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Foreword

Data outsourcing is emerging today as a successful paradigm allowing organizations
as well as users to exploit external services for the distribution of resources. As a
matter of fact, organizations often find it more secure and economically viable to
resort to external servers for IT services and data management, maintaining instead
their in-house focus on their main core business. Similarly, users are increasingly
resorting to external services for storing and distributing user-generated content, as
witnessed by the success and large adoption of services like YouTube, MySpace,
and Flickr.

In such novel outsourcing and storage/distribution scenarios, it is of primary im-
portance to guarantee proper security and privacy to the data as well as to users. The
problem is particularly complex due to the fact that the servers responsible for data
storage and access services may not be completely trusted. Outsourced data often
contain sensitive information whose release should be strictly controlled and whose
access may not even be allowed to the external server. To respond to this problem,
existing data outsourcing proposals typically assume data to be outsourced in en-
crypted form and associate with the data additional indexing information to allow
the execution of queries on the encrypted data themselves, thus not requiring the
external servers to decrypt data for query computation. While providing a funda-
mental layer of protection, data encryption does not provide a complete response to
the problem of efficiently, effectively, and flexibly providing privacy on outsourced
data and many challenges still need to be addressed.

First, in many scenarios access to outsourced data may be selective. How can
we guarantee users different views over the outsourced data? Can we outsource
to the external server, besides the data, also the management and enforcement of
authorizations? If encryption depends on authorizations how can we avoid the need
of re-uploading new versions of the resources when authorizations change?

Second, while encryption and decryption are computationally viable, query exe-
cution of encrypted data is inevitably more expensive and possibly only for limited
kinds of queries. Also, encryption might represent an over protection when what is
sensitive are not the data themselves but the associations among data. Can we then
depart from encryption, for example, fragmenting data so to break sensitive associ-

v



vi Foreword

ations? How can data be fragmented and what assumptions do we need to make on
the physical fragments and on the servers storing them? How can query execution
work on fragmented data?

Third, in some scenarios there may be the need to perform distributed queries
involving data stored at different servers and therefore entailing collaboration and
information sharing among the servers for the query computation. How can we es-
tablish authorizations regulating information sharing among servers? How can we
measure the information carried by derived relations in query computation? How
can we define and enforce a query plan that allows collaborative query execution
and complies with the different authorizations to be enforced?

This book addresses the three aspects above illustrating state of the art for them
and analyzing the problems to be tackled. It investigates different directions and
proposes possible approaches to their solution, also providing a response to some of
the issues and insights for open problems. It represents a precious source for schol-
ars and researchers interested in security and privacy, in particular with reference
to the data outsourcing context, offering them a nice overview and analysis of dif-
ferent issues to be considered and problems addressed together with approaches to
their resolutions. Providing a fine investigation of the issues and highlighting open
problems, the book can also represent a source of inspiration for future research.

Pierangela Samarati



Preface

The increasing availability of large collections of personal information as well as of
data storage facilities for supporting data-intensive services, support the view that
service providers will be more and more requested to be responsible for the storage
and the efficient and reliable dissemination of information, thus realizing a “data
outsourcing” architecture. Within a data outsourcing architecture data are stored to-
gether with application front-ends at the sites of an external server who takes full
charges of their management. While publishing data on external servers may in-
crease service availability, reducing data owners’ burden of managing data, data
outsourcing introduces new privacy and security concerns since the server storing
the data may be honest-but-curious. A honest-but-curious server honestly manages
the data but may not be trusted by the data owner to read their content. To ensure
adequate privacy protection, a traditional solution consists in encrypting the out-
sourced data, thus preventing outside attacks as well as infiltration from the server
itself. Such traditional solutions have however the disadvantage of reducing query
execution efficiency and of preventing selective information release. This introduces
then the need to develop new models and methods for the definition and enforce-
ment of access control and privacy restrictions on outsourced data while ensuring
an efficient query execution.

In this book, we present a comprehensive approach for protecting sensitive in-
formation when it is stored on systems that are not under the data owner’s con-
trol. There are mainly three security requirements that need to be considered when
designing a system for ensuring confidentiality of data stored and managed by a
honest-but-curious server. The first requirement is access control enforcement to
limit the ability of authorized users to access system’s resources. In traditional con-
texts, a trusted module of the data management system is in charge of enforcing the
access control policy. In the considered scenario, the service provider is not trusted
for enforcing the access control policy and the data owner is not willing to medi-
ate access requests to filter query results. We therefore propose a new access control
system, based on selective encryption, that does not require the presence of a trusted
module in the system for the enforcement of the policy. The second requirement is
privacy protection to limit the visibility of stored/published data to non authorized
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users while minimizing the adoption of encryption. Data collections often contain
personally identifiable information that needs to be protected both at storage and
when disseminated to other parties. As an example, medical data cannot be stored or
published along with the identity of the patients they refer to. To guarantee privacy
protection and to limit the use of encryption, in this book we first propose a solution
for modeling in a simple while powerful way privacy requirements through confi-
dentiality constraints, which are defined as sets of data whose joint visibility must
be prevented. We then propose a mechanism for the enforcement of confidentiality
constraints based on the combined use of fragmentation and encryption techniques:
associations broken by fragmentation will be visible only to those users who are
authorized to know the associations themselves. The third requirement is safe data
integration to limit the ability of authorized users to exchange data for distributed
query evaluation. As a matter of fact, often different sources storing the personal
information of users need to collaborate to achieve a common goal. However, such
data integration and sharing may be subject to confidentiality constraints, since dif-
ferent parties may be allowed to access different portions of the data. We therefore
propose both a model for conveniently representing data exchange constraints and a
mechanism for their enforcement during the distributed query evaluation process.

In this book, we address all these three security requirements by defining a model
and a mechanism for enforcing access control on outsourced data; by introducing
a fragmentation and encryption approach for enforcing privacy constraints; and by
designing a technique for regulating data flows among different parties. The main
contributions can be summarized as follows.

• With respect to the access control enforcement on outsourced data, the original
results are: the combined use of selective encryption and key derivation strate-
gies for access control enforcement; the introduction of a notion of minimality
of an encryption policy to correctly enforce an access control policy without re-
ducing the efficiency in key derivation; the development of a heuristic approach
for computing a minimal encryption policy in polynomial time; the introduction
of a two-layer encryption model for the management of policy updates.

• With respect to the definition of a model for enforcing privacy protection, the
original results are: the definition of confidentiality constraints as a simple while
complete method for modeling privacy requirements; the introduction of the no-
tion of minimal fragmentation that captures the property of a fragmentation to
satisfy the confidentiality constraints while minimizing the number of fragments;
the development of an efficient approach for computing a minimal fragmentation,
which is a NP-hard problem; the introduction of three notions of local optimality,
based on the structure of the fragments composing the solution, on the affinity
of the attributes in the fragments, and on a query evaluation cost model, respec-
tively; the proposal of three different approaches for computing fragmentations
satisfying the three definitions of optimality.

• With respect to the design of a safe data integration mechanism, the original
results are: the definition of permissions as a simple while complete method
for modeling data exchange limitations; the modeling of both permissions and
queries as relation profiles and their representation through a graph-based model;
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the introduction of an approach for the composition of permissions working in
polynomial time; the definition of a method that takes data exchange restrictions
into account while designing a query execution plan.

Sara Foresti
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Chapter 1
Introduction

The amount of data stored, processed, and exchanged by private companies and
public organizations is rapidly increasing. As a consequence, users are today, with
increasing frequency, resorting to service providers for disseminating and sharing
resources they want to make available to others. The protection against privacy vi-
olations is becoming therefore one of the most important issues that must be ad-
dressed in such an open and collaborative context. In this book, we define a compre-
hensive approach for protecting sensitive information when it is stored on systems
that are not under the data owner’s direct control. In the remainder of this chapter,
we give the motivation and the outline of this book.

1.1 Motivation

The rapid evolution of storage, processing, and communication technologies is
changing the traditional information system architecture adopted by both private
companies and public organizations. This change is necessary for mainly two rea-
sons. First, the amount of information held by organizations is increasing very
quickly thanks to the growing storage capacity and computational power of modern
devices. Second, the data collected by organizations contain sensitive information
(e.g., identifying information, financial data, health diagnosis) whose confidentiality
must be preserved.

Systems storing and managing these data collections should be secure both from
external users breaking the system and from malicious insiders. However, the de-
sign, realization, and management of a secure system able to grant the confidential-
ity of sensitive data might be very expensive. Due to the growing costs of in-house
storage and management of large collections of sensitive data, since it demands for
both storage capacity and skilled administrative personnel, data outsourcing and
dissemination services have recently seen considerable growth and promise to be-
come a common component of the future Web, as testifies by the growing success
of Web companies offering storage and distribution services (e.g., MySpace, Flickr,

1 S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51,
DOI 10.1007/978-1-4419-7659-8_1, © Springer Science+Business Media, LLC 2011
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and YouTube). The main consequence of this trend is that companies often store
their data on external honest-but-curious servers, which are relied upon for ensuring
availability of data and for enforcing the basic security control on the data they store.
While trustworthy with respect to their services in making published information
available, these external systems are however trusted neither to access the content
nor to fully enforce access control policy and privacy protection requirements.

It is then clear that users as well as the companies would find an interesting
opportunity in the use of a dissemination service offering strong guarantees about
the protection of user privacy against both malicious users breaking into the system
and the service provider itself. Indeed, besides well-known risks of confidentiality
and privacy breaks, threats to outsourced data include improper use of information:
the service provider could use substantial parts of a collection of data gathered and
organized by the data owner, potentially harming the data owner’s market for any
product or service that incorporates that collection of information.

There are mainly three security aspects that need to be considered when design-
ing a system for ensuring confidentiality of data stored and managed by a honest-
but-curious server, as briefly outlined in the following.

• Access control enforcement. Traditional architectures assign a crucial role to the
reference monitor [7] for access control enforcement. The reference monitor is
the system component responsible of the validation of access requests. The sce-
nario considered in this book however challenges one of the basic tenets of tradi-
tional architectures, where a trusted server is in charge of defining and enforcing
access control policies. This assumption no longer holds here, because the server
does not even have to know the access defined (and possibly modified) by the
data owner. We therefore need to rethink the notion of access control in open en-
vironments, where honest-but-curious servers are in charge of managing the data
collection and are not trusted with respect to the data confidentiality.

• Privacy protection. The vast amounts of data collected and maintained by organi-
zations often include sensitive personally identifiable information. This trend has
raised the attention of both individuals and legislators, which are forcing orga-
nizations to provide privacy guarantees over sensitive information when storing,
processing or sharing it with others. Indeed, recent regulations [22, 78] explicitly
require specific categories of sensitive information to be either encrypted or kept
separate from other personally identifiable information to grant confidentiality.
Since encryption makes access to stored data inefficient, because it is not possi-
ble to directly evaluate queries on encrypted data, it is necessary to define new
solutions that grant data confidentiality and efficient query evaluation.

• Safe data integration. More and more emerging scenarios require different par-
ties, each withholding large amounts of independently managed information, to
cooperate for sharing their information. Since the data collection detained by
each subject contains sensitive information, classical distributed query evalua-
tion mechanisms cannot be adopted [23, 64]. We therefore need an approach for
regulating data flows among parties and for redefining query evaluation mecha-
nisms to the aim of fulfilling access control restrictions imposed by each party.
Indeed, data flows among the cooperating parties may be prohibited by privacy
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constraints, thus making the design of query execution depending on both effi-
ciency principles and privacy constraints.

There are many real-life examples of applications need a mechanism to exchange
and disclose data in a selective and secure way. We outline here three possible sce-
narios.

Multimedia sharing systems. The amount of multimedia data people collect every
day is quickly increasing. As a consequence, systems offering storage and distri-
bution services for photographs and videos are becoming more and more popular.
However, these data may be sensitive (e.g., photographs retracting people) and their
wide diffusion on the Internet should be prevented if not explicitly authorized by
the data owner. Since the distribution service may not be trusted with respect to data
confidentiality, it cannot enforce the access control policy defined by the data owner.
Therefore, it is necessary to think to an alternative solution to prevent sensitive data
publication.

Healthcare system. More and more healthcare systems collect sensitive informa-
tion about historical and present hospitalizations, diagnosis, and more in general
health conditions of patients. Since these data, associated with the identity of pa-
tients, are sensitive, their storage, management, and distribution is subject to both
state-level and international regulations. As a consequence, any healthcare system
should adopt an adequate privacy protection system, which guarantees, for example,
that sensitive information is never stored together with patients’ identity.

Recently, the functionalities of healthcare systems have been extended, thanks
also to the evolution and wide diffusion of network communication technologies, to
allow data exchange among cooperating parties, such as medical personnel, phar-
macies, insurance companies, and the patients themselves. Even if this solution im-
proves the quality of the service offered to patients, it however needs to be carefully
designed to avoid non authorized data disclosure. It is therefore necessary to define
a data integration protocol that guarantees data confidentiality.

Financial system. Financial systems store sensitive information that needs to be
adequately protected. As an example, the data collected by companies for credit
card payments are sensitive and need protection both when stored and managed
(e.g., credit card numbers and the corresponding security codes cannot be stored
together), as demanded by law. Furthermore, thanks also to the wide diffusion of
online transactions, the amount of financial data that systems need to manage and
protect is increasing very quickly. Financial systems, as well as healthcare systems,
need also to cooperate with other parties, managing independent data collections,
such as governmental offices, credit card companies, and clients.

From the above description, it is straightforward to see that the security prob-
lems envisioned for healthcare systems apply also to the financial scenario, which
demands for the same solutions and technologies for guaranteeing data confiden-
tiality in data storage and exchange.
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1.2 Contribution of the Book

The book provides an analysis of the main problems arising when the data owner
does not directly control her data, since they are manager and/or stored by a honest-
but-curious server. The contributions of this book focus on the three security aspects
above-mentioned, that is, access control enforcement, privacy protection, and safe
data integration. In the remainder of this section, we present the contributions in
more details.

1.2.1 Access Control Enforcement

The first important contribution of this book is the proposal of a model for access
control enforcement on encrypted, possibly outsourced, data [15, 41, 44]. The orig-
inal contribution of our work can be summarized as follows.

Selective encryption. An access control system protecting data stored by a honest-
but-curious system cannot rely on a trusted component (i.e., the reference monitor)
that evaluates clients’ requests. Since the data owner cannot act as an intermedi-
ary for data accesses, the access control policy should be embedded in the stored
data themselves. Preliminary solutions try to overcome this issue proposing a novel
access control model and architecture that eliminates the need for a reference mon-
itor and relies on cryptography to ensure confidentiality of the data stored on the
server. New solutions instead propose to combine authorization policy and encryp-
tion, thus allowing access control enforcement to be delegated together with the
data. The great advantage is that the data owner, while specifying the policy, does
not need to be involved in its enforcement. The access control system illustrated in
this book exploits this same idea: different portions of the data are encrypted using
different encryption keys, which are then distributed to users according to their ac-
cess privileges. The model proposed in this book differs from previous ones since
it exploits key derivation methods [8, 31] to limit the number of secret keys that
users and the data owner herself need to securely manage. Key derivation methods
allow the derivation of a secret key from another key by exploiting a piece of pub-
licly available information. This solution allows us to reduce the amount of sensitive
information that users and owners have to protect against third parties.

Efficient access to data. Since key derivation requires a search process in the cata-
log of publicly available information and the evaluation of a function, the key deriva-
tion process may become expensive from the client’s point of view. In fact, the pub-
lic catalog is stored at the provider’s site and therefore any search operation implies
a communication between the client and the server. To limit the burden due to the
key derivation process, in this book we propose a solution that tries to minimize
the size of the public catalog. Since such a minimization problem is NP-hard, we
present a heuristic solution that experimentally obtains good results.
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Policy updates. Since access control enforcement bases on selective encryption,
any time the policy changes, it is necessary for the data owner to re-encrypt the
data to reflect the new policy. However, the re-encryption process is expensive from
the data owner’s point of view, since it requires interaction with the remote server.
To reduce the burden due to this data exchange process, we propose a two-layer
encryption model where a inner layer is imposed by the owner for providing initial
protection and an outer layer is imposed by the server to reflect policy modifications.
The combination of the two layers provides an efficient and robust solution, which
avoids data re-encryption while correctly managing policy updates.

Collusion model. An important aspect that should always be taken into account
when designing a security system is its protection degree. To this purpose, we ana-
lyzed the security of the two-layer model with respect to the risk of collusion among
the parties interacting in the considered scenario. In particular, we consider the case
when the server, knowing the encryption keys adopted at the outer layer, and a user,
knowing a subset of the keys adopted at the inner layer, collude to gain information
that none of them is authorized to access. From this analysis, it is clear that the pro-
posed model introduces a low collusion risk, which can be further reduced at the
cost of a less efficient query evaluation process.

1.2.2 Privacy Protection

The second contribution we present in this book is a system that nicely combines
fragmentation and encryption for privacy purposes [29, 27, 28]. The original contri-
bution of our work can be summarized as follows.

Confidentiality constraints. The release, storage, and management of data is nowa-
days subject to a number of rules, imposed by either legislators or data owners,
aimed at preserving the privacy of sensitive information. Since not all the data in a
collection are sensitive per se, but their association with other information may need
to be protected, solutions encrypting the whole data may be an overdo. Therefore,
recently solutions combining fragmentation and encryption have been proposed [2].
In this book, we propose a simple while expressive model for representing privacy
requirements, called confidentiality constraints that exploits fragmentation and en-
cryption for enforcing such constraints. A confidentiality constraint is a set of at-
tributes whose joint visibility should be prevented; a singleton constraint indicates
that the values of the single attribute need to be kept private. This model, while sim-
ple, nicely captures different privacy requirements that need to be enforced on a data
collection (e.g., sensitive data and sensitive associations).

Minimality. The main goal of the approach proposed in this book is to minimize the
use of encryption for privacy protection. A trivial solution for solving confidentiality
constraints consists in creating a fragment for each attribute that does not appear in a
singleton constraint. Obviously such a solution is not desiderated, unless demanded
by constraints, since it makes query evaluation inefficient. Indeed, since fragments
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cannot be joined by non authorized users, the client posing the query would be
in charge of combining the data extracted from the different fragments. To avoid
such a situation, we propose three different models for designing a fragmentation
that, while granting privacy protection, maximizes query evaluation efficiency. The
three solutions differ in the efficiency measure proposed (i.e., number of fragments,
affinity among attributes, query workload).

Query evaluation. Data fragmentation is usually transparent to the final user, mean-
ing that queries are formulated on the original schema and then they are reformu-
lated to operate on fragments. Since, as already noted, encryption and fragmentation
reduce the efficiency in data retrieval, we propose to add indexes to fragments. In-
dexes are defined on attributes that do not appear in clear form in the fragment. Also,
since indexes may open the door to inference and linking attacks, we carefully an-
alyze the exposure risk due to different indexing methods, considering the external
knowledge of a possible malicious user.

1.2.3 Safe Data Integration

The third and last contribution we present in this book is a solution for the integra-
tion of data from different data sources, which must be subject to confidentiality
constraints [42, 43]. The original contribution coming from our work can be sum-
marized as follows.

Access control model. We present a simple, yet powerful, approach for the speci-
fication and enforcement of permissions regulating data release among data holders
collaborating in a distributed computation, to ensure that query processing discloses
only data whose release has been explicitly authorized. The model is based on the
concept of profile, which nicely models both the information carried by the result of
a query, and the information whose release is authorized by permissions. To easily
evaluate when a data release is allowed by the permissions of the requesting sub-
ject, we propose a graph based model. Profiles are then represented by adequately
coloring the graph. The process of controlling if a query must be denied or allowed
is then based on the comparison of the colors of vertices and edges in the graphs
representing the query and the permissions in the system.

Permission composition. The amount of data that need to be integrated is po-
tentially large and therefore it is not possible to check queries against single per-
missions, since the number of permissions to be explicitly defined would increase
quickly. We then introduce the principle that a query must be allowed if the informa-
tion release it (directly or indirectly) entails is allowed by the permissions. In other
words, if the subject formulating the query is able to compute its result by com-
bining information she is allowed to access, then the query should be allowed. To
enforce this basic principle, we propose a permission composition method, which is
based on reachability properties on the graphs representing the profiles of the per-
missions. The composition method proposed has the great advantage of working in
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polynomial time, even if the number of possible composed permissions is exponen-
tial in the number of base permissions. This is due to a nice dominance property,
which we prove in this book, between composed permissions and their components.

Safe query planning. Besides defining and composing permissions, it is necessary
to evaluate if a query operating in the distributed scenario can be executed (i.e.,
the query is safe) or if the query must be denied. To this purpose, we characterize
the flows of information among the interacting subjects for the evaluation of the
given query, considering also different methods for executing join operations be-
tween distinct data sources. A query is therefore safe if all the data flows it requires
for its evaluation are allowed by the set of (composed) permissions characterizing
the system. We present an algorithm that given a query checks if the query can be
evaluated without violating the set of permissions regulating the distributed system.
If the query can be safely executed, the algorithm we propose also determines which
server is in charge for executing which operation.

1.3 Organization of the Book

In this chapter, we discussed the motivation and the main objectives of our work and
described the major contributions of this book. The remaining chapters are struc-
tured as follows.

Chapter 2 discusses the state of the art of the security aspects related to the ob-
jectives of the book. It presents the main results obtained in the data outsourcing
scenario, focusing on mechanisms for query evaluation, inference exposure mea-
surement, and data integrity. Also, it introduces preliminary works on access control
enforcement, privacy protection, and data integration in the considered scenario.

Chapter 3 illustrates our access control system for securing data stored at a honest-
but-curious server and proposes an efficient mechanism for managing access control
policy updates. The risk of collusion among parties is also analyzed to prove the
security of the presented solution.

Chapter 4 addresses the problem of modeling and enforcing privacy requirements
to protect sensitive data and/or their associations. It also presents three cost models
for computing an optimal fragmentation, that is, a fragmentation that allows efficient
query evaluation.

Chapter 5 focuses on the problem of integrating data made available from different
parties and that must satisfy security constraints. It proposes a model for expressing
restrictions on data flows among parties and a mechanism for querying distributed
data collections under these constraints.

Chapter 6 summarizes the contributions of this book and outlines future work.



Chapter 2
Overview of the State of the Art

This chapter discusses the state of the art in the area of data outsourcing, which is
mainly focused on efficient methods for querying encrypted data. We also present
some approaches for evaluating the inference exposure due to data publication, and
solutions for granting data integrity. A few research efforts have instead addressed
the problem of developing access control systems for outsourced data and for se-
curely querying distributed databases.

2.1 Introduction

The amount of information held by organizations’ databases is increasing very
quickly. To respond to this demand, organizations can:

• add data storage and skilled administrative personnel (at a high rate);
• delegate database management to an external service provider (database out-

sourcing), a solution becoming increasingly popular.

In the database outsourcing scenario, usually referred to as Database As a Service
(DAS), the external service provider provides mechanisms for clients to access the
outsourced databases. A major advantage of database outsourcing is related to the
high costs of in-house versus outsourced hosting. Outsourcing provides significant
cost savings and promises higher availability and more effective disaster protection
than in-house operations. On the other hand, database outsourcing poses a major
security problem, due to the fact that the external service provider, which is relied
upon for ensuring high availability of the outsourced database (i.e., it is trustworthy),
cannot always be trusted with respect to the confidentiality of the database content.

Besides well-known risks of confidentiality and privacy breaks, threats to out-
sourced data include improper use of database information: the server could extract,
resell, or commercially use parts of a collection of data gathered and organized
by the data owner, potentially harming the data owner’s market for any product or
service that incorporates that collection of information. Traditional database access

S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51, 9 
DOI 10.1007/978-1-4419-7659-8_2, © Springer Science+Business Media, LLC 2011



10 2 Overview of the State of the Art

control techniques cannot prevent the server itself from making unauthorized ac-
cess to the data stored in the database. Alternatively, to protect against “honest-but-
curious” servers, a protective layer of encryption can be wrapped around sensitive
data, preventing outside attacks as well as infiltration from the server itself [38].
This scenario raises many interesting research challenges. First, data encryption in-
troduces the problem of efficiently querying outsourced encrypted data. Since con-
fidentiality demands that data decryption must be possible only at the client-side,
techniques have then been proposed, enabling external servers to directly execute
queries on encrypted data. Typically, these solutions consist mainly in adding a piece
of information, called index, to the encrypted data. Indexes are computed based on
the plaintext data and preserve some of the original characteristics of the data to
allow (partial) query evaluation. However, since indexes carry some information
about the original data, they may be exploited as inference channels by malicious
users or by the service provider itself. Second, since data are not under the owner’s
direct control, unauthorized modifications must be prevented to the aim of grant-
ing data integrity. For this purpose, different solutions based on different signature
mechanisms have been proposed, with the main goal of improving verification ef-
ficiency. Third, although index-based solutions represent an effective approach for
querying encrypted data, they introduce an overhead in query execution, due to both
query formulation through indexes and data decryption and filtering of query results.
However, since often what is sensitive in a data collection is the association among
attributes more than the values assumed by each attribute per se, new solutions based
on the combination of fragmentation and encryption have been proposed to reduce
the usage of encryption and to therefore increase query execution efficiency. Fourth,
an interesting issue that has not been deeply studied in the data outsourcing scenario
is represented by the access control enforcement, which cannot be delegated to the
service provider. Finally, when the outsourced data are stored at different servers,
new safe data integration mechanisms are needed that should take into consideration
the different data protection needs of the cooperating servers.

2.1.1 Chapter Outline

In this chapter, we survey the main proposals addressing the data access and secu-
rity issues arising in the data outsourcing scenario. The remainder of the chapter
is organized as follows. Section 2.2 gives an overview of the entities involved in
the data outsourcing scenario and of their typical interactions. Section 2.3 describes
the main indexing methods proposed in the literature for supporting queries over
encrypted data. Section 2.4 addresses inference exposure due to different indexing
techniques. Section 2.5 focuses on techniques granting data integrity. Section 2.6
describes solutions efficiently combining fragmentation and encryption for grant-
ing privacy protection. Section 2.7 presents the main proposals for access control
enforcement on outsourced encrypted data. Section 2.8 illustrates problems and so-
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lutions for safe data integration in a distributed system. Finally, Sect. 2.9 concludes
the chapter.

2.2 Basic Scenario and Data Organization

In this section, we describe the entities involved in the DAS scenario, how data are
organized in the outsourced database context, and the interactions among the entities
in the system for query evaluation.

2.2.1 Parties Involved

There are four distinct entities interacting in the DAS scenario (Fig. 2.1):

• a data owner (person or organization) produces and outsources resources to make
them available for controlled external release;

• a user (human entity) presents requests (queries) to the system;
• a client front-end transforms the queries posed by users into equivalent queries

operating on the encrypted data stored on the server;
• a server receives the encrypted data from one or more data owners and makes

them available for distribution to clients.

Clients and data owners, when outsourcing data, are assumed to trust the server to
faithfully maintain outsourced data. The server is then relied upon for the avail-
ability of outsourced data, so the data owner and clients can access data whenever
requested. However, the server (which can be “honest-but-curious”) is not trusted
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with the confidentiality of the actual database content, as outsourced data may con-
tain sensitive information that the data owner wants to release only to authorized
users. Consequently, it is necessary to prevent the server from making unauthorized
accesses to the database. To this purpose, the data owner encrypts her data with a
key known only to trusted clients, and sends the encrypted database to the server for
storage.

2.2.2 Data Organization

A database can be encrypted according to different strategies. In principle, both sym-
metric and asymmetric encryption can be used at different granularity levels. Sym-
metric encryption, being cheaper than asymmetric encryption, is usually adopted.
The granularity level at which database encryption is performed can depend on the
data that need to be accessed. Encryption can then be at the finer grain of [55, 63]:

• relation: each relation in the plaintext database is represented through a single
encrypted value in the encrypted database; consequently, tuples and attributes
are indistinguishable in the released data, and cannot be specified in a query on
the encrypted database;

• attribute: each column (attribute) in the plaintext relation is represented by a
single encrypted value in the encrypted relation;

• tuple: each tuple in the plaintext relation is represented by a single encrypted
value in the encrypted relation;

• element: each cell in the plaintext relation is represented by a single encrypted
value in the encrypted relation.

Both relation level and attribute level encryption imply the communication to the
requesting client of the whole relation involved in a query, as it is not possible to
extract any subset of the tuples in the encrypted representation of the relation. On the
other hand, encrypting at element level would require an excessive workload for data
owners and clients in encrypting/decrypting data. For balancing client workload and
query execution efficiency, most proposals assume that the database is encrypted at
tuple level.

While database encryption provides an adequate level of protection for data, it
makes impossible for the server to directly execute the users’ queries on the en-
crypted database. Upon receiving a query, the server can only send to the requestor
the encrypted relations involved in the query; the client needs then to decrypt such
relations and execute the query on them. To allow the server to select a set of tuples
to be returned in response to a query, a set of indexes can be associated with the
encrypted relation. In this case, the server stores an encrypted relation with an index
for each attribute on which conditions may need to be evaluated. For simplicity, we
assume the existence of an index for each attribute in each relation of the database.
Different kinds of indexes can be defined for the attributes in a relation, depending
on the clauses and conditions that need to be remotely evaluated. Given a plaintext
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Fig. 2.2 An example of plaintext (a) and encrypted (b) relation

database R, each relation ri over schema Ri(ai1,ai2,. . .,ain) in R is mapped onto a
relation rk

i over schema Rk
i (Counter, Etuple, Ii1, Ii2,. . .,Iin) in the corresponding en-

crypted database Rk. Here, Counter is a numerical attribute added as primary key of
the encrypted relation; Etuple is the attribute containing the encrypted tuple, whose
value is obtained applying an encryption function Ek to the plaintext tuple, where
k is the secret key; and Iij is the index associated with the j-th attribute ai j in Ri.
While we assume encrypted tuples and indexes to be in the same relation, we note
that indexes can be stored in a separate relation [35].

To illustrate, consider relation Employee in Fig. 2.2(a). The corresponding en-
crypted relation is shown in Fig. 2.2(b), where index values are conventionally rep-
resented with Greek letters. The encrypted relation has exactly the same number
of tuples as the original relation. For the sake of readability, the tuples in the en-
crypted relation are listed in the same order with which they appear in the corre-
sponding plaintext relation. The same happens for the order of indexes, which are
listed in the same order as the corresponding attributes are listed in the plaintext
relation schema. For security reasons, real-world systems do not preserve the order
of attributes and tuples and the correspondence between attributes and indexes is
maintained by metadata relations that only authorized parties can access [32].

2.2.3 Interactions

The introduction of indexes allows the partial evaluation of any query Q at the
server-side, provided it is previously translated in an equivalent query operating on
the encrypted database. Figure 2.1 summarizes the most important steps necessary
for the evaluation of a query submitted by a user.

1. The user submits her query Q referring to the schema of the plaintext database
R, and passes it to the client front-end. The user needs not to be aware that data
have been outsourced to a third party.

2. The client maps the user’s query onto: i) an equivalent query Qs, working on the
encrypted relations through indexes, and ii) an additional query Qc working on
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the results of Qs. Query Qs is then passed on to the remote server. Note that the
client is the unique entity in the system that knows the structure of both R and
Rk and that can translate the queries the user may submit.

3. The remote server executes the received query Qs on the encrypted database and
returns the result (i.e., a set of encrypted tuples) to the client.

4. The client decrypts the tuples received and eventually discards spurious tuples
(i.e., tuples that do not satisfy the query submitted by the user). These spuri-
ous tuples are removed by executing query Qc. The final plaintext result is then
returned to the user.

Since a client may have limited storage and reduced computation capacity, one of
the primary goals of the query execution process is to minimize the workload at
the client side, while maximizing the operations that can be computed at the server
side [36, 55, 57, 63].

Iyer et al. [55, 63] present a solution for minimizing the client workload that is
based on a graphical representation of queries as trees. Since the authors limit their
analysis to select-from-where queries, each query Q=“SELECT A FROM R1,. . . ,Rn
WHERE C” can be reformulated as an algebra expression of the form πA(σC(R1 ◃▹
. . . ◃▹ Rn)). Each query can then be represented as a binary tree, where leaves cor-
respond to relations R1,. . . ,Rn and internal nodes represent relational operations, re-
ceiving as input the result produced by their children. The tree representing a query
is split in two parts: the lower part includes all operations that can be executed by
the server, while the upper part contains all operations that cannot be delegated to
the server and that therefore need to be executed by the client. In particular, since
a query can be represented with different, but equivalent, trees by simply pushing
down selections and postponing projections, the basic idea of the proposed solution
is to determine a tree representation of the query, where the operations that only the
client can execute are in the highest levels of the tree. For instance, if there are two
ANDed conditions in the query and only one can be evaluated at the server-side, the
selection operation is split in such a way that one condition is evaluated server-side
and the other client-side.

Hacigümüs et al. [57] show a method for splitting the query Qs to be executed
on the encrypted data into two sub-queries, Qs1 and Qs2, where Qs1 returns only tu-
ples that belongs to the final result, and query Qs2 may contain also spurious tuples.
This distinction allows the execution of Qc over the result of Qs2 only, while tuples
returned by Qs1 can be immediately decrypted. To further reduce the client’s work-
load, Damiani et al. [36] propose an architecture that minimizes storage at the client
and introduce the idea of selective decryption of Qs. With selective decryption, the
client decrypts the portion of the tuples needed for evaluating Qc, while complete
decryption is executed only for tuples that belong to the final result and that will be
returned to the final user. The approach is based on a block-cipher encryption algo-
rithm, operating at tuple level, that allows the detection of the blocks containing the
attributes necessary to evaluate the conditions in Qc, which are the only ones that
need decryption.

It is important to note that the process of transforming Q in Qs and Qc greatly
depends both on the indexing method adopted and on the clauses and conditions
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composing query Q. There are operations that need to be executed by the client,
since the indexing method adopted does not support the specific operations (e.g.,
range queries are not supported by all types of indexes) and the server is not al-
lowed to decrypt data. Also, there are operations that the server could execute over
the index, but that require a pre-computation that only the client can perform and
therefore must be postponed in Qc (e.g., the evaluation of a condition in the HAVING
clause, which needs a grouping over an attribute, whose corresponding index has
been created by using a method that does not support the GROUP BY clause).

2.3 Querying Encrypted Data

When designing a solution for querying encrypted data, one of the most important
goals is to minimize the computation at the client-side and to reduce communication
overhead. The server therefore should be responsible for the majority of the work.
Different indexing approaches allow the execution of different types of queries at
the server side.

We now describe in more detail the methods initially proposed to efficiently ex-
ecute simple queries at the server side, and we give an overview of more recent
methods that improve the server’s ability to query encrypted data.

2.3.1 Bucket-Based Approach

Hacigümüs et al. [58] propose the first method to query encrypted data, which is
based on the definition of a number of buckets on the attribute domain. Let ri be
a plaintext relation over schema Ri(ai1,ai2,. . . ,ain) and rk

i be the corresponding en-
crypted relation over schema Rk

i (Counter, Etuple,Ii1,. . . ,Iin). Considering an arbi-
trary plaintext attribute ai j in Ri, with domain Di j, bucket-based indexing meth-
ods partition Di j in a number of non-overlapping subsets of values, called buckets,
containing contiguous values. This process, called bucketization, usually generates
buckets that are all of the same size.

Each bucket is then associated with a unique value and the set of these values
is the domain for index Ii j associated with ai j. Given a plaintext tuple t in ri, the
value of attribute ai j for t (i.e., t[ai j]) belongs to only one bucket defined on Di j.
The corresponding index value is then the unique value associated with the bucket
to which the plaintext value t[ai j] belongs. It is important to note that, for better
preserving data secrecy, the domain of index Ii j may not follow the same order as the
one of the plaintext attribute ai j. Attributes I3 and I5 in Fig. 2.2(b) are the indexes
obtained by applying the bucketization method defined in Fig. 2.3 for attributes YoB
and Salary in Fig. 2.2(a). Note that I3 values do not reflect the order of the domain
values it represents, since 1975 < 1985, while δ follows γ in lexicographic order.
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Fig. 2.3 An example of bucketization

Bucket-based indexing methods allow the server-side evaluation of equality con-
ditions appearing in the WHERE clause, since these conditions can be mapped into
equivalent conditions operating on indexes. Given a plaintext condition of the form
ai j=v, where v is a constant value, the corresponding condition operating on index
Ii j is Ii j=β , where β is the value associated with the bucket containing v. As an
example, with reference to Fig. 2.3, condition YoB=1985 is transformed into I3=γ .
Also, equality conditions involving attributes defined on the same domain can be
evaluated by the server, provided that attributes characterized by the same domain
are indexed using the same bucketization. In this case, a plaintext condition of the
form ai j=aik is translated into condition Ii j=Iik operating on indexes.

Bucket-based methods do not easily support range queries. Since the index do-
main does not necessarily preserve the plaintext domain ordering, a range condition
of the form ai j≥v, where v is a constant value, must be mapped into a series of equal-
ity conditions operating on index Ii j of the form Ii j=β1 OR Ii j=β2 OR . . . OR Ii j=βk,
where β1, . . . ,βk are the values associated with buckets that correspond to plaintext
values greater than or equal to v. For instance, with reference to Fig. 2.3, condition
YoB>1977 must be translated into I3=γ OR I3=δ , since both values represent years
greater than 1977.

Note that, since the same index value is associated with more than one plain-
text value, queries exploiting bucket-based indexes usually produce spurious tuples
that need to be filtered out by the client front-end. Spurious tuples are tuples that
satisfy the condition over the indexes, but that do not satisfy the original plaintext
condition. For instance, with reference to the relations in Fig. 2.2, query “SELECT *
FROM Employee WHERE YoB=1985” is translated into “SELECT Etuple FROM
Employeek WHERE I3=γ”. The result of the query executed by the server contains
tuples 1, 3, 4, and 5; however, only tuple 3 satisfies the original condition as writ-
ten by the user. Tuples 1, 4, and 5 are spurious and must be discarded by the client
during the postprocessing of the Qs result.

Hore et al. [61] propose an improvement to bucket-based indexing methods by
introducing an efficient way for partitioning the domain of attributes. Given an at-
tribute and a query profile on it, the authors present a method for building an efficient
index, which tries to minimize the number of spurious tuples in the result of both
range and equality queries.

As we will see in Sect. 2.4, one of the main disadvantages of bucket-based in-
dexing methods is that they expose data to inference attacks.
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2.3.2 Hash-Based Approach

Hash-based index methods are similar to bucket-based methods and are based on
the concept of one-way hash function [35].

Let ri be a plaintext relation over schema Ri(ai1,ai2,. . . ,ain) and rk
i be the corre-

sponding encrypted relation over schema Rk
i (Counter, Etuple,Ii1,. . . ,Iin). For each

attribute ai j in Ri to be indexed, a one-way hash function h : Di j → Bi j is defined,
where Di j is the domain of ai j and Bi j is the domain of index Ii j associated with ai j.
Given a plaintext tuple t in ri, the index value corresponding to attribute ai j for t is
computed by applying function h to the plaintext value t[ai j].

An important property of any hash function h is its determinism; formally,
∀x,y ∈ Di j : x = y ⇒ h(x) = h(y). Another interesting property of hash functions
is that the codomain of h is smaller than its domain, so there is the possibility of
collisions; a collision happens when given two values x,y ∈ Di j with x ̸= y, we have
that h(x) = h(y). A further property is that h must produce a strong mixing, that is,
given two distinct but near values x,y (| x−y |< ε) chosen randomly in Di j, the dis-
crete probability distribution of the difference h(x)−h(y) is uniform (the results of
the hash function can be arbitrarily different, even for very similar input values). A
consequence of strong mixing is that the hash function does not preserve the domain
order of the attribute on which it is applied. As an example, consider the relations in
Fig. 2.2. Here, the indexes corresponding to attributes Emp-Id, Name, and Dept
in relation Employee are computed by applying a hash-based method. The values
of attribute Name have been mapped onto two distinct values, namely α and β ;
the values of attribute Emp-Id have been mapped onto two distinct values, namely
π and ϕ ; and the values of attribute Dept have been mapped onto three distinct
values, namely ε , θ , and µ . Like for bucket-based methods, hash-based methods
allow an efficient evaluation of equality conditions of the form ai j=v, where v is a
constant value. Each condition ai j=v is transformed into a condition Ii j=h(v), where
Ii j is the index corresponding to ai j in the encrypted relation. For instance, condi-
tion Name=“Alice” is transformed into I2=α . Also, equality conditions involving
attributes defined on the same domain can be evaluated by the server, provided that
these attributes are indexed using the same hash function. The main drawback of
hash-based methods is that they do not support range queries, for which a solution
similar to the one adopted for bucket-based methods is not viable: colliding values
are in general not contiguous in the plaintext domain.

If the hash function used for index definition is not collision free, then queries
exploiting the index produce spurious tuples that need to be filtered out by the client
front-end. A collision-free hash function guarantees absence of spurious tuples,
but may expose data to inference (see Sect. 2.4). For instance, assuming that the
hash function adopted for attribute Dept in Fig. 2.2(a) is collision-free, condition
Dept=“Financial” is translated into I4=µ , that will return only the tuples (in our
example, tuples with Counter equal to 3 and 5) that belong to the result of the
query that contains the corresponding plaintext condition.
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Fig. 2.4 An example of B+ tree indexing structure

2.3.3 B+ Tree Approach

Both bucket-based and hash-based indexing methods do not easily support range
queries, since both these solutions are not order preserving. Damiani et al. [35]
propose an indexing method that, while granting data privacy, preserves the order
relationship characterizing the domain of attribute ai j. This indexing method ex-
ploits the traditional B+ tree data structure used by relational DBMSs for physically
indexing data. A B+ tree with fan out n is a tree where every vertex can store up
to n−1 search key values and n pointers and, except for the root and leaf vertices,
has at least ⌈n/2⌉ children. Given an internal vertex storing f key values k1, . . . ,k f
with f ≤ n−1, each key value ki is followed by a pointer pi and k1 is preceded by a
pointer p0. Pointer p0 points to the subtree that contains keys with values lower than
k1, p f points to the subtree that contains keys with values greater than or equal to
k f , and each pi points to the subtree that contains keys with values included in the
interval [ki,ki+1). Internal vertices do not directly refer to tuples in the database, but
just point to other vertices in the structure; on the contrary, leaf vertices do not con-
tain pointers, but directly refer to the tuples in the database having a specific value
for the indexed attribute. Leaf vertices are linked in a chain that allows the efficient
execution of range queries. As an example, Fig. 2.4(a) represents the B+ tree index
built for attribute Name of relation Employee in Fig. 2.2(a). To access a tuple with
key value k, value k is first searched in the root vertex of the B+ tree. The tree is then
traversed by using the following scheme: if k < k1, pointer p0 is chosen; if k ≥ k f ,
pointer p f is chosen, otherwise if ki ≤ k < ki+1, pointer pi is chosen. The process
continues until a leaf vertex has been examined. If k is not found in any leaf vertex,
the relation does not contain any tuple having, for the indexed attribute, value k.

A B+ tree index can be usefully adopted for each attribute ai j in the schema of
relation Ri, provided ai j is defined over a partially ordered domain. The index is
built by the data owner over the plaintext values of the attribute, and then stored on
the remote server, together with the encrypted database. To this purpose, the B+ tree
structure is translated into a specific relation with the two attributes: Id, represents
the vertex identifier; and VertexContent, represents the actual vertex content. The
relation has a row for each vertex in the tree and pointers are represented through
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cross references from the vertex content to other vertex identifiers in the relation.
For instance, the B+ tree structure depicted in Fig. 2.4(a) is represented in the en-
crypted database by the relation in Fig. 2.4(b). Since the relation representing the
B+ tree contains sensitive information (i.e., the plaintext values of the attribute on
which the B+ tree is built) this relation has to be protected by encrypting its con-
tent. To this purpose, encryption is applied at the level of vertex (i.e., of tuple in
the relation), to protect the order relationship among plaintext and index values and
the mapping between the two domains. The corresponding encrypted relation has
therefore two attributes: Id that represents, as before, the identifier of the vertex;
and C that contains the encrypted vertex. Figure 2.4(c) illustrates the encrypted B+
tree relation that corresponds to the plaintext B+ tree relation in Fig. 2.4(b).

The B+ tree based indexing method allows the evaluation of both equality and
range conditions appearing in the WHERE clause. Moreover, being order preserving,
it also allows the evaluation of ORDER BY and GROUP BY clauses of SQL queries,
and of most of the aggregate operators, directly on the encrypted database. Given
the plaintext condition ai j≥v, where v is a constant value, it is necessary to traverse
the B+ tree stored on the server to find out the leaf vertex representing v for cor-
rectly evaluating the considered condition. To this purpose, the client queries the B+
tree relation to retrieve the root, which conventionally is the tuple t with t[Id]=1. It
then decrypts t[C], evaluates its content and, according to the search process above-
mentioned, queries again the remote server to retrieve the next vertex along the path
to v. The search process continues until a leaf vertex containing v is found (if any).
The client then follows the chain of leaf vertices starting from the retrieved leaf to
extract all the tuples satisfying condition ai j≥ v. For instance, consider the B+ tree
in Fig. 2.4(a) defined for attribute Name in relation Employee in Fig. 2.2(a). A
query asking for tuples where the value of attribute Name follows “Bob” in the lex-
icographic order is evaluated as follows. First, the root is retrieved and evaluated:
since “Bob” precedes “Carol”, the first pointer is chosen and vertex 2 is evaluated.
Since “Bob” is equal to the value in the vertex, the second pointer is chosen and
vertex 5 is evaluated. Vertex 5 is a leaf, and all tuples in vertices 5, 6, and 7 are
returned to the final user.

It is important to note that B+ tree indexes do not produce spurious tuples when
executing a query, but the evaluation of conditions is much more expensive for the
client with respect to bucket and hash-based methods. For this reason, it may be
advisable to combine the B+ tree method with either hash-based or bucket-based
indexing, and use the B+ tree index only for evaluating conditions based on inter-
vals. Compared with traditional B+ tree structures used in DBMSs, the vertices in
the indexing structure presented here do not have to be of the same size as a disk
block; a cost model can then be used to optimize the number of children of a vertex,
potentially producing vertices with a large number of children and trees with lim-
ited depth. Finally, we note that since the B+ tree content is encrypted, the method
is secure against inference attacks (see Sect. 2.4).



20 2 Overview of the State of the Art

2.3.4 Order Preserving Encryption Approaches

To support equality and range queries over encrypted data without adopting B+ tree
data structures, Agrawal et al. [4] present an Order Preserving Encryption Schema
(OPES). An OPES function has the advantage of flattening the frequency spectrum
of index values, thanks to the introduction of new buckets when needed. It is im-
portant to note here that queries executed over this kind of indexes do not return
spurious tuples. Also, OPES provides data secrecy only if the intruder does not
know the plaintext database or the domain of original attributes.

Order Preserving Encryption with Splitting and Scaling (OPESS) [96] is an evo-
lution of OPES that both supports range queries and does not suffer from inference
problems. This indexing method exploits the traditional B-tree data structure used
by relational DBMSs for physically indexing data. B-tree data structure is similar
to B+ tree data structure, but internal vertices directly refer to tuples in the database
and leaves of the tree are not linked in a unique list.

An OPESS index can be usefully adopted for each attribute ai j in the relation
schema Ri, provided ai j is defined over a partially ordered domain. The index is
built by the data owner over the plaintext values of the attribute, and then stored on
the remote server, together with the encrypted database. Differently from B+ tree
indexing structure, the B-tree data structure exploited by OPESS is built on index
values, and not on plaintext values. Therefore, before building the B-tree structure
to be remotely stored on the server, OPESS applies two techniques on the origi-
nal values of ai j, called splitting and scaling, aimed at obtaining a flat frequency
distribution of index values.

Consider attribute ai j defined on domain Di j and assume that the values
{v1, . . . ,vn} in the considered relation ri have occurrences, in the order, equal to
{ f1, . . . , fn}. First, a splitting process is performed on ai j, producing a number of in-
dex values having almost a flat frequency distribution. The splitting process applies
to each value vh assumed by ai j in ri. It determines three consecutive positive inte-
gers, m−1, m, and m+1, such that the frequency fh of value vh can be expressed as
a linear combination of the computed values: fh = c1(m−1)+ c2(m)+ c3(m+1),
where c1, c2, and c3 are non negative integer values. The plaintext value vh can
therefore be mapped into c1 index values each with m+ 1 occurrences, c2 index
values each with m occurrences, and c3 index values each with m− 1 occurrences.
To preserve the order of index values with respect to the original domain of attribute
ai j, for any two values vh < vl and for any index values ih and il associated with vh
and vl respectively, we need to guarantee that ih < il . To this purpose, the authors
in [96] propose to exploit an order preserving encryption function. Specifically, for
each plaintext value vh, its index values are obtained by adding a randomly chosen
string of low order bits to a common string of high order bits computed as follows:
ve

h = Ek(vh), where E is an order preserving encryption function with key k.
Since splitting technique grants the sum of frequencies of indexes representing

value v to be exactly the same as the original frequency of v, an attacker who knows
the frequency distribution of plaintext domain values could exploit this property
to break the indexing method adopted. Indeed, the index values mapping a given
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plaintext value are, by definition, contiguous values. Therefore, the authors in [96]
propose to adopt a scaling technique together with splitting. Each plaintext value vh
is associated with a scaling factor sh. When vh is split into n index values, namely
i1, . . . , in, each index entry in the B-tree corresponding to ih is replicated sh times.
Note that all sh replicas of the index point to the same block of tuples in the en-
crypted database. After scaling has been applied, the index frequency distribution is
not uniform any more. Without knowing the scaling factor used, it is not possible for
the attacker to reconstruct the correspondence between plaintext and index values.

The OPESS indexing method allows the evaluation of both equality and range
conditions appearing in the WHERE clause. Moreover, being order preserving, it
also allows the evaluation of ORDER BY and GROUP BY clauses of SQL queries,
and of most of the aggregate operators, directly on the encrypted database. It is im-
portant to note that query execution becomes expensive, even if it does not produce
spurious tuples, due to the fact that the same plaintext value is mapped into different
index values and both splitting and scaling methods need to be inverted for query
evaluation.

2.3.5 Other Approaches

In addition to the three main indexing methods previously presented, many other
solutions have been proposed to support queries on encrypted data. These methods
try to better support SQL clauses or to reduce the amount of spurious tuples in the
result produced by the remote server.

