
Chapter 2
Overview of the State of the Art

This chapter discusses the state of the art in the area of data outsourcing, which is
mainly focused on efficient methods for querying encrypted data. We also present
some approaches for evaluating the inference exposure due to data publication, and
solutions for granting data integrity. A few research efforts have instead addressed
the problem of developing access control systems for outsourced data and for se-
curely querying distributed databases.

2.1 Introduction

The amount of information held by organizations’ databases is increasing very
quickly. To respond to this demand, organizations can:

• add data storage and skilled administrative personnel (at a high rate);
• delegate database management to an external service provider (database out-

sourcing), a solution becoming increasingly popular.

In the database outsourcing scenario, usually referred to as Database As a Service
(DAS), the external service provider provides mechanisms for clients to access the
outsourced databases. A major advantage of database outsourcing is related to the
high costs of in-house versus outsourced hosting. Outsourcing provides significant
cost savings and promises higher availability and more effective disaster protection
than in-house operations. On the other hand, database outsourcing poses a major
security problem, due to the fact that the external service provider, which is relied
upon for ensuring high availability of the outsourced database (i.e., it is trustworthy),
cannot always be trusted with respect to the confidentiality of the database content.

Besides well-known risks of confidentiality and privacy breaks, threats to out-
sourced data include improper use of database information: the server could extract,
resell, or commercially use parts of a collection of data gathered and organized
by the data owner, potentially harming the data owner’s market for any product or
service that incorporates that collection of information. Traditional database access

S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51, 9
DOI 10.1007/978-1-4419-7659-8_2, © Springer Science+Business Media, LLC 2011

10 2 Overview of the State of the Art

control techniques cannot prevent the server itself from making unauthorized ac-
cess to the data stored in the database. Alternatively, to protect against “honest-but-
curious” servers, a protective layer of encryption can be wrapped around sensitive
data, preventing outside attacks as well as infiltration from the server itself [38].
This scenario raises many interesting research challenges. First, data encryption in-
troduces the problem of efficiently querying outsourced encrypted data. Since con-
fidentiality demands that data decryption must be possible only at the client-side,
techniques have then been proposed, enabling external servers to directly execute
queries on encrypted data. Typically, these solutions consist mainly in adding a piece
of information, called index, to the encrypted data. Indexes are computed based on
the plaintext data and preserve some of the original characteristics of the data to
allow (partial) query evaluation. However, since indexes carry some information
about the original data, they may be exploited as inference channels by malicious
users or by the service provider itself. Second, since data are not under the owner’s
direct control, unauthorized modifications must be prevented to the aim of grant-
ing data integrity. For this purpose, different solutions based on different signature
mechanisms have been proposed, with the main goal of improving verification ef-
ficiency. Third, although index-based solutions represent an effective approach for
querying encrypted data, they introduce an overhead in query execution, due to both
query formulation through indexes and data decryption and filtering of query results.
However, since often what is sensitive in a data collection is the association among
attributes more than the values assumed by each attribute per se, new solutions based
on the combination of fragmentation and encryption have been proposed to reduce
the usage of encryption and to therefore increase query execution efficiency. Fourth,
an interesting issue that has not been deeply studied in the data outsourcing scenario
is represented by the access control enforcement, which cannot be delegated to the
service provider. Finally, when the outsourced data are stored at different servers,
new safe data integration mechanisms are needed that should take into consideration
the different data protection needs of the cooperating servers.

2.1.1 Chapter Outline

In this chapter, we survey the main proposals addressing the data access and secu-
rity issues arising in the data outsourcing scenario. The remainder of the chapter
is organized as follows. Section 2.2 gives an overview of the entities involved in
the data outsourcing scenario and of their typical interactions. Section 2.3 describes
the main indexing methods proposed in the literature for supporting queries over
encrypted data. Section 2.4 addresses inference exposure due to different indexing
techniques. Section 2.5 focuses on techniques granting data integrity. Section 2.6
describes solutions efficiently combining fragmentation and encryption for grant-
ing privacy protection. Section 2.7 presents the main proposals for access control
enforcement on outsourced encrypted data. Section 2.8 illustrates problems and so-

2.2 Basic Scenario and Data Organization 11

Translator

Encrypt
Decrypt

AC
Policy

R

Meta
Data

Meta
Data

Query
Executor

k

3) encrypted
result

2) transformed
query Qs

1) original query Q

metadata

Rk

Client Server

User Data owner

Query
Engine

Qc

Qs

Query Processor

4) plaintext result

Fig. 2.1 DAS scenario

lutions for safe data integration in a distributed system. Finally, Sect. 2.9 concludes
the chapter.

2.2 Basic Scenario and Data Organization

In this section, we describe the entities involved in the DAS scenario, how data are
organized in the outsourced database context, and the interactions among the entities
in the system for query evaluation.

2.2.1 Parties Involved

There are four distinct entities interacting in the DAS scenario (Fig. 2.1):

• a data owner (person or organization) produces and outsources resources to make
them available for controlled external release;

• a user (human entity) presents requests (queries) to the system;
• a client front-end transforms the queries posed by users into equivalent queries

operating on the encrypted data stored on the server;
• a server receives the encrypted data from one or more data owners and makes

them available for distribution to clients.

Clients and data owners, when outsourcing data, are assumed to trust the server to
faithfully maintain outsourced data. The server is then relied upon for the avail-
ability of outsourced data, so the data owner and clients can access data whenever
requested. However, the server (which can be “honest-but-curious”) is not trusted

12 2 Overview of the State of the Art

with the confidentiality of the actual database content, as outsourced data may con-
tain sensitive information that the data owner wants to release only to authorized
users. Consequently, it is necessary to prevent the server from making unauthorized
accesses to the database. To this purpose, the data owner encrypts her data with a
key known only to trusted clients, and sends the encrypted database to the server for
storage.

2.2.2 Data Organization

A database can be encrypted according to different strategies. In principle, both sym-
metric and asymmetric encryption can be used at different granularity levels. Sym-
metric encryption, being cheaper than asymmetric encryption, is usually adopted.
The granularity level at which database encryption is performed can depend on the
data that need to be accessed. Encryption can then be at the finer grain of [55, 63]:

• relation: each relation in the plaintext database is represented through a single
encrypted value in the encrypted database; consequently, tuples and attributes
are indistinguishable in the released data, and cannot be specified in a query on
the encrypted database;

• attribute: each column (attribute) in the plaintext relation is represented by a
single encrypted value in the encrypted relation;

• tuple: each tuple in the plaintext relation is represented by a single encrypted
value in the encrypted relation;

• element: each cell in the plaintext relation is represented by a single encrypted
value in the encrypted relation.

Both relation level and attribute level encryption imply the communication to the
requesting client of the whole relation involved in a query, as it is not possible to
extract any subset of the tuples in the encrypted representation of the relation. On the
other hand, encrypting at element level would require an excessive workload for data
owners and clients in encrypting/decrypting data. For balancing client workload and
query execution efficiency, most proposals assume that the database is encrypted at
tuple level.

