity problem can
be defined as follows. Let S′ be the solution of the minimum hitting set problem,
and let R = S∪{ac} be a relation, where ac is an attribute different from any other
element in S.

We consider only the sets in C with cardinality greater than 1, since any singleton
set s in C corresponds to an element that must be inserted into the solution S′, and
we can directly put it in. Moreover, if si,s j ∈ C and si ⊂ s j, s j is redundant and
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can be removed from C, since if S′ contains an element of si, then it also contains
an element of s j. Thus, let C f = {s ∈ C: |s| > 1 and ∀s′ ∈ C, s′ ̸⊂ s} be the set of
association constraints, and let A f = {a∈R: {a}̸∈ C} be the set of attributes to be
fragmented. We note that the construction of the set of constraints C f is polynomial
in C, and that, by construction, C f is a set of well defined association constraints.
Also, ac is not contained in any constraint in C f . Consider now an affinity matrix
that contains the value 0 in every cell but the cells corresponding to ac, which are
set to 1 (i.e., M[ai,a j]= 1 iff ai = ac or a j = ac; M[ai,a j]= 0, otherwise).

Since only the affinity between attribute ac and any other attribute is greater than
0, a fragmentation algorithm with the goal of maximizing the affinity computes
a fragmentation where fragment Fc containing ac includes the maximum number
of attributes that can be inserted into a single fragment without violating the con-
straints. The affinity of the computed fragmentation corresponds to the cardinality
of Fc. Since a constraint is violated only if all its attributes belong to the same frag-
ment, a fragment may include all attributes composing a constraint but one. There-
fore, maximizing the number of attributes composing Fc is equivalent to minimiz-
ing the size of the set S′ of attributes that contains at least one attribute from each
constraint. S′ is the solution of the minimum hitting set problem. Consequently, a
maximal affinity fragmentation F of R, with respect to M, satisfying all constraints
in C f , corresponds to a solution for the minimum hitting set problem. In particular,
given fragment Fc that contains attribute ac, the solution for the minimum hitting
set problem is S′ = R−Fc.

In the following, we describe a heuristic approach for Problem 4.2.

4.8 A Heuristic Approach to Maximize Affinity

Our heuristic approach to determine a fragmentation that maximizes affinity ex-
ploits a greedy approach that, at each step, combines fragments that have the high-
est affinity. The heuristic starts by putting each attribute to be fragmented into a
different fragment. The affinity between pairs of fragments is the affinity between
the attributes contained in their union (as dictated by the affinity matrix). Then, the
two fragments with the highest affinity, let call them Fi and F j, are merged together
(if this does not violate constraints) and Fi is updated by adding the attributes of
F j, while F j is removed. The affinity of the new version of Fi with respect to any
other fragment Fk is the sum of the affinities that Fk had with the old version of Fi
and F j. The heuristic proceeds in a greedy way iteratively merging, at each step, the
fragments with highest affinity until no more fragments can be merged without vi-
olating the constraints. Figure 4.11 gives a graphical representation of our heuristic
approach; at each step, light grey boxes denote the pair of fragments with highest
affinity. The correctness of the heuristics lies in the fact that, at each step, the affinity
of the resulting fragmentation can only increase. As a matter of fact, it is easy to see
that affinity is monotonic with respect to the dominance relationship (see Lemma 4.2
in Sect. 4.8.2).
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Fig. 4.11 Graphical representation of the working of the function in Fig. 4.12

The following subsection describes the function implementing this heuristic ap-
proach. In the function, instead of controlling constraints to determine whether two
fragments can be merged, we exploit the affinity matrix and set to −1 the affinity of
fragments whose merging would violate the constraints (thus ignoring them in the
evaluation of fragments to be merged).

4.8.1 Computing a Vector-minimal Fragmentation with the Affinity
Matrix

Function Fragment in Fig. 4.12 takes as input the set A f of attributes to be frag-
mented and a set C f of well defined non singleton constraints. It computes a vector-
minimal fragmentation Max of A f , where at each step the fragments to be merged
are chosen according to their affinity. In the following, with a slight abuse of no-
tation, we use M[Fi,F j] to denote the cell in the affinity matrix identified by the
smallest attribute in Fi and F j (i.e., Fi.first and F j.first), according to the order rela-
tionship <A on attributes in A f .

First, the function initializes the set of constraints C ToSolve to be solved with
C f , Max to a fragmentation having a fragment Fi for each of the attributes ai in A f ,
and creates a set FragmentIndex that contains the index i of each fragment Fi∈Max.
The function also checks all constraints in C ToSolve composed of two attributes
only, and sets to −1 the corresponding cells in the affinity matrix. These constraints
are removed from C ToSolve. In general, at each iteration of the algorithm, for each
i < j, M[Fi,F j] is equal to −1 if the fragment obtained as Fi∪F j violates some
constraints.



4.8 A Heuristic Approach to Maximize Affinity 111

FRAGMENT(A f ,C f )

/* initial solution with a fragment for each attribute */
C ToSolve := C f
Max := /0
FragmentIndex := /0
for i=1. . . |A f | do

Fi := {ai}
Max := Max ∪ {Fi}
FragmentIndex := FragmentIndex ∪ {i}

/* cells in M corresponding to constraints are invalidated */
for each {ax,ay} ∈ C ToSolve do

M[Fmin(x,y),Fmax(x,y)] := −1
C ToSolve := C ToSolve − {{ax,ay}}

/* extract the pair of fragments with maximum affinity */
Let [Fi,F j ], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
while |FragmentIndex|> 1 ∧ M[Fi,F j ] ̸=−1 do /* merge the two fragments */

Fi := Fi∪F j
Max := Max − {F j}
FragmentIndex := FragmentIndex − {j}
/* update the affinity matrix */
for each k∈FragmentIndex : k ̸=i do

if M[Fmin(i,k),Fmax(i,k)]=−1 ∨ M[Fmin(j,k),Fmax(j,k)]=−1 then
M[Fmin(i,k),Fmax(i,k)] := −1

else
for each c∈C ToSolve do

if c⊆(Fi∪Fk) then
M[Fmin(i,k),Fmax(i,k)] := −1
C ToSolve := C ToSolve − {c}

if M[Fmin(i,k),Fmax(i,k)] ̸=−1 then
M[Fmin(i,k),Fmax(i,k)] := M[Fmin(i,k),Fmax(i,k)] + M[Fmin(j,k),Fmax(j,k)]

Let [Fi,F j ], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
return(Max)

Fig. 4.12 Function that finds a vector-minimal fragmentation with maximal affinity

Function Fragment in Fig. 4.12 then executes a while loop that, at each iteration,
merges two fragments in Max as follows. If there are still pairs of fragments that
can be merged, that is, there are still cells in M different from −1, the function
identifies the cell [Fi,F j] (with i<j) with the maximum value in M. Then, Fi is
updated to the union of the two fragments and F j is removed from Max. Also, j is
removed from FragmentIndex, since the corresponding fragment is no more part of
the solution. The function, in the end, updates M. In particular, for each fragment
Fk, k∈(FragmentIndex−{i}), cell M[Fi,Fk] is set to −1 if either cell M[Fi,Fk] or
cell M[F j,Fk] is −1, or if Fi∪Fk violates at least one constraint still in C ToSolve.
In this latter case, the violated constraints {cx,. . . ,cy} are removed from C ToSolve.
Otherwise, cell M[Fi,Fk] is summed with the value in cell M[F j,Fk].