Wang et al. [97, 98] propose a new indexing method, specific for attributes whose
domain is the set of all possible strings over a well defined set of characters, which
adapts the hash-based indexing methods to permit direct evaluation of LIKE con-
ditions. The index value associated with any string s, composed of n characters
c1c2 . . .cn, is obtained by applying a secure hash function to each pair of subsequent
characters in s. Given a string s = c1c2 . . .cn = s1s2 . . .sn/2, where si = c2ic2i+1, the
corresponding index is computed as i = h(s1)h(s2) . . .h(sn/2).

Hacigümüs et al. [57] study a method to remotely support aggregation operators,
such as COUNT, SUM, AVG, MIN, and MAX. The method is based on the concept
of privacy homomorphism [19], which exploits properties of modular algebra to al-
low the execution over index values of sum, subtraction, and product operations,
while not preserving the order relationship characterizing the original domain. Ev-
dokimov et al. [47] formally analyze the security of the method based on privacy
homomorphism, with respect to the degree of confidentiality assigned to the remote
server. The authors formally introduce a definition of intrinsic security for encrypted
databases, and it is proved that almost all indexing methods are not intrinsically se-
cure. In particular, methods that do not cause spurious tuples to belong to the result
of a query inevitably are exposed to attacks coming from a malicious third party or
from the service provider itself.
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Query
Index Equality Range Aggregation
Bucket-based [58] • ◦ –
Hash-based [35] • – ◦
B+ Tree [35] • • •
OPES [4] • • ◦
OPESS [96] • • •
Character oriented [97, 98] • ◦ –
Privacy homomorphism [57] • – •
PPC [63] • • •
Secure index data structures [16, 20, 51, 93, 99] • ◦ –
• fully supported; ◦ partially supported; – not supported

Fig. 2.5 Indexing methods supporting queries

The Partition Plaintext and Ciphertext (PPC) is a new model for storing server-
side outsourced data [63]. This model proposes to outsource both plaintext and en-
crypted information that need to be stored on the remote server. In this model, only
sensitive attributes are encrypted and indexed, while the other attributes are released
in plaintext form. The authors propose an efficient architecture for the DBMS to
store together, and specifically in the same page of memory, both plaintext and en-
crypted data.

Different working groups [16, 20, 51, 93, 99] introduce other approaches for
searching keywords in encrypted documents. These methods are based on the def-
inition of a secure index data structure. The secure index data structure allows the
server to retrieve all documents containing a particular keyword without the need to
know any other information. This is possible because a trapdoor is introduced when
encrypting data, and such a trapdoor is then exploited by the client when querying
data. Other similar proposals are based on Identity Based Encryption techniques
for the definition of secure indexing methods. Boneh and Franklin [17] present an
encryption method allowing searches over ciphertext data, while not revealing any-
thing about the original data. This method is shown to be secure through rigorous
proofs. Although these methods for searching keywords over encrypted data have
been originally proposed for searching over audit logs or email repositories, they
are also well suited for indexing data in the outsourced database scenario.

Figure 2.5 summarizes the discussion by showing, for each indexing method
discussed, what type of query it (partially) supports. Here, an hyphen means that the
query is not supported, a black circle means that the query is fully supported, and a
white circle means that the query is partially supported.

2.4 Evaluation of Inference Exposure

Given a plaintext relation r over schema R(a1,a2,. . . ,an), it is necessary to decide
which attributes need to be indexed, and how the corresponding indexes can be de-
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fined. In particular, when defining the indexing method for an attribute, it is impor-
tant to consider two conflicting requirements: on one side, the indexing information
should be related to the data well enough to provide for an effective query execution
mechanism; on the other side, the relationship between indexes and data should not
open the door to inference and linking attacks that can compromise the protection
granted by encryption. Different indexing methods can provide different trade-offs
between query execution efficiency and data protection from inference. It is there-
fore necessary to define a measure for the risk of exposure due to the publication of
indexes on the remote server.

Although many techniques supporting different kinds of queries in the DAS sce-
nario have been developed, a deep analysis of the level of protection provided by all
these methods against inference and linking attacks is missing. In particular, expo-
sure has been evaluated for a few indexing methods only [24, 35, 37, 61].

Hore et al. [61] analyze the security issues related to the use of bucket-based
indexing methods. The authors consider data exposure problems in two situations:
i) the release of a single attribute, and ii) the publication of all the indexes associ-
ated with a relation. To measure the protection degree granted to the original data
by the specific indexing method, the authors propose to exploit two different mea-
sures. The first measure is the variance of the distribution of values within a bucket
b. The second measure is the entropy of the distribution of values within a bucket
b. The higher is the variance, the higher is the protection level granted to the data.
Therefore, the data owner should maximize, for each bucket in the relation, the cor-
responding variance. Analogously, the higher is the entropy of a bucket, the higher
is the protection level granted to the data. The optimization problem that the data
owner has to solve, while planning the bucketization process on a relation, is the
maximization of minimum variance and minimum entropy, while maximizing query
efficiency. Since such an optimization problem is NP-hard, Hore et al. [61] propose
an approximation method, which fixes a maximum allowed performance degrada-
tion. The objective of the algorithm is then to maximize both minimum variance and
entropy, while guaranteeing performances not to fall under an imposed threshold.

To the aim of taking into consideration also the risk of exposure due to associ-
ations, Hore et al. [61] propose to adopt, as a measure of the privacy granted by
indexes when posing a multi-attribute range query, the well known k-anonymity
concept [83]. Indeed, the result of a range query operating on multiple attributes
is exposed to data linkage with publicly available datasets. k-Anonymity is widely
recognized as a measure of the privacy level granted by a collection of released data,
where respondents can be re-identified (or the uncertainty about their identity lower
under a predefined threshold k) by linking private data with public data collections.

Damiani et al. [24, 35, 37] evaluate the exposure to inference due to the adoption
of hash-based indexing methods. Inference exposure is measured by taking into ac-
count the prior knowledge of the attacker, thus introducing two different scenarios.
In the first scenario, called Freq+DBk, the attacker is supposed to know, in addition
to the encrypted database (DBk), the domains of the plaintext attributes and the dis-
tribution of plaintext values (Freq) in the original database. In the second scenario,
called DB+DBk, the attacker is supposed to know both the encrypted (DBk) and the
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plaintext database (DB). In both scenarios, the exposure measure is computed as
the probability for the attacker to correctly map index values onto plaintext attribute
values. The authors show that, to guarantee a higher degree of protection against
inference, it is convenient to use a hash-based method that generates collisions. In
case of a hash-based method where the collision factor is equal to 1, meaning that
there is no collision, inference exposure measure depends only on the number of
attributes used for indexing. In the DB+DBk scenario, the exposure grows as the
number of attributes used for indexing grows. In the Freq+DBk scenario, the at-
tacker can discover the correspondences between plaintext and indexing values by
comparing their occurrence profiles. Intuitively, the exposure grows as the number
of attributes with a different occurrence profile grows. For instance, considering
relation Employee in Fig. 2.2(a), we can notice that both Salary and the corre-
sponding index I5 have a unique value with one occurrence only, that is, 20 and ρ ,
respectively. We can therefore conclude that the index value corresponding to 20 is
ρ , and that no other salary value is mapped into ρ as well.

Damiani et al. [37] extend the inference exposure measures presented in [24, 35]
to produce an inference measure that can be associated with the whole relation in-
stead of with single attributes. The authors propose two methods for aggregating the
exposure risk measures computed at attribute level. The first method exploits the
weighted mean operator and weights each attribute ai proportionally with the risk
connected with the disclosure of the values of ai. The second one exploits the OWA
(Ordered Weighted Averaging) operator, which allows the assignment of different
importance values to different sets of attributes, depending on the degree of protec-
tion guaranteed by the indexing method adopted for the specific subset of attributes.

Agrawal et al. [4] evaluate the exposure to inference due to the adoption of
OPESS as an indexing method, under the Freq+DBk scenario. They prove that the
solution they propose is intrinsically secure, due to the flat frequency distribution of
index values and to the additional guarantee given by scaling method, which avoids
the combination of the attackers frequency knowledge with the knowledge of the
indexing method adopted.

2.5 Integrity of Outsourced Data

The database outsourcing scenario usually assumes the server to be “honest-but-
curious”, and that clients and data owners trust it to faithfully maintain outsourced
data. However, this assumption is not always applicable and it is also important to
protect the database content from improper modifications (data integrity). The ap-
proaches proposed in the literature have the main goal of detecting unauthorized
updates of remotely stored data [56, 73, 74, 92]. Hacigümüs et al. [56] propose to
add a signature to each tuple in the database. The signature is computed by digi-
tally signing, with the private key of the owner, a hash value obtained through the
application of a hash function to the tuple content. The signature is then added to
the tuple before encryption. When a client receives a tuple, as a result of its query, it
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can verify if the tuple has been modified by an entity different from the data owner.
The verification process consists in recomputing the hash over the tuple content and
checking whether there is a match with the value stored in the tuple itself. In addition
to tuple level integrity, also relation level integrity (i.e., absence of non authorized
insertions and deletions of tuples) needs to be preserved. Therefore, for each rela-
tion, a signature computed on the basis of the tuples in the relation is added. An
advantage of the proposed method is that relation level signature does not need to
be recomputed any time a tuple is inserted or deleted because the old signature can
be adapted to the new content, thus saving computation time at the data owner side.

Since an integrity check performed on each tuple in the result set of a query can
be quite expensive, Mykletun et al. [73] propose methods for checking the signa-
ture of a set of tuples in a single operation. The first method, called condensed RSA,
works only if the tuples in the set have been signed by the same user; the second
method, which is based on bilinear mappings and is less efficient than condensed
RSA, is called BGLS (from the name of the authors who first proposed this sig-
nature method [18]) and works even if the tuples in the set have been signed by
different users. A major drawback of these solutions is that they do not guarantee
the immutability property. Immutability means that it is difficult to obtain a valid
aggregated signature from a set of other aggregated signatures. To solve this prob-
lem, Mykletun et al. [72] propose alternative solutions based on zero knowledge
protocols.

Narasimha and Tsudik [74] present another method, called Digital Signature Ag-
gregation and Chaining (DSAC), that is again based on hash functions and signa-
ture. Here, the main goal is to evaluate whether the result of a query is complete and
correct with respect to the database content. This solution builds over each relation
chains of tuples, one for each attribute that may appear in a query, that are ordered
according to the attribute value. The signed hash associated with a tuple is then
computed by composing the hash value associated with the immediate predecessors
of the considered tuple in all the chains. This solution is quite expensive when there
are different chains associated with a relation.

Sion [92] proposes a method to ensure result accuracy and guarantee that the
server correctly executes the query on the remote data. The method works for batch
queries and is based on the pre-computation of tokens. Basically, before outsourcing
the database, the data owner pre-computes a set of queries on plaintext data and
associates, with each query, a token computed by using a one-way cryptographic
hash function on the query results, concatenated with a nonce. Any set of batch
queries submitted to the server contains then a subset of pre-computed queries, along
with the corresponding tokens, and fake tokens. The server, when answering, has to
indicate which are the queries in the batch set that correspond to the given tokens. If
the server correctly individuates which tokens are fake, the client is guaranteed that
the server has executed all the queries in the set.
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2.6 Privacy Protection of Databases

Often encryption of the whole database containing sensitive data is an overdo, since
not all the data are sensitive per se but only their association needs protection. To
reduce the usage of encryption in data outsourcing, thus improving query execution
efficiency, it is convenient to combine fragmentation and encryption techniques [2].
In [2] the authors propose an approach where privacy requirements are modeled sim-
ply through confidentiality constraints (i.e., sets of attributes whose joint visibility
must be prevented) and are enforced by splitting information over two independent
database servers (so to break associations of sensitive information) and by encrypt-
ing information only when strictly necessary. By assuming that only trusted clients
know the two service providers (each of which is not aware of the existence of the
other server), sensitive associations among data can be broken by fragmenting the
original data. When fragmentation is not sufficient for solving all confidentiality
constraints characterizing the data collection, data encryption can be exploited. In
this case, the key used for encrypting the data is stored on one server and the en-
crypted result on the other one. Alternatively, other data obfuscation methods can be
exploited; the parameter value is stored on one server and the obfuscated data on the
other one. Since the original data collection is divided on two non-communicating
servers, the evaluation of queries formulated by trusted users requires the presence
of a trusted client for possibly combining the results coming from the two servers.
The original query is split in two subqueries operating at each server, which results
are then joined and refined by the client. The process of query evaluation becomes
therefore expensive, especially if fragmentation does not take into account the query
workload characterizing the system (i.e., when attributes frequently appearing in the
same query are not stored on the same server). After proving that identifying a frag-
mentation that minimizes query execution costs at the client side is NP-hard (this
problem can be reduced to the hypergraph coloring problem), the authors propose a
heuristic algorithm producing good results.

While presenting an interesting idea, the approach in [2] suffers from several
limitations. The main limitation is that privacy relies on the complete absence of
communication between the two servers, which have to be completely unaware of
each other. This assumption is clearly too strong and difficult to enforce in real
environments. A collusion among the servers (or the users accessing them) easily
breaches privacy. Also, the assumption of two servers limits the number of associ-
ations that can be solved by fragmenting data, often forcing the use of encryption.
The solution presented in Chap. 4 overcomes the above limitations: it allows stor-
ing data even on a single server and minimizes the amount of data represented in
encrypted format, therefore allowing for efficient query execution.

A related line of work is represented by [13, 14], where the authors exploit func-
tional dependencies to the aim of correctly enforcing access control policies. In [14]
the authors propose a policy based classification of databases that, combined with
restriction of the query language, preserves the confidentiality of sensitive infor-
mation. The classification of a database is based on the concept of classification
instance, which is a set of tuples representing the combinations of values that need
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to be protected. On the basis of the classification instance, it is always possible to
identify the set of allowed queries, that is, the queries whose evaluation return tuples
that do not correspond to the combinations represented in the classification instance.
In [13] the authors define a mechanism for defining constraints that reduce the prob-
lem of protecting the data from inferences to the enforcement of access control in
relational databases.

2.7 Access Control Enforcement in the Outsourcing Scenario

Traditional works on data outsourcing assume all users to have complete access
to the whole database by simply knowing the (unique) encryption key adopted for
data protection. However, this simplifying assumption does not fit current scenarios
where different users may need to see different portions of the data, that is, where
selective access needs to be enforced, also because the server cannot be delegated
such a task. Adding a traditional authorization layer to the current outsourcing sce-
narios requires that when a client poses a query, both the query and its result have
to be filtered by the data owner (who is in charge of enforcing the access control
policy), a solution that however is not applicable in a real life scenario. More recent
researches [15, 33, 70, 102] have addressed the problem of enforcing selective ac-
cess on outsourced encrypted data by combining cryptography with authorizations,
thus enforcing access control via selective encryption. Basically, the idea is to use
different keys for encrypting different portions of the database. These keys are then
distributed to users according to their access rights.

The naive solution for enforcing access control through selective encryption con-
sists in using a different key for each resource in the system, and in communicating
to each user the set of keys associated with the resources she can access. This solu-
tion correctly enforces the policy, but it is very expensive since each user needs to
keep a number of keys that depends on her privileges. That is, users having many
privileges and, probably, often accessing the system, will have a greater number
of keys than users having a few privileges and, probably, accessing only rarely the
system. To reduce the number of keys a user has to manage, access control mecha-
nisms based on selective encryption exploit key derivation methods. A key deriva-
tion method is basically a function that, given a key and a piece of publicly available
information, allows the computation of another key. The basic idea is that each user
is given a small number of keys from which she can derive all the keys needed to
access the resources she is authorized to access.

To the aim of using a key derivation method, it is necessary to define which keys
can be derived from another key and how. Key derivation methods proposed in the
literature are based on the definition of a key derivation hierarchy. Given a set of
keys K in the system and a partial order relation ≼ defined on it, the corresponding
key derivation hierarchy is usually represented as a pair (K ,≼), where ∀ki,k j ∈K ,
k j ≼ ki iff k j is derivable from ki. Any key derivation hierarchy can be graphically
represented through a directed acyclic graph, having a vertex for each key in K ,
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and a path from ki to k j only if k j can be derived from ki. Depending on the partial
order relationship defined on K , the key derivation hierarchy can be: a chain (i.e.,
≼ defines a total order relation); a tree; or a directed acyclic graph (DAG). The dif-
ferent key derivation methods can be classified on the basis of the kind of hierarchy
they are able to support, as follows.

• The hierarchy is a chain of vertices [85]. Key k j of a vertex is computed on the
basis of key ki of its (unique) direct ancestor (i.e., k j = f (ki)) and no public
information is needed.

• The hierarchy is a tree [54, 85, 86]. Key k j of a vertex is computed on the basis
of key ki of its (unique) parent and on the publicly available label l j associated
with k j (i.e., k j = f (ki, l j)).

• The hierarchy is a DAG [6, 8, 31, 59, 62, 67, 69, 87, 91]. Since each vertex in
a DAG can have more than one direct ancestor, key derivation methods are in
general more complex than the methods used for chains or trees. There are many
proposals that work on DAGs; typically they exploit a piece of public information
associated with each vertex of the key derivation hierarchy. In [8], Atallah et al.
introduce a new class of methods that maintain a piece of public information,
called token, associated with each edge in the hierarchy. Given two keys, ki and
k j arbitrarily assigned to two vertices, and a public label l j associated with k j,
a token from ki to k j is defined as ti, j=k j ⊕ h(ki, l j), where ⊕ is the n-ary xor
operator and h is a secure hash function. Given ti, j, any user knowing ki and with
access to public label l j, can compute (derive) k j. All tokens ti, j in the system are
stored in a public catalog.

It is important to note that key derivation methods operating on trees can be used
for chains of vertices, even if the contrary is not true. Analogously, key derivation
methods operating on DAGs can be used for trees and chains, while the converse is
not true.

Key derivation hierarchies have also been adopted for access control enforcement
in contexts different from data outsourcing. For instance, pay-tv systems usually
adopt selective encryption for selective access enforcement and key hierarchies to
easily distribute encryption keys [12, 79, 94, 95, 100]. Although these applications
have some similarities with the DAS scenario, there are important differences that do
not make them applicable for data outsourcing. First, in the DAS scenario we need
to protect stored data, while in the pay-tv scenario streams of data are the resources
that need to be protected. Second, in the DAS scenario key derivation hierarchies
are used to reduce the number of keys each user has to keep secret, while in the
pay-tv scenario a key derivation hierarchy is exploited for session key distribution.

The main problem any solution adopting selective encryption suffers from is that
they require data re-encryption for policy updates, thus causing the data owner’s
intervention any time the policy is modified. The selective encryption solution pro-
posed in Chap. 3 is organized to both reduce the client burden in data access and the
data owner intervention in policy updates.
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2.8 Safe Data Integration

Data outsourcing scenarios typically assume data to be managed by a unique ex-
ternal server, managing sensitive information. As already noted for solutions com-
bining fragmentation and encryption for privacy purposes, data may also be stored
at different servers. Furthermore, emerging scenarios often require different parties
to cooperate with other parties to the aim of sharing information and perform dis-
tributed computations. Cooperation for query execution implies data to flow among
parties. Therefore, it is necessary to provide the system with solutions able to en-
force access control restrictions in data exchange for distributed query evaluation.
Indeed, classical works on the management of queries in centralized and distributed
systems [11, 23, 26, 64, 68, 90, 101] cannot be exploited in such a scenario. These
approaches in fact describe how efficient query plans can be obtained, but do not
take into consideration constraints on attribute visibility for servers. However, in
light of the crucial role that security has in the construction of future large-scale
distributed applications, a significant amount of research has recently focused on
the problem of processing distributed queries under protection requirements. Most
of these works [21, 46, 48, 52, 66, 75] are based on the concept of access pattern, a
profile associated with each relation/view where each attribute has a value that may
either be i or o (i.e., input or output). When accessing a relation, the values for all i
attributes must be supplied, to obtain the corresponding values of o attributes. Also,
queries are represented in terms of Datalog, a query language based on the logic
programming paradigm. The main goal of all these works is that of identifying the
classes of queries that a given set of access patterns can support; a secondary goal is
the definition of query plans that match the profiles of the involved relations, while
minimizing some cost parameter (e.g., the number of accesses to data sources [21]).
In Chap. 5, we propose a complementary approach to access patterns that can be
considered a natural extension of the approach normally used to describe database
privileges in a relational schema; our approach introduces a mechanism to define
access privileges on join paths; while access patterns describe authorizations as spe-
cial formulas in a logic programming language for data access. Also, the model
presented in Chap. 5 explicitly manages a scenario with different independent sub-
jects who may cooperate in the execution of a query, whereas the work done on
access patterns only considers two actors, the owner of the data and a single user
accessing the data.

In [80], the authors propose a model based on the definition of authorization
views that implicitly define the set of queries that a user can view. A query is al-
lowed if it can be answered using only the information in the authorization views
regulating the system. An interesting advantage of this model is the exploitation
of referential integrity constraints for the automatic identification of security com-
pliance of queries with respect to views. It is interesting to note that the approach
in [80] operates at a low level since it analyzes the integration with a relational
DBMS optimizer and focuses on the consideration of “instantiated” queries (i.e.,
queries that present predicates that force attributes to assume specific values) aim-
ing at evaluate compatibility of the instantiated queries with the authorized views.
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The approach proposed in Chap. 5 operates at a higher level, proposing an overall
data-model characterizing views and focusing on the data integration scenario at a
more abstract level.

Sovereign joins [3] represent an interesting alternative solution for secure infor-
mation sharing. This method is based on a secure coprocessor, which is involved
in query execution, and exploits cryptography to grant privacy. The advantage of
sovereign joins is that they extend the plans that allow an execution in the scenario
we present; the main obstacle is represented by their high computational cost, due
to the use of specific asymmetric cryptography primitives, that make them currently
not applicable when large collections of sensitive information must be combined.

2.9 Chapter Summary

Database outsourcing is becoming an emerging data management paradigm that
introduces many research challenges. In this chapter, we focused on the solutions
known in the literature for solving problems related to query execution and access
control enforcement. For query execution, different indexing methods have been
discussed. These methods mainly focus on supporting specific kind of queries and
on minimizing the client burden in query execution. Fragmentation has also been
proposed as a method for reducing encryption and improving query execution per-
formance. Access control enforcement is instead a relative new issue for the DAS
scenario and has not been deeply studied. The most important proposal for enforcing
access control on outsourced encrypted data is based on selective encryption and key
derivation strategies. Finally, the evaluation of queries when outsourced data are dis-
tributed at different servers requires a deeper collaboration among servers as well as
mechanisms regulating the exchange of data among the collaborating parties. This
problem has been addressed in some proposals that are based on the access pattern
concept.

In the following of this book, we will analyze more in depth the access control,
proposing a new mechanism based on selective encryption, and we will study a
solution to the well known problem of dynamically manage access control updates.
We will also focus on the usage of fragmentation for reducing encryption, trying to
overcome the limitations of the proposal in [2]. Furthermore, we will address the
problem related to the execution of queries on distributed data, modeling authorized
data flows among involved parties in a simple while powerful manner.



Chapter 3
Selective Encryption to Enforce Access Control1

Data outsourcing is emerging today as a successful paradigm allowing users and
organizations to exploit external services for the distribution of resources. A cru-
cial problem to be addressed in this context concerns the enforcement of selective
authorization policies and the support of policy updates in dynamic scenarios.

In this chapter, we present a novel solution for the enforcement of access control
and the management of its evolution. Encryption is the traditional way in which a
third party can be prevented from accessing information it would have otherwise
access to, either because it controls a channel transmitting it or because it reads its
stored representation. Our proposal is based on the application of selective encryp-
tion as a means to enforce authorizations. Also, the model here proposed represents
a first solution for efficiently managing policy updates, limiting the adoption of ex-
pensive re-encryption techniques.

3.1 Introduction

Contrary to the vision of a few years ago, where many predicted that Internet users
would have in a short time exploited the availability of pervasive high-bandwidth
network connections to activate their own servers, users are today, with increasing
frequency, resorting to service providers for disseminating and sharing objects they
want to make available to others.

The continuous growth of the amount of digital information to be stored and
widely distributed, together with the always increasing storage, support the view
that service providers will be more and more requested to be responsible for the
storage and the efficient and reliable distribution of content produced by others,
realizing a “data outsourcing” architecture on a wide scale. This important trend

1 Part of this chapter appeared under S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S.
Paraboschi, and P. Samarati, “Encryption Policies for Regulating Access to Outsourced Data,”
in ACM Transactions on Database Systems (TODS), Vol. 35:2, April, 2010 [44] ©2010 ACM, Inc.
Reprinted by permission http://doi.acm.org/10.1145/1735886.1735891

S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51, 31 
DOI 10.1007/978-1-4419-7659-8_3, © Springer Science+Business Media, LLC 2011
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is particularly clear when we look at the success of services like YouTube, Flickr,
Blogger, MySpace, and many others in the “social networking” environment.

When storage and distribution do not involve publicly releasable objects, selec-
tive access techniques must be enforced. In this context, it is legitimate for the data
owner to demand the data not to be disclosed to the service provider itself, which,
while trustworthy to properly carry out the object distribution functions, should not
be allowed access to the object content.

The problem of outsourcing object management to a “honest-but-curious” ser-
vice has recently received considerable attention by the research community and
several advancements have been proposed. The different proposals require the
owner to encrypt the data before outsourcing them to the remote server. Most pro-
posals assume that the data are encrypted with a single key only [24, 55, 58]. In
such a context, either authorized users are assumed to have the complete view on
the data or, if different views need to be provided to different users, the data owner
needs to participate in the query execution to possibly filter the result computed by
the service provider.

A relatively limited research effort has been dedicated to the integration of ac-
cess control and encryption. A traditional observation of the community working on
access control is indeed that the two concepts have to be carefully kept distinct, fol-
lowing the classical principle of “Separation between policy and mechanism”. Cryp-
tography is traditionally a “mechanism” for the protection of information, whereas
access control focuses on the models and solutions for the representation of “poli-
cies”. While the separation between authorization-based access control and cryp-
tographic protection has been beneficial, we maintain that in the data outsourcing
scenario such a combination can prove successful.

In this chapter we present an approach merging permissions and encryption and
allowing access control to be outsourced together with the data. The significant
advantage is that the data owner, while specifying the policy, need not to be involved
in its enforcement. The owner only defines access permissions and generates the
corresponding encryption keys, tuning the protection on sensitive data. To give users
different access rights, all the owner has to do is to ensure that each user can compute
the right set of decryption keys needed to access the objects she is authorized to see.

The idea of using different encryption keys for different objects is in itself not
new [12, 70, 79, 94], but the problem of applying it in the data outsourced scenario
introduces several challenges that have not been investigated in previous proposals.
First of all, it is desiderable to define an approach to generate and distribute to each
user a single encryption key, supporting fast and secure derivation of the set of keys
needed to access the set of data the user is authorized to access. Our basic technique
fulfills this requirement and is independent from any specific data model; also, it
does not rely on any specific authorization language, as the translation of the access
control policy into a key derivation scheme is completely transparent to the owners.

Building on the base model we propose a two-layer approach to enforce selective
encryption without requesting the owner to re-encrypt the objects every time there
is a change in the authorization policy. The first layer of encryption is applied by
the data owner at initialization time (when releasing the data for outsourcing), the
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second layer of encryption is applied by the service provider itself to take care of
dynamic policy changes. Intuitively, the two-layer encryption allows the owner to
outsource, besides the object storage and dissemination, the authorization policy
management, while not releasing data to the provider.

Finally, we provide a characterization of the different views of the objects by
different users and characterize potential risks of information exposures due to dy-
namic policy changes. The investigation allows us to conclude that, while an expo-
sure risk may exist, it is identifiable. This allows the owner to address the problem
and minimize it at design time.

An important strength of our solution is that it does not substitute the current pro-
posals [35, 55, 58], rather it complements them, enabling them to support encryption
in a selective form and easily enforce dynamic policy changes.

3.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 3.2 presents prelimi-
nary concepts on relational databases that will be used in the following of the book.
Section 3.3 proposes an access control system based on selective encryption and key
derivation techniques. Section 3.4 introduces the definition of minimal encryption
policy and shows that the problem of computing a minimal encryption policy is NP-
hard, while Sect. 3.5 presents a heuristic algorithm for solving this problem in poly-
nomial time. Section 3.6 illustrates a solution for efficiently manage policy updates
in the model previously introduced. Section 3.7 proposes a solution based on two
layers of encryption for managing policy updates without resorting to re-encryption.
Section 3.8 illustrates the management of policy updates in this scenario. Section 3.9
presents an evaluation of the collusion risk to which data are exposed. Section 3.10
presents the experimental results obtained by the implementation of the heuristic
algorithm proposed for computing a minimal encryption policy. Finally, Sect. 3.11
presents our concluding remarks.

3.2 Relational Model

In the rest of this book, for simplicity, we will refer our discussion to the well known
relational database model, while noting that all the discussions and results proposed
also apply to other models (e.g., XML). We note also that the emphasis on relational
databases must not be considered a limitation. First, relational database technology
currently dominates the management of data in most scenarios where collections
of sensitive information have to be integrated over a network; even if a system of-
fers access to the data using Web technology, the data offered by the system are
extracted from a relational database and a description of the access policy in terms
of the underlying relational structure offers a high degree of flexibility. Second, for
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integrated solutions based on Web technology, particularly systems relying on the
use of Web services, it is always possible to model the structure of the exported
data in terms of a relational representation, and in this situation a description of the
access policy according to our model, rather than using a policy description on ser-
vices invocations, typically provides a more robust and flexible identification of the
security requirements of the application.

3.2.1 Basic Concepts and Notation

We use the standard notations of the relational database model. Formally, let A
be a set of attributes and D be a set of domains. At the schema level, a relation is
characterized by a name R and a set {a1, . . . , an} of attributes, where each ai is
defined on a domain Di ∈D , i = 1, . . . ,n. Notation R(a1,. . . ,an) represents a relation
schema R over the set {a1,. . . ,an} of attributes; R.∗ refers to the set {a1, . . . , an}
of attributes in the relation. At the schema level, a database is characterized by a
name R and a set {R1,. . . ,Rm} of relation schemas. At the instance level, a relation
r over schema R(a1,. . . ,an) is a set of tuples over set {a1,. . . ,an}. A tuple t over
a set of attributes {a1,. . . ,an} is a function that associates with each attribute ai a
value v ∈ Di. Given an attribute a and a set A of attributes, t[a] denotes the value of
attribute a in t and t[A] the sub-tuple composed of all values of attributes in A.

Each relation has a primary key which is the attribute, or the set of attributes, that
uniquely identifies each tuple in the relation. Given a relation Ri, Ki ⊆ Ri.∗ denotes
Ri’s primary key attributes. Primary key attributes cannot assume NULL values and
two tuples in the relation cannot assume the same value for the primary key. This lat-
ter condition implies the existence of a functional dependency between the primary
key of a relation and any other attribute in the relation. Given a relation R(a1,. . . ,an)
and two non-empty subsets Ai and A j of the attributes {a1,. . . ,an}, there is a func-
tional dependency on R between Ai and A j if for each pair of tuples tl , tm of r with
the same values on attributes in Ai, tl and tm have also the same values on attributes
in A j. Without loss of generality, we assume that only functional dependencies given
by the primary key hold in the relations. This assumption does not limit the applica-
bility of our solution since it is similar to the common database schema requirement
that the relations satisfy the Boyce-Codd Normal Form (BCNF), to avoid redundan-
cies and undesirable side-effects during update operations, and it is usually achiev-
able using adequate decomposition procedures [49].

The primary key Ki of a relation Ri can also appear, or more precisely, be refer-
enced by a set of attributes FK j, in another relation R j. In such a case, FK j, called
foreign key, can assume only values that appear for Ki in the instance of Ri. This is
formalized by the definition of referential integrity constraint which, assuming for
simplicity absence of NULL values for the foreign key, is as follows.

Definition 3.1 (Referential integrity). Given two relation schemas Ri,R j ∈ R and
a set of attributes FK j ⊆ R j.∗, there is a referential integrity constraint from FK j to
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Ki if and only if for any possible instance ri of Ri and r j of R j, ∀t j ∈ r j there exists
a tuple ti ∈ ri such that t j[FK j] = ti[Ki].

In the following, we use ⟨FK j,Ki⟩ to denote a referential integrity constraint
between FK j and Ki. Also, I denotes the set of all referential integrity constraints
defined over R.

3.3 Access Control and Encryption Policies

Considering the data outsourcing scenario described in Sect. 2.2, we present a for-
mal model for representing access control and encryption polices along with the
public catalog necessary for users to compute the encryption keys necessary to ac-
cess data and interacting with the server.

3.3.1 Access Control Policy

We assume that the data owner defines a discretionary access control policy to reg-
ulate access to the distributed objects, which may be defined at different granularity
(i.e., an object can be a cell, a tuple, an attribute, or even a whole relation) without
the need of any adaptation to the model proposed in the following, which assumes
that each tuple represents a distinct object. Consistently with the scenario described,
we assume access by users to the outsourced objects to be read-only while write op-
erations are to be performed at the owner’s site (typically by the owner itself). Per-
missions that need to be enforced through encryption are of the form ⟨user,object⟩.2
Give a set U of users and a set O of objects (i.e., resources), we define an autho-
rization policy over U and O as follows.

Definition 3.2 (Authorization policy). Let U and O be the set of users and objects
in the system, respectively. An authorization policy over U and O , denoted A , is a
triple ⟨U ,O,P⟩, where P is a set of permissions of the form ⟨u,o⟩, with u ∈ U
and o ∈ O , stating the accesses to be allowed.

The set of permissions can be represented through an access matrix MA , with a row
for each user u∈U and a column for each object o∈O [84]. Each entry MA [u,o] is
set to 1 if u can access o; 0 otherwise. Given an access matrix MA over sets U and
O , acl(o) denotes the access control list of o (i.e., the set of users that can access
o).

We model an authorization policy as a directed and bipartite graph GA having a
vertex for each user u ∈ U and for each object o ∈ O , and an edge from u to o for

2 For the sake of simplicity, we do not deal with the fact that permissions can be specified for
groups of users and groups of objects. Our approach supports dynamic grouping, thus subsuming
any statically defined group.
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o1 o2 o3 o4 o5 o6 o7 o8 o9
A 0 0 0 0 0 1 1 0 1
B 0 0 1 1 1 0 0 1 1
C 0 0 1 1 1 0 0 0 1
D 1 1 0 0 0 1 1 1 1
E 0 0 0 0 0 1 1 1 1
F 0 0 0 0 0 1 1 1 1
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Fig. 3.1 An example of access matrix (a) and authorization policy graph (b)

each permission ⟨u,o⟩ ∈ P to be enforced. Since our modeling of the problem and
its solution will exploit graphs, we explicitly define GA as follows.

Definition 3.3 (Authorization policy graph). Let A = ⟨U ,O,P⟩ be an autho-
rization policy. The authorization policy graph over A , denoted GA , is a graph
⟨VA ,EA ⟩, where VA = U ∪O and EA = {(u,o) : ⟨u,o⟩ ∈ P}.

In the following, we will use A−→ to denote reachability of vertices in graph GA .
Consequently, we will use u A−→o and ⟨u,o⟩ ∈ P indistinguishably to denote that
user u is authorized to access object o according to policy A .

It is easy to see that the access matrix MA corresponds to the adjacency matrix3

of the authorization policy graph GA . Figure 3.1 illustrates an example of authoriza-
tion policy with 6 users, 9 objects, and 26 permissions, reporting the access matrix
and the corresponding authorization policy graph.

3.3.2 Encryption Policy

Our goal is to represent the authorization policy by means of proper object encryp-
tion and key distribution. We assume, for efficiency reasons, to adopt symmetric
encryption. A naive solution to our goal would consist in encrypting each object
with a different key and assigning to each user the set of keys used to encrypt the

3 Being the graph bipartite and directed, we consider the adjacency matrix to report only rows and
columns that correspond to users and objects, respectively.
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objects she can access. Such a solution is clearly unacceptable, since it would re-
quire each user to manage as many keys as the number of objects she is authorized
to view.

To avoid users having to store and manage a huge number of (secret) keys, we
exploit a key derivation method. Among all the key derivation methods, the proposal
in [8] minimizes the amount of re-encrypting and re-keying that must be done fol-
lowing any change in the authorization policy. The method is based on the definition
and computation of public tokens. Let K be the set of symmetric encryption keys in
the system. Given two keys ki and k j in K , a token ti, j is defined as ti, j=k j⊕h(ki,l j),
where l j is a publicly available label associated with k j, ⊕ is the bitwise xor opera-
tor, and h is a deterministic cryptographic function. The existence of a public token
ti, j allows a user knowing ki to derive key k j, through token ti, j and public label l j.
Since keys need to remain secret, while tokens are public, the use of tokens greatly
simplifies key management. Key derivation via tokens can be applied in chains: a
chain of tokens is a sequence ti,l . . . tn, j of tokens such that tc,d directly follows ta,b in
the chain only if b = c.

A major advantage of using tokens is that they are public and allow the user to de-
rive multiple encryption keys, while having to worry about a single one. Exploiting
tokens, the release to the user of a set of keys K = {k1, . . . ,kn} can be equivalently
obtained by the release to each user of a single key ki∈ K and the publication of a
set of tokens allowing the (direct or indirect) derivation of all keys k j∈ K, j ̸= i. In
the following, we use K to denote the set of symmetric keys in the system, T to
denote the set of tokens defined in the system, and L to denote the set of labels
associated with the keys in K and used for computing the tokens in T .

Since tokens are public information, we assume to store them on the remote
server (just like the encrypted data), so any user can access them. We model the
relationships between keys through tokens allowing derivation of one key from an-
other, via a graph, called key and token graph. The graph has a vertex for each pair
⟨k, l⟩ denoting key k and corresponding label l. There is an edge from a vertex ⟨ki, li⟩
to a vertex ⟨k j, l j⟩ if there exists a token ti, j allowing the derivation of k j from ki.
The graph is formally defined as follows.

Definition 3.4 (Key and token graph). Let K be a set of keys, L be a set of
publicly available labels, and T be a set of tokens defined on them. A key and to-
ken graph over K , L , and T , denoted GK ,T , is a graph ⟨VK ,T ,EK ,T ⟩, where
VK ,T ={⟨ki, li⟩ : ki ∈ K , li ∈ L is the label associated with ki} and EK ,T =
{(⟨ki, li⟩,⟨k j, l j⟩) : ti, j ∈ T }.

The graphical representation of keys and tokens nicely captures the derivation
relationship existing between keys, which can be either direct, by means of a single
token, or indirect, via a chain of tokens, corresponding to a path in the key and token
graph.

The definition of tokens allows us to easily support the assumption that each user
can be released only a single key and that each object can be encrypted by using a
single key. Note that these are not simplifying or limiting assumptions, rather they
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are desiderata that we impose our solution to satisfy. We then require our solution
to operate under the following assumption.

Assumption 3.1 Each object can be encrypted with only one key. Each user can be
released only one key.

We also assume that each key is uniquely identified through the label associated
with it. A key assignment and encryption schema ϕ determines the labels of the
keys assigned to users and of the keys used for encrypting objects and is defined as
follows.

Definition 3.5 (Key assignment and encryption schema). Let U ,O,K ,L be the
set of users, objects, keys, and labels in the system, respectively. A key assignment
and encryption schema over U ,O,K ,L is a function ϕ : U ∪O → L that asso-
ciates with each user u∈ U the label l ∈ L identifying the (single) key k in K
released to her and with each object o∈ O the label l ∈ L identifying the (single)
key k in K with which the object is encrypted.

We are now ready to introduce the definition of encryption policy as follows.

Definition 3.6 (Encryption policy). Let U and O be the set of users and objects
in the system, respectively. An encryption policy over U and O , denoted E , is a
6-tuple ⟨U ,O,K ,L ,ϕ ,T ⟩, where K is the set of keys defined in the system, L
is the set of corresponding labels, ϕ is a key assignment and encryption schema, and
T is a set of tokens defined on K and L .

The encryption policy can be conveniently represented via a graph by extending
the key and token graph to include a vertex for each user and each object, and adding
an edge from each user vertex u to the vertex ⟨k, l⟩ such that ϕ(u)=l and from each
vertex ⟨k, l⟩ to each object o such that ϕ(o)=l. We can think of the encryption policy
graph as a graph obtained by merging GA with GK ,T , where instead of directly
linking each user u with each object o she can access, we pass through the vertex
⟨ki,li⟩ such that li=ϕ(u), the vertex ⟨k j,l j⟩ such that l j=ϕ(o), and possibly a chain
of keys/tokens connecting them. The encryption policy graph is formally defined as
follows.

Definition 3.7 (Encryption policy graph). Let E = ⟨U ,O,K ,L ,ϕ ,T ⟩ be an
encryption policy. The encryption policy graph over E , denoted GE , is a graph
⟨VE ,EE ⟩ where:

• VE =VK ,T ∪U ∪O;
• EE = EK ,T ∪{(u,⟨k, l⟩) : u ∈ U ∧ l = ϕ(u)}∪{(⟨k, l⟩,o) : o ∈ O ∧ l = ϕ(o)},

where VK ,T and EK ,T are as in Definition 3.4, that is, VK ,T ={⟨ki, li⟩ : ki ∈ K ∧
li ∈ L is the label associated with ki} and EK ,T = {(⟨ki, li⟩,⟨k j, l j⟩) : ti, j ∈ T }.

Figure 3.2 illustrates an example of encryption policy graph, where dotted edges
represent the key assignment and encryption schema (function ϕ ) and solid edges
represent the tokens (set T ).
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Fig. 3.2 An example of encryption policy graph

In the following, we will use E−→ to denote the reachability of vertices in graph
GE (e.g., A E−→o6). By the definition of tokens, a user can retrieve (via her own
key and the set of public tokens) all the keys of the vertices reachable from the
vertex whose label l is equal to ϕ(u). The objects accessible to a user according
to an encryption policy are therefore all and only those reachable from u in the
encryption policy graph GE . Our goal is then to translate an authorization policy A
into an equivalent encryption policy E , meaning that A and E allow exactly the
same accesses, as formally defined in the following.

Definition 3.8 (Policy equivalence). Let A = ⟨U ,O,P⟩ be an authorization pol-
icy and E = ⟨U ,O,K ,L ,ϕ ,T ⟩ be an encryption policy. A and E are equivalent,
denoted A ≡ E , iff the following conditions hold:

• ∀u ∈ U ,o ∈ O : u E−→o =⇒ u A−→o
• ∀u ∈ U ,o ∈ O : u A−→o =⇒ u E−→o

For instance, it is easy to see that the authorization policy in Fig. 3.1 and the
encryption policy represented by the encryption policy graph in Fig. 3.2 are equiv-
alent.
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LABELS

obj id label
o1 l7
o2 l8
o3 l9
o4 l10
o5 l11
o6 l12
o7 l13
o8 l14
o9 l15

TOKENS

source destination token value
l1 l12 k12⊕h(k1,l12)
l1 l13 k13⊕h(k1,l13)
l1 l15 k15⊕h(k1,l15)
l2 l9 k9⊕h(k2,l9)
l2 l10 k10⊕h(k2,l10)
l2 l11 k11⊕h(k2,l11)
l2 l14 k14⊕h(k2,l14)
l2 l15 k15⊕h(k2,l15)
l3 l9 k9⊕h(k3,l9)
l3 l10 k10⊕h(k3,l10)
l3 l11 k11⊕h(k3,l11)
l3 l15 k15⊕h(k3,l15)
l4 l7 k7⊕h(k4,l7)
l4 l8 k8⊕h(k4,l8)
l4 l12 k12⊕h(k4,l12)
l4 l13 k13⊕h(k4,l13)
l4 l14 k14⊕h(k4,l14)
l4 l15 k15⊕h(k4,l15)
l5 l13 k12⊕h(k5,l12)
l5 l14 k13⊕h(k5,l13)
l5 l15 k14⊕h(k5,l14)
l5 l15 k15⊕h(k5,l15)
l6 l12 k12⊕h(k6,l12)
l6 l13 k13⊕h(k6,l13)
l6 l14 k14⊕h(k6,l14)
l6 l15 k15⊕h(k6,l15)

Fig. 3.3 Catalog for the encryption policy represented in Fig. 3.2

3.3.3 Token Management

To allow users to access the outsourced data, a portion of the encryption policy
E must be made publicly available and therefore stored on the server. The only
component of the encryption policy E that cannot be publicly released is the set
K of keys while all the other components can be released without compromising
the protection of the outsourced data. The set T of tokens, the set L of labels,
and the key assignment and encryption schema ϕ(o) over O are therefore stored on
the server in the form of a catalog composed of two tables: LABELS and TOKENS.
Table LABELS corresponds to the key assignment and encryption schema ϕ over
O . For each object o in O , table LABELS maintains the correspondence between
the identifier of o (attribute obj id) and the label ϕ(o) (attribute label) associated
with the key used for encrypting o. Table TOKENS corresponds to the set T of
tokens. For each token ti, j in T , table TOKENS includes a tuple characterized by
three attributes: source and destination are the labels li and l j associated with ki and
k j, respectively, and token value is the token value computed as ti, j=k j⊕h(ki,l j).
Figure 3.3 illustrates tables LABELS and TOKENS corresponding to the encryption
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INPUT
object o to be accessed
user’s key k
label ϕ(u) of the user’s key

OUTPUT
key kdest with which o is encrypted

MAIN
/* server-side query */
chain := FindPath(ϕ(u),o)
/* client-side computation */
ksource := k
if chain ̸= /0 then /* user u is authorized to access o */

t := POP(chain)
repeat

kdest := t[token value]⊕h(ksource,t[destination])
ksource := kdest
t := POP(chain)

until t=NULL
return(kdest )

FINDPATH(from,o)
Let t ∈ LABELS : t[obj id]=o
to := t[label]
Topologically sort VK ,T in GK ,T

for each v∈VK ,T do
dist[v] := ∞
pred[v] := NULL

dist[from] := 0
for each vi∈VK ,T do /* visit vertices in topological order */

for each (vi,v j)∈EK ,T do /* the weight of each arc is 1 */
if dist[v j]>dist[vi]+1 then

dist[v j] := dist[vi]+1
pred[v j] := vi

chain := /0
current := to
while current ̸=from ∧ current ̸=NULL do

Let t ∈ TOKENS : t[source]=pred[current] ∧ t[destination]=current
PUSH(chain,t)
current := pred[current]

if current=NULL then
return( /0)

else
return(chain)

Fig. 3.4 Key derivation process

policy represented in Fig. 3.2. Note that the information about the key assignment
and encryption schema ϕ(u) over U does not need to be outsourced since each user
knows the label associated with her key.

Whenever a user wishes to access an object o, she queries the catalog to follow
a chain of tokens that, starting from her own key k, allows the user to derive the
key associated with the object. Figure 3.4 illustrates the algorithm that receives as
input the object identifier o, the key k of u, and the label ϕ(u) associated with k, and
computes the key kdest with which object o is encrypted. The algorithm is basically
composed of two steps.

The first step is performed server-side and consists in executing function Find-
Path that, given a label ϕ(u) and an object o, retrieves the shortest token chain from
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ϕ(u) to ϕ(o) by querying table TOKENS. Function FindPath first determines ϕ(o)
by querying table LABELS and then computes the shortest path in the key and token
graph through a shortest path algorithm (an improved version of Dijkstra working
on DAGs), which exploits the topological order of vertices. The function then builds
backward the path from current=ϕ(o) to ϕ(u). At each iteration of the while loop,
the function follows pred[current], which is an array that contains the label of the
predecessor of vertex current in the path previously computed, and adds to stack
chain the token in TOKENS from pred[current] to current.

The second step is evaluated client-side and consists in deriving keys following
the chain of tokens (if not empty) returned by FindPath and stored in stack chain,
and terminating with the computation of the key used for encrypting object o. For
instance, consider the catalog in Fig. 3.3 and suppose that C, with ϕ(C) = l3, wants
to access o4. Function FindPath(l3,o4) first queries table LABELS for retrieving the
label associated with object o4, which is ϕ(o4) = l10, and then finds the shortest path
from l3 to l10. The returned chain is composed of one token only, corresponding to
tuple (l3,l10,k10⊕h(k3,l10)) of table TOKENS. The algorithm then derives key k10
(i.e., the key used for encrypting o4) through user’s secret key k3 and the unique
token extracted from chain.

3.4 Minimal Encryption Policy

A straightforward approach for translating an authorization policy A into an equiv-
alent encryption policy E consists in associating with each user a different key,
encrypting each object with a different key, and producing and publishing a to-
ken tu,o for each permission ⟨u,o⟩ ∈ P . The encryption policy graph in Fig. 3.2
has been generated by translating the authorization policy in Fig. 3.1 with this ap-
proach. While simple, this translation generates as many keys as the number of users
and objects, and as many tokens as the number of permissions in the system. Even
if tokens, being public, need not to be remembered or stored by users, producing
and managing a token for each single permission can be unfeasible in practice. In-
deed, each access to an encrypted object requires a search across the catalog (see
Sect. 3.3.3) and therefore the total number of tokens is a critical factor for the effi-
ciency of accesses to remotely stored data.

This simple solution can be improved by grouping users with the same access
privileges and by encrypting each object with the key associated with the set of
users that can access it. To this purpose, we can exploit the hierarchy among sets
of users induced by the partial order relationship based on set containment (⊆) to
create an encryption policy graph GE =⟨VE ,EE ⟩, with VE= VK ,T ∪ U ∪ O , where
VK ,T includes a vertex for each possible subset U of U , and EE includes:

• an edge (vi,v j) for each possible pair of vertices vi,v j∈VK ,T such that the set Ui
of users represented by vi is a subset of the set Uj of users represented by v j and
the containment relationship is direct;
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Fig. 3.5 An example of encryption policy graph over {A,B,C,D}

• an edge (ui,vi) for each user ui∈U such that vi∈VK ,T and the set of users repre-
sented by vi is {ui};

• an edge (v j,o j) for each object o j∈O such that v j∈VK ,T and the set of users
represented by v j is acl(o j).

