
Chapter 3
Universal Properties of Relaxation and Diffusion
in Interacting Complex Systems

3.1 Introduction

This book is principally concerned with the dynamics of glass forming in relation to
the glass transition problem. Glass-forming substances and systems are usually con-
stituted of densely packed structural units interacting with anharmonic potentials.
Consequently, the view of the author is that relaxation and diffusion of glassformers
has to be treated with emphasis on the many-body nature of the irreversible process.
At any fixed temperature T and pressure P, the dynamics and properties originating
from the many-body relaxation is already a challenging problem to be solved first,
before the changes observed on varying T and P are to be accounted for. Examples
taken from some of the properties of neat and homogeneous glassformers at fixed T
and P discussed in Chapter 2 include the following: (i) the Kohlrausch α-correlation
function exp

[−(t/τα)1−n
]

for the structural α-relaxation when τα >> 1ps; (ii)
the Kohlrausch α-correlation function replaced by the linear exponential function
at times shorter than tc (≈ 2 ps for molecular glassformers, and much longer for
colloidal particle suspensions); (iii) the Q−2/(1−n) scattering vector dependence of
τα; (iv) the appearance of the universal Johari-Goldstein (JG) relaxation strongly
connected to the α-relaxation as seen from NMR study and by the ratio of its
relaxation time τJG to τα correlated with n and approximately given by the rela-
tion log(τα/τJG) = n(log τα + 11.7) for molecular glassformers; and (iv) caged
relaxation at shorter times exemplified by the nearly constant loss (NCL) which is
terminated at longer times of the order of τJG by the universal JG relaxation. These
properties at fixed T and P, plus more discussed in Chapter 2 apparently all con-
trolled by n, are indications of the manifestation of many-body relaxation, and most
challenging to be solved.

Glass transition compounds the difficulty of the problem by requiring further
consideration of the change of the many-body relaxation with changes of T and P.
The latter bring in changes of their conjugate thermodynamic variables including
entropy S and specific volume V. All these changes of T, P, V, and S force modifi-
cation of the many-body relaxation and spawn more conspicuous properties such as
(i) decrease of V (or free volume) and increase of S (or configuration entropy Sc);
(ii) VFTH temperature dependence (including its inadequacy) of τα; (iii) Tg-scaled
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T dependence of τα or “fragility,” (iv) the breakdown of the Stokes-Einstein (SE)
relation and the Debye-Stokes-Einstein (DSE) relation (onset and T dependence),
and (v) T dependence of n. These are traditionally the properties of glassformers
that researchers have exclusively focused on to construct theories of glass transition
such as the free volume theory, the configuration entropy theory of Adam-Gibbs,
their generalizations, and some modern approaches. These theories can explain the
rapid increase of τα on cooling and compressing leading to glass transition but leave
out the rich dynamic properties of the α-relaxation untouched, not even those at fixed
T and P that are worth consideration (see Sections 2.2.1–2.2.5 on α-relaxation). The
multiple subsections in Sections 2.3 have presented many different experimental
facts demonstrating that the JG β-relaxation is universal, fundamental, and insepa-
rable from any consideration of the structural α-relaxation. None of the traditional
theories of glass transition have considered the JG β-relaxation and its connection
to the α-relaxation. Neither are the more recent theories including those bringing
into consideration the dynamic heterogeneous nature of the α-relaxation from the
breakdown of SE and DSE relations, nor are the theory focusing on the fast relax-
ation while molecules are still caged. Here, I remind the readers of one of the many
examples of the connection between the JG β-relaxation and the α-relaxation dis-
cussed in Section 2.3. This example is the invariance of the α-dispersion (or n) as
well as the ratio τα/τJG to various combinations of T and P while keeping τα con-
stant. Also, both τα and τJG are functions of the same product variable TVγ . These
new experimental findings provide further evidence for the many-body nature of
the α-relaxation and the universal JG β-relaxation is its precursor and originator.
However, none of the past and recent theories mentioned above has provided expla-
nation for these new and important findings. As far as the author knows, the coupling
model (CM) is the only model having the equivalent of the JG β-relaxation in the
primitive relaxation, the device via the CM equation (2.68) to capture and explain
many of the effects of many-body relaxation on the structural α-relaxation, and
the capability of addressing all the dynamic processes in order of increasing time
from caged relaxation (NCL), JG secondary to the structural α-relaxation, and their
inter-relations.

If the above discussion restricted to glass-forming materials is not sufficient to
support the call for incorporating many-body relaxation into the theory of glass tran-
sition, I shall bring in some dynamic properties of other interacting systems which
are not glass forming or in which the interest of the process in the system is not in
glass transition per se. If the physics of many-body relaxation and diffusion is funda-
mental, the properties of the dynamics manifested will show up analogously in these
various non-glass-forming interacting systems. It is therefore a worthwhile under-
taking to broaden the study of glass-forming materials by bringing in these other
processes in different systems. For the past three decades, the author has actively
engaged in the study of relaxation and diffusion in several fields which are unre-
lated to the glass transition problem. This is partly motivated by the CM, which is
supposedly applicable to relaxation in many-body interacting systems in general.
But, the higher motivation is to explore the possibility that relaxation in interact-
ing many-body systems exhibits universal properties. If indeed the properties of
many-body relaxation are universal, it would be an important discovery that has
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immediate impact on various scientific disciplines. To accomplish this goal, we can
take advantage of the properties of the α-relaxation and JG β-relaxation of glass-
formers matching the concepts and predictions of CM discussed in Chapter 2 by
using them as guides to look for parallels in other interacting many-body systems.

First is the crossover of the correlation function from linear exponential relax-
ation exp(−t/τ0) to Kohlrausch stretched exponential relaxation exp

[−(t/τ )1−n
]

in
a neighborhood of some time tc. Second is to find the equivalent of the primitive
relaxation (or the analogue of the JG relaxation in glassformers) either directly or
by identification with a feature in the experiment data or molecular dynamics simu-
lation. Third is to validate the relation between the primitive relaxation time τ0 and
the observed many-body relaxation time τ given by the equation

τ = [t−n
c τ0]

1
1−n , (3.1)

and the relation becomes quantitative if tc is known. Even without knowing the exact
value of tc, the predicted dependence of τ on various variables U given by

τ (U) ∝ [τ0 (U)]1/(1−n) (3.2)

can be tested against experiment. In some cases, dependences of τ on more than
one variable U are predicted by the same n, thus making the test by experiment even
more stringent and satisfying. The dependence of τ0 on U is not anomalous because
it is the relaxation time of simple (not many-body) relaxation and either is known
from basic theory or can be independently determined by experiment or simulations
in situations where many-body effects are eliminated. If successful, Eq. (3.2) serves
to explain the observed dependence of τ on U, which is often found to be anoma-
lous in other interacting systems similar to those we have seen in glassformers in
Chapter 2. The success can be viewed as evidence of a strong connection between
τ and τ0, like that found between τα and τJG or τ0 (since τJG ≈ τ0) in glassformers.

Because the anomalous dependence of τ (U) comes from raising τ0(U) to the
superlinear power 1/(1 − n) in Eqs. (3.1) and (3.2), the degree of the abnormal-
ity increases with increasing n. This offers multiple checks of Eqs. (3.1) and (3.2)
by experiment by increasing or decreasing the interaction even in the same system.
Depending on the system, it can be accomplished in different ways such as increas-
ing or decreasing concentration, temperature, association, chemical cross-links,
changing the other component in binary mixtures, and densification.

Indeed, my collaborators and I as well as other researchers independently have
found anomalous dynamic properties in interacting systems which are analogues
to those of glassformers discussed in Chapter 2. In particular, the dispersion of the
relaxation or the diffusion governs or correlates with the anomalous properties. The
collection of experimental data in various systems of different fields shows anal-
ogous dynamic properties and hence is a strong evidence supporting the presence
of the many-body relaxation in interacting systems and the dynamics manifested is
universal and fundamental. Moreover, these analogous anomalous properties can be
explained by the CM.
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Complete and detailed description of this large collection of data cannot be made
in this book because this would make the size of this book unduly large. Therefore
selected sets of data are presented, and most of them are just briefly described
and the corresponding explanations by the CM given here are also abbreviated.
References are given for the interested reader to look for the details. A few sets
of data have been presented before in Chapter 2 for specific purpose, not the same
as in this chapter, which is to demonstrate the universal relaxation properties of
different interacting systems.

Attempt is made to present the similar properties in other systems as much as pos-
sible in about the same order as introduced in Chapter 2 for the relaxation processes
in glass-forming materials and systems. This way makes it easier for the reader to
find and collate the properties to correspond to the glass-forming systems, all of
which are the vestige of many-body dynamics in relaxation of interacting systems
with glass-forming substances as a special class.

3.2 Universal Properties

3.2.1 The Kohlrausch Stretched Exponential Correlation Function
exp[−(t/τ )1−n]

Materials of interest in research on relaxation and diffusion these days vary greatly
in chemical structure and physical type. However, many of them share one common
characteristic and that is the relaxing or diffusing units have mutual interactions
with each other. The simplest class consists of relaxation and diffusion processes
in bulk materials that involve identical interacting units with no other complica-
tions, such as identical molecules in glass-forming viscous liquid, colloidal particles
nearly all of the same size in colloidal suspensions [141–143], identical mobile ions
in crystalline or polycrystalline [283, 1060, 1482–1486], vitreous, or molten ionic
conductors [54–56, 115(b), 147, 232, 279–295, 1056–1059], and a monodisperse
entangled polymer melts where all polymer chains have the same repeat unit and
are of the same length [359, 360, 837]. In these ideal cases, the time correlation
function of the many-body relaxation is well described by the Kohlrausch function
as in the case of bulk and neat glassformers. Liquid or glassy state is not required
to have the Kohlrausch correlation function as exemplified by the Li ion motion in
polycrystalline LiAlSi2O6 (β-spodumene) [283, 1485, 1060] and in the crystalline
ion conductors such as Na β-alumina [1486], Li0.18La0.61TiO3 (LLTO) [1483], and
yttria-stabilized zirconia (YSZ), an oxygen ion conductor of fluorite structure used
commercially as electrolytes in solid oxide fuel cells [1482, 1484]. These crys-
talline cases elucidate that ion-ion interaction rather than randomness is principally
responsible for the slowing and stretching of the relaxation.

However, one must be aware that some materials and systems have built-in dis-
order, randomness, or fluctuation. Examples include concentration fluctuations in
miscible blends of two different liquids or polymers, random copolymers, ionic
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conductors containing two different kinds of mobile ions, and polydisperse polymer
melts with a broad distribution of chain lengths. Spatial heterogeneity of various
kinds includes liquid or polymer nanoconfined by wall, free-standing, or supported
ultrathin polymer films, repeat units of a cross-linked (semicrystalline) polymer
located at different distances from the junction points (the crystalline-amorphous
boundaries), and density fluctuations present in the non-equilibrium glassy state. In
these more complicated cases, the frequency dispersion of the observed relaxation
is broadened by these factors in addition to many-body relaxation originating from
interactions. The resulting dispersions often deviate from those of the Kohlrausch
function. In the event when it can be forced fitted by a Kohlrausch function, the
value of n appearing in the exponent β ≡ (1 − n) of the Kohlrausch function does
not reflect that coming exclusively from many-body relaxation and should not be
used in Eqs. (3.1) and (3.2) to make predictions. Bearing this caution in mind, we
can also consider the more complicated materials where there is mutual interaction
between the units. We are not interested in relaxation of systems where the disper-
sions are solely due to disorder, randomness, or fluctuation, because no new physics
is involved.

3.2.1.1 Mean-Square Displacement of Diffusion in Interacting Systems

Glass-Forming Systems

For systems exhibiting diffusion in space, many-body effects are more explicitly
shown by the mean-square displacement (MSD) < r2(t) > as a function of time.
Normal diffusion will have < r2(t)>= 6Dt for all times, a result that follows from
exponential correlation function for diffusion or random walk. The actual < r2(t)>
of interacting systems deviates from this simple time dependence. Previously in
Section 2.2.1.1, the subdiffusion having a fractional power law dependence of
<r2(t)>∝ t1−n has been shown to be present at times before <r2(t)> crosses over
to the terminal steady-state diffusion at long times and the dependence < r2(t)>=
6Dt takes over. Such is in the case of the results of solvent in polymer solutions from
dynamic lattice liquid simulation [327, 328] (see Fig. 7) and also of the dynamic
light-scattering data of colloidal particle suspensions with φ = 0.465 (see Fig. 9).
Preceding the subdiffusion is the primitive diffusion with < r2(t)>= 6D0t in these
two systems. From the transition from primitive to subdiffusion, one can determine
the crossover time tc of the coupling model (CM). In terms of correlation times τ

and τ0 and the elementary diffusion length R, we have D = R2/τ and D0 = R2/τ0,
respectively. The CM equations (2.12) or (2.14) between τ and τ0 provide a relation
between D and D0.

Here we add the results from the molecular dynamics simulation of glass-forming
binary Lennard-Jones particles by Donati et al. [321]. The < r2(t)> data from this
paper are shown in Fig. 275. At the highest temperature of 0.5495 as well as the
lowest temperature of 0.4510 (in L-J unit), subdiffusion having the fractional power
law dependence of < r2(t) >∝ t1−n with (1 − n) = 0.77 appears at earlier times
before the terminal free diffusion with <r2(t)>= 6Dt takes over. The onset time of
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Fig. 275 (a) Mean-square displacement < r2(t)> of the A particles of binary L-J liquid vs. time
for several values of T. (b) Non-Gaussian parameter α2(t) vs. time for the same values of T as in
(a). From Donati et al. [321], and reproduced by permission

the subdiffusion is denoted by tx2 and its location for T = 0.451 is indicated approx-
imately by the arrow in Fig. 275. At lower temperatures, the particles are initially
caged, and the caged dynamics contributes a power law < r2(t)>∝ tγ to the MSD
with γ <<1 or a nearly constant loss (NCL) with frequency dependence ω−γ to the
susceptibility χ ′′(ω). In order of time, the caged dynamics term <r2(t)>∝ tγ is fol-
lowed by the subdiffusion term <r2(t)>∝ t1−n and in turn by the terminal diffusion
term < r2(t)>= 6Dt. The value of the fractional power (1-n) of the subdiffusion is
comparable to the stretch exponent β in the Kohlrausch function used to fit the inter-
mediate scattering function Fs(q, t) for q = qmax [321]. On decreasing temperature,
the term < r2(t) >∝ tγ persists to longer times, accompanied by decrease in both
< r2(t)> and the exponent γ reflecting increasing degree of caging. At T = 0.451,
γ is about 0.1. This description of dynamics from the simulations is along the line as
in Chapter 2. It needs to be pointed out that the same results from simulations of the
binary LJ mixtures were interpreted by others [265, 321] in terms of the idealized
mode coupling theory (MCT). In fact these results were considered as verification
of the predictions of the original version of MCT, although it cannot explain the
dynamic lattice liquid simulation results and the dynamic light-scattering data of
colloidal particle suspensions with φ = 0.465.
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For diffusion in d-dimension, Fs(q, t) was sometimes approximated by

Fs(q, t) ≈ exp

[
−q2

2
〈r2(t)〉/2d + q4

2

( 〈r2(t)〉
2d

)2

α2(t)

]
, (3.3)

where the non-Gaussian parameter α2(t), given before by Eq. (1.125), is a mea-
sure of the deviation from the Gaussian dynamics, because it vanishes when the
dynamics is Gaussian. Shown in Fig. 275(b) is α2(t) obtained by Donati et al. from
their simulations of binary L-J mixture. It exhibits a peak and the maximum of
α2(t) occurs close to tx2, the onset time of subdiffusion, which is demonstrated for
T = 0.451 by the vertical arrow in Fig. 275. We have seen before from several
examples in Section 2.3.2.33 that tx2 is a few times longer than the primitive relax-
ation time τ0. This, together with the location of tx2 for T = 0.451, suggests possibly
that τ0 ≈ 100 (L-J units). From the discussion in Section 2.2.1.1, tc of the binary L-J
particles is about 1. Donati et al. fitted Fs(qmax, t) to the Kohlrausch function having
stretched exponent (1 − n) = 0.75 and τ = 655. The approximate values of these
parameters are consistently related by the CM equation (2.14) τ = [(tc)−nτ0

]1/(1−n).
The MSD < �x2(�t) > and the non-Gaussian parameter α2(�t) of colloidal

particle suspensions determined by confocal microscopy at various volume fractions
φ [141] show the same behavior as the L-J system. These quantities for φ = 0.56
have been shown before in Fig. 247 in connection with the nearly constant loss (i.e.,
the initial plateau in the MSD) from caged dynamics and the primitive relaxation
time indicated by �t when a typical particle changes position and leaves the cage,
which is about 500 s for φ = 0.56. The subdiffusion with <�x2(�t)>∝ (�t)1−n

and its onset at tx2 are illustrated in the figure. Also shown is the initial plateau
having < �x2(�t) >∝ (�t)0.13, contributed by motions of particles trapped in
anharmonic cages, which gives rise to the susceptibility χ ′′(ω) having the frequency
dependence of ω−0.13 (i.e., the NCL). For the sake of easy comparison of binary
L-J mixtures and Li+ ions in Li2SiO3 with the MSD at different temperatures to
be discussed below, the < �x2(�t) > for φ = 0.46 and 0.52 are shown together
with φ = 0.56 in Fig. 276. Returning to Fig. 247, the inset therein presents the time
dependence of the non-Gaussian parameter α2(�t), which also peaks at tx2 as in the
case of the binary L-J mixture.

Ion Dynamics in Glassy Ionic Conductor

All the examples given above are glass-forming systems, and the similarity of the
MSD of some of them may not be surprising. Now we present the MSD of other
interacting systems unrelated to glass transition, and the remarkable thing is that
they are also similar. The similarity has repercussion on theoretical interpretation of
the dynamics in some of the systems, which will become clear later.

Historically, Kohlrausch studied the electrical relaxation of a Leyden jar (an
alkali silicate glassy ionic conductor) in 1854 at Göttingen [2, 3] in which he found
that the time decay of ionic conductivity relaxation has the stretched exponential
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Fig. 276 Mean-square displacements of colloidal particles in suspension from Weeks and Weitz
[800]. The diagonal dashed straight lines indicate estimates for <�x2(�t)>∼ 2Dt. The solid lines
indicate <�x2(�t)>∝ (�t)1−n starting at about tx2. The NCL regime is depicted by the nearly
flat line representing <�x2(�t)>∝ (�t)c with c small in the range from 0.08 to 0.13. This power
law terminates at tx1. Vertical bars indicate estimate of the cage rearrangement timescale �t∗ by
finding the maximum of the non-Gaussian parameter. The proximity of �t∗ to tx2 is clear from the
figure. The primitive or independent relaxation time τ0 calculated by the CM equation is near tx2
[1058]

time dependence given by Eq. (1.1). If scientific activity in ionic conductivity relax-
ation and diffusive transport in glasses is considered to have started by Kohlrausch,
then by now the research field is about 160 years old. Many research efforts in
this area since then will not be mentioned here, except those having results on the
ion dynamics that brings out the universal dynamic properties. The first example
is the dynamics of mobile ions in glassy ionic conductors. Habasaki and coworkers
have carried out molecular dynamics simulations of Li ion dynamics in the metasili-
cate glass Li2SiO3 since 1997, and many properties have been uncovered [468–472,
475, 802, 1058]. The <r2(t)> and α2(t) of Li ion motions at different temperatures
is shown in Fig. 277.

There is hardly any difference in their behaviors as functions of time and change
with temperature as the binary L-J mixture and the colloidal particles (on chang-
ing volume fraction). In particular, prior to the free diffusion is the presence of
the subdiffusion term < r2(t)>∝ t1−n which is preceded by the caged dynamics
term <r2(t)>∝ tc. The data at 700 K in the main figure show the subdiffusion
<r2(t)>∝ t0.64 and its onset time at tx2 in between 20 and 30 ps. This is about the
same time at which α2(t) at 700 K peaks as indicated in the figure. The same is true
for other temperatures. The exponent c of caged dynamics term < r2(t) >∝ tc is
0.11 or 0.13, which is about the same as that of the binary L-J mixture (Fig. 275)
and the colloidal particles with φ = 0.56 (Fig. 247 and 276).