While database encryption provides an adequate level of protection for data, it
makes impossible for the server to directly execute the users’ queries on the en-
crypted database. Upon receiving a query, the server can only send to the requestor
the encrypted relations involved in the query; the client needs then to decrypt such
relations and execute the query on them. To allow the server to select a set of tuples
to be returned in response to a query, a set of indexes can be associated with the
encrypted relation. In this case, the server stores an encrypted relation with an index
for each attribute on which conditions may need to be evaluated. For simplicity, we
assume the existence of an index for each attribute in each relation of the database.
Different kinds of indexes can be defined for the attributes in a relation, depending
on the clauses and conditions that need to be remotely evaluated. Given a plaintext

2.2 Basic Scenario and Data Organization 13

EMPLOYEE

Emp-Id Name YoB Dept Salary
P01 Ann 1980 Production 10
R01 Bob 1975 R&D 15
F01 Bob 1985 Financial 10
P02 Carol 1980 Production 20
F02 Ann 1980 Financial 15
R02 David 1978 R&D 15

(a)

EMPLOYEEk

Counter Etuple I1 I2 I3 I4 I5

1 ite6Az*+8wc π α γ ε λ
2 8(Xznfeua4!= ϕ β δ θ λ
3 Q73gnew321*/ ϕ β γ µ λ
4 -1vs9e892s π α γ ε ρ
5 e32rfs4aS+@ π α γ µ λ
6 r43arg*5[) ϕ β δ θ λ

(b)

Fig. 2.2 An example of plaintext (a) and encrypted (b) relation

database R, each relation ri over schema Ri(ai1,ai2,. . .,ain) in R is mapped onto a
relation rk

i over schema Rk
i (Counter, Etuple, Ii1, Ii2,. . .,Iin) in the corresponding en-

crypted database Rk. Here, Counter is a numerical attribute added as primary key of
the encrypted relation; Etuple is the attribute containing the encrypted tuple, whose
value is obtained applying an encryption function Ek to the plaintext tuple, where
k is the secret key; and Iij is the index associated with the j-th attribute ai j in Ri.
While we assume encrypted tuples and indexes to be in the same relation, we note
that indexes can be stored in a separate relation [35].

To illustrate, consider relation Employee in Fig. 2.2(a). The corresponding en-
crypted relation is shown in Fig. 2.2(b), where index values are conventionally rep-
resented with Greek letters. The encrypted relation has exactly the same number
of tuples as the original relation. For the sake of readability, the tuples in the en-
crypted relation are listed in the same order with which they appear in the corre-
sponding plaintext relation. The same happens for the order of indexes, which are
listed in the same order as the corresponding attributes are listed in the plaintext
relation schema. For security reasons, real-world systems do not preserve the order
of attributes and tuples and the correspondence between attributes and indexes is
maintained by metadata relations that only authorized parties can access [32].

2.2.3 Interactions

The introduction of indexes allows the partial evaluation of any query Q at the
server-side, provided it is previously translated in an equivalent query operating on
the encrypted database. Figure 2.1 summarizes the most important steps necessary
for the evaluation of a query submitted by a user.

1. The user submits her query Q referring to the schema of the plaintext database
R, and passes it to the client front-end. The user needs not to be aware that data
have been outsourced to a third party.

2. The client maps the user’s query onto: i) an equivalent query Qs, working on the
encrypted relations through indexes, and ii) an additional query Qc working on

14 2 Overview of the State of the Art

the results of Qs. Query Qs is then passed on to the remote server. Note that the
client is the unique entity in the system that knows the structure of both R and
Rk and that can translate the queries the user may submit.

3. The remote server executes the received query Qs on the encrypted database and
returns the result (i.e., a set of encrypted tuples) to the client.

4. The client decrypts the tuples received and eventually discards spurious tuples
(i.e., tuples that do not satisfy the query submitted by the user). These spuri-
ous tuples are removed by executing query Qc. The final plaintext result is then
returned to the user.

Since a client may have limited storage and reduced computation capacity, one of
the primary goals of the query execution process is to minimize the workload at
the client side, while maximizing the operations that can be computed at the server
side [36, 55, 57, 63].

Iyer et al. [55, 63] present a solution for minimizing the client workload that is
based on a graphical representation of queries as trees. Since the authors limit their
analysis to select-from-where queries, each query Q=“SELECT A FROM R1,. . . ,Rn
WHERE C” can be reformulated as an algebra expression of the form πA(σC(R1 ◃▹
. . . ◃▹ Rn)). Each query can then be represented as a binary tree, where leaves cor-
respond to relations R1,. . . ,Rn and internal nodes represent relational operations, re-
ceiving as input the result produced by their children. The tree representing a query
is split in two parts: the lower part includes all operations that can be executed by
the server, while the upper part contains all operations that cannot be delegated to
the server and that therefore need to be executed by the client. In particular, since
a query can be represented with different, but equivalent, trees by simply pushing
down selections and postponing projections, the basic idea of the proposed solution
is to determine a tree representation of the query, where the operations that only the
client can execute are in the highest levels of the tree. For instance, if there are two
ANDed conditions in the query and only one can be evaluated at the server-side, the
selection operation is split in such a way that one condition is evaluated server-side
and the other client-side.

Hacigümüs et al. [57] show a method for splitting the query Qs to be executed
on the encrypted data into two sub-queries, Qs1 and Qs2, where Qs1 returns only tu-
ples that belongs to the final result, and query Qs2 may contain also spurious tuples.
This distinction allows the execution of Qc over the result of Qs2 only, while tuples
returned by Qs1 can be immediately decrypted. To further reduce the client’s work-
load, Damiani et al. [36] propose an architecture that minimizes storage at the client
and introduce the idea of selective decryption of Qs. With selective decryption, the
client decrypts the portion of the tuples needed for evaluating Qc, while complete
decryption is executed only for tuples that belong to the final result and that will be
returned to the final user. The approach is based on a block-cipher encryption algo-
rithm, operating at tuple level, that allows the detection of the blocks containing the
attributes necessary to evaluate the conditions in Qc, which are the only ones that
need decryption.

It is important to note that the process of transforming Q in Qs and Qc greatly
depends both on the indexing method adopted and on the clauses and conditions

2.3 Querying Encrypted Data 15

composing query Q. There are operations that need to be executed by the client,
since the indexing method adopted does not support the specific operations (e.g.,
range queries are not supported by all types of indexes) and the server is not al-
lowed to decrypt data. Also, there are operations that the server could execute over
the index, but that require a pre-computation that only the client can perform and
therefore must be postponed in Qc (e.g., the evaluation of a condition in the HAVING
clause, which needs a grouping over an attribute, whose corresponding index has
been created by using a method that does not support the GROUP BY clause).

2.3 Querying Encrypted Data

When designing a solution for querying encrypted data, one of the most important
goals is to minimize the computation at the client-side and to reduce communication
overhead. The server therefore should be responsible for the majority of the work.
Different indexing approaches allow the execution of different types of queries at
the server side.