As an example, consider the portion of the authorization policy in Fig. 3.1 that
is defined on the set {A, B, C, D} of users. Figure 3.5 illustrates the encryption
policy graph over {A, B, C, D} defined as previously described, where each vertex
vi is marked with the set of users, denoted vi.acl, that represents. It is interesting to
note that the subgraph induced by VK ,T has the particularity of being a n-stratified
graph, where n is the number of users in the system (i.e., n =|U |). Each strata,
which we call level, contains all vertices that represent a set of users with the same
cardinality. For instance, in the encryption policy graph in Fig. 3.5 the vertices at
level 1 are v1, v2, v3, and v4. In the following, the level of a vertex v ∈ VK ,T will
be denoted level(v), equal to |v.acl|.

By assigning to each vertex v ∈ VK ,T of the graph a pair ⟨v.key,v.label⟩, corre-
sponding to a key and label, the authorization policy can be enforced by encrypting
each object with the key of the vertex corresponding to its access control list (e.g.,
object o5 should be encrypted with the key associated with the vertex representing
{B, C}) and by assigning to each user the key associated with the vertex represent-
ing the user in the graph. This means that the encryption policy corresponding to
this graph is such that the sets K and L of keys and labels, respectively, include
all keys and labels associated with vertices in VK ,T . The key assignment and en-
cryption schema ϕ is such that for each user u ∈ U , ϕ(u) = v.label, where v is the
vertex representing the user, (i.e., v.acl = {u}) and for each object o ∈ O , ϕ(o) =
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v.label, where v is the vertex representing acl(o j) (i.e., v.acl = acl(o j)). Finally, for
each edge (vi,v j) in EE , with vi,v j ∈ VK ,T , there is a token in T that allows the
derivation of key v j.key from key vi.key.

The advantage of this solution, with respect to the trivial one above-mentioned, is
that potentially a key can be used to encrypt more than one object. The disadvantage
is that it defines more keys than actually needed and requires the publication of a
great amount of information on the remote server, thus causing an expensive key
derivation process at the user-side. For instance, in the encryption policy graph in
Fig. 3.5 vertex v10 is not need for enforcing the authorization policy since its key is
not used for encrypting any object. The presence of such a vertex only increases the
size of table TOKENS stored on the server without giving any benefit. We are then
interested in finding a minimal encryption policy equivalent to a given authorization
policy and that minimizes the number of tokens to be maintained by the server.

Definition 3.9 (Minimal encryption policy). Let A = ⟨U ,O,P⟩ be an authoriza-
tion policy and E = ⟨U ,O,K ,L ,ϕ ,T ⟩ be an encryption policy such that A ≡ E .
E is minimal with respect to A iff ̸ ∃ E ′ = ⟨U ,O,K ′,L ′,ϕ ′,T ′⟩ such that A ≡ E ′

and |T ′| ≤ |T |.

Given an authorization policy A , different minimal encryption policies may ex-
ist and our goal is to compute one of them, as stated by the following problem
definition.

Problem 3.1 (Min-EP). Given an authorization policy A = ⟨U ,O,P⟩, determine
a minimal encryption policy E = ⟨U ,O,K ,L ,ϕ ,T ⟩.

Unfortunately, it turns out that Problem 3.1 is NP-hard, as the following theorem
states.

Theorem 3.1. The Min-EP problem is NP-hard.

Proof. The considered problem is NP-hard since it can be reduced to the Minimum
Set Cover (MSC) problem, which can be formulated as follows: given a universal set
Uset= {a1, . . . ,an} and a set of subsets of Uset, S = {S1,. . . ,Sm}, find the smallest
subset C of S such that

∪m
i=1 Si ∈ C =Uset.

Given a universal set Uset and a set S of its subsets, we define a corresponding
authorization policy A = ⟨U ,O,P⟩ in polynomial time. For each item ai in Uset,
there is a user ui in U . For each subset S j = {a j,1, . . . ,a j,m j} in S , there is an
object o j with acl(o j)=S j and a set R j of m j −1 objects o j,k, k = 1, . . . ,m j −1, with
acl(o j,k)={a j,1, . . . ,a j,k}. Finally, a further object o⊥ with acl(o⊥)=Uset is added to
O .

As an example, let Uset={A,B,C,D,E} and S = {S1 = {A,B,C},S2 =
{B,D},S3 = {B,D,E}}. The corresponding authorization policy is characterized
by 5 users, A, B, C, and D. Initially, 3 objects, o1 with acl(o1)={A,B,C}, o2 with
acl(o2)={B,D}, and o3 with acl(o3)={B,D,E}, are added to O , followed by o1,1
with acl(o1,1)={A}, o1,2 with acl(o1,2)={A,B}, and o2,1 with acl(o1,1)={B}, since
duplicates are removed.
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An encryption policy E =⟨U ,O,K ,L ,ϕ ,T ⟩ equivalent to A is characterized
by a key and token graph with a vertex for each user, which key is known to the
user itself, and a vertex for each acl value, which key is used to encrypt the objects
characterized by the represented acl. Therefore, there is a path in the graph from
each vertex representing a user u to each vertex representing an acl value containing
u. To this purpose, each vertex v∈GK ,T , besides vertices v such that ϕ(u)=v.label,
must have at least two incoming edges in the graph (i.e., tokens). Specifically, the
staring point of these tokens must cover all users represented by v. By construction,
for each vertex v representing a set {u1, . . . ,uk} of user, but the vertex representing
U , there is a vertex v′ representing {u1, . . . ,uk−1}. Therefore, v is covered by v′ and
with the vertex representing {uk}. The encryption policy minimal with respect to
T is the encryption policy minimizing the number of incoming tokens in vertex v⊥
representing U , since the addition of vertices would not produce benefits.

The solution to the corresponding minimum set covering problem is obtained
from the solution to the corresponding Min-EP problem as follows. For each edge
(v,v⊥) ending in v⊥, v can either represent a subset of U belonging to S or not.
In the latter case, v is substituted with its nearest descendant representing a subset
belonging to S . Such a descendant must exist since, by construction, we generate
additional vertices representing only subsets of items appearing in S . Since the set
of direct ancestors of v⊥ represents a cover for U , then the subsets they represent
are a minimum set cover for Uset.

We then propose a heuristic approach for solving Problem 3.1 that tries to reduce
the user’s overhead in deriving keys through a simplification of the encryption policy
graph that consists in removing non necessary vertices, while ensuring a correct key
derivability. A further important observation is that, beside the vertices needed for
the enforcement of the authorization policy, other vertices can be included if they
are useful for reducing the size of the catalog, even if their keys are not used for
encrypting objects. We now discuss more in the details these two basic observations.

3.4.1 Vertices and Edges Selection

From the previous discussion, it is immediate to see that the vertices in VK ,T strictly
needed for the enforcement of the authorization policy are the vertices representing:
i) singleton sets of users, whose keys are needed to derive all the other keys used for
decrypting objects in the users’ capabilities; and ii) the acls of the objects, whose
keys are needed for decrypting such objects. In the following, we refer to these ver-
tices as material. The material vertices must then be connected in the graph in such
a way that each user u ∈ U is able to derive the keys of all objects she is entitled to
access. This means that the encryption policy graph must include at least one path
from the vertex vi representing user u (i.e., vertex vi such that vi.acl = {u}) to all
material vertices v j such that u∈v j.acl. Since our main goal is to keep at minimum
the number of tokens managed by the server and since each edge in the encryption
policy graph corresponds to a token, our problem is then to connect the material ver-
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tices, thus creating an encryption policy equivalent to a given authorization policy
and with the minimum number of edges/tokens. To solve this problem, we observe
that the direct ancestors of a vertex must form a set covering for it. Indeed, since
for each user u the encryption policy graph must include a path from the vertex
representing it and all vertices v j such that u∈v j.acl and, by construction, there is
an edge (vi,v j) iff vi.acl ⊂ v j.acl, vertex v j must have at least a direct ancestor vk
such that u ∈ vk.acl. An encryption policy graph corresponding to an encryption
policy equivalent to a given authorization policy satisfies therefore the following
local cover property.

Theorem 3.2 (Local cover). Let A be an authorization policy and E be an en-
cryption policy. If E is equivalent to A , the encryption policy graph GE = ⟨VE ,EE ⟩
over E , with VE= VK ,T ∪ U ∪ O , satisfies the local cover property stating that
∀vi ∈VK ,T , with |vi.acl|> 1, vi.acl =

∪
j {v j.acl : (v j,vi) ∈ EE }.

Proof. By induction, we prove that ∀vi ∈VK ,T the local cover property is satisfied.

• For all vi such that |vi.acl|= 1, vi is correctly covered by definition.
• Let us suppose that for all vi such that |vi.acl|≤ n, vi is correctly covered. We now

prove that also all vertices v j with |vi.acl|= n+1 are correctly covered.

By definition, ∀⟨u,R⟩ ∈ p, u E−→R, that is there exists a path in GE from u to R.
This means that there exists a path from the vertex vi, such that vi.acl={u}, to
the vertex v j, such that v j.acl=acl(R). Therefore, there exists an edge (v,v j) ∈
EK ,T such that u∈v.acl. Also, by construction, v.acl⊆v j.acl. As a consequence
|v.acl|≤ n. By hypothesis, v is correctly covered. We then conclude that v j is
correctly covered.

Our approach to create an encryption policy graph works bottom up, starting
from the vertices at the highest level to the vertices at the lowest level. For each
vertex v at level l, its possible direct ancestors are first searched among the ma-
terial vertices at level l − 1, then at level l − 2, and so on, until all the material
vertices directly connected to v form a set covering for v. The rationale behind this
bottom up strategy is that, in principle4, by searching first among the vertices at
higher levels, the number of direct ancestors and therefore of edges for connecting
them to v should be less than the number of direct ancestors needed for covering
vertex v when such vertices are chosen according to other approaches. As an ex-
ample, consider the authorization policy in Fig. 3.1. Here, we have ten material
vertices representing the following sets of users: {A}, {B}, {C}, {D}, {E}, {F},
{BC}, {ADEF}, {BDEF}, and {ABCDEF}. Consider now the material vertex rep-
resenting {ABCDEF} and suppose to compute a set covering for it by choosing the
appropriate direct ancestors from the given material vertices. If we apply the bottom
up strategy previously described, the possible direct ancestors for {ABCDEF} are
first chosen among the vertices at level: 5, which is empty; 4, where there are two

4 Since this bottom up strategy is a heuristic that we apply for solving a NP-hard problem, the
solution computed through it may not be always the optimal solution. However, we will see in
Sect. 3.10 that this heuristic produces good results.
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material vertices (i.e., {ADEF}, {BDEF}) that can be chosen as direct ancestors
for {ABCDEF}; 3, which is empty; and then 2, where vertex {BC} is chosen. The
final set covering for {ABCDEF} is {{ADEF}, {BDEF}, {BC}}, which requires
three edges for connecting the vertices in the set covering to the vertex representing
{ABCDEF}. Another possible set covering for {ABCDEF} is, for example, {{A},
{B}, {C}, {D}, {E}, {F}}, which instead requires six edges.

This simple approach for computing a set covering may however introduce re-
dundant edges. For instance, with respect to the previous example, since {ADEF}
and {BDEF} are selected before {BC}, it is easy to see that the edge from the ver-
tex representing {BDEF} to the vertex representing {ABCDEF} is redundant since
each user in {BDEF} is also a member of at least one of the other two direct an-
cestors of the vertex representing {ABCDEF}. The redundant edges increase the
number of tokens and are not useful for the enforcement of the authorization pol-
icy. We are then interested in computing a non-redundant encryption policy graph
defined as follows.

Definition 3.10 (Non-redundant encryption policy graph). Let A = ⟨U ,O,P⟩
be an authorization policy and E = ⟨U ,O,K ,L ,ϕ ,T ⟩ be an equivalent encryp-
tion policy. The encryption policy graph GE = ⟨VE ,EE ⟩, with VE= VK ,T ∪ U ∪ O ,
over E is non-redundant if ∀vi ∈ VK ,T , with |vi.acl|> 1, ∀(v j,vi) ∈ EE , ∃ u ∈
v j.acl: ∀(vl ,vi) ∈ EE , with vl ̸= v j, u ̸∈ vl .acl.

Sect. 3.5 will present in more details a heuristic algorithm for computing a non-
redundant encryption policy graph equivalent to a given authorization policy.

3.4.2 Vertices Factorization

In addition to the material vertices, other vertices can be inserted into the graph
whenever they can reduce the number of tokens in the catalog. Consider, for exam-
ple, the authorization policy in Fig. 3.1 and, in particular, the two material vertices
representing {ADEF} and {BDEF}. The sets covering these two material vertices
can only be the sets including the vertices representing singleton sets of users, since
there are no material vertices representing subsets of {ADEF} or of {BDEF}. The
number of edges needed for connecting the vertices in the sets covering to {ADEF}
and {BDEF} are then eight. Suppose now to add a non material vertex representing
{DEF}. In this case, the set covering for {ADEF} is {{DEF}, {A}} and the set
covering for {BDEF} is {{DEF}, {B}}, which require four edges for connecting
them to {ADEF} and {BDEF}, respectively, and three edges for covering {DEF}
through {{D}, {E}, {F}} for a total of seven edges against the eight edges of the
previous case. Generalizing, it is easy to see that whenever there are m vertices
v1, . . . ,vm that share n, with n > 2, ancestors v′1, . . . ,v

′
n, it is convenient to factorize

the common ancestors by inserting an intermediate vertex v′, with v′.acl=
∪n

i=1v′i.acl,
and to connect each vertex v′i, i = 1, . . . ,n, to v′, and v′ to v j, j = 1, . . . ,m, for saving
tokens in the catalog. In this way, the encryption policy graph includes n+m, instead
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INPUT
authorization policy A =⟨U ,O ,P⟩

OUTPUT
encryption policy E such that A ≡ E

MAIN
VK ,T := /0
EK ,T := /0

/* Initialization */
ACL := {acl(o):o∈O} ∪ {{u}:u∈U }
for acl∈ACL do
create vertex v
v.acl := acl
v.label := NULL
v.key := NULL
for each u∈v.acl do v.counter[u] := 0
VK ,T := VK ,T ∪ {v}

/* Phase 1: cover vertices without redundancies */
for l:=|U |. . . 2 do

for each vi∈{v:v∈VK ,T ∧ level(v)=l} do
CoverVertex(vi,vi.acl)

/* Phase 2: factorize common ancestors */
for l:=|U |. . . 2 do

for each vi∈{v:v∈VK ,T ∧ level(v)=l} do
Factorize(vi)

/* Phase 3: generate encryption policy */
GenerateEncryptionPolicy()

Fig. 3.6 Algorithm for computing an encryption policy E equivalent to A

of n ·m, edges for correctly covering vertices v1, . . . ,vm. The advantage may appear
small in this example, but the experiments in Sect. 3.10 show that this optimization
can produce significant gains in scenarios with complex policies.

The factorization process is enforced during the construction of an encryption
policy graph by applying a bottom up strategy, starting from vertices at the highest
level to the vertices at the lowest level, and by comparing pairs of vertices at each
time. The bottom up strategy guarantees that the vertex added in the graph (if any)
will appear at a level lower than the level of the current pair of vertices and therefore
it will be compared to the other vertices in the graph when the vertices at that level
will be analyzed. To limit the number of pairs of vertices analyzed, we consider
only pairs of vertices that have at least one common direct ancestor; the adaptation
of the analysis in [10] demonstrates that it is sufficient to consider these pairs, with
a significant reduction in the number of comparisons.

3.5 A 2E Algorithm

Our heuristic method for computing a minimal encryption policy is illustrated in
Fig. 3.6. The algorithm takes an authorization policy A =⟨U ,O,P⟩ as input and
returns an encryption policy E equivalent to A and that satisfies Definition 3.10.
To this purpose, the algorithm first computes a key and token graph ⟨VK ,T ,EK ,T ⟩
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COVERVERTEX(v,tocover)
Eadded := /0
l := level(v) − 1
/* find a correct cover for users in tocover */
while tocover ̸= /0 do

Vl := {vi:vi∈VK ,T ∧ level(vi)=l ∧ vi.acl⊂v.acl}
while tocover ̸= /0 ∧ Vl ̸= /0 do

extract vi from Vl
if vi.acl∩tocover ̸= /0 then

tocover := tocover \ vi.acl
Eadded := Eadded ∪ {(vi,v)}
for each u∈vi.acl do

v.counter[u] := v.counter[u] + 1
l := l − 1

/* remove redundant edges */
for each (vi,v)∈Eadded do

if (̸ ∃u:u∈vi.acl ∧ v.counter[u]= 1) then
Eadded := Eadded \ {(vi,v)}
for each u∈vi.acl do

v.counter[u] := v.counter[u] − 1
EK ,T := EK ,T ∪ Eadded

Fig. 3.7 Procedure for covering material vertices and removing redundant edges

and then generates the corresponding encryption policy, by computing the set T of
tokens and by defining the key assignment and encryption schema ϕ . Each vertex
v in VK ,T is associated with four variables: v.key represents the key of the vertex;
v.label represents the publicly available label associated with v.key; v.acl represents
the set of users who can derive v.key; v.counter[] is an array with one component for
each user u in v.acl such that v.counter[u] is equal to the number of direct ancestors
of v whose acl contains user u (as we will see, this information will be used to detect
redundant edges).

The algorithm starts by creating the material vertices and by appropriately ini-
tializing the variables associated with them. The algorithm is logically partitioned
in three phases: i) cover vertices that adds edges to the graph satisfying both local
cover (Theorem 3.2) and non-redundancy (Definition 3.10), ii) factorize common
ancestors that adds non material vertices for reducing the number of edges in the
graph, and iii) generate encryption policy. We now describe these three phases more
in details.

Phase 1: Cover Vertices

To grant local cover and non redundancy in the key and token graph, the algorithm
proceeds bottom up, starting from level l = |U | to 2, and for each material vertex
v at level l, calls procedure CoverVertex. Procedure CoverVertex takes a vertex
v and a set tocover of users, corresponding to v.acl, as input. The procedure first
initializes two local variables: Eadded, representing the set of edges that need to be
added to the graph, is set to the empty set; and l, representing the level of candidates
direct ancestors for v, is set to level(v)−1.
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At each iteration of the outermost while loop, the procedure computes the set Vl
of vertices at level l whose acl is a subset of v.acl and the innermost while loop
checks if there are vertices in Vl that can be covered by v. To this purpose, the
procedure randomly extracts a vertex vi from Vl and if vi.acl has at least a user
in common with tocover, it removes from tocover the set of users appearing in
vi.acl and adds edge (vi,v) to Eadded. Also, for each user u in vi.acl, the procedure
increases v.counter[u] by one. The innermost while loop terminates when tocover
becomes empty or when all vertices in Vl have been processed. Local variable l is
then decreased by one and the process is repeated, until tocover or Vl become empty.

The procedure then checks if Eadded contains redundant edges. For each edge
(vi,v) in Eadded, if for all users in vi.acl, v.counter[u] is greater than one (remember
that v.counter[u] keeps track of the number of ancestors of v that include user u in
their acls), then edge (vi,v) is redundant and can be removed from Eadded. If this is
the case, for each user u in vi.acl, the procedure decreases v.counter[u] by one. The
set Eadded of non redundant edges is then added to EK ,T .

Phase 2: Factorize Acls

As a result of the previous phase, we have a key and token graph that guarantees
that each user is able to derive the keys of the objects she is authorized to access.
The goal of this phase is to verify if it is possible to add some additional vertices
to reduce the number of edges in the graph. To this purpose, the algorithm works
bottom up, starting from level l = |U | to 2. For each vertex vi at level l, the algo-
rithm calls procedure Factorize on vi. For each vertex v j having at least a common
direct ancestor with vi (first for loop), procedure Factorize first initializes two lo-
cal variables: Eadded and Eremoved, representing the set of edges that need to be
added to and removed from the graph, respectively, are both set to the empty set.
Procedure Factorize then determines the set CommonAnc of direct ancestors com-
mon to vi and v j. If CommonAnc contains more than two vertices, it means that vi
and v j can conveniently be factorized by a vertex v covering both vi and v j instead
of the vertices in CommonAnc. Vertex v is covered, if it does not satisfy local cover
property, by the vertices in CommonAnc. Therefore, 2 · |CommonAnc| edges are re-
moved from the graph, while at most 2+ |CommonAnc| edges need to be added to
the graph. Procedure Factorize computes the union U among the acls associated
with vertices in CommonAnc. The procedure checks if the graph already includes
a vertex v whose acl is equal to U and possibly detects the set of edges that has to
be added and removed from the graph. Three cases may then occur. First, vertex v
already exists and coincides neither with vi nor with v j. The two edges from v to vi
and from v to v j are inserted in Eadded, and all edges from the common ancestors
in CommonAnc to vi and to v j are inserted in Eremoved. Second, vertex v coincides
with vi (v j, resp.). The procedure inserts a new edge from vi to v j (from v j to vi,
resp.) in Eadded and all edges from the common ancestors in CommonAnc to v j (vi,
resp.) are inserted in Eremoved. Third, vertex v does not exist in the graph. The pro-
cedure creates a new vertex v′ and initializes v′.acl to U and both v′.label and v′.key
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FACTORIZE(vi)
for each v j∈{v:∃va, (va,vi)∈EK ,T ∧ (va,v)∈EK ,T } do /* children of vi’s direct ancestors */

Eadded := /0
Eremoved := /0
CommonAnc := {va: (va,vi)∈EK ,T ∧ (va,v j)∈EK ,T } /* common direct ancestors */
if |CommonAnc| > 2 then

/* create a new common ancestor for vi and v j */
U :=

∪
{va.acl:va∈CommonAnc}

find the vertex v∈VK ,T with v.acl=U
case v of

̸= vi ∧ ̸= v j : Eadded := Eadded ∪ {(v,vi), (v,v j)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,vi),(va,v j)}
= vi: Eadded := Eadded ∪ {(vi,v j)}

for each va∈CommonAnc do
Eremoved := Eremoved ∪ {(va,v j)}

= v j : Eadded := Eadded ∪ {(v j ,vi)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,vi)}
UNDEF: create vertex v ′

v ′.acl := U
v ′.label := NULL
v ′.key := NULL
for each u∈v ′.acl do

v ′.counter[u] := 0
VK ,T := VK ,T ∪ {v ′}
Eadded := Eadded ∪ {(v ′,vi),(v ′,v j)}
for each va∈CommonAnc do

Eadded := Eadded ∪ {(va,v ′)}
Eremoved := Eremoved ∪ {(va,vi),(va,v j)}

/* update counters */
for each (vl ,vh)∈Eadded do

for each u∈vl .acl do
vh.counter[u] := vh.counter[u] + 1

for each (vl ,vh)∈Eremoved do
for each u∈vl .acl do

vh.counter[u] := vh.counter[u] − 1
EK ,T := EK ,T ∪ Eadded \ Eremoved

Fig. 3.8 Procedure for factorizing the common ancestors between vertices

to NULL. The new vertex is then inserted in the graph and the edges from the com-
mon ancestors in CommonAnc to v′ are inserted in Eadded along with the two edges
from the new vertex v′ to vi and to v j. The edges from all the common ancestors in
CommonAnc to vi and to v j are instead inserted in Eremoved. The procedure then
appropriately updates variables vh.counter[u] for all edges (vl ,vh) in Eadded and
Eremoved. Finally, the set EK ,T of edges is updated by adding edges in Eadded
and by removing edges in Eremoved.

Phase 3: Generate E

The last phase of the algorithm generates the encryption policy corresponding to
the key and token graph computed during the previous phases. To this purpose, the
algorithm calls procedure GenerateEncryptionPolicy. First, the procedure initial-
izes the set K of keys, the set L of labels, and the set T of tokens to the empty
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GENERATEENCRYPTIONPOLICY()
K := /0
L := /0
T := /0
/* generate keys */
for each v ∈ VK ,T do

generate key k
v.key := k
generate label l
v.label := l
K := K ∪ {v.key}
L := L ∪ {v.label}

/* compute tokens */
for each (vi,v j) ∈ EK ,T do

ti, j := v j .key ⊕ h(vi.key,v j .label)
T := T ∪ {ti, j}
upload token ti, j on the server by adding it to table TOKENS

/* define key assignment and encryption schema */
for each u ∈ U do

find the vertex v∈VK ,T with v.acl={u}
ϕ(u) := v.label

for each o ∈ O do
find the vertex v∈VK ,T with v.acl=acl(o)
encrypt o with key v.key
upload the encrypted version ok of o on the server
ϕ(o) := v.label
update table LABELS on the server

Fig. 3.9 Procedure for creating an encryption policy

set. Then, for each vertex v in VK ,T , the procedure generates a key k and a label
l and inserts them in K and L , respectively. Also, for each edge (vi,v j) in EK ,T ,
procedure GenerateEncryptionPolicy computes token ti, j, which is inserted in T
and uploaded on the server by inserting a corresponding tuple in table TOKENS.
Finally, the procedure defines the key assignment and encryption schema ϕ based
on the labels previously generated. For each user u, ϕ(u) is defined as the label of
the vertex representing the singleton set {u}, and for each object o, ϕ(o) is defined
as the label of the vertex representing acl(o) in the graph. Also, each object o is
encrypted with the key of the vertex corresponding to ϕ(o) and uploaded on the
server; table LABELS in the catalog is updated accordingly.

Example 3.1. Figure 3.10 presents the execution, step by step, of the algorithm in
Fig. 3.6, applied to the authorization policy in Fig. 3.1. The algorithm first gener-
ates 10 material vertices: v1, . . . , v6 represent the singleton sets of users A, . . . ,F ,
respectively; v7 represents BC; v8 represents ADEF ; v9 represents BDEF ; and v10
represents ABCDEF .
Figure 3.10(a) illustrates the key and token graph obtained after the first phase of
the algorithm. Each vertex satisfies the local cover property and the graph does
not include redundant edges. As an example of how this graph has been obtained,
consider vertex v10. Procedure CoverVertex first inserts in Eadded edges (v8,v10),
(v9,v10), and (v7,v10). Then, it removes edge (v9,v10), since all users in v9.acl can
derive v10.key through v7 or v9.
Figure 3.10(b) illustrates the graph obtained after the second phase of the algorithm.
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(a) Phase 1 (b) Phase 2

u ϕ(u)
A v1.label
B v2.label
C v3.label
D v4.label
E v5.label
F v6.label

LABELS

obj id label
o1 v4.label
o2 v4.label
o3 v7.label
o4 v7.label
o5 v7.label
o6 v8.label
o7 v8.label
o8 v9.label
o9 v10.label

TOKENS

source destination token value
v1.label v8.label t1,8
v2.label v7.label t2,7
v2.label v9.label t2,9
v3.label v7.label t3,7
v4.label v11.label t4,11
v5.label v11.label t5,11
v6.label v11.label t6,11
v7.label v10.label t7,10
v8.label v10.label t8,10
v11.label v8.label t11,8
v11.label v9.label t11,9

(c) Phase 3

Fig. 3.10 An example of algorithm execution

Note that the graph has a new vertex, v11, which is inserted by procedure Factorize
since vertices v8 and v9 in the graph in Fig. 3.10(a) have three common direct an-
cestors (i.e., v4, v5, and v6). Here, material vertices are represented with solid lines,
while non material vertices are represented with dotted lines.
Finally, Fig. 3.10(c) illustrates the key assignment and encryption schema for users
in U and tables LABELS and TOKENS uploaded on the server by procedure Gen-
erateEncryptionPolicy.

3.5.1 Correctness and Complexity

We first introduce some lemmas necessary to prove that the encryption policy cre-
ated by the algorithm in Fig. 3.6 is equivalent to a given authorization policy.

First, we prove that users do not share encryption keys.

Lemma 3.1 (User key uniqueness). Given an authorization policy A =⟨U ,O,P⟩,
the algorithm in Fig. 3.6 creates a key and token graph GK ,T =⟨VK ,T ,EK ,T ⟩ and
the corresponding encryption policy E =⟨U ,O,K ,L ,ϕ ,T ⟩ such that ∀ui,u j ∈
U , i ̸= j =⇒ ϕ(ui) ̸= ϕ(u j).
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Proof. During the initialization phase, for each user u in the system, the algorithm
creates a unique vertex v and assigns {u} to v.acl. Since the algorithm never re-
moves vertices from the graph, when the algorithm calls procedure GenerateEn-
cryptionPolicy the graph contains one vertex for each user. Also, since we assume
that procedure GenerateEncryptionPolicy correctly generates keys (i.e., avoiding
duplicates), at each iteration of the first for loop the procedure assigns a unique key
and a unique label to each vertex v in the graph, and therefore also to vertices repre-
senting singleton sets of users. The key assignment and encryption schema function
ϕ is then defined based on the keys associated with the vertices representing single-
ton sets of users. For each user u, the procedure sets ϕ(u) to v.key, where v is the
unique vertex in the graph such that v.acl={u}. Consequently, we have the guaran-
tee that different users are associated with different labels and, also, with different
keys.

We also need to prove that both Theorem 3.2 and Definition 3.10 are satisfied by
the encryption policy graph generated by the algorithm in Fig. 3.6.

Lemma 3.2 (Local cover and non-redundancy). Given an authorization pol-
icy A =⟨U ,O,P⟩, the algorithm in Fig. 3.6 creates a key and to-
ken graph GK ,T =⟨VK ,T ,EK ,T ⟩ and the corresponding encryption policy
E =⟨U ,O,K ,L ,ϕ ,T ⟩ such that GE satisfies local cover (Theorem 3.2) and is
non redundant (Definition 3.10).

Proof. We first prove that procedure CoverVertex(v,tocover) terminates and grants
both Theorem 3.2 and Definition 3.10. Then, we prove that procedure Factorize(vi)
terminates and preserves both local cover and non redundancy with respect to vertex
v.

During the initialization phase, for each material vertex v created, the algorithm
sets variable v.counter[u] to 0 for each user u in v.acl.

Procedure CoverVertex. For each material vertex vi in VK ,T the algorithm calls
procedure CoverVertex with vi and vi.acl as parameters, respectively.
The procedure is composed of two phases: the first phase finds a correct cover
for v, and the second removes redundant edges.
The first phase is composed of two nested while loops that in the worst case ter-
minate when variable tocover is empty. Variable tocover initially contains users
in v.acl and no user is inserted in tocover by the procedure. Also, the set of users
in vi.acl, where vertex vi is randomly extracted from the set Vl of vertices at level l
such that vi.acl⊆v.acl, is removed from tocover only if vi.acl∩tocover ̸= /0. Since
l is decreased by one at each iteration of the outermost while loop, l assumes
also the value 1. When l becomes 1, Vl contains the set of vertices vi in VK ,T

such that vi.acl={ui}, for all ui in U . Since v.acl⊆U , in the worst case tocover
becomes empty when l = 1 and the two while loops terminate. Since any time
vi.acl is removed from tocover an edge (vi,v) is inserted in Eadded (and conse-
quently in EK ,T ), when the two loops terminate (i.e., tocover becomes empty)
vertex v is correctly covered. Indeed, for each user u in v.acl there exists an edge
(vi,v) such that u belongs to vi.acl. Also, for each edge (vi,v) inserted in Eadded,
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v.counter[u] is increased by one for each u in vi.acl, meaning that v.counter[u]
represents the number of edges (vi,v) in Eadded such that u belongs to vi.acl.
The second phase is composed of a for each loop that processes each edge (vi,v)
in Eadded. Since the first phase of the procedure terminates, Eadded contains a
finite number of edges and also this second phase terminates. Edge (vi,v) is re-
moved from Eadded (and therefore not inserted in EK ,T ) only if v.counter[u] is
greater than 1 for each user u belonging to vi.acl, since there is at least another
direct ancestor v j of v (besides vi) such that u belongs to v j.acl. When (vi,v) is
removed from Eadded, v.counter[u] is decreased by one for each user u belong-
ing to vi.acl, to keep v.counter[u] consistent with edges in Eadded. Since edge
(vi,v) is not removed if v.counter[u] is equal to 1 for at least a user, local cover of
vertex v is preserved. Also, since all edges incoming in v belong to Eadded and
each edge in Eadded is evaluated by the procedure, Definition 3.10 is satisfied
for v.
Finally, Eadded is inserted in EK ,T , which were empty. Therefore both local
cover and non redundancy are satisfied for vertex v.

Procedure Factorize. For each material vertex vi in VK ,T the algorithm calls
procedure Factorize with vi as parameter.
The first for each loop composing the procedure evaluates each vertex v j in
VK ,T having at least a common direct ancestor with vi. Also, the nested for each
loops process each vertex va in the set CommonAnc of the direct ancestors com-
mon to vi and v j. Since the number of vertices in VK ,T and then also in Commo-
nAnc is finite, the loops terminates. Analogously, the for each loops operating
on Eadded and Eremoved sets of edges terminate, since both Eadded and Ere-
moved are initially set to the empty set and the finite for each loops on vertices
in CommonAnc insert edges in the two sets. Given a pair of vertices vi and v j,
procedure Factorize changes the set of direct ancestors of vi and v j iff they have
at least three or more common ancestors. In this case, the edges from the com-
mon ancestors, say v1,. . .,vm, to vi and v j are removed and replaced by two edges
from v′ to vi and v j, where v′ is a vertex such that v′.acl = v1.acl ∪ . . .∪ vm.acl.
It immediately follows that local cover, limited to vertices vi and v j, is satisfied.
The same observation applies to vertex v′, which is covered by v1,. . .,vm that, by
definition, form a cover for v′. Note that the same discussion applies when vertex
v′ coincides with vi or v j.
We note here that variables v.counter[u] are updated according to inserted and
removed edges.

We conclude that, since both CoverVertex and Factorize procedures are called on
each vertex v in VK ,T , GE satisfies both Theorem 3.2 and Definition 3.10.

By combining the results proved in Lemma 3.1 and in Lemma 3.2, we can con-
clude that the encryption policy generated by the algorithm in Fig. 3.6 is equivalent
to a given authorization policy.

Theorem 3.3 (Policy equivalence). Given an authorization policy
A = ⟨U ,O,P⟩, the algorithm in Fig. 3.6 creates a key and token
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graph GK ,T =⟨VK ,T ,EK ,T ⟩ and the corresponding encryption policy
E =⟨U ,O,K ,L ,ϕ ,T ⟩ such that A ≡ E .

Proof.

E =⇒ A
Procedure GenerateEncryptionPolicy defines an encryption policy E that is
based on the key and token graph created by the first two phases of the algorithm
in Fig. 3.6. In particular, the procedure defines an encryption policy such that:
for each user u, ϕ(u) corresponds to the label of vertex vi representing the
singleton set {u} (i.e., vi.acl = {u}); and for each object o, ϕ(o) corresponds to
the label of vertex v j representing acl(o) (i.e., v j.acl = acl(o)). Consider now
the encryption policy graph corresponding to the encryption policy E created
by procedure GenerateEncryptionPolicy, and suppose that u E−→o. This is
equivalent to say that the key and token graph includes a path from the vertex v
with label equal to ϕ(u) to the vertex v j with label equal to ϕ(o). Also, since the
key and token graph satisfies Theorem 3.2 (Lemma 3.2), we know that u belongs
to v j.acl = acl(o) and therefore the authorization policy A includes permission
⟨u,o⟩.

E ⇐= A
Suppose that u A−→o. During the initialization phase, the algorithm inserts in the
key and token graph a vertex for each users in the systems and for each acl value
for the objects in the systems. Therefore, there is a material vertex vi such that
vi.acl = {u}, and there is a material vertex v j such that v j.acl = acl(o) in the key
and token graph. Since the algorithm never removes vertices and it creates a key
and token graph that satisfies Theorem 3.2 (Lemma 3.2), it is immediate to con-
clude that the key and token graph includes a path from vi to v j and that the en-
cryption policy graph obtained by defining an encryption policy complementing
the key and token graph, generated by procedure GenerateEncryptionPolicy,
includes a path from u to o.

The following theorem proves that the encryption policy generated by the al-
gorithm in Fig. 3.6 presents a total number of keys and tokens that is less than
the number of users, resources, and permissions composing a given authorization
policy, thus greatly reducing the overhead on the users in deriving the keys of the
resources they are entitled to access (as also the experiments in Sect. 3.10 show).

Theorem 3.4. Given an authorization policy A = ⟨U ,O,P⟩, the algorithm in
Fig. 3.6 creates a key and token graph GK ,T =⟨VK ,T ,EK ,T ⟩ and the correspond-
ing encryption policy E =⟨U ,O,K ,L ,ϕ ,T ⟩ such that |K ∪T |<|U ∪O∪P |.

Proof. Since all the sets involved in the union operations are disjoint, we need to
prove that |K |+ |T |<|U |+ |O |+ |P |.

The number of keys created by the algorithm is equal to the number of vertices in
the key and token graph while the number of tokens is equal to the number of edges.
With respect to the vertices, the algorithm creates a vertex for each user in U , for
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each acl associated with objects in O , plus some additional vertices inserted during
Phase 2. Since two or more objects may share the same acl, it is easy to see that what
we need to prove is that the number of vertices inserted in Phase 2 plus the number
of tokens is less than the number of permissions. First, consider the graph created
after Phase 1, where there is no additional vertex besides the material vertices. In
this case, it is easy to see that the number of edges (i.e., tokens) in the graph is less
than the number of permissions. Indeed, if there are m objects that share the same
acl that is composed by n users, the graph will include n tokens instead of n ·m
tokens. Consider now Phase 2. Here, procedure Factorize adds a vertex iff the pair
of vertices currently analyzed have n > 2 common parents. In this case, 2 ·n edges
are removed from the graph and at most n+2 edges are inserted. This means that at
least the number of tokens in the catalog decreases by one and therefore the number
of additional vertices plus the number of tokens remains lower than the number of
permissions.

Finally, we prove that the time complexity of the proposed algorithm is polyno-
mial in time.

Theorem 3.5 (Complexity). Given an authorization policy A = ⟨U ,O,P⟩, the
algorithm in Fig. 3.6 generates an encryption policy E = ⟨U ,O,K ,L ,ϕ ,T ⟩, with
A ≡ E , in O((|O|+ |VK ,T |2) · |U |).

Proof. The complexity of the algorithm is obtained by evaluating the complexity of
the operations performed during the initialization and of the two phases composing
it.

Initialization. The for loop composing the initialization phase requires time
proportional to |U |+ |O | · |U |, since the inner most for loop has constant
cost for vertices representing singleton sets of users.

Phase 1. The algorithm calls procedure CoverVertex for each material vertex v
in VK ,T . In the worst case, the two nested while loops check all vertices vi
in VK ,T such that level(vi)<level(v), with a computational cost proportional to
|VK ,T |2 · |U |.
The following for each loop checks each edge (vi,v)∈Eadded and evaluates
and possibly updates the value of variable v.counter[u] for each u belonging to
acl(vi). In the worst case, the cost of this loop is proportional to |EK ,T | · |U |.
Since |EK ,T | is upperbounded by |VK ,T |2 in any graph, the overall complexity
of the first phase of the algorithm is proportional to |VK ,T |2 · |U |.

Phase 2. The algorithm calls procedure Factorize for each vertex vi in VK ,T . The
first for each loop checks all vertices with at least a common ancestor with vi,
which in the worst case are all vertices in VK ,T . The procedure then finds the
common direct ancestors by considering the edges incident in vi and v j. Since
the maximum number of direct ancestors of a vertex vi is equal to |vi.acl|, the
costs of this operation is proportional to |U |. The for each loops nested in the
case instruction evaluate all the vertices in CommonAnc, which are at most |U |.
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Since both Eadded and Eremoved are filled in by these loops, they contain a
number of elements linear in |U |.
The overall complexity of the second phase of the algorithm is therefore
proportional to |VK ,T |2 · |U |.

Phase 3. The algorithm finally calls procedure GenerateEncryptionPolicy,
which is composed of four for each loops, checking vertices, edges, users, and
objects in the order.
The overall complexity of the third phase of the algorithm is therefore propor-
tional to |VK ,T |2 + |U |+ |O|.

Overall, the time complexity is proportional to (|O|+ |VK ,T |2) · |U |. If we as-
sume that all operations performed by procedures CoverVertex, Factorize and
GenerateEncryptionPolicy have a constant cost and cmax is the maximum cost, the
time complexity is in O(cmax((|O|+ |VK ,T |2) · |U |)) = O((|O|+ |VK ,T |2) · |U |).

3.6 Policy Updates

Since the authorization policy is likely to change over time, the corresponding en-
cryption policy needs to be re-arranged accordingly. The possible policy update
operations are: 1) insertion/deletion of a user; 2) insertion/deletion of an object; and
3) grant/revoke of an permission. We note that the insertion/deletion of users has an
impact on the encryption policy only when the user gains permissions. In this case,
inserting (deleting, resp.) a user implies granting (revoking, resp.) all the permis-
sions in which the user is involved. Analogously, the insertion/deletion of objects
has an impact on the encryption policy only when the object is made accessible
to users. Therefore, inserting (deleting, resp.) an object implies granting (revoking,
resp.) all the permissions in which the object is involved. For this reason, we focus
on the grant and revoke operations. Also, we assume that each operation always
refers to a single user u and a single object o; extension to sets of users and objects
is immediate.

The grant and revoke operations on the authorization policy A are translated
into operations that appropriately update the encryption policy graph, to guarantee
that E is equivalent to A also after grant/revoke operations. Creating from scratch
the encryption policy graph any time a grant or revoke operation is executed obvi-
ously grants policy equivalence, but is too expensive, since it requires to re-generate
the whole set of keys and tokens and to re-encrypt all the objects in the system.
Therefore, we propose a strategy that updates the existing encryption policy graph,
changing only the portions of the graph that are affected by the grant or revoke
operation.
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GRANTREVOKE(u,o,operation)
/* update the access control list of o */
find the vertex vold with vold .label = ϕ(o)
case operation of

‘grant’: acl(o) := vold .acl ∪ {u}
‘revoke’:acl(o) := vold .acl \ {u}

find the vertex vnew with vnew.acl = acl(o)
if vnew=UNDEF then

vnew := CreateNewVertex(acl(o))
ϕ(o) := vnew.label
/* re-encrypt object o */
download the encrypted version ok of o from the server
decrypt ok with key vold .key to retrieve the original object o
encrypt o with key vnew.key
upload the new encrypted version ok of o on the server
update LABELS on the server
DeleteVertex(vold )

Fig. 3.11 Procedure for granting or revoking permission ⟨u,o⟩

3.6.1 Grant and Revoke

Any grant/revoke request for a user u on an object o has the effect of changing the
set of users that can access o and always requires the data owner to decrypt and to
re-encrypt the object with a new key that should be (directly or indirectly) derivable
only by the users that belong to the new access control list. Figure 3.11 illustrates
procedure GrantRevoke that implements both grant and revoke operations. The
procedure takes as input a user u, an object o, and the type of operation that has to
be executed, which can be either ‘grant’ or ‘revoke’, and modifies the encryption
policy accordingly. First, the procedure retrieves vertex vold whose acl corresponds
to the current acl of o and sets acl(o) to the old acl to which is added (grant) or re-
moved (revoke) user u. Since, according to our approach (see Sect. 3.4), each object
has to be encrypted with the key associated with the vertex that represents its acl,
the procedure checks the existence of a vertex vnew in the encryption policy graph
representing the new value of acl(o). If such a vertex does not exist, vertex vnew
is created and inserted in the graph (procedure CreateNewVertex). The procedure
then downloads the object from the server, decrypts it through vold .key, re-encrypts
it through vnew.key, and uploads the new encrypted version of o on the server. Fi-
nally, the procedure calls DeleteVertex on vertex vold that checks if vertex vold is
still needed or if it can be removed from the graph.

The insertion and removal of vertices in the encryption policy graph are real-
ized through function CreateNewVertex in Fig. 3.12 and procedure DeleteVertex
in Fig. 3.13. Note that function CreateNewVertex and procedure DeleteVertex are
based on the same operations (i.e., CoverVertex and Factorize) used by the algo-
rithm in Fig. 3.6 for initially creating the encryption policy graph, but they operate
locally to the vertex inserted in or removed from the graph.

Function CreateNewVertex receives as input a set U of users and returns the
vertex v inserted in the graph and representing U . The function first copies the cur-
rent sets VK ,T of vertices and EK ,T of edges in two local variables V0 and E0,
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CREATENEWVERTEX(U)
/* initial key and token graph vertices and edges */
V0 := VK ,T

E0 := EK ,T

/* create the new vertex */
create vertex v
v.acl := U
v.key := NULL
v.label := NULL
for each u ∈ v.acl do v.counter[u] := 0
/* connect v, remove redundancies, and factorize common ancestors */
CoverVertex(v,v.acl)
Factorize(v)
/* update encryption policy */
UpdateEncryptionPolicy(V0,E0)
for each vi∈{v j :(v j ,vh)∈(E0\EK ,T )} do

DeleteVertex(vi)
return(v)

Fig. 3.12 Function that inserts a new vertex representing U

DELETEVERTEX(v)
if (|v.acl|> 1)∧( ̸ ∃o∈O:ϕ(o)=v.label) then

/* direct ancestors and descendants of v */
Anc := {vi:(vi,v)∈EK ,T }
Desc := {vi:(v,vi)∈EK ,T }
if (|Desc| · |Anc|)≤(|Desc|+ |Anc|)) then

/* initial key and token graph vertices and edges */
V0 := VK ,T

E0 := EK ,T

/* update the key and token graph */
EK ,T := EK ,T \ ({(v,vi)∈EK ,T }∪{(vi,v)∈EK ,T })
for each (v,vi)∈E0 do

for each u∈v.acl do
vi.counter[u] := vi.counter[u]−1

tocover := {u:u∈vi.acl ∧ vi.counter[u]=0}
CoverVertex(vi,tocover)
Factorize(vi)

VK ,T := VK ,T − {v}
/* update encryption policy */
UpdateEncryptionPolicy(V0,E0)
for each vi∈{v j :(v j ,vh)∈(E0\EK ,T )} do

DeleteVertex(vi)

Fig. 3.13 Procedure for deleting vertex v

respectively. This copy is needed to determine the updates in the set of vertices and
edges in the graph in such a way to modify the encryption policy accordingly. In-
deed, the presence of a new vertex requires the generation of a new key and label
and the removal of a vertex requires the deletion of the corresponding key and label.
Analogously, a new edge requires the generation of the corresponding token, which
is then stored in table TOKENS, and the removal of an edge requires the deletion of
the corresponding token from table TOKENS. Function CreateNewVertex creates
a new vertex v whose variable v.acl is set to Uwhile v.key and v.label are both set
to NULL. This new vertex is appropriately covered by other vertices in the graph
by calling: procedure CoverVertex on v and v.acl, thus ensuring that the vertex is
inserted without introducing redundant edges and in such a way that local cover



3.6 Policy Updates 61

UPDATEENCRYPTIONPOLICY(V,E)
for each v∈(VK ,T \V) do /* new vertices */

generate key k
v.key := k
generate label l
v.label := l
K := K ∪ {v.key}
L := L ∪ {v.label}

for each (vi,v j)∈(EK ,T \E) do /* new edges */
ti, j := v j .key ⊕ h(vi.key,v j .label)
T := T ∪ {ti, j}
upload token ti, j on the server by adding it to table TOKENS

for each v∈(V\VK ,T ) do /* vertices removed */
K := K \ {v.key}
L := L \ {v.label}

for each (vi,v j)∈(E\EK ,T ) do /* edges removed */
T := T \ {ti, j}
remove ti, j from the table TOKENS on the server

Fig. 3.14 Procedure for updating the encryption policy

(Theorem 3.2) is satisfied; and procedure Factorize, which determines whether the
new vertex has more than two direct ancestors in common with other vertices in the
graph. Function CreateNewVertex then calls procedure UpdateEncryptionPolicy
in Fig. 3.14. This procedure takes as input the copies of the old sets of vertices
and edges stored in V0 and E0, respectively, and updates the encryption policy by
generating and adding the new keys and labels associated with the new vertices, by
computing and adding the new tokens corresponding to the new edges, and by re-
moving the keys, labels, and tokens that are not anymore needed. Finally, for each
vertex vi that appears as starting point of a removed edge, CreateNewVertex calls
procedure DeleteVertex to check whether vertex vi can be removed from the graph.
Note that we do not call procedure DeleteVertex on the vertices appearing as ending
point of removed edges since, by definition, they correspond to material vertices or
have at least two incoming edges and therefore are always useful (or, in the worst
case, ineffective) for reducing the number of tokens in the encryption policy graph.

Procedure DeleteVertex receives as input a vertex v and removes it from the
graph if it is neither necessary for policy enforcement nor useful for reducing the
size of T . Indeed, if the key associated with v is no more used for encrypting any
object and is no more needed for factorizing common ancestors, vertex v and all its
ingoing and outgoing edges are removed. At this point, the direct descendants of v
violate the local cover property since, by construction (see Lemma 3.2), the graph
has no redundant edges and therefore the removed edge was need to satisfy such a
property. For each direct descendant vi, procedure DeleteVertex first calls procedure
CoverVertex on vi and on the set of users that do not belong to any other ancestor of
vi, and then calls procedure Factorize on vi. Like for procedure CreateNewVertex,
the encryption policy is appropriately updated through procedure UpdateEncryp-
tionPolicy. Finally, for each vertex vi that appears as a starting point of a removed
edge, DeleteVertex recursively calls itself to check whether or not vertex vi can be
removed from the graph.
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Fig. 3.15 Examples of grant and revoke operations

Example 3.2. Consider the encryption policy depicted in Fig. 3.10(b) and (c). Fig-
ure 3.15 illustrates the key and token graph and table LABELS resulting from grant-
ing D access to o3 and revoking F access to o8. (Note that for all users u in U , we
do not report ϕ(u) since grant/revoke operations do not change it.)

• GrantRevoke(D,o3,grant): first the procedure identifies the vertex whose key
is necessary for decrypting o3, that is, v7. Then, acl(o3) is updated by inserting
D. Since there is not a vertex with acl={BCD}, procedure CreateNewVertex is
called with U={BCD} as a parameter. It creates and inserts in the graph a new
vertex v12, where v12.acl={BCD}. Then, o3 is downloaded from the server, de-
crypted through v7.key, encrypted with v12.key, and then uploaded on the server.
Finally, procedure DeleteVertex is called with v7 as a parameter and, since v7.key
is used to encrypt o4 and o5, vertex v7 is not removed from the graph.