The self-part of the van Hove function, discussed in Chapter 1 and defined before

in Eq. (1.112) by Gs(�r, t) = (1/N)
N∑

i=1
〈δ(�ri(t) − �ri(0) − �r)〉, of the Li ions obtained
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Fig. 277 (Left) MSD of Li+ ions in Li2SiO3 at 600 K (lower) and 700 K (upper). The tx1, tx2,
and tD are crossover times that separate out the four time regimes explained in the text. tx1 ≈ 2
ps at 700 K and tx1 ≈ 10 ps at 600 K. The inset shows the MSD of Li ions at 1673, 1000, 800,
700, 600, and 500 K from top to bottom. (Right) The non-Gaussian parameter a2(t) for Li+ ions
in Li2SiO3 calculated from their time-dependent displacement distribution function at 700, 800,
and 1200 K (lower panel) and at 1673, 1000, 800, 700, 600, and 500 K from bottom to top (upper
panel). At higher temperatures, the maximum of a2(t) for the Li+ ions moves to shorter times and
at all temperatures the maximum is located near tx2

by the molecular dynamic simulations [1487–1489] is shown for different times
within four time regimes in Figs. 278(a)–(d). The times in the four time regimes are
(1) 0.40, 0.8, and 1.6 ps (t < tx1); (2) 3.2, 6.4, 12.8, and 25.6 ps (tx1 < t ≈ tx2); (3)
40, 80, 160, and 200 ps (tx2 < t < τ ); and (4) 400, 800, and 1600 ps (t > τ ). Here
τ ≈ 229 ps is the stretched exponential relaxation time of the incoherent scattering

function Fs(k, t) for k = 2π/3 (
◦
A −1). Such k is chosen because it corresponds to√〈r2〉 ≈ 3

◦
A, the distance between Li sites. This together with (1− n) ≡ β = 0.64,

tc = 1 ps, and the CM equation (3.1) enables us to calculate τ0 and the result is 32 ps,
which is an order of magnitude longer than tx1 but is nearly the same as tx2 ≈ 27 ps.
The onset of terminal diffusion with < r2(t)>∝ t1.0 starts at tD ≈ 400 ps, which is
slightly longer than τ ≈ 229 ps.

Gs(r, t) of Li+ ions has similar dependences on space and time as the same func-
tion of the binary L-J mixture [321] and the analogous distribution function P(�x)
of colloidal particles [141]. Furthermore, the Li ion dynamics is heterogeneous with
the presence of faster and slower ions, like that found in the other two systems as
well as in glass-forming liquids.

In regime (1), t < tx1, in the framework of the CM, the fact that τ0 is significantly
longer than tx1 explains the small probability of independent jump of the ions out
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Fig. 278 4πr2Gs(r, t) of Li+ ions in Li2SiO3 at 700 K as a function of r at different times. Gs(r, t)
is the self-part of the van Hove function for the Li ion. (a) 0.40, 0.8, and 1.6 ps (t < tx1). (b) 3.2,
6.4, 12.8, and 25.6 ps tx1 < t ≈ tx2. (c) 40, 80, 160, and 200 ps (tx2 < t < τ ); τ ≈ 229 ps is
calculated (see text). (d) 400, 800, and 1600 ps. The vertical arrows indicate the distance of 3 Å,
roughly the separation between neighboring Li+ sites. Data from [468] are replotted together with
additional illustrations in all figures

of their cages during the caged ion regime. It also explains the very slow decay
of the cage indicated by either the plateau-like MSD or practically no decrease of
the normalized area, A1(t), of the first peak of the self-part of the Li ion van Hove
function, used to gauge the cage decay (see left panel of Fig. 279). A1(t), obtained by
integrating 4πr2Gs(r, t) over the first peak domain of r <2 Å, can be considered as
the analogue of the cage decay function of Weeks and Weitz for colloidal particles
from confocal microscopy shown in Fig. 247. Alternatively, caged dynamics can be
seen from A2(t) obtained by integrating 4πr2Gs(r, t) over the first neighboring shell

region with r between r1 = 2 and r2 = 4
◦
A. A2(t) remains very small for t < tx1,

indicating negligible number of ions hopping over to the neighboring sites.
In the time regime (2), tx1 < t < tx2, there is non-negligible probability for inde-

pendent ion jumps to neighboring sites, particularly when time increases towards tx2
because tx2 is comparable to τ0. This can be seen by the development of a shoulder
and then a peak in 4πr2Gs(r, t) as t increases from 3.2 up to 25.6 ps. Therefore the
cages start to decay in regime (2), a property corroborated by the departure of the
MSD from the relation < r2(t) >∝ t0.11 in Fig. 277 (left). It is also corroborated
by the initially small decrease and increase of the normalized area A1(t) and A2(t),
respectively, in the regime tx1 < t < tx2.
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Fig. 279 (Left) Normalized areas of the first peak A1(t) and the second peak A2(t) of the self-part
of the Li ion van Hove functions at 700 K at different times shown up to 200 ps. The positions
of tx1, tx2, τo, and τ are indicated by the vertical arrows. Data from [468] replotted. (Right) Plot
of < r2 > at 700 K against time, showing the linear relation within the approximate range of
15 < t < 40 ps, which is the primitive relaxation regime. Plot of d < r2 > /dt at 700 K against
time, showing that d < r2 > /dt is nearly constant within the range 15<t<40 ps. Data from [802]
replotted together with illustration in the figure

In the time regime (3), tx2 < t < τ , t is longer than τ0 for practically all times.
Therefore, the Li ions are capable of executing the independent jump having the
primitive relaxation time τ0 with significant probability. But, instead of independent
jumps with no correlation with each other, they participate in some cooperative or
correlated hopping process. This is evidenced by the observed stretched exponen-
tial correlation function for the intermediate scattering function Fs(k, t) in regime
(3), instead of linear exponential decay for independent hops [1488]. This is like
Fs(k, t) found by dynamic light scattering in colloidal particle suspension by Segre
and Pusey [143]. Thus tx2 marks the change from apparent free jump to the coop-
erative/correlated jump process. Again this description is corroborated by even
more rapid decrease of A1 in regime (3) than in regime (2), as can be seen by
the steeper rise of the MSD with the power law dependence of < r2(t) >∝ t1−n,
with (1 − n) ≡ β ≈ 0.64 in Fig. 277 (left), and population in the second peak of
4πr2Gs(r, t) given by A2. This is exactly like the colloidal supercooled liquid with
φ= 0.56 from the data of confocal microscopy shown in Figs. 247 and 276 in the
corresponding time regime tx1 < t < tx2, and likewise the cage correlation function
of Weeks and Weitz (see inset in Fig. 247) show much faster decay when t>tx2 than
in regime 2.

In the right panel of Fig. 279 is the linear plot of < r2(t)> against linear time in
the abridged time region, 15 < t < 40 ps, within which lies the calculated primitive
relaxation time τ0. The plot shows the linear relation < r2(t) >∝ t1.0 within the
approximate range of 15 < t < 40 ps, supported by d < r2 > /dt being nearly
constant within the range 15 < t < 40 ps. This is evidence for the existence of
the primitive relaxation because it gives rise to independent ion jumps, and their
contribution to the MSD should be linearly proportional to time. Existence of the
primitive relaxation is additionally supported by the time development of A2, the
area of the second peak of 4πr2Gs(r, t). In the 15–40 ps region, A2(t) increases
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linearly with time [802], where the area is proportional to net increase in the number
of ions in the first neighboring shell region. The primitive relaxation regime also
exists at 600 K within the range of 150 < t < 250 ps as shown by the linear time
dependence of < r2 > in Fig. 5 in [802] and the nearly constant d < r2 > /dt.

In the time regime (4), t > τ , Li ion sites at further distances are populated as
can be seen from 4πr2Gs(r, t) in Fig. 278. Terminal diffusion with < r2(t)>∝ t1.0

is reached. At the onset time of this regime (about 600 ps at 700 K and 2000 ps at

600 K), the square root of the MSD
√〈

r2
〉

is about 3 Å, which is the average Li-Li
ion site separation distance.

3.2.1.2 Space-Time Pictures of Motions of Li+ Ions Equivalent to Those
of Motions of Colloidal Particles by Confocal Microscopy

Habasaki and I [802] have generated space-time pictures to elucidate the motion
of Li ions in Li2SiO3 at 700 K at different times, which is equivalent to the real-
time pictures of motion of colloidal particles provided by confocal microscopy [141,
800]. These pictures of Li ions at progressively longer times of 4, 8, 16, 24, 48, 200,
400, and 1000 ps give clear information of the motions of Li ions in the different
dynamic regimes.

Before presenting these space-time pictures, let us remind the reader that from
the time dependences of < r2(t) > and Gs(r, t), several dynamic regimes of Li+

ions at 700 K have been delineated by the three times, tx1, tx2, and tD shown in
Fig. 277. The space-time pictures of the motion of Li+ ions are discussed in the
regimes defined by these three times.

Figure 280(a)-(d) shows the displacements of the Li ions at four chosen times
4, 8, 16, and 24 ps, respectively, at 700 K. The displacements of the Li ions are
indicated by the vectors originating from the positions of the ions at an arbitrary
chosen initial time t0 in three dimensions for a part of the basic cell of the simulation.
The amplitudes of the vectors are coded according to the color scheme shown. These
results are supposed to represent the behavior of the ions within the time regime (2)
bounded approximately by tx1 ∼ 2 ps < t < tx2 ∼ 30 s. According to the color code
of these figures, there are few isolated jumps to nearest neighboring Li sites with
distance of about 3 Å, and the number of such jumps increases with time. These
isolated jumps are the primitive relaxation of the CM that we are looking for and
have been identified before in the right panel of Fig. 279 by their contribution to the
MSD that is linearly proportional to time within the approximate range 15 < t <

40 ps, within which lies τ0 ≈ 32 ps.
The primitive relaxation observed in MSD with < r2(t) >∝ t1.0 in the range of

15 < t < 40 ps ends at longer times past τ0 or tx2 when more ions jump to neigh-
boring sites and these jumps are no longer isolated events. This can be seen starting
at 48 ps in the panel (a) of Fig. 280 (lower four). With further increase in time, more
ions have displacements equal to or larger than the distance between neighboring Li
sites. The ions undergoing these large amplitude motions form clusters and the vec-
tors of their motions tend to be linked together, and the length scale of the vectors
linked together increases with time. Conversely the ions limited to local motions
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Fig. 280 (Upper four) Motion of Li ions in Li2SiO3 at 700 K at four different times: (a) 4 ps,
(b) 8 ps, (c) 16 ps, and (d) 24 ps. The positions of the Li ions at any of the indicated chosen
times are represented by the vectors originating from the positions of the ions at an initial time in
three dimensions for a part of the basic cell of the simulation. The values of axes are in Å. The
colors are used to indicate the lengths of the vectors (the values shown in the legend are also in
Å). Note that the color codes of the scales for 4, 8, 16, and 24 ps are the same. The rare maximum
displacements of the Li ions are 2.5, 3.5, 3.5, and 4.0 Å for 4, 8, 16, and 24 ps, respectively. But
note that most of the displacements have magnitudes smaller than the maximum value. (Lower
four) Motion of Li ions in Li2SiO3 at 700 K at four times: (a) 48 ps, (b) 200 ps, (c) 400 ps, and
(d) 1000 ps. The positions of the Li ions at any of the indicated chosen times are represented by
the vectors originating from the positions of the ions at an initial time in three dimensions for a
part of the basic cell of the simulation. The values of axes are in Å. The colors are used to indicate
the lengths of the vectors (the values shown in the legend are also in Å). Note that the code of
the color scales for 48 ps is different from that of 200 and 400 ps, and from that of 1000 ps. The
maximum displacements of the Li ions are 4.5, 7.8, 9.0, and 11.8 Å for 48, 200, 400, and 1000 ps,
respectively. But note that most of the displacements have magnitudes smaller than the maximum
value. Reproduced from [802] with permission
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also form clusters. The increase of the length scale of the mobile ion clusters with
time can be seen in going in succession from panels (a), (b), (c), and (d) at 48,
200, 400, and 1000 ps respectively. These features of Li+ ions motion are exactly
the same as those found in colloidal particle suspensions by confocal microscopy
[141].

Shown previously in Fig. 23 are the motions of the colloidal particles in sus-
pension with volume fraction φ= 0.52 at the cage rearranging time �t∗ = 600 s,
estimated by finding the maximum of the non-Gaussian parameter α2(�t). The loca-
tion of �t∗ is indicated by the vertical bar crossing the MSD data for φ= 0.52
in Fig. 276, and it can be seen from this figure that �t∗ ≈ tx2. Therefore, since
tx2 ≈ 30 ps from the Li metasilicate glass, the pattern of motion of Li+ ions at
24 or 48 ps shown in Fig. 280 (upper d) and (lower a), respectively, is to be com-
pared with that of colloidal particles with volume fraction φ= 0.52 at �t∗ = 600 s.
The patterns in both systems have similar character. The motions of the Li+ ions
are obviously dynamically heterogeneous. There are fast and slow ions classified
as such by both temporal (waiting time of jumps) and spatial (back-and/or-forth
correlation) behaviors [1488, 1489]. Back-correlated jumps return to the original
positions.

(4) At even longer times, the two types of ions, fast and slow, exchange roles.
This feature is also found in glass-forming liquids [226–228], referred to as het-
erogeneous dynamics and discussed before in Chapter 1. When these motions are
coarse grained, the MSD assumes the linear dependence t, and steady-state diffusion
regime is reached. The onset time of this regime tD is about 600 ps at 700 K and
about 2000 ps at 600 K. As can be seen from the left panel of Fig. 277, at tD the root
MSD

√〈r2〉 is about 3 Å, which is the average Li-Li ion site separation distance,
although even in a diffusive regime, dynamics is still heterogeneous.

The primitive relaxation time increases when temperature is lowered from 700 to
600 K, and this change explains the lengthening of the time/frequency range of the
NCL, as observed by experiment. The primitive relaxation also marks the onset of
many-molecule dynamics. As time increases, increasing number of ions participate
in cooperative motion until the maximum number, dictated by the ion-ion interaction
and the matrix, is reached and steady-state diffusion begins.

In total, the processes found in the mean-square displacement of Li+ ions in Li
metasilicate include the caged dynamics, the primitive relaxation, the heterogeneous
jump dynamics, and steady-state diffusion. The primitive relaxation terminates the
caged ion dynamics, and it also marks the onset of many-molecule dynamics. These
processes are isomorphic to those found in molecular glass-forming liquids and col-
loidal particles. Previously in ionic conductors the isomorphism was incomplete
because of the absence of direct experimental evidence for the primitive relaxation,
whereas in molecular glassformers, the evidence is provided by the universal Johari-
Goldstein relaxation. By finding the primitive relaxation by molecular dynamics
simulation presented in this study, we show that the underlying physics of the
dynamics of ionic systems is exactly parallel to that of molecular glass-forming
liquids, in spite of the fact that the Li+ ions are moving in the metasilicate glassy
matrix and have nothing in common with supercooled liquids.
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From the above discussion, it is clear that time dependences of the MSD, the
non-Gaussian parameter, and the heterogeneous dynamics of Li ions in Li2SiO3 are
isomorphic to those of the binary L-J mixture and the colloidal particle suspension.
The isomorphism indicates that the dynamics of diffusion in interacting systems has
universal properties and suggests a common explanation for all. In the next subsec-
tion to follow, conductivity relaxation data of various crystalline and glassy ionic
conductors [195, 1057, 1058] are introduced to support this isomorphism. Details
of the experimental data are presented later in Sections 3.2.6.3, 3.2.6.4, and 3.2.7.
The implication of universal properties found entirely in different classes of inter-
acting systems poses problem for theory/model that is applicable to explain one
system but not the others. Such is the case of MCT designed specifically for glass-
forming liquids. It is a fluid- and density-based theory and does not seem natural
to apply to dynamics of glassy ionic conductors such as lithium metasilicate glass
where the Li ions are diffusing into the glassy matrix [1057, 1058]. Crystalline
ionic conductors such as Na β-alumina [1486], Li0.18La0.61TiO3 (LLTO) [1482,
1484, 1491], yttria-stabilized zirconia (YSZ), (Y2O3)x(ZrO2)1−x [149, 1492], and
the pyrochlores Gd2Ti2−yZryO7 with 0.5 ≤ y ≤ 2 [150–153, 1493] show exactly
the same ion dynamics as glassy ones, and there the applicability of MCT is hard to
believe to be possible. The main support of the idealized MCT to glass-forming liq-
uids comes principally from good fits by its prediction to the frequency dependence
of the observed susceptibility spectrum χ ′′(ν) and the predicted various power law
dependences on (T − Tc) of the susceptibility minimum value χ ′′

min and frequency
νmin as well as the relaxation time of the α-relaxation. Success of these fits seems
not sufficient to prove applicability of MCT to glassformers because equally suc-
cessful good fits were obtained for the dielectric loss ε′′(ν) of silver ions in silver
iodide-silver selenate glassy ionic conductor [1494] to which MCT does not apply.

3.2.1.3 Support from Conductivity Relaxation Data of Crystalline, Glassy,
and Molten Ionic Conductors

There is a relation between MSD and the complex conductivity [65]:

σ ∗(ω) = ω2 Nionq2

6HRkT

∞∫
0

<r2(t)> e−iωtdt, (3.4)

where Nion is the number density of mobile ions, q the ion charge, k the Boltzmann
constant, and T the temperature. HR, the Haven ratio, is the ratio of the self (tracer)-
diffusion coefficient D∗ and the conductivity diffusion coefficient Dσ . For ionic
conductors with one kind of ions, Dσ is calculated from the measured dc conduc-
tivity σdc via the Nernst-Einstein equation [1490]. D∗ is larger than Dσ and HR ≤ 1
because of the many-ion diffusion process necessitated by ion-ion interaction. In the
absence of interaction, HR = 1.
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For t < tx1, it follows from Eq. (3.4) that the MSD of caged dynamics <r2(t)>∝
tc with c << 1 correspond to σ ′(ω) ∝ ω1−c for the real part of the ac conductivity
σ ′(ω) and ε′′(ω) ∝ ω−c for the dielectric loss at frequencies ω > (1/tx1).

For tx2 < t < τ , the subdiffusion term 〈r2(t)〉 ∝ t1−n gives rise to the power
law frequency dependences σ ′(ω) ∝ ωn for the real part of the ac conductivity and
ε′′(ω) ∝ ω−(1−n) for the dielectric loss in the frequency range (1/τ ) < ω < (tx2)−1.

For t > τ , after these motions of fast and slow ions have been coarse grained,
the MSD assumes the t1.0 dependence of steady-state diffusion regime and σ ′(ω)
becomes a constant, which is the dc conductivity σdc and ε′′(ω) ∝ ω−1.

From the parameters n and τ , the primitive relaxation time τ0 can be calculated
by the CM equation (3.1). Once τ0 has been calculated, the relation tx2 ≈ τ0 can
be checked by the experimental data. Good agreement was obtained for many ionic
conductors [1057, 1058], some of which are presented in Sections 3.2.6.3, 3.2.6.4,
and 3.2.7.

Polymer Chain Dynamics

More than 10 years ago, MSD of the center of mass of polymer chains in both
unentangled and entangled polymer liquids was found to display a subdiffusive
diffusion behavior at shorter times, which crosses over to terminal free diffusive
dynamics at a characteristic decorrelation time τdec [1462, 1495–1502]. This sub-
diffusive behavior is characterized by an exponent that depends on the degree of
polymerization N as well as temperature T and density of the sample. It is con-
sidered anomalous because the conventional theories of polymer dynamics, such
as the Rouse model for unentangled polymer dynamics and the reptation model
for entangled dynamics, predict no such subdiffusive center-of-mass motion at
short times, in disagreement with simulations and experiments. The disagreement
is not unexpected in our view because both models are mean-field theories of
single-chain dynamics and many-body effects on diffusion leading to cooperative
motion and dynamic heterogeneity in the liquid are neglected. The previous obser-
vations of subdiffusive dynamics have been mainly by simulations and some in a
small range of times. Recently new data of neutron spin echo (NSE) performed
by Zamponi et al. [1503] have extended the experimental time range up to about
200 ns to fully observe the subdiffusive behavior at shorter times and its crossover
to the long-time normal diffusive regime. The four polyethylene samples investi-
gated have molecular weights between 0.5 and 5.5 kg/mol covering the range from
the low degree of polymerization regime of unentangled polymers to the entan-
gled regime. All samples exhibit anomalous subdiffusive dynamics at short time
and the transition to normal (Brownian-like) diffusion at long times. The devia-
tion of the observed subdiffusion from normal diffusion increases with molecular
weights.