We now describe in more detail the methods initially proposed to efficiently ex-
ecute simple queries at the server side, and we give an overview of more recent
methods that improve the server’s ability to query encrypted data.

2.3.1 Bucket-Based Approach

Hacigümüs et al. [58] propose the first method to query encrypted data, which is
based on the definition of a number of buckets on the attribute domain. Let ri be
a plaintext relation over schema Ri(ai1,ai2,. . . ,ain) and rk

i be the corresponding en-
crypted relation over schema Rk

i (Counter, Etuple,Ii1,. . . ,Iin). Considering an arbi-
trary plaintext attribute ai j in Ri, with domain Di j, bucket-based indexing meth-
ods partition Di j in a number of non-overlapping subsets of values, called buckets,
containing contiguous values. This process, called bucketization, usually generates
buckets that are all of the same size.

Each bucket is then associated with a unique value and the set of these values
is the domain for index Ii j associated with ai j. Given a plaintext tuple t in ri, the
value of attribute ai j for t (i.e., t[ai j]) belongs to only one bucket defined on Di j.
The corresponding index value is then the unique value associated with the bucket
to which the plaintext value t[ai j] belongs. It is important to note that, for better
preserving data secrecy, the domain of index Ii j may not follow the same order as the
one of the plaintext attribute ai j. Attributes I3 and I5 in Fig. 2.2(b) are the indexes
obtained by applying the bucketization method defined in Fig. 2.3 for attributes YoB
and Salary in Fig. 2.2(a). Note that I3 values do not reflect the order of the domain
values it represents, since 1975 < 1985, while δ follows γ in lexicographic order.

16 2 Overview of the State of the Art

1970 1980 1990

10 20 30

Year of Birth

Salary

Fig. 2.3 An example of bucketization

Bucket-based indexing methods allow the server-side evaluation of equality con-
ditions appearing in the WHERE clause, since these conditions can be mapped into
equivalent conditions operating on indexes. Given a plaintext condition of the form
ai j=v, where v is a constant value, the corresponding condition operating on index
Ii j is Ii j=β , where β is the value associated with the bucket containing v. As an
example, with reference to Fig. 2.3, condition YoB=1985 is transformed into I3=γ .
Also, equality conditions involving attributes defined on the same domain can be
evaluated by the server, provided that attributes characterized by the same domain
are indexed using the same bucketization. In this case, a plaintext condition of the
form ai j=aik is translated into condition Ii j=Iik operating on indexes.

Bucket-based methods do not easily support range queries. Since the index do-
main does not necessarily preserve the plaintext domain ordering, a range condition
of the form ai j≥v, where v is a constant value, must be mapped into a series of equal-
ity conditions operating on index Ii j of the form Ii j=β1 OR Ii j=β2 OR . . . OR Ii j=βk,
where β1, . . . ,βk are the values associated with buckets that correspond to plaintext
values greater than or equal to v. For instance, with reference to Fig. 2.3, condition
YoB>1977 must be translated into I3=γ OR I3=δ , since both values represent years
greater than 1977.

Note that, since the same index value is associated with more than one plain-
text value, queries exploiting bucket-based indexes usually produce spurious tuples
that need to be filtered out by the client front-end. Spurious tuples are tuples that
satisfy the condition over the indexes, but that do not satisfy the original plaintext
condition. For instance, with reference to the relations in Fig. 2.2, query “SELECT *
FROM Employee WHERE YoB=1985” is translated into “SELECT Etuple FROM
Employeek WHERE I3=γ”. The result of the query executed by the server contains
tuples 1, 3, 4, and 5; however, only tuple 3 satisfies the original condition as writ-
ten by the user. Tuples 1, 4, and 5 are spurious and must be discarded by the client
during the postprocessing of the Qs result.

Hore et al. [61] propose an improvement to bucket-based indexing methods by
introducing an efficient way for partitioning the domain of attributes. Given an at-
tribute and a query profile on it, the authors present a method for building an efficient
index, which tries to minimize the number of spurious tuples in the result of both
range and equality queries.

As we will see in Sect. 2.4, one of the main disadvantages of bucket-based in-
dexing methods is that they expose data to inference attacks.

2.3 Querying Encrypted Data 17

2.3.2 Hash-Based Approach

Hash-based index methods are similar to bucket-based methods and are based on
the concept of one-way hash function [35].

Let ri be a plaintext relation over schema Ri(ai1,ai2,. . . ,ain) and rk
i be the corre-

sponding encrypted relation over schema Rk
i (Counter, Etuple,Ii1,. . . ,Iin). For each

attribute ai j in Ri to be indexed, a one-way hash function h : Di j → Bi j is defined,
where Di j is the domain of ai j and Bi j is the domain of index Ii j associated with ai j.
Given a plaintext tuple t in ri, the index value corresponding to attribute ai j for t is
computed by applying function h to the plaintext value t[ai j].

An important property of any hash function h is its determinism; formally,
∀x,y ∈ Di j : x = y ⇒ h(x) = h(y). Another interesting property of hash functions
is that the codomain of h is smaller than its domain, so there is the possibility of
collisions; a collision happens when given two values x,y ∈ Di j with x ̸= y, we have
that h(x) = h(y). A further property is that h must produce a strong mixing, that is,
given two distinct but near values x,y (| x−y |< ε) chosen randomly in Di j, the dis-
crete probability distribution of the difference h(x)−h(y) is uniform (the results of
the hash function can be arbitrarily different, even for very similar input values). A
consequence of strong mixing is that the hash function does not preserve the domain
order of the attribute on which it is applied. As an example, consider the relations in
Fig. 2.2. Here, the indexes corresponding to attributes Emp-Id, Name, and Dept
in relation Employee are computed by applying a hash-based method. The values
of attribute Name have been mapped onto two distinct values, namely α and β ;
the values of attribute Emp-Id have been mapped onto two distinct values, namely
π and ϕ ; and the values of attribute Dept have been mapped onto three distinct
values, namely ε , θ , and µ . Like for bucket-based methods, hash-based methods
allow an efficient evaluation of equality conditions of the form ai j=v, where v is a
constant value. Each condition ai j=v is transformed into a condition Ii j=h(v), where
Ii j is the index corresponding to ai j in the encrypted relation. For instance, condi-
tion Name=“Alice” is transformed into I2=α . Also, equality conditions involving
attributes defined on the same domain can be evaluated by the server, provided that
these attributes are indexed using the same hash function. The main drawback of
hash-based methods is that they do not support range queries, for which a solution
similar to the one adopted for bucket-based methods is not viable: colliding values
are in general not contiguous in the plaintext domain.

If the hash function used for index definition is not collision free, then queries
exploiting the index produce spurious tuples that need to be filtered out by the client
front-end. A collision-free hash function guarantees absence of spurious tuples,
but may expose data to inference (see Sect. 2.4). For instance, assuming that the
hash function adopted for attribute Dept in Fig. 2.2(a) is collision-free, condition
Dept=“Financial” is translated into I4=µ , that will return only the tuples (in our
example, tuples with Counter equal to 3 and 5) that belong to the result of the
query that contains the corresponding plaintext condition.