• GrantRevoke(F ,o8,revoke): first the procedure identifies the vertex whose key
is necessary for decrypting o8, that is, v9. Then, acl(o8) is updated by removing
F . Since there is not a vertex with acl={BDE}, procedure CreateNewVertex is
called with U={BDE} as a parameter. It creates and inserts in the graph a new
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vertex v13, where v13.acl={BDE}. Then, o8 is downloaded from the server, de-
crypted through v9.key, encrypted with v13.key, and uploaded on the server. Then,
procedure DeleteVertex is called with v9 as a parameter. Since v9.key was only
used for encrypting o8, v9 is no more a useful vertex and is removed from the
graph. The procedure recursively calls itself with v2 and with v11 as a parame-
ter. Vertex v2 is not removed since it corresponds to user B while vertex v11 is
removed from the graph.

3.6.2 Correctness

We now prove that the procedure implementing the grant and revoke operations
preserves policy equivalence. To this aim, we first need to show that both vertex
insertion and deletion are correct (i.e., they preserve policy equivalence).

First, we prove that the updates to the encryption policy graph made by procedure
DeleteVertex do not affect policy equivalence.

Lemma 3.3. Let A = ⟨U ,O,P⟩ be an authorization policy and
E =⟨U ,O,K ,L ,ϕ ,T ⟩ be an encryption policy, such that A ≡ E . Pro-
cedure DeleteVertex in Fig. 3.13 generates a new encryption policy
E ′=⟨U ,O,K ′,L ′,ϕ ′,T ′⟩ such that A ≡ E ′.

Proof. Since we assume that A ≡ E when procedure DeleteVertex is called, we
will consider only keys and tokens updated by the procedure. Specifically, as al-
ready noted when proving Theorem 3.3, the conditions necessary for granting policy
equivalence between A and E are the following:

1. for each user u, ϕ(u) corresponds to the label of vertex vi representing the sin-
gleton set {u} (i.e., vi.acl = {u});

2. for each object o, ϕ(o) corresponds to the label of vertex v j representing acl(o)
(i.e., v j.acl = acl(o));

3. the key and token graph satisfies Theorem 3.2 (local cover) and Definition 3.10
(non redundancy).

We then prove that procedure DeleteVertex satisfies all these conditions.
Procedure DeleteVertex does not modify the key assignment and encryption

schema and does not remove a vertex v if there exists a user u or an object o such
that ϕ(u)=v.label or ϕ(o)=v.label. Therefore the first and the second conditions are
satisfied.

For each descendant vi of the removed vertex v, procedure DeleteVertex calls
procedures CoverVertex on vi and tocover, where tocover contains the subset of
users in vi.acl such that vi.counter[u]=0. Since vi.counter[u] always represents the
number of direct ancestors of vi such that u belongs to their acl, it is not necessary
to cover other users. Also, variables v.counter[u] are updated on the basis of the
edges incident in v removed from the graph. Procedure UpdateEncryptionPolicy
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simply translates the updates on GK ,T in the equivalent updates on E components,
therefore local cover and non redundancy are preserved by procedure DeleteVertex.

We then prove that also the updates to the encryption policy graph made by pro-
cedure CreateNewVertex do not affect policy equivalence.

Lemma 3.4. Let A = ⟨U ,O,P⟩ be an authorization policy and
E =⟨U ,O,K ,L ,ϕ ,T ⟩ be an encryption policy, such that A ≡ E . Func-
tion CreateNewVertex in Fig. 3.12 generates a new encryption policy
E ′=⟨U ,O,K ′,L ′,ϕ ′,T ′⟩ such that A ≡ E ′.

Proof. Since we assume that A ≡ E when function CreateNewVertex is called,
we will consider only keys and tokens updated by the function. We then prove that
function CreateNewVertex satisfies all the conditions mentioned in the Proof of
Lemma 3.3.

Function CreateNewVertex does not modify the key assignment and encryption
function and removes vertices only through procedure DeleteVertex, therefore the
first and the second conditions are satisfied.

Also, function CreateNewVertex calls procedures CoverVertex and Factorize
on the new vertex v, granting then that the key and token graph satisfies The-
orem 3.2 and Definition 3.10 (Lemma 3.2). Procedure UpdateEncryptionPolicy
simply translates the updates on GK ,T in the equivalent updates on E components,
therefore the two properties are preserved by function CreateNewVertex.

By combining the results proved by Lemma 3.3 and by Lemma 3.4, we con-
clude that the encryption policy modified by procedure GrantRevoke in Fig. 3.11
is equivalent to the authorization policy modified by the same procedure, on the
basis of a grant or revoke operation.

Theorem 3.6. Let A = ⟨U ,O,P⟩ be an authorization policy and
E =⟨U ,O,K ,L ,ϕ ,T ⟩ be an encryption policy, such that A ≡ E . Procedure
GrantRevoke in Fig. 3.11 generates a new authorization policy A ′ = ⟨U ,O,P ′⟩
and a new encryption policy E ′=⟨U ,O,K ′,L ′,ϕ ′,T ′⟩ such that A ′ ≡ E ′.

Proof. Since we assume that A ≡ E when procedure GrantRevoke is called, we
will consider only users and objects for which the encryption and authorization poli-
cies change.

Grant. E ′ =⇒ A ′

Consider user u and object o. From the procedure, it is easy to see that o is
encrypted with a key such that from the key of the vertex with label ϕ ′(u) it is
possible to derive the key of the vertex with label ϕ ′(o) through T ′, since ϕ ′(o)
is set to vnew.key, which can be reached from vertex v with v.acl={u} (for the
correctness of function CreateNewVertex, Lemma 3.4). Therefore, we have

that u A ′
−→o.

E ′ ⇐= A ′
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Consider user u and object o. From the insertion of u in acl(o), we have that

u A ′
−→o. Also, o is encrypted with a key such that the key of the vertex with

label ϕ ′(o) can be derived from the key of the vertex with label ϕ ′(u), for the
correctness of function CreateNewVertex (Lemma 3.4). Therefore, we have

that u E ′
−→o.

Revoke. E ′ =⇒ A ′

Consider user u and object o. From the procedure, it is easy to see that o is
encrypted with a key such that from the key of the vertex with label ϕ ′(u) it is
not possible to derive the key of the vertex with label ϕ ′(o) through T ′, since
ϕ ′(o) is set to vnew.key, which can not be reached from vertex v with v.acl={u}
(for the correctness of procedure DeleteVertex, Lemma 3.3). Therefore, we

have that u
A ′

̸−→o.

E ′ ⇐= A ′

Consider user u and object o. From the removal of u from acl(o), we have that

u
A ′

̸−→o. Also, o is encrypted with a key such that the key of the vertex with label
ϕ ′(o) can not be derived from the key of the vertex with label ϕ ′(u), for the
correctness of procedure DeleteVertex (Lemma 3.3). Therefore, we have that

u
E ′

̸−→o.

3.7 Two-Layer Encryption for Policy Outsourcing

The model described in previous sections assumes keys and tokens are computed,
on the basis of the existing authorization policy, prior to sending the encrypted ob-
jects to the server. When permissions are updated by the data owner, as described
in Sect. 3.8, the data owner interacts with the service provider for modifying the
token catalog and for re-encrypting the objects involved in the update. Even if the
computation and communication overhead caused by policy updates is limited, the
data owner may not have the computational or bandwidth resource availability for
managing policy changes.

To further reduce the data owner’s overhead, we put forward the idea of out-
sourcing to the server, besides the object storage, the authorization management as
well. Note that this delegation is possible since the server is considered trustworthy
to properly carry out the service. Recall, however, that the server is not trusted with
confidentiality (honest-but-curious). For this reason, our solution has been designed
taking into account, and therefore minimizing, the risk that the server colludes with
users to breach data confidentiality (see Sect. 3.9). The solution we propose enforces
policy changes on encrypted objects themselves (without the need of decrypting
them), and can then be performed by the server.
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3.7.1 Two-Layer Encryption

To delegate policy changes enforcement to the server, avoiding re-encryption for
the data owner, we adopt a two layer encryption approach. The owner encrypts
the objects and sends them to the server in encrypted form; the server can impose
another layer of encryption (following directions by the data owner).

We then distinguish two layers of encryption.

• Base Encryption Layer (BEL), performed by the data owner before transmitting
data to the server. It enforces encryption on the objects according to the policy
existing at initialization time.

• Surface Encryption Layer (SEL), performed by the server over the objects al-
ready encrypted by the data owner. It enforces the dynamic changes over the
policy.

Both layers enforce encryption by means of a set of symmetric keys and a set
of public tokens between these keys (see Sect. 3.3), although some adaptations are
necessary, as explained below.

In terms of efficiency, the use of a double layer of encryption does not appear as
a significant computational burden; experience shows that current systems have no
significant delay when managing encryption on data coming from either the network
or local disks, as also testified by the widespread use of encryption on network traffic
and for protecting the storage of data on local file systems [89].

Base Encryption Layer.

Compared with the model presented in previous sections, in the BEL level we dis-
tinguish two kinds of keys: derivation keys and access keys. Access keys are actually
used to encrypt objects, while derivation keys are used to provide the derivation ca-
pability via tokens, that is, tokens can be defined only with the derivation key as
starting point. Each derivation key k is always associated with an access key ka ob-
tained by applying a secure hash function to k, that is, ka = h(k). In other words,
keys at the BEL level always go in pairs ⟨k,ka⟩. Note that both the derivation and
the access keys are associated with a unique label l and la, respectively. The ratio-
nale for this evolution is to distinguish the two roles associated with keys, namely:
enabling key derivation (applying the corresponding tokens) and enabling object
access. The reason for which such a distinction is needed will be clear in Sect. 3.8.

The BEL level is characterized by an encryption policy
Eb=⟨U ,O,Kb,Lb,ϕb,Tb⟩, where U , O , and Tb are as described in Sect. 3.3, Kb

is the set of (derivation and access) keys defined at BEL level, and Lb is the set of
publicly available labels associated with both derivation and access keys. The key
assignment and encryption schema ϕb : U ∪O → Lb associates with each user
u∈ U the label l corresponding to the derivation key released to the user by the
data owner and with each object o∈ O the label la corresponding to the access key
with which the object is encrypted by the data owner.
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Also at BEL level, the set Kb of keys and the set Tb of tokens can be graphically
represented through the corresponding key and token graph, which now has a vertex
b for each pair of encryption and access keys and labels ⟨(k,l),(ka,la)⟩ and an edge
(bi,b j) if there is a token in Tb allowing the derivation of either k j or k ja from ki.
Graphically, a vertex is simply represented by b and tokens leading to derivation
keys are distinguished from tokens leading to access keys by using dotted lines for
the latter. Each vertex bi in the key and token graph is characterized by: a derivation
key along with the corresponding label, denoted bi.key and bi.label, respectively;
an access key along with the corresponding label, denoted bi.keya and bi.labela, re-
spectively. The corresponding encryption policy Eb is graphically represented by

an encryption policy graph GEb as described in Sect. 3.3, where notation u
Eb−→o

indicates that there exists a path connecting u to o, both following tokens and ap-
plying secure hash function h. Note that dotted edges can only appear as the last
step of a path in the graph (since they allow the derivation of access keys only). Fig-
ure 3.16(a) illustrates an example of BEL key and token graph and key assignment
and encryption schema enforcing the authorization policy in Fig. 3.1.

Surface Encryption Layer.

At the SEL level there is no distinction between derivation and access keys (intu-
itively a single key carries out both functions). The SEL level is therefore character-
ized by an encryption policy Es=⟨U ,O,Ks,Ls,ϕs,Ts⟩ that is defined and graphi-
cally represented as described in Sect. 3.3. This means that the set Ks of keys and
the set Ts of tokens can be graphically represented through a key and token graph
having a vertex s for each pair ⟨k,l⟩ defined at SEL and an edge (si,s j) if there
is a token in Ts allowing the derivation of k j from ki. Each vertex s in the graph is
characterized by: a key, denoted s.key, and corresponding label, denoted s.label; and
the set of users, denoted s.acl, who can derive s.key. The corresponding encryption
policy Es is graphically represented by an encryption policy graph as described in

Sect. 3.3, where notation u Es−→o indicates that there exists a path connecting u to o.

BEL and SEL combination.

In the two-layer approach, each object can then be encrypted twice: at the BEL level
first, and at the SEL level then. Users can access objects only passing through the
SEL level. Each user u receives two keys: one to access the BEL and the other to
access the SEL.5 Users will be able to access objects for which they know both the
keys (BEL and SEL) used for encryption.

5 To simplify key management, the user key for SEL can be obtained by the application of a
secure hash function from the user key for BEL. In this case, the data owner needs to send in the
initialization phase to the server the list of SEL keys of each user.
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Fig. 3.16 An example of BEL and SEL combination (Delta SEL and Full SEL)

The consideration of the two levels requires to restate the definition of policy
equivalence, which is now defined as follows.

Definition 3.11 (Policy equivalence). Let A = ⟨U ,O,P⟩ be an authorization
policy, Eb = ⟨U ,O,Kb,Lb,ϕb,Tb⟩ be a BEL level encryption policy, and Es =
⟨U ,O,Ks,Ls,ϕs,Ts⟩ be a SEL level encryption policy. A and the pair ⟨Eb,Es⟩
are equivalent, denoted A ≡ ⟨Eb,Es⟩, iff the following conditions hold:

• ∀u ∈ U ,o ∈ O : (u
Eb−→o ∧ u Es−→o)=⇒ u A−→o

• ∀u ∈ U ,o ∈ O u A−→o =⇒ (u
Eb−→o ∧ u Es−→o)

In principle, any encryption policy at BEL and SEL can be specified as long as
their combination is equivalent to the authorization policy. Let A be the authoriza-
tion policy at the initialization time and let Eb be the encryption policy at the BEL
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level, which is equivalent to A (i.e., A ≡ Eb). We envision two basic approaches
that can be followed in the construction of the two levels.

Full SEL. The SEL encryption policy is initialized to reflect exactly (i.e., to re-
peat) the BEL encryption policy: for each derivation key in BEL a corresponding
key is defined in SEL; for each token in BEL, a corresponding token is defined
in SEL. Note that the set Ks of keys and the set Ts of tokens form a key and
token graph which is isomorphic to the one existing at the BEL level and, there-
fore, also GEs is isomorphic to GEb . The key assignment and encryption pol-
icy assigns to each user u a unique label ϕs(u)=vs.label (and therefore a unique
key vs.key) corresponding to ϕb(u)=vb.label. Also, it assigns to each object o a
unique label ϕs(o)=vs.label (and therefore a unique key vs.key) corresponding to
ϕb(o)=vb.labela. The SEL encryption policy models exactly the BEL encryption
policy, and hence, by definition, is equivalent to the authorization policy (i.e., A
≡ Es).

Delta SEL. The SEL policy is initialized to not carry out any over-encryption.
Each user u is assigned a unique label ϕs(u)=vs.label, and therefore a unique key
vs.key. No encryption is performed on objects, that is, ∀o ∈ O,ϕs(o) = NULL.
The SEL level itself does not provide any additional protection at start time, but
it does not modify the accesses allowed by BEL.

We note that a third approach could be possible, where the permission enforce-
ment is completely delegated at the SEL level and the BEL simply applies a uniform
over-encryption (i.e., with the same key released to all users) to protect the plaintext
content from the server’s eyes. We do not consider this approach as it presents a
significant exposure to collusion (see Sect. 3.9).

It is easy to see that all the approaches described produce a correct two layer en-
cryption. In other words, given a correct encryption policy at the BEL level, the ap-
proaches produce a SEL level such that authorization policy A and the pair ⟨Eb,Es⟩
are equivalent.

The reason for considering both the Full SEL and Delta SEL approaches is
the different performance and protection guarantees that they enjoy. In particular,
Full SEL always requires double encryption to be enforced (even when permis-
sions remain unvaried), thus doubling the decryption load of users for each access.
By contrast, the Delta SEL approach requires double encryption only when ac-
tually needed to enforce a change in the permissions. However, as we will see in
Sect. 3.9, the Delta SEL is characterized by greater information exposure, which
instead does not affect the Full SEL approach. The choice between one or the other
can then be a trade-off between costs and resilience to attacks.

We close this section with a remark on the implementation. In the illustration of
our approach, we always assume over-encryption to be managed with a direct and
complete encryption and decryption of the object, as needed. We note however that
the server can, at the SEL level, apply a lazy encryption approach, similar to the
copy-on-write (COW) strategy used by most operating systems, and actually over-
encrypt the object when it is first accessed (and then storing the computed encrypted
representation); the server may choose also to always store the BEL representation
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and then dynamically apply the encryption driven by the SEL when users access the
object.

3.8 Policy Updates in Two-Layer Encryption

While in the basic model described in Sect. 3.3, policy updates are demanded and
regulated by the owner, the two-layer approach enables the enforcement of policy
updates without the need for the owner to re-encrypt, and to resend objects to the
server. By contrast, the owner just adds (if necessary) some tokens at the BEL level
and delegates policy changes to the SEL level by possibly requesting the server
to over-encrypt the objects. The SEL level (enacted by the server) receives over-
encryption requests by the BEL level (under the control of the data owner) and
operates accordingly, adjusting tokens and possibly encrypting (and/or decrypting)
objects.

Before analyzing grant and revoke operations in this new scenario, we first de-
scribe the working of over-encryption at the SEL level.

3.8.1 Over-encrypt

The SEL level regulates the update process through over-encryption of objects. It
receives from the BEL requests of the form Over-encrypt(O,U) corresponding to
the demand to the SEL to make the set O of objects accessible only to users in U .
Note here that the semantics is different in the two different encryption modes. In the
Full SEL approach, over-encryption must reflect the actual authorization policy ex-
isting at any given time. In other words, it must reflect, besides the - dynamic - policy
changes not reflected in the BEL, also the BEL policy itself. In the Delta SEL ap-
proach, over-encryption is demanded only when additional restrictions (with respect
to those enforced by the BEL) need to be enforced. As a particular case, here, the set
U of users may be ALL when - while processing a grant operation - the BEL deter-
mines that its protection is sufficient and therefore requests the SEL not to enforce
any restriction and to possibly remove an over-encryption previously imposed.

Let us then see how the procedure works. Procedure Over-encrypt takes a set O
of objects and a set U of users as input. First, it checks whether there exists a vertex
s whose key s.key is used to encrypt objects in O and the set of users that can derive
s.key is equal to U , that is, s.acl=U . If such a vertex exists, objects in O are over-
encrypted with a key that reflects the current acl of objects in O and the procedure
terminates. Note that since all objects in O share the same key, it is sufficient to
check the above condition on any of the objects o′ in O. Otherwise, if the objects
in O are currently over-encrypted, they are first decrypted through the key of the
vertex s such that s.label=ϕs(o′). Also, vertex s is possibly removed from GEs by
procedure DeleteVertex. Then, if the set of users that should be allowed access to



3.8 Policy Updates in Two-Layer Encryption 71

BEL SEL

GRANT(u,o)
acl(o) := acl(o) ∪ {u}
find the vertex b j with b j.labela = ϕb(o)

if u
Eb
̸−→o then

find the vertex bi with bi.label = ϕb(u)
ti, j := b j .keya ⊕ h(bi.key,b j.labela)
Tb := Tb ∪ {ti, j}
upload token ti, j on the server by storing it in table TOKENS

O′ := {o ′ :o ′ ̸=o∧ϕb(o’)=ϕb(o)∧∃u∈U :u
Eb−→o∧u ̸∈acl(o′)}

if O′ ̸= /0 then
Partition O′ in sets such that each set S
contains objects with the same acl aclS
for each set S do

Over-encrypt(aclS ,S)
case encryption model of

Delta SEL: if {u:u∈U ∧ u
Eb−→bi}=acl(o) then

Over-encrypt(ALL,{o})
else

Over-encrypt(acl(o),{o})
Full SEL: Over-encrypt(acl(o),{o})

REVOKE(u,o)
acl(o) := acl(o) − {u}
Over-encrypt(acl(o),{o})

OVER-ENCRYPT(U ,O)
let o ′ be an object in R
if (∃ s :s.label=ϕs(o′)∧s.acl=U) then

exit
else

if ϕs(o′) ̸= NULL then
find the vertex s with s.label=ϕs(o′)
for each o∈O do

decrypt o with s.key
DeleteVertex(s)

if U ̸=ALL then
find the vertex s with s.acl=U
if s=UNDEF then

s := CreateNewVertex(U)
for each o∈O do

ϕs(o) := s.label
encrypt o with s.key
update LABELS on the server

Fig. 3.17 Procedures for granting and revoking permission ⟨u,o⟩

the objects in O by the SEL is not ALL, over-encryption is necessary. (No operation
is executed otherwise, since U=ALL is the particular case of Delta SEL approach
discussed above.) The procedure checks then the existence of a vertex s such that
the set of users that can derive key s.key (i.e., belonging to s.acl) corresponds to U .
If such a vertex does not exist, it is created and inserted into the encryption policy
graph at the SEL level by function CreateNewVertex. Then, for each object o in
O, the procedure encrypts o through s.key and updates ϕs(o) and table LABELS
accordingly.

3.8.2 Grant and Revoke

Consider first procedure Grant in Fig. 3.17, which handles a request to grant user
u access to object o. The BEL level starts and regulates the update process as fol-
lows. First, acl(o) is updated to include u. Then, the procedure retrieves the ver-
tex b j whose access key b j.keya is the key with which o is encrypted. If the ob-
ject’s access key cannot be derived by u, then a new token from user’s key bi.key,
where bi is a vertex such that ϕb(u)=bi.label, to b j.keya is generated and added to
the token catalog. Note that the separation between derivation and access keys for
each vertex allows us to add a token only giving u access to the key used to en-
crypt object o, thus limiting the knowledge of each user to the information strictly
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needed to guarantee equivalence with the authorization policy. Indeed, knowledge
of bi.keya is a necessary condition to make o accessible by u. However, there may
be other objects o′ that are encrypted with the same key bi.keya and which should
not be made accessible to u. Since releasing bi.keya would make them accessible
to u, they need to be over-encrypted so to make them accessible to users in acl(o′)
only. Then, the procedure determines if such a set of objects O′ exists. If O′ is not
empty, the procedure partitions O′ in sets such that each set S ⊆ O′ includes all
objects characterized by the same acl, denoted aclS. For each set S, the procedure
calls Over-encrypt(S,aclS) to demand SEL to execute an over-encryption of S for
users in aclS. In addition, the procedure requests the SEL level to synchronize itself
with the policy change. Here, the procedure behaves differently depending on the
encryption model assumed. In the case of Delta SEL, the procedure first controls
whether the set of users that can reach the object’s access key (i.e., the set of users
u∈U such that b j.keya can be computed knowing bi.key, with ϕb(u)=bi.label) cor-
responds to acl(o). If so, the BEL encryption suffices and no protection is needed
at the SEL level, and therefore a call Over-encrypt({o},ALL) is requested. Oth-
erwise, a call Over-encrypt({o},acl(o)) requests the SEL to make o accessible
only to users in acl(o). In the case of Full SEL, this is done by always calling
Over-encrypt(o,acl(o)), requesting the SEL to synchronize its policy so to make
o accessible only by the users in acl(o).

Consider now procedure Revoke in Fig. 3.17, which revokes from user u ac-
cess to object o. The procedure updates acl(r) to remove user u and calls Over-
encrypt({o},acl(o)) to demand SEL to make o accessible only to users in acl(o).

In terms of performance, the grant and revoke procedures only require a direct
navigation of the BEL and SEL structures and they produce the identification of the
requests to be sent to the server in a time which, in typical scenarios, will be less
than the time required to send the messages to the server.

Example 3.3. Consider the two layer encryption policy depicted in Fig. 3.16. Fig-
ures 3.18 and 3.19 illustrate the evolution of the corresponding key and token graphs
and of both ϕb(o) and ϕs(o) for objects in O when the following grant and revoke
operations are executed. Note that we do not report ϕb(u) and ϕs(u) for users in U
since they never change due to grant/revoke operations. Note also that the key and
token graph at SEL level evolves exactly as described in Example 3.2.

• Grant(D,o3): first acl(o3) is updated by inserting D. Then, since access key
b7.keya used to encrypt o3 cannot be derived from the derivation key of vertex
b4 corresponding to ϕb(D), the data owner adds a BEL token allowing to com-
pute b7.keya from b4.key. Since b7.keya is also used to encrypt objects o4 and
o5, which D is not authorized to view, these objects have to be over-encrypted
in such a way that they are accessible only to users B and C. In the Delta SEL
scenario, Over-encrypt creates a new vertex s7, with s7.acl=BC, for objects o4
and o5. The protection of object o3 at BEL level is instead sufficient and no over-
encryption is needed (i.e., procedure Over-encrypt is called with U=ALL). In
the Full SEL scenario objects o4 and o5 are already correctly protected, o3 is
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Fig. 3.18 An example of grant operation

instead over-encrypted with the key of vertex s12, which is created and inserted
in the graph by function CreateNewVertex. Finally, procedure DeleteVertex is
called with s7 as a parameter and, since s7.key is used to encrypt o4 and o5, vertex
s7 is not removed from the graph.

• Revoke(F ,o8): first acl(o8) is updated by removing F . Since now acl(o8) be-
comes {BEF}, object o8 has to be over-encrypted with a key that only this set
of users can compute. Consequently, both in the Delta SEL and in the Full SEL
scenario, a new vertex s13 representing BEF is created and its key is used to pro-
tect o8. Also, in the Full SEL scenario, procedure DeleteVertex is called with s9
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Fig. 3.19 An example of revoke operation

as a parameter. Since s9 is no more a useful vertex, it is removed from the graph.
The procedure recursively calls itself with s2 and with s11 as a parameter. Vertex
s2 is not removed since it corresponds to user B while vertex s11 is removed from
the graph.
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3.8.3 Correctness

We now prove that the procedures implementing the grant and revoke operations
preserve policy equivalence.

Theorem 3.7. Let A = ⟨U ,O,P⟩ be an authorization policy,
Eb=⟨U ,O,Kb,Lb,ϕb,Tb⟩ be an encryption policy at the BEL level, and
Es=⟨U ,O,Ks,Ls,ϕs,Ts⟩ be an encryption policy at the SEL level such that A ≡
⟨Eb,Es⟩. Procedures in Fig. 3.17 generate a new Eb

′ = ⟨U ,O,Kb
′,Lb

′,ϕb′,Tb
′⟩,

Es
′ = ⟨U ,O,Ks

′,Ls
′,ϕs′,Ts

′⟩, and A ′ such that A ′ ≡ ⟨Eb
′,Es

′⟩.

Proof. Since we assume that A ≡ ⟨Eb,Es⟩ when procedures Grant and Revoke
are called, we will consider only users and objects for which the encryption and
authorization policies change. Grant and revoke are based on the correctness of
over-encryption operations. We then examine it first.

Over-encrypt. We need to prove that over-encrypt(O,U) possibly encrypts all
objects in O with a key in such a way that a user u′ can derive such a key
if and only if u′ ∈U . The only case we need to consider is when the set of
users U is different from ALL (when U=ALL, objects in O are not needed to
be over-encrypted). Then, if the condition in the first if statement is evaluated
to true, objects in O are already correctly protected and since the procedure
terminates, the result is correct. Otherwise, objects in O are first possibly
decrypted and then encrypted with the correct key s.key or with a key assigned
to vertex s created through function CreateNewVertex(U). The correctness is
guaranteed by the correctness of both function CreateNewVertex and procedure
DeleteVertex (Lemmas 3.4 and 3.3).

Grant. ⟨Eb
′,Es

′⟩=⇒ A ′

Consider user u and object o. From the procedures in Fig. 3.17, it is easy to see
that ϕ ′

b(o) = ϕb(o) and also that there is a (set of) token allowing to derive the key
of the vertex with label ϕ ′

b(o) by knowing the vertex with label ϕ ′
b(u). From the

case instruction and by the correctness of Over-encrypt, either ϕ ′
s(o) = NULL

or o is over-encrypted with a key such that from the key of the vertex with label
ϕ ′
s(o) it is possible to derive the key of the vertex with label ϕ ′

s(o) through Ts
′

(user u is included in the current acl(o)). Since the key of the vertex with label
ϕ ′
b(o) can be derived from the key of the vertex with label ϕ ′

b(u) and the key of
the vertex with label ϕ ′

s(o) can be derived from the key of the vertex with label

ϕ ′
s(u), we have that u A ′

−→o.
Consider now the set of objects O′ and suppose that O′ is not empty. For each
subset S of O′, user u can now derive the key used to encrypt such a set of
objects. This implies that ∀o′ ∈ S, ϕ ′

b(o
′) = ϕb(o′), which corresponding key can

be computed starting from the key of the vertex with label ϕ ′
b(u). However, by

the correctness of Over-encrypt, a call over-encrypt(S,aclS) guarantees that all
objects o′ in S are over-encrypted with a key such that ∀o′ ∈ S, the key of the
vertex with label ϕ ′

s(o
′) is not derivable from the key of the vertex with label
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ϕ ′
s(u) because aclS does not include user u.

⟨Eb
′,Es

′⟩ ⇐= A ′

Consider user u and object o. From the first instruction in procedure Grant,
we have that u A ′

−→o. From the pseudocode in Fig. 3.17, it is easy to see that
ϕ ′
b(o) = ϕb(o) and that the corresponding key can be computed knowing the

key of the vertex with label ϕ ′
b(u). Also, from the case instruction and by the

correctness of Over-encrypt, either ϕ ′
s(o) = NULL or o is over-encrypted with

the key of the vertex with label ϕ ′
s(o) such that it can be derived from the key of

the vertex with label ϕ ′
s(u).

Revoke. ⟨Eb
′,Es

′⟩=⇒ A ′

Consider user u and object o. A call Over-encrypt({o},acl(o)) is requested to
demand the SEL to make o accessible only to users in the current acl(o). We

know that u
E ′
b−→o. Also, from the correctness of Over-encrypt, it is easy to see

that the key of the vertex with label ϕ ′
s(o) cannot be computed from the key of

the vertex with label ϕ ′
s(u).

⟨Eb
′,Es

′⟩ ⇐= A ′

Consider user u and object o. From the first instruction in the procedure we

have that u
A ′

̸−→o. The subsequent call over-encrypt({o},acl(o)) makes object
o no more accessible to user u because o is over-encrypted with a key that is
no more derivable by u (this property is a consequence of the correctness of
Over-encrypt), that is, the key of the vertex with label ϕ ′

b(o) is still derivable
from the key of the vertex with label ϕ ′

b(u) but the key of the vertex with label
ϕ ′
s(o) is not derivable from the key of the vertex with label ϕ ′

s(u).

3.9 Protection Evaluation

Since the BEL and SEL encryption policies are equivalent to the authorization pol-
icy at initialization time, the correctness of the procedures in Fig. 3.17 ensures that
the authorization policy A and the pair ⟨Eb,Es⟩ are equivalent. In other words, at
any point in time, users will be able to access only objects for which they have -
directly or indirectly - the necessary keys both at the BEL and at the SEL level.

The key derivation function adopted is proved to be secure [8]. We also assume
that all the encryption functions and the tokens are robust and cannot be broken,
even combining the information available to many users. Moreover, we assume that
each user correctly manages her keys, without the possibility for a user to steal keys
from another user.

It still remains to evaluate whether the approach is vulnerable to attacks from
users who access and store all information offered by the server, or from collusion
attacks, where different users (or a user and the server) combine their knowledge to
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Fig. 3.20 Possible views on object o

access objects they would not otherwise be able to access. Note that for collusion to
exist, both parties should gain in the exchange (as otherwise they will not have any
incentive in colluding).

To model exposure, we first examine the different views that one can have on
an object o by exploiting a graphical notation with object o in the center and with
fences around o denoting the barriers to the access imposed by the knowledge of
the keys used for o’s encryption at the BEL (inner fence) and at the SEL (outer
fence). The fence is continuous if there is no knowledge of the corresponding key
(the barrier cannot be passed) and it is discontinuous otherwise (the barrier can be
passed). Figure 3.20 illustrates the different views that can exist on the object. On
the left, Fig. 3.20(a), there is the view of the server itself, which knows the key at
the SEL level but does not have access to the key at the BEL level. On the right,
there are the different possible views of users, for whom the object can be:

• open: the user knows the key at the BEL level as well as the key at the SEL level
(Fig. 3.20(b));

• locked: the user knows neither the key at the BEL level nor the key at the SEL
level (Fig. 3.20(c));

• sel locked: the user knows only the key at the BEL level but does not know the
key at the SEL level (Fig. 3.20(d));

• bel locked: the user knows only the key at the SEL level but does not know the
one at the BEL level (Fig. 3.20(e)). Note that this latter view corresponds to the
view of the server itself.

By the authorization policy and the encryption policy equivalence (Theorem 3.7),
the open view corresponds to the view of authorized users, while the remaining
views correspond to the views of non authorized users.

We now discuss possible information exposure, with the conservative assumption
that users are not oblivious (i.e., they have the ability to store and keep indefinitely
all information they were entitled to access).
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Fig. 3.21 View transitions in the Full SEL

3.9.1 Exposure Risk: Full SEL

In the Full SEL approach, at initialization time, BEL and SEL are completely syn-
chronized. For each user, an object is then protected by both keys or by neither:
authorized users will have the open view, while non authorized users will have the
locked view. Fig. 3.21 summarizes the possible view transitions starting from these
two views.

Let us first examine the evolution of the open view. Since objects at the BEL
level are not re-encrypted, the view of an authorized user can change only if the
user is revoked the permission. In this case, the object is over-encrypted at the SEL
level, then becoming sel locked for the user. The view could be brought back to be
open if the user is granted the permission again (i.e., over-encryption is removed).

Let us now examine the evolution of the locked view. For how the SEL is con-
structed and maintained in the Full SEL approach, it cannot happen that the SEL
grants a user an access that is blocked at the BEL level, and therefore the bel locked
view can never be reached. The view can instead change to open, in case the user
is granted the permission to access the object; or to sel locked, in case the user is
given the access key at the BEL level but she is not given that at the SEL level. This
latter situation can happen if the release of the key at the BEL level is necessary
to make accessible to the user another object o′ that is, at the BEL level, encrypted
with the same key as o. To illustrate, suppose that at initialization time objects o
and o′ are both encrypted with the same key and they are not accessible by user u
(see the leftmost view in Fig. 3.22). Suppose then that u is granted the permission
for o′. To make o′ accessible at the BEL level, a token is added to make the key
corresponding to label ϕb(o) derivable by u, where however ϕb(o)=ϕb(o′). Hence,
o′ will be over-encrypted at the SEL level and the key corresponding to label ϕs(o′)
made derivable by u. The resulting situation is illustrated in Fig. 3.22, where o′ is
open and o results sel locked.

We now analyze what are the possible views of users that may collude. Users
having the open and the locked view need not be considered as they have nothing
to gain in colluding. Also, recall that in the Full SEL approach, for what said previ-
ously, nobody (but the server) can have a bel locked view. This leaves us only with
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Fig. 3.23 View transitions in the Delta SEL

users having the sel locked view. Since users having the same views will not gain
anything in colluding, the only possible collusion can happen between the server
(who has a bel locked view) and a user who has a sel locked view. In this situation,
the knowledge of the server allows lowering the outer fence, while the knowledge of
the user allows lowering the inner fence: merging their knowledge, they would then
be able to bring down both fences and enjoy the open view on the object. The risk
of collusion then arises on objects for which a user holds a sel locked view and the
user never had the permission to access the object (i.e., the user never belonged to
the acl of the object). Indeed, if a user would get access to an object she previously
had permission for, the user has no gain in colluding with the server.

Besides collusion between different parties, we also need to consider the risk of
exposure due to a single user merging her own views on an object at different points
in time. It is easy to see that, in the Full SEL approach, where all non authorized
users start with a locked view on the object (and transitions are as illustrated in
Fig. 3.21), there is no risk of exposure. Trivially, if the user is released the key at
the SEL level (i.e., it is possible for her to bring down the lower fence) it is because
the user has the permission for o at some point in time and therefore she is (or has
been) authorized for the object. There is therefore no exposure risk.

3.9.2 Exposure Risk: Delta SEL

In the Delta SEL approach, users not authorized to see an object have, at initial
time, the bel locked view on it. From there, the view can evolve to be open,
sel locked, or locked. The view becomes open in case the user is given the per-
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mission for o; it becomes sel locked in the case the user is given the permission for
an object o′ that is, at the BEL level, encrypted with the same key as o; it becomes
locked if another user is given the permission for an object o′ that is, at the BEL
level, encrypted with the same key as o, thus implying that both BEL and SEL level
keys are not known to the user. View transitions are illustrated in Fig. 3.23. It is
easy to see that, in this case, a single user by herself can then hold the two different
views: sel locked and bel locked. In other words a (planning-ahead) user could
retrieve the object at initial time, when she is not authorized, getting and storing at
her side o’s bel locked view. If, at a later point in time the user is released the key
corresponding to label ϕb(o) to make accessible to her another object o′, she will
acquire the sel locked view on o. Merging this with the past bel locked view, she
can enjoy the open view on o. Note that the set of objects potentially exposed to a
user coincides with the objects exposed to collusion between that user and the server
in the Full SEL approach.

It is important to note that in both cases (Full SEL and Delta SEL), exposure
is limited to objects that have been involved in a policy split to make other objects,
encrypted with the same BEL key, available to the user. Exposure is therefore limited
and well identifiable. This allows the owner to possibly counteract it via explicit
selective re-encryption or by proper design (as discussed in the next section).

The collusion analysis clarifies why we did not consider the third possible en-
cryption scenario illustrated in Sect. 3.7. In this scenario, all users non authorized to
access an object would always have the sel locked view on it and could potentially
collude with the server. The fact that the BEL key is the same for all objects would
make all the objects exposed (as the server would need just one key to be able to
access them all).

3.9.3 Design Considerations

From the analysis above, we can make the following observations on the Delta SEL
and the Full SEL approaches.

• Exposure protection. The Full SEL approach provides superior protection, as it
reduces the risk of exposure, which is limited to collusion with the server. By
contrast, the Delta SEL approach exposes also to single (planning-ahead) users.

• Performance. The Delta SEL approach provides superior performance, as it im-
poses over-encryption only when required by a change in permissions. By con-
trast, the Full SEL approach always imposes a double encryption on the objects,
and therefore an additional load.

From these observations we can draw some criteria that could be followed by a
data owner when choosing between the use of Delta SEL or Full SEL. If the data
owner knows that:

• the access policy will be relatively static, or



3.10 Experimental Results 81

• sets of objects sharing the same acl at initialization time represent a strong se-
mantic relationship rarely split by policy evolution, or

• objects are grouped in the BEL in fine granularity components where most of the
BEL vertices are associated with a single or few objects,

then the risk of exposing the data to collusion is limited also in the Delta SEL
approach, which can then be preferred for performance reasons.

By contrast, if permissions have a more dynamic and chaotic behavior, the
Full SEL approach can be preferred to limit exposure due to collusion (necessar-
ily involving the server). Also, the collusion risk can be minimized by a proper
organization of the objects to reduce the possibility of policy splits. This could be
done either by producing a finer granularity of encryption and/or better identifying
object groups characterized by a persistent semantic affinity (in both cases, using in
the BEL different keys for objects with identical acl).

3.10 Experimental Results

An important issue for the success of the presented techniques is their scalability.
The potential for their adoption would be greatly compromised if they were not
applicable in large-scale scenarios. A natural verification of their adaptability to
large configurations could start from the extraction of a complex authorization pol-
icy from a large system, with the goal of computing an equivalent encryption policy
using the approach presented above. Unfortunately, there is no large scale access
control system available today producing a significant test for the techniques pre-
sented in this chapter. The most structurally rich access policies are today those that
characterize large enterprise scenarios, but these policies typically exhibit a rela-
tively poor structure, which can be represented in our system with a limited number
of tokens and almost no effort on the part of the construction algorithm. We then
need to follow a different strategy to obtain a robust guarantee on the ability of the
proposed system to scale well, building a simulated scenario exhibiting large scale
and articulated policies. As we describe later, a single experiment was not sufficient
and we designed two series of experiments, covering different configurations that
solicited the system in two distinct ways.

The first scenario starts from the premise that data outsourcing platforms are used
to support the exchange and dissemination of objects among the members of a user
community. The idea then is to use a description of the structure of a large social net-
work to derive a number of object dissemination requests. We identified as a source
for the construction of a large social network the coauthor relationship represented
within the DBLP bibliography index. DBLP [39] is a well-known bibliographic
database that currently indexes more than one million articles. The assumption at
the basis of the first series of experiments is that each paper represents an object that
must be accessible by all its authors.

The social network of DBLP coauthors has been the subject of several inves-
tigations, showing that this network has a structure similar to that of other social
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Fig. 3.24 Number of tokens for the DBLP scenario

networks, synthetically classified as a power-law or self-similar structure. We im-
plemented a C++ program that starts from a random author and considers all his/her
publications and coauthors; then, one of the coauthors is randomly chosen and
his/her publications and corresponding coauthors are iteratively retrieved, extending
the user population and the set of objects. We then built a token-based encryption
policy corresponding to the access policy where every author has access to all the
papers that he/she has authored or co-authored.

The first metric we considered in the experiments is the number of tokens re-
quired for the representation of the access policy. The graph in Fig. 3.24 presents
how the number of tokens increases with the number of users. We observe that the
growth is linear and that the number of tokens remains low (with 2000 authors, we
have 3369 tokens).

Another important metric was the one evaluating the impact of the identifica-
tion of candidate non-material vertices. This optimization presented a very limited
benefit in the DBLP scenario, as visible from Fig. 3.24 (18 tokens gained out of
3369, thanks to the introduction of 12 non-material vertices). The rationale is that
the structure of the social network is relatively sparse. As it has been demonstrated
by other investigations on the structure of self-similar networks, they are charac-
terized by a few nodes which present a high level of connectedness, whereas most
of the network nodes are loosely connected with a few other nodes and form small
strictly connected communities. Then, the construction of a token-based encryption
policy for a situation like this produces a relatively simple graph, with relatively
few tokens. This is a positive and important property, which demonstrates that our
approach is immediately applicable to large social networks, with an efficient con-
struction.

Taking into account the behavior emerging from the above experimental sce-
nario, it became interesting to test the behavior of the system in a more difficult
configuration, with a complex access control policy. We were specifically interested
in evaluating the benefit produced by the application of the optimization introduced
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in this chapter. As representative of a potential selective dissemination scenario, we
consider the case study, also analyzed in [34, 40], of a sport news database. The
chosen service manages a system with t teams, where each team is composed by pt
players and is coordinated by one manager. The service is supposed to be used by
s team supporters, referred in the following as subscribers. Moreover, a set of re-
porters follows the league and uses the service to work with tr teams. The reporters
are grouped into sets of rm elements, each of which coordinated by one manager.
In the considered scenario, each subject (team manager, reporter, reporter manager,
and subscribers) can subscribe to any number of objects, partitioned between player
news and team news. Consistently with [34, 40], the set of permissions granted to
subscribers is modeled to be quite large to evaluate the algorithms in a significant
scenario. The number of team news accessed by each subscriber, along with the
player news of the same team, follows a Zipf distribution that increases with the
number s of subscribers.

The novel results presented in Fig. 3.24 (continuous line) show the number of to-
kens required for the representation of the policy. It is immediate to observe that the
number of tokens required per user is significantly higher, due to the more intricate
structure of the policy in this experimental setup. Still, the number of tokens after
the application of the optimization techniques increases linearly with the increase in
the number of users, with no sign of divergence for extremely large configurations.
The graph in Fig. 3.25 shows the advantage produced by the identification of non-
material vertices. It is immediate to observe that the advantage is significant, with a
82% reduction on average on the number of tokens.

Overall, the experiments allow us to express two important claims. First, the ap-
proach presented in this chapter is able to manage large scenarios, particularly when
the access policy presents a structure analogous to that exhibited by social networks.
Second, for complex access policies that present a complex structure and would oth-
erwise require a significant number of tokens per user, the use of the optimization
techniques introduced by this chapter is able to provide a significant reduction in the



84 3 Selective Encryption to Enforce Access Control

complexity, keeping at a manageable level the total number of tokens required for
the representation of the policy.

3.11 Chapter Summary

There is an emerging trend towards scenarios where data management is outsourced
to an external service providing storage capabilities and high-bandwidth distribution
channels. In this context, selective release requires enforcing measures to protect the
data confidentiality from both unauthorized users as well as “honest-but-curious”
servers. Current solutions provide protection by exploiting encryption in conjunc-
tion with proper indexing capabilities, but suffer from limitations requiring the in-
volvement of the owner every time selective access is to be enforced or the access
policy is modified. This chapter presents a model that efficiently organizes the use
of cryptographic services for the management of an access control policy, while al-
lowing efficient access to data by optimizing the public catalog structure. Since the
most important problem arising when using cryptography as a way for enforcing ac-
cess control is policy updates management, we introduced the idea of enforcing the
authorization policy by using a two-layer selective encryption. Our solution offers
significant benefits in terms of quicker and less costly realization of authorization
policy updates and general efficiency of the system. We believe these benefits to be
crucial for the success of emerging scenarios characterized by a huge collection of
data that have to be distributed in a selective way to a variety of users.



Chapter 4
Combining Fragmentation and Encryption to
Protect Data Privacy1

Traditional solutions for granting data privacy rely on encryption. However, dealing
with encrypted data makes query processing expensive. In this chapter, we propose a
solution to enforce privacy over data collections combining data fragmentation with
encryption. We model privacy requirements as confidentiality constraints expressing
the sensitivity of the content of single attributes and of their associations. We then
use encryption as an underlying (conveniently available) measure for making data
unintelligible, while exploiting fragmentation to break sensitive associations among
attributes. We introduce both exact and heuristic algorithms computing a fragmen-
tation that tries to minimize the impact of fragmentation on query efficiency.

4.1 Introduction

Information is probably today the most important and valued resource. Private and
governmental organizations are increasingly gathering vast amounts of data, which
are collected and maintained, and often include sensitive personally identifiable in-
formation. In such a scenario guaranteeing the privacy of the data, be them stored in
the system or communicated to external parties, becomes a primary requirement.

Individuals, privacy advocates, and legislators are today putting more and more
attention on the support of privacy over collected information. Regulations are in-
creasingly being established responding to these demands, forcing organizations to
provide privacy guarantees over sensitive information when storing, processing or

1 Part of this chapter appeared under V. Ciriani, S. De Capitani di Vimercati, S. Jajodia, S. Foresti,
S. Paraboschi, P. Samarati, “Fragmentation and Encryption to Enforce Privacy in Data Storage,”
in ACM Transactions on Information and System Security (TISSEC), Vol. 13:3, July, 2010 [29]
©2010 ACM, Inc. Reprinted by permission http://doi.acm.org/10.1145/1805974.1805978; and
under ©2009 IEEE, reprinted, with permission, from V. Ciriani, S. De Capitani di Vimercati,
S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, “Fragmentation Design for Efficient Query
Execution over Sensitive Distributed Databases,” in Proc. of the 29th International Conference
on Distributed Computing Systems (ICDCS 2009), Montreal, Canada, June 2009 [28].

S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51, 85  
DOI 10.1007/978-1-4419-7659-8_4, © Springer Science+Business Media, LLC 2011
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sharing it with others. Most recent regulations (e.g., see [22] and [78]) require that
specific categories of data (e.g., data disclosing health and sex life, or data such as
ZIP and date of birth that can be exploited to uniquely identify an individual [83]) to
be either encrypted or kept separate from other personally identifiable information
(to prevent their association with specific individuals). Information privacy guaran-
tees may also derive from the need of preventing possible abuses of critical informa-
tion. For instance, the “Payment Card Industry (PCI) Data Security Standard” [77]
forces all the business organizations managing credit card information (e.g., VISA
and MasterCard) to apply encryption measures when storing data. The standard also
explicitly forbids the use of storage encryption as natively offered by operating sys-
tems, requiring access to the encryption keys to be separated from the operating
system services managing user identities and privileges.

This demand for encryption is luckily coupled today with the fact that the real-
ization of cryptographic functions presents increasingly lower costs in a computer
architecture, where the factor limiting system performances is typically the capacity
of the channels that transfer information within the system and among separate sys-
tems. Cryptography then becomes an inexpensive tool that supports the protection
of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted information
represents a burden since encryption makes it not always possible to efficiently
execute queries and evaluate conditions over the data. In fact, a straightforward
approach to guarantee privacy to a collection of data could consist in encrypting
all the data. This technique is, for example, adopted in the database outsourcing
scenario [35, 55], as discussed in Chaps. 2 and 3. The assumption underlying ap-
proaches applying such an encryption wrapper is that all the data are equally sensi-
tive and therefore encryption is a price to be paid to protect them. This assumption
is typically an overkill in many scenarios. As a matter of fact, in many situations
data are not sensitive per se; what is sensitive is their association with other data. As
a simple example, in a hospital the list of illnesses cured or the list of patients could
be made publicly available, while the association of specific illnesses to individual
patients is sensitive and must be protected. Hence, there is no need to encrypt both
illnesses and patients if there are alternative ways to protect the association between
them.

A promising approach to protect sensitive data or sensitive associations among
data is represented by the combined use of fragmentation and encryption. Frag-
mentation and encryption provide protection of data in storage or when dissemi-
nated ensuring no sensitive information is disclosed neither directly (i.e., present
in the database) nor indirectly (i.e., derived from other information present in the
database). With this design, the data can be outsourced and stored on an untrusted
server, typically obtaining lower costs, greater availability, and more efficient dis-
tributed access. The advantage of having only part of the data encrypted is that all
the queries that do not require to reconstruct confidential information will be man-
aged more efficiently and securely. Also, the idea that the higher-level privilege
is only used when strictly necessary represents a concrete realization of the “least
privilege” principle.
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We frame our work in the context of relational databases. The reason for this
choice is that relational databases are by far the most common solution for the man-
agement of the data subject of privacy regulations; also, they are characterized by a
clear data model and a simple query language that facilitate the design of a solution.
We note, however, that our model could be easily adapted to the protection of data
represented with other data models (e.g., records in files or XML documents).

As discussed in Chap. 2, the combined use of fragmentation and encryption to
protect confidentiality has been initially proposed in [2], where information is stored
on two separate servers and protection relies on the hypothesis that the servers can-
not communicate. This assumption is clearly too strong in any practical situation.
Our solution overcomes the above limitations: it allows storing data even on a sin-
gle server and minimizes the amount of data represented only in encrypted format,
therefore allowing for efficient query execution.