The experimental work by Zamponi et al. is accompanied by the predictions of
the theoretical approach of Guenza and coworkers [1504, 1505]. In this approach,
specific intermolecular interactions are considered in the construction of a gener-
alized Langevin equation for cooperative dynamics of a group of polymer chains.
An analytical expression for the potential acting between the centers of mass of
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a pair of polymer chains was derived which allows for a formal solution of the
set of coupled equations of motion through normal-mode transformation. The the-
ory predicts anomalous subdiffusive dynamics of the center-of-mass motion and
crossover to normal diffusion after some long time. The subdiffusive dynamics is
heterogeneous and the distribution is not Gaussian. All the aforementioned prop-
erties of the dynamics of polymer chains obtained by the theory of Guenza are
analogous to the dynamics of Li+ ions in Li metasilicate glass, binary LJ liquids, and
colloidal particle suspension, discussed in Section “Ion Dynamics in Glassy Ionic
Conductor.”

Essentially, the theory of Guenza relates this anomalous behavior of chain diffu-
sion to intermolecular correlation and the cooperative motion of a group of polymer
chains in a dynamically heterogeneous liquid. Thus, the theory takes care of the
many-chain diffusion in interacting chains systems in the same spirit as the cou-
pling model for many-body relaxation for interacting systems. It is opposite in spirit
to the single-chain, mean-field models of Rouse and reptation. Applications of the
CM to polymer diffusion and viscoelasticity will be given later in this chapter.

Figure 281 presents the center-of-mass MSD data from neutron spin echo exper-
iments (symbols) and the theoretical predictions from Guenza’s theory (shorter
dashed lines) for three samples with number of segments of the protonated diffusion
PE chains N= 106, 192, and 377. Long dashed lines with slope exactly equal to 1
represent normal Brownian-like diffusion. Experimental data show the presence of
subdiffusion with t1−n dependence of the MSD over a period of time as indicated by
the solid lines. The characteristic exponent (1−n) decreases with increasing degree

log(time/ns)

Fig. 281 The center-of-mass mean-square displacement extracted from the data at q= 0.3 nm−1.
Symbols: experimental data for N = 106 (up triangles), 192 (open squares), and 377 (filled circles).
In the log−log plot, the long dashed lines have slope equal to 1, indicating terminal free diffu-
sion at long times. Short dashed lines are calculated result from cooperative dynamics-generalized
Langevin equation. Solid lines have slope equal to (1−n) and are drawn to indicate the presence of
subdiffusion. Data at shorter times have large uncertainties (errors not shown) and are not consid-
ered for the present purpose of showing the existence of the subdiffusion. Redrawn from the data
of Zamponi et al. [1503]
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of polymerization. Even in the unentangled polymers with N= 36 and 106, the sub-
diffusion appears, and thus the Rouse model of a single chain is not fully accurate
when applied to undiluted polymers, although the deviation is not large because
the fractional exponent (1−n) is close to 1. Intermolecular interaction is enhanced
by entanglements in polymer with larger N, and this is reflected by the decrease in
(1−n). For N= 198 and 377, the solid lines have slope or (1−n) equal to 0.72 and
0.63, respectively. The MSD seems to level off with decreasing time past the subd-
iffusive regime. This behavior is reminiscent of the plateau in the MSD of caged Li
ions, L−J, and colloidal particles shown in Figs. 275−277.

The presence of the subdiffusion in polymer chain diffusion with similar prop-
erties as those found in the dynamics of diffusion of Li ions, L−J, and colloidal
particles further substantiates the universal behavior of diffusion in many-body
interacting systems. These systems have widely different interaction potentials and
yet the dynamics is similar. Specific to polymer dynamics, it also serves to show
the inadequacy of conventional approaches to polymer melt dynamics such as the
Rouse and the reptation models.

3.2.2 Stronger Interaction/Constraints Lead to Larger n

In Section 2.2.1 on glassformers, molecular structure with enhanced intermolecular
interaction/constraint has increased stretching (or n) in the Kohlrausch correlation
function of the structural relaxation. Analogues of this property abound in other
interacting systems. Some examples are given below.

3.2.2.1 Ionically Conducting Systems

The concentration of mobile ions in many glassy ionic conductors can be changed
by orders of magnitude. Naturally the interaction or the correlation between the
motion of the ions is weak at very low concentration when the ions are far apart and
increases with increasing concentration. Naturally interionic interaction vanishes
and n is practically zero at very low ion concentrations and increases mono-
tonically with concentration, provided there is no change in the structure of the
glassy matrix. This expectation is realized experimentally in the broadening of
the electric loss modulus peak M′′(ω) as a function of the angular frequency ω

with increasing ion concentration and the increase in n of the Kohlrausch func-
tion fit according to Eq. (1.56) [115(b), 148, 1057]. At very low ion concentration,
M′′(ω) narrows to become nearly the Fourier transform of a linear exponen-
tial function of time. The classic example is mobile Na+ ions in a Vycor glass
xNaO − (1 − x)[0.04B2O3 − 0.96SiO2] at 313◦C with x = 0.00044 and containing
very few Na+ ions by Simmons and coworkers [1506]. The family of Ag ion con-
ductors (AgI)x(AgPO3)1−x for 0 ≤ x ≤ 0.6 shows monotonic narrowing of M′′(ω)
with decreasing x and the number of mobile Ag ions [1507]. In fact, fits to M′′(ω)
by the Fourier transform of the derivative of the Kohlrausch function for (t) in
Eq. (1.56) show decrease of n with the decrease in x [1508]. Here the reader is
warned that there are publications by other workers where they concluded that the
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same data when plotted as log10 σ (ω)vs. log10 ω can be reduced to a universal curve
when subjected to some scaling procedure. Here σ (ω) or σ ′(ω) is the real part of
the complex conductivity. From these results, these workers further conclude that
the dynamics of migrating ions is the same independent of chemical structure and
ionic concentration [1509−1511], in contradiction to what is indicated by the same
data plotted as the electric loss modulus M′′(ω). The width of the M′′(ω) loss peak
varies over a wide range when many ionic conductors are considered [115(b), 149].
In order to maintain their assertion that σ (ω) is universal for all ionic conductors,
the proponents claimed that the electric loss modulus M′′(ω) is not an appropriate
representation of the data, although the complex M∗(ω) is no more than the recipro-
cal of the complex ε∗(ω), and σ (ω) is the real part of iωε0ε

∗(ω). The attack on the
electric modulus representation of data was shown to be invalid and refuted in [707].
The reasons why scaling of log10 ω to an “universal” curve is fallacious were given
in [115(b)]. They include (1) the differences in σ (ω) of different ionic conductors
that are obscured in a log−log plot together with horizontal shift of data and (2)
the presence of the near constant loss (NCL) contribution with σ (ω) = Aωμ with
μ ∼ 1 at higher frequencies irrespective of ion concentration and chemical structure.
Demonstration of the absence of universal scaled log10 σ (ω) vs. log10 ω was given
by comparing data from Na2O − 3SiO2 glass at −0.5◦C with a high concentration
of mobile Na+ ions with those of the Vycor glass at 313◦C with x = 0.00044 and
containing very few Na+ ions. The same conclusion was made in the comparison
of log10 σ (ω) data for two xK2O – (1 – x)GeO2 glasses with x= 0.20 and 0.0023 by
Jain [1512]. The claim, that the dynamics of migrating ions is the same independent
of chemical structure and ionic concentration, not only is bold but also was prof-
fered without any theoretical support. As time tells, it serves no useful purpose, and
only confusion of the real issue.

3.2.2.2 Entangled Polymer Chains

The simplest example is the comparison of an entangled monodisperse linear chain
polymer with an entangled monodisperse multiple-arm, star-branched molecule
with the same number of repeat units in each arm. Here, the change is in the architec-
ture of the polymer and not in the chemical structure of the repeat unit. Obviously
the multiple-arm stars have larger constraints on the movement of an individual
macromolecule compared to the linear polymer. The CM predicts that n of the stars
(or other architectures like H-polymers) is larger than that of the linear molecules.
Experimentally this prediction is exemplified by a broader dispersion of the stars
than the linear chains (see, for example, [1513]). As we shall see later, there are other
predictions that accompany the predicted change of n, which have been verified by
experiments.

3.2.2.3 Semidilute Polymer Solutions and Associating Polymer Solutions

More detailed description of these systems is given in a section to follow. The
polymer chains in these solutions are still interacting via either entanglement or
association. Naturally, increase of concentration of the polymer chains enhances
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interchain coupling and constraints, and the expected increase of n in the Kohlrausch
correlation function together with the consequences it has on other properties
including concentration dependence and scattering angle dependence was found by
experiments [198, 767, 778−780, 1514]. These aspects are subjects of further dis-
cussion to be given later. Here we cite the dielectric loss data of chain normal modes
of poly(2,6-dichloro-1,4-phenylene oxide) (PDCPO) solutions from [1514]. With
increasing concentration φ of the polymer such that the product φM approaches Me,
the molecular weight between entanglements, not only does the observed loss max-
imum frequency shifts to the low frequencies but also the loss curve simultaneously
broadens on both sides of the peak maximum. The analysis of the spectra using the
CM [925] relates the broadening to increase in coupling parameter n between chains
with increasing concentration of PDCPO.

3.2.2.4 Junction Dynamics of Cross-Linked Polymers

A specific chemical moiety can link up a fixed number of polymer chains at a junc-
tion point. Multiple junction points convert the polymer chain to a network. The
dynamics of the junctions has been studied experimentally [1515−1517]. The con-
straint on the motion of the junctions and hence n ≡ (1 − β) is expected to decrease
by lowering the density of junctions or the addition of a diluent. These expected
changes by the CM were indeed observed by NMR measurements of the junction
dynamics by Shi et al. [1515]. There are consequences of the dependence of n on
junction density in the dynamic properties, and these are given in a later section.

3.2.3 Crossover from exp(–t/τ 0) to exp[−(t/τ )1−n] at tc

Like glassformers, there are experimental evidences in other interacting sys-
tems supporting the crossover of the correlation function from exp(−t/τ0) to
exp[−(t/τ )1−n] in a neighborhood of a temperature-insensitive time tc. We have
mentioned before in Section 2.2.1.1 for polymers and small molecular van der
Waals liquids that tc ≈ 2 ps. As we see below, the magnitude of tc differs from
one class of systems to another, increasing with decreasing strength of interaction
and/or constraints. This trend is understandable, because in the limit of zero strength
of interaction or no constraints, many-body relaxation is reduced to one-body relax-
ation, and its correlation function exp(−t/τ0) should hold for all times and hence
tc → ∞.

3.2.3.1 Ionically Conducting Systems

Fast Glassy Ionic Conductors

There are many fast glassy ionic conductors where the mobility of the ions is so high
that the conductivity relaxation time τσ is 10 orders of magnitude or more lesser
than the structural relaxation time τα at Tg. In contrast, in 0.4Ca(NO3)2 − 0.6KNO3
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(CKN) discussed in Section 2.2.1.1, τσ is only about 2−3 orders of magnitude lesser
than τα at Tg [55, 1418]. These fast glassy ionic conductors can have τσ becoming
very short by raising temperature but still staying within the glassy state. This is
an example of relaxation of an interacting system which does not involve glass
transition because T here is always significantly below Tg. At lower temperatures
where τσ >> tc of the order of 1 ps, the conductivity relaxation correlation of
glassy and crystalline ionic conductors is well described by the Kohlrausch func-
tion exp[−(t/τσ )1−n], as shown by fits of the data in the electric modulus M∗(ω)
representation by the Fourier transform of the derivative of the Kohlrausch function
(see Section 1.2.2 and [55, 362, 707, 1518, 1519]). The conductivity σ (ω) corre-
sponding to the M∗(ω) obtained with exp[−(t/τσ )1−n] has the ωn dependence at
high frequencies when ωτσ >> 1 and approaches the dc conductivity σdc in the
low-frequency limit when ωτσ << 1 [1057, 1058]. The crossover of the corre-
lation function from exp[−(t/τσ )1−n] to exp(t/τ0) with decreasing time past tc is
observed via the corresponding σ (ω) crossing over from the ωn dependence to a
frequency-independent value with increasing frequency past ωc ≡ (tc)−1. Here,
two examples of the crossover are chosen from the work of Cramer et al. on two fast
glassy ionic conductors 0.44LiBr−0.56Li2O−B2O3 [1520], and 0.5Ag2S−0.5GeS2
glass [1521]. In inorganic glasses, the vibrational contribution to σ (ω) extends from
high frequencies down to low frequencies with an ω2 dependence [336], which is
also found in these glassy ionic conductors as shown in Figs. 282 and 283. The Li

Fig. 282 (Left) The ac conductivity data of 0.44LiBr−0.56Li2O−B2O3 reconstructed from the
data of Cramer et al. [1520]. Shown also is the high-frequency vibrational contribution to σ (ω)
extending down to low frequencies with an ω2 dependence. Subtracting off this vibrational con-
tribution from the data at 573 K leaves a frequency-independent σ 0 (+). The inset shows this
more clearly as well as the crossover of σ (ω) at a frequency of about 1011 Hz from frequency-
independent σ 0 to the ωn dependence. At lower temperatures such as 323 K, there is a contribution
with near-ω1.0 dependence to σ (ω), the counterpart of the near constant loss in ε′′(ω) at high
frequencies, which obscures the crossover of diffusing ions at 1011 Hz. The nearly constant loss
is due to loss while the mobile ions are still caged. (Right) Frequency-dependent conductivity
σ (ν) of 0.5Ag2S · 0.5GeS2 glass at 273 K. Below 10 GHz, σ (ν)is essentially caused by the hop-
ping motion of the silver ions, while above 20 GHz it is essentially due to the low-frequency
flank of the vibrational component. The ion contribution σion(ν) = [σ (ν) − σvib(ν)] exhibits a
crossover to primitive ionic conductivity relaxation at 1010.5 Hz. Figure reproduced from [1521] by
permission
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Fig. 283 (Left) Frequency dependence of σ (ν) of Na β-alumina at three temperatures showing
crossover after 1010 Hz. Reproduced from [1522(a)] by permission. (Right) The product σ (ν)T
of RbAg4I5 crystals at four different temperatures. The crossover is seen for 166 and 129 K.
Reproduced from [1525, 1526] by permission

ion conductivity contribution is obtained after the tail of the vibrational contribution
with an ω2 -dependence has been subtracted off.

The results are shown for 0.44LiBr−0.56Li2O−B2O3 in the left panel of
Fig. 282 at the high temperature of 573 K where ionic diffusion is the dominant
contribution to σ (ω); there is a crossover of σ (ω) at a frequency ωc ≡ 1/tc of
the order of 1011 Hz from an ωn dependence to a frequency-independent value
σ 0, just like that found for structural relaxation of the glassformer 0.4Ca(NO3)2−
0.6KNO3 (CKN) at temperatures far above Tg (see Fig. 8 and recall that structural
relaxation and conductivity relaxation in CKN are coupled together at high tem-
peratures [55, 1418]). According to the CM, σ 0 is determined by the primitive
relaxation time τ0, while the dc conductivity σdc is governed by τσ , and the two
relaxation times τσ and τ0 are related by the CM equation (3.1) with τσ replacing
τ . In the glassy state, both σdc (or τσ ) and σ 0 (or τ0) have Arrhenius tempera-
ture dependence with activation energies Edc and E0, respectively. In the case of
0.44LiBr−0.56Li2O−B2O3, the data of Cramer et al. [1520] yield Edc = 0.49 eV
or 5670 K, and E0 = 0.22 eV or 2553 K. The exponent (1−n) of the Kohlrausch
function is estimated to be within the range of 0.40< (1 − n)< 0.48. The other CM
equation (3.2) predicts that

E0 = (1 − n)Edc. (3.5)

The product on the right side of this equation lies within the bounds 2268 <

(1 − n)Edc < 2721 K, and is consistent with E0 = 2553 K [148].
The right panel of Fig. 282 shows σ (ν) having the same crossover from the

ωn dependence to a constant value of primitive relaxation in another fast glassy
Ag ion conductor 0.5Ag2S–0.5GeS2 at 273 K after subtracting the vibrational ω2

dependence from the data.
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Fast Crystalline Ionic Conductors

Many-body relaxation dynamics requires interaction between the units. Although
disorder fosters interaction, by no means it is essential to observe the vestige of
many-body relaxation dynamics. Thus, we can expect to see the crossover to prim-
itive conductivity relaxation in fast crystalline ionic conductors. In fact there are
experimental evidences for the crossover in crystalline Na β-alumina [1486, 1522,
1523], Na β ′′-alumina [1524, 1525], and RbAg4I5 [1525, 1526]. The crossover of
conductivity of Na β-alumina at vc ≈ 1010 Hz and RbAg4I5 at about 1011 Hz can
be seen by inspection of the data presented in the left and right panels of Fig. 283,
respectively. For Na β-alumina, the activation energy E0 of σ (ν) for v > vc in the
range of 200 < T < 300 K is ≈ 810 K. On the other hand, the activation energy of
dc conductivity Edc is ≈ 1600 K at 300 K and ≈ 1700 K at 200 K (see Fig. 287).
The coupling parameter n is ≈0.50 at 300 K and ≈0.53 at 200 K [1522(a)]. From
these values, one can verify that the relation E0 = (1−n)Edc of Eq. (3.5) is satisfied.

The crossover behavior is thus found in the dynamics of ions in fast ionic con-
ductors in the glassy or crystalline state, in the same manner as that observed on
the structural relaxation of glassformers including molten CKN by dielectric relax-
ation (Fig. 8), small molecular and polymeric glassformers by quasielastic neutron
scattering (Figs. 4 and 5) and computer simulations (Figs. 6 and 7), and colloidal
particle suspension by light scattering (Fig. 9). This universal crossover occurs for
all many-body relaxation processes in systems with interactions. If the CM has
captured the general physics of complex many-body correlation in relaxation of
interacting systems, then it is not surprising that the crossover and other proper-
ties are universal, as we have seen in various ionic conductors and in other systems
that are neither ionic conductors nor glassformers, which we discuss later on in the
chapter.

Susceptibility Minimum of Glassy Ionic Conductors Well Fit to Mode Coupling
Theory (MCT)

At lower temperatures where the conductivity relaxation time τσ is not as high to
see the crossover to primitive relaxation, the ε′′(ν) spectra of the fast solid-state
ionic conductors show up as minima at high frequencies just like the susceptibility
minima of glass-forming substances. The latter, when well fit by the predictions
of the idealized MCT, often has been taken as confirmation of the theory for glass
transition, as has been claimed [32] for susceptibility data from neutron and light
scattering as well as dielectric susceptibility ε′′(ν) spectra of CKN and CRN. In
brief, the MCT prediction [31, 32] for the minimum in the dynamic susceptibility
χ ′′(ν) or ε′′(ν) at high frequencies ν and temperatures higher than Tc is

χ ′′(ν) = χ ′′
min

[
a(ν/νmin)−b + b(ν/νmin)a

]
/(a + b), (3.6)

where χ ′′
min and νmin are the height and the location of the minimum, respectively.

The exponents a and b are related to each other via the control parameter λ by the
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two equations λ = �2(1 − a)/�(1 − 2a) = �2(1 + b)/�(1 + 2b), where � is the
Gamma function. The first equation implies that a < 0.395 and hence a pronounced
sublinear increase of χ ′′(ν) at ν > νmin is predicted. For T > Tc, MCT predicts the
following critical temperature dependences:

νmin ∝ (T − Tc)1/2a, χ ′′
min ∝ (T − Tc)1/2, and τα ∝ η/T ∝ (T − Tc)−γ , (3.7)

where τα is the characteristic time of the α-relaxation and γ = (1/2a) + (1/2b).
It has become a common practice of researchers to check the validity of the MCT
equations (3.6) and (3.7) for the χ ′′(ν) data and determine the critical temperature
Tc in the process.