18 2 Overview of the State of the Art

Carol

Bob David

Ann Bob Carol David

(a)

Id VertexContent
1 2, Carol, 3
2 4, Bob, 5
3 6, David, 7
4 Ann, 5, 1, 5
5 Bob, 6, 2, 3
6 Carol, 7, 4
7 David, NIL, 6

(b)

Id C
1 gtem945/*c
2 8dq59wq*d’
3 ue63/)¡Ã¨w
4 8/*5sym,p
5 mw3Â£9wio[
6 =wco21!ps
7 oieb5(p8*

(c)

Fig. 2.4 An example of B+ tree indexing structure

2.3.3 B+ Tree Approach

Both bucket-based and hash-based indexing methods do not easily support range
queries, since both these solutions are not order preserving. Damiani et al. [35]
propose an indexing method that, while granting data privacy, preserves the order
relationship characterizing the domain of attribute ai j. This indexing method ex-
ploits the traditional B+ tree data structure used by relational DBMSs for physically
indexing data. A B+ tree with fan out n is a tree where every vertex can store up
to n−1 search key values and n pointers and, except for the root and leaf vertices,
has at least ⌈n/2⌉ children. Given an internal vertex storing f key values k1, . . . ,k f
with f ≤ n−1, each key value ki is followed by a pointer pi and k1 is preceded by a
pointer p0. Pointer p0 points to the subtree that contains keys with values lower than
k1, p f points to the subtree that contains keys with values greater than or equal to
k f , and each pi points to the subtree that contains keys with values included in the
interval [ki,ki+1). Internal vertices do not directly refer to tuples in the database, but
just point to other vertices in the structure; on the contrary, leaf vertices do not con-
tain pointers, but directly refer to the tuples in the database having a specific value
for the indexed attribute. Leaf vertices are linked in a chain that allows the efficient
execution of range queries. As an example, Fig. 2.4(a) represents the B+ tree index
built for attribute Name of relation Employee in Fig. 2.2(a). To access a tuple with
key value k, value k is first searched in the root vertex of the B+ tree. The tree is then
traversed by using the following scheme: if k < k1, pointer p0 is chosen; if k ≥ k f ,
pointer p f is chosen, otherwise if ki ≤ k < ki+1, pointer pi is chosen. The process
continues until a leaf vertex has been examined. If k is not found in any leaf vertex,
the relation does not contain any tuple having, for the indexed attribute, value k.

A B+ tree index can be usefully adopted for each attribute ai j in the schema of
relation Ri, provided ai j is defined over a partially ordered domain. The index is
built by the data owner over the plaintext values of the attribute, and then stored on
the remote server, together with the encrypted database. To this purpose, the B+ tree
structure is translated into a specific relation with the two attributes: Id, represents
the vertex identifier; and VertexContent, represents the actual vertex content. The
relation has a row for each vertex in the tree and pointers are represented through

2.3 Querying Encrypted Data 19

cross references from the vertex content to other vertex identifiers in the relation.
For instance, the B+ tree structure depicted in Fig. 2.4(a) is represented in the en-
crypted database by the relation in Fig. 2.4(b). Since the relation representing the
B+ tree contains sensitive information (i.e., the plaintext values of the attribute on
which the B+ tree is built) this relation has to be protected by encrypting its con-
tent. To this purpose, encryption is applied at the level of vertex (i.e., of tuple in
the relation), to protect the order relationship among plaintext and index values and
the mapping between the two domains. The corresponding encrypted relation has
therefore two attributes: Id that represents, as before, the identifier of the vertex;
and C that contains the encrypted vertex. Figure 2.4(c) illustrates the encrypted B+
tree relation that corresponds to the plaintext B+ tree relation in Fig. 2.4(b).

The B+ tree based indexing method allows the evaluation of both equality and
range conditions appearing in the WHERE clause. Moreover, being order preserving,
it also allows the evaluation of ORDER BY and GROUP BY clauses of SQL queries,
and of most of the aggregate operators, directly on the encrypted database. Given
the plaintext condition ai j≥v, where v is a constant value, it is necessary to traverse
the B+ tree stored on the server to find out the leaf vertex representing v for cor-
rectly evaluating the considered condition. To this purpose, the client queries the B+
tree relation to retrieve the root, which conventionally is the tuple t with t[Id]=1. It
then decrypts t[C], evaluates its content and, according to the search process above-
mentioned, queries again the remote server to retrieve the next vertex along the path
to v. The search process continues until a leaf vertex containing v is found (if any).
The client then follows the chain of leaf vertices starting from the retrieved leaf to
extract all the tuples satisfying condition ai j≥ v. For instance, consider the B+ tree
in Fig. 2.4(a) defined for attribute Name in relation Employee in Fig. 2.2(a). A
query asking for tuples where the value of attribute Name follows “Bob” in the lex-
icographic order is evaluated as follows. First, the root is retrieved and evaluated:
since “Bob” precedes “Carol”, the first pointer is chosen and vertex 2 is evaluated.
Since “Bob” is equal to the value in the vertex, the second pointer is chosen and
vertex 5 is evaluated. Vertex 5 is a leaf, and all tuples in vertices 5, 6, and 7 are
returned to the final user.

It is important to note that B+ tree indexes do not produce spurious tuples when
executing a query, but the evaluation of conditions is much more expensive for the
client with respect to bucket and hash-based methods. For this reason, it may be
advisable to combine the B+ tree method with either hash-based or bucket-based
indexing, and use the B+ tree index only for evaluating conditions based on inter-
vals. Compared with traditional B+ tree structures used in DBMSs, the vertices in
the indexing structure presented here do not have to be of the same size as a disk
block; a cost model can then be used to optimize the number of children of a vertex,
potentially producing vertices with a large number of children and trees with lim-
ited depth. Finally, we note that since the B+ tree content is encrypted, the method
is secure against inference attacks (see Sect. 2.4).

20 2 Overview of the State of the Art

2.3.4 Order Preserving Encryption Approaches

To support equality and range queries over encrypted data without adopting B+ tree
data structures, Agrawal et al. [4] present an Order Preserving Encryption Schema
(OPES). An OPES function has the advantage of flattening the frequency spectrum
of index values, thanks to the introduction of new buckets when needed. It is im-
portant to note here that queries executed over this kind of indexes do not return
spurious tuples. Also, OPES provides data secrecy only if the intruder does not
know the plaintext database or the domain of original attributes.

Order Preserving Encryption with Splitting and Scaling (OPESS) [96] is an evo-
lution of OPES that both supports range queries and does not suffer from inference
problems. This indexing method exploits the traditional B-tree data structure used
by relational DBMSs for physically indexing data. B-tree data structure is similar
to B+ tree data structure, but internal vertices directly refer to tuples in the database
and leaves of the tree are not linked in a unique list.