This chapter, after introducing confidentiality constraints as a simple, yet pow-
erful, way to capture privacy requirements, presents three different approaches for
the design of a fragmentation that looks carefully at performance issues. The first
approach tries to minimize the number of fragments composing the solution, the
second is based on the affinity between pairs of attributes, and the third exploits
a complete query workload profile of the system. Then, we introduce a complete
search algorithm that computes an optimal fragmentation satisfying confidentiality
constraints, which can be adapted to each of the three optimization models. Also, for
each cost model considered, we propose an ad hoc heuristic algorithm working in
polynomial time. Our approach also manages encrypted indexes, trying to analyze
the vulnerability of sensitive data due to their introduction. The experimental results
support the quality of the solutions produced by the three heuristics, with respect to
the result computed by the complete search strategy.

4.1.1 Chapter Outline

The remainder of the chapter is organized as follows. Section 4.2 formally defines
confidentiality constraints. Sections 4.3 presents our model for enforcing confiden-
tiality constraints by combining fragmentation and encryption. Section 4.4 intro-
duces the definition of minimal fragmentation and shows that it is a NP-hard prob-
lem. Section 4.5 describes a complete search approach that efficiently visits the
solution space lattice. Section 4.6 introduces the definition of vector-minimal frag-
mentation and presents a heuristic algorithm for computing a fragmentation sat-
isfying such a definition. Section 4.7 introduces the concept of attribute affinity.
Section 4.8 presents a heuristic algorithm for computing a fragmentation guided by
the affinity. Section 4.9 introduces the cost model based on query workload. Sec-
tion 4.10 presents an algorithm for computing a fragmentation guided by the cost
of query execution. Section 4.11 illustrates how queries formulated on the original
data are mapped into equivalent queries operating on fragments. Section 4.12 dis-
cusses the introduction of indexes on encrypted attributes. Section 4.13 presents the
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experimental results obtained by the implementation of both complete search and
heuristic algorithms. Finally, Sect. 4.14 presents our concluding remarks.

4.2 Confidentiality Constraints

We consider a scenario where, consistently with other proposals (e.g., [2, 83]) the
data to be protected are represented with a single relation r over a relation schema
R(a1,. . . ,an), containing all the information that need to be protected. For simplicity,
when clear from the context, we will use R to denote either the relation schema R or
the set of attributes in R (instead of using R.∗).

We model in a quite simple and powerful way the privacy requirements through
confidentiality constraints, which are sets of attributes, as follows.

Definition 4.1 (Confidentiality constraint). Let A be a set of attributes, a confi-
dentiality constraint c over A is:

1. a singleton set {a} ⊂ A , stating that the values of the attribute are sensitive
(attribute visibility); or

2. a subset of attributes in A , stating that the association among values of the given
attributes is sensitive (association visibility).

While simple, a confidentiality constraint supports the definition of different con-
fidentiality requirements that may need to be expressed, such as the following.

• The values assumed by some attributes are considered sensitive and therefore
cannot be stored in the clear. For instance, phone numbers or email addresses
can be considered sensitive values (even if not associated with any identifying
information).

• The association among values of given attributes is sensitive and therefore should
not be released. For instance, while the list of (names of) patients in a hospital as
well as the list of illnesses are by themselves not confidential, the association of
patient’s names with illnesses is considered sensitive.

Note that constraints specified on the association among attributes can derive
from different requirements: they can correspond to an association that explicitly
needs protection (as in the case of names and illnesses above) or to associations
that could cause inference on other sensitive information. As an example of the lat-
ter, consider a hospital database, suppose that the names of patients are considered
sensitive, and therefore cannot be stored in the clear, and that the association of
the Occupation together with the ZIP code can work as a quasi-identifier (i.e.,
Occupation and ZIP can be used, possibly in association with external informa-
tion, to help identifying patients and therefore to infer, or reduce uncertainty about,
their names) [30, 83]. This inference channel can be simply blocked by specifying
a constraint protecting the association of the Occupation with the ZIP code. As
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PATIENT

SSN Name Occupation Sickness ZIP
123-45-6789 A. Smith Nurse Latex al. 94140
987-65-4321 B. Jones Nurse Latex al. 94141
246-89-1357 C. Taylor Clerk Latex al. 94140
135-79-2468 D. Brown Lawyer Celiac 94139
975-31-8642 E. Cooper Manager Pollen al. 94138
864-29-7531 F. White Designer Nickel al. 94141

(a)

c0={SSN}
c1={Name,Occupation}
c2={Name,Sickness}
c3={Occupation,Sickness,ZIP}

(b)

Fig. 4.1 An example of plaintext relation (a) and its well defined constraints (b)

another example, consider the case where attribute Name is not considered sensi-
tive, but its association with Sickness is. Suppose again that the Occupation
together with the ZIP code can work as a quasi-identifier (then potentially leaking
information on names). In this case, an association constraint will be specified pro-
tecting the association among Occupation, ZIP, and Sickness, implying that
the three attributes should never be accessible together in the clear.

We are interested in enforcing a set of well defined confidentiality constraints,
formally defined as follows.

Definition 4.2 (Well defined constraints). A set of confidentiality constraints C =
{c1,. . . ,cm} is said to be well defined iff ∀ci,c j ∈ C , i ̸= j, ci ̸⊂ c j and c j ̸⊂ ci.

According to this definition, a set of constraints C over A cannot contain a
constraint that is a subset of another constraint. The rationale behind this property
is that, whenever there are two constraints ci, c j and ci is a subset of c j (or vice
versa), the satisfaction of constraint ci implies the satisfaction of constraint c j (see
Sect. 4.3), and therefore c j is redundant.

Example 4.1. Consider the Patient relation in Fig. 4.1(a), containing the infor-
mation about the patients of a hospital. The privacy requirements that the hospital
needs to enforce, either due to legislative or internal restrictions, are illustrated in
Fig. 4.1(b):

• c0 is a singleton constraint stating that the list of SSN of patients is considered
sensitive;

• c1 and c2 state that the association between Name and Occupation, and the
association between Name and Sickness, respectively, are considered sensi-
tive;

• c3 states that the association among Occupation, ZIP, and Sickness is
considered sensitive (the rationale for this is that Occupation and ZIP are a
quasi-identifier [83]).

Note that also the association of patients’ Name and SSN is sensitive and should
be protected. However, such a constraint is not specified since it is redundant, given
that SSN by itself has been declared sensitive (c0). As a matter of fact, protecting
SSN as an individual attribute implies automatic protection of its associations with
any other attribute.
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4.3 Fragmentation and Encryption for Constraint Satisfaction

Our approach to satisfy confidentiality constraints is based on the use of two tech-
niques: encryption and fragmentation.

• Encryption. Consistently with how the constraints are specified, encryption ap-
plies at the attribute level, that is, it involves an attribute in its entirety. Encrypting
an attribute means encrypting (tuple by tuple) all its values. To protect encrypted
values from frequency attacks [88], we assume that a salt, which is a randomly
chosen value, is applied to each encryption (similarly to the use of nonces in the
protection of messages from replay attacks).

• Fragmentation. Fragmentation, like encryption, applies at the attribute level, that
is, it involves an attribute in its entirety. Fragmenting means splitting sets of
attributes so that they are not visible together, that is, the associations among
their values are not available without access to the encryption key.

It is straightforward to see that attribute visibility constraints can be solved only
by encryption. By contrast, an association visibility constraint could be solved by
either: i) encrypting any (one suffices) of the attributes involved in the constraint, so
to prevent joint visibility, or ii) fragmenting the attributes involved in the constraint
so that they are not visible together. Given a relation r over schema R and a set of
confidentiality constraints C on it, our goal is to fragment R granting constraints
satisfaction. However, we must also ensure that no constraint can be violated by re-
combining two or more fragments. In other words, there cannot be attributes that can
be exploited for linking. Since encryption is differentiated by the use of the salt, the
only attributes that can be exploited for linking are the plaintext attributes. Conse-
quently, ensuring that fragments are protected from linking translates into requiring
that no attribute appears in clear form in more than one fragment. In the follow-
ing, we use the term fragment to denote any subset of a given set of attributes. A
fragmentation is a set of non overlapping fragments, as captured by the following
definition.

Definition 4.3 (Fragmentation). Let R be a relation schema, a fragmentation of
R is a set of fragments F={F1,. . .,Fm}, where Fi ⊆ R, for i = 1, . . . ,m, such that
∀Fi,F j ∈ F , i ̸= j : Fi ∩F j = /0 (fragments do not have attributes in common).

In the following, we denote with F j
i the i-th fragment in fragmentation F j (the

superscript will be omitted when the fragmentation is clear from the context). For
instance, with respect to the plaintext relation in Fig. 4.1(a), a possible fragmentation
is F={{Name},{Occupation},{Sickness,ZIP}}.

At the physical level, a fragmentation translates to a combination of fragmenta-
tion and encryption. Each fragment F is mapped into a physical fragment containing
all the attributes of F in the clear, while all the other attributes of R are encrypted.
The reason for reporting all the original attributes (in either encrypted or clear form)
in each of the physical fragments is to guarantee that any query can be executed by
querying a single physical fragment (see Sect. 4.11). For the sake of simplicity and
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f̂ 1

salt enc Name
s1 α A. Smith
s2 β B. Jones
s3 γ C. Taylor
s4 δ D. Brown
s5 ε E. Cooper
s6 ζ F. White

(a)

f̂ 2

salt enc Occupation
s7 η Nurse
s8 θ Nurse
s9 ι Clerk
s10 κ Lawyer
s11 λ Manager
s12 µ Designer

(b)

f̂ 3

salt enc Sickness ZIP
s13 ν Latex al. 94140
s14 ξ Latex al. 94141
s15 π Latex al. 94140
s16 ρ Celiac 94139
s17 σ Pollen al. 94138
s18 τ Nickel al. 94141

(c)

Fig. 4.2 An example of physical fragments for the relation in Fig. 4.1(a)

efficiency, we assume that all attributes not appearing in the clear in a fragment are
encrypted all together (encryption is applied on subtuples). Physical fragments are
then defined as follows.

Definition 4.4 (Physical fragment). Let R be a relation schema, and
F={F1,. . .,Fm} be a fragmentation of R. For each Fi={ai1 , . . . ,ain} ∈ F , the
physical fragment of R over Fi is a relation schema F̂i(salt,enc,ai1 , . . . ,ain), where
salt is the primary key, enc represents the encryption of all the attributes of R that
do not belong to the fragment, XORed (symbol ⊕) before encryption with the salt.

At the level of instance, given a fragment Fi={ai1 , . . . ,ain}, and a relation r over
schema R, the physical fragment F̂i of Fi is such that each plaintext tuple t ∈ r is
mapped into a tuple t̂ ∈ f̂ i where f̂ i is a relation over F̂i and:

• t̂[enc] = Ek(t[R−Fi] ⊕ t̂[salt])
• t̂[ai j ] = t[ai j ], for j = 1, . . . ,n

Figure 4.2 illustrates an example of physical fragments for the relation schema in
Fig. 4.1(a) that does not violate the well defined constraints in Fig. 4.1(b).

The algorithm in Fig. 4.3 shows the construction and population of physical frag-
ments. When the size of the attributes exceeds the size of an encryption block, we
assume that encryption of the protected attributes uses a Cipher Block Chaining
(CBC) mode [88], with the salt used as the Initialization Vector (IV); in the CBC
mode, the clear text of the first block is actually encrypted after it has been com-
bined in binary XOR with the IV. Note that the salts, which we conveniently use
as primary keys of physical fragments (ensuring no collision in their generation),
need not be secret, because knowledge of the salts does not help in attacking the
encrypted values as long as the encryption algorithm is secure and the key remains
protected.

4.4 Minimal Fragmentation

We first formally discuss the properties we require to candidate fragmentations to
ensure efficient query execution.
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INPUT
A relation r over schema R
C = {c1, . . . ,cm} /* well defined constraints */

OUTPUT
A set of physical fragments {F̂1,. . . ,F̂i}
A set of relations {f̂ 1,. . . ,f̂ i} over schemas {F̂1,. . . ,F̂i}

MAIN
C f := {c∈C : |c|>1} /* association visibility constraints */
A f := {a∈R: {a}̸∈C}
F := Fragment(A f , C f )
/* define physical fragments */
for each F={ai1 ,. . . ,ail } ∈F do

define relation F̂ with schema: F̂ (salt, enc, ai1 ,. . . ,ail )
/* populate physical fragments instances */

for each t∈r do
t̂[salt] := GenerateSalt(F ,t)
t̂[enc] := Ek(t[a j1 . . . a jp ] ⊕t̂[salt]) /* {a j1 . . . a jp}=R−F */
for each a∈F do t̂[a] := t[a]
insert t̂ in f̂

Fig. 4.3 Algorithm that correctly fragments R

4.4.1 Correctness

Given a schema R and a set of confidentiality constraints C on it, a fragmentation
satisfies all constraints if no fragment contains in the clear all the attributes which
visibility is forbidden by a constraint. The following definition formalizes this con-
cept.

Definition 4.5 (Fragmentation correctness). Let R be a relation schema, F be
a fragmentation of R, and C be a set of well defined constraints over R. F cor-
rectly enforces C iff ∀F ∈F ,∀c ∈C : c ̸⊆ F (each individual fragment satisfies the
constraints).

Note that this definition, requiring fragments not to be a superset of any con-
straint, implies that attributes appearing in singleton constraints do not appear in
any fragment (i.e., they are always encrypted). Indeed, as already noted, singleton
constraints require the attributes on which they are defined to appear only in en-
crypted form.

In this chapter, we specifically address the fragmentation problem and therefore
focus only on the association visibility (i.e., non singleton) constraints C f ⊆ C and
on the corresponding set A f of attributes to be fragmented, defined as A f = {a ∈ R
: {a} ̸∈ C }.

4.4.2 Maximal Visibility

The availability of plaintext attributes in a fragment allows an efficient execution
of queries. Therefore, we aim at minimizing the number of attributes that are not
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represented in the clear in any fragment, because queries using those attributes will
be generally processed inefficiently. In other words, we prefer fragmentation over
encryption whenever possible and always solve association constraints via fragmen-
tation.

The requirement on the availability of a plain representation for the maximum
number of attributes can be captured by imposing that any attribute not involved in
a singleton constraint must appear in the clear in at least one fragment. This require-
ment is formally represented by the definition of maximal visibility as follows.

Definition 4.6 (Maximal visibility). Let R be a relation schema, F be a fragmenta-
tion of R, and C be a set of well defined constraints over R. F maximizes visibility
iff ∀a∈A f : ∃F ∈ F such that a∈F .

Note that the combination of maximal visibility together with the definition of
fragmentation (Definition 4.3) imposes that each attribute that does not appear in a
singleton constraint must appear in the clear in exactly one fragment (i.e., at least for
Definition 4.6, at most for Definition 4.3). In the following, we denote with F the set
of all possible fragmentations maximizing visibility. Therefore, we are interested in
determining a fragmentation in F that satisfies all the constraints in the system.

4.4.3 Minimum Number of Fragments

Another important aspect to consider when fragmenting a relation to satisfy a set of
constraints is to avoid excessive fragmentation. In fact, the availability of more at-
tributes in the clear in a single fragment allows a more efficient execution of queries
on the fragment. Indeed, a straightforward approach for producing a fragmentation
that satisfies the constraints while maximizing visibility is to define as many (sin-
gleton) fragments as the number of attributes not appearing in singleton constraints.
Such a solution, unless demanded by the constraints, is however undesirable since
it makes any query involving conditions on more than one attribute inefficient.

A simple strategy to find a fragmentation that makes query execution efficient
consists in finding a minimal fragmentation, that is, a correct fragmentation that
maximizes visibility, while minimizing the number of fragments. This problem can
be formalized as follows.

Problem 4.1 (Minimal fragmentation). Given a relation schema R, a set C of well
defined constraints over R, find a fragmentation F of R such that all the following
conditions hold:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the two conditions above such that the number of fragments com-

posing F ′ is less than the number of fragments composing F .

The minimal fragmentation problem is NP-hard, as formally stated by the following
theorem.



94 4 Combining Fragmentation and Encryption to Protect Data Privacy

Theorem 4.1. The minimal fragmentation problem is NP-hard.

Proof. The proof is a reduction from the NP-hard problem of minimum hypergraph
coloring [50], which can be formulated as follows: given a hypergraph H (V,E),
determine a minimum coloring of H , that is, assign to each vertex in V a color such
that adjacent vertices have different colors, and the number of colors is minimized.

Given a relation schema R and a set C of well defined constraints, the cor-
respondence between the minimal fragmentation problem and the hypergraph
coloring problem can be defined as follows. Any vertex vi of the hypergraph
H corresponds to an attribute ai ∈ A f . Any edge ei in H , which connects
vi1 , . . . ,vic , corresponds to a constraint ci={ai1 ,. . . ,aic}, ci ∈ C f . A fragmentation
F={F1(a11 , . . . ,a1k), . . . ,Fp(ap1 , . . . ,apl )} of R satisfying all constraints in C cor-
responds to a solution S for the corresponding hypergraph coloring problem. Specif-
ically, S uses p colors and {v11 , . . . ,v1k}, corresponding to the attributes in F1, are
colored using the first color, vertices {vi1 , . . . ,vi j}, corresponding to the attributes in
Fi, are colored with the i-th color, and vertices {vp1 , . . . ,vpl}, corresponding to the
attributes in Fp, are colored using the p-th color. As a consequence, any algorithm
finding a minimal fragmentation can be exploited to solve the hypergraph coloring
problem.

The hypergraph coloring problem has been extensively studied in the literature,
reaching interesting theoretical results. In particular, assuming NP ̸= ZPP, there are
no polynomial time approximation algorithms for coloring k-uniform hypergraphs
with approximation ratio O(n1−ε) for any fixed ε > 0 [60, 65].2

4.4.4 Fragmentation Lattice

To characterize the space of possible fragmentations and the relationships among
them, we first introduce the concept of fragment vector as follows.

Definition 4.7 (Fragment vector). Let R be a relation schema, C be a set of well
defined constraints over R, and F= {F1, . . . ,Fm} be a fragmentation of R maxi-
mizing visibility. The fragment vector VF of F is a vector of fragments with an
element VF [a] for each a ∈ A f , where the value of VF [a] is the unique fragment
F j∈F containing attribute a.

Example 4.2. Let F = {{Name},{Occupation},{Sickness,ZIP}} be a frag-
mentation of the relation schema in Fig. 4.1(a). The fragment vector is the vector
VF such that:

• VF [Name]={Name};
• VF [Occupation]={Occupation};

2 In a minimization framework, an approximation algorithm with approximation ratio p guarantees
that the cost C of its solution is such that C/C∗ ≤ p, where C∗ is the cost of an optimal solution [50].
On the contrary, we cannot perform any evaluation on the result of a heuristic.
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Fig. 4.4 An example of fragmentation lattice

• VF [Sickness]=VF [ZIP]={Sickness,ZIP}.

Fragment vectors allow us to define a partial order between fragmentations as
follows.

Definition 4.8 (Dominance). Let R be a relation schema, C be a set of well defined
constraints over R, and F , F ′ be two fragmentations of R maximizing visibility.
We say that F ′ dominates F , denoted F≼F ′, iff VF [a]⊆VF ′ [a], ∀ a ∈ A f . We
say F ≺ F ′ iff F≼F ′ and F ̸= F ′.

Definition 4.8 states that fragmentation F ′ dominates fragmentation F if F ′

can be computed from F by merging two (or more) fragments composing F .

Example 4.3. Let F 1={{Name,ZIP}, {Occupation,Sickness}} and
F 2={{Name}, {Occupation,Sickness}, {ZIP}} be two fragmentations of
the relation schema in Fig. 4.1(a). Since F 1 can be obtained from F 2 by merging
fragments {Name} and {ZIP}, it results that F 2≺F 1.

The set F of all possible fragmentations maximizing visibility, together with the
dominance relationship just introduced, form a lattice, as formally stated in the fol-
lowing definition.

Definition 4.9 (Fragmentation lattice). Let R be a relation schema, and C be a set
of well defined constraints over R. The fragmentation lattice is a pair (F,≼), where
F is the set of all fragmentations of R maximizing visibility and ≼ is the dominance
relationship among them, as defined in Definition 4.8.

The top element F⊤ of the lattice represents a fragmentation where each at-
tribute in A f appears in a different fragment. The bottom element F⊥ of the lat-
tice represents a fragmentation composed of a single fragment containing all at-
tributes in A f . As an example, Fig. 4.4 illustrates the fragmentation lattice for the
example in Fig. 4.1, with A f ={Name, Occupation, Sickness, ZIP}. Here,
attributes are represented with their initials and fragments are divided by a vertical
line. Furthermore, fragmentations that correctly enforce (Definition 4.5) constraints
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in Fig. 4.1(b) appear as solid boxes, while fragmentations that violate at least a con-
straint appear as dotted boxes.

An interesting property of the fragmentation lattice is that given a non correct
fragmentation F i, any fragmentation F j such that F j≼F i is non correct.

Theorem 4.2. Given a fragmentation lattice (F,≼), ∀F i,F j ∈ F such that
F j≼F i, F i non correct =⇒ F j non correct.

Proof. If F i is not correct, then ∃c∈C f and ∃Fi∈F i such that c⊆Fi. Since
F j≼F i, by Definition 4.8, ∃F j∈F j such that Fi⊆F j. Then c⊆Fi⊆F j, and F j
is not correct.

By construction, each path in the lattice is characterized by a locally minimal
fragmentation, which is the fragmentation such that all its descendants in the path
correspond to non correct fragmentations. Intuitively, such locally minimal frag-
mentations can be determined either via a top-down visit or via a bottom-up visit
of the lattice. The number of fragmentations at level i (i.e., the solutions composed
of (n− i)+ 1 fragments) of the lattice is

{ n
n−i

}
, which is the number of Stirling of

the second kind [53]. As a consequence, |F|= ∑i = 0n
{ n

n−i

}
= Bn, which is the Bell

number [53]. The second level of the lattice then contains a quadratic number of
solutions (O(n2)), and an exponential number of fragmentations (O(2n)) resides in
the first to last level. The top-down strategy, exploiting the fact that the number of
fragments increases while going down in the lattice, seems then to be more conve-
nient. In the following section, we then propose an exact algorithm that performs
a top-down tree traversal of the lattice (i.e., each fragmentation is visited at most
once) and that generates only a subset of all possible fragmentations.

4.5 A Complete Search Approach to Minimal Fragmentation

Although the number of possible fragmentations in F is exponential in |A f |, the
set of attributes to be fragmented is usually limited in size and therefore a com-
plete search evaluating the different fragmentations maximizing visibility could be
acceptable. To ensure the evaluation of each correct fragmentation maximizing vis-
ibility exactly once, we define a fragmentation tree as follows.

Definition 4.10 (Fragmentation tree). Let (F,≼) be a fragmentation lattice. A
fragmentation tree of the lattice is a spanning tree of (F,≼) rooted in F⊤.

We propose here a method for building a fragmentation tree over a given frag-
mentation lattice. To this aim, we assume the set A f of attributes to be totally or-
dered, according to a relationship, denoted <A, and assume that in each fragment
F attributes are maintained ordered, from the smallest, denoted F.first, to the great-
est, denoted F.last. We then translate the order relationship among attributes into
an order relationship among fragments within a fragmentation, by considering frag-
ments to be ordered according to the order dictated by their smallest (.first) attribute.
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Fig. 4.5 A fragmentation tree for the fragmentation lattice in Fig. 4.4

Since, within a fragmentation, each attribute appears in exactly one fragment, the
fragments in each fragmentation are totally ordered. Each fragmentation F is then
a sequence, denoted F = [F1, . . . ,Fn], of fragments, where ∀i, j = 1, . . . ,n : i < j,
Fi.first <A Fj.first. In this case, we say that fragment Fi precedes fragment Fj in frag-
mentation F . Given two fragments Fi,Fj with i < j, we say that Fi fully precedes Fj
iff all attributes of Fi are smaller than all attributes in Fj, that is, Fi.last <A Fj.first.
Note that full precedence is only a partial ordering.

To ensure tree traversal and therefore to avoid computing a fragmentation twice,
we exploit the precedence relationship among fragments and associate with each
fragmentation F = [F1, . . . ,Fn] a marker Fi that is the non singleton fragment such
that ∀ j > i, Fj is a singleton fragment. For the root, the marker is its first fragment.
Intuitively, the marker associated with a fragmentation denotes the starting point for
fragments to be combined to obtain children of the fragmentation (as a combination
with any fragment preceding it will produce duplicate fragmentations). We then
define an order-based cover for the lattice as follows.

Definition 4.11 (Order-based cover). Let (F,≼) be a fragmentation lattice. An
order-based cover of the lattice, denoted T (V,E), is an oriented graph, where
V = F, and ∀F p,F c ∈ V , (F p,F c) ∈ E iff, being F p

m the marker of F p, there
exists i, j with m ≤ i and F p

i fully preceding F p
j , such that:

• ∀l < j, l ̸= i, Fc
l = F p

l ;
• Fc

i = F p
i F p

j ;
• ∀l ≥ j, Fc

l = F p
l+1.

As an example, consider the order-based cover in Fig. 4.5, where <A is the
lexicographic order. It is built on the fragmentation lattice in Fig. 4.4 and the
underlined fragments are the markers. Given fragmentations F p=[N|O|S|Z] and
F c=[N|OS|Z], edge (F p,F c) belongs to T since for i = 2 and j = 3 we have that
Fc

1 =F p
1 =N; Fc

2 =F p
2 F p

3 =OS; and Fc
3 =F p

3+1=Z. The order-based cover so defined cor-
responds to a fragmentation tree for the lattice, as stated by the following theorem.

Theorem 4.3. The order-based cover T of a lattice (F,≼) is a fragmentation tree
for (F,≼) with root F⊤.
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Proof. T is a fragmentation tree for (F,≼) if: (1) each vertex at level i (but the root
F⊤) has exactly one parent at level i− 1, and (2) each edge of T is an edge in
(F,≼).

1. Each vertex has at most one parent. Suppose, by contradiction, that a vertex
F=[F1,. . . ,Fn−1] is a child of two different vertices in T , say F 1=[F1

1 ,. . . ,F1
n ]

and F 2=[F2
1 ,. . . ,F2

n ]. Therefore, there exists a fragment Fi1 in F obtained as
F1

i1 F1
j1 . Analogously, there exists a fragment Fi2 in F obtained as F2

i2 F2
j2 .

Suppose also, without loss of generality, i1 < i2. By Definition 4.11, for each
Fk in F , k ̸= i1, there exists a fragment F1

k1
in F 1 such that F1

k1
=Fk and k1 ≥ k

(either k1 = k or k1 = k + 1). Therefore, there exists a non singleton fragment
F1

l =Fi2 with l ≥ i2. As a consequence, l > i1, thus the marker for F 1 must be
greater than or equal to i1, by definition. This generates the contradiction.
Each vertex has at least one parent. Let F be a vertex at level i (i ̸= 1) in T
(F ̸=F⊤), Fm be its marker, and Fm.last be the highest attribute in Fm. Consider
fragmentation F p, containing all the fragments in F but Fm and the two frag-
ments obtained by splitting Fm into Fm−{Fm.last} and {Fm.last}. The marker of
F p precedes m, since all the fragments following Fm in F are singleton in F p
as well. Also, the additional fragment {Fm.last} is singleton and it follows F p

m ,
according to relationship <A (since it is the maximum attribute). Therefore, by
Definition 4.11, there is an edge (F p,F ) in T , then F p is parent of F and F p
has exactly one fragment more than F (i.e., F p is at level i−1).

2. Each edge in T is an edge in (F,≼). Let (F p,F c) be an edge in T . By Defini-
tion 4.11 it follows that F p≼F c, then (F p,F c) is an edge of (F,≼).

4.5.1 Computing a Minimal Fragmentation

Our complete search function, function Fragment in Fig. 4.6, performs a depth first
search on the fragmentation tree T built as an order-based cover. Besides exploit-
ing the tree structure, our proposal takes advantage of the result of Theorem 4.2
by pruning the fragmentation tree to avoid the visit of subtrees composed only of
fragmentations violating constraints (i.e., the children of a non correct parent).

The function takes as input the set A f of attributes to be fragmented and the
set C f of well defined non singleton constraints. The function uses variables:
marker[F ], representing the position of the marker within fragmentation F ; Min,
representing the current minimal fragmentation; and MinNumFrag, representing the
number of fragments composing Min. First, the function initializes variable Min to
F⊤ and variable MinNumFrag to the number of fragments in F⊤. Then, it calls
function SearchMin on F⊤ that iteratively builds the children of F⊤ according to
Definition 4.11. Function SearchMin(F p) is then recursively called on each frag-
mentation F c, child of F p, only if F c satisfies all the constraints (i.e., if function
SatCon returns true). The function exploits the fact that the number of fragments
decreases while going down the lattice and compares Min with a fragmentation only
if it does not have correct children (i.e., it is a candidate minimal fragmentation).
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FRAGMENT(A f ,C f )
for each ai∈A f do F⊤

i := {ai} /* root of the search tree F⊤ */
marker[F⊤] := 1
Min := F⊤ /* current minimal fragmentation */
MinNumFrag := Evaluate(Min)
SearchMin(F⊤) /* recursive call that builds the search tree */
return(Min)

SEARCHMIN(F p)
localmin := true /* minimal fragmentation */
for i:=marker[F p]. . . (|F p|-1) do

for j:=(i+1). . . |F p| do
if F p

i .last<AF p
j .first then /* F p

i fully precedes F p
j */

for l:=1. . . |F p| do
case:

(l<j ∧ l̸=i): Fc
l := F p

l
(l>j): Fc

l−1 := F p
l

(l=i): Fc
l := F p

i F p
j

marker[F c] := i
if SatCon(Fc

i ) then
localmin := false
SearchMin(F c) /* recursive call on correct fragmentation */

if localmin then
nf := Evaluate(F p)
if nf<MinNumFrag then

MinNumFrag := nf
Min := F p

SATCON(F)
for each c∈C f do

if c⊆F then return(false)
return(true)

Fig. 4.6 Function that performs a complete search

It is interesting to note that, by substituting the definition of the Evaluate func-
tion with any other cost function monotonic with respect to the dominance relation-
ship, the given function Fragment can determine the minimum cost/maximum gain
fragmentation in F.

The fragmentation tree generated by function Fragment in Fig. 4.6 according
to the order-based cover introduced in Definition 4.11 is not balanced. Indeed, the
fragmentation tree is built by inserting the vertices in a specific order, starting from
F⊤ and inserting, at each level of the tree, the vertices from left to right. This
implies that each vertex in the tree at the i-th level has, as parent, the leftmost vertex
in the (i−1)-th level that satisfies Definition 4.11. Consequently, as it is visible from
Fig. 4.5 the length of the paths from F⊤ to the leaves of the fragmentation lattice
decreases when moving from the left to the right in the tree.

Example 4.4. Figure 4.7 illustrates the execution, step by step, of function Search-
Min applied to Example 4.1. The columns of the table in Fig. 4.7(a) represent
the call to SearchMin with its parameter F p; the fragments F p

i and F p
j merged;

the resulting fragmentation F c; the value of SatCon on Fc
i ; the possible recur-

sive call to SearchMin(F c); the result of function Evaluate(F p) (i.e., the num-
ber of fragments in F p), when computed; the updates to Min. Figure 4.7(b) illus-
trates the tree built by the recursive calls of function SearchMin on the consid-
ered example, with the number of fragments necessary for comparison with Min
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SearchMin(F p) F p
i F p

j F c SatCon(Fc
i ) SearchMin(F c) Evaluate(F p) Min

N|O|S|Z N O NO|S|Z false –
S NS|O|Z false –
Z NZ|O|S true NZ|O|S

O S N|OS|Z true N|OS|Z
Z N|OZ|S true N|OZ|S

S Z N|O|SZ true N|O|SZ
NZ|O|S NZ O – – –

S – – –
O S NZ|OS true NZ|OS

NZ|OS – – – – – 2 NZ|OS
N|OS|Z OS Z N|OSZ false – 3
N|OZ|S OZ S – – – 3
N|O|SZ – – – – – 3

(a)

N|O|S|Z

nnnnnnnnnn

}}
}}

}}

AA
AA

AA

PPPPPPPPPP

UUUUUUUUUUUUUUUU4

NO|S|Z NS|O|Z NZ|O|S N|OS|Z
3

N|OZ|S
3

N|O|SZ
3

NZ|OS
2

N|OSZ

(b)

Fig. 4.7 An example of the execution of function Fragment in Fig. 4.6

at the right of the corresponding fragmentations. At the beginning, variable Min
is initialized to [N|O|S|Z] and the corresponding MinNumFrag is set to 4. The
function then calls function SearchMin on [N|O|S|Z]. At the first iteration of the
two for loops in SearchMin([N|O|S|Z]), fragments F p

1 =N and F p
2 =O are merged,

thus generating the fragmentation [NO|S|Z] that violates constraint c1. The second
fragmentation generated is [NS|O|Z], which violates c3. The third fragmentation
[NZ|O|S] is correct and SearchMin([NZ|O|S]) is recursively called, which in turn
calls SearchMin([NZ|OS]). Since the two fragments in [NZ|OS] cannot be merged
(Z ̸<A O), SearchMin is not further called. Therefore, the function compares the
number of fragments composing [NZ|OS], which is 2, with MinNumFrag and up-
dates Min accordingly. The recursive calls on the other fragmentations are processed
in an analogous way. The final minimal fragmentation computed by the function is
[NZ|OS] with 2 fragments only.

4.5.2 Correctness and Complexity

Before proving the complexity of function Fragment in Fig. 4.6, we introduce a
lemma, proving that function Fragment computes all correct fragmentations, while
it never generates more than once the same solution.
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Lemma 4.1. Function Fragment in Fig. 4.6 visits all correct fragmentations in T
exactly once.

Proof. The function starts from the root of T and recursively visits it with a depth-
first strategy. At each call of SearchMin(F p) it generates all the children of F p,
according to Definition 4.11, by the first two for loops and the following if instruc-
tion. Since SearchMin is recursively called only on correct solutions, the subtrees
rooted at non correct children are not visited. However, by Theorem 4.2, no correct
solution belongs to these subtrees.

Theorem 4.4 (Correctness). Function Fragment in Fig. 4.6 terminates and finds a
minimal fragmentation (Problem 4.1).

Proof. Function Fragment in Fig. 4.6 always terminates since, at each recursive
call, it combines two of the fragments in the parent to compute its children. There-
fore, the maximum reachable depth is |A f |.

We now prove that a solution F computed by this function over A f and C f is
a minimal fragmentation. According to Problem 4.1, a fragmentation F is minimal
if and only if (1) it is correct, (2) it maximizes visibility, and (3)@F ′ composed of
less fragments than F and satisfying the two conditions above. A fragmentation F
computed by function Fragment in Fig. 4.6 satisfies these three properties.

1. The computed fragmentation F is correct since function SearchMin is recur-
sively called only on correct fragmentations F p (i.e., when SatCon is true).
Therefore only correct solutions are assigned to the returned solution F (i.e.,
Min).

2. F is a fragmentation of R maximizing visibility, since any solution generated by
the function is obtained by merging fragments in F⊤. F⊤ is a fragmentation
maximizing visibility, since it contains all attributes in A f and each a∈A f ap-
pears exactly in one fragment. The merge operation in the SearchMin function
simply concatenates two fragments into a single one, thus producing a fragmen-
tation F such that the condition of maximal visibility is satisfied.

3. F has minimum number of fragments, since the function visits all the correct
solutions in T and compares MinNumFrag with the number of fragments in so-
lutions having only non correct children. By Definition 4.8, the correct solutions
that are not compared with F have a number of fragments greater or equal than
F .

Therefore the solution F computed by function Fragment in Fig. 4.6 is a minimal
fragmentation.

Theorem 4.5 (Complexity). Given a set C ={c1,. . . ,cm} of constraints and a set
A ={a1,. . . ,an} of attributes the complexity of function Fragment(A ,C ) in Fig. 4.6
is O(Bn ·m) in time.

Proof. The proof comes directly from Lemma 4.1. In the worst case, each frag-
mentation in F, which are O(Bn) in number, is generated exactly once by function
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Fragment in Fig. 4.6. Also, function SatCon is called once for each solution gener-
ated and checks if all constraints, which are m in number, are satisfied. The overall
time complexity is therefore O(Bn ·m).

4.6 A Heuristic Approach to Minimize Fragmentation

In this section, we present a heuristic algorithm for Problem 4.1 to be applied when
the number of attributes in the schema does not allow a complete exploration of the
solution space. The heuristic is based on the definition of vector minimality, which
is then exploited to efficiently find a correct fragmentation maximizing visibility.

A vector-minimal fragmentation is formally defined as a fragmentation F that
is correct, maximizes visibility, and all fragmentations that can be obtained from F
by merging any two fragments in F violate at least one constraint.

Definition 4.12 (Vector-minimal fragmentation). Let R be a relation schema, C
be a set of well defined constraints, and F be a fragmentation of R. F is a vector-
minimal fragmentation iff all the following conditions are satisfied:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the two conditions above such that F≺F ′.

According to this definition of minimality, it easy to see that while a minimal
fragmentation is also vector-minimal, the vice versa is not necessarily true.

Example 4.5. Consider fragmentations F 1 and F 2 of Example 4.3, and the set of
constraints in Fig. 4.1(b). Since F 2≺F 1, F 2 is not vector-minimal. By contrast,
F 1 is vector-minimal. As a matter of fact, F 1 contains all attributes of relation
schema Patient in Fig. 4.1(a) but SSN (maximal visibility); satisfies all con-
straints in Fig. 4.1(b) (correctness); and no fragmentation obtained from it by merg-
ing any pair of fragments satisfies the constraints.

4.6.1 Computing a Vector-minimal Fragmentation

The definition of vector-minimal fragmentation allows us to design a heuristic ap-
proach for Problem 4.1 that works in polynomial time and computes a fragmentation
that, even if it is not necessarily a minimal fragmentation, it is however near to the
optimal solution, as the experimental results show (see Sect. 4.13).

Our heuristic method starts with an empty fragmentation and, at each step, se-
lects the attribute involved in the highest number of unsolved constraints. The ra-
tionale behind this selection criterion is to bring all constraints to satisfaction in a
few steps. The selected attribute is then inserted into a fragment that is determined
in such a way that there is no violation of the constraints involving the attribute. If
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FRAGMENT(A f ,C f )

A ToPlace := A f
C ToSolve := C f
Min := /0
for each a∈A ToPlace do /* initialize arrays Con[] and N con[] */

Con[a] := {c ∈ C ToSolve: a ∈ c}
N con[a] := |Con[a]|

repeat
if C ToSolve ̸= /0 then

let attr be an attribute with the maximum value of N con[]
for each c ∈ (Con[attr] ∩ C ToSolve) do

C ToSolve := C ToSolve − {c} /* adjust the constraints */
for each a ∈ c do N con[a] := N con[a]−1 /* adjust array N con[] */

else /* since all the constrains are satisfied, choose any attribute in A ToPlace */
let attr be an attribute in A ToPlace

A ToPlace := A ToPlace − {attr}
inserted := false /* try to insert attr into the existing fragments */
for each F ∈ Min do /* evaluate if F ∪ {attr} satisfies the constraints */

satisfies := true
for each c ∈ Con[attr] do

if c ⊆ (F ∪ {attr}) then
satisfies := false /* choose the next fragment */
break

if satisfies then
F := F ∪ {attr} /* attr has been inserted into F */
inserted := true
break

if NOT inserted then /* insert attr into a new fragment */
add {attr} to Min

until A ToPlace = /0
return(Min)

Fig. 4.8 Function that finds a vector-minimal fragmentation

such a fragment does not exist, a new fragment for the selected attribute is created.
The process terminates when all attributes have been inserted into a fragment. Fig-
ure 4.8 illustrates function Fragment that implements this heuristic method. The
function takes as input the set A f of attributes to be fragmented, and the set C f of
well defined non singleton constraints, used to initialize variables A ToPlace and
C ToSolve, respectively. It computes a vector-minimal fragmentation Min of A f as
follows.

First, the function initializes Min to the empty set and creates two arrays Con[]
and N con[] that contain an element for each attribute a in A ToPlace. Element
Con[a] contains the set of constraints on a, and element N con[a] is the number
of non solved constraints involving a (note that, at the beginning, N con[a] coin-
cides with the cardinality of Con[a]). The function then executes a repeat until
loop that, at each iteration, places an attribute attr into a fragment as follows. If
there are constraints still to be solved (C ToSolve̸= /0) attr is selected as an attribute
appearing in the highest number of unsolved constraints. Then, for each constraint
c in Con[attr]∩C ToSolve, the function removes c from C ToSolve and, for each
attribute a in c, decreases N con[a] by one. Otherwise, that is, if all constraints
are solved (C ToSolve= /0), the function chooses attr by randomly extracting an at-
tribute from A ToPlace and removes it from A ToPlace. Then, the function looks for
a fragment F in Min in which attr can be inserted without violating any constraint
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Min=/0
C ToSolve={c1,c2,c3}
A ToPlace={Name,Occupation,Sickness,ZIP}

c1 c2 c3 N con[ai]
Name × × 2
Occupation × × 2
Sickness × × 2
ZIP × 1
ToSolve yes yes yes

attr = Name
Con[Name]={c1,c2}

Min = {{Name}}
C ToSolve = {c3}
A ToPlace = {Occupation,Sickness,ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X × 1
Sickness X × 1
ZIP × 1
ToSolve X X yes

attr = Occupation
Con[Occupation]={c1,c3}

Min = {{Name},{Occupation}}
C ToSolve = /0
A ToPlace = {Sickness,ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

attr = Sickness
Con[Sickness]={c2,c3}

Min = {{Name},{Occupation,Sickness}}
C ToSolve = /0
A ToPlace = {ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

attr = Z
Con[Z]={c3}

Min = {{Name,ZIP},{Occupation,Sickness}}}
C ToSolve = /0
A ToPlace = /0

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

Fig. 4.9 An example of the execution of function Fragment in Fig. 4.8

including attr. If such a fragment F is found, attr is inserted into F , otherwise a
new fragment {attr} is added to Min. Note that the search for a fragment termi-
nates as soon as a fragment is found (inserted=true). Also, the control on constraint
satisfaction terminates as soon as a violation to constraints is found (satisfies=false).

Example 4.6. Figure 4.9 presents the execution, step by step, of function Fragment
in Fig. 4.8 applied to the example in Fig. 4.1. The left hand side of Fig. 4.9 illus-
trates the evolution of variables attr, Min, C ToSolve, and A ToPlace, while the right
hand side graphically illustrates the same information through a matrix with a row
for each attribute and a column for each constraint. If an attribute belongs to an un-
solved constraint ci, the corresponding cell is set to ×; otherwise, if ci is solved, the
cell is set to X. At the beginning, Min is empty, all constraints are unsolved, and
all attributes need to be placed. In the first iteration, function Fragment chooses
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attribute Name, since it is one of the attributes involved in the highest number of
unsolved constraints. The constraints in Con[Name] become now solved, N con[ai]
is updated accordingly (for all the attributes in the relation), and fragment {Name}
is added to Min. Function Fragment proceeds in an analogous way by choosing
attributes Occupation, Sickness, and Zip. The final solution is represented
by fragmentation Min={{Name,ZIP}, {Occupation,Sickness}}, which cor-
responds to the one computed by the complete search function in Fig. 4.6.

4.6.2 Correctness and Complexity

The correctness and complexity of function Fragment in Fig. 4.8 are stated by the
following theorems.

Theorem 4.6 (Correctness). Function Fragment in Fig. 4.8 terminates and finds a
vector-minimal fragmentation (Definition 4.12).

Proof. Function Fragment in Fig. 4.8 terminates since each attribute is considered
only once, and the repeat until loop is performed till all the attributes are extracted
from A ToPlace (which is initialized to A f ).

We now prove that a solution F computed by this function over A f and C f
is a vector-minimal fragmentation. According to Definition 4.12, a fragmentation
F is vector-minimal if and only if (1) it is correct, (2) it maximizes visibility, and
(3) @F ′:F≺F ′ that satisfies the two conditions above. A fragmentation F com-
puted by function Fragment in Fig. 4.8 satisfies these three properties.

1. Function Fragment inserts attr into a fragment F if and only if F∪{attr} satisfies
the constraints in Con[attr]. By induction, we prove that if F∪{attr} satisfies
constraints in Con[attr], it satisfies all constraints in C .
If {attr} is the first attribute inserted into F , F∪{attr}={attr}. Since attr ∈ A f ,
then the set {attr} satisfies all constraints in C . Otherwise, if we suppose that
F already contains at least one attribute and that it satisfies all constraints in
C , then, by adding attr to F the constraints that may be violated are only the
constraints in Con[attr]. Consequently, if F∪{attr} satisfies all these constraints,
it satisfies all constraints in C .
We can therefore conclude that F is a correct fragmentation.

2. Since each attribute a in A f is inserted exactly into one fragment, function Frag-
ment produces a fragmentation F such that the condition of maximal visibility
is satisfied.

3. By contradiction, let F ′ be a fragmentation satisfying the constraints in C f , max-
imizes visibility, and such that F ≺F ′. Let VF and VF ′ be the fragment vectors
associated with F and F ′, respectively.
First, we prove that F ′ contains a fragment VF ′ [ai] that is the union of two
different fragments, VF [ai] and VF [a j], of F . Second, we prove that function
Fragment cannot generate two different fragments whose union does not violate
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any constraint. These two results generate a contradiction since VF ′ [ai], which
contains VF [ai]∪VF [a j], is a fragment of F ′, and thus it does not violate the
constraints.

a. Since F ≺ F ′, there exists a fragment such that VF [ai] ⊂ VF ′ [ai], and then
there exists an attribute a j (with j ̸= i) such that a j ∈ VF ′ [ai] and a j ̸∈VF [ai].
Note that a j ̸=ai because, by definition, ai ∈ VF [ai] and ai ∈ VF ′ [ai].
VF [a j] and VF ′ [a j] are the fragments that contain a j. We now show that,
not only a j∈VF ′ [ai], but also the whole fragment VF [a j]⊂VF ′ [ai]. Since,
a j∈VF ′ [a j] and a j∈VF ′ [ai] we have that VF ′ [a j] = VF ′ [ai], but since VF [a j]
⊂ VF ′ [a j] we have that VF [a j]⊂VF ′ [ai] and therefore (VF [ai] ∪ VF [a j]) ⊆
VF ′ [ai].

b. Let Fh and Fk be the two fragments computed by function Fragment, cor-
responding to VF [ai] and VF [a j], respectively. Assume, without loss of gen-
erality, that h < k (since the proof in the case h > k immediately follows by
symmetry). Let ak1 be the first attribute inserted into Fk by the function. Re-
call that the function inserts an attribute into a new fragment if and only if the
attribute cannot be inserted into the already-existing fragments (e.g., Fh) with-
out violating constraints. Therefore, the set of attributes Fh∪{ak1} violates a
constraint as well as the set VF [ai] ∪ VF [a j] that contains Fh∪{ak1}.

This generates a contradiction.

Therefore the solution F computed by function Fragment in Fig. 4.8 is a vector-
minimal fragmentation.

Theorem 4.7 (Complexity). Given a set C ={c1,. . . ,cm} of constraints and a set
A ={a1,. . . an} of attributes the complexity of function Fragment(A ,C ) in Fig. 4.8
is O(n2m) in time.

Proof. To choose attribute attr from A ToPlace, in the worst case function Frag-
ment in Fig. 4.8 scans array N con[], and adjusts array N con[] for each attribute
involved in at least one constraint with attr. This operation costs O(nm) for each
chosen attribute. After the choosing phase, each attribute is inserted into a frag-
ment. Note that the number of fragments is O(n) in the worst case. To choose the
right fragment that will contain attr, in the worst case the function tries to insert it
into all fragments F∈F , and compares F∪{attr} with the constraints in Con[attr].
Since the sum of the number of attributes in all the fragments is O(n), then O(n)
attributes will be compared with the O(m) constraints containing attr, giving, in the
worst case, a O(nm) complexity for each attr. Thus, the complexity of choosing the
right fragment is O(n2m). We can then conclude that the overall time complexity is
O(n2m).
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4.7 Taking Attribute Affinity into Account

The computation of a minimal fragmentation exploits the basic principle according
to which the presence of a high number of plaintext attributes permits an efficient
execution of queries. Although this principle may be considered acceptable in many
situations, other criteria can also be applied for computing a fragmentation. Indeed,
depending of the use of the data, it may be useful to preserve the associations among
some attributes. As an example, consider the fragmentation in Fig. 4.2 and suppose
that the data need to be used for statistical purposes. In particular, suppose that
physicians should be able to explore the link between a specific Sickness and the
Occupation of patients. The computed fragmentation however does not make
visible the association between Sickness and Occupation, thus making the
required analysis not possible (as it would violate the constraints). In this case, a
fragmentation where these two attributes are stored in clear form in the same frag-
ment is preferable to the computed fragmentation. The need for keeping together
some specific attributes in the same fragment may not only depend on the use of the
data but also on the queries that need to be frequently executed on the data. Indeed,
given a query Q and a fragmentation F , the execution cost of Q varies according to
the specific fragment used for computing the query. This implies that, with respect
to a specific query workload, different fragmentations may be more convenient than
others in terms of query performance.

To take into consideration both the use of the data and the query workload in the
fragmentation process, we exploit the concept of attribute affinity traditionally ap-
plied to express the advantage of having pairs of attributes in the same fragment in
distributed DBMSs [76] and that is therefore adopted by schema design algorithms
using the knowledge of a representative workload for computing a suitable partition.
In our context, attribute affinity is also a measure of how strong the need of keeping
the attributes in the same fragment is. By considering the total order relationship <A
among attributes in A f and assuming ai to denote the i-th attribute in the ordered
sequence, the affinity between attributes is represented through an affinity matrix.
The matrix, denoted M, has a row and a column for each attribute appearing in non
singleton constraints, and each cell M[ai,a j] represents the benefit obtained by hav-
ing attributes ai and a j in the same fragment. Clearly, the affinity matrix contains
only positive values and is symmetric with respect to its main diagonal. Also, for all
attributes ai, M[ai,ai] is not defined. The affinity matrix can then be represented as
a triangular matrix, where only cells M[ai,a j], with i < j (i.e., ai<Aa j), are repre-
sented. Figure 4.10 illustrates an example of affinity matrix for relation Patient
in Fig. 4.1, where <A is the lexicographic order.