Example 4.7. Figure 4.13 presents the execution, step by step, of function Fragment
in Fig. 4.12, applied to the example in Fig. 4.1 and considering the affinity matrix in
Fig. 4.10. The left hand side of Fig. 4.13 illustrates the evolution of fragments and of
the chosen pair Fi, F j. The central part of Fig. 4.13 illustrates the evolution of matrix
M, where dark grey columns represent fragments merged with other fragments, and
thus removed from the set of fragments. The right hand side of Fig. 4.13 illustrates
the set C ToSolve of constraints to be solved: if an attribute belongs to constraint ci
in C ToSolve, the corresponding cell is set to ×; if ci is removed from C ToSolve,
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F1={N}
F2={O}
F3={S}
F4={Z}

F1 F2 F3 F4
F1 10 15 5
F2 5 10
F3 20
F4

c1 c2 c3
N × ×
O × ×
S × ×
Z ×

F1={N}
F2={O}
F3={S}
F4={Z}

F1 F2 F3 F4
F1 -1 -1 5
F2 5 10
F3 20
F4

c1 c2 c3
N X X
O X ×
S X ×
Z ×

[Fi,F j] = [F3,F4]

F1={N}
F2={O}
F3={S, Z}

F1 F2 F3 F4
F1 -1 -1
F2 -1
F3
F4

c1 c2 c3
N X X
O X X
S X X
Z X

Fig. 4.13 An example of the execution of function Fragment in Fig. 4.12

the cell is set to X. At the beginning, all constraints are not solved and there is a
fragment F for each attribute in A f . First, M is updated by setting to −1 the cells
representing constraints involving only two attributes, that is, constraints c1 and c2,
which are then removed from C ToSolve. Function Fragment chooses the cell in M
with the highest affinity, that is, M[F3,F4] = 20. Consequently, F4 is merged with
F3 (the 4th column becomes dark grey to denote that fragment F4 does not exist
anymore). Then, values in the affinity matrix are updated: cell M[F1,F3] is set to
−1, since M[F1,F3] were −1 before the merge operation; M[F2,F3] should be set
to M[F2,F3]+M[F2,F4] = 5+10 = 15, but it represents fragment {O,S,Z} that vio-
lates constraint c3, therefore the cell is set to −1 and c3 is removed from C ToSolve.
The final solution is Max={{Name}, {Occupation}, {Sickness,ZIP}}, with
affinity equal to 20. (Note that the solution computed by function Fragment in
Fig. 4.8, and represented in Fig. 4.9, has 2 fragments only, but its affinity is 10.)

We note that function Fragment in Fig. 4.12 can be used to simulate function
Fragment in Fig. 4.8 by sorting the attributes in the order with which they are
considered by the function in Fig. 4.12 and considering an initial affinity matrix
containing 0 as affinity value between each pair of attributes. The ordering of at-
tributes can be simply computed by iteratively calculating the number of unsolved
constraints N con[a] involving each attribute a, and inserting, as next element of the
ordered list, the attribute that maximizes N con[a]. Since the affinity matrix contains
values 0 and −1 only, the order for choosing pair of fragments as the next maximum
affinity pair is the same of function Fragment in Fig. 4.8.
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4.8.2 Correctness and Complexity

Before proving the correctness and complexity of our heuristic, we introduce two
lemmas proving the monotonicity property of fragmentation affinity with respect
to the dominance relationship ≼ and the correctness of the matrix computation,
respectively.

Lemma 4.2 (Monotonicity). Let R be a relation, M be an affinity matrix for R, C
be a set of well defined constraints over R, and F and F ′ be two correct fragmen-
tations for R. If F≼F ′ =⇒ affinity(F )≤affinity(F ′).

Proof. By definition, given two fragmentations F={F1,. . . ,Fn} and F ′ =
{F1

′, . . . ,Fm
′} such that F ≺F ′, then VF [a]⊆VF ′ [a], ∀a ∈A f . Therefore, for each

a such that VF [a]=VF ′ [a], the affinity of the two fragments F and F ′ containing a
in F and F ′ respectively, is the same. On the contrary, for all attributes a such that
VF [a]⊂VF ′ [a], the affinity of the two fragments F and F ′ containing a in F and
F ′ respectively, is such that aff (F)≤aff (F ′). In fact, aff (F ′)=aff (F)+∑M[ai,a j],
∀ai ∈ F ′,a j ∈ (F ′ −F) with i < j. Since M[ai,a j] is always a non negative value, it
holds that if F ≺ F ′, then affinity(F )≤affinity(F ′).
If F = F ′ it is straightforward to see that affinity(F )=affinity(F ′).

Lemma 4.3. At the beginning of each iteration of the while loop in function Frag-
ment in Fig. 4.12, M[Fi,F j] =−1 ⇐⇒ ∃c ∈ C :c⊆(Fi∪F j).

Proof. At initialization, function Fragment checks constrains involving exactly two
attributes {ax,ay} and sets to −1 the cell in M corresponding to the pair of fragments
Fx={ax} and Fy={ay}. Also, these constraints are removed from C ToSolve.

When function Fragment merges two fragments Fi and F j (i<j), j is removed
from FragmentIndex. For each k in FragmentIndex but i, cell M[Fmin(i,k),Fmax(i,k)] is
set to −1 if either M[Fmin(i,k),Fmax(i,k)] or M[Fmin(j,k),Fmax(j,k)] were −1 before the
update. Indeed, if either Fi∪Fk or F j∪Fk violated a constraint before merging Fi
with F j, also Fi∪Fk (i.e., ∃c∈C such that c⊆Fi or c⊆F j) since Fi is set to Fi∪F j
after the update. Note that constraints removed from C ToSolve are represented by
−1 being always kept in M. Also, when Fi∪Fk is checked against constraints, the
algorithm looks for constraints representing a subset of Fi∪Fk in C ToSolve, and
the corresponding constraints are removed from C ToSolve, since there is a −1 in M
representing it.

Theorem 4.9 (Correctness). Function Fragment in Fig. 4.12 terminates and finds
a vector-minimal fragmentation (Definition 4.12).

Proof. Function Fragment always terminates. In fact, the while loop terminates
because at each iteration the number of indexes in FragmentIndex decreases by one,
and the iterations are performed only if FragmentIndex contains at least two indexes.

We now prove that a solution F computed by this function over A f and C f is a
vector-minimal fragmentation. According to Definition 4.12 of minimality, a frag-
mentation F is vector-minimal if and only if (1) it is correct, (2) it maximizes visi-
bility, and (3) @F ′:F ≺F ′ that satisfies the two conditions above. A fragmentation
F computed by function Fragment in Fig. 4.12 satisfies these three properties.
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1. Function Fragment starts with a simple correct fragmentation (Fi := {ai}, for all
ai∈A f ), and it iteratively merges only fragments that form a correct fragment,
since the pair of fragments to be merged is extracted as the pair with maximum
affinity and the fragments are merged only if their affinity is a positive value. By
Lemma 4.3, only fragments whose union does not violate constraints are merged.
We can therefore conclude that F correctly enforces C .

2. Since each attribute in A f is initially inserted exactly into one fragment, and
when two fragments are merged only the result of their union is kept in F , func-
tion Fragment produces a fragmentation F such that the condition of maximal
visibility is satisfied.

3. By contradiction, let F ′ be a fragmentation satisfying the constraints in C f and
maximizing visibility, such that F ≺F ′. Let VF and VF ′ be the fragment vectors
associated with F and F ′, respectively.
As already proved for Theorem 4.6, F ′ contains a fragment VF ′ [ai] that is the
union of two different fragments, VF [ai] and VF [a j], of F . We need then to prove
that function Fragment cannot terminate with two different fragments whose
union does not violate any constraint.
Let Fh and Fk be the two fragments computed by function Fragment, corre-
sponding to VF [ai] and VF [a j], respectively. Assume, without loss of generality,
that h < k (since the proof in the case h > k immediately follows by symme-
try). By Lemma 4.3, M contains non-negative values only for pairs of fragments
whose union generates a correct fragment, and therefore function Fragment can-
not terminate with fragmentation F since M still contains a non negative value
to be considered (M[Fh,Fk]). This generates a contradiction.