An OPESS index can be usefully adopted for each attribute ai j in the relation
schema Ri, provided ai j is defined over a partially ordered domain. The index is
built by the data owner over the plaintext values of the attribute, and then stored on
the remote server, together with the encrypted database. Differently from B+ tree
indexing structure, the B-tree data structure exploited by OPESS is built on index
values, and not on plaintext values. Therefore, before building the B-tree structure
to be remotely stored on the server, OPESS applies two techniques on the origi-
nal values of ai j, called splitting and scaling, aimed at obtaining a flat frequency
distribution of index values.

Consider attribute ai j defined on domain Di j and assume that the values
{v1, . . . ,vn} in the considered relation ri have occurrences, in the order, equal to
{ f1, . . . , fn}. First, a splitting process is performed on ai j, producing a number of in-
dex values having almost a flat frequency distribution. The splitting process applies
to each value vh assumed by ai j in ri. It determines three consecutive positive inte-
gers, m−1, m, and m+1, such that the frequency fh of value vh can be expressed as
a linear combination of the computed values: fh = c1(m−1)+ c2(m)+ c3(m+1),
where c1, c2, and c3 are non negative integer values. The plaintext value vh can
therefore be mapped into c1 index values each with m+ 1 occurrences, c2 index
values each with m occurrences, and c3 index values each with m− 1 occurrences.
To preserve the order of index values with respect to the original domain of attribute
ai j, for any two values vh < vl and for any index values ih and il associated with vh
and vl respectively, we need to guarantee that ih < il . To this purpose, the authors
in [96] propose to exploit an order preserving encryption function. Specifically, for
each plaintext value vh, its index values are obtained by adding a randomly chosen
string of low order bits to a common string of high order bits computed as follows:
ve

h = Ek(vh), where E is an order preserving encryption function with key k.
Since splitting technique grants the sum of frequencies of indexes representing

value v to be exactly the same as the original frequency of v, an attacker who knows
the frequency distribution of plaintext domain values could exploit this property
to break the indexing method adopted. Indeed, the index values mapping a given

2.3 Querying Encrypted Data 21

plaintext value are, by definition, contiguous values. Therefore, the authors in [96]
propose to adopt a scaling technique together with splitting. Each plaintext value vh
is associated with a scaling factor sh. When vh is split into n index values, namely
i1, . . . , in, each index entry in the B-tree corresponding to ih is replicated sh times.
Note that all sh replicas of the index point to the same block of tuples in the en-
crypted database. After scaling has been applied, the index frequency distribution is
not uniform any more. Without knowing the scaling factor used, it is not possible for
the attacker to reconstruct the correspondence between plaintext and index values.

The OPESS indexing method allows the evaluation of both equality and range
conditions appearing in the WHERE clause. Moreover, being order preserving, it
also allows the evaluation of ORDER BY and GROUP BY clauses of SQL queries,
and of most of the aggregate operators, directly on the encrypted database. It is im-
portant to note that query execution becomes expensive, even if it does not produce
spurious tuples, due to the fact that the same plaintext value is mapped into different
index values and both splitting and scaling methods need to be inverted for query
evaluation.

2.3.5 Other Approaches

In addition to the three main indexing methods previously presented, many other
solutions have been proposed to support queries on encrypted data. These methods
try to better support SQL clauses or to reduce the amount of spurious tuples in the
result produced by the remote server.

Wang et al. [97, 98] propose a new indexing method, specific for attributes whose
domain is the set of all possible strings over a well defined set of characters, which
adapts the hash-based indexing methods to permit direct evaluation of LIKE con-
ditions. The index value associated with any string s, composed of n characters
c1c2 . . .cn, is obtained by applying a secure hash function to each pair of subsequent
characters in s. Given a string s = c1c2 . . .cn = s1s2 . . .sn/2, where si = c2ic2i+1, the
corresponding index is computed as i = h(s1)h(s2) . . .h(sn/2).

Hacigümüs et al. [57] study a method to remotely support aggregation operators,
such as COUNT, SUM, AVG, MIN, and MAX. The method is based on the concept
of privacy homomorphism [19], which exploits properties of modular algebra to al-
low the execution over index values of sum, subtraction, and product operations,
while not preserving the order relationship characterizing the original domain. Ev-
dokimov et al. [47] formally analyze the security of the method based on privacy
homomorphism, with respect to the degree of confidentiality assigned to the remote
server. The authors formally introduce a definition of intrinsic security for encrypted
databases, and it is proved that almost all indexing methods are not intrinsically se-
cure. In particular, methods that do not cause spurious tuples to belong to the result
of a query inevitably are exposed to attacks coming from a malicious third party or
from the service provider itself.

22 2 Overview of the State of the Art

Query
Index Equality Range Aggregation
Bucket-based [58] • ◦ –
Hash-based [35] • – ◦
B+ Tree [35] • • •
OPES [4] • • ◦
OPESS [96] • • •
Character oriented [97, 98] • ◦ –
Privacy homomorphism [57] • – •
PPC [63] • • •
Secure index data structures [16, 20, 51, 93, 99] • ◦ –
• fully supported; ◦ partially supported; – not supported

Fig. 2.5 Indexing methods supporting queries

The Partition Plaintext and Ciphertext (PPC) is a new model for storing server-
side outsourced data [63]. This model proposes to outsource both plaintext and en-
crypted information that need to be stored on the remote server. In this model, only
sensitive attributes are encrypted and indexed, while the other attributes are released
in plaintext form. The authors propose an efficient architecture for the DBMS to
store together, and specifically in the same page of memory, both plaintext and en-
crypted data.

Different working groups [16, 20, 51, 93, 99] introduce other approaches for
searching keywords in encrypted documents. These methods are based on the def-
inition of a secure index data structure. The secure index data structure allows the
server to retrieve all documents containing a particular keyword without the need to
know any other information. This is possible because a trapdoor is introduced when
encrypting data, and such a trapdoor is then exploited by the client when querying
data. Other similar proposals are based on Identity Based Encryption techniques
for the definition of secure indexing methods. Boneh and Franklin [17] present an
encryption method allowing searches over ciphertext data, while not revealing any-
thing about the original data. This method is shown to be secure through rigorous
proofs. Although these methods for searching keywords over encrypted data have
been originally proposed for searching over audit logs or email repositories, they
are also well suited for indexing data in the outsourced database scenario.

Figure 2.5 summarizes the discussion by showing, for each indexing method
discussed, what type of query it (partially) supports. Here, an hyphen means that the
query is not supported, a black circle means that the query is fully supported, and a
white circle means that the query is partially supported.

2.4 Evaluation of Inference Exposure

Given a plaintext relation r over schema R(a1,a2,. . . ,an), it is necessary to decide
which attributes need to be indexed, and how the corresponding indexes can be de-

2.4 Evaluation of Inference Exposure 23

fined. In particular, when defining the indexing method for an attribute, it is impor-
tant to consider two conflicting requirements: on one side, the indexing information
should be related to the data well enough to provide for an effective query execution
mechanism; on the other side, the relationship between indexes and data should not
open the door to inference and linking attacks that can compromise the protection
granted by encryption. Different indexing methods can provide different trade-offs
between query execution efficiency and data protection from inference. It is there-
fore necessary to define a measure for the risk of exposure due to the publication of
indexes on the remote server.