The consideration of attribute affinity naturally applies to fragments and frag-
mentations. Fragmentations that maintain together attributes with high affinity are
to be preferred. To reason about this, we define the concept of fragmentation affin-
ity. Intuitively, the affinity of a fragment is the sum of the affinities of the different
pairs of attributes in the fragment; the affinity of a fragmentation is the sum of the
affinities of the fragments in it. This is formalized by the following definition.
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N O S Z
N 10 15 5
O 5 10
S 20
Z

Fig. 4.10 An example of affinity matrix

Definition 4.13 (Fragmentation affinity). Let R be a relation schema, M be
an affinity matrix for R, C be a set of well defined constraints over R, and
F={F1,. . . ,Fn} be a correct fragmentation of R. The affinity of F , denoted
affinity(F ), is computed as:

affinity(F ) = ∑n
k=1 aff(Fk), where aff(Fk) = ∑ai,a j∈Fk,i< j M[ai,a j] is the affinity of

fragment Fk, k = 1 . . .n.

As an example, consider the affinity matrix in Fig. 4.10 and fragmen-
tation F={{Name,ZIP}, {Occupation,Sickness}}. Then, affinity(F ) =
aff ({Name,ZIP}) + aff ({Occupation,Sickness) = M[N,Z] + M[O,S] = 5+5
= 10. With the consideration of affinity, the problem becomes therefore to deter-
mine a correct fragmentation that has maximum affinity. This is formally defined as
follows.

Problem 4.2 (Maximum affinity). Given a relation schema R, a set C of well de-
fined constraints over R, and an affinity matrix M, find a fragmentation F of R such
that all the following conditions hold:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the conditions above such that affinity(F ′) > affinity(F ).

Like Problem 4.1, the maximum affinity problem is NP-hard, as formally stated
by the following theorem.

Theorem 4.8. The maximum affinity problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50],
which can be formulated as follows: given a collection C of subsets of a set S, find
the smallest subset S′ of S such that S′ contains at least one element from each subset
in C.

The reduction of the hitting set problem to the maximum affinity problem can
be defined as follows. Let S′ be the solution of the minimum hitting set problem,
and let R = S∪{ac} be a relation, where ac is an attribute different from any other
element in S.

We consider only the sets in C with cardinality greater than 1, since any singleton
set s in C corresponds to an element that must be inserted into the solution S′, and
we can directly put it in. Moreover, if si,s j ∈ C and si ⊂ s j, s j is redundant and
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can be removed from C, since if S′ contains an element of si, then it also contains
an element of s j. Thus, let C f = {s ∈ C: |s| > 1 and ∀s′ ∈ C, s′ ̸⊂ s} be the set of
association constraints, and let A f = {a∈R: {a}̸∈ C} be the set of attributes to be
fragmented. We note that the construction of the set of constraints C f is polynomial
in C, and that, by construction, C f is a set of well defined association constraints.
Also, ac is not contained in any constraint in C f . Consider now an affinity matrix
that contains the value 0 in every cell but the cells corresponding to ac, which are
set to 1 (i.e., M[ai,a j]= 1 iff ai = ac or a j = ac; M[ai,a j]= 0, otherwise).

Since only the affinity between attribute ac and any other attribute is greater than
0, a fragmentation algorithm with the goal of maximizing the affinity computes
a fragmentation where fragment Fc containing ac includes the maximum number
of attributes that can be inserted into a single fragment without violating the con-
straints. The affinity of the computed fragmentation corresponds to the cardinality
of Fc. Since a constraint is violated only if all its attributes belong to the same frag-
ment, a fragment may include all attributes composing a constraint but one. There-
fore, maximizing the number of attributes composing Fc is equivalent to minimiz-
ing the size of the set S′ of attributes that contains at least one attribute from each
constraint. S′ is the solution of the minimum hitting set problem. Consequently, a
maximal affinity fragmentation F of R, with respect to M, satisfying all constraints
in C f , corresponds to a solution for the minimum hitting set problem. In particular,
given fragment Fc that contains attribute ac, the solution for the minimum hitting
set problem is S′ = R−Fc.

In the following, we describe a heuristic approach for Problem 4.2.

4.8 A Heuristic Approach to Maximize Affinity

Our heuristic approach to determine a fragmentation that maximizes affinity ex-
ploits a greedy approach that, at each step, combines fragments that have the high-
est affinity. The heuristic starts by putting each attribute to be fragmented into a
different fragment. The affinity between pairs of fragments is the affinity between
the attributes contained in their union (as dictated by the affinity matrix). Then, the
two fragments with the highest affinity, let call them Fi and F j, are merged together
(if this does not violate constraints) and Fi is updated by adding the attributes of
F j, while F j is removed. The affinity of the new version of Fi with respect to any
other fragment Fk is the sum of the affinities that Fk had with the old version of Fi
and F j. The heuristic proceeds in a greedy way iteratively merging, at each step, the
fragments with highest affinity until no more fragments can be merged without vi-
olating the constraints. Figure 4.11 gives a graphical representation of our heuristic
approach; at each step, light grey boxes denote the pair of fragments with highest
affinity. The correctness of the heuristics lies in the fact that, at each step, the affinity
of the resulting fragmentation can only increase. As a matter of fact, it is easy to see
that affinity is monotonic with respect to the dominance relationship (see Lemma 4.2
in Sect. 4.8.2).
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Fig. 4.11 Graphical representation of the working of the function in Fig. 4.12

The following subsection describes the function implementing this heuristic ap-
proach. In the function, instead of controlling constraints to determine whether two
fragments can be merged, we exploit the affinity matrix and set to −1 the affinity of
fragments whose merging would violate the constraints (thus ignoring them in the
evaluation of fragments to be merged).

4.8.1 Computing a Vector-minimal Fragmentation with the Affinity
Matrix

Function Fragment in Fig. 4.12 takes as input the set A f of attributes to be frag-
mented and a set C f of well defined non singleton constraints. It computes a vector-
minimal fragmentation Max of A f , where at each step the fragments to be merged
are chosen according to their affinity. In the following, with a slight abuse of no-
tation, we use M[Fi,F j] to denote the cell in the affinity matrix identified by the
smallest attribute in Fi and F j (i.e., Fi.first and F j.first), according to the order rela-
tionship <A on attributes in A f .

First, the function initializes the set of constraints C ToSolve to be solved with
C f , Max to a fragmentation having a fragment Fi for each of the attributes ai in A f ,
and creates a set FragmentIndex that contains the index i of each fragment Fi∈Max.
The function also checks all constraints in C ToSolve composed of two attributes
only, and sets to −1 the corresponding cells in the affinity matrix. These constraints
are removed from C ToSolve. In general, at each iteration of the algorithm, for each
i < j, M[Fi,F j] is equal to −1 if the fragment obtained as Fi∪F j violates some
constraints.
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FRAGMENT(A f ,C f )

/* initial solution with a fragment for each attribute */
C ToSolve := C f
Max := /0
FragmentIndex := /0
for i=1. . . |A f | do

Fi := {ai}
Max := Max ∪ {Fi}
FragmentIndex := FragmentIndex ∪ {i}

/* cells in M corresponding to constraints are invalidated */
for each {ax,ay} ∈ C ToSolve do

M[Fmin(x,y),Fmax(x,y)] := −1
C ToSolve := C ToSolve − {{ax,ay}}

/* extract the pair of fragments with maximum affinity */
Let [Fi,F j ], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
while |FragmentIndex|> 1 ∧ M[Fi,F j ] ̸=−1 do /* merge the two fragments */

Fi := Fi∪F j
Max := Max − {F j}
FragmentIndex := FragmentIndex − {j}
/* update the affinity matrix */
for each k∈FragmentIndex : k ̸=i do

if M[Fmin(i,k),Fmax(i,k)]=−1 ∨ M[Fmin(j,k),Fmax(j,k)]=−1 then
M[Fmin(i,k),Fmax(i,k)] := −1

else
for each c∈C ToSolve do

if c⊆(Fi∪Fk) then
M[Fmin(i,k),Fmax(i,k)] := −1
C ToSolve := C ToSolve − {c}

if M[Fmin(i,k),Fmax(i,k)] ̸=−1 then
M[Fmin(i,k),Fmax(i,k)] := M[Fmin(i,k),Fmax(i,k)] + M[Fmin(j,k),Fmax(j,k)]

Let [Fi,F j ], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
return(Max)

Fig. 4.12 Function that finds a vector-minimal fragmentation with maximal affinity

Function Fragment in Fig. 4.12 then executes a while loop that, at each iteration,
merges two fragments in Max as follows. If there are still pairs of fragments that
can be merged, that is, there are still cells in M different from −1, the function
identifies the cell [Fi,F j] (with i<j) with the maximum value in M. Then, Fi is
updated to the union of the two fragments and F j is removed from Max. Also, j is
removed from FragmentIndex, since the corresponding fragment is no more part of
the solution. The function, in the end, updates M. In particular, for each fragment
Fk, k∈(FragmentIndex−{i}), cell M[Fi,Fk] is set to −1 if either cell M[Fi,Fk] or
cell M[F j,Fk] is −1, or if Fi∪Fk violates at least one constraint still in C ToSolve.
In this latter case, the violated constraints {cx,. . . ,cy} are removed from C ToSolve.
Otherwise, cell M[Fi,Fk] is summed with the value in cell M[F j,Fk].

Example 4.7. Figure 4.13 presents the execution, step by step, of function Fragment
in Fig. 4.12, applied to the example in Fig. 4.1 and considering the affinity matrix in
Fig. 4.10. The left hand side of Fig. 4.13 illustrates the evolution of fragments and of
the chosen pair Fi, F j. The central part of Fig. 4.13 illustrates the evolution of matrix
M, where dark grey columns represent fragments merged with other fragments, and
thus removed from the set of fragments. The right hand side of Fig. 4.13 illustrates
the set C ToSolve of constraints to be solved: if an attribute belongs to constraint ci
in C ToSolve, the corresponding cell is set to ×; if ci is removed from C ToSolve,
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F1={N}
F2={O}
F3={S}
F4={Z}

F1 F2 F3 F4
F1 10 15 5
F2 5 10
F3 20
F4

c1 c2 c3
N × ×
O × ×
S × ×
Z ×

F1={N}
F2={O}
F3={S}
F4={Z}

F1 F2 F3 F4
F1 -1 -1 5
F2 5 10
F3 20
F4

c1 c2 c3
N X X
O X ×
S X ×
Z ×

[Fi,F j] = [F3,F4]

F1={N}
F2={O}
F3={S, Z}

F1 F2 F3 F4
F1 -1 -1
F2 -1
F3
F4

c1 c2 c3
N X X
O X X
S X X
Z X

Fig. 4.13 An example of the execution of function Fragment in Fig. 4.12

the cell is set to X. At the beginning, all constraints are not solved and there is a
fragment F for each attribute in A f . First, M is updated by setting to −1 the cells
representing constraints involving only two attributes, that is, constraints c1 and c2,
which are then removed from C ToSolve. Function Fragment chooses the cell in M
with the highest affinity, that is, M[F3,F4] = 20. Consequently, F4 is merged with
F3 (the 4th column becomes dark grey to denote that fragment F4 does not exist
anymore). Then, values in the affinity matrix are updated: cell M[F1,F3] is set to
−1, since M[F1,F3] were −1 before the merge operation; M[F2,F3] should be set
to M[F2,F3]+M[F2,F4] = 5+10 = 15, but it represents fragment {O,S,Z} that vio-
lates constraint c3, therefore the cell is set to −1 and c3 is removed from C ToSolve.
The final solution is Max={{Name}, {Occupation}, {Sickness,ZIP}}, with
affinity equal to 20. (Note that the solution computed by function Fragment in
Fig. 4.8, and represented in Fig. 4.9, has 2 fragments only, but its affinity is 10.)

We note that function Fragment in Fig. 4.12 can be used to simulate function
Fragment in Fig. 4.8 by sorting the attributes in the order with which they are
considered by the function in Fig. 4.12 and considering an initial affinity matrix
containing 0 as affinity value between each pair of attributes. The ordering of at-
tributes can be simply computed by iteratively calculating the number of unsolved
constraints N con[a] involving each attribute a, and inserting, as next element of the
ordered list, the attribute that maximizes N con[a]. Since the affinity matrix contains
values 0 and −1 only, the order for choosing pair of fragments as the next maximum
affinity pair is the same of function Fragment in Fig. 4.8.
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4.8.2 Correctness and Complexity

Before proving the correctness and complexity of our heuristic, we introduce two
lemmas proving the monotonicity property of fragmentation affinity with respect
to the dominance relationship ≼ and the correctness of the matrix computation,
respectively.

Lemma 4.2 (Monotonicity). Let R be a relation, M be an affinity matrix for R, C
be a set of well defined constraints over R, and F and F ′ be two correct fragmen-
tations for R. If F≼F ′ =⇒ affinity(F )≤affinity(F ′).

Proof. By definition, given two fragmentations F={F1,. . . ,Fn} and F ′ =
{F1

′, . . . ,Fm
′} such that F ≺F ′, then VF [a]⊆VF ′ [a], ∀a ∈A f . Therefore, for each

a such that VF [a]=VF ′ [a], the affinity of the two fragments F and F ′ containing a
in F and F ′ respectively, is the same. On the contrary, for all attributes a such that
VF [a]⊂VF ′ [a], the affinity of the two fragments F and F ′ containing a in F and
F ′ respectively, is such that aff (F)≤aff (F ′). In fact, aff (F ′)=aff (F)+∑M[ai,a j],
∀ai ∈ F ′,a j ∈ (F ′ −F) with i < j. Since M[ai,a j] is always a non negative value, it
holds that if F ≺ F ′, then affinity(F )≤affinity(F ′).
If F = F ′ it is straightforward to see that affinity(F )=affinity(F ′).

Lemma 4.3. At the beginning of each iteration of the while loop in function Frag-
ment in Fig. 4.12, M[Fi,F j] =−1 ⇐⇒ ∃c ∈ C :c⊆(Fi∪F j).

Proof. At initialization, function Fragment checks constrains involving exactly two
attributes {ax,ay} and sets to −1 the cell in M corresponding to the pair of fragments
Fx={ax} and Fy={ay}. Also, these constraints are removed from C ToSolve.

When function Fragment merges two fragments Fi and F j (i<j), j is removed
from FragmentIndex. For each k in FragmentIndex but i, cell M[Fmin(i,k),Fmax(i,k)] is
set to −1 if either M[Fmin(i,k),Fmax(i,k)] or M[Fmin(j,k),Fmax(j,k)] were −1 before the
update. Indeed, if either Fi∪Fk or F j∪Fk violated a constraint before merging Fi
with F j, also Fi∪Fk (i.e., ∃c∈C such that c⊆Fi or c⊆F j) since Fi is set to Fi∪F j
after the update. Note that constraints removed from C ToSolve are represented by
−1 being always kept in M. Also, when Fi∪Fk is checked against constraints, the
algorithm looks for constraints representing a subset of Fi∪Fk in C ToSolve, and
the corresponding constraints are removed from C ToSolve, since there is a −1 in M
representing it.

Theorem 4.9 (Correctness). Function Fragment in Fig. 4.12 terminates and finds
a vector-minimal fragmentation (Definition 4.12).

Proof. Function Fragment always terminates. In fact, the while loop terminates
because at each iteration the number of indexes in FragmentIndex decreases by one,
and the iterations are performed only if FragmentIndex contains at least two indexes.

We now prove that a solution F computed by this function over A f and C f is a
vector-minimal fragmentation. According to Definition 4.12 of minimality, a frag-
mentation F is vector-minimal if and only if (1) it is correct, (2) it maximizes visi-
bility, and (3) @F ′:F ≺F ′ that satisfies the two conditions above. A fragmentation
F computed by function Fragment in Fig. 4.12 satisfies these three properties.
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1. Function Fragment starts with a simple correct fragmentation (Fi := {ai}, for all
ai∈A f ), and it iteratively merges only fragments that form a correct fragment,
since the pair of fragments to be merged is extracted as the pair with maximum
affinity and the fragments are merged only if their affinity is a positive value. By
Lemma 4.3, only fragments whose union does not violate constraints are merged.
We can therefore conclude that F correctly enforces C .

2. Since each attribute in A f is initially inserted exactly into one fragment, and
when two fragments are merged only the result of their union is kept in F , func-
tion Fragment produces a fragmentation F such that the condition of maximal
visibility is satisfied.

3. By contradiction, let F ′ be a fragmentation satisfying the constraints in C f and
maximizing visibility, such that F ≺F ′. Let VF and VF ′ be the fragment vectors
associated with F and F ′, respectively.
As already proved for Theorem 4.6, F ′ contains a fragment VF ′ [ai] that is the
union of two different fragments, VF [ai] and VF [a j], of F . We need then to prove
that function Fragment cannot terminate with two different fragments whose
union does not violate any constraint.
Let Fh and Fk be the two fragments computed by function Fragment, corre-
sponding to VF [ai] and VF [a j], respectively. Assume, without loss of generality,
that h < k (since the proof in the case h > k immediately follows by symme-
try). By Lemma 4.3, M contains non-negative values only for pairs of fragments
whose union generates a correct fragment, and therefore function Fragment can-
not terminate with fragmentation F since M still contains a non negative value
to be considered (M[Fh,Fk]). This generates a contradiction.

Therefore the solution F computed by Fragment in Fig. 4.12 is a vector-minimal
fragmentation.

Theorem 4.10 (Complexity). Given a set of constraints C ={c1,. . . ,cm} and a set of
attributes A ={a1,. . . an} the complexity of function Fragment(A ,C ) in Fig. 4.12
is O(n3m) in time.

Proof. The first for and for each loops of function Fragment cost O(n+m). The
while loop is performed O(n) times, since at each iteration an element from Frag-
mentIndex is extracted. The for each loop nested into the while loop updates the
cells corresponding to fragments Fi and F j in the affinity matrix. While j is simply
removed from FragmentIndex, and the column F j in the matrix is simply ignored,
the update of the cells corresponding to Fi, which are O(n) in number, costs O(n2m)
because all the constraints in C ToSolve containing Fi∪F j are considered. Each ex-
traction of the pair of fragments with maximum affinity from M simply scans (in
the worst case) the affinity matrix, and its computational cost is O(n2) in time. The
overall time complexity is therefore O(n3m).



4.9 Query Cost Model 115

4.9 Query Cost Model

The standard approach to physical database design considers a representative set of
queries as the starting point for the concrete identification of a satisfying solution.
The same approach can also be applied for fragmenting data by taking into con-
sideration the gain due to sets of attributes with more than two plaintext attributes
appearing in the same fragment. To this purpose, we first introduce the following
query cost function.

Given a fragmentation F for R, any query Q can be evaluated on each of the
fragments composing F because the corresponding physical fragment contains all
the attributes of R, either in encrypted or in clear form. However, the execution
cost of a query varies depending on the schema of the fragment used for query
computation. Overall, with respect to a given query workload, some fragmentations
can exhibit a lower cost than others. We are then interested in identifying a correct
fragmentation with maximal visibility characterized by the minimum cost. To this
purpose, we introduce a query cost model for query execution on a fragmented
schema.

We describe a query workload Q as a set {Q1,. . . ,Qm} of queries, where each
query Qi, i = 1, . . . ,m, is characterized by an execution frequency freq(Qi) and is of
the form:

SELECT ai1 ,. . . ,ain
FROM R
WHERE

∧k
j=1 (a j IN Vj)

where Vj is a set of values in the domain of attribute a j. Given a fragment Fl ∈ F
and a query Qi ∈ Q, the cost of executing query Qi over Fl depends on the set of
attributes appearing in clear form in Fl and on their selectivity; the availability of
more attributes in clear form in a fragment permits a more efficient execution of
queries on the fragment. We therefore estimate the selectivity of query Qi on Fl in
terms of the percentage of tuples in Fl that are returned by the execution of query
Qi on Fl . First, we evaluate the selectivity of each single condition in query Qi as
follows. The selectivity of the j-th condition is computed as the ratio of the number
of tuples in the fragment such that the value of attribute a j is a value in Vj, over
the number of tuples in Fl , which corresponds to the number of tuples in the orig-

inal relation R:
∑v∈Vj num tuples(a j ,v)

|R| , where num tuples(a j,v) denotes the number of
tuples whose value for attribute a j is v. Since we assume that the values of different
attributes are distributed independently of each other, the selectivity of

∧k
j=1 (a j IN

Vj) in query Qi on fragment Fl , denoted S(Qi,Fl), is the product of the selectivity of
each single condition. In particular, the j-th condition contributes to the computa-
tion of the selectivity if and only if the corresponding attribute a j appears in clear
form in Fl ; otherwise the condition cannot be evaluated on the fragment and it is
therefore not useful to select the tuples to be returned in response to the query (this
restriction will be relaxed when we will consider in Sect. 4.12 the introduction of
indexes on encrypted attributes).
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The cost of evaluating query Qi on fragment Fl , denoted Cost(Qi,Fl), is then
estimated by the size of the information returned, which is computed by multiplying
S(Qi,Fl) (i.e., the selectivity of Qi on Fl) by the number of tuples in the considered
fragment, and by the size in bytes, denoted size(tl), of the result tuples:

Cost(Qi,Fl) = S(Qi,Fl) · |R| · size(tl)

This is a common assumption in cost models for query optimizers, particularly
in systems where information has to be exchanged among different components,
where the computational cost of queries is considered less important. We note that
in the architecture only symmetric encryption is used, which current processors are
typically able to apply even on high-rate transfers. It is reasonable then to build a
cost model that does not consider this aspect.

Note that both the set of attributes in the SELECT clause and the set of attributes
in the WHERE clause of query Qi determine the size in bytes of each result tuple.
Indeed, size(tl) is obtained by summing the size in bytes of each attribute in the SE-
LECT clause that appears in clear form in Fl and the size in bytes of the enc attribute
of the fragment, if there exists at least one attribute in the SELECT or WHERE clauses
that does not appear in clear form in Fl . The rationale is that the encrypted portion of
the fragment is needed to subsequently retrieve the desired attribute by decrypting
it. The final cost of evaluating query Qi on F is therefore the minimum among the
costs of evaluating the query on each of the fragments in F . In other words, given
F = {F1,. . . ,Fr}, the cost of evaluating query Qi on F is:

Cost(Qi,F ) = Min(Cost(Qi,F1), . . . ,Cost(Qi,Fr))

The cost of fragmentation F with respect to Q is the sum of the costs
Cost(Qi,F ) of each single query Qi weighted by its frequency, as formally stated in
the following definition.

Definition 4.14 (Fragmentation cost). Let R be a relation schema, C be a set of
well defined constraints over R, F be a fragmentation of R maximizing visibility,
and Q={Q1,. . . ,Qm} be a query workload for R. The fragmentation cost of F with
respect to Q, denoted Cost(Q,F ), is computed as:

Cost(Q,F ) =
m

∑
i=1

(freq(Qi) ·Cost(Qi,F ))

Example 4.8. Consider the fragmentation of the Patient relation in Fig. 4.2.
Given query Q:

SELECT ∗
FROM Patient
WHERE Sickness=‘Latex al.’ AND Occupation=‘Nurse’

the selectivity of the fragments is: S(Q,F1)=1, since neither Sickness nor
Occupation are plaintext represented in F1; S(Q,F2)=2/6, since Occupation
belongs to F2 and there are 2 nurses out of 6 patients; S(Q,F3)=3/6, since
Sickness belongs to F3 and there are 3 patients suffering from Latex al-
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lergy. Supposing, for simplicity, that size(t1)=size(t2)=size(t3)=1, we have that
Cost(Q,F )=Min(6,2,3). Cost(Q,F2)=2.

The cost function here defined enjoys a nice property. Indeed, it is monotonic
with respect to the dominance relationship ≼, as proved by the following lemma.

Lemma 4.4 (Monotonicity). Given a relation schema R, a set C of well defined
constraints over R, the set A f ⊆ R of attributes to be fragmented, and a query
workload Q for R, ∀F i,F j ∈ F: F i≼F j =⇒ Cost(Q,F j)≤Cost(Q,F i).

Proof. Consider two fragmentations F i and F j such that F i≼F j,
F i={Fi

1,. . . ,Fi
n}, and F j={F j

1 ,. . . ,F j
n−1}. By Definition 4.8, F j is obtained

by merging two fragments in F i, say Fi
a and Fi

b, into F j
c . Therefore, ∀F j

x , x ̸= c
there exists a fragment Fi

y =F j
x , and then ∀Qk ∈ Q, S(Qk,F j

x )=S(Qk,Fi
y ). Consid-

ering now fragment F j
c , we conclude that ∀Qk ∈ Q, S(Qk,F j

c )≤S(Qk,Fi
a) and

S(Qk,F j
c )≤S(Qk,Fi

b), since F j
c =Fi

a∪Fi
b and the selectivity of any condition (a IN V)

is between 0 and 1. Also, since F j
c has more attributes in clear from than Fi

a (and
Fi

b), the evaluation of any query Qk can be more precise in projecting attributes.
Therefore, size(ta)≥size(tc) and size(tb)≥size(tc). As a consequence, ∀Qk ∈ Q,
Cost(Q,F j

c )≤Cost(Qk,Fi
a) and Cost(Q,F j

c )≤Cost(Qk,Fi
b).

Since ∀Qk ∈ Q, Cost(Qk,F ) is computed as the minimum among Cost(Qk,F ),
all the queries assigned to Fi

a and Fi
b by F i are assigned to F j

c by F j, thus
Cost(Qk,F j)≤Cost(Qk,F i) for these queries. Queries not assigned by F i to Fi

a

and Fi
b may be assigned by F j to F j

c . This happens only if Cost(Qk,F j
c ) is lower

than Cost(Qk,Fi
x ) for the previously chosen fragment Fi

x . Consequently, ∀Qk ∈ Q,
Cost(Qk,F j)≤Cost(Qk,F i). Since the frequency of queries is the same for both F i
and F j, we conclude that Cost(Q,F j)≤Cost(Q,F i).

This property is easily extended to any pair of fragmentations F i and F j,
F i≼F j. Considering (F,≼), there is a path from F i to F j. Each solution
F a in the path dominates the solution F b preceding it in the path. Therefore,
Cost(Q,F a)≤Cost(Q,F b). By inductively applying this observation along all the
path from F i to F j, we obtain that Cost(Q,F j)≤Cost(Q,F i).

We are now interested in finding a correct fragmentation F with maximal visibil-
ity that minimizes the cost associated with a specific query workload, meaning that
there does not exist another fragmentation satisfying constraints, maximizing visi-
bility, and such that its cost is less than the cost associated with F . This problem
can be formalized as follows.

Problem 4.3 (Minimum cost). Given a relation schema R, a set C of well defined
constraints over R, and a query workload Q={Q1,. . . ,Qm} for R, find a fragmenta-
tion F of R such that all the following conditions hold:

1. F correctly enforces C (Definition 4.5);
2. F maximizes visibility (Definition 4.6);
3. @F ′ satisfying the conditions above and such that Cost(Q,F ′)<Cost(Q,F ).
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Like Problems 4.1 and 4.2, the minimum cost problem is NP-hard, as formally
stated by the following theorem

Theorem 4.11. The minimum cost problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50],
which can be formulated as follows: given a collection C of subsets of a set S, find
the smallest subset S′ of S such that S′ contains at least one element from each subset
in C.

The reduction of the hitting set problem to the minimum cost problem can be
defined as follows. Let S′ be the solution of the minimum hitting set problem, let
R = S be a relation composed of only binary attributes where 0 and 1 values are
equally distributed, and let Q be the query workload of the system.

As for the proof of Theorem 4.8, we consider only the sets si in C with cardinality
greater than 1 and such that there does not exists s j ∈ C, s j ⊂ si. Let C f = {s ∈ C:
|s|> 1 and ∀s′ ∈C, s′ ̸⊂ s} be the set of association constraints, and let A f = {a∈R:
{a}̸∈ C} be the set of attributes to be fragmented. We note that the construction
of the set of constraints C f is polynomial in C. Also, by construction, C f is well
defined and does not contain singleton constraints.

Let us now suppose that Q={Q}, with Q=“SELECT * FROM R WHERE
∧

ai∈A f
(ai=0)” and freq(Q)= 1. Since the attribute values are equally distributed, the selec-
tivity of all the conditions in Q is the same. As a consequence, the cost of Q with
respect to an arbitrary fragment F is proportional to the number of attributes in the
fragment itself. The fragment F in a fragmentation F that minimizes the cost with
respect to the given query is therefore the one containing the maximum number of
attributes. As described in the proof of Theorem 4.8, computing the fragment with
the maximum cardinality corresponds to solve the minimum hitting set problem,
since S′ = R−F .

4.10 A Heuristic Approach to Minimize Query Cost Execution

The two heuristic algorithms proposed in previous sections are not suited for solv-
ing Problem 4.3, since they do not take into account the advantage that arises in
having sets of plaintext attributes appearing in the same fragment. Due to the mono-
tonicity of the cost function introduced in the previous section with respect to the
dominance relationship (see Lemma 4.4), the complete search algorithm proposed
in Sect. 4.5 could also be used to compute a solution for Problem 4.3. In this case,
function Evaluate should implement the Cost(Q,F ) function. The complete search
algorithm remains however exponential in the number of attributes. While this may
not be an issue for small schemas, it may make the algorithm not applicable for
complex schemas. We then propose a heuristic algorithm working in polynomial
time.
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Fig. 4.14 Depiction of the search spaces

4.10.1 Computing a Vector-minimal Fragmentation with the Cost
Function

Our heuristic is based on a variant of the depth-first search algorithm proposed for
the complete search, where a selected number of subtrees composing the fragmen-
tation tree are visited following the same strategy proposed for the complete search
algorithm. As shown in Fig. 4.14, the fragmentation lattice is logically divided into⌈ n

d

⌉
bands, where:

• n is the cardinality of A f ;
• d is a parameter indicating the number of levels in the tree completely visited at

each step;3

• ps is a parameter indicating number of promising fragmentations explored at
each step.

The first subtree of depth d is built considering as a root vertex the top element
F⊤ of the lattice. At level x ·d, ps subtrees are visited (where ps is another parameter
of the heuristic), taking as a root one of the fragmentations computed at level x ·d.
These visits artificially stop at level (x+1) ·d, where the best ps solutions are chosen
as the root for the next in-depth visits of the solution space.

The function in Fig. 4.15 takes as input the set A f of attributes to be fragmented,
the set C f of well defined non singleton constraints, and d and ps additional param-
eters. It computes a vector-minimal fragmentation Min of A f , by visiting a subset
of the fragmentations in F.

The algorithm uses variables: marker[F ], representing the position of the marker
within fragmentation F ; Min, representing the current minimal fragmentation; Min-
Cost, representing the number of fragments composing Min; currentqueue, contain-
ing the best ps fragmentations at level x · d that represent the roots of the subtrees

3 If d is equal to |A f | the heuristic approach degenerates in a complete search.
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FRAGMENT(A f ,C f ,d,ps)
nextqueue:= NULL /* priority queue of promising solutions */
currentqueue:= NULL /* queue containing the best ps solutions */
for each ai∈A f do F⊤

i := {ai} /* root of the search tree F⊤ */
marker[F⊤] := 1 /* next fragment to be merged */
Min := F⊤ /* current minimal fragmentation */
MinCost := Cost(Q,Min)
/* compute the best ps solution within d levels from F⊤ */
insert(nextqueue,Min,MinCost)
while nextqueue ̸=NULL do

i := 1
while (i≤ps)∧(nextqueue ̸=NULL) do

i := i+1
enqueue(currentqueue,extractmin(nextqueue))

nextqueue := NULL
while currentqueue̸=NULL do

F := dequeue(currentqueue)
marker[F ] := 1
BoundedSearchMin(F ,d)

return(Min)

BOUNDEDSEARCHMIN(F p,dist)
localmin := true /* minimal correct fragmentation */
for i=marker[F p]. . . (|F p|-1) do

for j:=(i+1). . . |F p| do
if F p

i .last<AF p
j .first then /* F p

i fully precedes F p
j */

for l=1. . . |F p| do
case:

(l<j ∧ l̸=i): Fc
l := F p

l
(l>j): Fc

l−1 := F p
l

(l=i): Fc
l := F p

i F p
j

marker[F c] := i
if SatCon(Fc

i ) then
localmin := false
if dist= 1 then

insert(nextqueue,F c,Cost(Q,F c))
else

BoundedSearchMin(F c,dist−1) /* recursive call */
if localmin then

cost := Cost(Q,F p)
if cost<MinCost then

MinCost := cost
Min := F p

Fig. 4.15 Function that finds a vector-minimal fragmentation with minimal cost

to be visited; and nextqueue, containing, in increasing cost order, the correct frag-
mentations at level (x+ 1) · d computed by the visits of the subtrees rooted at the
solutions in currentqueue. At start, the algorithm initializes variable Min to F⊤ and
variable MinCost to the cost of F⊤. Then, the algorithm calls function Bounded-
SearchMin on F⊤ that iteratively builds the children of F⊤ according to Defi-
nition 4.11. Function BoundedSearchMin(F p) is then recursively called on each
F c, child of F p, only if F c satisfies all the constraints (i.e., if function SatCon
returns true) and level d has not been reached. In this latter case, if F c is correct,
it is inserted in nextqueue. Note that the function exploits the monotonicity of the
cost function adopted and compares the cost of F p with Min only if F p is locally
minimal (i.e., it does not have correct children).

When the subtree rooted at F⊤ has been visited, the first ps fragmentations in
nextqueue become the content of currentqueue and nextqueue is re-initialized to
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Bounded(F p,dist) F p
i F p

j F c SatCon(Fc
i ) Bounded(F c,dist) Cost(Q,F c) Min nextqueue

N|O|S|Z,1 N O NO|S|Z false –
S NS|O|Z false –
Z NZ|O|S true – 18 NZ|O|S,18

O S N|OS|Z true – 12 N|OS|Z,12
Z N|OZ|S true – 8 N|OZ|S,8

S Z N|O|SZ true – 5 N|O|SZ,5

N|O|SZ,1 N O NO|SZ false –
SZ NSZ|O false –

O SZ N|OSZ false – 5 N|O|SZ
N|OZ|S,1 N OZ NOZ|S false –

S NS|OZ false –
OZ S – – – 8
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~~~~~~~~~~
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(b)

Fig. 4.16 An example of the execution of function Fragment in Fig. 4.15

NULL. Function BoundedSearchMin is then called for each F∈currentqueue, but
moving back the marker of F to its first fragment. The re-initialization of the marker
implies that, for the root fragmentation F of each subtree, all the fragmentations
that represent a child of F in the lattice are re-evaluated, but possibly not in the
order-based cover exploited by the complete search. We note that this strategy could
visit more than once the same vertex in the lattice. However, the maximum number
of times that a fragmentation can be generated is ps. When currentqueue becomes
empty, it is replaced with the first ps fragmentations in nextqueue, until the last layer
in the tree is reached.

Example 4.9. Figure 4.16 illustrates the execution, step by step, of function Bound-
edSearchMin (Bounded for short) applied to Example 4.1, assuming d = 1 and
ps = 2. The table in Fig. 4.16(a) describes, for each (recursive) call to Bounded-
SearchMin, the updates to the variables as well as to nextqueue. Therefore, the
table in Fig. 4.16(a) has the same structure as the table in Fig. 4.7(a), except for the
last column, which is dedicated to nextqueue, and for the column dedicated to the
number of fragments in the solution, which is substituted here by the cost of the
same. Fig. 4.16(b) illustrates the portion of the lattice visited by the algorithm. At
the beginning variable Min is initialized to [N|O|S|Z], which is the fragmentation
representing the root of the tree, the cost MinCost is initialized to 20, and nextqueue
is initially empty. First, function BoundedSearchMin is called on [N|O|S|Z], with
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dist = 1. Since dist−1 is 0, the fragmentations generated from [N|O|S|Z] and satis-
fying constraints do not cause a recursive call to BoundedSearchMin, but they are
inserted in nextqueue after the evaluation of their cost. Then, BoundedSearchMin
is called on the first two fragmentations extracted from nextqueue, that is, [N|O|SZ]
and [N|OZ|S]. The final fragmentation computed by the heuristic algorithm is the
same computed by SearchMin.

4.10.2 Correctness and Complexity

We now evaluate the correctness and the complexity of function Fragment in
Fig. 4.15.

Theorem 4.12 (Correctness). Function Fragment in Fig. 4.15 terminates and finds
a vector-minimal fragmentation (Definition 4.12).

Proof. Function Fragment terminates if all the while loops composing it termi-
nate. The external while loop terminates when nextqueue is empty, provided the
two internal loops terminate. The first internal loop terminates since variable i is
increased by one at each step. It terminates when i > ps. The second internal while
loop terminates since, at each iteration, an element is extracted from currentqueue
and function BoundedSearchMin terminates. Indeed, function BoundedSearch-
Min at each recursive call, combines two of the fragments in the parent to compute
its children and the recursion terminates, since at each call dist is decreased by one.
Since BoundedSearchMin terminates, the number of items inserted in nextqueue
is finite. Also, the number of layers in the fragmentation tree is finite. Therefore,
nextqueue becomes empty and Fragment terminates.

We now prove that a solution F computed by this function over A f and C f
is a vector-minimal fragmentation. According to Definition 4.12 of minimality, a
fragmentation F is vector-minimal if and only if (1) it is correct, (2) it maximizes
visibility, and (3) @F ′:F ≺ F ′ that satisfies the two conditions above. The first two
properties come directly from the proof of Theorem 4.4, since function Bounded-
SearchMin works exactly as SearchMin when generating candidate solutions. We
need only to prove the third property.

By contradiction, let F ′ be a fragmentation satisfying the constraints in C f and
maximizing visibility, such that F ≺ F ′. Let VF and VF ′ be the fragment vectors
associated with F and F ′, respectively. As already proved in the proof of Theo-
rem 4.6, F ′ contains a fragment VF ′ [ai] that is the union of two different fragments,
VF [ai] and VF [a j], of F . We need then to prove that function Fragment cannot
terminate with two different fragments whose union does not violate any constraint.

There are two different situations when invoking BoundedSearchMin(F ,dist),
that is, dist> 1 or dist= 1. In the first case, F ′ is generated and
BoundedSearchMin(F ′,dist − 1) called. In the second case, F ′ is gen-
erated and inserted in nextqueue. Since nextqueue is an ordered queue,
BoundedSearchMin(F ′,dist) is called only if there are no more than ps solution
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with cost lower than nextqueue. But if F is returned as a solution of Fragment,
no solution in nextqueue has lower cost than F , since BoundedSearchMin(F ′′)
is called for each F ′′ ∈nextqueue. This generates a contradiction since, from
Lemma 4.4, Cost(Q,F ′)≤Cost(Q,F ).

Therefore the solution F computed by Fragment in Fig. 4.15 is a vector-
minimal fragmentation.

Theorem 4.13 (Complexity). Given a set of constraints C ={c1,. . . ,cm}, a set of at-
tributes A ={a1,. . . an}, and the two parameters d and ps, the complexity of function
Fragment(A ,C ,d,ps) in Fig. 4.15 is O( ps

d n2d+2m) in time.

Proof. The maximum number of iterations for the external while loop in func-
tion Fragment is O( n

d ), since the fragmentation tree is composed of n layers and,
at each iteration, solutions inserted in nextqueue are d layers under the solutions
currently in nextqueue. Function BoundedSearchMin(F p,d) is recursively called
for each F p∈currentqueue, which contains at most ps solutions, since it is filled
in during the preceding while loop. Function BoundedSearchMin, which behav-
ior is similar to function SearchMin, visits the solutions in the subtree rooted at
F p within d layers. Therefore, the number of solutions built at each recursion
of BoundedSearchMin(F p,d) is O(n2d) and each generated solution is compared
with constraints in C . The overall time complexity is therefore O( ps

d n2d+2m).

4.11 Query Execution

Fragmentation of a relation R implies that only fragments, which are stored in place
of the original relation to satisfy confidentiality constraints, are used for query exe-
cution. The fragments can be stored on a single server or on multiple servers. The
server (or servers) storing the fragments while needs not to be trusted with respect to
the confidentiality, since accessing single fragments or encrypted information does
not expose to any privacy breach, it is trusted for correctly evaluating queries on
fragments (honest-but-curious).

Users who are not authorized to access the content of the original relation R
have only a partial view on the data, meaning that they can only access the frag-
ments. A query submitted by a user with a partial view can be presented directly
to the server(s) storing the desired fragment. Users who are authorized to access
the content of the original relation have a full view on the data and can present
queries referring to the schema of the original relation. The queries issued by users
with full view are then translated into equivalent queries operating on the encrypted
and fragmented data stored on the server(s). The translation process is executed by
a trusted component, called query mapping component, invoked every time there is
the need to access sensitive information (see Fig. 4.17). In particular, the query map-
ping component receives a query Q submitted by a user with full view along with
the key k possibly needed for decrypting the query result computed by the server,
and returns the result of query Q to the user. Since every physical fragment of R
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Fig. 4.17 Interactions among users and server storing the fragments

contains all the attributes of R, either in encrypted or in clear form, no more than
one fragment needs to be accessed to respond to Q. The query mapping component
therefore maps the user’s query Q onto an equivalent query Qs, working on a specific
fragment. The server executes the received query Qs on the required fragment and
returns the result to the query mapping component. Note that, whenever query Q
may involve attributes that do not appear in the clear form in the selected fragment,
the query mapping component may need to execute an additional query Qu on the
decrypted results of Qs, which is in charge of enforcing all conditions that cannot
be evaluated on the physical fragment or of projecting the attributes reported in the
SELECT clause of query Q. In this case, the query mapping component decrypts the
result received, executes query Qu on it, and returns the result of Qu to the user. We
now describe the query translation process in more details.

We consider select-from-where SQL queries of the form Q =“SELECT AQ FROM
R WHERE C”, where AQ is a subset of the attributes of R, and C is a conjunc-
tion of basic conditions c1 . . .cn of the form (a op v) or (a j op ak), with a, a j,
and ak attributes of R, v constant value, and op comparison operator in {=, ̸=,>
,<,≤,≥}. Let us then consider the evaluation of query Q on physical fragment
F̂i(salt,enc,ai1 , . . . ,ain), where salt is the primary key, enc contains the encrypted
attributes, and ai1 , . . . ,ain are the plaintext attributes (see Sect. 4.3). Suppose, for
generality, that C contains some conditions that involve attributes stored in the clear
form in F̂i and some others that cannot instead be evaluated on F̂i. The query map-
ping component translates the original query Q into a query Qs operating on the
physical fragment and defined as:

SELECT AQ ∩{ai1 , . . . ,ain}, salt, enc
FROM F̂i
WHERE

∧
c j∈Ce

i
c j
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Original query on R Translation over encrypted fragments

Q := SELECT SSN, Name
FROM Patient
WHERE Sickness=‘Latex al.’

AND
ZIP=‘94140’

Qs.3 := SELECT salt, enc
FROM F̂3
WHERE Sickness=‘Latex al.’AND

ZIP=‘94140’

Qu := SELECT SSN, Name
FROM Decrypt(Qs.3, Key)

Q′ := SELECT SSN, Name
FROM Patient
WHERE Sickness=‘Latex al.’

AND
ZIP=‘94140’
AND
Occupation=‘Nurse’

Q′
s.3:= SELECT salt, enc

FROM F̂3
WHERE Sickness=‘Latex al.’AND

ZIP=‘94140’

Q′
u := SELECT SSN, Name

FROM Decrypt(Q′
s.3, Key)

WHERE Occupation=‘Nurse’

Fig. 4.18 An example of query translation over a fragment

where Ce
i is the set of basic conditions in C that can be evaluated on physical frag-

ment F̂i, that is, Ce
i = {c j : c j ∈ C ∧ attributes(c j) ∈ F̂i}, with attributes(c j) rep-

resenting the attributes appearing in c j. Note that the salt and enc attributes in the
SELECT clause of Qs are specified only if the SELECT or WHERE clauses of the
original query Q involve attributes not appearing in clear form in the fragment. The
query mapping component then decrypts the tuples received and executes on them
a query Qu defined as:

SELECT AQ
FROM Decrypt(Qs, k)
WHERE

∧
c j∈{C−Ce

i } c j

where Decrypt(Qs, k) denotes a temporary relation including the tuples returned by
Qs and where attribute enc has been decrypted through key k. The WHERE clause
of Qu includes all conditions defined on attributes that do not appear in clear form
in the physical fragment and that can be only evaluated on the decrypted result. The
final result of query Qu is then returned to the user.

Note that since we are interested in minimizing the query evaluation cost, a query
optimizer can be used to select the fragment that allows the execution of more se-
lective queries by the server, thus decreasing the workload of the application and
maximizing the efficiency of the execution [25]. For instance, the physical frag-
ment F̂i exploited by Qs can be conveniently chosen as the fragment minimizing
Cost(Q,Fi) as defined in Sect. 4.9.

Example 4.10. Consider the relation in Fig. 4.1(a) and its fragments in Fig. 4.2.

• Consider a query Q retrieving the Social Security Number and the name of the
patients whose Sickness is Latex al. and whose ZIP is 94140. Since fragment
F̂3 contains both Sickness and ZIP, it can evaluate both the conditions in
the WHERE clause and is chosen for query evaluation. Figure 4.18 illustrates the
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translation of Q to queries Qs.3 executed by the server on the fragment (notation
Qs.x indicates a query executed by the server on fragment x), and Qu executed
by the application. Query Qs.3 returns to the application only the tuples belong-
ing to the final result. The application just needs to decrypt them for projecting
attributes SSN and Name.

• Consider a query Q′ retrieving the Social Security Number and the name of the
patients whose Sickness is Latex al., whose ZIP is 94140, and whose occupa-
tion is Nurse. Fragment F̂3 contains both Sickness and ZIP and S(Q′,F3)=1/6.
Fragment F2 contains only Occupation and S(Q′,F3)=1/3. The query map-
ping component therefore translates query Q′ into queries Q′

s.3 executed by the
server on the fragment, and Q′

u executed by the application (see Fig. 4.18). Since
ZIP does not appear in clear form in fragment F̂3, the condition on it needs to
be evaluated by the application, which also performs the projection of the SSN
and Name attributes after decrypting the result computed by Qs.3.

Note that queries whose WHERE clause contains negated conditions can be eas-
ily managed by the query mapping component since whenever a basic condition c
can be evaluated on a physical fragment, also its negation (i.e., NOT(c)) can be eval-
uated on the same fragment. Queries whose WHERE clause contains disjunctions
need special consideration. As a matter of fact, according to the semantics of the
OR operator, any condition that cannot be evaluated over a fragment but that is in
disjunction with other conditions that can be evaluated on the fragment cannot be
simply evaluated on the result returned by the server (like done in the case of con-
junction). Three scenarios are then possible. 1) The query conditional part can be
reduced to a conjunctive normal form; then the query mapping and evaluation can
proceed as illustrated in the conjunctive case above. 2) The query conditional part
can be reduced to a disjunctive normal form where all components can be evaluated
over different fragments; in this case the query mapping component will ask the
server for the execution of as many queries as the components of the disjunction
and will then merge (union) their results. 3) The query conditional part contains a
basic condition (to be evaluated in disjunction with others) that cannot be evaluated
on any fragment (as it involves a sensitive attribute or attributes that appear in two
different fragments); in this case the query mapping component will need to retrieve
the entire fragment (any fragment will do) and evaluate the query condition at its
site.

4.12 Indexes

As discussed in Sect. 4.3, each physical fragment reports in the clear only some of
the attributes (as dictated by the fragmentation) while reporting the remaining at-
tributes as a single encrypted tuple. This clearly has an impact on the performance
of queries that need to evaluate selection predicates on both data appearing in clear
and on data appearing in encrypted form (see Sect. 4.11). In the encrypted database
proposals, queries on encrypted data are typically evaluated by means of indexes
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built on encrypted attributes: each cleartext query is translated into a query on the
indexes and the result (complete but maybe including spurious tuples) is then de-
crypted and filtered by a trusted client (see Fig. 4.17). As discussed in Chap. 2,
different kinds of indexes have been proposed, each providing a different balance
between efficiency and confidentiality. We distinguish here these methods in three
main classes.

• Direct index. The index is obtained by applying an encryption (unsalted) func-
tion on the cleartext values of the attribute [58].

• Hash index. The index is obtained by applying a keyed hash function to the
cleartext values and restricting the result to produce collisions [24].

• Flattened hash index. The index is obtained by applying a keyed hash function
with collision as in the case of hash index while applying a post processing that
flattens the distribution of index values (so to avoid exposures of outliers) [45,
96].

In the encrypted database scenario, direct indexes are the most efficient, as con-
ditions on cleartext values have a one to one correspondence with conditions on
indexed values; at the same time they exhibit a major vulnerability making them
applicable only in restricted situations. Hash indexes may create exposure problems
only in the presence of outliers or in the case of use of multiple indexes in the
same table, but otherwise guarantee confidentiality. Flattened hash indexes provide
better protection. While one may think that the same properties could hold for frag-
mentations, unfortunately the application of indexes to fragments (which, unlike
encrypted databases, report some cleartext values) introduces new vulnerabilities.
In this section we briefly discuss the vulnerabilities to the aim of identifying a safe
use of indexes, which we apply to our scenario. For simplicity, in the discussion we
refer to a simple fragmentation problem characterized by a relation R(a1,a2) and
by a single confidentiality constraint {a1,a2}. We then examine the exposure risk
of a fragment where a1 appears in the clear jointly with an index of a2, for each of
the above classes of indexes. An instance of such a configuration, to which we refer
for concreteness in the examples, is table Patient in Fig. 4.1(a) restricted to at-
tributes Name and Sickness, together with the confidentiality constraint on them
(c2). We then evaluate the protection of the fragment reporting Name (Fig. 4.2(a))
in the clear when indexes on attribute Sickness are added. Fig. 4.19(c–e) reports
the indexed fragments under the different indexing assumptions.

To examine the vulnerability of the indexed fragments, we first need to identify
the knowledge available to the adversary, whose aim is to reconstruct the protected
association (Name,Sickness). We can identity two kinds of knowledge: vertical
knowledge and horizontal knowledge, characterized as follows.

• Vertical knowledge. Vertical knowledge is due to the fact that the values not
appearing in the clear in one fragment (for a confidentiality constraint forbid-
ding their association with other values) may appear in the clear in other frag-
ments. Vertical knowledge does not require any additional external information
for the adversary since, apart from the case where the attribute appears in a sin-
gleton constraint, it refers to information immediately present in other accessible
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Knowledge Indexed fragment f̂ 1

Sickness
Latex al.
Latex al.
Latex al.
Celiac
Pollen al.
Nickel al.