The similarity of the ε′′(ν) spectra of glassy ionic conductors to the susceptibil-
ity spectra of glass-forming liquids invites fitting the former to the predictions of
MCT. This has been done [1494] on the dielectric loss data of the fast glassy ionic
conductor 0.48(AgI)2−0.52Ag2SeO4 obtained by Cramer and Buscher [1528] and
is shown in Fig. 284 (left). The shapes of the minima of ε′′(ν) are well fit by Eq.

Fig. 284 (a) Frequency dependence of the dielectric loss of the glassy ionic conductor
0.48(AgI)2−0.52Ag2SeO4 at 296, 273, 248, 223, 198, 153, 133, and 113 K (from top to bottom).
Symbols stand for experimental data from [1528] and are replotted here. The solid lines are fits
using the MCT expression, Eq. (3.6), with λ = 0.176 (a = 0.32 and b = 0.614). Temperature
dependences of (ε′′min)2 is shown in (b), (νmin)2a in (c), and (νmax)1/γ ≡ (1/2πτα)1/γ in (d).
Straight lines in (b), (c), and (d) are fits to linear dependence on (T−Tc) of these quantities accord-
ing to the predictions of MCT by Eq. (3.7). Extrapolation of the linear fits determines Tc. It lies
within the range of 196 < Tc < 210 K from the extrapolations of the three quantities. All figures
are redrawn from the data in [1494]
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(3.5) from the MCT β-process, and the critical laws of MCT equation (3.7) are
also obeyed as shown by the other plots in Fig. 284 and like that found for CKN
shown in Fig. 285 [1418]. Notwithstanding the success, it does not seem possible
that a fluid theory based on density fluctuations like MCT is applicable to motions
of atomic size ions in the matrix of solid-state ionic conductors, glassy or crys-
talline. This exercise demonstrates that susceptibility minimum and the associated
two-step decay of the intermediate scattering function are generally found in relax-
ation of other interacting systems beyond the glass-forming liquids and can have
similar shapes. Moreover, the good fit of the susceptibility by the MCT predictions
of the minimum by Eq. (3.6) and the critical laws Eq. (3.6) found in a case where
the theory should not apply is an admonition of the danger of validating the MCT
as the theory of fast relaxation in glass-forming liquids from merely the good fits to
their susceptibility data such as that shown in Fig. 285.

Fig. 285 Temperature dependence of various parameters obtained from the analysis of the high-
frequency data of CKN in terms of MCT. The solid lines are in accord with the laws given by
Eq. (3.7) with a critical temperature of 360 K. Reproduced from [1418] by permission

Susceptibility Minimum of Glassy Ionic Conductors Is Actually Caused
by the NCL of Caged Ions

In the case of fast ionic conductors, glassy or crystalline, the nearly constant loss
(NCL) is a well-known and well-observed contribution to the dielectric loss that
goes back to as early as 1946 [1529−1531], is discussed in the book by Wong and
Angell in 1976 [1055], extended to a gigahertz range for the first time by Robert
Cole and coworkers in 1989 [1532], and followed by many works [124, 1056−1061,
1533−1535]. Hence, it is more or less certain that the minimum in the ε′′(ω) of fast
ionic conductors is due to the NCL lying in between the vibration absorption at
high frequencies and the ω−n dependence at lower frequencies contributed by the
ion conductivity. This occurs when the conductivity relaxation time becomes short
to limit the range of the NCL and the ε′′(ω) minimum is observed [1494].

Crossover of Temperature Dependence of σdc at High Temperatures

We have shown before in Section 2.2.1.2 for glass-forming liquids that another way
to see the crossover to primitive relaxation is by the change in T dependence of the
viscosity at very low values corresponding to the structural relaxation time τα of
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the order of picoseconds. The analogy in the case of ion dynamics in fast glassy or
crystalline ionic conductors is the change in T dependence of the dc conductivity
σdc, which reflects the corresponding change of the conductivity relaxation time
τσ according to the Maxwell relation σdc = ε0ε∞/< τσ >. Here ε0 = 8.854 ×
10−14 F/cm is the permittivity of free space, ε∞ is the high-frequency dielectric
constant, and < τσ > is the mean relaxation time. At lower temperatures where
τσ << τc and the correlation function is exp

[−(t/τσ )1−n
]
, τσ has the Arrhenius T

dependence

τσ (T) = τ ∗∞exp(E∗
a/kT), (3.8)

and < τσ>=
[
�(1/β)/β

]
τσ , where β ≡ (1 − n), and � stands for the gamma

function [55]. The activation energy E∗
a and the prefactor τ ∗∞ are usually anoma-

lous because of many-ion relaxation due to ion−ion interactions. The temperature
dependence of τσ is Arrhenius with a constant activation energy E∗

a provided that n
does not change with temperature. If n decreases with increasing temperature, the
Arrhenius T dependence no longer holds as seen in the crystalline ionic conduc-
tors such as Na β-alumina [1486] and LLTO [1482] and in some very fast glassy
ionic conductors such as 0.525Ag2S+0.475(B2S3:SiS2) at all temperatures below
Tg [1536].

On raising the temperature, τσ becomes shorter and when it is of the order of
picoseconds or shorter, tc is crossed and primitive motion of ions takes over with
correlation function given by exp(−t/τ0) with

τ0(T) = τ∞ exp
(
Ea
/

kT
)

(3.9)

and now <τσ>= τσ . The primitive activation energy Ea can be identified with a
realistic energy barrier of an independent ion hop. The reciprocal of the prefactor τ∞
is the attempt angular frequency, which should correspond to some peak frequency
of the infrared or Raman spectrum. It follows from Eq. (3.2) that

Ea = (1 − n)E∗
a and τ∞ = (tc)n(τ ∗∞)1−n. (3.10)

The temperature dependence of τ0 is mirrored by that of the measured σdc.
Therefore, on increasing T, the T dependence of σdc will eventually cross over to
the Arrhenius T dependence having the same activation energy Ea, albeit it may
be slightly modified at the higher temperatures when 1/τ0 approaches the vibra-
tion frequencies. These properties associated with the expected crossover of σdc at
high temperatures have been found in many ionic conductors [1538] including the
molten salt CKN, fast glassy ionic conductors such as 0.48(AgI)2−0.52Ag2SeO4
[1528] and 0.525Ag2S+0.475(B2S3:SiS2) [1536, 1537], and crystalline ionic con-
ductors such as yttria-stabilized zirconia, (ZrO2)1−x(Y2O3) [1539−1543]. As an
example, σdc data of yttria-stabilized zirconia (YSZ) are shown in Fig. 286 [1539].
In the lower temperature regime, where σdc has the Arrhenius T dependence,
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Fig. 286 σdc data of
yttria-stabilized zirconia.
Reproduced from [1539] by
permission

σdc(T) = σ ∗∞ exp(−1.14 eV/kT) �−1 cm−1; from experimentally measured fre-
quency dispersion, the oxygen ion hopping correlation function was found to have
the Kohlrausch function with n = 0.56.

As temperature increases, σdc(T) becomes non-Arrhenius, but at the highest
temperatures, on approaching 1 �−1 cm−1, it returns to another Arrhenius depen-
dence described by σdc(T) = 103.6 × exp(−0.49 eV/kT)�−1cm−1 Such behavior
is evidence of crossover from primitive conductivity relaxation to coupled conduc-
tivity relaxation because at the high conductivity levels approaching 1 �−1 cm−1,
the conductivity relaxation times are likely to be comparable with tc ≈ 2 ps.
For YSZ, the value of ε∞ is 28 [1541], and hence from the Maxwell equation
σdc = ε0ε∞/ < τσ>, σdc = 1 �−1 cm−1 corresponds to < τσ>= 2.5 × 10−12 s.
Oxygen−oxygen ion interaction slows down the conductivity at lower temperatures
when τσ >> tc, and its higher activation energy E∗

a = 1.16 eV is correctly predicted
from the smaller (primitive) activation energy (Ea = 0.49 eV) at high tempera-
tures by Eq. (3.5). This can be verified by the equation 0.49 eV = (1 − n) 1.16 eV
being satisfied if n = 0.57, which is close to the value of 0.56 independently deter-
mined by fitting the frequency dependence of the conductivity relaxation data by the
Kohlrausch function [1492, 1542].

Figure 287 shows that the dc conductivity of Na β-alumina also crosses over to
a weaker T dependence when σdc exceeds about 0.4 �−1 cm−1, which corresponds
to < τσ >= 1.0 × 10−11s because ε∞ is 50 [1522a]. This indicates that tc for
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Fig. 287 σdc data of Na
β-alumina (open circles).
From [1522(a)] by
permission

Na β-alumina is about 1.0 × 10−11s and vc = 1.6 × 1010 Hz. Interestingly, this is
nearly the same as the frequency at which the ac conductivity σ (ν) crosses over to
the plateau value at higher frequencies (see the left panel of Fig. 283). Thus, there
is consistency in determining the crossover to primitive relaxation from temperature
dependence of σdc and from frequency dependence of isothermal σ (ν). Earlier in
connection with the left panel of Fig. 283, the relation E0 = (1 − n)Edc, has been
verified for Na β-alumina. Except for the change in notation, this relation is the same
as Ea = (1 − n)E∗

a in Eq. (3.10).
The values of Ea calculated in the same way by Eq. (3.10) from the values of

E∗
a and n deduced from the data at lower temperatures of many ionic conductors,

glassy or crystalline, are given in Table 3.1. Each is about the same as or slightly
larger than (but by no more than 20%) the value of Ea obtained from the high-
temperature σdc data which have τσ shorter than tc as described above. Furthermore,
the reciprocal of the primitive attempt time τ∞ calculated by Eq. (3.10) from the
anomalous τ ∗∞ is also in rough agreement with the value deduced from the high-
temperature σdc data after the crossover. It corresponds well to the peak angular
frequency of vibrational spectrum. These good correspondences between the cal-
culated τ∞ and Ea from the experimentally determined parameters τ ∗∞, E∗

a , and n
in the glassy state with their counterparts at high temperature are expected because
both sets of parameters are for independent diffusion of the ion, and the difference
between them is caused only by the difference in T and density. These changes
should not have a large effect on the primitive attempt frequency and the activa-
tion energy of local and independent hopping of the ion. There are cases in which
n decreases with increasing temperature and approaches zero value while τσ is still
longer than tc. This causes the crossover of T dependence of σdc data to occur at tem-
perature for which τσ is still longer than tc, but the relations in Eq. (3.10) are still
valid.
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Table 3.1 Ionic transport and conductivity relaxation parameters. For the glass-forming melts,
β ≡ (1 − n) and E∗

a were obtained in the glassy state from conductivity relaxation measurements,
while the activation energies Ea were obtained from the high-temperature melt dc conductivity
data. For some glassy ionic conductors, the activation energies Eglass

a were obtained from neu-
tron scattering or high-frequency microwave and far-infrared conductivity data at temperatures all
within the glassy state. All activation energies are in units of kJ/mol

β E∗
a βE∗

a Ea Eglass
a βE∗

a/Ea

Glass-forming ionic conductors

LiCl–7H2O 0.46 34 15.6 14.4 1.08
CdF2–LiF–AlF3–PbF2 0.77 109 83.9 68.4 1.23
ZBLAN20 0.68 85 57.8 50 1.16
ZBLAN10 0.66 79 52.1 46 1.13
ZBLA 0.61 72 43.9 36 1.22
(Li2O)–3(B2O3) 0.52 84 43.7 40 1.09
(Na2O)–3(SiO2) 0.55 64 35.2 33.5 1.05
0.56Li2O–0.45LiBr–B2O3 0.44 47.1 20.7 21.1 0.98a

AgPO3 0.66 49.5 32.7 28.5 1.14
(AgI)0.1–(AgPO3)0.9 0.59 43 25.4 22.5 1.13
(AgI)0.2–(AgPO3)0.8 0.57 39.5 22.5 19.8 1.14
(AgI)0.3–(AgPO3)0.7 0.54 32.9 17.8 15.6 1.14
(AgI)0.4–(AgPO3)0.6 0.51 32.0 16.3 13.3 1.23
(AgI)0.5–(AgPO3)0.5 0.48 26.9 12.9 10.1 8.7 1.27
(AgI)0.6–(AgPO3)0.4 0.48 26.9 12.9 7.9 1.29
(AgI)0.7–(Ag2MoO4)0.3 0.44 19.3 8.5 9.0 0.95
0.48(AgI)2–0.52Ag2SeO4 0.51 25.1 12.8 13.6 0.94
(Ag2S)0.5(GeS2)0.5 0.45 32.8 14.8 14.5 1.02a

Crystalline conductors
Na β-Al2O3 0.5 13.4b 6.7 6.8c 6.74 0.99
RbAg4I5 0.47d 9.8c 4.6 4.2c 1.09a

(Y2O3)0.095(ZrO2)0.905 0.43 111.9 48.2 48.2 1

aCalculated from the ratio βEσ /Eglass
a .

bAt 300 K.
cObtained by plotting log σ against 1/T.
dEstimated from log σ vs. log f data.

Anomalously Short Prefactor τ ∗∞
In Fig. 287, we show the low-temperature conductivity relaxation data of
(9.5%)YSZ from León et al. [1542, 1539, 1540] in terms of τσ (T). Its temperature
dependence is Arrhenius as indicated by the straight line through the data points in
the figure, which corresponds to

τσ (T) ≡ τ ∗∞exp
(
E∗

a

/
kT
) = 10−16.44exp

(
1.16 eV

/
kT
)

s. (3.11)

The prefactor τ ∗∞ of the experimentally observed τσ (T) is very short and its recip-
rocal corresponds to an unphysically high attempt frequency of the oxygen ions.
On the other hand, the independent hopping relaxation times τ0(T) calculated from
τσ (T) via Eq. (3.5) with tc = 2 ps are given by
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τ0 (T) = τ∞exp
(
Ea
/

kT
) = 10−13.74exp

(
0.50 eV

/
kT
)

s, (3.12)

and it is represented by the thicker dashed line in Fig. 288. Remarkably, this calcu-
lated τ0(T) has nearly the same value as well as temperature dependence as τσ (T)
at high temperatures. This is no surprise because τσ (T) is reaching tc = 2 ps at the
high temperatures, and hence it crosses over to τ0(T). The reciprocal of the pref-
actor τ∞ of the calculated τ0 now has the magnitude of an attempt frequency, as it
should.

The actual attempt frequency of oxygen ions in YSZ was determined experimen-
tally from the hyper-Raman spectrum obtained by Shin and Ishigame [1544]. The

Fig. 288 Closed circles and filled squares are the relaxation times τ obtained from the oxygen
ion conductivity relaxation data (by León et al. [1542]) and quasielastic light-scattering data (by
Suemoto and Ishigami [1545]) of YSZ. The inset shows the hyper-Raman spectrum from Shin
and Ishigami [1544]. Open circles and closed triangles are τ deduced from dc conductivity data.
The thick solid and thin solid lines through the data points are Arrhenius fits. The thick and thin
broken lines represent the independent relaxation time τ0 calculated from τ of conductivity relax-
ation (thick solid line through circles) and from quasielastic light scattering (thin solid line through
closed squares), respectively. The intercepts of the broken lines give prefactors τ0∞ (values indi-
cated by the two horizontal arrows) in good agreement with the frequencies in the narrow band at
690 cm–1 of the hyper-Raman spectra shown in the inset. Reproduced from [1482] by permission
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vibrational modes shown have displacement of the oxygen ion toward the vacancy
and are candidates for the vibrational frequency. Shin and Ishigame argued that
the highest frequency narrow band located at 690 cm–1, corresponding to time of
(ω∞)−1 = 10−14.1 s, contributes most effectively to the hopping of the oxygen ions
and can be identified by their attempt frequency. Having determined the reciprocal
of the true attempt (angular) frequency ω∞ of the oxygen ions from experiment
to be 10–14.1 s, comparison of it can be made in Fig. 288 with the prefactors τ ∗∞
and τ∞. The figure has used the notation τ0∞ instead of τ∞. The true angular
attempt frequency (τ∞)−1 deduced from the CM is only 2.4 times smaller than the
experimentally determined ω∞. This small discrepancy between (τ∞)–1 and ω∞
is well within the uncertainty in determining τ0(T) from Eq. (3.10) due to experi-
mental errors in n and τσ (T) obtained by León et al. The upper horizontal arrow in
Fig. 288 indicates the good correspondence between τ∞, determined by the inter-
cept with the y-axis at 1/T = 0, and (ω∞)−1 from the hyper-Raman spectrum
depicted by the inset. On the other hand, as mentioned earlier, the angular frequency
1/τ ∗∞ = 1016.4s−1 is unphysical because its value is more than 200 times higher
than the vibrational frequency ω∞.

Quasielastic light scattering (QELS) in YSZ by tandem Fabry–Perot interferom-
etry was measured by Suemoto and Ishigame [1545] using the same samples as in
the hyper-Raman scattering experiment. Light scattering is due to fluctuation of the
polarizability caused by ionic motion. They found that the shape of the scattered
light intensity peak as a function of temperature taken at constant frequency f, in
the range from 1.8 to 24 GHz is non-Lorentzian and in good agreement with that
coming from a correlation function that has the Kohlrausch form. The dependence
of the temperature of the intensity maximum on f is converted to a dependence on
(2π f )−1 ≡ τ ∗QELS and the data are shown in Fig. 287 by closed squares. The thin-
ner straight line through the data point is the best fit to an Arrhenius temperature
dependence:

τ ∗QELS ≡ τ ∗QELS,∞exp
(

E∗
a,QELS

/
kT
)
= 10−16.82exp

(
1.40 eV

/
kT
)

. (3.13)

The unphysically high apparent attempt frequency τ ∗QELS,∞ is again evident from
the prefactor. The QELS correlation time τ ∗QELS has a slightly larger activation
energy than the conductivity relaxation time τσ (T) obtained by León et al. [1542].
This difference arises because the concentration of yttria is higher in the sample
studied by QELS than that by conductivity relaxation (16.5 vs. 9.5 mol %) and it is
known from conductivity measurement that E∗

a increases with yttria content when
above roughly 8 mol%. The spectral shape is well fitted by an expression propor-
tional to χ ′ (ω)

/
ω, where χ ′ (ω) is the imaginary part of the susceptibility function

calculated [1544] by a Fourier transform of the time derivative of the Kohlrausch
function. In the process, the coupling parameter nQELS was determined to have the
value of 0.55. The independent ion hopping correlation time τQELS, o calculated
from τ ∗QELS has the Arrhenius dependence

τQELS,o (T) ≡ τQELS,∞exp
(
Ea,QELS

/
kT
) = 10−14.0exp

(
0.63 eV

/
kT
)

s (3.14)
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and is plotted as a function of temperature in Fig. 288 (the thinner dashed line).
The situation in QELS is similar to conductivity relaxation in that the experimen-

tally determined attempt frequency 1/τ ∗QELS,∞ is too high to be real. However, the

attempt frequency
(
τQELS,∞

)−1 of the independent ionic hopping motion deduced
by the CM nearly coincides with the measured frequency of the vibrational mode
(690 cm–1). The near coincidence is indicated by the lower horizontal arrow located
at the intercept of τQELS,o (T) with the y-axis at (1000/T) = 0. This horizontal arrow
points almost at the 690-cm–1 peak position of the observed vibrational band. Thus,
the QELS data reaffirm the interpretation of the CM that τQELS,o and τ ∗QELS are the
ion hopping correlation time without and with the effects of many-body interactions
between the ions, respectively.

The Meyer–Neldel Rule or Compensation Law

The many-body effects simultaneously make the prefactor τ ∗∞ unphysically short
and the activation energy E∗

a larger than the true activation energy Ea. This dual
effect is sometimes referred to as the Meyer–Neldel rule [1546] or the compensation
law. It makes repeated appearance in other interacting systems, some of which are
to be shown later.