Although many techniques supporting different kinds of queries in the DAS sce-
nario have been developed, a deep analysis of the level of protection provided by all
these methods against inference and linking attacks is missing. In particular, expo-
sure has been evaluated for a few indexing methods only [24, 35, 37, 61].

Hore et al. [61] analyze the security issues related to the use of bucket-based
indexing methods. The authors consider data exposure problems in two situations:
i) the release of a single attribute, and ii) the publication of all the indexes associ-
ated with a relation. To measure the protection degree granted to the original data
by the specific indexing method, the authors propose to exploit two different mea-
sures. The first measure is the variance of the distribution of values within a bucket
b. The second measure is the entropy of the distribution of values within a bucket
b. The higher is the variance, the higher is the protection level granted to the data.
Therefore, the data owner should maximize, for each bucket in the relation, the cor-
responding variance. Analogously, the higher is the entropy of a bucket, the higher
is the protection level granted to the data. The optimization problem that the data
owner has to solve, while planning the bucketization process on a relation, is the
maximization of minimum variance and minimum entropy, while maximizing query
efficiency. Since such an optimization problem is NP-hard, Hore et al. [61] propose
an approximation method, which fixes a maximum allowed performance degrada-
tion. The objective of the algorithm is then to maximize both minimum variance and
entropy, while guaranteeing performances not to fall under an imposed threshold.

To the aim of taking into consideration also the risk of exposure due to associ-
ations, Hore et al. [61] propose to adopt, as a measure of the privacy granted by
indexes when posing a multi-attribute range query, the well known k-anonymity
concept [83]. Indeed, the result of a range query operating on multiple attributes
is exposed to data linkage with publicly available datasets. k-Anonymity is widely
recognized as a measure of the privacy level granted by a collection of released data,
where respondents can be re-identified (or the uncertainty about their identity lower
under a predefined threshold k) by linking private data with public data collections.

Damiani et al. [24, 35, 37] evaluate the exposure to inference due to the adoption
of hash-based indexing methods. Inference exposure is measured by taking into ac-
count the prior knowledge of the attacker, thus introducing two different scenarios.
In the first scenario, called Freq+DBk, the attacker is supposed to know, in addition
to the encrypted database (DBk), the domains of the plaintext attributes and the dis-
tribution of plaintext values (Freq) in the original database. In the second scenario,
called DB+DBk, the attacker is supposed to know both the encrypted (DBk) and the

24 2 Overview of the State of the Art

plaintext database (DB). In both scenarios, the exposure measure is computed as
the probability for the attacker to correctly map index values onto plaintext attribute
values. The authors show that, to guarantee a higher degree of protection against
inference, it is convenient to use a hash-based method that generates collisions. In
case of a hash-based method where the collision factor is equal to 1, meaning that
there is no collision, inference exposure measure depends only on the number of
attributes used for indexing. In the DB+DBk scenario, the exposure grows as the
number of attributes used for indexing grows. In the Freq+DBk scenario, the at-
tacker can discover the correspondences between plaintext and indexing values by
comparing their occurrence profiles. Intuitively, the exposure grows as the number
of attributes with a different occurrence profile grows. For instance, considering
relation Employee in Fig. 2.2(a), we can notice that both Salary and the corre-
sponding index I5 have a unique value with one occurrence only, that is, 20 and ρ ,
respectively. We can therefore conclude that the index value corresponding to 20 is
ρ , and that no other salary value is mapped into ρ as well.

Damiani et al. [37] extend the inference exposure measures presented in [24, 35]
to produce an inference measure that can be associated with the whole relation in-
stead of with single attributes. The authors propose two methods for aggregating the
exposure risk measures computed at attribute level. The first method exploits the
weighted mean operator and weights each attribute ai proportionally with the risk
connected with the disclosure of the values of ai. The second one exploits the OWA
(Ordered Weighted Averaging) operator, which allows the assignment of different
importance values to different sets of attributes, depending on the degree of protec-
tion guaranteed by the indexing method adopted for the specific subset of attributes.

Agrawal et al. [4] evaluate the exposure to inference due to the adoption of
OPESS as an indexing method, under the Freq+DBk scenario. They prove that the
solution they propose is intrinsically secure, due to the flat frequency distribution of
index values and to the additional guarantee given by scaling method, which avoids
the combination of the attackers frequency knowledge with the knowledge of the
indexing method adopted.

2.5 Integrity of Outsourced Data

The database outsourcing scenario usually assumes the server to be “honest-but-
curious”, and that clients and data owners trust it to faithfully maintain outsourced
data. However, this assumption is not always applicable and it is also important to
protect the database content from improper modifications (data integrity). The ap-
proaches proposed in the literature have the main goal of detecting unauthorized
updates of remotely stored data [56, 73, 74, 92]. Hacigümüs et al. [56] propose to
add a signature to each tuple in the database. The signature is computed by digi-
tally signing, with the private key of the owner, a hash value obtained through the
application of a hash function to the tuple content. The signature is then added to
the tuple before encryption. When a client receives a tuple, as a result of its query, it

2.5 Integrity of Outsourced Data 25

can verify if the tuple has been modified by an entity different from the data owner.
The verification process consists in recomputing the hash over the tuple content and
checking whether there is a match with the value stored in the tuple itself. In addition
to tuple level integrity, also relation level integrity (i.e., absence of non authorized
insertions and deletions of tuples) needs to be preserved. Therefore, for each rela-
tion, a signature computed on the basis of the tuples in the relation is added. An
advantage of the proposed method is that relation level signature does not need to
be recomputed any time a tuple is inserted or deleted because the old signature can
be adapted to the new content, thus saving computation time at the data owner side.

Since an integrity check performed on each tuple in the result set of a query can
be quite expensive, Mykletun et al. [73] propose methods for checking the signa-
ture of a set of tuples in a single operation. The first method, called condensed RSA,
works only if the tuples in the set have been signed by the same user; the second
method, which is based on bilinear mappings and is less efficient than condensed
RSA, is called BGLS (from the name of the authors who first proposed this sig-
nature method [18]) and works even if the tuples in the set have been signed by
different users. A major drawback of these solutions is that they do not guarantee
the immutability property. Immutability means that it is difficult to obtain a valid
aggregated signature from a set of other aggregated signatures. To solve this prob-
lem, Mykletun et al. [72] propose alternative solutions based on zero knowledge
protocols.

Narasimha and Tsudik [74] present another method, called Digital Signature Ag-
gregation and Chaining (DSAC), that is again based on hash functions and signa-
ture. Here, the main goal is to evaluate whether the result of a query is complete and
correct with respect to the database content. This solution builds over each relation
chains of tuples, one for each attribute that may appear in a query, that are ordered
according to the attribute value. The signed hash associated with a tuple is then
computed by composing the hash value associated with the immediate predecessors
of the considered tuple in all the chains. This solution is quite expensive when there
are different chains associated with a relation.