Name Sickness
A. Smith Latex al.

salt enc Name is1

s1 α A. Smith λ
s2 β B. Jones λ
s3 γ C. Taylor λ
s4 δ D. Brown ϕ
s5 ε E. Cooper π
s6 ζ F. White ψ

salt enc Name is2

s1 α A. Smith σ
s2 β B. Jones σ
s3 γ C. Taylor σ
s4 δ D. Brown ρ
s5 ε E. Cooper σ
s6 ζ F. White ρ

salt enc Name is3

s1 α A. Smith η
s2 β B. Jones η
s3 γ C. Taylor η
s4 δ D. Brown µ
s5 ε E. Cooper µ
s6 ζ F. White µ

(a) vk (b) hk (c) di (d) hi (e) fhi

Fig. 4.19 Adversary knowledge (a,b) and choices for indexed fragments (c,d,e)

fragments (Fig. 4.2(c)). Figure 4.19(a) reports the vertical knowledge for our
example, illustrating the projection of the Sickness attribute of Fig. 4.1(a).
An adversary observing the fragments can then have complete knowledge of the
distribution (cleartext values and their number of occurrences) of the indexed
attributes. In the example, the observer knows that there are three patients with
latex allergy.

• Horizontal knowledge. Horizontal knowledge is due to possible external knowl-
edge that the adversary has with respect to the presence of specific tuples (cor-
responding to sensitive associations) in the table. In its simplest form, horizontal
knowledge is then represented by knowledge of a single tuple (v1,v2). In the ex-
ample, the adversary may know that A. Smith suffers from latex allergy, that is,
(A. Smith, latex al.) belongs to the original table R. Figure 4.19(b) reports this
example of horizontal knowledge.

Let us now examine the exposure risk of indexed fragments under the assumption
of horizontal and vertical knowledge.4

Direct index, vertical knowledge (di-vk). Sensitive associations are exposed de-
pending on their distinguishability with respect to the number of occurrences of the
indexed values. In our example, the index corresponding to latex allergy is com-
pletely recognizable being the only one with three occurrences. Consequently, the
adversary infers that A. Smith, B. Jones, and C. Taylor suffer from latex allergy. As
for the other three patients, the adversary can estimate they suffer from one of the
three other sicknesses, each with equal probability.
Direct index, horizontal knowledge (di-hk). By joining this knowledge on the
attribute appearing in the clear in the indexed fragment (Name), the adversary can
retrieve the index value λ corresponding to the specific cleartext value of the indexed
attribute (Sickness). This exposes the associations having the same index value
as the one the adversary knows. In our example, knowledge of the association (A.
Smith, latex al.) allows the adversary to know that λ is the index for latex allergy
and therefore to infer that also B. Jones, and C. Taylor suffer from latex allergy.

4 We note that the treatment of vertical knowledge strictly resembles threat models, proposed
for encrypted databases, that assume that the adversary had complete knowledge of the cleart-
ext database and aimed at reconstructing the correspondence between cleartext and index values
(scenario Freq+DBK in [24]).
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Hash index, vertical knowledge (hi-vk). The use of the hash index diminishes the
exposure of association since different cleartext values may be represented by the
same index value. However, values with a high number of occurrences (outliers),
typically remain recognizable. In the example, the adversary can infer that index
σ refers to latex allergy, since it is the only one with at least 3 occurrences. She
can then infer that 3 out of the 4 patients have latex allergy (i.e., each one has latex
allergy with 0.75 probability).
Hash index, horizontal knowledge (hi-hk). Like in the direct index case, the ad-
versary can recognize the index value representing the known cleartext value, with
the only difference that the index value can correspond also to other cleartext values.
The adversary can then infer that some associations are not present in the database
(tuples with a different index value will certainly not have the known cleartext
value). Together with vertical knowledge, it allows the adversary to infer the proba-
bility that some sensitive associations (with the known cleartext value) belong to the
database. In the example, knowledge of the association (A. Smith, latex al.) allows
the adversary to know that σ is the index for latex allergy. Since there are 3 oc-
currences of latex allergy and 4 occurrences of σ , by removing the known one, the
adversary can infer that B. Jones, C. Taylor, and E. Cooper have a 0.66 probability
of suffering from latex allergy.
Flattened hash index, vertical knowledge (fhi-vk). Flattening the occurrences of
the index values makes impossible to establish correspondences between cleartext
values and index values on the basis of the number of occurrences. Flattened hash
indexes are not vulnerable to vertical knowledge.
Flattened hash index, horizontal knowledge (fhi-hk). Like in the hashed case,
the adversary can recognize the index value representing the known cleartext value.
Together with vertical knowledge, it allows the adversary to identify the subset of
tuples that may be associated with the cleartext value for which the index is known,
with an estimate of the probability of their association. In the example, knowledge
of the association (A. Smith, latex al.) allows the adversary to know that η is the
index for latex allergy and therefore to infer that B. Jones and C. Taylor have a 1.0
probability of suffering from latex allergy (since there are only three occurrences of
latex allergy).

In summary, vertical and horizontal knowledge create inference risks on the basis
of the number of occurrences of cleartext (and corresponding index) values. Even
when values are equally distributed, all indexes above remain vulnerable to horizon-
tal knowledge, allowing the adversary to infer associations with the known cleartext
value. It is easy to see that such vulnerabilities are blocked when values are equally
distributed and horizontal knowledge refers to association with indexed values that
have only one occurrence. Both conditions are certainly satisfied when indexes re-
fer to key attributes. Without compromising confidentiality of fragments, we can
therefore apply indexes on attributes corresponding to candidate keys of the original
relations.

Indexes can be easily integrated in our cost model, by simply refining Cost(Q,F )
function. This can easily be done by considering the selectivity of indexes for con-
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ditions on indexed values. Indexes do not have any impact on the monotonicity
property of the cost function on fragments (Lemma 4.4) and therefore on the appli-
cability of our solutions. With reference to our example we can then consider direct
indexes on SSN and Name (assuming Name is a candidate key) in any fragment
where they appear encrypted (all fragments for SSN and those in Fig. 4.2(b) and
Fig. 4.2(c) for Name).

4.13 Experimental Results

The heuristic algorithms presented in Sects. 4.6, 4.8, and 4.10 have been imple-
mented as C programs to obtain experimental data and assess their behavior in terms
of execution time and quality of the returned solution. Aiming to a comparison of
the results computed by our heuristic algorithms to the optimal solutions, we also
implemented three versions of the algorithm presented in Sect. 4.5, analyzing the
complete solution space computing the fragmentation with the minimal number of
fragments, the one with maximum affinity, and the one with minimum cost, since all
these three functions are monotonic with respect to ≼. The relation schema we con-
sidered in the experiments is composed of 19 attributes and is inspired by a database
of medical information. Taking into account possible confidentiality requirements
we expressed up to 18 confidentiality constraints. These constraints are well defined
(see Definition 4.2) and composed of a number of attributes varying from 2 to 4
(we did not consider singleton constraints as they cannot be solved via fragmenta-
tion). The content of the affinity matrix has been produced using a pseudo-random
generation function. We considered 14 queries, each characterized by a frequency
value. The experiments have considered configurations with an increasing number
of attributes, from 3 to 19, taking into account, for every configuration, only the
constraints completely fitting in the selected attributes. The number of constraints
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for a configuration with n attributes ranges between n−3 to n+1. The system im-
plemented presents as an option the use of indexes, according to the analysis of
Sect. 4.12.

Figure 4.20 compares the time required for the execution of the complete search
algorithms with the heuristic algorithms presented in this chapter. Consistently with
the fact that the problem of minimizing the number of fragments, the problem of
maximizing affinity, and the problem of minimizing cost while satisfying confiden-
tiality constraints are NP-hard, the three complete search strategies require exponen-
tial time in the number of attributes. The complete search then becomes unfeasible
even for a relatively small number of attributes; with the availability of large compu-
tational resources it would still not be possible to consider large configurations (in
our experiments we were able only to run the complete search for schemas with less
than 15 attributes). By contrast, the time required for the execution of the heuristic
analysis always remains low. The heuristic functions computing the vector minimal
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fragmentation and the vector minimal fragmentation maximizing affinity have com-
putational time near 0. On the other hand, the time required by the heuristic for the
minimum cost fragmentation problem increases exponentially with the increase in
the look-ahead depth and linearly with the increase in the number of parallel steps,
always showing a limited time for the simplest search (d=1,ps=1). It is therefore
important to have available a family of heuristics, so to apply in real systems a dy-
namic approach where initially a search is executed with the most efficient heuristic,
increasing the depth according to the amount of available resources. The number of
parallel steps is a parameter that should become particularly interesting for the im-
plementation of the heuristics on a multi-core architecture, where each core can
manage the exploration of one of the alternatives.

Obviously, a successful heuristics presents a good behavior if it combines time
efficiency with a demonstrated ability to produce good solutions. We therefore com-
pared the solutions computed by the execution of each of the heuristic algorithms
with those returned by the corresponding complete search algorithms.
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Figure 4.21 presents the number of fragments obtained by the execution of the
heuristic algorithm computing a vector-minimal fragmentation (Sect. 4.6) compared
with in a solution computed by the complete search function. As the graph shows,
in all the cases that allow the comparison, our heuristic has always identified an
optimal solution.

Figure 4.22 instead compares the affinity of the fragmentation computed through
our heuristic (Sect. 4.8) with the optimal affinity produced by the complete search
strategy. As the graph shows, for all the cases that allow the comparison, the affinity
of the solution computed by the heuristic algorithm is close to the optimal value: the
average of the difference is 4.2% and the maximum percentage difference is around
14.1%.

Figure 4.23(a) compares the cost of the solution obtained by our heuristic algo-
rithm (Sect. 4.10) in two configurations: (d = 1, ps = 1) and (d = 3, ps = 1) with the
optimal cost produced by the complete search strategy. The graph shows that even
the simplest configuration (d = 1, ps = 1) guarantees good-quality fragmentations.
Figure 4.23(b) shows the cost of the solutions produced by the heuristic with dif-
ferent values for parameter ps (i.e., 1, 3, and 5) and with the fixed value d = 1. It is
sufficient to use ps = 5 to obtain near-optimum fragmentations.

Finally, experiments have been run to evaluate the benefit of indexes and they
have proved (see Fig. 4.24) that the use of indexes on encrypted attributes can pro-
duce a significant benefit. The amount of the benefit is highly dependent on specific
features of the relation schema and query profile.

4.14 Chapter Summary

We presented an approach combining fragmentation and encryption to efficiently
enforce privacy constraints over data collections, with particular attention to query
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execution efficiency. The algorithms proposed for fragmentation take into account
the information available about the system, to the aim of efficiently executing
queries on the fragmented data.

Besides the technical contribution, the ideas illustrated in this chapter can rep-
resent a step towards the effective enforcement, as well as the establishment, of
privacy regulations. Technical limitations are in fact claimed as one of the main rea-
sons why privacy cannot be achieved and, consequently, regulations not be put into
enforcement. Research along the line presented here can then help in providing the
building blocks for a more precise specification of privacy needs and regulations,
as well as their actual enforcement, together with the benefit of a clearer and more
direct integration of privacy requirements within existing ICT infrastructures.



Chapter 5
Distributed Query Processing under Safely
Composed Permissions1

The integration of information sources detained by distinct parties, either for se-
curity or efficiency reasons, is becoming of great interest. A crucial issue in this
scenario is the definition of mechanisms for the integration that correctly satisfy the
commercial and business policies of the organization owning the data. In this chap-
ter, we propose a new model based on the characterization of access privileges for
a set of servers on the components of a relational schema. The proposed approach
is based on three concepts: i) flexible permissions identify portions of the data be-
ing authorized, ii) relations are checked for release not with respect to individual
authorizations but rather evaluating whether the information release they (directly
or indirectly) entail is allowed by the permissions, and iii) each basic operation
necessary for query evaluation entails different data exchanges among the servers.
Access control is effectively modeled and efficiently executed in terms of graph col-
oring and composition. The query execution plan is checked against privileges to
evaluate if it can or cannot be exploited for query evaluation.

5.1 Introduction

More and more emerging scenarios require different parties, each withholding large
amounts of independently managed information, to cooperate with other parties in a
larger distributed system to the aim of sharing information and perform distributed
computations. Such scenarios range from: traditional distributed database systems,

1 Part of this chapter appeared under S. De Capitani di Vimercati, S. Foresti, S.
Jajodia, S. Paraboschi, and P. Samarati, “Assessing Query Privileges via Safe and Efficient
Permission Composition,” in Proc. of the 15th ACM Conference Conference on Computer and
Communications Security (CCS 2008), Alexandria, VA, October 2008 [42] ©2008 ACM, Inc.
Reprinted by permission http://doi.acm.org/10.1145/1455770.1455810; and under ©2008 IEEE,
reprinted, with permission, from S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
P. Samarati,“Controlled Information Sharing in Collaborative Distributed Query Processing,” in
Proc. of the 28th International Conference on Distributed Computing Systems (ICDCS 2008),
Beijing, China, June 2008 [43].

S. Foresti, Preserving Privacy in Data Outsourcing, Advances in Information Security 51, 135  
DOI 10.1007/978-1-4419-7659-8_5, © Springer Science+Business Media, LLC 2011
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where a centrally planned database design is distributed to different locations; to
federated systems, where independently developed databases are merged together;
to dynamic coalitions and virtual communities, where independent parties may need
to selectively share part of their knowledge towards the completion of common
goals. Regardless of the specific scenario, a common point of such a merging and
sharing process is that it is selective: if on the one hand there is a need to share some
data and cooperate, there is on the other hand an equally strong need to protect those
data that, for various reasons, should not be disclosed.

The correct definition and management of protection requirements is therefore a
crucial point for an effective collaboration and integration of heterogeneous large-
scale distributed systems. The problem calls for a solution that must be expressive
to capture the different data protection needs of the cooperating parties as well as
simple and coherent with current mechanisms for the management of distributed
computations, to be seamlessly integrated in current systems and fully exploit the
availability of technical solutions that are the fruit of a large amount of research and
development. To this aim and for the sake of concreteness, in this chapter we ad-
dress the problem with specific consideration to distributed database systems, while
noting that our approach can be extended to other data models.

Current approaches for the specification and enforcement of authorizations in
relational databases claim flexibility and expressiveness because of the possibility of
referring to views. Users can be given access to a specific portion of the data by the
definition of the corresponding view (in the database schema) and the consequent
granting of the authorization on the view to the user. It is then responsibility of the
user to query the view itself. Queries on a table (base relation or view) are controlled
with respect to authorizations specified on the table and granted only if authorized.
When the diversity of users and possible views is considerable and dynamic such
an approach clearly results limiting as it: i) requests to explicitly define a view for
each possible access needed and ii) imposes on the user/application the burden of
knowing and directly querying the view. The evaluation of query compliance in
terms of existing authorization views has been considered in [71, 80, 81, 82].

We propose an expressive, flexible, and powerful, yet simple approach for the
specification and enforcement of permissions that overcomes such limitations. Our
permissions express privileges not on specific existing views but on stable com-
ponents of the database schema, exploiting both relations and joins between them,
effectively identifying the specific portion of the data whose access is being autho-
rized. Another important aspect of our approach is that we do not limit ourselves
to a simple relation-authorization control but allow data release whenever the infor-
mation carried by the relation (either directly or indirectly due to the dependence of
the attributes with other data not explicitly released) is legitimate according to the
specified permissions. This is an important paradigm shift with respect to current
solutions, departing from the need of specifying views to identify the portion of the
data to be authorized but explicitly supporting such a specification in the permis-
sions themselves.

A further novel aspect of the model is the definition of distinct access profiles
for the users in the system, with explicit support for a cooperative management of
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queries. This is an important feature in distributed settings, where the minimization
of data exchanges and the execution of steps of the queries in locations where it
can be less costly is a crucial factor in the identification of an execution strategy
characterized by good performance.

5.1.1 Chapter Outline

The remainder of the chapter is organized as follows. Section 5.2 introduces
the preliminary concepts of distributed query evaluation, which are referred in
our approach. Section 5.3 illustrates our security model. Section 5.4 illustrates a
graph-based representation of the components of the proposed authorization model
(database schema, relation profiles, and permissions). Section 5.5 describes a safe
and efficient permission composition method, exploited for evaluating if a given re-
lease is to be authorized or denied. Section 5.6 discusses query planning and how
protection requirements stated by permissions should impact its execution to ensure
data are properly protected by the distributed computation. Section 5.7 proposes an
algorithm for determining whether a query plan can be executed in the respect of
the authorizations and determine, if it exists, a safe assignment of tasks to the dis-
tributed cooperating parties for the execution of the query plan. Finally, Sect. 5.8
concludes the chapter.

5.2 Preliminary Concepts

We consider a distributed system composed of different subjects, denoted S , some
of which act as servers storing different relations, denoted R. In this section, we
briefly introduce the basic concepts and assumptions on the data model and the
distributed query execution.

5.2.1 Data Model

We refer in this chapter to the relational database model discussed in Sect. 3.2,
which is basically composed of a set R of relations, each with a primary key, and
of a set of referential integrity constraints.

Example 5.1. Consider a distributed system managing medical data, whose schema
is represented in Fig. 5.1. The system is composed of four servers with one
relation each: Employee stored at server SE ; Patient stored at server SP;
Treatment stored at server ST , and Doctor, stored at server SD. Underlined
attributes denote primary keys. There are two referential integrity constraints:
⟨Treatment.SSN,Patient.SSN⟩, implying that treatments can only be given
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R EMPLOYEE(SSN,Job,Salary)
PATIENT(SSN,DoB,Race)
TREATMENT(SSN,IdDoc,Type,Cost,Duration)
DOCTOR(IdDoc,Name,Specialty)

I ⟨Treatment.SSN,Patient.SSN⟩
⟨Treatment.IdDoc,Doctor.IdDoc⟩

J ⟨Employee.SSN,Patient.SSN⟩

Fig. 5.1 An example of relations, referential integrity constraints, and joins

to patients (values appearing for SSN in Treatment can be only values appearing
for SSN in Patient), and ⟨Treatment.IdDoc,Doctor.IdDoc⟩, implying
that treatments can only be prescribed by doctors (values appearing for IdDoc in
Treatment can be only values appearing for IdDoc in Doctor).

Information in different relations can be combined by using the join operation,
which allows the combination of tuples belonging to different relations imposing
conditions on how tuples can be combined. For simplicity of exposition, we assume
that attributes that can be joined appear with the same name in the different rela-
tions, and consider then all joins to be natural joins, that is, joins whose conditions
are conjunctions of equality conditions that compare the value of two attributes with
the same name. We denote a conjunction of equality conditions with a pair ⟨Al ,Ar⟩,
where Al (Ar, resp.) is the list of attributes of the left (right, resp.) operand of the
join. Note that while possible joins obviously include all referential integrity con-
straints, other joins are possible; in the following we denote with J the set of pairs
representing the equality conditions of such additional joins. As an example, with
respect to the relations in Fig. 5.1, Employee and Patient can be joined over at-
tribute SSN (retrieving all people that are both employees and patients). Like the set
of relations and the referential integrity constraints, possible joins are also specified
at the time of database design [49].

We assume all attributes in the different relations to have distinct names, apart
from attributes that can be joined, which appear instead with the same name. The
intuitive rationale behind such a homonymity is that attributes that can be joined
actually represent the same concept of the real world. For instance, SSN denotes
social security numbers of people, who can then appear, for example, as patients
or employees. We adopt the usual dot notation when necessary to distinguish the
attribute in a specific relation (to refer to the occurrence of its specific values). For
instance, Employee.SSN denotes the social security numbers of employees and
Patient.SSN denotes the social security numbers of patients.

Different join operations can also be used to combine tuples belonging to more
than two relations. The following definition introduces a join path as a sequence of
natural join conditions.

Definition 5.1 (Join path). A join path over a sequence of relation schemas
R1,. . . ,Rn is a sequence of n − 1 joins J1, . . . ,Jn−1 such that ∀i = 1, . . . ,n − 1,
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Ji = ⟨Jl i,Jri⟩ ∈ (I ∪J ) and Jl i are attributes of a relation appearing in a join
Jk, with k < i.

Example 5.2. With reference to the relations in Fig. 5.1, an example of join path
(combining more than two relations) is, {⟨Patient.SSN,Treatment.SSN⟩,
⟨Treatment.IdDoc,Doctor.IdDoc⟩}, allowing combination of tuples of the
relations Patient, Treatment, and Doctor to retrieve, for example, the spe-
cialty of the caring doctor of patients of a given race.

While noting that the permission model we propose in the next section can be
applied to any schema, in this chapter we assume that the schema is acyclic and
lossless [1, 5, 9]. Acyclicity implies that the join path over any subset of the rela-
tions {R1,. . .,Rn} in the schema, denoted joinpath({R1,. . .,Rn}), is unique. Acyclic-
ity rules out schemas that present recursion or multiple independent join condi-
tions among the same relations. Acyclicity can be immediately evaluated on the
schema graph (see Sect. 5.4), considering arcs without orientation. Losslessness of
the schema guarantees that joins among relations produce only correct information
(according to the real world). Intuitively, two relations produce a lossless join if
the join among them does not produce spurious tuples. Losslessness can be evalu-
ated by means of attribute intersections and functional dependencies (see Sect. 5.4).
Acyclicity and losslessness assumptions are often used in relational databases, be-
cause they permit the realization of simple and efficient procedures on the data, at
the same time capturing the requirements of most real-word situations [9].

5.2.2 Distributed Query Execution

Since relations are distributed at different servers, query execution may require com-
munication and data exchanges among the different servers involved in the query
(i.e., on which the relations to be accessed are stored). We assume that each server
implements a relational engine able to compute queries and that it can require the
execution of queries to other servers. We assume communication relies on trusted
channels and that servers use robust authentication mechanism (e.g., SSL/TLS with
2-way authentication using certificates).

We consider simple select-from-where queries of the form: “SELECT A FROM
Joined relations WHERE C”, corresponding to algebra expression πA(σC(R1 ◃▹ . . . ◃▹
Rn)), where A is a set of attributes, C is the selection conditions, and R1 ◃▹ . . . ◃▹ Rn
are the joins in the FROM clause. Each query execution can be represented as a bi-
nary tree (called query tree plan) where leaves correspond to the physical relations
accessed by the query (appearing in the FROM clause), each non-leaf node is a rela-
tional operator receiving in input the result produced by its children and producing
a relation as output, and the root corresponds to the last operation and returns the
result of the query evaluation. To simplify and without loss of generality, we as-
sume the query plan to satisfy the usual minimization criteria, and, in particular,
we assume that projections are “pushed down” the tree, to eliminate unnecessary
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n0 πSSN,Salary,DoB
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n3 πSSN

n4 πSSN,Salary n5 πSSN,DoB n6 σDuration>10

n7 Employee n8 Patient n9 Treatment

Fig. 5.2 An example of query tree plan

attributes as soon as possible. While usually adopted for efficiency, this assumption
is also important for security purposes, as it restricts the attributes being potentially
disclosed to those strictly needed for the computation.

Example 5.3. Consider the relations in Fig. 5.1, and consider the following query.

SELECT E.SSN, Salary, DoB
FROM Employee AS E JOIN Patient AS P ON E.SSN=P.SSN

JOIN Treatment AS T ON P.SSN=T.SSN
WHERE Duration> 10

The corresponding relational algebra expression is πSSN,Salary,DoB (σDuration>10
(Employee ◃▹ Patient ◃▹ Treatment)). An example of tree representing
the execution of this query is represented in Fig. 5.2, where the selection on
Duration> 10 on relation Treatment has been pushed down the tree (i.e., it
is executed before the join operation). Also, projections on necessary attributes are
added before join operations.

Queries may involve joins among relations stored at different servers, which
therefore need to cooperate, and possibly exchange data, for performing the compu-
tation. We therefore propose an authorization model to regulate the view that each
server (subject in general) can have on the data and ensure that query computation
exposes to each server only data that the server can view.

We assume that each server is responsible for the definition of the access policy
on its resources and permissions involving data stored at different servers are jointly
specified and administered. A centralized query optimizer is responsible for the con-
struction of the query plan, taking into account the schema and the permissions from
each server. This is compatible with all the proposals for distributed databases aim-
ing at a realization on concrete systems, which assume the use of a centralized op-
timizer; a purely distributed approach based on some form of negotiation protocol
among the servers is considered impractical.



5.3 Security Model 141

In the following, given an operation involving a relation stored at a server, we will
use the term operand to refer independently to the relation or to the server storing
it, when the semantics is clear from the context.

5.3 Security Model

We first present our simple, while expressive, permissions regulating how data can
be released to each server. We then introduce the concept of relation profile that
characterizes the information content of a relation.

5.3.1 Permissions

Consistently with standard practice in the security world, we assume a “closed”
policy, where data can be made visible only to parties explicitly authorized for that.

Different subjects in the system may be authorized to view portions of the whole
database content. We consider permissions in a simple, yet powerful form, specify-
ing visibility permissions for subjects to view certain schema components. Formally,
permissions are defined as follow.

Definition 5.2 (Permission). A permission p is a rule of the form [Att, Rels]→S
where:

• Att is a set of attributes, belonging to one or more relations, whose release is
being authorized;

• Rels is a set of relations such that for every attribute in Att there is a relation
including it;

• S is a subject in S .

Permission [Att, Rels]→S states that subject S can view the sub-tuples over
the set of attributes Att belonging to the join among relations Rels (on conditions
joinpath(Rels)).

Note that, according to the definition, only attribute names (without indication of
the relation) appear in the first component of the permission, whereas the relation
(or relations) to which the attribute belongs is specified in the second component.
This occurs even when the attribute appears in more than one relation (specified in
Rels), consistently with the semantics that all the occurrences represent the same
entity in the real world.

Example 5.4. Figure 5.3 illustrates some permissions on the relations in Fig. 5.1 that
give Alice the visibility of:

• SSN, Date of Birth, and Race of all patients (p1);
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p1: [(SSN,DoB,Race),(Patient)] →Alice
p2: [(SSN,Type,Cost,Duration),(Treatment)] →Alice
p3: [(Race,Specialty),(Treatment,Patient,Doctor)] →Alice
p4: [(SSN,Job,Salary),(Employee)] →Alice
p5: [(Name),(Treatment,Doctor)] →Alice

Fig. 5.3 Examples of permissions

• SSN of treated patients, together with Type, Cost, and Duration of their treat-
ments (p2);

• Race of patients and Specialty of their caring doctors (p3);
• SSN, Job, and Salary of all employees (p4);
• Name of doctors who have prescribed some treatment (p5).

Note that the presence of a relation (and therefore the enforcement of the corre-
sponding join condition) in a permission may decrease the set of tuples that are made
visible (to only those tuples that participate in the join). However, such an elimina-
tion of tuples does not correspond to less information, rather it adds information
on the fact that the visible tuples actually join with (i.e., have values appearing in)
other tuples of the joined relations. For instance, permission p5 while restricting the
set of doctor’s names visible to Alice to only the names of the doctors who have
prescribed treatments, it allows Alice to see that such doctors have prescribed
treatments (i.e., they appear in relation Treatment).

The only case where including an additional relation in the permission does not
influence the result, and therefore does not imply an indirect information disclo-
sure, occurs when the additional relations are reachable via referential integrity con-
straints (from the foreign to the primary key it references) from a relation in Rels.
For instance, permissions p2 in Fig. 5.3 and a permission with the same first compo-
nent as p2 and having (Treatment,Patient,Doctor) as a second component,
are completely equivalent as they permit (direct or indirect) release of exactly the
same information. Indeed, given the existing referential integrity constraints (see
I in Fig. 5.1), all SSN and all IdDoc appearing in Treatment also appear in
Patient and Doctor respectively. The added joins are therefore ineffective.

Note how the simple form of permissions above, with the specification of the
relations as a separate element, proves quite expressive. In particular, the Rels com-
ponent may also include relations whose attributes do not appear in the set Att of
attributes. This may be due to either:

• connectivity constraints, where these relations are needed to build the association
among attributes of other relations (i.e., the relations are in the join path). For
instance, in permission p3 in Fig. 5.3, Treatment relation appears in the join
path to establish the association between each patient and her caring doctors, but
none of its attributes is released. Note how the permission allows Alice to view
the speciality of patients’ doctors without need of knowing their treatment.

• instance-based restrictions, where the relations are needed to restrict the at-
tributes to be released to only those values appearing in tuples that can be asso-
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ciated with such relations. For instance, permission p5 in Fig. 5.3 allows Alice
to view the names of all the doctors who prescribed at least a treatment (i.e., tu-
ples in the Doctor relation satisfying Doctor.IdDoc=Treatment.IdDoc
condition) but not of those doctors who never prescribed a treatment. Note how
instance-based restrictions can also be used to support situations where some in-
formation can be released only if explicit input is requested (the input is viewed
in this case as a relation to be joined). For instance, we can define a permission
such that providing the employees’ SSN, the company can retrieve their treat-
ments.

5.3.2 Relation Profiles

Permissions restrict the data (view) that can be released to each subject. To deter-
mine whether a release should be authorized or not, we first need to capture the
information content of the released relation, which can be either base or computed
by a query. To this purpose, we introduce the concept of relation profile as follows.

Definition 5.3 (Relation profile). Given a relation R, the relation profile of R is a
triple [Rπ ,R◃▹,Rσ ], where:

• Rπ is the set of attributes in R (i.e., R’s schema);
• R◃▹ is the, possibly empty, set of base relations joined for the defini-

tion/construction of R;
• Rσ is the, possibly empty, set of attributes involved in selection conditions in the

definition/construction of R.

According to the definition above, the relation profile of a base relation
R(a1, . . . ,an) is [{a1, . . . ,an},R, /0].

The reason why both i)the attributes being returned as result (i.e., the attributes
in the SELECT clause) and ii) the attributes on which the query imposes conditions
(i.e., the attributes in the WHERE clause) appear in the profile reflects the fact that the
query result returns indeed information on both (or, equivalently, the subject needs
permissions to view both for accessing the relation to be released).

Note also that, like for permissions, only attribute names (without indication of
the relation) appear in the first component of the query profile, while the relation
(or relations) to which the attributes belong is specified in the second component.
Indeed, if an attribute belongs to more than one relation (and therefore participates in
the join), the common values of such an attribute in all relations are released by the
query, regardless of the specific relation mentioned in the SELECT clause, which is
needed for disambiguating attribute names. The consideration of the attribute names
allows us to conveniently capture this aspect regardless of the specific way in which
the query has been written. For instance, with respect to the query in Example 5.3,
the set of social security numbers released by the query is the intersection of the
set of SSN values of patients, employees, and treatments as captured in the profile:



144 5 Distributed Query Processing under Safely Composed Permissions

Profile
Operation Rπ R◃▹ Rσ

R := πA(Rl) A R◃▹
l Rσ

l
R := σA(Rl) Rπ

l R◃▹
l Rσ

l ∪A
R :=Rl◃▹ jRr Rπ

l ∪Rπ
r R◃▹

l ∪R◃▹
r Rσ

l ∪Rσ
r

Fig. 5.4 Profiles resulting from operations

[(SSN,Salary,DoB), (Employee,Patient,Treatment), (Duration)]. As a
matter of fact, a query equal to the query in Example 5.3 but releasing P.SSN or
T.SSN instead of E.SSN, while slightly different in the syntax, would carry exactly
the same information content and, consequently, would have the same profile.

According to the semantics of the relational operators, the profile resulting from
a relational operation, summarized in Fig. 5.4,2 is as follows.

• Projection (π). A projection operation returns a subset of the attributes of the
operand. Hence, R◃▹ and Rσ of the resulting relation R are the same as the ones
of the operand, while Rπ contains only those attributes being projected.

• Selection (σ ). A selection operation returns a subset of the tuples of the operand.
Hence, R◃▹ and Rπ of the resulting relation R are the same as the ones of the
operand, while Rσ needs to include also the attributes appearing in the selection
condition.

• Join (◃▹). A join operation returns a relation that contains the association of the
tuples of the operands, thus capturing the information in both operands as well as
the information on their association (conditions in the join). Hence, Rσ , Rπ , and
R◃▹ of the resulting relation R are the union of those of the operands, implicitly
capturing the join path joinpath(R◃▹) among the relations composing R◃▹ and
consequently the set of conditions that each tuple in R satisfies.

5.4 Graph-based Model

We model database schema, permissions, and queries via mixed graphs, that is,
graphs with both undirected and directed arcs.

The schema graph of a set R of relations is a mixed graph whose nodes corre-
spond to the different attributes of the relations, whose non-oriented arcs correspond
to the possible joins (J ), and whose oriented arcs correspond to the referential in-
tegrity constraints (I ) and the functional dependencies between the primary key
of a relation and its non-key attributes. Attributes appearing with the same name in
more than one relation appear as different nodes. To disambiguate, nodes are identi-

2 For the sake of simplicity, with a slight abuse of notation, in the table we write σA(R) as a short
hand for any expression σcondition(R), where A is the set of attributes of R involved in condition.
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Fig. 5.5 Schema graph for the relations in Fig. 5.1

fied with the usual dot notation by the pair relation.attribute. This is formalized by
the following definition.

Definition 5.4 (Schema graph). Given a set R of relations, a set I of referential
integrity constraints over R, and a set J of join conditions over R, a schema graph
is a graph G(N ,E ) where:

• N = {Ri.∗ : Ri ∈ R}
• E = J ∪ I ∪ {(Ri.K,Ri.a) : Ri ∈ R∧a ̸∈ K}

Figure 5.5 represents the schema graph corresponding to the set of relations,
referential integrity constraints, and join conditions in Fig. 5.1 (for simplicity, we
only report the initials of the relations).

Permissions and relation profiles correspond to views over the set R of relations
and are characterized by a pair [A,R], corresponding to [Att,Rels] appearing in the
permissions, and to [Rπ∪Rσ ,R◃▹] in the relation profile of relation R, respectively.

Definition 5.5 (Entailed view). Given a set R of relations and a permission
p=[Att,Rels] over it, the view V =[A,R] entailed by p is defined as: A=Att and R=Rels.
Given a set R of relations and a relation profile [Rπ ,R◃▹,Rσ ], the view V =[A,R] en-
tailed by the profile is defined as: A=Rπ∪Rσ and R=R◃▹.

In the characterization of the view, we take into consideration the fact that ref-
erential integrity constraints can be used to extend the relations in R to include all
relations reachable from the ones appearing in R by following referential integrity
connections from a foreign key to the referenced primary key. We can then include
such relations in the set R. Given a set R of relations, R∗ denotes the relations ob-
tained by closing R with respect to referential integrity constraints. For instance,
with respect to the schema graph in Fig. 5.5, the closure of R={Treatment} is
R∗={Treatment, Patient, Doctor}.

Given a relation profile/permission, we graphically represent the view entailed
through it as a view graph obtained by coloring the original schema graph with
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three colors: black for information that the view carries (i.e., it explicitly contains
or indirectly conveys); white for all the non-black attributes belonging to relations
in R∗ and the arcs connecting them to the primary key; and clear for any other
attribute or arc. Intuitively, clear nodes/arcs are attributes/arcs belonging to the orig-
inal graph that are ineffective with respect to the evaluation and composition of
permissions. The reason for maintaining them in the view graphs is so that every
query/permission is a coloring (in contrast to a subgraph) of the schema graph. View
graph is formally defined as follows.

Definition 5.6 (View graph). Given a set R of relations characterized by
schema graph G(N ,E ) and a view V = [A,R] entailed by a permission/relation
profile on it, the view graph of V over G is a graph GV(N ,E ,λV ), where
λV : {N ∪E }→{black,white,clear} is a coloring function defined as follows.

λV (n)=


black, n=R.a, R ∈ R∗ ∧ a ∈ A

white, n=R.a, R ∈ R∗ ∧ a ̸∈ A

clear, otherwise

λV (ni,n j)=



black, (ni,n j) ∈ joinpath(R∗) ∨
(ni=R.K, n j=R.a, R ∈ R∗,(a ∈ A ∨ R.a appears in joinpath(R∗)))

white, ni=R.K, n j=R.a, R ∈ R∗,
¬(a ∈ A ∨ R.a appears in joinpath(R∗))

clear, otherwise

According to this definition, a node is colored as: black if it appears in A, white
if it is not black and it belongs to a relation appearing in R∗, and clear otherwise.
An arc is colored: black if either it belongs to joinpath(R∗) or it is an arc going
from the key of a relation in R∗ to an attribute which either belongs to A or appears
in joinpath(R∗); white if it is an arc from the key of a relation in R∗ to one of its
attributes which neither belongs to A nor appears in joinpath(R∗); clear otherwise.

Figure 5.6 illustrates the ColorGraph function that given the schema graph G
and a pair [A,R] denoting either the view entailed by a permission or by a rela-
tion profile, implements Definition 5.6 and returns the corresponding view graph.
ColorGraph, whose interpretation is immediate, starts by assigning a clear color
to all nodes and arcs and proceeds by coloring black and white arcs and nodes as
prescribed by the definition.

Figure 5.7 reports the view graphs corresponding to the permissions in Fig. 5.3.
Figure 5.8 reports some examples of relations obtained through queries over the
schema in Fig. 5.5. The figure reports the queries originating the relations, the rela-
tion profiles, and the corresponding view graphs.

Before closing this section we introduce two dominance relationships between
view graphs that will be used in the remainder of the chapter.
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COLORGRAPH(G,[A,R])
NV := N
EV := E
for each n∈NV do λV (n) := clear
for each (ni,n j)∈EV do λV (ni,n j) := clear
for each R∈R∗ do

for each a∈R.∗ do /* color nodes */
if a∈A then

λV (R.a) := black
else

λV (R.a) := white
for each (ni,n j)∈joinpath(R∗) do /* color the join path */

λV (ni,n j) := black
for each (ni,n j)∈{(ni,n j): ∃R∈R∗, ni=R.K ∧n j⊆R.∗} do

if λV (n j)=black ∨ n j appears in joinpath(R∗) then
λV (ni,n j) := black

else
λV (ni,n j) := white

GV := (NV ,EV ,λV )
return(GV )

Fig. 5.6 Function for coloring a view graph

Definition 5.7 (≼N , ≼NE ). Given a schema graph G(N ,E ), and two view graphs
GVi(N ,E ,λVi) and GVj(N ,E ,λVj) over G, the following dominance relationships
are defined:

• GVi≼NGVj , when ∀n∈ N and ∀(nh,nk) ∈ (J ∪I ):

– λVi(n) = black =⇒ λVj(n)=black, and
– λGi(nh,nk) = black ⇐⇒ λG j(nh,nk) = black.

• GVi≼NEGVj , when ∀n∈ N and ∀(nh,nk) ∈ E :

– λVi(n) = black =⇒ λVj(n)=black, and
– λGi(nh,nk) = black =⇒ λG j(nh,nk) = black.

According to this definition, given two graphs GVi and GVj on the same database
schema, GVi ≼N GVj if they have exactly the same black referential integrity and join
arcs and the black nodes of GVi are a subset of the black nodes of GVj . GVi ≼NE GVj

if the black arcs and nodes of GVi are a subset of the black arcs and nodes of GVj .
For instance, with reference to the view graphs in Figs. 5.7 and 5.8, it is easy to see
that: Gp3≼NGQ3 and that Gp1≼NEGQ2 .

5.5 Authorized Views

To evaluate a query requested by a subject against her permissions and to determine
if the query can be executed, we implement the following intuitive concept.

Principle 5.1 A relation (either base or resulting from a query evaluation) can be
released to a subject if she has permissions to view the information content carried
by the relation.
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p1:[(SSN,DoB,Race),(Patient)]→Alice p2:[(SSN,Type,Cost,Duration),(Treatment)]→Alice

p3:[(Race,Specialty),(Treatment,Patient,Doctor)]→Alice p4:[(SSN,Job,Salary),(Employee)]→Alice

p5:[(Name),(Treatment,Doctor)]→Alice

Fig. 5.7 Examples of permissions and their view graphs

We first discuss when a permission authorizes the release of a relation. We will
then address permission composition and cooperation in query evaluation.

In the reminder of this section we refer our discussion to permissions and rela-
tion profiles of a specific subject and omit, for simplicity, the subject component of
permissions in the formalization.
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Q1

SELECT E.SSN,Salary
FROM Employee AS E

JOIN Patient AS P
ON E.SSN=P.SSN
JOIN Treatment AS T
ON T.SSN=P.SSN

WHERE Cost> 250

[(SSN,Salary), (Employee,Patient,Treatment), (Cost)]

Q2

SELECT P.SSN,DoB
FROM Employee AS E

JOIN Patient AS P
ON E.SSN=P.SSN

WHERE Race=‘asian’

[(SSN,DoB), (Employee,Patient), (Race)]

Q3

SELECT P.SSN,Race
FROM Patient AS P

JOIN Treatment AS T
ON T.SSN=P.SSN
JOIN Doctor AS D
ON T.IdDoc=D.IdDoc

WHERE Specialty=‘cardiology’

[(SSN,Race), (Patient,Treatment,Doctor), (Specialty)]

Q4

SELECT E.SSN,Salary,DoB
FROM Employee AS E

JOIN Patient AS P
ON E.SSN=P.SSN
JOIN Treatment AS T
ON P.SSN=T.SSN

WHERE Duration> 10

[(SSN,Salary,DoB), (Employee,Patient,Treatment), (Duration)]

Fig. 5.8 Examples of queries, their relation profiles, and their view graphs

5.5.1 Authorizing Permissions

Intuitively, a permission authorizes a release if and only if the information (directly
or indirectly) entailed by the relation profile is a subset of the information that the
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permission authorizes to view. Note that this is different from saying that the relation
should contain only data that are a subset of the data authorized by the permission,
as this denotes only the information directly released. A correct enforcement should
also ensure that no indirect release occurs. There are two main sources of indirect
release:

• the presence, in the query generating the relation, of conditions on attributes that
are not returned (i.e., attributes that appear in the WHERE clause but do not appear
in the SELECT clause);

• the presence of join conditions restricting the tuples returned by the query.

The first aspect is easily taken into consideration as it is already captured by the in-
clusion, in the relation profile (Definition 5.3), of Rσ component, which is included
in A for the entailed view definition (Definition 5.5). To illustrate the problem of the
second aspect, consider permission p1 in Fig. 5.7, which allows Alice to view the
complete information in Patient, and therefore the whole tuples representing all
patients. Permission p1 by itself is then sufficient to grant Alice the ability to view
the data of all patients (i.e., relation obtained through query “SELECT P.SSN,DoB
FROM Patient AS P WHERE Race=‘asian’ ”). Suppose instead that Alice is
interested in the relation resulting from Q2 in Fig. 5.8. This latter query returns a
subset of all the tuples of patients, and therefore only tuples that Alice, accord-
ing to p1, is authorized to see. However, permission p1 is not sufficient for granting
Alice such visibility on data, since the query result conveys the additional in-
formation that the returned tuples refer to patients who are also employees of the
considered company (information which permission p1 does not authorize).

As already commented in Sect. 5.4, the only case when joins do not add informa-
tion is when there is a referential integrity constraint among the involved relations.
Consider, for example, permission p2 authorizing the release of different attributes
in Treatment. For instance, query “SELECT T.SSN FROM Treatment AS T”
is clearly authorized by p2. Consider then the same query containing, in the FROM
clause, also relations Patient and Doctor with the corresponding joins. De-
spite the presence of the additional joins, such a query does not bear additional
information (indirect release) and should therefore be authorized by p2. As a matter
of fact, because of the referential integrity constraints between the involved rela-
tions, all SSN’s and IdDoc’s appearing in Treatment also appear in Patient
and Doctor, respectively, and therefore the joins do not impose restrictions. The
consideration of the peculiar characteristics of joins due to referential integrity con-
straints is easily taken into account, since it is already captured by the coloring, in
the view graph, of all the relations reachable from the ones appearing in the query,
by following referential integrity constraints (Definition 5.6).

Let us then proceed to formally define when a permission authorizes the release
of a relation. We start by identifying permissions applicable to a relation profile.
Intuitively, a permission applies to a relation when it refers to the complete set of
tuples composing the relation. Since tuple restriction is due to joins not following the
direction from a foreign key to the referenced key in a referential integrity constraint
(as commented above), this is equivalent to saying that the permission applies to a
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relation profile if it does not contain additional joins (apart from those corresponding
to referential integrity constraints). This is formalized by the following definition.

Definition 5.8 (Applicable). A permission [Att,Rels] is applicable to a relation pro-
file [Rπ ,R◃▹,Rσ ] iff Rels∗⊆R◃▹∗.

In terms of view graphs, this definition is equivalent to say that the black and
white nodes of the view graph Gp of permission p should be a subset of the black
and white nodes of the view graph GR of the relation profile of R.

According to the discussion above, a permission authorizes the release of a rela-
tion if and only if the permission applies to the relation profile and authorizes the
release, either direct of indirect, of the information in the profile. This means that the
permission should include (at least) all attributes composing the relation or accessed
for its definition/computation as well as all the join conditions. In terms of the view
graphs, this is equivalent to say that the view graph GR of the relation profile and the
view graph Gp of the permission have exactly the same black referential integrity
and join arcs and that all nodes that are black in the view graph of the relation pro-
file are also black in the view graph of the permission, that is, GR≼NGp . This is
formally captured by the following definition.

Definition 5.9 (Authorizing permission). Given a permission p=[Att,Rels] applica-
ble to a relation profile R=[Rπ ,R◃▹,Rσ ], p authorizes the release of R iff GR≼NGp .

As an example, with reference to the permissions in Fig. 5.7 and the relation
computed through query Q2 in Fig. 5.8, the set of permissions applicable includes
p1 and p4. However, neither p1 nor p4 authorize the release of the query result. By
contrast, considering query “SELECT P.SSN,DoB FROM Patient AS P WHERE
Race=‘asian’ ”, with profile [(SSN,DoB), (Patient), (Race)] permission p1 is
the only applicable permission that also authorizes the query.

5.5.2 Composition of Permissions

Checking relation profiles against individual permissions is not sufficient for a true
enforcement of Principle 5.1. Indeed, it might be that for a relation profile there is
no permission that singularly taken authorizes the release of the relation, however
information released (directly or indirectly) by the relation profile is authorized. As
an example, consider permissions p1 and p4 in Fig. 5.3 and suppose that Alice
requests the relation resulting from query Q2 in Fig. 5.8, returning the tuples as-
sociated with patients whose SSN appears also in the Employee relation. While
neither p1 nor p4 authorize the relation profile (as, for each of them, the relation
profile has the additional join condition that the permission does not authorize), it is
clear that the relation does not contain any information that Alice is not authorized
to see. As a matter of fact, Alice could indeed separately query both relations and
then join the two results. In the spirit of Principle 5.1, the release of the result of
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COMPOSE(G,pi,p j)
p := [Atti∪Att j ,Relsi∪Rels j ]
Np := N
Ep := E
for each n∈Np do λV (n) := clear
for each (ni,n j)∈Ep do λV (ni,n j) := clear
for each n∈Np do

if λpi (n)=black∨λp j (n)=black then
λp (n)=black

else
if λpi (n)=white∨λp j (n)=white then

λp (n)=white
for each (nh,nk)∈Ep do

if λpi (nh,nk)=black∨λp j (nh,nk)=black∨ (λp (nh)=black∧λp (nk)=black) then
λp (nh,nk)=black

else
if λpi (nh,nk)=white∨λp j (nh,nk)=white then

λp (nh,nk)=white
return(p)

Fig. 5.9 Function composing two permissions

query Q2 to Alice should therefore be authorized. To enforce this principle, we
compose permissions and consider a release of a relation authorized if there exists a
composition of permissions that authorizes it.

Composition of permissions must however be performed carefully to ensure that
composition does not authorize additional queries that were authorized by neither
of the original permissions. To illustrate, consider again the permissions in Fig. 5.7
and suppose that Alice is interested in the relation resulting from query Q3. One
could think that such a release can be authorized by composing p1 in Fig. 5.7 (au-
thorizing the release of SSN’s and Race’s) and p3 (authorizing the release of the
race of patients together with the specialty of their caring doctor). However, such
a composition does not authorize the relation release. Indeed, the relation profile
conveys the associations between a patient and her caring doctor, which neither of
the individual permissions authorize and which Alice would not be able to recon-
struct by separately exploiting the privileges granted by the two permissions. The
problem, in this case, is that the composition of the two permissions returns more
information than that entailed by the two permissions individually taken. If this is
the case, the two permissions should not be composed.

To determine when two permissions can be composed, we exploit one of the
foundational results of the theory of joins for relational databases, expressed by the
theorem presented in [5], which states that two relations produce a lossless join if
and only if at least one of the two relations functionally depends from the intersec-
tion of their attributes. The relations that are considered in the theorem correspond
to generic projections on the set of attributes that characterizes the “universal rela-
tion” obtained joining all the relations of our lossless acyclic schema; this means
that each permission corresponds to a relation and that the composition of permis-
sions is correct only if the above requirement is satisfied. For instance, consider
the previous examples and the permissions in Fig. 5.7. Permissions p1 and p4 can
be combined because their intersection is represented by attribute SSN, which is a
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key for all the attributes in p1 (and p4). Permissions p1 and p3 cannot be combined
because their intersection is represented by attribute Race, and neither p1 nor p3
functionally depend on it.

The application of this basic result of the theory of joins in our scenario is slightly
complicated by the fact that the views corresponding to given permissions may in-
clude attributes from different relations. (We note here that intersection of permis-
sions is computed based only on the attribute names, without considering the re-
lation they belong to, since attributes with the same name represent the same real
world concept and natural joins impose them to be equal in all the resulting tu-
ples.) Given two permissions pi=[Atti,Relsi] and p j=[Att j,Rels j] their composability
depends on the intersection of their visible attributes (i.e., Atti ∩ Att j) but the func-
tional dependency of the visible attributes of one of the two permissions from the
common attributes needs to be evaluated by taking into account also the referen-
tial integrity constraints. This concept can be easily captured by analyzing the view
graphs Gpi and Gp j corresponding to the two permissions. The basic idea is that
there is a dependence between pi and p j when there is a black path from nodes cor-
responding to the attributes that are listed both in Atti and in Att j to all the black
nodes in Gpi or in Gp j . This intuitive concept of dependency is formalized as fol-
lows.