Quasielastic Neutron Scattering Studies of Glassy Ionic Conductors

Quasielastic neutron scattering (time of flight) measurements at short times (in the
picosecond range) of the ionic diffusion coefficient as a function of temperature
in superionic glasses and short-time ion diffusion in fast ion glasses including the
systems AgI–AgPO3 and Ag2S–GeS2 with and without AgI have been made by
two groups [1547–1550]. It was found that the activation enthalpy of the short-time
diffusion coefficient Ea is smaller than that of the dc conductivity and approximately
equal to βE∗

a [1522(b), 1523, 1058, 1551]. Here β is the Kohlrausch exponent and
E∗

a is the activation enthalpy of conductivity relaxation observed at much lower
temperatures and frequencies. These neutron scattering experiments measure the
ion diffusion with correlation times of the order of picoseconds. The short-time
diffusion Ea from neutron scattering is compared with βE∗

a calculated from the long-
time conductivity relaxation data in Table 3.2. The good agreement between Ea and
βE∗

a suggests the crossover of dynamics near 1 ps.

3.2.3.2 Entangled Polymer Chains

Crossover from Primitive (Rouse) Dynamics to Many-Chain Cooperative
Dynamics

The length scale of entanglement interaction (i.e., the entanglement distance)
depends on the polymer but usually is of the order of a few nanometers. The radius
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Table 3.2 Activation enthalpies Ea of 0.5AgI–0.5AgPO3 [1547, 1548] and Ag2S–GeS2 [1549,
1550] from short-time ionic diffusion obtained by neutron time-of-flight measurements. The
Kohlrausch exponent β ≡ (1 − n) and the activation enthalpies Eσ of conductivity relaxation
observed in the same glasses at lower temperatures and frequencies in the many-particle hop-
ping region are also included. The near equality between Ea and βEσ is found, consistent with
the change to independent relaxation at times shorter than tc ≈ 2 ps and probed by quasielastic
neutron scattering (QENS)

Glass E∗
a β ≡ (1 − n) βE∗

a Ea (QENS)

AgI–AgPO3 21 (kJ/mol) 0.44 9.2 (kJ/mol) 8.7 (kJ/mol)
Ag2S–GeS2 0.34 eV 0.45 0.153 eV 0.15 eV

of gyration of the near-Gaussian chain depends on the chain length and can be even
larger. The length scale of interaction between entangled chains in polymer melts
is much larger than that between repeat units of the same polymer. Consequently,
the strength of interaction between entangled chains is weaker than that between
repeat units and we expect that the crossover time tc from many-chain complex
dynamics to primitive single-chain dynamics would be much longer than 1 or 2 ps,
the crossover time found for local segmental motion in polymers and for structural
relaxation of small molecular liquids and ionic conductivity relaxation. The single-
chain dynamics without considering chain–chain entanglement interactions is given
by the time-honored Rouse model modified for undiluted polymer [29], which has
proven to give excellent description of the viscoelastic properties of low molecular
weight unentangled polymers except at temperatures close to Tg [29, 1552].

Evidence of crossover from cooperative many-chain dynamics to Rouse dynam-
ics at tc of the order of nanoseconds can be found from the neutron spin echo
spectroscopic data of coherent scattering from poly(ethylene propylene) copoly-
mer and poly(dimethylsiloxane) chains by Richter et al. [1553]. They found the
Rouse dynamics at short times from the experimental intermediate scattering func-
tion S(Q,t) but it ceases to hold at times longer than a few nanoseconds, after which
the dynamics slows down as expected for cooperative many-chain dynamics as
shown in Fig. 289.

3.2.3.3 Colloidal Suspensions

Hard-Sphere Colloidal Particles

The diffusion of colloidal particles with a mean radius of about 102 nm [141,
143] suspended at high concentrations in a liquid constitutes another problem of
relaxations in a many-body system with hard-sphere interaction. This subject has
been discussed before in Section 2.2.1.1 and Fig. 9 shows the mean-square dis-
placement < r2(t) > obtained from the light-scattering dynamic structure factor
S(Q, t) by the relation S(Q, t) = exp(−Q2〈r2(t)〉/6) at particles volume fraction
φ = 0.465. < r2(t)> has t1.0 dependence for t<2 ms and crosses over to assume a
fractional power t0.65 dependence for t>2 ms, which eventually gives way to another
t1.0 dependence for t>0.2 s. The first crossover in the neighborhood defined by
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Fig. 289 Evidence of such a tc can be found from the neutron spin echo spectroscopic data of
coherent scattering from poly(ethylene propylene) copolymer and poly(dimethylsiloxane) chains
by Richter et al. [1553]. The intermediate scattering function S(Q,t) follows that of the Rouse
dynamics (dashed line) but ceases to hold at times longer than a few nanoseconds, after which the
dynamics slows down. Same data of polymers in dilute solution (not shown) follows the Rouse
dynamics. Reproduced from [1553] by permission

2ms < t<8 ms is due to the change of the particle diffusion correlation function
from exp(−t/τ0) to exp

[−(t/τ )1−n
]
, with n = 0.35. Thus, tc can be taken to be

4 ms. As shown in [1554], the diffusion correlation function exp
[−(t/τ )1−n

]
for

t >8 ms is responsible not only for the t0.65 dependence for t >2 ms but also for its
crossover to steady-state diffusion near 0.2 s. An analysis of the data for φ = 0.57
was given in [1554], but in retrospect the results from this analysis are doubtful. This
is because at higher volume fraction such as φ = 0.57 and above, S(Q, t) or <r2(t)>
is the complicated by the particles being caged for a long period of time. This caged
colloidal particle dynamics is equivalent of the “intermediate power law” (IPL)
observed in small molecular and polymeric glassformers by optical Kerr effect, and
as nearly constant loss (NCL) by and dynamics light scattering and dielectric relax-
ation discussed before in Sections 2.3.2.6, 2.3.2.23, and 2.3.2.33. Its appearance in
S(Q, t) or < r2(t)> obscures the crossover and makes it difficult to ascertain the
relaxation times τ0.

Aqueous Suspension of Laponite

Also discussed before in Section 2.2.1.1, from dynamic light scattering in aqueous
suspension of Laponite, the intermediate scattering function f (q, t) at short times
has the exp(−t/τf) dependence, with τf having the q–2-dependent normal Brownian
motion [338], and thus it is the primitive diffusion in the CM. At longer times, f (q, t)
follows the time dependence of exp[−(t/τs)1−n] [343, 344]. In practice, f (q, t) was
fitted by the sum
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f (q, t) = A exp(−t/τf) + (1 − A) exp[−(t/τs)
1−n]. (3.15)

An analysis of the data in terms of the CM by Zulian et al. gave values of the
crossover time tc for samples with different Laponite concentrations [344]. The
results of the analysis show that tc becomes shorter on increasing Laponite weight
concentration Cw, following a linear decrease of log10(tc) with Cw. The value of tc
is ∼1 ms at low Cw of 0.4 wt% and decreases to ∼20 μs at high Cw of 3%. This
trend is consistent with the CM which predicts that tc is determined by the interac-
tion. Increase of Cw certainly enhances the interaction between the rigid discs in the
Laponite solutions. From the very original CM [47] reviewed in Section 2.2.1.2, it
is clear that stronger the interaction, larger the ωc and shorter the tc ≡ (ωc)−1. Also
found is that the fast and slow relaxation times τf and τs of aqueous suspension of
Laponite are related by the CM equation (3.3).

3.2.3.4 Semidilute Polymer Solutions

Adding a solvent to an entangled polymer separates the chains further apart, but
the chains are still entangled if the length of the chains is long and the concen-
tration is not too low. Such systems are called semidilute polymer solutions. If
the crossover from cooperative many-chain dynamics to primitive Rouse dynam-
ics exists, its crossover time tc would be longer than undiluted entangled polymers,
which is a few nanoseconds (see Fig. 289), because entanglement interaction is
weakened by the presence of the solvent. Figure 290 shows as an example from
light-scattering experiment performed on aqueous gelatin solutions a semidilute
entangled polymer solution by Ren et al. [776]. The light-scattering dynamic struc-
ture factor S(Q, t) shows clear evidence of sharp crossover from exponential decay
to Kohlrausch decay at tc ≤ 10−4 s for 3 and 7% aqueous gelatin (linear polymer)
solutions at T = 45◦C (above gel point) and 27◦C (below gel point).

The same was found in pre-gelling silica solution by Martin and Wilcoxon [1555,
1556] using quasielastic light scattering. The initial decay rate is proportional to Q2,
where Q is the scattering vector, indicating it is the primitive relaxation. The slower
relaxation that follows has the Kohlrausch stretched exponential time dependence.
In the pre-gel silica solution, tc lies between 10–5 and 10–4 s, and the Kohlrausch
fractional exponent (1–n) is equal to 0.65.

3.2.3.5 Polymeric Cluster Solutions

Similar light-scattering experiments on polymeric cluster solution by Adam et al.
[780] and Delsanti et al. [1557] also have the crossover from exponential decay
to Kohlrausch stretched exponential decay at tc with similar order of magnitude
as semidilute polymer solutions. In all these cases, the Kohlrausch exponent β ≡
(1 − n) decreases with increasing concentration of the polymer clusters, naturally
caused by increasing coupling between the relaxing units and hence the coupling
parameter of the CM.
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Fig. 290 Light-scattering dynamic structure factor S(Q, t) for 3% (bottom and right y-axis) and
7% (top and left y-axis) aqueous gelatin (linear polymer) solutions at T = 45◦C (above gel point)
and 27◦C (below gel point), showing the crossover time tc≤10–4 s. The x-axis is logarithm of time
in micro seconds ranging from 1μs to 105μs. Reproduced from [776] by permission

3.2.3.6 Associating or Aggregating Polymer Solutions

The time correlation data obtained from the dynamic light-scattering (DLS) exper-
iments on polymer solutions of various kinds by Nyström and coworkers [778,
1558–1560] and earlier by others [1561] have revealed the existence of two relax-
ation modes, one single exponential at short times followed by a Kohlrausch
stretched exponential at longer times. The first-order electric field correlation func-
tion g1(q, t) obtained from DLS (see Section 1.3.2) in all these reports was fitted by
Eq. (3.15) to deduce the parameters τf, τs, n, and A, and their q dependences. Here
are some examples of associating polymer:

(1) Aqueous solutions of a hydrophobically end-capped poly(oxyethylene) (POE)
urethane (HPOEU) by Nyström et al. [778].

(2) Aqueous solutions of associating diblock and triblock poly(oxyethylene)-
containing copolymers of the same type by Thuresson et al. [1558].

(3) Semidilute aqueous mixtures of various compositions of oppositely charged
and hydrophobically modified polyelectrolytes. In the system, the cationic
polymer is a N,N-dimethyl-N-dodecylammonium derivative of hydroxyethyl-
cellulose and the hydrophobically modified polyacrylate, which was chosen as
the negatively charged polyelectrolyte [1559].
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(4) An example of aggregating polymer solutions is aqueous solutions of low-
methoxyl pectins. Pectins are important water-soluble, anionic heteropolysac-
charides of plant origin. Structurally they are biopolymers consisting of a
linear backbone of randomly connected (1→4)-linked α-D-galactosyluronic
acid residues partially esterified with methanol and interrupted by (1→2)-linked
α-L-rhamnopyranosyl residues. Low temperatures and increased pectin concen-
trations promote the formation of multichain aggregates. The time correlation
data obtained from dynamic light-scattering experiments revealed, for all solu-
tions with polymer from 0.5 up to 1.5 wt%, the existence of two relaxation
modes, one single exponential at short times followed by a Kohlrausch stretched
exponential at longer times. In the semidilute regime at 1.5 wt%, on lower-
ing the temperature, chain associations are enhanced in the solutions resulting
in increasingly longer values of the Kohlrausch relaxation time of the slow
mode, and it has a stronger wave vector dependence. These features have been
rationalized in the framework of the CM by Kjøniksen et al. [1560].

(5) Similar results were obtained by Narayanan et al. also by DLS in aqueous
solutions of pectin by the addition of calcium chloride to induce gelation [1562].

(6) The crossover was found in two other systems: aqueous alginate modified by
association and gelation via reaction by Bu et al. [1563] and semidilute aqueous
hyaluronic acid solutions by Maleki et al. [1564(a)].

(7) Similar result was found in rod-like micelles formed at 3 M NaCl, which
become increasingly entangled with increasing concentration of the copoly-
mer PEO–PPO–PEO triblock copolymers [1565]. Length of the micellar rods
increases with increase in NaCl concentration at constant copolymer concentra-
tion. Another system is a thermosensitive methoxy-poly(ethylene glycol)-block-
poly(N-isopropylacrylamide)-block-poly(4-styrenesulfonic acid sodium) tri-
block copolymer having the following composition: MPEG45-b-P(NIPAAM)n-
b-P(SSS) with n = 17, 48, and 66 [1564(b)]. The fast relaxation mode always
is diffusive with D = 1/τfq2.

3.2.4 Anomalous Q−2/(1−n) Dependence of τ

Quasielastic neutron scattering data of molecular glassformers presented in Section
2.2.5.2 have shown that the slow structural α-relaxation time τα does not have the
normal Q–2 dependence on the scattering vector Q, while the fast primitive relax-
ation time τ0 does. Instead τα has the stronger but anomalous Q–2/(1–n) dependence,
where (1–n) is the fractional exponent of the Kohlrausch correlation function of the
α-relaxation. This is also the case for non-molecular glassformers including col-
loidal particle suspension [143] and Laponite [344] from dynamic light-scattering
measurements. This is one of several properties of the α-relaxation indicating that
they are governed by the dispersion or n, and the anomalies associated with them
originate from many-body dynamics. The anomalous Q−2/(1−n) dependence of τα
is derivable from the CM equations (3.1) or (3.2) simply by substituting the known
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or found Q–2 dependence of τ0 into them. If this anomaly of structural relaxation
of glassformers is indeed originating from many-body relaxation as proposed in
Section 2.2, then it should show up in relaxation of interacting systems which
are not glassformers and the relaxation process is entirely different from structural
relaxation of glassformers, as long as they are relaxations involving units that are
interacting with each other.

Almost all the systems discussed above in Sections 3.2.3.3–3.2.3.6 show that
the slow relaxation time τs of the Kohlrausch stretched exponential decay in Eq.
(3.15) has the anomalous Q−2/(1−n) dependence, while τf has the normal Q–2 depen-
dence. All relaxations of the systems in Sections 3.2.3.4–3.2.3.6 involve motions of
polymer chains totally unrelated to the structural α-relaxation and the glass transi-
tion problem. Because these relaxations also exhibit the crossover from exponential
to Kohlrausch decay in some neighborhood of tc, the CM equations (3.1) and
(3.2) hold and explain the Q−2/(1−n) dependence of τs. For other related applica-
tions of the CM, see the review in [1567]. To be precise, τs and (1 − n) are two
separate parameters in the Kohlrausch function. While τs has the experimentally
determined Q dependence given by τs ∝ Q−αs , the exponent (1–n) is indepen-
dent of Q, and it turns out that αs is in reasonably good agreement with 2/(1 − n).
The systems showing the Q−2/(1−n) dependence of τs vary greatly. They include
(i) aqueous solutions of linear random coil molecules of swine gelatin, (ii) syn-
thetic polymer (polyurethane) cluster solutions and pre-gelling silica solution, (iii)
aqueous solutions of a hydrophobically end-capped poly(oxyethylene) urethane, (iv)
aqueous solutions of associating diblock and triblock poly(oxyethylene)-containing
copolymers, (v) semidilute aqueous mixtures of various compositions of oppositely
charged and hydrophobically modified polyelectrolytes, (vi) aqueous solutions of
the biopolymer pectin, alginate, and hyaluronic acid, (vii) rod-like micelles formed
by the copolymer PEO–PPO–PEO triblock copolymers in the presence of NaCl,
and (viii) aqueous solutions of hydroxypropylcellulose (HPC) by probe diffusion
measurements [198, 777, 1566].

Not mentioned in the above is the three-component microemulsion system con-
taining bis(2-ethylhexylsulfosuccinate) (AOT) (surfactant), D2O, and decane (oil),
and the measurements by dynamic light-scattering, small-angle neutron scattering,
and neutron spin echo (NSE) spectroscopic measurements by Sheu et al. [1568].
The time-dependent density correlation function exhibits the Kohlrausch form
with stretch exponent (1–n), and its relaxation time has the anomalous Q−2/(1−n)

dependence.
The Q−2/(1−n) -dependence of τs is thus shared by these diverse systems besides

the colloidal suspension and Laponite. This suggests that the same Q−2/(1−n) depen-
dence of the structural α-relaxation time of glassformers is a universal manifestation
of many-body relaxation.

Before leaving this topic, the data from three systems are shown. All illustrate
the increase of n or decrease of the Kohlrausch stretch exponent β ≡ (1 − n) when
interaction is enhanced by one way or the other, as well as corresponding increase
of the exponent αs of the experimentally determined Q dependence τs ∝ Q−αs and
the good agreement of αs with 2/β.
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The first example is taken from light-scattering experiment performed on aque-
ous gelatin solutions, the semidilute entangled linear polymer solutions by Ren et al.
[776] shown in Fig. 291. The dynamic structure factor S(Q, t) has been presented in
Fig. 290.

τ(q) ∝ q−2/β

3%

Fig. 291 Data of the slow-chain diffusion relaxation time τc (symbols) in aqueous gelatin semidi-
lute solutions (symbols) showing its q dependence, which is well described by the q−2/(1−n)

dependence (lines) predicted by the CM. Reproduced from [776] by permission

The fast-chain diffusion process with exponential decay has the normal q–2

dependence for its relaxation time τf. The q dependence of the slow polymer chain
diffusion time τs from the dynamic structure factor S(q, t) is shown by symbols in
Fig. 291 for 3% aqueous gelatin solutions (τc in the figure). The data at 45◦C (open
squares) were taken above the gel point (∼30◦C) and the Kohlrausch stretched expo-
nential fit to the time dependence of S(q, t) has the stretch exponent (1 − n) = 0.81.
Also shown in the same figure are the data of τc at 27◦C, which is below the gel point
and the stretch exponent (1 − n) = 0.67. The larger n at 27◦C is due to enhanced
intermolecular coupling in the gel by the presence of cross-links. The lines in the
figure have the predicted q−2/(1−n) dependence using exactly the values of 0.81 and
0.67 for (1–n) obtained from the Kohlrausch fits. It can be seen from the figure that
these lines well describe the q dependence of τc.

The second example come from 0.1, 0.5, and 1.5 wt% of pectin solutions by
Kjøniksen et al. [1560]. Part (a) of the left panel of Fig. 292-1 presents the temper-
ature dependence of the stretched exponent β of the Kohlrausch relaxation function
of the slow mode for the pectin solutions. Part (b) shows the effects of temperature
and polymer concentration on αs and 2/β, as well as good agreement between these
two quantities.

The third example shown in the right panel of Fig. 292-1 comes from the semidi-
lute aqueous mixtures of various compositions of anionic hydrophobically modified
polyacrylate (HM-P-) and cationic hydrophobically modified hydroxyethylcellulose
(HM-P+) with total polymer concentration of 1 wt% by Tsianou et al. [1559]. Part
(a) of the figure presents some examples of the wave vector q dependences of the
fast (τ−1

f ) and the slow (τ−1
s ) inverse relaxation times for several mixture ratios
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Fig. 292-1 (Left) (a) Temperature dependence of the stretched exponent β for pectin solutions at
the concentrations shown. (b) Effects of temperature and polymer concentration on the quantities
2/β and αs, illustrating the q dependence of the slow inverse relaxation mode. Reproduced from
[1560] by permission. (Right) (a) Illustration of the wave vector dependences of the fast (τf

–1) and
the slow (τs

–1) inverse relaxation times for semidilute aqueous mixtures of various compositions
of anionic hydrophobically modified polyacrylate (HM-P-) and cationic hydrophobically modi-
fied hydroxyethylcellulose (HM-P+) with total polymer concentration of 1 wt% by Tsianou et al.
[1559]. The mixture ratio r is indicated. (b) Effects of the mixture ratio on the quantities 2/β (see
the main text for explanation) and αs, illustrating the q dependence of the slow inverse relaxation
time. Reproduced from [1559] by permission

indicated. Part (b) shows the effects of the mixture ratio outside the two-phase
region (shaded area labeled by 2) on the quantities 2/β and αs, and the good
correspondence between them. It is understood that the intermolecular interactions
are strengthened when approaching the two-phase region because of polymer clus-
tering. Thus the accompanying observed decrease of β and the good agreement
between 2/β and αs are in accord with the CM predictions [1567].