Sion [92] proposes a method to ensure result accuracy and guarantee that the
server correctly executes the query on the remote data. The method works for batch
queries and is based on the pre-computation of tokens. Basically, before outsourcing
the database, the data owner pre-computes a set of queries on plaintext data and
associates, with each query, a token computed by using a one-way cryptographic
hash function on the query results, concatenated with a nonce. Any set of batch
queries submitted to the server contains then a subset of pre-computed queries, along
with the corresponding tokens, and fake tokens. The server, when answering, has to
indicate which are the queries in the batch set that correspond to the given tokens. If
the server correctly individuates which tokens are fake, the client is guaranteed that
the server has executed all the queries in the set.

26 2 Overview of the State of the Art

2.6 Privacy Protection of Databases

Often encryption of the whole database containing sensitive data is an overdo, since
not all the data are sensitive per se but only their association needs protection. To
reduce the usage of encryption in data outsourcing, thus improving query execution
efficiency, it is convenient to combine fragmentation and encryption techniques [2].
In [2] the authors propose an approach where privacy requirements are modeled sim-
ply through confidentiality constraints (i.e., sets of attributes whose joint visibility
must be prevented) and are enforced by splitting information over two independent
database servers (so to break associations of sensitive information) and by encrypt-
ing information only when strictly necessary. By assuming that only trusted clients
know the two service providers (each of which is not aware of the existence of the
other server), sensitive associations among data can be broken by fragmenting the
original data. When fragmentation is not sufficient for solving all confidentiality
constraints characterizing the data collection, data encryption can be exploited. In
this case, the key used for encrypting the data is stored on one server and the en-
crypted result on the other one. Alternatively, other data obfuscation methods can be
exploited; the parameter value is stored on one server and the obfuscated data on the
other one. Since the original data collection is divided on two non-communicating
servers, the evaluation of queries formulated by trusted users requires the presence
of a trusted client for possibly combining the results coming from the two servers.
The original query is split in two subqueries operating at each server, which results
are then joined and refined by the client. The process of query evaluation becomes
therefore expensive, especially if fragmentation does not take into account the query
workload characterizing the system (i.e., when attributes frequently appearing in the
same query are not stored on the same server). After proving that identifying a frag-
mentation that minimizes query execution costs at the client side is NP-hard (this
problem can be reduced to the hypergraph coloring problem), the authors propose a
heuristic algorithm producing good results.

While presenting an interesting idea, the approach in [2] suffers from several
limitations. The main limitation is that privacy relies on the complete absence of
communication between the two servers, which have to be completely unaware of
each other. This assumption is clearly too strong and difficult to enforce in real
environments. A collusion among the servers (or the users accessing them) easily
breaches privacy. Also, the assumption of two servers limits the number of associ-
ations that can be solved by fragmenting data, often forcing the use of encryption.
The solution presented in Chap. 4 overcomes the above limitations: it allows stor-
ing data even on a single server and minimizes the amount of data represented in
encrypted format, therefore allowing for efficient query execution.

A related line of work is represented by [13, 14], where the authors exploit func-
tional dependencies to the aim of correctly enforcing access control policies. In [14]
the authors propose a policy based classification of databases that, combined with
restriction of the query language, preserves the confidentiality of sensitive infor-
mation. The classification of a database is based on the concept of classification
instance, which is a set of tuples representing the combinations of values that need

2.7 Access Control Enforcement in the Outsourcing Scenario 27

to be protected. On the basis of the classification instance, it is always possible to
identify the set of allowed queries, that is, the queries whose evaluation return tuples
that do not correspond to the combinations represented in the classification instance.
In [13] the authors define a mechanism for defining constraints that reduce the prob-
lem of protecting the data from inferences to the enforcement of access control in
relational databases.

2.7 Access Control Enforcement in the Outsourcing Scenario

Traditional works on data outsourcing assume all users to have complete access
to the whole database by simply knowing the (unique) encryption key adopted for
data protection. However, this simplifying assumption does not fit current scenarios
where different users may need to see different portions of the data, that is, where
selective access needs to be enforced, also because the server cannot be delegated
such a task. Adding a traditional authorization layer to the current outsourcing sce-
narios requires that when a client poses a query, both the query and its result have
to be filtered by the data owner (who is in charge of enforcing the access control
policy), a solution that however is not applicable in a real life scenario. More recent
researches [15, 33, 70, 102] have addressed the problem of enforcing selective ac-
cess on outsourced encrypted data by combining cryptography with authorizations,
thus enforcing access control via selective encryption. Basically, the idea is to use
different keys for encrypting different portions of the database. These keys are then
distributed to users according to their access rights.

The naive solution for enforcing access control through selective encryption con-
sists in using a different key for each resource in the system, and in communicating
to each user the set of keys associated with the resources she can access. This solu-
tion correctly enforces the policy, but it is very expensive since each user needs to
keep a number of keys that depends on her privileges. That is, users having many
privileges and, probably, often accessing the system, will have a greater number
of keys than users having a few privileges and, probably, accessing only rarely the
system. To reduce the number of keys a user has to manage, access control mecha-
nisms based on selective encryption exploit key derivation methods. A key deriva-
tion method is basically a function that, given a key and a piece of publicly available
information, allows the computation of another key. The basic idea is that each user
is given a small number of keys from which she can derive all the keys needed to
access the resources she is authorized to access.

To the aim of using a key derivation method, it is necessary to define which keys
can be derived from another key and how. Key derivation methods proposed in the
literature are based on the definition of a key derivation hierarchy. Given a set of
keys K in the system and a partial order relation ≼ defined on it, the corresponding
key derivation hierarchy is usually represented as a pair (K ,≼), where ∀ki,k j ∈K ,
k j ≼ ki iff k j is derivable from ki. Any key derivation hierarchy can be graphically
represented through a directed acyclic graph, having a vertex for each key in K ,

28 2 Overview of the State of the Art

and a path from ki to k j only if k j can be derived from ki. Depending on the partial
order relationship defined on K , the key derivation hierarchy can be: a chain (i.e.,
≼ defines a total order relation); a tree; or a directed acyclic graph (DAG). The dif-
ferent key derivation methods can be classified on the basis of the kind of hierarchy
they are able to support, as follows.

• The hierarchy is a chain of vertices [85]. Key k j of a vertex is computed on the
basis of key ki of its (unique) direct ancestor (i.e., k j = f (ki)) and no public
information is needed.

• The hierarchy is a tree [54, 85, 86]. Key k j of a vertex is computed on the basis
of key ki of its (unique) parent and on the publicly available label l j associated
with k j (i.e., k j = f (ki, l j)).