Therefore the solution F computed by Fragment in Fig. 4.12 is a vector-minimal
fragmentation.

Theorem 4.10 (Complexity). Given a set of constraints C ={c1,. . . ,cm} and a set of
attributes A ={a1,. . . an} the complexity of function Fragment(A ,C ) in Fig. 4.12
is O(n3m) in time.

Proof. The first for and for each loops of function Fragment cost O(n+m). The
while loop is performed O(n) times, since at each iteration an element from Frag-
mentIndex is extracted. The for each loop nested into the while loop updates the
cells corresponding to fragments Fi and F j in the affinity matrix. While j is simply
removed from FragmentIndex, and the column F j in the matrix is simply ignored,
the update of the cells corresponding to Fi, which are O(n) in number, costs O(n2m)
because all the constraints in C ToSolve containing Fi∪F j are considered. Each ex-
traction of the pair of fragments with maximum affinity from M simply scans (in
the worst case) the affinity matrix, and its computational cost is O(n2) in time. The
overall time complexity is therefore O(n3m).
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4.9 Query Cost Model

The standard approach to physical database design considers a representative set of
queries as the starting point for the concrete identification of a satisfying solution.
The same approach can also be applied for fragmenting data by taking into con-
sideration the gain due to sets of attributes with more than two plaintext attributes
appearing in the same fragment. To this purpose, we first introduce the following
query cost function.

Given a fragmentation F for R, any query Q can be evaluated on each of the
fragments composing F because the corresponding physical fragment contains all
the attributes of R, either in encrypted or in clear form. However, the execution
cost of a query varies depending on the schema of the fragment used for query
computation. Overall, with respect to a given query workload, some fragmentations
can exhibit a lower cost than others. We are then interested in identifying a correct
fragmentation with maximal visibility characterized by the minimum cost. To this
purpose, we introduce a query cost model for query execution on a fragmented
schema.

We describe a query workload Q as a set {Q1,. . . ,Qm} of queries, where each
query Qi, i = 1, . . . ,m, is characterized by an execution frequency freq(Qi) and is of
the form:

SELECT ai1 ,. . . ,ain
FROM R
WHERE

∧k
j=1 (a j IN Vj)

where Vj is a set of values in the domain of attribute a j. Given a fragment Fl ∈ F
and a query Qi ∈ Q, the cost of executing query Qi over Fl depends on the set of
attributes appearing in clear form in Fl and on their selectivity; the availability of
more attributes in clear form in a fragment permits a more efficient execution of
queries on the fragment. We therefore estimate the selectivity of query Qi on Fl in
terms of the percentage of tuples in Fl that are returned by the execution of query
Qi on Fl . First, we evaluate the selectivity of each single condition in query Qi as
follows. The selectivity of the j-th condition is computed as the ratio of the number
of tuples in the fragment such that the value of attribute a j is a value in Vj, over
the number of tuples in Fl , which corresponds to the number of tuples in the orig-

inal relation R:
∑v∈Vj num tuples(a j ,v)

|R| , where num tuples(a j,v) denotes the number of
tuples whose value for attribute a j is v. Since we assume that the values of different
attributes are distributed independently of each other, the selectivity of

∧k
j=1 (a j IN

Vj) in query Qi on fragment Fl , denoted S(Qi,Fl), is the product of the selectivity of
each single condition. In particular, the j-th condition contributes to the computa-
tion of the selectivity if and only if the corresponding attribute a j appears in clear
form in Fl ; otherwise the condition cannot be evaluated on the fragment and it is
therefore not useful to select the tuples to be returned in response to the query (this
restriction will be relaxed when we will consider in Sect. 4.12 the introduction of
indexes on encrypted attributes).
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The cost of evaluating query Qi on fragment Fl , denoted Cost(Qi,Fl), is then
estimated by the size of the information returned, which is computed by multiplying
S(Qi,Fl) (i.e., the selectivity of Qi on Fl) by the number of tuples in the considered
fragment, and by the size in bytes, denoted size(tl), of the result tuples:

Cost(Qi,Fl) = S(Qi,Fl) · |R| · size(tl)

This is a common assumption in cost models for query optimizers, particularly
in systems where information has to be exchanged among different components,
where the computational cost of queries is considered less important. We note that
in the architecture only symmetric encryption is used, which current processors are
typically able to apply even on high-rate transfers. It is reasonable then to build a
cost model that does not consider this aspect.

Note that both the set of attributes in the SELECT clause and the set of attributes
in the WHERE clause of query Qi determine the size in bytes of each result tuple.
Indeed, size(tl) is obtained by summing the size in bytes of each attribute in the SE-
LECT clause that appears in clear form in Fl and the size in bytes of the enc attribute
of the fragment, if there exists at least one attribute in the SELECT or WHERE clauses
that does not appear in clear form in Fl . The rationale is that the encrypted portion of
the fragment is needed to subsequently retrieve the desired attribute by decrypting
it. The final cost of evaluating query Qi on F is therefore the minimum among the
costs of evaluating the query on each of the fragments in F . In other words, given
F = {F1,. . . ,Fr}, the cost of evaluating query Qi on F is:

Cost(Qi,F ) = Min(Cost(Qi,F1), . . . ,Cost(Qi,Fr))

The cost of fragmentation F with respect to Q is the sum of the costs
Cost(Qi,F ) of each single query Qi weighted by its frequency, as formally stated in
the following definition.

Definition 4.14 (Fragmentation cost). Let R be a relation schema, C be a set of
well defined constraints over R, F be a fragmentation of R maximizing visibility,
and Q={Q1,. . . ,Qm} be a query workload for R. The fragmentation cost of F with
respect to Q, denoted Cost(Q,F ), is computed as:

Cost(Q,F ) =
m

∑
i=1

(freq(Qi) ·Cost(Qi,F ))

Example 4.8. Consider the fragmentation of the Patient relation in Fig. 4.2.
Given query Q:

SELECT ∗
FROM Patient
WHERE Sickness=‘Latex al.’ AND Occupation=‘Nurse’

the selectivity of the fragments is: S(Q,F1)=1, since neither Sickness nor
Occupation are plaintext represented in F1; S(Q,F2)=2/6, since Occupation
belongs to F2 and there are 2 nurses out of 6 patients; S(Q,F3)=3/6, since
Sickness belongs to F3 and there are 3 patients suffering from Latex al-
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lergy. Supposing, for simplicity, that size(t1)=size(t2)=size(t3)=1, we have that
Cost(Q,F )=Min(6,2,3). Cost(Q,F2)=2.

The cost function here defined enjoys a nice property. Indeed, it is monotonic
with respect to the dominance relationship ≼, as proved by the following lemma.

Lemma 4.4 (Monotonicity). Given a relation schema R, a set C of well defined
constraints over R, the set A f ⊆ R of attributes to be fragmented, and a query
workload Q for R, ∀F i,F j ∈ F: F i≼F j =⇒ Cost(Q,F j)≤Cost(Q,F i).