The fourth example is given by the family of thermosensitive methoxy-poly
(ethylene glycol)-block-poly(N-isopropylacrylamide)-block-poly(4-styrenesulfonic
acid sodium) triblock copolymers having the following composition: MPEG45-b-
P(NIPAAM)n-b-P(SSS) with n = 17, 48, and 66 [1564(b)]. The structure of the
triblocks is shown by the chemical formula and the illustration on the right side
of Fig. 292-2. Overall, there is good agreement between αs and 2/βs, where αs

is the power in the observed dependence τs ∝ Q−αs and βs ≡ (1 − ns) is the
Kohlrausch exponent of the stretched exponential correlation function for the slow
mode. Remarkably, even the temperature dependences of αs and 2/βs are about the
same.
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Fig. 292-2 (Left) Effects of temperature and salt addition on the quantities 2/β (see text for expla-
nation) and αs, expressing the q dependence of the slow relaxation time, for 1 wt% solutions
of M(PEG)45-b-P(NIPAAM)n-b-P(SSS)22. Courtesy of Bo Nyström. The data shown are to be
published as [1564(b)] in the future. (Right) Chemical structure and illustration

3.2.5 Different Correlation Functions of the Same Relaxation Can
Have Different Kohlrausch Exponents (1– n), Relaxation
Times τ , and T-Dependences

Previously in Section 2.2.5.6, experimental data of the structural α-relaxation in the
same glassformers were presented to show that the Kohlrausch correlation func-
tions 〈μ(0)μ(t)〉 = exp[−(t/τμ)1−nμ] of different dynamic variables μ can differ in
the stretch exponent (1 − nμ) and the value of the relaxation time τμ as well as its
T dependence. This situation occurs when comparing data obtained from different
techniques such as translational diffusion, rotational diffusion, dielectric relaxation,
dynamic light scattering, mechanical relaxation, and NMR, which involve vari-
ous dynamic variables. This property has been interpreted as caused by different
dynamic variables weighing the effect of many-body relaxation differently, result-
ing in different degrees of stretching of the α-relaxation to different longer times.
Correlation function for dynamic variable μ that is more stretched (i.e., the exponent
nμ appearing in the Kohlrausch function is larger) has longer relaxation time τμ and
stronger T dependence of τμ. These properties are predicted by the CM equations
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(3.1) and (3.2) if the primitive relaxation times τ0μ of all the dynamic variables are
equal or about equal and have the same T dependence. It can be seen from Eq. (3.1)
rewritten as

τμ = τ0μ(τ0μ/tc)nμ/(1−nμ) (3.16)

that larger nμ leads to longer τμ. Like Eq. (3.2) for the dependence on any variable
U, when Eq. (3.16) is simplified to show just different T dependences and rewritten
as

τμ(T) ∝ [τ0μ(T)]1/(1−nμ), (3.17)

it clearly shows that larger nμ leads to stronger T dependence of τμ. When special-
izing to comparison of translation diffusion with viscosity or with probe rotation,
these properties constitute the breakdown of Stokes-Einstein (SE) and the Debye-
Stokes-Einstein (DSE) relations, the property recognized by many researchers as a
key to solve the glass transition problem (see Section 2.2.5.6). Here, experimental
data of relaxation in other interacting systems that have nothing to do with struc-
tural α-relaxation of glassformers are presented to show the similar properties, and
they are thus general behavior of many-body relaxation in interacting systems. This
demands that any solution of the breakdown of SE and DSE relations in glassform-
ers proffered has to be general enough to be applicable to the other systems. Since
the CM is designed for relaxation and diffusion of any interacting systems, naturally
its explanation for the breakdown of SE and DSE relations in glassformers given in
Section 2.2.5.6 is general enough to satisfy this requirement.

3.2.5.1 Glassy Ionic Conductors: Conductivity vs. NMR

This subject has been touched before in Section 2.2.1 to support the CM explanation
for the breakdown of SE and DSE relations in glassformers. More experimental data
and details are given here to stress the universal behavior of relaxation and diffusion
in interacting systems.

Experimental Data

The fact that the dynamics of ion diffusion as probed by nuclear spin relaxation
(NSR) and electrical conductivity relaxation (ECR) in glassy ionic conductors is
significantly different was discovered by Tatsumisago et al. [147, 279] and by
Kanert and coworkers [280–282] at almost the same time in 1992 on different ionic
conductors. Subsequently, other workers have repeatedly confirmed this anoma-
lous property [283–289] that resembles the breakdown of the DE and DSE laws.
Experimentally both the electrical conductivity and NSR correlation functions have
the Kohlrausch forms and Arrhenius T dependences for their relaxation times:

φM(t) = exp[−(t/τM)1−nM], where τM = τM,∞ exp(EM/kT) (3.18)
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and

φs(t) = exp[−(t/τs)
1−ns ], where τs = τs,∞ exp(Es/kT). (3.19)

Notwithstanding, τs of the relaxation of the nuclear spin of the diffusing ion is
considerably longer than the electrical conductivity relaxation time τM. The activa-
tion energies Es of τs is larger than EM of τM. At this level, the relations τs >> τM
and Es >EM from the dynamics of ions are analogues of the relations between the
viscosity (or rotation relaxation) and self (or probe)-diffusion, which constitute the
breakdown of the SE and DSE relations. Moreover, it was found that ns > nM, the
analogue of nη >nD or nr >nD, which is the key to the explanation of the breakdown
of the SE and DSE relations by the CM in Section 2.2.5.6. The effect was also found
by a Monte Carlo simulation experiment of a disordered Coulomb lattice gas model
of the ionic conductor [467, 1569, 1570]. It is also present in the NMR and con-
ductivity relaxation data of the non-glassy fast ionic conductor sodium β-alumina,
Na-βAl2O3, found by Bjorkstam and Villa [290] as early as 1980 and brought back
into attention in 1993 by [291]. These experiments have proven that the decoupling
between NSR and conductivity relaxation is a general phenomenon of interacting
many-ion dynamics, glassy or crystalline.

Before proceeding further, I hasten to point out that electrical conductivity relax-
ation (ECR) is a macroscopic probe involving the measurement of capacitance C(ω)
and conductance G(ω), from which the parallel quantities ε∗(ω), σ ∗(ω) or M∗(ω)
are obtained. Therefore, the macroscopic electrical conductivity correlation func-
tion in Eq. (3.18) fitting the M∗(ω) is not the microscopic conductivity correlation
function φσ (t) given by

φσ (t) = exp[−(t/τσ )1−nσ ], where τσ = τσ ,∞exp(Eσ /kT). (3.20)

The Kohlrausch exponents of φM(t) and φσ (t) are the same and both denoted by
n, because the time dependence or frequency dispersion is faithfully reproduced by
the macroscopic measurement. The difference is between the macroscopic τM and
the microscopic τσ , which will be given later, although they have the same activa-
tion energy Eσ and hence the prefactors τσ ,∞ and τM,∞ differ. To avoid confusion
with notations, the relations between the parameters of electrical and microscopic
conductivity relaxation are written explicitly as follows:

nM = nσ , EM = Eσ , τM,∞ �= τσ ,∞. (3.21)

On the other hand, nuclear spin-lattice relaxation is a microscopic probe of the
motion of the mobile ions, and the SLR, T−1

1 (ωL, T), corresponds to the microscopic
correlation function.

Here we show the three examples, all of which involve macroscopic conductiv-
ity relaxation measurements and hence τM. The first one is from the 1992 work of
Kanert and coworkers on a heavy metal fluorozirconate glass with the following
composition (in mol%): 27.4ZrF4, 27.4HfF4, 19.8BaF2, 3LaF3, 3.2AlF3, 20NaF
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(ZBLAN glass; Tg = 553 K). The F– ions are responsible for ionic conductivity,
which was measured over ranges of frequencies and temperatures. The conductivity
relaxation time τM, its activation energy Eσ , and the coupling parameter nσ deter-
mined are shown in Fig. 293 and Table 3.3. The 19F spin-lattice relaxation (SLR)
times τs has been measured at different Larmor frequencies. The τs of ZBLAN
was obtained from the 19F spin-lattice relaxation rate T−1

1ρ (ωL, T) in the rotating
frame at Larmor frequencies of 28, 42, and 62 kHz matching the high frequencies
used to measure the conductivity relaxation time τM [282]. The results of τs are
shown in Fig. 293, and ns and Es determined from fits to temperature dependence of
T−1

1ρ (ωL, T) are given in Table 3.3. All measurements were in the glassy state where
the temperature dependences of τs and τM are undoubtedly Arrhenius, and their dif-
ference is brought out by the comparison of the T−1

1ρ (ωL, T) with the product σT at
the same frequency of about 25 kHz. The fact that the characteristic temperatures
Ts ≈ 525 K and TM ≈ 425 K of τs and τM, respectively, are so different makes
perfectly clear SLR and conductivity relaxation are not the same, although both

Fig. 293 ZBLAN conductivity correlation time τM from data analysis of the electric modulus and
NSR correlation time τs from frequency dependence of 1/T1ρ maxima plotted against 1000/T . The
inset is a comparison of the T dependence of the ionic motion-induced part of the 19F spin-lattice
relaxation (SLR) rate 1/T1ρ and of σT observed at the same frequency of about 25 kHz. These
isochronal data clearly show the different temperatures Ts ≈ 525 K and TM ≈ 425 K of the SLR
maximum and of the crossover point of σT from one T dependence to another. Reproduced from
[282] by permission
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Table 3.3 The relaxation time τs, activation energy Es, and coupling parameters ns for SLR, and
the corresponding quantities τM, Eσ , and ns for ECR for three different glassy ionic conductors

Ionic conductor
Dynamic
variable U βU≡ (1–nU) E∗

U (K)
(1−nU)E∗

U
(K)

(Li2S)0.56(SiS2)0.44 Spin (SLR) 0.35 5845 2046
(Li2S)0.56(SiS2)0.44 M (ECR) 0.52 3911 (from τM)

4000 (from σdc)
2034
2080

(LiCl)0.6(Li2O)0.7(B2O3) Spin (SLR) 0.35 7400 2590
(LiCl)0.6(Li2O)0.7(B2O3) σ (ECR) 0.50 5500 2750
ZBLANa spin (SLR) 0.30 13346 3830
ZBLANa σ (ECR) 0.44 9284 4085

a27.4ZrF, 27.4HfF, 19.8BaF, 3LaF, 3.2AlF3, 20NaF (in mol%)

measure the motion of the F– ions. For details of the procedure used to obtain the
parameters, see [282].

The second example is the 1992 study by Tatsumisago et al. [147, 279] on Li+ ion
motion in the fast glassy ionic conductor 0.6LiCl–0.7Li2O–B2O3. The right panel of
Fig. 294 is the Arrhenius plot of the correlation time of the mobile Li+ ion τs deduced
from 7Li nuclear spin-lattice relaxation measurement and the macroscopic electri-
cal conductivity relaxation time τM from dielectric measurements. In this work, the
Larmor frequencies of the SLR in the 10–100-MHz range are much higher than the
conductivity relaxation measurements, unlike the rotating frame SLR measurements
in the tens of kilohertz range of Kanert and coworkers. Nevertheless, the fact that
τs is much longer than τM and has a larger activation energy Es than Eσ is clear

Fig. 294 (a) Arrhenius plot of the correlation time of the mobile ion τs deduced from 7Li nuclear
spin-lattice relaxation measurement (open squares) and the macroscopic electrical conductivity
relaxation time τσ (•) from measurements of τσ . Data from [286] and [292] are replotted here. (b)
Arrhenius plot of the correlation time of the mobile ion τs deduced from 7Li nuclear spin-lattice
relaxation measurement (open squares) and the macroscopic electrical conductivity relaxation time
τσ or τEM (closed circles) from measurements of 0.6LiCl–0.7Li2O–B2O3. Data from [279] and
[291] are replotted here. The upper full line is τs calculated by the CM (see text)
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from the figure. Furthermore, the coupling parameters ns for SLR and nσ for con-
ductivity relaxation have been determined from the data. All parameters are given
in Table 3.4.

The third example is taken from glassy Li+ conductor (Li2S)0.56(SiS2)0.44 by
Borsa et al. [286]. The quality of the data is similar to that of Tatsumisago
et al., and the Arrhenius plot of τs and τM shown in the left panel of Fig. 294
shows the same features. All parameters deduced from the data are entered into
Table 3.3.

The CM Explanation

The frequency-dependent conductivity σ (ω) is given in Eq. (1.130) by the Fourier
transform of the current–current correlation function, or equivalently the velocity–
velocity correlation function φσ (t) = N−1∑

ij 〈vi(0)vj(t)〉. An expression for σ (ω)
in terms of the mean-square displacement is given by Eq. (3.4). In this expres-
sion, the Haven ratio [1490] though less than unity is not very small for glassy
ionic conductors, which indicates that the tracer diffusion correlation function
φD(t) = 〈r(0)r(t)〉 is only slightly different from φσ (t) and the i �=j cross terms is
not important.

If spin-lattice relaxation (SLR) measurements are made using the mobile ion
nucleus, and the ion SLR mechanism is caused by time-dependent fluctuations
of the nuclear spin coupling energy ωij between interacting ion pairs (i,j), the
resulting SLR rate T−1

1 (ωL, T) as a function of temperature at the Larmor fre-
quency ωL is given by the expression κ[J(ωL, T) + 4 J(2ωL, T)] [92]. Here κ

is the coupling constant and J(ω,T), the spectral density function, is the real
part of the Fourier transform J(ω, T) ≡ Re

∫∞
0 φs(t/τs) exp (−iωt)dt of the pair–

pair correlation function ϕs(t) = ∑
i,j

< ωij(0)ωij(t) >. If the ion NSR is via

magnetic dipole or quadrupolar interactions, it is governed by the correlation

function φs(t) = (
1
/

N
)∑

i �=j

(
1
/

N
)∑

i �=j

〈
F(q)

ij (t)F(q)
ij (0)

〉
, where F(q)

ij (t) =
q
√

8π
/

15Y2 (q)�ij

/
r3

ij, Y2 is the spherical harmonics, rij is the distance between

two ions, and q= 1, 2 [92].
φσ (t) is effectively a correlation function for an ion, while φs(t) is a correlation

function for a pair of ions. The latter weighs more heavily on the contributions from
ion pairs at smaller distance of separation rij, particularly for φs(t) that involves

F(q)
ij (t) and the (rij)−3 factor. Therefore, ion–ion interaction has stronger slowing

and stretching effect on φs(t) than on φσ (t) and this translates in the context of the
CM to a larger ns in the SLR correlation function in Eq. (3.19) than nσ in the electri-
cal conductivity correlation function in Eq. (3.18) or the macroscopic conductivity
relaxation function in Eq. (3.20), e.g., ns > nM. The same argument has been used to
justify the coupling parameter for center–of-mass diffusion is smaller than that for
viscosity in the CM explanation of the breakdown of the Stokes–Einstein relation in
Section 2.2.5.6. The independent relaxation of the ion and its primitive relaxation
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time τ0 = τ0,∞ exp(Ea/kT) as well as tc are the same for both NSR and σ (ω). On
applying Eq. (3.1) separately to NSR and σ (ω), we have [282, 291–294, 1571]

τs = [(tc)−nsτ0]1/(1−ns) = τ0[τ0/tc]ns/(1−ns), τσ = [(tc)−nσ τ0]1/(1−nσ ) = τ0[τ0/tc]nσ /(1−nσ ).

(3.22)

Since ns > nσ and the fact that in the experimental investigations all relaxation
times including τ0 are much longer than tc ≈ 1 − 2 ps, these equations lead us to
the result that τs >> τσ , as observed. In particular, we have the following relations
between the activation energies and prefactors:

(1−ns)Es = (1−nσ )Eσ = Ea, τs,∞ = τ∞(τ∞/tc)ns/(1−ns), τσ ,∞ = τ∞(τ∞/tc)nσ /(1−nσ ).

(3.23)

The first relation is well obeyed by the experimental data from electrical conduc-
tivity relaxation (ECR), in view of the relations between the parameters in φM(t)
of ECR and φσ (t) given in Eq. (3.21), within experimental errors as demonstrated
in Table 3.3. The prefactor τ∞ of the primitive relaxation time τ0 is shorter than
tc ≈ 1 − 2 ps because it is the reciprocal of vibrational frequency. From this and
ns > nσ , it can be deduced from the second and the third relations under Eq. (3.23)
that τs,∞ << τσ ,∞ << τ∞, which is in accord with experiments. This can be seen
if the Arrhenius T dependences of τs and τM in Figs. 293 and 294 are extrapolated
to infinite temperature. From the ZBLAN data in Fig. 293, τs,∞ = 6.6 × 10−17 and
τM,∞ = 4.1×10−15. The experimental value of the prefactor τs,∞ is also in agree-
ment with that calculated from the second CM equations in Eq. (3.23), assuming that
the prefactor τ0,∞ of τ0 is 2 × 10−13 s [282]. The comparison of the experimental
prefactor τs,∞ with calculation has to wait later after the microscopic prefactor τσ ,∞
has been deduced from the experimental τM,∞ by a relation in the next subsection.

An Analogue of Breakdown of SE and DSE Relations and Decoupling
of Dynamic Variables in the Same Glassformer

The decoupling of nuclear SLR from electrical conductivity relaxation is an exact
analogy of the breakdown of SE and DSE relations in supercooled liquids. The
SLR is the counterpart of viscosity or rotational relaxation, and electrical conduc-
tivity relaxation is the counterpart of self-diffusion or probe translational diffusion.
It is also the analogue of the observation of different magnitudes and temperature
dependence of the structural α-relaxation times for dielectric, mechanical, light-
scattering, and enthalpy relaxation in a variety of glassformers by experiments and
by molecular dynamics simulations [266–275], discussed before in Section 2.2.1(v).
The relations τs >> τσ , Es > Eσ , and ns > nσ have analogues in the breakdown
of SE and DSE relations (see Section 2.2.5.6 and Fig. 247). In the present case, the
coupling parameters ns and nσ are known from experiment to provide a critical test
of the prediction of the CM, which turned out to be valid in general for glassy ionic
conductors.
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Quantitative Relation Between τ s and τσ Beyond (1 − ns)Es = (1 − nσ )Eσ = Ea

As discussed before, electrical conductivity relaxation (ECR) measurements give
macroscopic information about ion motion dynamics. The capacitance C(ω) and
conductance G(ω) measured, as well as the quantities ε∗(ω), σ ∗(ω), or M∗(ω)
obtained, give no clue to ion concentration, charge, and jump length, and thus clearly
it is not microscopic. Notwithstanding, the measured electrical conductivity relax-
ation (ECR) time τM and the microscopic conductivity relaxation time τσ have the
same activation energy Eσ , emphasized in Eq. (3.21), but their prefactors τσ ,∞ and
τM,∞ differ. There is a way to calculate τσ from τM given by a comparison between
microscopic and electric conductivity relaxation in [56(b)].