• The hierarchy is a DAG [6, 8, 31, 59, 62, 67, 69, 87, 91]. Since each vertex in
a DAG can have more than one direct ancestor, key derivation methods are in
general more complex than the methods used for chains or trees. There are many
proposals that work on DAGs; typically they exploit a piece of public information
associated with each vertex of the key derivation hierarchy. In [8], Atallah et al.
introduce a new class of methods that maintain a piece of public information,
called token, associated with each edge in the hierarchy. Given two keys, ki and
k j arbitrarily assigned to two vertices, and a public label l j associated with k j,
a token from ki to k j is defined as ti, j=k j ⊕ h(ki, l j), where ⊕ is the n-ary xor
operator and h is a secure hash function. Given ti, j, any user knowing ki and with
access to public label l j, can compute (derive) k j. All tokens ti, j in the system are
stored in a public catalog.

It is important to note that key derivation methods operating on trees can be used
for chains of vertices, even if the contrary is not true. Analogously, key derivation
methods operating on DAGs can be used for trees and chains, while the converse is
not true.

Key derivation hierarchies have also been adopted for access control enforcement
in contexts different from data outsourcing. For instance, pay-tv systems usually
adopt selective encryption for selective access enforcement and key hierarchies to
easily distribute encryption keys [12, 79, 94, 95, 100]. Although these applications
have some similarities with the DAS scenario, there are important differences that do
not make them applicable for data outsourcing. First, in the DAS scenario we need
to protect stored data, while in the pay-tv scenario streams of data are the resources
that need to be protected. Second, in the DAS scenario key derivation hierarchies
are used to reduce the number of keys each user has to keep secret, while in the
pay-tv scenario a key derivation hierarchy is exploited for session key distribution.

The main problem any solution adopting selective encryption suffers from is that
they require data re-encryption for policy updates, thus causing the data owner’s
intervention any time the policy is modified. The selective encryption solution pro-
posed in Chap. 3 is organized to both reduce the client burden in data access and the
data owner intervention in policy updates.

2.8 Safe Data Integration 29

2.8 Safe Data Integration

Data outsourcing scenarios typically assume data to be managed by a unique ex-
ternal server, managing sensitive information. As already noted for solutions com-
bining fragmentation and encryption for privacy purposes, data may also be stored
at different servers. Furthermore, emerging scenarios often require different parties
to cooperate with other parties to the aim of sharing information and perform dis-
tributed computations. Cooperation for query execution implies data to flow among
parties. Therefore, it is necessary to provide the system with solutions able to en-
force access control restrictions in data exchange for distributed query evaluation.
Indeed, classical works on the management of queries in centralized and distributed
systems [11, 23, 26, 64, 68, 90, 101] cannot be exploited in such a scenario. These
approaches in fact describe how efficient query plans can be obtained, but do not
take into consideration constraints on attribute visibility for servers. However, in
light of the crucial role that security has in the construction of future large-scale
distributed applications, a significant amount of research has recently focused on
the problem of processing distributed queries under protection requirements. Most
of these works [21, 46, 48, 52, 66, 75] are based on the concept of access pattern, a
profile associated with each relation/view where each attribute has a value that may
either be i or o (i.e., input or output). When accessing a relation, the values for all i
attributes must be supplied, to obtain the corresponding values of o attributes. Also,
queries are represented in terms of Datalog, a query language based on the logic
programming paradigm. The main goal of all these works is that of identifying the
classes of queries that a given set of access patterns can support; a secondary goal is
the definition of query plans that match the profiles of the involved relations, while
minimizing some cost parameter (e.g., the number of accesses to data sources [21]).
In Chap. 5, we propose a complementary approach to access patterns that can be
considered a natural extension of the approach normally used to describe database
privileges in a relational schema; our approach introduces a mechanism to define
access privileges on join paths; while access patterns describe authorizations as spe-
cial formulas in a logic programming language for data access. Also, the model
presented in Chap. 5 explicitly manages a scenario with different independent sub-
jects who may cooperate in the execution of a query, whereas the work done on
access patterns only considers two actors, the owner of the data and a single user
accessing the data.

In [80], the authors propose a model based on the definition of authorization
views that implicitly define the set of queries that a user can view. A query is al-
lowed if it can be answered using only the information in the authorization views
regulating the system. An interesting advantage of this model is the exploitation
of referential integrity constraints for the automatic identification of security com-
pliance of queries with respect to views. It is interesting to note that the approach
in [80] operates at a low level since it analyzes the integration with a relational
DBMS optimizer and focuses on the consideration of “instantiated” queries (i.e.,
queries that present predicates that force attributes to assume specific values) aim-
ing at evaluate compatibility of the instantiated queries with the authorized views.

30 2 Overview of the State of the Art

The approach proposed in Chap. 5 operates at a higher level, proposing an overall
data-model characterizing views and focusing on the data integration scenario at a
more abstract level.

Sovereign joins [3] represent an interesting alternative solution for secure infor-
mation sharing. This method is based on a secure coprocessor, which is involved
in query execution, and exploits cryptography to grant privacy. The advantage of
sovereign joins is that they extend the plans that allow an execution in the scenario
we present; the main obstacle is represented by their high computational cost, due
to the use of specific asymmetric cryptography primitives, that make them currently
not applicable when large collections of sensitive information must be combined.

2.9 Chapter Summary

Database outsourcing is becoming an emerging data management paradigm that
introduces many research challenges. In this chapter, we focused on the solutions
known in the literature for solving problems related to query execution and access
control enforcement. For query execution, different indexing methods have been
discussed. These methods mainly focus on supporting specific kind of queries and
on minimizing the client burden in query execution. Fragmentation has also been
proposed as a method for reducing encryption and improving query execution per-
formance. Access control enforcement is instead a relative new issue for the DAS
scenario and has not been deeply studied. The most important proposal for enforcing
access control on outsourced encrypted data is based on selective encryption and key
derivation strategies. Finally, the evaluation of queries when outsourced data are dis-
tributed at different servers requires a deeper collaboration among servers as well as
mechanisms regulating the exchange of data among the collaborating parties. This
problem has been addressed in some proposals that are based on the access pattern
concept.

In the following of this book, we will analyze more in depth the access control,
proposing a new mechanism based on selective encryption, and we will study a
solution to the well known problem of dynamically manage access control updates.
We will also focus on the usage of fragmentation for reducing encryption, trying to
overcome the limitations of the proposal in [2]. Furthermore, we will address the
problem related to the execution of queries on distributed data, modeling authorized
data flows among involved parties in a simple while powerful manner.

	Chapter 2 Overview of the State of the Art
	2.1 Introduction
	2.1.1 Chapter Outline

	2.2 Basic Scenario and Data Organization
	2.2.1 Parties Involved
	2.2.2 Data Organization
	2.2.3 Interactions

	2.3 Querying Encrypted Data
	2.3.1 Bucket-Based Approach
	2.3.2 Hash-Based Approach
	2.3.3 B+ Tree Approach
	2.3.4 Order Preserving Encryption Approaches
	2.3.5 Other Approaches

	2.4 Evaluation of Inference Exposure
	2.5 Integrity of Outsourced Data
	2.6 Privacy Protection of Databases
	2.7 Access Control Enforcement in the Outsourcing Scenario
	2.8 Safe Data Integration
	2.9 Chapter Summary