Definition 5.10 (Dependence). Given two permissions pi=[Atti,Relsi] and
p j=[Att j,Rels j] with view graphs Gpi(N ,E ,λpi) and Gp j(N ,E ,λp j), respec-
tively, let B j be the set of nodes corresponding to {Atti ∩ Att j} in Gp j . We say that
p j depends on pi, denoted pi→p j, iff ∀n j∈N such that λp j(n j)=black, ∃n ∈ B j
such that there is a path of only directed black arcs from n to n j in Gp j .

In the following, notation pi↔p j denotes that both pi→p j and p j→pi hold. Sim-
ilarly, pi ̸↔p j denotes that neither pi→p j nor p j→pi hold.

For instance, with reference to the permissions in Fig. 5.7, as already noted,
p2→p1, since common attribute SSN is key for the Patient relation authorized by
p1, and p1 ̸→p2, since the attributes released by p2 depend on the pair of attributes
SSN and IdDoc. We also note that p1↔p4, since the SSN attribute, common to the
two permissions, is the key of both the Patient and Employee relations. On the
contrary, as already pointed out, p1 ̸↔p3.

If pi→p j (or p j→pi, respectively), then the two permissions can be safely com-
posed, as formally stated by the following definition.

Definition 5.11 (Safe composition). Given two permissions pi=[Atti,Relsi] and
p j=[Att j,Rels j], pi and p j can be safely composed when pi→p j, or p j→pi, or both.

For instance, p1 can be safely composed with p2, since p2→p1. Also, since
p1↔p4, p1 can be safely composed with p4.

Similarly to the composition of relations presented in the theory of normal forms
for relational databases, the composition of pi with p j generates a new permission
that combines the viewing privileges of the two, as stated by the following definition.
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Gp1 Gp2 Gp1⊗p2

⊗ =

Gp1 Gp4 Gp1⊗p4

⊗ =

Gp1⊗p2 Gp1⊗p4 Gp1⊗p2⊗p4

⊗ =

Fig. 5.10 Examples of permission compositions

Definition 5.12 (Composed permission). Given two permissions
pi=[Atti,Relsi] and p j=[Att j,Rels j], their composition is the permission
pi⊗p j=[Atti∪Att j,Relsi∪Rels j].

It is easy to see that the view graph of the resulting composed permission is
obtained from the view graphs of the components as follows. A node in Gpi⊗p j is:
black if it is black in either Gpi or Gp j ; white if it is not black and it is white in either
Gpi or Gp j ; it is clear otherwise. An arc in Gpi⊗p j is: black if it is black in either Gpi

or Gp j or if it is incident on only black nodes in Gpi⊗p j ; white if it is not black and
is white in either Gpi or Gp j ; it is clear otherwise. Figure 5.10 represents the view
graphs resulting from a subset of the safe compositions of the privileges in Fig. 5.7,
that is, p1⊗p2, p1⊗p4, and p1⊗p2⊗p4.

A permission obtained by composing permissions pi and p j (pi⊗p j) can be com-
posed with a permission pk that did not satisfy the composition requirements with pi
nor with p j. In general, each new permission produces new opportunities for compo-
sition that have to be considered. The consideration of all the potential compositions
is modeled by the following concept.

Definition 5.13 (Composition closure). Given a set of permissions P , the closure
on composition of P , denoted P⊗, is the set of permissions obtained as a fixpoint
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by the procedure which repeatedly extends P with all permissions obtained by the
safe composition of the permissions in P .

For instance, with reference to the set of permissions in Fig. 5.7, their closure is
P⊗={p1, p2, p3, p4, p5, p1⊗p2, p1⊗p4, p2⊗p4, p1⊗p2⊗p4}.

The closure represents the greatest representation of the permissions available to
a subject. This concept permits to identify in a complete way if a specific relation
profile is authorized for a subject.

Definition 5.14 (Authorized release). Given a set P of permissions applicable to
a relation profile [Rπ ,R◃▹,Rσ ], P authorizes R iff ∃p ∈ P⊗ such that p authorizes
R (according to Definition 5.9).

The computation of the closure on composition of permissions is potentially an
expensive procedure. In the following, we present an efficient algorithm that avoids
computing the whole set of permissions in the composition closure while ensuring
completeness of the control, needed to evaluate if a release is authorized.

5.5.3 Algorithm

Given a set P of n permissions of a subject S applicable to a relation profile
[Rπ ,R◃▹,Rσ ], the control for the authorized release does not require to compute all
the possible 2n − 1 permission compositions, since given two permissions pi and
p j, if p j→pi then p j is subsumed by pi⊗p j, and whenever a permission pk can be
composed with p j, pk can also be composed with pi⊗p j, as stated by the following
theorem.

Theorem 5.1 (Permission implication). Given two permissions pi=[Atti,Relsi],
p j=[Att j,Rels j] ∈ P such that p j→pi, ∀pk=[Attk,Relsk] ∈ P:

1. p j→pk ⇒ (pi⊗p j)→pk;
2. pk→p j ⇒ pk→(pi⊗p j).

Proof. Let us consider the two cases above.

1. Let pi⊗p j=[Atti, j,Relsi, j]. Attributes in Att j∩Attk also appear in the intersection
between Atti, j and Attk. Therefore, there exists a path of only directed black arcs
from a node corresponding to some attributes in Att j∩Attk to each black node in
Gpk .

2. From the hypothesis, we know that there is a path of only directed black arcs
from a node corresponding to some attributes in Att j∩Attk to each black node in
Gp j . Also, we know that there is a path of only directed black arcs from a node
corresponding to some attributes in Atti∩Att j to each black node in Gpi . By com-
bining these paths, it follows that also pk→pi and, therefore, that pk→(pi⊗p j).
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AUTHORIZED(GR ,S)
Let Applicable be the set of permissions [Att, Rels]→Si such that:
{n∈Np :λp (n)=black∨white}⊆{n∈ NR :λR (n)=black∨white} ∧ Si=S
/* check individual permissions */
for each p∈Applicable do

if GR≼N Gp then return(true)
/* compose permissions */
maxid := |Applicable|
counter := 1
for each p∈Applicable do

p.id := counter
p.maxcfr := counter
counter := counter + 1

idmini := 1
repeat

Let pi be the permission with pi.id=idmini
idmin j := Min({p.id:p∈Applicable∧pi.maxcfr<p.id})
Let p j be the permission with p j .id=idmin j
dominated := NULL
if (Gpi ̸≼NE Gp j ) ∧ (Gp j ̸≼NE Gpi ) then

if p j→pi then dominated := dominated ∪ {p j}
if pi→p j then dominated := dominated ∪ {pi}

pi.maxcfr := p j .id
if dominated ̸=NULL then

maxid := maxid + 1
pmaxid := Compose(G,pi,p j)
pmaxid .id := maxid
pmaxid .maxcfr := maxid
Applicable := Applicable − dominated ∪ {pmaxid}

idmini := Min({p.id:p∈Applicable∧p.maxcfr<maxid})
until idmini=NULL
/* check resulting permissions */
for each p∈Applicable do

if GR≼N Gp then return(true)
return(false)

Fig. 5.11 Function that checks if a release is authorized

This theorem implies that permission p j can be removed from the set P without
compromising the composition process. It is also easy to see that since the com-
posed permission is again applicable to the relation profile [Rπ ,R◃▹,Rσ ], the set of
permissions to be composed always contains at most n permissions (i.e., the com-
posed permission substitutes one, or both, of the composing permissions). Function
Authorized in Fig. 5.11 applies this observation to check whether a relation profile
release is authorized. The function takes as input the view graph GR representing
the relation profile and the subjects requesting the release; on the basis of the set
of applicable permissions, it returns true or false, depending on whether or not the
query is authorized.

Initially, Authorized determines the set Applicable of applicable permissions
and checks if one of these permissions dominates (≼N) GR . If this is the case, func-
tion Authorized returns true. Otherwise, the function starts the composition process
that exploits Theorem 5.1 according to which permission pi can be removed from
set Applicable if p j→pi. The applicable permissions are first ordered according to a
numeric identifier id, ranging from 1 to |Applicable|, which is associated with each
permission. In the repeat until loop, each permission pi is compared with a permis-
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sion p j such that pi.id<p j.id. If the set of black nodes and arcs of Gpi is not a subset
of the set of black nodes and arcs of Gp j (i.e., Gpi ̸≼NEGp j , meaning that p j has
not been computed in a previous iteration by composing pi with another authoriza-
tion) and viceversa, function Authorized checks whether pi and p j can be composed
(i.e., p j→pi or pi→p j). If this is the case, the identifier of the resulting composed
permission (if any) becomes equal to the current maximum identifier (maxid) incre-
mented by one. Each permission p is also associated with a variable p.maxcfr that
keeps track of the highest identifier of the permissions compared to p. This vari-
able avoids to check the same pair of permissions more than once. The composition
process terminates when maxcfr of all permissions is equal to the highest identifier
maxid. The function then checks if any of the permissions in Applicable dominates
(≼N) GR . If this is the case, function Authorized returns true; otherwise it returns
false.

Example 5.5. Consider the schema graph in Fig. 5.5, the set of permissions in
Fig. 5.7, and the relation R1 computed by query Q1 in Fig. 5.8. As it is visible
from the view graphs, all the five permissions are applicable to the profile of the
relation resulting from Q1. The table in Fig. 5.12 represents the execution, step by
step, of function Authorized on GQ1 by reporting the evolution of variable p.maxcfr
for both original and composed permissions. Each column in the table corresponds
to a permission, whose identifier is the label of the column itself. Note that when a
permission is removed from Applicable, its maxcfr is not reported anymore. Each
row in the table represents an iteration of the repeat until loop, reporting both the
dependence relationship between the composing permissions and the maxcfr for all
permissions. Also, in each row the maxcfr of the permissions checked for a possible
composition are reported in italic. When a permission is removed from Applicable
(because subsumed by an added composed permission), its maxcfr is not reported
anymore. Figure 5.10 represents the view graph of the permissions obtained by the
composition. We then conclude that the relation resulting from the evaluation of
query Q1 can be released to Alice, since p1⊗p2⊗p4 authorizes it.

The following theorems state the correctness and complexity of function Autho-
rized.

Theorem 5.2 (Correctness). Given a relation profile R=[Rπ ,R◃▹,Rσ ] and a set Ap-
plicable of applicable permissions, function Authorized terminates and returns true
iff the release of R is authorized by Applicable⊗.

Proof. Termination. All the for loops terminate, since Applicable (by Theorem 5.1)
is composed of at most n permissions. At each iteration of the repeat until
loop, function Authorized evaluates a pair of permissions ⟨pi,p j⟩ such that
pi.maxcfr<p j.id. Two cases can occur: pi and p j cannot be composed, or pi and
p j can be composed (and we suppose, without loss of generality, that p j→pi). In the
first case, in the subsequent iterations pi and p j are no more checked, since pi.id and
p j.id do not change and pi.maxcfr is set to p j.id. In the second case, pi is removed
from Applicable, while the composed permission p=pi⊗p j is added to Applicable.
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id 1 2 3 4 5 6 7 8

p1 p2 p3 p4 p5
initialization 1 2 3 4 5
p2→p1 1 2 3 4 5 p1⊗p2
p1 ̸↔p3 2 3 4 5 6
p1↔p4 3 3 4 5 6 p1⊗p4
p3 ̸↔p5 3 5 6 7
p3 ̸↔(p1⊗p2) 5 5 6 7
p5 ̸↔(p1⊗p2) 6 5 6 7
p3 ̸↔(p1⊗p4) 6 6 6 7
p5 ̸↔(p1⊗p4) 7 6 6 7
(p1⊗p2)→(p1⊗p4) 7 7 6 7 p1⊗p2⊗p4
p3 ̸↔(p1⊗p2⊗p4) 7 7 7 8
p5 ̸↔(p1⊗p2⊗p4) 8 7 7 8
Gp1⊗p4≼NE Gp1⊗p2⊗p4 8 8 7 8

8 8 8 8

Fig. 5.12 An example of the execution of function Authorized

Since p j≼NEp, in the following iterations, when they are compared they do not gen-
erate new permissions. Since each possible combination is checked only once and
the number of possible combination is finite, the repeat until loop terminates.

Correctness. If there exists a permission p∈Applicable⊗ that authorizes the re-
lease of R, two cases can occur: p∈Applicable, or p is a composed permission. In the
first case, Authorized returns true since the first for loop iterates on all permissions
in Applicable. In the second case, the repeat until loop removes from Applicable
only non-necessary permissions (see Theorem 5.1) and checks all non-redundant
pairs of permissions in Applicable. The repeat until loop terminates when, for all
p in Applicable, p.maxcfr=maxid. Since p.maxcfr is initialized to p.id and updated
to the minimum pi.id such that p.maxcfr<pi.id, each permission is compared to all
the other permissions following it in the order established by id. Also, for each new
permission pi, maxid increases by 1 and p j.id is set to the new value of maxid. Since,
for each permission p but pi in Applicable, p.maxcfr is less than p j.id, the subse-
quent iterations of the repeat until loop check the new permission with all the other
permissions in Applicable. This means that the repeat until loop checks all possible
pairs of permissions and therefore it finds the permission authorizing the release of
R.

Note also that, if a permission pi removed from Applicable (because p j→pi)
authorizes R, the composed permission p j⊗pi=[Atti j,Relsi j] belongs to Applica-
ble and authorizes the release of R. In fact, Atti j=(Atti∪Att j)⊃(Rπ∪Rσ ). Also,
Relsi j

∗=Relsi
∗=R◃▹∗.

Theorem 5.3 (Complexity). Given a relation profile R=[Rπ ,R◃▹,Rσ ] and a set Ap-
plicable of n applicable permissions, the complexity of function Authorized is
O(n3) in time.

Proof. The function matches every permission with every other permission in the
Applicable set, to verify if they can be composed. Any time pi→p j, pi is removed
from Applicable, while pi⊗p j is added to the same. Since, thanks to the ordering
among permissions, no match between pairs of permissions is repeated, each per-
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Oper. [m,s] Operation/Flow Views(Sl) Views(Sr) View profiles
πX (Rl) [Sl ,NULL] Sl : πX (Rl)
σX (Rl) [Sl ,NULL] Sl : σX (Rl)

Rl◃▹Jlr Rr [Sl ,NULL] Sr: Rr→Sl Rr [Rπ
r ,R◃▹

r ,Rσ
r ]

Sl : Rl◃▹Rr
[Sr ,NULL] Sl : Rl→Sr Rl [Rπ

l ,R◃▹
l ,Rσ

l ]
Sr: Rl◃▹Rr

[Sl ,Sr] Sl : RJl := πJ(Rl)
Sl : RJl →Sr πJ(Rl) [J,R◃▹

l ,Rσ
l ]

Sr: RJl r := RJl ◃▹ Rr
Sr: RJl r → Sl πJ(Rl)◃▹ Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
Sl : RJl r ◃▹ Rl

[Sr ,Sl] Sr: RJr := πJ(Rr)
Sr: RJr →Sl πJ(Rr) [J,R◃▹

r ,Rσ
r ]

Sl : RlJr :=Rl◃▹ RJr

Sl : RlJr →Sr Rl◃▹ (πJ(Rr)) [Rπ
l ,R◃▹

l ∪R◃▹
r ,Rσ

l ∪Rσ
r ]

Sr: RlJr ◃▹Rr

Fig. 5.13 Execution of operations and required views with corresponding profiles

mission is compared to at most n−1 permissions generating, at most n versions of
the same. Therefore the function makes at most n3 comparisons.

5.6 Safe Query Planning

To determine whether and how a query can be executed over the distributed system,
we need first to determine the data releases that the execution entails, so that only
executions implying authorized releases are performed. Since we can assume each
server to be authorized to view the relation it holds, each unary operation (projection
and selection) can be executed by the server itself, while a join operation can be
executed if all the data communications correspond to authorized releases.

The table in Fig. 5.13 summarizes the operations and data exchanges needed to
perform a relational operation reporting, for every data communication, the pro-
file of the relation being communicated (and hence the information exposure im-
plied by it); data access by a server on its own relation is implicit. For each op-
eration/communication we also show, before the “:”, the server executing it. For
join operations, we first note that a (natural) join operation Rl◃▹Rr, where Rl and Rr
represent the left and right input relations, respectively, can be executed either as a
regular join or a semi-join. We call master the server in charge of the join compu-
tation and slave the server that cooperates with the master during the computation.
We then distinguish four different cases resulting from whether the join is executed
as a regular join or as a semi-join and from which operand serves as master (slave,
respectively). The assignment is specified as a pair, where the first element specifies
the operand that serves as master and the second the operand that serves as slave. We
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briefly discuss the cases where the left operand serves as master (denoted [Sl ,NULL]
for the regular join and [Sl ,Sr] for the semi-join), with the note that the cases where
the right operand serves as master ([Sr,NULL] and [Sr,Sl]) are symmetric.

• [Sl ,NULL]: in the regular join processed by Sl , server Sr sends (i.e., needs to
release) its relation to Sl , and Sl computes the join. For execution, Sl needs to
hold a permission (either base or composed) authorizing it to view Rr, which has
profile [Rπ

r ,R◃▹
r ,Rσ

r ].
• [Sl ,Sr]: the semi-join requires a longer sequence of steps. First, Sl computes the

projection RJl of the attributes J in its relation Rl participating in the join. Sec-
ond, Sl sends RJl to Sr; this operation entails a data release characterized by the
profile of RJl , which (according to Definition 5.3) is [J,R◃▹

l ,Rσ
l ]. Third, Sr locally

computes RJlr as the join between RJl and its relation Rr. Fourth, Sr sends RJlr
to Sl ; this operation entails a data release characterized by the profile of RJlr,
namely [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ] (note that the first component contains only Rπ
r ,

since J must be a subset of Rπ
r ). Fifth, Sl computes the join between RJlr and its

own relation Rl .

Semi-joins are usually more efficient than regular joins as they minimize com-
munication (which also benefits security): the slave server needs only to send those
tuples that participate in the join, instead of its complete relation.

For instance, consider the query in Example 5.3. If the join at node n2 in the
tree is executed as a regular join, SE sends the all the tuples in Employee relation,
restricted to attributes SSN and Salary, to SP (or vice versa). If the join is exe-
cuted as a semi-join where SE acts as a master, SE sends to SP the projection of the
Employee relation on SSN. SP then sends back to SE the SSN and DoB values in
Patient relation joined with the list of values of SSN received from SE .

A function εT assigns to each node n of a query tree plan T(NT ,ET ) a server
or a pair of servers, called executor, responsible for the execution of the algebraic
operation represented by n. To formally capture this intuitive idea, the definition of
the executor assignment function εT is introduced as follows.

Definition 5.15 (Executor assignment). Given a query tree plan T(NT ,ET), an ex-
ecutor assignment function εT : NT → S ×{S∪NULL} is an assignment of pairs
of servers to nodes such that:

1. each leaf node (corresponding to a relation R) is assigned the pair [S,NULL],
where S is the server where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operands Rl (left
child) at server Sl , is assigned a pair [Sl ,NULL].

3. each non-leaf node n, corresponding to a join operation on operand Rl (left child)
at server Sl and Rr (right child) at server Sr, is assigned a pair [master,slave] such
that master∈ {Sl ,Sr}, slave∈ {Sl ,Sr,NULL}, and master ̸=slave.

Given a query plan, our algorithm determines an assignment of the computation
steps to different servers, in such a way that the execution given by the assignment
entails only releases allowed by the permissions.
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[m,s] Operation/Flow Views(Sl ) Views(Sr) Views(St ) View profiles
[St ,NULL] Sl : Rl→ St Rl [Rπ

l ,R◃▹
l ,Rσ

l ]
Sr : Rr→ St Rr [Rπ

r ,R◃▹
r ,Rσ

r ]
St : Rl◃▹ Rr

[St ,Sr] Sl : Rl→ St Rl [Rπ
l ,R◃▹

l ,Rσ
l ]

St : RJl := πJ (Rl )
St : RJl → Sr πJ (Rl ) [J,R◃▹

l ,Rσ
l ]

Sr : RJl r := RJl ◃▹ Rr
Sr : RJl r → St πJ(Rl) ◃▹ Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
St : RJl r◃▹Rl

[St ,Sl ] Sr : Rr→ St Rr [Rπ
r ,R◃▹

r ,Rσ
r ]

St : RJr := πJ (Rr)
St : RJr → Sl πJ (Rr) [J,R◃▹

r ,Rσ
r ]

Sl : RJr l :=Rl◃▹ RJr
Sl : RJr l → St Rl◃▹ (πJ(Rr)) [Rπ

l ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
St : RJr l◃▹Rr

[Sl ,St ] Sl : RJl := πJ (Rl )
Sl : RJl → St πJ (Rl ) [J,R◃▹

l ,Rσ
l ]

Sr : Rr→ St Rr [Rπ
r ,R◃▹

r ,Rσ
r ]

St : RJl r := RJl ◃▹ Rr
St : RJl r → Sl πJ(Rl) ◃▹ Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
Sl : RJl r ◃▹Rl

[Sr ,St ] Sr : RJr := πJ (Rr)
Sr : RJr → St πJ (Rr) [J,R◃▹

r ,Rσ
r ]

Sl : Rl→ St Rl [Rπ
l ,R◃▹

l ,Rσ
l ]

St : RJr l := Rl◃▹ RJr
St : RJr l → Sr Rl◃▹ (πJ(Rr)) [Rπ

l ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
Sr : RJr l ◃▹ Rr

[St ,Sl Sr] Sl : RJl := πJ (Rl )
Sr : RJr := πJ (Rr)
Sl : RJl → St πJ (Rl ) [J,R◃▹

l ,Rσ
l ]

Sr : RJr → St πJ (Rr) [J,R◃▹
r ,Rσ

r ]
St : RJl Jr := RJl ◃▹ RJr
St : RJl Jr → Sl (πJ(Rl)) ◃▹ (πJ(Rr)) [J,R◃▹

l ∪R◃▹
r ,Rσ

l ∪Rσ
r ]

St : RJl Jr → Sr (πJ(Rl)) ◃▹ (πJ(Rr)) [J,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
Sl : RJlr l :=Rl◃▹ RJl Jr
Sr : RJlr r :=RJl Jr ◃▹Rr
Sl : RJlr l → St Rl◃▹((πJ(Rl)) ◃▹ (πJ(Rr))) [Rπ

l ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
Sr : RJlr r → St ((πJ(Rl)) ◃▹ (πJ(Rr)))◃▹Rr [Rπ

r ,R◃▹
l ∪R◃▹

r ,Rσ
l ∪Rσ

r ]
St : RJlr l ◃▹ RJlr r

Fig. 5.14 Different strategies for executing join operation, with the intervention of a third party

Definition 5.16 (Safe assignment). Given a query tree plan T(NT ,ET) and an ex-
ecutor assignment function εT , εT(n) is said to be safe when one of the following
conditions hold:

1. n is a leaf node;
2. n corresponds to a unary operation;
3. n corresponds to a join and all the releases derived by the assignment are autho-

rized.

εT is said to be safe iff ∀n ∈ NT , εT(n) is safe.

A query plan is then feasible iff there is a safe assignment for it.

Definition 5.17 (Feasible query plan). A query plan T(NT ,ET) is said to be feasi-
ble iff there exists an executor assignment function εT on T such that εT is safe.
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5.6.1 Third Party Involvement

As already discussed, the execution of joins necessarily requires some communica-
tion of information among the operands, which we check against permissions (base
or composed) and allow only if authorized. It may happen that, for a given join,
none of the four possible modes of execution corresponds to a safe assignment. In
such a case, we envision a third party can participate in the operation acting either as
a proxy for one of the two operands or as a coordinator for them. Table in Fig. 5.14
summarizes the different ways in which a third party can be involved. We briefly
comment them here.

• [St ,NULL]: the third party receives the relations from the operands and indepen-
dently computes the (regular) join.

• [St ,Sl] and [St ,Sr]: the third party replaces Sr (Sl , respectively) in the computation
with the role of master with Sl (Sr, respectively) in the role of slave.

• [Sl ,St ] and [Sr,St ]: the third party replaces Sr (Sl , respectively) in the computation
with the role of slave with Sl (Sr, respectively) in the role of master.

• [St ,SlSr]: the third party takes the role of master in charge of computing the join
with Sl and Sr both working as slaves. In this case, each of the operands computes
the projection of its attributes that participate in the join and sends it to the third
party. The third party computes the join between the two inputs and sends back
the result to each of the operands, each of which joins the input with its relation
and returns the result to the third party. The third party can now join the relations
received from the operands and compute the result.

Note that the first five scenarios are a simple adaptation of those already seen
in the previous section, with the third party only acting as proxy, which therefore
needs to have the permissions necessary to view the relation of the party for which
it acts as a proxy, as well as the view required by its role (master/slave). The latter
scenario [St ,SlSr] is instead a little more complex and, as it can be easily seen from
the table, entails different data views. In this scenario the third party is required to
only view the tuples of the operands that participate in the join (it does not need to
have the complete view on a relation as in the case it acts as a proxy). Also, each of
the slaves is required only to view the attributes of the other relation that joins with
itself (instead of the complete list).

The consideration of a third party requires to slightly change the executor assign-
ment definition (Definition 5.15) which becomes as follows.

Definition 5.18 (Executor assignment - with third party). Given a query plan
T(NT ,ET), an executor assignment function εT : NT →S ×{S ∪ [S ×S ]∪NULL}
is an assignment of pairs of servers to nodes such that:

1. each leaf node (corresponding to a relation R) is assigned the pair [S,NULL],
where S is the server where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operands Rl (left
child) at server Sl , is assigned a pair [Sl ,NULL].
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p6: [(SSN,Job,Salary),(Employee)] → SE
p7: [(SSN),(Patient)] → SE
p8: [(SSN,DoB,Race),(Patient)] → SP
p9: [(SSN,Job,Salary),(Employee,Patient)] → SP
p10: [(SSN,IdDoc,Type,Cost,Duration),(Patient,Treatment)] → SP
p11: [(SSN,IdDoc,Type,Cost,Duration),(Treatment)] → ST
p12: [(IdDoc,Name,Specialty),(Doctor)] → SD
p13: [(SSN,Type,Duration),(Treatment)] → SD
p14: [(SSN,DoB,Race),(Employee,Patient)] → SD

Fig. 5.15 An example of servers’ permissions

3. each non-leaf node n, corresponding to a join operation on operand Rl (left child)
at server Sl and Rr (right child) at server Sr, is assigned a pair [master,slaves] such
that master ∈S , slaves ∈ {S ∪ [Sl ,Sr]∪NULL}, master ̸=slave, and at least one
of the elements is in {Sl ,Sr,[Sl ,Sr],NULL}.

The definitions of safe assignment and feasible query plan remain unchanged.

Example 5.6. Consider the scenario of Example 5.3 and the permissions held by
servers storing data in Fig. 5.15. The outer join between (Employee◃▹Patient)
and Treatment can be safely assigned neither to SE and SP nor to ST . It is then
necessary to resort to the intervention of a third party. Specifically, a safe assign-
ment for the given operation is [SP,SD]. As a matter of fact, SD is authorized to ac-
cess attributes SSN, Type, and Duration of relation Treatment and attributes
SSN, DoB, and Race from the join of Employee with Patient. SP is authorized
to view the whole Treatment relation, provided join condition P.SSN=T.SSN
holds.

We can now state the problem as follows.

Problem 5.1. Given a query plan T(NT ,ET) and a set of permissions P: 1) deter-
mine if T is feasible and 2) retrieve a safe assignment εT for it.

In the next section we illustrate an algorithm for the solution of such a problem,
which exploits permissions composition technique already introduced, and given a
query plan and a set of base permissions determines if the plan is feasible and, if so,
returns a safe assignment for it.

5.7 Build a Safe Query Plan

The determination of the safe assignment follows two basic principles, in order to
minimize the cost of computation: i) we favor semi-joins (in contrast to regular
joins); ii) if more servers are candidate to safely execute a join operation (at a given
level in the tree), we prefer the server that is involved in a higher number of join
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INPUT
P
G(N ,e)
T(NT ,ET )

OUTPUT
εT (n) /* as n.executor */

/* n.left, n.right: left and right children */
/* n.operator, n.parameter: operation and its parameters */
/* [n.π ,n.◃▹,n.σ ]: profile */
/* n.leftslave, n.rightslave: left and right slaves */
/* n.leftthirdslave: third party acting as left slave */
/* n.rightthirdslave: third party acting as right slave */
/* n.candidates: list of records of the form [server,fromchild,counter] stating candidate servers, the child

(left, right) it comes or proxies for, and the number of joins for which the server is candidate in the subtree */
/* n.executor.master, n.executor.slaves: executor assignment */

MAIN
FindCandidates(root(T))
AssignExecutor(root(T), NULL)
return(T)

Fig. 5.16 Algorithm computing a safe assignment for a query plan

operations. To this aim, we associate with each candidate server a counter that keeps
track of the number of join operations for which the server is a candidate.

The algorithm receives in input the set of permissions, the schema graph, and the
query plan T(NT ,ET), where each leaf node (base relation R) is already assigned to
executor [server,NULL], where server is the server storing the relation. It returns, if
it exists, a safe assignment for T .

The algorithm works by performing two traversals of the query tree plan. The
first traversal (procedure Find candidates) visits the tree in post-order. At each
node, the profile of the node is computed (as in Fig. 5.4) based on the profile of
the children and of the operation associated with the node. Also, the set of possible
candidate assignments for the node is determined based on the set of possible candi-
dates for its children as follows. If the node is a unary operation, the candidates for
the node are all the candidates for its unique child. If the node is a join operation,
procedure Find candidates calls function Authorized in Fig. 5.11 whenever it is
necessary to verify if a particular server can act as master, slave, or can calculate a
regular join. Authorized is called on the view graph representing the profile of the
views that should be made visible in the execution of an operation. The algorithm
considers candidates of the left child in decreasing order of join counter (GetFirst)
and stops at the first candidate found that can serve as left slave (inserting it into
local variable leftslave). The algorithm proceeds examining all the candidates of the
right child to determine if they can work as master for a semi-join (if a left slave
was found) or as a regular join (if no left slave was found). Note that while we need
to determine all servers that can act as master, as we need to consider all possible
candidates for propagating them upwards in the tree, it is sufficient to determine one
slave (a slave is not propagated upward in the tree). For each of such server candi-
dates a triple [server,right,counter] is added to the candidates list, where counter is
the counter that was associated with the server in the right child of the node incre-
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FINDCANDIDATES(n)
l := n.left
r := n.right
if l ̸=NULL then FindCandidates(l)
if r ̸=NULL then FindCandidates(r)
case n.operator of

π: n.π := n.parameter; n.◃▹ := l.◃▹; n.σ := l.σ
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

σ : n.π := l.π; n.◃▹ := l.◃▹; n.σ := l.σ ∪ n.parameter
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

◃▹: n.π := l.π ∪ r.π; n.◃▹ := l.◃▹ ∪ r.◃▹ ∪ n.parameter; n.σ := l.σ ∪ r.σ
right slave view := [Jl , l.◃▹, l.σ ]
left slave view := [Jr , r.◃▹, r.σ ]
right master view := [l.π ∪ Jr , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ ]
left master view := [Jl ∪ r.π , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ ]
right full view := [l.π , l.◃▹, l.σ ]
left full view := [r.π , r.◃▹, r.σ ]
/* check case [Sr ,NULL] and [Sr ,Sl ] */
n.leftslave := NULL
c := GetFirst(l.candidates)
while (n.leftslave=NULL)∧(c ̸=NULL) do

if Authorized(Gleft slave view, c.server) then n.leftslave := c
c := c.next

regular := NULL
rightmasters = NULL
for c in r.candidates do

if Authorized(Gright full view, c.server) then Add [c.server, right, c.count+1] to regular
if Authorized(Gright master view, c.server) then Add [c.server, right, c.count+1] to rightmasters

if n.leftslave̸=NULL then
Add rightmasters to n.candidates

else
Add regular to n.candidates

/* check case [Sl ,NULL] and [Sl ,Sr] */
n.rightslave := NULL
c := GetFirst(r.candidates)
while (n.rightslave=NULL)∧(c̸=NULL) do

if Authorized(Gright slave view, c.server) then n.rightslave := c
c := c.next

regular := NULL
leftmasters = NULL
for c in l.candidates do

if Authorized(Gleft full view, c.server) then Add [c.server, left, c.count+1] to regular
if Authorized(Gleft master view, c.server) then Add [c.server, left, c.count+1] to leftmasters

if n.rightslave ̸=NULL then
Add leftmasters to n.candidates

else
Add regular to n.candidates

/* check third party */
if n.candidates=NULL then n.candidates := FindThirdParty(n,leftmasters,rightmasters)
/* node cannot be executed */
if n.candidates=NULL then exit(n)

Fig. 5.17 Function that determines the set of safe candidates for nodes in T

mented by one (as candidate also for the join of the father, the server would execute
one additional join compared to the number it would have executed at the child
level). Then, the algorithm proceeds symmetrically to determine whether there is
a candidate from the right child (considering the candidates in decreasing order of
counter) that can work as slave, and then determining all the left candidates that can
work as master, adding them to the set of candidates. At the end of this process,
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ASSIGNEXECUTOR(n, from parent)
if from parent ̸=NULL then

chosen := Search(from parent, n.candidates)
else

chosen := GetFirst(n.candidates)
n.executor.master := chosen.server
case chosen.fromchild of

left: /* case [Sl ,NULL], [Sl ,Sr], [Sl ,St ] */
if n.left ̸=NULL then AssignExecutor(n.left, n.executor.master)
if n.right̸=NULL then

if n.rightslave̸=NULL then
n.executor.slaves := {n.rightslave}
AssignExecutor(n.right, n.rightslave)

else n.executor.slaves := {n.rightthirdslave}
AssignExecutor(n.right, NULL)

right: /* case [Sr ,NULL], [Sr ,Sl ], [Sr ,St ] */
if n.left ̸=NULL then

if n.leftslave̸=NULL then
n.executor.slaves := {n.leftslave}
AssignExecutor(n.right, n.leftslave)

else n.executor.slaves := {n.leftthirdslave}
AssignExecutor(n.right, NULL)

if n.right̸=NULL then AssignExecutor(n.right, n.executor.master)

third left: /* case [St ,Sr] */
n.executor.slaves := {n.rightslave}
if n.left ̸=NULL then AssignExecutor(n.left, NULL)
if n.right̸=NULL then AssignExecutor(n.right, n.rightslave)

third right: /* case [St ,Sl ] */
n.executor.slaves := {n.leftslave}
if n.left ̸=NULL then AssignExecutor(n.left, n.leftslave)
if n.right̸=NULL then AssignExecutor(n.right, NULL)

third: /* case [St ,NULL], [St ,Sl Sr] */
n.executor.slaves := {n.leftslave, n.rightslave}
if n.left ̸=NULL then AssignExecutor(n.left, n.leftslave)
if n.right̸=NULL then AssignExecutor(n.right, n.rightslave)

Fig. 5.18 Function that chooses one candidate for each node in T

list candidates contains all the candidates coming from either the left or right child
that can execute the join in any of the execution modes of Fig. 5.13. If no candidate
was found, the algorithm determines whether the operation can be computed with
the intervention of a third party by calling function FindThirdParty in Fig. 5.19
that similarly for the cases above, simply implements the controls according to the
views that would be required for the execution (Sect. 5.6.1). If even such a call does
not return any candidate, the algorithm exits returning the node at which the process
was interrupted (i.e., for which no safe assignment exists) signaling that the tree is
not feasible.

If Find candidates completes successfully, the algorithm proceeds with the sec-
ond traversal of the query tree plan. The second traversal (procedure AssignExecu-
tor) recursively visits the tree in pre-order. At the root node, if more assignments
are possible, the candidate server with the highest join count is chosen. Hence,
the chosen candidate is pushed down to the child from which it was determined
during the preceding post-order traversal. The other child (if existing) is pushed
down the recorded candidate slave. If no slave was recorded as possible (i.e., right-



5.7 Build a Safe Query Plan 167

FINDTHIRDPARTY(n,leftmasters,rightmasters)
l := n.left; r := n.right; list := NULL
right slave view := [Jl , l.◃▹, l.σ ]
left slave view := [Jr , r.◃▹, r.σ ]
right master view := [l.π ∪ Jr , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ ]
left master view := [Jl ∪ r.π , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ ]
right full view := [l.π , l.◃▹, l.σ ]
left full view := [r.π , r.◃▹, r.σ ]
two slave view := [Jl∪Jr , l.◃▹ ∪ r.◃▹ ∪ n.parameter, l.σ ∪ r.σ ]
/* check if a third party can act as a slave */
if leftmasters̸=NULL then /* case [Sl ,St ] */

n.rightthirdslave := NULL
i := 1
while (n.rightthirdslave=NULL)∧(i< |S |) do

if Authorized(Gright slave view, Si) ∧ Authorized(Gleft full view, Si) then n.rightthirdslave := Si
i := i+1

if n.rightthirdslave ̸=NULL then
for each c ∈ leftmasters do Add [c.server, left, c.count] to list

if rightmasters̸=NULL then /* case [Sr ,St ] */
n.leftthirdslave := NULL
i := 1
while (n.leftthirdslave=NULL)∧(i< |S |) do

if Authorized(Gleft slave view, Si) ∧ Authorized(Gright full view, Si) then n.leftthirdslave := Si
i := i+1

if n.leftthirdslave ̸=NULL then
for each c ∈ rightmasters do Add [c.server, right, c.count] to list

if list ̸=NULL then return(list)
/* check if a third party can act as a master */
for i:=1 . . . |S | do

if n.leftslave ̸=NULL then /* case [St ,Sl ] */
if Authorized(Gright master view, Si) ∧ Authorized(Gleft full view, Si) then Add [Si, third right, 1] to list

else
if n.rightslave̸=NULL then /* case [St ,Sr] */

if Authorized(Gleft master view, Si) ∧ Authorized(Gright full view, Si) then Add [Si, third left, 1] to list
if list ̸=NULL then return(list)
/* check if a third party can execute the regular join: case [St ,NULL] */
for i:=1 . . . |S | do

if Authorized(Gleft full view, Si) ∧ Authorized(Gright full view, Si) then Add [Si, third, 1] to list
if list ̸=NULL then return(list)
/* check if a third party can act as a coordinator: case [St ,Sl Sr] */
c:= GetFirst(l.candidates)
while (n.leftslave=NULL)∧(c̸=NULL) do

if Authorized(Gtwo slave view, c.server) then n.leftslave := c.server
c := c.next

if n.leftslave̸=NULL then
c:= GetFirst(r.candidates)
while (n.rightslave=NULL)∧(c̸=NULL) do

if Authorized(Gtwo slave view, c.server) then n.rightslave:= c.server
c := c.next

if n.rightslave̸=NULL then
for i:=1 . . . |S | do

if Authorized(Gleft slave view, Si) ∧ Authorized(Gright slave view, Si)
∧ Authorized(Gleft master view, Si) ∧ Authorized(Gright master view, Si)
then Add Si to masterlist

if masterlist ̸=NULL then for each m∈masterlist do Add [m, third, 1] to list
if list ̸=NULL then return(list)

Fig. 5.19 Function that evaluates the intervention of a third party for join operations

slave/leftslave=NULL or the slave is a third party) a NULL value is pushed down. At
each children, the master executor is determined as the server pushed down by the
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n0 πSSN,Salary,DoB

n1 ◃▹

LLLLLLL

sssssss

n2 ◃▹

JJJJJJJ

��
��

n3 πSSN

n4 πSSN,Salary n5 πSSN,DoB n6 σDuration>10

n7 Employee n8 Patient n9 Treatment

Find candidates

Node Candidates Slaves
n7 [SE , , 0]∗

n4 [SE , left, 0]
n8 [SP, , 0]∗

n5 [SP, left, 0]
n2 [SP, right, 1] SE
n9 [ST , , 0]
n6 [ST , left, 0]
n3 [ST , left, 0]
n1 [SP, left, 2] SD
n0 [SP, left, 2]

Assign executor

Node εT(n) Calls to AssignExecutor
n0 [SP, ] (n1, SP)
n1 [SP, SD] (n2, SP) (n3, NULL)
n2 [SP, SE ] (n4, SE ) (n5, SP)
n4 [SE , ] (n7, SE )
n7 [SE , ]∗

n5 [SP, ] (n8, SP)
n8 [SP, ]∗

n3 [ST , ] (n6, ST )
n6 [ST , ] (n9, ST )
n9 [ST , ]

Fig. 5.20 An example of execution of the algorithm in Fig. 5.16

parent (if it is not NULL) or the candidate server with the highest join count and the
process is recursively repeated, until a leaf node is reached.

Example 5.7. Consider the query plan in Fig. 5.2 of query Q4, reported in Fig. 5.20
for convenience, requested by Alice, who is authorized to view the query re-
sult (see composed permission p1⊗p2⊗p4 in Fig. 5.10). Consider also the set of
servers’ permissions in Fig. 5.15. Figure 5.20 illustrates the working of procedures
Find candidates and Assign executor reporting the nodes in the order they are
considered by them and the candidates/executors determined. Candidates/executors
with a “*” are those of the leaf nodes (already given in input). To illustrate
the working, let us look at some sample calls. Consider, for example, the call
Find candidates(n2). Among the candidates of the children (SE from left child
n4 and SP from right child n5) only the right child candidate SP survives as can-
didate for the join, which is executed as a semi-join since SE can act as a slave.
When Assign executor is called, the set of candidates at each node is as shown in
the table summarizing the results of Find candidates. Starting at the root node, the
only possible choice assigns to n0 executor [SP, ], where SP was recorded as coming
from the left (and only) child n1, to which SP is then pushed with a recursive call.
At n1 the master is set as SP and, combining this with the slave field, the executor
is set to [SP,SD]. Hence, SP is further pushed down to the left child (from where it
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was taken by Find candidates) n3, while SD is not pushed down to the left child
n2, since it was a third party helping in finding a correct assignment.

We conclude this section with a note regarding the integration of our approach
with existing query optimizers. Optimization of distributed queries operates in two-
steps [64]. First, the query optimizer identifies a good plan, analogous to the one
it would produce for a centralized system; second, it assigns operations to the dis-
tinct servers in the system. Our algorithm nicely fits in such a two phase structure.
In particular, while in the illustration of the algorithm we have assumed the com-
plete query plan to be provided as input, we note that our algorithm could be nicely
merged with the optimizers and perform its pre-order visit in conjunction with the
construction of the tree by the query optimizer, computing candidates while the op-
timizers builds the plan, and its post-order visit for computing executors for the
optimizers in the second phase.

5.8 Chapter Summary

We presented a simple, yet powerful, approach for the specification and enforce-
ment of permissions regulating data release among data holders collaborating in a
distributed computation, to ensure that query processing discloses only data whose
release has been explicitly authorized. Data disclosure has been captured by means
of profiles associated with each data computation that describe the information car-
ried by the released relation. Allowed data releases have instead been captured by
means of simple permissions, which can be efficiently composed without privacy
breaches. In this chapter we presented a simple graphical representation of both
permissions and profiles, allowing to easily enforce our secure chasing process. We
also presented an algorithm that, given a query plan, determines whether it can be
safely executed and produces a safe query planning for it. The main advantage of
our approach is its simplicity that, without impacting expressiveness, makes it nicely
interoperable with current solutions for collaborative computations in distributed
database systems.



Chapter 6
Conclusions

In this book, we have addressed the problem of protecting information when out-
sourced to an external server. After a brief introduction and a discussion of related
work, we focused on three specific aspects: access control enforcement, privacy
protection, and safe data integration. In this chapter, we shortly summarize the con-
tributions of this book and we outline some future work.

6.1 Summary of the Contributions

The contributions of this book are threefold.

Access control enforcement. We present an access control model based on the com-
bination of access control with cryptography. This idea is in itself not new, but the
problem of applying it in an outsourced architecture introduces several challenges.
To the purpose of granting efficiency in accessing data, we proposed to exploit a
key derivation approach and presented a strategy for defining an adequate hierarchy
for key derivation. This basic model has then been extended to conveniently support
policy updates at the server side while reducing the burden of the data owner. The
proposed solution is based on two different encryption layers. The lower layer is
managed directly by the data owner and is used to enforce the initial access con-
trol policy. The higher layer is managed by the remote server and enforces updates
to the original policy without the data owner’s direct intervention on data. This so-
lution has been carefully analyzed to the aim of modeling the risk of collusion to
which data are exposed.

Privacy protection. We design a technique supporting the management of privacy
protection requirements over a relational database. The proposed approach is based
on the representation of these requirements through confidentiality constraints and
on their enforcement through encryption and fragmentation. A confidentiality con-
straint is defined as a set of attributes which joint visibility must be prevented to
non authorized users. Privacy protection can therefore be granted by solving con-
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fidentiality constraints, imposing that no constraint is a subset of the schema of a
fragment and preventing join among fragments by encrypting common attributes.
To this aim, we proposed different fragmentation algorithms, which can be used
to produce a good fragmentation, depending on the information about the system
workload known at design time.

Safe data integration. We propose an approach for regulating data flows among
parties collaborating for the integration of their information sources. The integration
mechanism is based on the characterization of access privileges for the collaborat-
ing servers on the components of a relational schema and on their enforcement in
distributed query evaluation. An access privilege is defined as a view on the data,
which can flow to a given server. However, the complete enumeration of access priv-
ileges in a relational schema may be expensive. We therefore presented an algorithm
for composing access privileges, without information leakage. The enforcement of
access privileges is then obtained by controlling data exchanges during the query
evaluation process. To this aim, we proposed an algorithm that can be used to pro-
duce a query execution plan satisfying (base or composed) access privileges.

6.2 Future Work

The research described in this book can be extended along several directions.

6.2.1 Access Control Enforcement

Management of write operations. Our access control system, based on selective
encryption, manages access control enforcement and dynamic policy updates. How-
ever, it assumes access operations to be read only (see Chap. 3). This assumption,
even if adequate in a data dissemination scenario, is not sufficient for the man-
agement of data subject to dynamic updates by different parties, which may not
coincide with the original data owner. In the multi-owner scenario, each owner is
authorized to modify the portion of data she owns, while she can only read a larger
subset of the outsourced resources, possibly owned by another party. We plan then
to extend the model proposed in this book, relaxing the assumption that accesses are
read-only, and proposing a system able to efficiently manage also the multi-owner
scenario. Current works on integrity in the data outsourcing scenario, while guaran-
tee that write operations are performed by authorized users only, are not suited to
the multi-owner scenario, since they do not allow administrators to grant selective
write privileges to different users.

Secrecy of the access control policy. The mechanism proposed for access control
enforcement exploits key derivation through an adequate hierarchy. The use of a key
derivation hierarchy and its tokens, while greatly simplifying key management, in-
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troduces a new vulnerability related to policy confidentiality. As a matter of fact, the
public availability of tokens and therefore the corresponding key derivation hierar-
chy, makes visible the relationship between users and resources they are authorized
to access, and therefore the authorization policy the owner wishes to enforce. In sev-
eral contexts, however, the policy itself should be considered confidential as owners
do not wish to publicly declare to whom they give (or not give) access to their
resources. Also, an analysis of the policy may allow observers to reconstruct the
structure of the social network of users accessing the system, potentially obtaining
information disclosing the identity of users and their relationships. Since the overall
aim of these novel solutions is to allow an efficient confidentiality-preserving mech-
anism for resource dissemination, the protection of the access control policy appears
a natural requirement that systems will be interested in supporting, as long as its pro-
tection does not introduce a significant impact on system performance. A straight-
forward solution to this problem consists in encrypting the token catalog. However,
this solution has the disadvantage of making key derivation inefficient [40]. It is
therefore necessary to define a solution that both protects the privacy of the access
control policy and that ensures an efficient key derivation process.

6.2.2 Privacy Protection

Management of data updates. The privacy protection system based on the com-
bined use of fragmentation and encryption presented in Chap. 4 makes the implicit
assumptions that the original dataset is never updated. In particular, the proposed
model assumes that no tuples are added to the original table. However, if a new tu-
ple can be inserted and subsequently fragments on the available fragmentation, it
becomes easy to reconstruct the original tuples: it is sufficient to concatenate the
new tuple of each of the fragments. Obviously, this situation would violate the con-
fidentiality constraints imposed for the system. It is therefore necessary to define an
adequate strategy to safely manage data updates. A straightforward solution to this
problem may consist in postponing data insertion, until a given number of new tu-
ples is reached. This solution, however, does not always provide the desired privacy
level, and data freshness cannot be guaranteed. A future line of research will focus
on the definition of a model able to efficiently manage insertions and updates, while
granting privacy protection and up to date information in a fragmentation.

Avoiding encryption exploiting a trusted party. As already noted, handling en-
crypted data is inefficient from the user’s point of view, since she needs to cooperate
with the remote server in query evaluation. A line of future work will consist in
analyzing the possibility for the data owner to directly store a portion of her data.
In this scenario, privacy constraints can be solved by fragmenting the original table
in two fragments only: one fragment will be outsourced and therefore has to fulfill
confidentiality constraints; and the other fragment will be directly managed by the
data owner. The problem that needs to be solved in this scenario is related to the
size of the fragment directly managed by the data owner. In fact, it is necessary to
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minimize the size of such a fragment, since otherwise the owner would not be inter-
ested in exploiting data outsourcing. Another aspect to consider is the workload for
the data owner in query evaluation.

6.2.3 Safe Data Integration

Instance-based authorization. The authorization model defined for controlling
flows of information in distributed systems has been designed on the schema of
the distributed database. Therefore, the definition of the portion of the data visible
to a server is based on a list of attributes and tables. Also, joins are exploited as
a way for reducing the set of visible data to those satisfying a specific join condi-
tion. An interesting new line of research consists in allowing the specification of
instance-based permissions. This extension of the security model will require the
arrangement of both the algorithm for safely composing permissions and the algo-
rithm that evaluates if a query execution plan is safe.

Building a safe query execution tree. In Chap. 5, we proposed an algorithm able
to define if a given query execution plan is safe with respect to a given set of permis-
sions. However, from the user’s point of view, given a query it is interesting to have
an algorithm that returns a safe query execution plan, if such a plan exists for the set
of permissions characterizing the system. A naive solution to this problem consists,
as briefly discussed in Chap. 5, in checking each possible query execution plan with
respect to the profiles of the permissions. However, the number of possible plans for
a query may be high, growing with the number of relations and servers involved in
the evaluation. It is then necessary to find an alternative solution that may exploit
permissions for directly building a safe query execution plan.
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