Starting from the velocity–velocity correlation function, an explicit expression
for microscopic complex conductivity σ ∗(ωτσ ) is derived via a stochastic transport
theory which is given as

σ ∗(ωτσ ) = (Nq2/kTτσ )(r2
rms/6)

{
1

φ̃σ (ωτσ )
− iωτσ

}
, (3.24)

where N is the density of the mobile ions, q the ion charge, k the Boltzmann constant,
and T the temperature. The quantity r2

rms represents the mean-squared displacement
of an ion in hopping to nearest neighboring sites, and φ̃σ (ωτσ ) is the Laplace–
Fourier transform of φσ (t) = exp[−(t/τσ )1−nσ ]. It has also been shown in [56(b)]
that the complex conductivity from ECR can be rewritten in the form

σ ∗
M(ωτM) = (εo/M∞τM)

{
1

φ̃M(ωτM)
− iωτM

}
, (3.25)

which is formally the same as σ ∗(ωτσ ) in the previous equation. From this, τσ is
related to τM by

τσ /τEM = (Nq2r2
rms)/(6kTεoε∞). (3.26)

This relation enables the microscopic τσ to be calculated from the experimen-
tal macroscopic τM and the quantities N, q, and r2

rms which can be deduced from
the chemical and physical structure of the ionic conductor. This has been car-
ried out for the three glassy and one crystalline ionic conductors [1572], and
three of these Li+ ion conductors 0.56Li2S–0.44SiS2, 0.45Li2S+0.55GeS2, and
Li0.5La0.5TiO3(LLTO) are shown in Fig. 295.

After obtaining the microscopic τσ , the primitive relaxation time τ0 can be
deduced from the second part of Eq. (3.22) and then the SLR time τs can be cal-
culated using this τ0 by the first part of Eq. (3.22). The three steps outlined can be
combined into one equation:

τs = [t(βs−βσ )
c (τMNq2r2

rms/6kTεoε∞)βσ ]1/βs , (3.27)
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Fig. 295 (Left) Arrhenius plot of the correlation time of the mobile ion τs deduced from 7Li
nuclear spin-lattice relaxation measurement and the macroscopic electrical conductivity relaxation
time τM (labeled here as τEM) for 0.56Li2S–0.44SiS2. Experimental data of τs (filled diamonds
and open diamonds determined by two different methods) and τEM (closed circles). The three
dashed lines in descending order are the corresponding microscopic ion hopping relaxation time
τσ calculated from Eq. (3.26) for rrms = 3, 2.5, and 2 Å and other known parameters given in
[1572]. The most probable value of rrms is 2.5 Å. The three dotted lines in descending order are
the corresponding microscopic ion hopping relaxation time τ0 calculated from τσ by solving the
second part of Eq. (3.22) for the three cases of rrms = 3, 2.5, and 2 Å. After obtaining τ0, the three
full lines in descending order are τs calculated from the first part of Eq. (3.22) with rrms = 3, 2.5,
and 2 Å, respectively, and other parameters given in [1572]. There is good agreement with the
experimental τs. Also shown is the primitive relaxation time τ0,EM (dashed line at the bottom)
calculated from τEM by solving an equation similar to Eq. (3.22), with τEM replacing τσ . Note
that τs calculated from τ0,EM (dashed–dotted line) cannot explain the spin-relaxation time data.
(Middle) Arrhenius plot of the correlation time of the mobile ion τs deduced from 7Li nuclear spin-
lattice relaxation measurement and the macroscopic electrical conductivity relaxation time τEM for
0.45Li2S+0.55GeS2. Experimental data of τs (filled and open circles) and τEM (triangles). Other
lines are the same as in the caption of the left panel, except here only results for rrms = 2.5 Å
are shown. (Right) Same as in the caption of Fig. 1 for Li0.5La0.5TiO3 (LLTO), a crystalline ionic
conductor. The value of rrms = 3.87 Å is known. Experimental data of τs (filled diamonds) and τEM
(filled circles). Reproduced from [1572] by permission

where βs ≡ (1 − ns) and βσ ≡ (1 − nσ ). This relation now enables the CM to
quantitatively account for the difference between the experimental values of τs and
τM. Figure 295 demonstrates excellent agreement with the data. A corollary of Eq.
(3.27) is the relation between Es and Eσ :

Es/Eσ = (1 − nσ )/(1 − ns), (3.28)

a prediction that has previously been verified (see Table 3.3).

Isotope Mass Dependence of σ

Before leaving the subject of dynamics of ions in ionic conductors, we mention an
interesting experimental finding of anomalous isotope mass dependence of conduc-
tivity by Jain and Peterson in 1982 [1573] that has been shown to provide strong
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support of the application of the CM to ion dynamics from the very start in 1984
[362].

The experimental study is on the isotope mass dependence of the ion conductiv-
ity. Replacing the more abundant isotope 7Li by 6Li in the Li2O:2.88B2O3 glasses is
one way to change the prefactor, because the attempt frequency depends on the mass
m of the vibrating ion. Given the rest are the same except changing the Li isotope
mass, the change of the prefactor is directly reflected in the corresponding change of
the dc conductivity. The dc conductivity can be measured to high accuracy and the
ratio 6σ/7σ of the conductivities was found to be much larger than

√
7/6 from the

classical dependence of the attempt frequency on the reciprocal square root depen-
dence of the mass m or other similar values from more sophisticated theories [1573].
The data of 6σ/7σ are shown in the right panel of Fig. 296.

Fig. 296 (Left) Loss electric modulus M′′(f ) vs. frequency for the Li2O–3B2O3 glass containing
predominantly 6Li isotope. Solid curves are Kohlrausch fits with n values indicated at temperatures
(in ◦C): (a) 108.9; (b) 131.0; (c) 153.8; (d) 177.5; (e) 200.5; (f) 222.2. (Right) The ratio 6σ / 7σ of
the conductivities of 6Li and 7Li isotopes. Experimental data indicated by circles. Upper curve is
theoretical fit based on the CM equation using n values in the left panel. Lower curve is the normal
isotope mass dependence, i.e., when n is put to zero. Reproduced from [362] by permission

The observed anomalous isotope mass m dependence of dc conductivity has been
explained quantitatively from the CM relation

τ ∗∞(m) = [t−n
c τ∞(m)]1/(1−n) (3.29)

between the prefactor τ ∗∞(m) of the observed conductivity relaxation time τσ and
the primitive prefactor τ∞(m) using the actual value of n obtained by fitting the
frequency dispersion of the data in an electric modulus representation by Fourier
transform of the Kohlrausch function. The values of the coupling parameter n are
obtained from the fits to the loss electric modulus data shown in the left panel of
Fig. 296. The calculated 6σ/7σ are in good agreement with the experimental data.

So far, no other theory except the CM has successfully explained this isotope
mass dependence.
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3.2.5.2 Entangled Polymer Chains: Self-Diffusion vs. Viscosity

There are direct experimental data of self-diffusion and viscosity of entangled poly-
mers showing that they have different activation energies and molecular weight
dependences. This property is a close analogue of the breakdown of Stokes–Einstein
relation found for small molecular glassformers and the difference between SLR and
conductivity of mobile ions in glassy and crystalline ionic conductors. However,
note that this anomaly is observed from the motion of polymer chains that has noth-
ing to do with glass transition, nor with ions in glasses or crystals. The discussion
of the dynamics of entangled polymer melts below in parallel with other differ-
ent systems serves to illustrate several other general properties of relaxing/diffusing
interacting systems.

Activation Enthalpy and Molecular Weight Dependences of Viscosity of Entangled
Polymers

Some high molecular weight entangled polymers such as polyethylene (PE), hydro-
genated polybutadiene (HPB), and poly(dimethylsiloxane) (PDMS) have low glass
temperatures and the terminal relaxation can be measured at temperatures high
above Tg of the polymers. At the high temperatures the terminal relaxation time as
well as the viscosity exhibited Arrhenius behavior. The activation energies Eη, deter-
mined from the zero-shear viscosity or terminal zone shift factors, were often found
to be larger than the conformational transition barrier energy Ea, which should gov-
ern the temperature dependence of the mobility of the polymer chains high above
Tg had they been able to relax independently of each other. Examples of PE and
HPB in Table 3.4 show Eη for shear viscosity of entangled linear chains, which is
larger than the known conformation energy barrier of about 3.5 kcal/mol for PE
and 4.2 kcal/mol for HPB [359, 360, 833–836, 1575]. The difference between the
activation energies of shear viscosity η and self-diffusion coefficient D will be the
subject of discussion in a later section.

Linear Entangled Polymers

Earlier attempt [360] and more sophisticated approach by taking into account of
constraint mitigation later [837] have applied the CM to the terminal relaxation of
entangled linear polymers. The coupling parameter can be obtained from fits to
the dielectric spectrum [837] or the mechanical spectrum [360] of monodisperse
polymers. The value of nη obtained falls within the range of 0.40 ≤ nη ≤ 0.43.
An alternative method to determine nη is from the experimentally observed ratio
JS/JN, which is a measure of the terminal dispersion [29]. Here JN is the plateau
compliance and JS is the steady-state compliance [165, 171, 248]. If the Kohlrausch
function is used to fit the terminal dispersion, then

JS

JN
= β

[
�

(
2

β

)/
�

(
1

β

)]2

, (3.30)
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Table 3.4 Parallel explanation of the molecular weight and temperature dependences of zero shear
viscosity of polyethylene (PE), hydrogenated polybutadiene (HPB), and polydimethylsiloxane
(PDMS). The actual conformational energy barrier of PE is taken from measurement on alka-
nes [360] and that of HPD is not known, but it is expected to be similar to PE. For references to
the sources of data on PE and HPB, see Table 2 in [1577]. For PDMS, the experimental activa-
tion energy for viscosity Eη is 3.56 kcal/mol [1578] compared with Ea=2 kcal/mol from neutron
scattering experiment [1579, 1580]

Linear
polymer

Measured
shear
viscosity
activation
enthalpy, Eη

(kcal/mol)

Observed M
dependence
of shear
viscosity

Coupling
parameter
for shear
viscosity
(nη)

Predicted M
dependence
of shear
viscosity,
from
τ0 ∝ M2.0

Predicted
conforma-
tional
energy
barrier, Ea
(kcal/mol)

Actual con-
formational
energy
barrier
(kcal/mol)

PE 6.35 M3.5 0.43 M3.5 3.6 3.5
HPD 7.2 M3.4 0.41 M3.4 4.2
PDMS 3.56 M3.5 0.43 M3.5 2.03 2.0

where � is the gamma function and β = (1− nη). The right-hand side of Eq. (3.30)
is a monotonic increasing function of nη that reaches the value of 2 when nη = 0.40
[360, 904]. Experimental value of JS/JN of monodisperse polymer melts is about 2
or slightly larger [165, 171, 248], and thus it substantiates that nη falls within the
range of 0.40 ≤ nη ≤ 0.43.

Incidentally, the coupling parameter nη does not depend on the length of the chain
as long as the molecular weight exceeds the molecular weight Me for entanglement
because the situation is self-similar. The terminal relaxation time τη and η are related
by the Maxwell equation η = GNτη, where GN is the plateau modulus. The values
of nη in the range of 0.40 ≤ nη ≤ 0.43 can immediately explain the M3.4 or the
M3.5 dependence of η and τη [905] based on Eq. (3.4) and the well-known M2.0

dependence of the primitive relaxation time τ0 of uncoupled motion of a single
chain from the Rouse model modified for undiluted polymers [29]. The observed
anomalous dependence of τη on M and T

τη (M, T) ∝ M3.4exp
(
Eη

/
RT
)

(3.31)

have been explained simultaneously by the generalization of Eq. (3.4)

τη (M, T) ∝ [τ0 (M, T)]1
/
(1−nη) = M2

/
(1−nη)exp

(
Ea
/(

1 − nη
)
RT
)

, (3.32)

with a single value of nη. The results can be seen from Table 3.4 for PE and HPD.
The companion relation for activation enthalpies is Ea = (1− nη)Eη. The enhanced
molecular weight dependence of τη and η is analogous to the enhanced isotope
mass dependence of Li+ ion conductivity in Li borate glasses [362, 1573], discussed
before in this section.
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For PE, from the experimental value of Eη = 6.35 kcal/mol [833], Ea =
(1 − nη)Eη yields 3.6 kcal/mol for the primitive activation energy. This is in agree-
ment with the value of 3.5 kcal/mol (14.8 kJ/mol) for the conformational energy
barrier of bulk PE from molecular dynamics simulations by Boyd and coworkers
[1581] and also consistent with the estimation of the potential energy for rotating
the carbon–carbon bonds in alkanes in the range from 3.1 to 3.7 kcal/mol by Flory
[1575]. There is additional support from 13C-NMR measurements of local segmen-
tal relaxation in two unentangled low molecular weight polyethylene C44H90 and
one with Mw = 2150 g/mol in the nanoseconds range by Qiu and Ediger [1582]. At
this short time range, many-body dynamics is not that important. This is supported
by the 13C-NMR experimental correlation function well described by an exponential
correlation function exp(−t/τα), and τα has an Arrhenius temperature dependence
with activation enthalpy equal to 16.7 kJ/mol (or 4 kcal/mol), which is close to the
primitive activation energy Ea deduced from Eη = 6.35 kcal/mol by the product
(1 − nη)Eη, which evaluates to 3.6 kcal/mol (or 15.1 kJ/mol).

For PDMS with nη = 0.43, Eq. 3.32) yields a molecular weight dependence of
M3.5 and Eη = 3.5 kcal/mol based on Ea = 2 kcal/mol from neutron scattering
data of Allen and coworkers [1579, 1580], which is in good agreement with the
experimental value of Eη = 3.56 kcal/mol (14.9 kJ/mol) from rheological mea-
surements of entangled PDMS with Mw = 105 g/mol (Me = 12, 000 g/mol)
[1578, 1583]. Conversely from the experimental value of Eη = 3.56 kcal/mol,
Ea = (1 − nη)Eη yields 2.03 kcal/mol, the primitive activation energy from neutron
scattering (Table 3.4). Nevertheless, viscosity measurement on PDMS with very low
molecular weight of 1250 and 550 g/mol by Ding et al. [1584] reported Eη = 14.8
and 13.5 kJ/mol, almost the same Eη of entangled PDMS. These values of Eη are
larger than Ea = 2 kcal/mol (8.4 kJ/mol) of local segmental relaxation of high
molecular weight PDMS from neutron scattering. The Eη of low Mw PDMS from
Ding et al. may be that of the sub-Rouse modes, which is cooperative in nature [872].

The viscosity η of entangled linear atactic polypropylene (aPP) does not have
Arrhenius temperature dependence [361, 902]. Effort has been made to measure η

at very high temperatures [361] where the local segmental relaxation time is of the
order of picoseconds [875]. Because tc is about 2 ps for polymers, the local seg-
mental relaxation is essentially in the primitive relaxation mode, and we can expect
its relaxation rate at these high temperatures governed by the conformational tran-
sition barrier energy of aPP, which is about 4 kcal/mol [1585]. The mobility of the
terminal relaxation of the chains and the viscosity should have the same activation
energy at the same temperatures. However, from the measurement of viscosity, the
apparent activation energy of the viscosity Eη of entangled aPP is estimated to be
7.2 kcal/mol at the very high temperatures [361]. This larger activation energy can
be explained again by Eq. (3.32), which predicts Eη = 7.0 kcal/mol from nη = 0.43
and Ea = 4 kcal/mol. By the way, the reptation theory [41–44] cannot predict Eη as
done by the CM.

The above shows that the CM equation(3.32) can explain both the molecu-
lar weight and temperature dependence of the viscosity of entangled polymers.
Rendell et al. [1577] have shown that the same CM can explain additionally the
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concentration dependence of the terminal relaxation and viscosity of entangled
polymer solutions. Explicitly, if φ is the polymer volume fraction, the predicted
combined M and φ dependences of viscosity is η ∝ M3.4φ3.4, in agreement with
experiment [905].

Branched Entangled Polymers

Changing the architecture of polymers from linear chains by branching to multiple-
arm star will enhance the molecular constraints overall and hence the effective
coupling parameter if the arms of the star are sufficiently long for them to fully
entangle. Larger coupling parameter nη for such a star than the linear value results
in stronger molecular weight dependence and higher activation energy of the vis-
cosity as predicted by Eq. (3.32). The relaxation times of the Rouse–Ham modes
for a star-branched polymer molecule still have the M2 dependence like the Rouse
modes for a linear molecule [29], and Eq. (3.32) still holds. The same conformation
energy barrier is deduced [359, 1577]. Such predictions are borne out by data of
star-branched PE and HPB as shown in Table 3.5.

Table 3.5 Shear viscosity data of star-branched PE

Star-
branched
polymer

Measured
shear
viscosity
activation
enthalpy, Eη

(kcal/mol)

Observed M
dependence
of shear
viscosity

Coupling
parameter
for shear
viscosity nη

Predicted M
dependence
of shear
viscosity

Predicted
conforma-
tional
energy
barrier, Ea
(kcal/mol)

Actual con-
formational
energy
barrier
(kcal/mol)

PE 11.66 M6.56 0.70 M6.67 3.5 3.5
HPD 14.29 0.71 M6.9 4.15 n.a.

From [833]. The data of HPB stars are taken from the Ph.D. thesis of V. R. Raju [1586]. For more
details, see [359, 1577]

Again, a larger coupling parameter can explain simultaneously the molecular
weight dependence and the activation energy for the stars. The larger values of the
coupling parameter are also consistent with the observed broader dispersions of the
terminal relaxation of the monodisperse stars [1577, 1586].

Different Activation Energies and M Dependence of Self-Diffusion than Viscosity
in Some Entangled Polymers

Self-diffusion of entangled polymer chains was measured for PE and HPB [1587].
For the self-diffusion coefficient of HPB, only data cited here and in [1577] are
considered and not all the data combined like the way discussed by Lodge in [1588].
From experiments, the self-diffusion coefficient D of these two polymers has the
M–2 dependence and Arrhenius T dependence with activation enthalpy ED listed
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Table 3.6 Parallel explanation of the molecular weight and temperature dependences of self-
diffusion of polyethylene (PE) and hydrogenated polybutadiene (HPB). The actual conformational
energy barrier of PE is taken from measurement on alkanes [360]. HPD is not known, but it is
expected to be similar to PE. For references to the sources of data, see Table 2 in [1577]

Linear
polymer

Measured
self-diffusion
activation
enthalpy, ED
(kcal/mol)

Observed M
dependence
of self-
diffusion
coefficient

Coupling
parameter
for self-
diffusion,
nD

Predicted M-
dependence
of self-
diffusion
from τ0 ∝
M2.0

Predicted
conforma-
tional
energy
barrier, Ea
(kcal/mol)

Actual con-
formational
energy
barrier
(kcal/mol)

PE 5.47 M–2 1/3 M–2 3.7 3.5
HPB 7.2 M–2 1/3 M–2 4.1 n.a.

in Table 3.6. Theoretically, D is the ratio (Rg)2/τD, where Rg(∼ M) is the radius
of gyration of the linear chain and τD is the center-of-mass diffusion time of the
entangled chain. The latter is related to the primitive diffusion time τ0D by the CM
equation

τD(M, T) = [t−nD
c τ0D(M, T)]1/(1−nD). (3.33)

Since τ0D is the uncoupled center-of-mass diffusion of a single chain, it can be
identified with that of the Rouse model, which has the M2.0 dependence. With the
M2.0 dependence of τ0D, Eq. (3.33) yields the M3.0 dependence of τD if nD = 1/3.
From the M3.0 dependence of τD and (Rg)2 ∝ M, it follows from D = (Rg)2/τD
that D ∝ M−2.0 as found by experiment. Support of nD = 1/3 comes from the
fact that the product (1 − nD)ED is almost the same as (1 − nη)Eη, and also Ea, the
conformational energy barrier of these two polymers. These correspondences can
be seen in Table 3.6.

Confirmation by the Neutron Spin Echo Experiment of Zamponi et al.

Here we recall the center-of-mass mean-square displacement (MSD) data from neu-
tron spin echo experiment of Zamponi et al. [1503] shown in Fig. 281. For the
entangled polyethylene chains with N= 192 and 377, the subdiffusion term t1–n has
exponent (1–n) values of 0.72 and 0.63, respectively. The molecular weights of the
polymers with N= 192 and 377 are about 1.5Mc and 3Mc, respectively, where Mc is
the molecular weight for entanglement. Substituting these values of (1–n) for (1–nD)
in Eq. (3.33), one gets the molecular weight dependences

D ∝ M−1.8, for N = 192, and D ∝ M−2.2, for N = 377 (3.34)

which are consistent with the neutron spin echo data within the uncertainty of
determining the exponent of the subdiffusion.