Proof. Consider two fragmentations F i and F j such that F i≼F j,
F i={Fi

1,. . . ,Fi
n}, and F j={F j

1 ,. . . ,F j
n−1}. By Definition 4.8, F j is obtained

by merging two fragments in F i, say Fi
a and Fi

b, into F j
c . Therefore, ∀F j

x , x ̸= c
there exists a fragment Fi

y =F j
x , and then ∀Qk ∈ Q, S(Qk,F j

x )=S(Qk,Fi
y ). Consid-

ering now fragment F j
c , we conclude that ∀Qk ∈ Q, S(Qk,F j

c )≤S(Qk,Fi
a) and

S(Qk,F j
c )≤S(Qk,Fi

b), since F j
c =Fi

a∪Fi
b and the selectivity of any condition (a IN V)

is between 0 and 1. Also, since F j
c has more attributes in clear from than Fi

a (and
Fi

b), the evaluation of any query Qk can be more precise in projecting attributes.
Therefore, size(ta)≥size(tc) and size(tb)≥size(tc). As a consequence, ∀Qk ∈ Q,
Cost(Q,F j

c )≤Cost(Qk,Fi
a) and Cost(Q,F j

c )≤Cost(Qk,Fi
b).

Since ∀Qk ∈ Q, Cost(Qk,F ) is computed as the minimum among Cost(Qk,F ),
all the queries assigned to Fi

a and Fi
b by F i are assigned to F j

c by F j, thus
Cost(Qk,F j)≤Cost(Qk,F i) for these queries. Queries not assigned by F i to Fi

a

and Fi
b may be assigned by F j to F j

c . This happens only if Cost(Qk,F j
c ) is lower

than Cost(Qk,Fi
x ) for the previously chosen fragment Fi

x . Consequently, ∀Qk ∈ Q,
Cost(Qk,F j)≤Cost(Qk,F i). Since the frequency of queries is the same for both F i
and F j, we conclude that Cost(Q,F j)≤Cost(Q,F i).

This property is easily extended to any pair of fragmentations F i and F j,
F i≼F j. Considering (F,≼), there is a path from F i to F j. Each solution
F a in the path dominates the solution F b preceding it in the path. Therefore,
Cost(Q,F a)≤Cost(Q,F b). By inductively applying this observation along all the
path from F i to F j, we obtain that Cost(Q,F j)≤Cost(Q,F i).

We are now interested in finding a correct fragmentation F with maximal visibil-
ity that minimizes the cost associated with a specific query workload, meaning that
there does not exist another fragmentation satisfying constraints, maximizing visi-
bility, and such that its cost is less than the cost associated with F . This problem
can be formalized as follows.

Problem 4.3 (Minimum cost). Given a relation schema R, a set C of well defined
constraints over R, and a query workload Q={Q1,. . . ,Qm} for R, find a fragmenta-
tion F of R such that all the following conditions hold:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the conditions above and such that Cost(Q,F ′)<Cost(Q,F ).
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Like Problems 4.1 and 4.2, the minimum cost problem is NP-hard, as formally
stated by the following theorem

Theorem 4.11. The minimum cost problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50],
which can be formulated as follows: given a collection C of subsets of a set S, find
the smallest subset S′ of S such that S′ contains at least one element from each subset
in C.

The reduction of the hitting set problem to the minimum cost problem can be
defined as follows. Let S′ be the solution of the minimum hitting set problem, let
R = S be a relation composed of only binary attributes where 0 and 1 values are
equally distributed, and let Q be the query workload of the system.

As for the proof of Theorem 4.8, we consider only the sets si in C with cardinality
greater than 1 and such that there does not exists s j ∈ C, s j ⊂ si. Let C f = {s ∈ C:
|s|> 1 and ∀s′ ∈C, s′ ̸⊂ s} be the set of association constraints, and let A f = {a∈R:
{a}̸∈ C} be the set of attributes to be fragmented. We note that the construction
of the set of constraints C f is polynomial in C. Also, by construction, C f is well
defined and does not contain singleton constraints.

Let us now suppose that Q={Q}, with Q=“SELECT * FROM R WHERE
∧

ai∈A f
(ai=0)” and freq(Q)= 1. Since the attribute values are equally distributed, the selec-
tivity of all the conditions in Q is the same. As a consequence, the cost of Q with
respect to an arbitrary fragment F is proportional to the number of attributes in the
fragment itself. The fragment F in a fragmentation F that minimizes the cost with
respect to the given query is therefore the one containing the maximum number of
attributes. As described in the proof of Theorem 4.8, computing the fragment with
the maximum cardinality corresponds to solve the minimum hitting set problem,
since S′ = R−F .

4.10 A Heuristic Approach to Minimize Query Cost Execution

The two heuristic algorithms proposed in previous sections are not suited for solv-
ing Problem 4.3, since they do not take into account the advantage that arises in
having sets of plaintext attributes appearing in the same fragment. Due to the mono-
tonicity of the cost function introduced in the previous section with respect to the
dominance relationship (see Lemma 4.4), the complete search algorithm proposed
in Sect. 4.5 could also be used to compute a solution for Problem 4.3. In this case,
function Evaluate should implement the Cost(Q,F ) function. The complete search
algorithm remains however exponential in the number of attributes. While this may
not be an issue for small schemas, it may make the algorithm not applicable for
complex schemas. We then propose a heuristic algorithm working in polynomial
time.
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Fig. 4.14 Depiction of the search spaces

4.10.1 Computing a Vector-minimal Fragmentation with the Cost
Function

Our heuristic is based on a variant of the depth-first search algorithm proposed for
the complete search, where a selected number of subtrees composing the fragmen-
tation tree are visited following the same strategy proposed for the complete search
algorithm. As shown in Fig. 4.14, the fragmentation lattice is logically divided into⌈ n

d

⌉
bands, where:

• n is the cardinality of A f ;
• d is a parameter indicating the number of levels in the tree completely visited at

each step;3

• ps is a parameter indicating number of promising fragmentations explored at
each step.

The first subtree of depth d is built considering as a root vertex the top element
F⊤ of the lattice. At level x ·d, ps subtrees are visited (where ps is another parameter
of the heuristic), taking as a root one of the fragmentations computed at level x · d.
These visits artificially stop at level (x+1) ·d, where the best ps solutions are chosen
as the root for the next in-depth visits of the solution space.

The function in Fig. 4.15 takes as input the set A f of attributes to be fragmented,
the set C f of well defined non singleton constraints, and d and ps additional param-
eters. It computes a vector-minimal fragmentation Min of A f , by visiting a subset
of the fragmentations in F.

The algorithm uses variables: marker[F ], representing the position of the marker
within fragmentation F ; Min, representing the current minimal fragmentation; Min-
Cost, representing the number of fragments composing Min; currentqueue, contain-
ing the best ps fragmentations at level x · d that represent the roots of the subtrees

3 If d is equal to |A f | the heuristic approach degenerates in a complete search.
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FRAGMENT(A f ,C f ,d,ps)
nextqueue:= NULL /* priority queue of promising solutions */
currentqueue:= NULL /* queue containing the best ps solutions */
for each ai∈A f do F⊤

i := {ai} /* root of the search tree F⊤ */
marker[F⊤] := 1 /* next fragment to be merged */
Min := F⊤ /* current minimal fragmentation */
MinCost := Cost(Q,Min)
/* compute the best ps solution within d levels from F⊤ */
insert(nextqueue,Min,MinCost)
while nextqueue ̸=NULL do

i := 1
while (i≤ps)∧(nextqueue ̸=NULL) do

i := i+1
enqueue(currentqueue,extractmin(nextqueue))

nextqueue := NULL
while currentqueue̸=NULL do

F := dequeue(currentqueue)
marker[F ] := 1
BoundedSearchMin(F ,d)

return(Min)

BOUNDEDSEARCHMIN(F p,dist)
localmin := true /* minimal correct fragmentation */
for i=marker[F p]. . . (|F p|-1) do

for j:=(i+1). . . |F p| do
if F p

i .last<AF p
j .first then /* F p

i fully precedes F p
j */

for l=1. . . |F p| do
case:

(l<j ∧ l̸=i): Fc
l := F p

l
(l>j): Fc

l−1 := F p
l

(l=i): Fc
l := F p

i F p
j

marker[F c] := i
if SatCon(Fc

i ) then
localmin := false
if dist= 1 then

insert(nextqueue,F c,Cost(Q,F c))
else

BoundedSearchMin(F c,dist−1) /* recursive call */
if localmin then

cost := Cost(Q,F p)
if cost<MinCost then

MinCost := cost
Min := F p

Fig. 4.15 Function that finds a vector-minimal fragmentation with minimal cost

to be visited; and nextqueue, containing, in increasing cost order, the correct frag-
mentations at level (x+ 1) · d computed by the visits of the subtrees rooted at the
solutions in currentqueue. At start, the algorithm initializes variable Min to F⊤ and
variable MinCost to the cost of F⊤. Then, the algorithm calls function Bounded-
SearchMin on F⊤ that iteratively builds the children of F⊤ according to Defi-
nition 4.11. Function BoundedSearchMin(F p) is then recursively called on each
F c, child of F p, only if F c satisfies all the constraints (i.e., if function SatCon
returns true) and level d has not been reached. In this latter case, if F c is correct,
it is inserted in nextqueue. Note that the function exploits the monotonicity of the
cost function adopted and compares the cost of F p with Min only if F p is locally
minimal (i.e., it does not have correct children).

When the subtree rooted at F⊤ has been visited, the first ps fragmentations in
nextqueue become the content of currentqueue and nextqueue is re-initialized to



4.10 A Heuristic Approach to Minimize Query Cost Execution 121

Bounded(F p,dist) F p
i F p

j F c SatCon(Fc
i ) Bounded(F c,dist) Cost(Q,F c) Min nextqueue

N|O|S|Z,1 N O NO|S|Z false –
S NS|O|Z false –
Z NZ|O|S true – 18 NZ|O|S,18

O S N|OS|Z true – 12 N|OS|Z,12
Z N|OZ|S true – 8 N|OZ|S,8

S Z N|O|SZ true – 5 N|O|SZ,5

N|O|SZ,1 N O NO|SZ false –
SZ NSZ|O false –

O SZ N|OSZ false – 5 N|O|SZ
N|OZ|S,1 N OZ NOZ|S false –

S NS|OZ false –
OZ S – – – 8
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Fig. 4.16 An example of the execution of function Fragment in Fig. 4.15

NULL. Function BoundedSearchMin is then called for each F∈currentqueue, but
moving back the marker of F to its first fragment. The re-initialization of the marker
implies that, for the root fragmentation F of each subtree, all the fragmentations
that represent a child of F in the lattice are re-evaluated, but possibly not in the
order-based cover exploited by the complete search. We note that this strategy could
visit more than once the same vertex in the lattice. However, the maximum number
of times that a fragmentation can be generated is ps. When currentqueue becomes
empty, it is replaced with the first ps fragmentations in nextqueue, until the last layer
in the tree is reached.

Example 4.9. Figure 4.16 illustrates the execution, step by step, of function Bound-
edSearchMin (Bounded for short) applied to Example 4.1, assuming d = 1 and
ps = 2. The table in Fig. 4.16(a) describes, for each (recursive) call to Bounded-
SearchMin, the updates to the variables as well as to nextqueue. Therefore, the
table in Fig. 4.16(a) has the same structure as the table in Fig. 4.7(a), except for the
last column, which is dedicated to nextqueue, and for the column dedicated to the
number of fragments in the solution, which is substituted here by the cost of the
same. Fig. 4.16(b) illustrates the portion of the lattice visited by the algorithm. At
the beginning variable Min is initialized to [N|O|S|Z], which is the fragmentation
representing the root of the tree, the cost MinCost is initialized to 20, and nextqueue
is initially empty. First, function BoundedSearchMin is called on [N|O|S|Z], with
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dist = 1. Since dist−1 is 0, the fragmentations generated from [N|O|S|Z] and satis-
fying constraints do not cause a recursive call to BoundedSearchMin, but they are
inserted in nextqueue after the evaluation of their cost. Then, BoundedSearchMin
is called on the first two fragmentations extracted from nextqueue, that is, [N|O|SZ]
and [N|OZ|S]. The final fragmentation computed by the heuristic algorithm is the
same computed by SearchMin.

4.10.2 Correctness and Complexity

We now evaluate the correctness and the complexity of function Fragment in
Fig. 4.15.

Theorem 4.12 (Correctness). Function Fragment in Fig. 4.15 terminates and finds
a vector-minimal fragmentation (Definition 4.12).

Proof. Function Fragment terminates if all the while loops composing it termi-
nate. The external while loop terminates when nextqueue is empty, provided the
two internal loops terminate. The first internal loop terminates since variable i is
increased by one at each step. It terminates when i > ps. The second internal while
loop terminates since, at each iteration, an element is extracted from currentqueue
and function BoundedSearchMin terminates. Indeed, function BoundedSearch-
Min at each recursive call, combines two of the fragments in the parent to compute
its children and the recursion terminates, since at each call dist is decreased by one.
Since BoundedSearchMin terminates, the number of items inserted in nextqueue
is finite. Also, the number of layers in the fragmentation tree is finite. Therefore,
nextqueue becomes empty and Fragment terminates.

We now prove that a solution F computed by this function over A f and C f
is a vector-minimal fragmentation. According to Definition 4.12 of minimality, a
fragmentation F is vector-minimal if and only if (1) it is correct, (2) it maximizes
visibility, and (3) @F ′:F ≺ F ′ that satisfies the two conditions above. The first two
properties come directly from the proof of Theorem 4.4, since function Bounded-
SearchMin works exactly as SearchMin when generating candidate solutions. We
need only to prove the third property.

By contradiction, let F ′ be a fragmentation satisfying the constraints in C f and
maximizing visibility, such that F ≺ F ′. Let VF and VF ′ be the fragment vectors
associated with F and F ′, respectively. As already proved in the proof of Theo-
rem 4.6, F ′ contains a fragment VF ′ [ai] that is the union of two different fragments,
VF [ai] and VF [a j], of F . We need then to prove that function Fragment cannot
terminate with two different fragments whose union does not violate any constraint.

There are two different situations when invoking BoundedSearchMin(F ,dist),
that is, dist> 1 or dist= 1. In the first case, F ′ is generated and
BoundedSearchMin(F ′,dist − 1) called. In the second case, F ′ is gen-
erated and inserted in nextqueue. Since nextqueue is an ordered queue,
BoundedSearchMin(F ′,dist) is called only if there are no more than ps solution
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with cost lower than nextqueue. But if F is returned as a solution of Fragment,
no solution in nextqueue has lower cost than F , since BoundedSearchMin(F ′′)
is called for each F ′′ ∈nextqueue. This generates a contradiction since, from
Lemma 4.4, Cost(Q,F ′)≤Cost(Q,F ).

Therefore the solution F computed by Fragment in Fig. 4.15 is a vector-
minimal fragmentation.

Theorem 4.13 (Complexity). Given a set of constraints C ={c1,. . . ,cm}, a set of at-
tributes A ={a1,. . . an}, and the two parameters d and ps, the complexity of function
Fragment(A ,C ,d,ps) in Fig. 4.15 is O( ps

d n2d+2m) in time.

Proof. The maximum number of iterations for the external while loop in func-
tion Fragment is O( n

d ), since the fragmentation tree is composed of n layers and,
at each iteration, solutions inserted in nextqueue are d layers under the solutions
currently in nextqueue. Function BoundedSearchMin(F p,d) is recursively called
for each F p∈currentqueue, which contains at most ps solutions, since it is filled
in during the preceding while loop. Function BoundedSearchMin, which behav-
ior is similar to function SearchMin, visits the solutions in the subtree rooted at
F p within d layers. Therefore, the number of solutions built at each recursion
of BoundedSearchMin(F p,d) is O(n2d) and each generated solution is compared
with constraints in C . The overall time complexity is therefore O( ps

d n2d+2m).

4.11 Query Execution

Fragmentation of a relation R implies that only fragments, which are stored in place
of the original relation to satisfy confidentiality constraints, are used for query exe-
cution. The fragments can be stored on a single server or on multiple servers. The
server (or servers) storing the fragments while needs not to be trusted with respect to
the confidentiality, since accessing single fragments or encrypted information does
not expose to any privacy breach, it is trusted for correctly evaluating queries on
fragments (honest-but-curious).

Users who are not authorized to access the content of the original relation R
have only a partial view on the data, meaning that they can only access the frag-
ments. A query submitted by a user with a partial view can be presented directly
to the server(s) storing the desired fragment. Users who are authorized to access
the content of the original relation have a full view on the data and can present
queries referring to the schema of the original relation. The queries issued by users
with full view are then translated into equivalent queries operating on the encrypted
and fragmented data stored on the server(s). The translation process is executed by
a trusted component, called query mapping component, invoked every time there is
the need to access sensitive information (see Fig. 4.17). In particular, the query map-
ping component receives a query Q submitted by a user with full view along with
the key k possibly needed for decrypting the query result computed by the server,
and returns the result of query Q to the user. Since every physical fragment of R
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Fig. 4.17 Interactions among users and server storing the fragments

contains all the attributes of R, either in encrypted or in clear form, no more than
one fragment needs to be accessed to respond to Q. The query mapping component
therefore maps the user’s query Q onto an equivalent query Qs, working on a specific
fragment. The server executes the received query Qs on the required fragment and
returns the result to the query mapping component. Note that, whenever query Q
may involve attributes that do not appear in the clear form in the selected fragment,
the query mapping component may need to execute an additional query Qu on the
decrypted results of Qs, which is in charge of enforcing all conditions that cannot
be evaluated on the physical fragment or of projecting the attributes reported in the
SELECT clause of query Q. In this case, the query mapping component decrypts the
result received, executes query Qu on it, and returns the result of Qu to the user. We
now describe the query translation process in more details.

We consider select-from-where SQL queries of the form Q =“SELECT AQ FROM
R WHERE C”, where AQ is a subset of the attributes of R, and C is a conjunc-
tion of basic conditions c1 . . .cn of the form (a op v) or (a j op ak), with a, a j,
and ak attributes of R, v constant value, and op comparison operator in {=, ̸=,>
,<,≤,≥}. Let us then consider the evaluation of query Q on physical fragment
F̂i(salt,enc,ai1 , . . . ,ain), where salt is the primary key, enc contains the encrypted
attributes, and ai1 , . . . ,ain are the plaintext attributes (see Sect. 4.3). Suppose, for
generality, that C contains some conditions that involve attributes stored in the clear
form in F̂i and some others that cannot instead be evaluated on F̂i. The query map-
ping component translates the original query Q into a query Qs operating on the
physical fragment and defined as:

SELECT AQ ∩{ai1 , . . . ,ain}, salt, enc
FROM F̂i
WHERE

∧
c j∈Ce

i
c j
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Original query on R Translation over encrypted fragments

Q := SELECT SSN, Name
FROM Patient
WHERE Sickness=‘Latex al.’

AND
ZIP=‘94140’

Qs.3 := SELECT salt, enc
FROM F̂3
WHERE Sickness=‘Latex al.’AND

ZIP=‘94140’

Qu := SELECT SSN, Name
FROM Decrypt(Qs.3, Key)

Q′ := SELECT SSN, Name
FROM Patient
WHERE Sickness=‘Latex al.’

AND
ZIP=‘94140’
AND
Occupation=‘Nurse’

Q′
s.3:= SELECT salt, enc

FROM F̂3
WHERE Sickness=‘Latex al.’AND

ZIP=‘94140’

Q′
u := SELECT SSN, Name

FROM Decrypt(Q′
s.3, Key)

WHERE Occupation=‘Nurse’

Fig. 4.18 An example of query translation over a fragment

where Ce
i is the set of basic conditions in C that can be evaluated on physical frag-

ment F̂i, that is, Ce
i = {c j : c j ∈ C ∧ attributes(c j) ∈ F̂i}, with attributes(c j) rep-

resenting the attributes appearing in c j. Note that the salt and enc attributes in the
SELECT clause of Qs are specified only if the SELECT or WHERE clauses of the
original query Q involve attributes not appearing in clear form in the fragment. The
query mapping component then decrypts the tuples received and executes on them
a query Qu defined as:

SELECT AQ
FROM Decrypt(Qs, k)
WHERE

∧
c j∈{C−Ce

i } c j

where Decrypt(Qs, k) denotes a temporary relation including the tuples returned by
Qs and where attribute enc has been decrypted through key k. The WHERE clause
of Qu includes all conditions defined on attributes that do not appear in clear form
in the physical fragment and that can be only evaluated on the decrypted result. The
final result of query Qu is then returned to the user.

Note that since we are interested in minimizing the query evaluation cost, a query
optimizer can be used to select the fragment that allows the execution of more se-
lective queries by the server, thus decreasing the workload of the application and
maximizing the efficiency of the execution [25]. For instance, the physical frag-
ment F̂i exploited by Qs can be conveniently chosen as the fragment minimizing
Cost(Q,Fi) as defined in Sect. 4.9.

Example 4.10. Consider the relation in Fig. 4.1(a) and its fragments in Fig. 4.2.

• Consider a query Q retrieving the Social Security Number and the name of the
patients whose Sickness is Latex al. and whose ZIP is 94140. Since fragment
F̂3 contains both Sickness and ZIP, it can evaluate both the conditions in
the WHERE clause and is chosen for query evaluation. Figure 4.18 illustrates the
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translation of Q to queries Qs.3 executed by the server on the fragment (notation
Qs.x indicates a query executed by the server on fragment x), and Qu executed
by the application. Query Qs.3 returns to the application only the tuples belong-
ing to the final result. The application just needs to decrypt them for projecting
attributes SSN and Name.

• Consider a query Q′ retrieving the Social Security Number and the name of the
patients whose Sickness is Latex al., whose ZIP is 94140, and whose occupa-
tion is Nurse. Fragment F̂3 contains both Sickness and ZIP and S(Q′,F3)=1/6.
Fragment F2 contains only Occupation and S(Q′,F3)=1/3. The query map-
ping component therefore translates query Q′ into queries Q′

s.3 executed by the
server on the fragment, and Q′

u executed by the application (see Fig. 4.18). Since
ZIP does not appear in clear form in fragment F̂3, the condition on it needs to
be evaluated by the application, which also performs the projection of the SSN
and Name attributes after decrypting the result computed by Qs.3.

Note that queries whose WHERE clause contains negated conditions can be eas-
ily managed by the query mapping component since whenever a basic condition c
can be evaluated on a physical fragment, also its negation (i.e., NOT(c)) can be eval-
uated on the same fragment. Queries whose WHERE clause contains disjunctions
need special consideration. As a matter of fact, according to the semantics of the
OR operator, any condition that cannot be evaluated over a fragment but that is in
disjunction with other conditions that can be evaluated on the fragment cannot be
simply evaluated on the result returned by the server (like done in the case of con-
junction). Three scenarios are then possible. 1) The query conditional part can be
reduced to a conjunctive normal form; then the query mapping and evaluation can
proceed as illustrated in the conjunctive case above. 2) The query conditional part
can be reduced to a disjunctive normal form where all components can be evaluated
over different fragments; in this case the query mapping component will ask the
server for the execution of as many queries as the components of the disjunction
and will then merge (union) their results. 3) The query conditional part contains a
basic condition (to be evaluated in disjunction with others) that cannot be evaluated
on any fragment (as it involves a sensitive attribute or attributes that appear in two
different fragments); in this case the query mapping component will need to retrieve
the entire fragment (any fragment will do) and evaluate the query condition at its
site.

4.12 Indexes

As discussed in Sect. 4.3, each physical fragment reports in the clear only some of
the attributes (as dictated by the fragmentation) while reporting the remaining at-
tributes as a single encrypted tuple. This clearly has an impact on the performance
of queries that need to evaluate selection predicates on both data appearing in clear
and on data appearing in encrypted form (see Sect. 4.11). In the encrypted database
proposals, queries on encrypted data are typically evaluated by means of indexes
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built on encrypted attributes: each cleartext query is translated into a query on the
indexes and the result (complete but maybe including spurious tuples) is then de-
crypted and filtered by a trusted client (see Fig. 4.17). As discussed in Chap. 2,
different kinds of indexes have been proposed, each providing a different balance
between efficiency and confidentiality. We distinguish here these methods in three
main classes.

• Direct index. The index is obtained by applying an encryption (unsalted) func-
tion on the cleartext values of the attribute [58].

• Hash index. The index is obtained by applying a keyed hash function to the
cleartext values and restricting the result to produce collisions [24].

• Flattened hash index. The index is obtained by applying a keyed hash function
with collision as in the case of hash index while applying a post processing that
flattens the distribution of index values (so to avoid exposures of outliers) [45,
96].

In the encrypted database scenario, direct indexes are the most efficient, as con-
ditions on cleartext values have a one to one correspondence with conditions on
indexed values; at the same time they exhibit a major vulnerability making them
applicable only in restricted situations. Hash indexes may create exposure problems
only in the presence of outliers or in the case of use of multiple indexes in the
same table, but otherwise guarantee confidentiality. Flattened hash indexes provide
better protection. While one may think that the same properties could hold for frag-
mentations, unfortunately the application of indexes to fragments (which, unlike
encrypted databases, report some cleartext values) introduces new vulnerabilities.
In this section we briefly discuss the vulnerabilities to the aim of identifying a safe
use of indexes, which we apply to our scenario. For simplicity, in the discussion we
refer to a simple fragmentation problem characterized by a relation R(a1,a2) and
by a single confidentiality constraint {a1,a2}. We then examine the exposure risk
of a fragment where a1 appears in the clear jointly with an index of a2, for each of
the above classes of indexes. An instance of such a configuration, to which we refer
for concreteness in the examples, is table Patient in Fig. 4.1(a) restricted to at-
tributes Name and Sickness, together with the confidentiality constraint on them
(c2). We then evaluate the protection of the fragment reporting Name (Fig. 4.2(a))
in the clear when indexes on attribute Sickness are added. Fig. 4.19(c–e) reports
the indexed fragments under the different indexing assumptions.

To examine the vulnerability of the indexed fragments, we first need to identify
the knowledge available to the adversary, whose aim is to reconstruct the protected
association (Name,Sickness). We can identity two kinds of knowledge: vertical
knowledge and horizontal knowledge, characterized as follows.

• Vertical knowledge. Vertical knowledge is due to the fact that the values not
appearing in the clear in one fragment (for a confidentiality constraint forbid-
ding their association with other values) may appear in the clear in other frag-
ments. Vertical knowledge does not require any additional external information
for the adversary since, apart from the case where the attribute appears in a sin-
gleton constraint, it refers to information immediately present in other accessible
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Knowledge Indexed fragment f̂ 1

Sickness
Latex al.
Latex al.
Latex al.
Celiac
Pollen al.
Nickel al.

Name Sickness
A. Smith Latex al.

salt enc Name is1

s1 α A. Smith λ
s2 β B. Jones λ
s3 γ C. Taylor λ
s4 δ D. Brown ϕ
s5 ε E. Cooper π
s6 ζ F. White ψ

salt enc Name is2

s1 α A. Smith σ
s2 β B. Jones σ
s3 γ C. Taylor σ
s4 δ D. Brown ρ
s5 ε E. Cooper σ
s6 ζ F. White ρ

salt enc Name is3

s1 α A. Smith η
s2 β B. Jones η
s3 γ C. Taylor η
s4 δ D. Brown µ
s5 ε E. Cooper µ
s6 ζ F. White µ

(a) vk (b) hk (c) di (d) hi (e) fhi

Fig. 4.19 Adversary knowledge (a,b) and choices for indexed fragments (c,d,e)

fragments (Fig. 4.2(c)). Figure 4.19(a) reports the vertical knowledge for our
example, illustrating the projection of the Sickness attribute of Fig. 4.1(a).
An adversary observing the fragments can then have complete knowledge of the
distribution (cleartext values and their number of occurrences) of the indexed
attributes. In the example, the observer knows that there are three patients with
latex allergy.

• Horizontal knowledge. Horizontal knowledge is due to possible external knowl-
edge that the adversary has with respect to the presence of specific tuples (cor-
responding to sensitive associations) in the table. In its simplest form, horizontal
knowledge is then represented by knowledge of a single tuple (v1,v2). In the ex-
ample, the adversary may know that A. Smith suffers from latex allergy, that is,
(A. Smith, latex al.) belongs to the original table R. Figure 4.19(b) reports this
example of horizontal knowledge.

Let us now examine the exposure risk of indexed fragments under the assumption
of horizontal and vertical knowledge.4

Direct index, vertical knowledge (di-vk). Sensitive associations are exposed de-
pending on their distinguishability with respect to the number of occurrences of the
indexed values. In our example, the index corresponding to latex allergy is com-
pletely recognizable being the only one with three occurrences. Consequently, the
adversary infers that A. Smith, B. Jones, and C. Taylor suffer from latex allergy. As
for the other three patients, the adversary can estimate they suffer from one of the
three other sicknesses, each with equal probability.
Direct index, horizontal knowledge (di-hk). By joining this knowledge on the
attribute appearing in the clear in the indexed fragment (Name), the adversary can
retrieve the index value λ corresponding to the specific cleartext value of the indexed
attribute (Sickness). This exposes the associations having the same index value
as the one the adversary knows. In our example, knowledge of the association (A.
Smith, latex al.) allows the adversary to know that λ is the index for latex allergy
and therefore to infer that also B. Jones, and C. Taylor suffer from latex allergy.

4 We note that the treatment of vertical knowledge strictly resembles threat models, proposed
for encrypted databases, that assume that the adversary had complete knowledge of the cleart-
ext database and aimed at reconstructing the correspondence between cleartext and index values
(scenario Freq+DBK in [24]).
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Hash index, vertical knowledge (hi-vk). The use of the hash index diminishes the
exposure of association since different cleartext values may be represented by the
same index value. However, values with a high number of occurrences (outliers),
typically remain recognizable. In the example, the adversary can infer that index
σ refers to latex allergy, since it is the only one with at least 3 occurrences. She
can then infer that 3 out of the 4 patients have latex allergy (i.e., each one has latex
allergy with 0.75 probability).
Hash index, horizontal knowledge (hi-hk). Like in the direct index case, the ad-
versary can recognize the index value representing the known cleartext value, with
the only difference that the index value can correspond also to other cleartext values.
The adversary can then infer that some associations are not present in the database
(tuples with a different index value will certainly not have the known cleartext
value). Together with vertical knowledge, it allows the adversary to infer the proba-
bility that some sensitive associations (with the known cleartext value) belong to the
database. In the example, knowledge of the association (A. Smith, latex al.) allows
the adversary to know that σ is the index for latex allergy. Since there are 3 oc-
currences of latex allergy and 4 occurrences of σ , by removing the known one, the
adversary can infer that B. Jones, C. Taylor, and E. Cooper have a 0.66 probability
of suffering from latex allergy.
Flattened hash index, vertical knowledge (fhi-vk). Flattening the occurrences of
the index values makes impossible to establish correspondences between cleartext
values and index values on the basis of the number of occurrences. Flattened hash
indexes are not vulnerable to vertical knowledge.
Flattened hash index, horizontal knowledge (fhi-hk). Like in the hashed case,
the adversary can recognize the index value representing the known cleartext value.
Together with vertical knowledge, it allows the adversary to identify the subset of
tuples that may be associated with the cleartext value for which the index is known,
with an estimate of the probability of their association. In the example, knowledge
of the association (A. Smith, latex al.) allows the adversary to know that η is the
index for latex allergy and therefore to infer that B. Jones and C. Taylor have a 1.0
probability of suffering from latex allergy (since there are only three occurrences of
latex allergy).

In summary, vertical and horizontal knowledge create inference risks on the basis
of the number of occurrences of cleartext (and corresponding index) values. Even
when values are equally distributed, all indexes above remain vulnerable to horizon-
tal knowledge, allowing the adversary to infer associations with the known cleartext
value. It is easy to see that such vulnerabilities are blocked when values are equally
distributed and horizontal knowledge refers to association with indexed values that
have only one occurrence. Both conditions are certainly satisfied when indexes re-
fer to key attributes. Without compromising confidentiality of fragments, we can
therefore apply indexes on attributes corresponding to candidate keys of the original
relations.

Indexes can be easily integrated in our cost model, by simply refining Cost(Q,F )
function. This can easily be done by considering the selectivity of indexes for con-
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Fig. 4.20 Computational time of the algorithms

ditions on indexed values. Indexes do not have any impact on the monotonicity
property of the cost function on fragments (Lemma 4.4) and therefore on the appli-
cability of our solutions. With reference to our example we can then consider direct
indexes on SSN and Name (assuming Name is a candidate key) in any fragment
where they appear encrypted (all fragments for SSN and those in Fig. 4.2(b) and
Fig. 4.2(c) for Name).

4.13 Experimental Results

The heuristic algorithms presented in Sects. 4.6, 4.8, and 4.10 have been imple-
mented as C programs to obtain experimental data and assess their behavior in terms
of execution time and quality of the returned solution. Aiming to a comparison of
the results computed by our heuristic algorithms to the optimal solutions, we also
implemented three versions of the algorithm presented in Sect. 4.5, analyzing the
complete solution space computing the fragmentation with the minimal number of
fragments, the one with maximum affinity, and the one with minimum cost, since all
these three functions are monotonic with respect to ≼. The relation schema we con-
sidered in the experiments is composed of 19 attributes and is inspired by a database
of medical information. Taking into account possible confidentiality requirements
we expressed up to 18 confidentiality constraints. These constraints are well defined
(see Definition 4.2) and composed of a number of attributes varying from 2 to 4
(we did not consider singleton constraints as they cannot be solved via fragmenta-
tion). The content of the affinity matrix has been produced using a pseudo-random
generation function. We considered 14 queries, each characterized by a frequency
value. The experiments have considered configurations with an increasing number
of attributes, from 3 to 19, taking into account, for every configuration, only the
constraints completely fitting in the selected attributes. The number of constraints
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Fig. 4.22 Affinity of the solution produced by the algorithms

for a configuration with n attributes ranges between n−3 to n+1. The system im-
plemented presents as an option the use of indexes, according to the analysis of
Sect. 4.12.

Figure 4.20 compares the time required for the execution of the complete search
algorithms with the heuristic algorithms presented in this chapter. Consistently with
the fact that the problem of minimizing the number of fragments, the problem of
maximizing affinity, and the problem of minimizing cost while satisfying confiden-
tiality constraints are NP-hard, the three complete search strategies require exponen-
tial time in the number of attributes. The complete search then becomes unfeasible
even for a relatively small number of attributes; with the availability of large compu-
tational resources it would still not be possible to consider large configurations (in
our experiments we were able only to run the complete search for schemas with less
than 15 attributes). By contrast, the time required for the execution of the heuristic
analysis always remains low. The heuristic functions computing the vector minimal
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Fig. 4.23 Cost of the solution produced by the algorithms

fragmentation and the vector minimal fragmentation maximizing affinity have com-
putational time near 0. On the other hand, the time required by the heuristic for the
minimum cost fragmentation problem increases exponentially with the increase in
the look-ahead depth and linearly with the increase in the number of parallel steps,
always showing a limited time for the simplest search (d=1,ps=1). It is therefore
important to have available a family of heuristics, so to apply in real systems a dy-
namic approach where initially a search is executed with the most efficient heuristic,
increasing the depth according to the amount of available resources. The number of
parallel steps is a parameter that should become particularly interesting for the im-
plementation of the heuristics on a multi-core architecture, where each core can
manage the exploration of one of the alternatives.

Obviously, a successful heuristics presents a good behavior if it combines time
efficiency with a demonstrated ability to produce good solutions. We therefore com-
pared the solutions computed by the execution of each of the heuristic algorithms
with those returned by the corresponding complete search algorithms.
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Figure 4.21 presents the number of fragments obtained by the execution of the
heuristic algorithm computing a vector-minimal fragmentation (Sect. 4.6) compared
with in a solution computed by the complete search function. As the graph shows,
in all the cases that allow the comparison, our heuristic has always identified an
optimal solution.

Figure 4.22 instead compares the affinity of the fragmentation computed through
our heuristic (Sect. 4.8) with the optimal affinity produced by the complete search
strategy. As the graph shows, for all the cases that allow the comparison, the affinity
of the solution computed by the heuristic algorithm is close to the optimal value: the
average of the difference is 4.2% and the maximum percentage difference is around
14.1%.

Figure 4.23(a) compares the cost of the solution obtained by our heuristic algo-
rithm (Sect. 4.10) in two configurations: (d = 1, ps = 1) and (d = 3, ps = 1) with the
optimal cost produced by the complete search strategy. The graph shows that even
the simplest configuration (d = 1, ps = 1) guarantees good-quality fragmentations.
Figure 4.23(b) shows the cost of the solutions produced by the heuristic with dif-
ferent values for parameter ps (i.e., 1, 3, and 5) and with the fixed value d = 1. It is
sufficient to use ps = 5 to obtain near-optimum fragmentations.

Finally, experiments have been run to evaluate the benefit of indexes and they
have proved (see Fig. 4.24) that the use of indexes on encrypted attributes can pro-
duce a significant benefit. The amount of the benefit is highly dependent on specific
features of the relation schema and query profile.

4.14 Chapter Summary

We presented an approach combining fragmentation and encryption to efficiently
enforce privacy constraints over data collections, with particular attention to query
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execution efficiency. The algorithms proposed for fragmentation take into account
the information available about the system, to the aim of efficiently executing
queries on the fragmented data.

Besides the technical contribution, the ideas illustrated in this chapter can rep-
resent a step towards the effective enforcement, as well as the establishment, of
privacy regulations. Technical limitations are in fact claimed as one of the main rea-
sons why privacy cannot be achieved and, consequently, regulations not be put into
enforcement. Research along the line presented here can then help in providing the
building blocks for a more precise specification of privacy needs and regulations,
as well as their actual enforcement, together with the benefit of a clearer and more
direct integration of privacy requirements within existing ICT infrastructures.
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