694 3 Universal Properties of Relaxation and Diffusion

Analogue of the breakdown of SE relation in supercooled liquids, and
decoupling of SLR and conductivity relaxation in glassy and crystalline ionic
conductors

The results above from comparison of self-diffusion and viscosity of entangled poly-
mer chains, namely nD < nη and ED < Eη, have almost exact analogues in the
breakdown of Stokes–Einstein relation of molecular glassformers [438, 449–457]
and ionic liquids [158], and the CM explanations given here for entangled polymers
follow the same parent CM equation as those given for the analogues [159, 268]
discussed in Sections 2.2.5.7. Furthermore, the result

(1 − nD)ED ≈ (1 − nη)Eη = Ea (3.35)

for entangled polymers is the analogue of Eq. (3.23), (1−ns)Es ≈ (1−nσ )Eσ = Ea,
between nuclear spin relaxation and conductivity relaxation in the case of ionic
conductors (see also Table 3.3). Both cases show that the activation energy of the
primitive relaxation Ea can be recovered from that of the slow many-body relaxation
by multiplying it by the fractional Kohlrausch exponent, and the result is the same
independent of the dynamic variable chosen.

3.2.5.3 Semidilute Polymer Solutions

Polymer dynamics in semidilute and concentrated solutions has been a subject of
considerable interest in the past decades. Some works in this area have been refer-
enced before [776–779, 1555–1567] in connection with some universal properties
of relaxation and diffusion in interaction systems discussed before. Compared to
polymer melts, introduction of the polymer concentration c as an additional vari-
able has made the problems in polymer solutions richer. Examples of other studies
on various properties of semidilute polymer solutions related to c dependence are
given in [834, 1590–1606] and reviews in [1607, 1608]. There are various problems
of polymer diffusion in semidilute solutions of high molecular weight polymers
as well as in concentrated solutions. In the concentrated solutions, the problem is
the observed M2.5 dependence of the polymer diffusion coefficient D, where M is
the molecular weight [1609, 1610]. In semidilute solutions, there are a number of
observed properties that need to be explained. Here we take the observed properties
from two systems.

Probe Diffusion vs. Viscosity in Semidilute Polymer Solutions

The first one is the hydroxypropylcellulose (HPC):water semidilute aqueous solu-
tions. The dynamics of several length scale of this semidilute polymer solution was
studied by measurement of optical probe diffusion in it by light scattering. The opti-
cal probes carboxylate modified polystyrene sphere in water solutions of nominal
300 kDa (MW=415 kDa) HPC at 25◦C. The size of probes employed Rprobe are 760,
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189, 102, and 20 nm [1566, 1611, 198]. The optical probe diffusion D and shear vis-
cosity η experimental data of hydroxypropylcellulose/water solutions obtained by
Phillies and coworkers are summarized briefly as follows. All these were obtained
from the field correlation function g(1)(t) from light scattering of optical probes sus-
pended in solution. The parameters characterizing the quantities above depend on
the probe size and the polymer molecular weight.

(a) The field correlation function has the stretched exponential time dependence

g(1)(t) = Ao exp[−(t/τD)1−nD]. (3.36)

(b) The concentration dependence of D is given by the stretched exponential form

D = Do exp(−αDcuD ). (3.37)

(c) The τD has the anomalous dependence on the scattering vector q given by

τD ∝ q−2/(1−nD). (3.38)

(d) The solution viscosity η is found to be described well by another stretched
exponential c dependence

η = ηo exp(αηcuη ), with αη ∝ Mγη (3.39)

valid up to very large M and c. The parameters αη, uη, and γ η for viscosity in general
have values different from the corresponding αD, uD, and γD for probe diffusion
[198, 777, 1606]. Probes in 300-kDa hydroxypropylcellulose show Stokes–Einstein
behavior, D = kT/6πηRprobe, for large (Rprobe > 55 nm) spheres but increasingly
non-Stokes–Einstein behavior for small probes ranging from 33 down to 0.5 nm in
radius.

Some of these observed dynamic properties of semidilute polymer solution at
different length scales determined by the probe diameter are obviously analogues of
glassformers. These include the Kohlrausch stretched exponential correlation func-
tion in Eq. (3.28) and the superlinear q dependence of τD in Eq. (3.37). Here is
another example of the breakdown of Stokes–Einstein relation D = kT/6πηRprobe,
which has nothing to do with glass transition. In optical probe experiments, motions
of chain segments with length scales comparable to Rprobe determine the probe dif-
fusion coefficient D. On the other hand, η is determined by the motions of entire
polymer chains, which experience stronger dynamic constraints and larger coupling
parameter than do chain segments having length scale of Rprobe if Rprobe is much
smaller than Rg of the polymer. Thus, we expect nη(c) > nD(c) to hold when the
probe size is small. If nη(c) > nD(c), it follows immediately from the CM-derived
expressions [198] that η will have a stronger c dependence than D. The reader may
see that the CM explanation given here for the breakdown of SE relation of probe
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diffusion in semidilute solution of entangled polymer chains is isomorphic to that
given for the same phenomenon in glass-forming liquids.

A theoretical treatment of the dynamics of semidilute polymer solutions has
been proposed by using the CM of polymer chain dynamics together with scal-
ing arguments. The theory has many predictions, which are remarkably consistent
with all known experimental facts of HPC/water system. The formalism involves
some cumbersome equations and will not be reproduced here. The interested reader
can consult [198, 779]. The upshot of scaling is to allow extraction of values for
the coupling parameter nD by three separate paths from the concentration, time,
and scattering vector dependencies of g(1)(t). Values of nD from these three dis-
tinct physical approaches are shown to be mutually consistent, especially in the
higher concentration, large-probe-particle regime in which the scaling arguments
are most likely to be valid. In other words, as a function of c and M, the same nD
explains simultaneously the concentration and molecular weight dependences of D
and τD, time dependence of g(1)(t), and scattering vector dependences of τD. By the
way, it is well known that reptation model cannot give satisfactory explanation of
the dynamics of semidilute polymer solutions, not even the dependence of D on c
and M.

Linear and Star-Branched Polystyrene Tracer Diffusion in Semidilute Polymer
Solutions

A large body of tracer diffusion coefficient measurements of linear and star-
branched polymers in dilute, semidilute and concentrated solutions have accumu-
lated since 1986 [1594–1598]. Naturally, attempts [1595, 1596] have been made in
the past to examine these data in the light of the reptation model. Unfortunately, it
was found that these data could not be described by the reptation mechanism even
with constraint release being included [1594–1598, 1607]. In 1989, an explanation
based on combining concentration scaling theory [834, 1590, 1612] and the cou-
pling model was proposed and part of the results was published in an abbreviated
format by Ngai and Lodge [1613]. Since then, publication of the entire analysis of
the experimental data was put on hold, partly because at that time there is no direct
evidence to support the application of the coupling model to diffusion in semidilute
solutions. However, in the intervening years from 1989 till 1996, new experimental
investigations [776–778, 780, 1557, 1566, 1602, 1603, 1614, 1615] have provided
the most direct evidence of the applicability of the coupling model. These include
the crossover from primitive linear exponential relaxation exp(−t/τ0) to Kohlrausch
stretched exponential relaxation exp

[−(t/τ )1−n
]

and the Q−2/(1−n) dependence of
τ , discussed before in Sections 3.2.3 and 3.2.4. Encouraged by these developments
uniquely in favor of the CM, the scaling–coupling theory of dynamics of semidilute
polymer solutions was given in full in 1996 by Ngai and Phillies [198] and applied
to probe diffusion data of Phillies and coworkers addressed in the previous subsec-
tion. In the same year, the scaling–coupling theory was applied [779] to the analysis
of the linear, 3-arm star and 12-arm star polystyrene tracer diffusion in solutions of
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linear poly(vinyl methyl ether) of various molecular weights and concentrations by
dynamic light-scattering measurements by Lodge and coworkers [1595–1598] and
forced Rayleigh scattering measurement of linear polystyrene tracer in polystyrene
matrix by Yu and coworkers [1594]. The scaling–coupling theory [779] explained
the empirical stretched exponential form D = Do exp(−αcu) for the concentration
dependence of the diffusion coefficient originates from the monotonic increase of
the coupling parameter n with c/c∗. Conversely, the measured stretched exponen-
tial concentration dependence of D has been used to calculate n as a function of
c, tracer molecular weight M, and matrix molecular weight P. At constant c and
fixed P, these n values, n(M)|c,P, have been used to calculate the tracer molecular
weight dependence of the diffusion coefficient D(M)|c,P at constant c and fixed P.
The calculated values of D(M)|c,P are in good agreement with measurements. In
particular, tracer molecular weight dependence of D ∝ Ma, with a larger than 2
and as large as approximately 3, observed in matrix solutions at higher concentra-
tions can be explained. Full dynamic constraints are imposed on the tracer by the
matrix solution if P >> M. However, when the latter condition is not satisfied,
some of the dynamic constraints are mitigated in the same matrix solution, leading
to a decrease of the coupling parameter. The effects of mitigation of dynamic con-
straints under the condition of M>P on the diffusion of linear and branched PS in
PVME solutions are demonstrated by using directly the experimental data or alter-
natively by the decrease of the calculated values of n. Thus, the dependences of D
on the three variables c, M, and P can be explained from the corresponding depen-
dences of the coupling parameter n through the physics contained in the coupling
model with the assist of scaling. The temperature dependence of D(c, M, P) has also
been predicted to depend sensitively on n(c/c∗, M, P). This prediction should be
a critical test of the coupling model, but till now there is little data of temperature
dependence of tracer diffusion to compare with. Details of the analysis by the model
and comparison of predictions with experiments can be found in [779].

3.2.6 Recovering or Discovering the Primitive Relaxation

In Chapter 2 where we addressed principally glass-forming substances, the uni-
versal secondary relaxation of the Johari–Goldstein (JG) kind found by various
spectroscopies is a manifestation of the primitive relaxation in view of their sim-
ilar character and behavior, and the good correspondence between the JG relaxation
time τJG from experiment and the calculated τ0. Analogues of the JG relaxation in
glassformers actually are already found in the other interacting systems discussed in
Sections 3.2.3 and 3.2.4. Dynamic light-scattering experiments have shown the pres-
ence of the primitive relaxation at short times with exp(−t/τf) decay and τf has the
normal q–2 dependence. The experimental correlation function is usually well fitted
by Eq. (3.6) in the form of the sum f (q, t) = A exp(−t/τf)+(1−A) exp[−(t/τs)1−n].
To make obvious the equivalence to JG β-relaxation as often found in dielectric loss
spectra, f (q, t) is Fourier transformed to obtain the susceptibility χ ′′(ω) in Fig. 297.
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Fig. 297 (Left) Susceptibility obtained by Fourier transform of f (q, t) = A exp(−t/τf) + (1 −
A) exp

[−(t/τs)1−n
]

from fit to dynamic light-scattering data of an aqueous solution of a hydropho-
bically end-capped poly(oxyethylene) urethane (HPOEU) at concentration c = 0.015 g/ml by
Nyström et al. [778]. The parameters A, τf, τs, and (1–n) are shown in the figure. (Right)
Susceptibility data obtained by numerical Fourier transform of PCS correlation function of the
Laponite colloidal suspension at different aging times tw performed by S. Capaccioli (Laponite
concentration Cw = 2.5%, salt concentration Cs = 2 × 10−3 M). Data are from Fig. 2-D of [342]
and provided digitally by L. Zulian

The parameters A, τf, τs, and (1–n) are taken from dynamic light-scattering study of
an aqueous solution of a hydrophobically end-capped poly(oxyethylene) urethane
(HPOEU) at concentration c = 0.015 g/ml by Nyström et al. [778]. The bump at
higher frequencies is the analogue of resolved JG β-relaxation of glassformers.

The time-domain photon correlation spectroscopy data of colloidal suspen-
sion of Laponite [340–342] discussed before have also been fitted by f (q, t) =
A exp(−t/τf) + (1 − A) exp

[−(t/τs)1−n
]
. Shown in the right panel of Fig. 297 is

the susceptibility χ ′′(ω) obtained by Fourier transform of the data at four differ-
ent aging times tw. The JG β-relaxation appearing at higher frequencies is like that
commonly found in other glassformers by dielectric spectroscopy.

We have seen in the many examples given before that the relaxation time τ of
many-body interacting systems is anomalous in magnitude as well as dependences
on variables. In the context of the coupling model (CM), these anomalies originate
from the modification of the normal primitive relaxation time τ0 according to Eqs.
(3.1) and (3.2), principally by raising τ0 to the superlinear power 1/(1 − n). Larger
n leads to greater modification of τ0 and higher degrees of the anomaly. All these
are consistent with many-body effects as the cause of the anomalies because n is a
measure of the amount of stretching in the Kohlrausch correlation function, which
is an obvious indicator of many-body effects. By examples, it has been shown how
the CM explains many anomalies in different systems. Now we turn this around and
use the experimentally observed anomalies to support verity of the CM. This is done
by calculating τ0 from the experimental τ and n according to Eqs. (3.1) and (3.2),
and verifying that the calculated τ0 is in agreement with either the expected value or
the actual value obtained by another source. Actually, this way of recovering τ0 has
been demonstrated before at several places in this chapter. The recovered prefactor
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τ∞ of τ0 from conductivity relaxation or dynamic light scattering in YSZ has been
shown to agree well with the attempt frequency of the oxygen ion independently
determined by hyper Raman spectroscopy (see Fig. 286). The recovered activation
energy Ea of τ0 of Ag ions in AgI–AgPO3 or Ag2S–GeS2 is in agreement with that
directly determined by neutron scattering (see Table 3.2). The recovered activation
energy Ea of τ0 of PE and PDMS chains is consistent with the conformation energy
barriers independently determined (see Tables 3.4 and 3.5). In this section, we add
more examples from diverse interacting systems to reaffirm the physical reality of
the primitive relaxation and in turn the validity of the CM.

3.2.6.1 Influence of Mesophase Structures on the β-Relaxation
in Side-Chain Liquid Crystal Polymers (SCLCPs)

This particular problem gives us another occasion to consider the anomalously large
activation energy accompanied by unphysically high attempt frequency in many-
body relaxations with Arrhenius T-dependent relaxation times. Such dual anomalies
have been encountered before in ionic conductors in this chapter and are referred to
in the literature as the “compensation law” or the “Meyer–Neldel” rule. The system
is a side-chain liquid crystal polymer (SCLCP) and the chemical structure of its
repeat unit of the 10 samples studied by Schönhals and coworkers [1616–1618] are
shown schematically below.

The backbone or the main chain is either poly(methacrylate) or poly(acrylate),
and the side chain consists of mesogenic groups separated from the main chain
by a spacer consisting of a chain of –CH2– units. The mesogenic groups are
derivatives of (p-alkoxy-phenyl)-benzoate that have optical activity [1616–1618].
The process studied by Schönhals and coworkers is the rotational fluctuations of
the mesogenic group about its long axis called the β-relaxation. Although called
such, this β-relaxation is cooperative because of its size, like the γ-relaxation in
BPA-polycarbonate [883–890].
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Table 3.7 Experimental data of the most probable f ∗β∞ and E∗
β , appearing in the Arrhenius equa-

tion f ∗max,β (T) = f ∗β∞ exp(−E∗
β/kT) for 10 polymers with various mesophase structures from

dielectric relaxation measurements. The most probable coupling parameter n and the primitive
pre-exponential factor f

β∞ have been obtained from the predictions of the coupling model

Polymer Mesophase log( f ∗β∞/Hz) E∗
β (kJ/mol) log( fβ∞/Hz) n

P1 Isotropic 12.8 45.7 11.44 0.716
P2 Nematic 13.8 46.5 11.71 0.720
P3 Nematic 14.8 53.3 11.85 0.756
P4 Smectic A 16.5 57.5 12.17 0.774
P5 Smectic A 16.4 56.4 12.17 0.77
P6 Smectic A 17.1 61.0 12.22 0.787
P7 Smectic B 17.5 62.8 12.27 0.793
P8 Smectic B 18.2 63.2 12.40 0.794
P9 Smectic B 18.5 64.9 12.42 0.80
P10 Smectic B 19.4 68.9 12.51 0.81

Different mesophases were obtained by a variation of the number of methylene
units in the spacer and in the tail groups Z. The mesophases of 10 SCLCPs are
shown in Table 3.7. It was found by dielectric spectroscopy that the most proba-
ble relaxation frequency f ∗max,β of the β-relaxation has the Arrhenius temperature
dependence

f ∗max,β (T) = f ∗β∞ exp
(
−E∗

β

/
kT
)

, (3.40)

but the pre-exponential factor f ∗β∞ as well as the activation energy E∗
β increases

(obeying a compensation law) significantly with the order of the mesophase. In
the isotropic state, f ∗β∞ = 1012.8 Hz and E∗

β = 45.7 kJ/mol. In going from the
isotropic state to the nematic, the smectic A, and the smectic B mesophases (i.e.,
with increasing order of the mesophase and decreasing mean lateral mesogenic dis-
tance as obtained by X-ray measurement), both f ∗β∞ and E∗

β increase to reach the

anomalously high values of f ∗β∞ = 1019.4 Hz and E∗
β = 68.9 kJ/mol. These results

are collected in Table 3.7.
The interesting experimental facts found by varying the mesophase are the fol-

lowing: (1) the simultaneous increases of log f ∗β∞ and E∗
β with decreasing mean

lateral mesogenic distance that obey the compensation law and (2) the unphys-
ically large pre-exponential factors found in the smectic mesophases. These are
analogues of the same properties found in other interacting systems including
the crystalline and glassy ionic conductors. The CM has been applied to explain
them [1619]. Concentration fluctuations occur in the environments of the meso-
genic group because of the internal blending of the mesogenic groups with the
long methylene spacer chains, which broadens the β-relaxation dispersion, mak-
ing it impossible to determine the coupling parameter by fitting the frequency
dispersion to the Fourier transform of a Kohlrausch function. Notwithstanding,
the reduction of the data to primitive relaxation time offers a way to understand
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the anomalies. The most probable τ ∗β (T) is related to f ∗max,β (T) by the approx-

imate relation 1
/[

2πτ ∗β (T)
]

= f ∗max,β (T). Since the observed most probable

frequency of the β-relaxation has an Arrhenius dependence, it follows from Eq.
(3.3) that the primitive relaxation time τβ(T) also has another Arrhenius T depen-
dence τβ = τβ∞ exp

(
Eaβ
/

RT
)
. Here Eaβ and τβ∞ are respectively the activation

enthalpy and prefactor of the primitive relaxation time of rotational motion of the
mesogenic group about its long axis. Due to the close resemblance in chemical
structures of the mesogenic group to the monomer unit of BPA-PC and the strong
similarity of rotational motion of the mesogenic group (β-relaxation) in the SCLCPs
studied by Schönhals et al. and the rotations of the phenyl rings in the γ-relaxation
in BPA-PC (see Section 2.3.2.38), we can take Eaβ and τγ∞ to have approximately
the same values as the corresponding quantities Eaγ and τγ∞ deduced earlier for
the γ-relaxation. The values Eaγ = 13 kJ/mol and τγ∞ = 6.5 × 10−13 s have been
obtained from NMR measurement in dilute solution of BPA-PC [1470] and from
theoretical calculations [1472, 1473]. Therefore the value Eaβ = 13 kJ/mol is used
for the analysis of the experimental data of Schönhals et al.

The concentration fluctuations give rise to a distribution of environments seen by
the mesogenic groups. The different environments introduce a distribution of prim-
itive relaxation times about the most probable value τβ (T) = τβ∞exp

(
Eaβ
/

RT
)

as
well as possibly a distribution of coupling parameter with most probable value n.
From the CM equation (3.3) the corresponding most probable effective relaxation

time τ ∗β (T) is given by τ ∗β (T) ≡ τ ∗β∞exp
(

E∗
aβ

/
RT
)

with

τ ∗β∞ = [t−n
c τβ∞

]1/(1−n)
and E∗

aβ = Eaβ/(1 − n). (3.41)

X-ray measurement [1618] shows that an increase in the order of the mesophase
is accompanied by a decrease in the mean lateral mesogenic distance. From this
result, we expect that the increase in order of the mesophase will pack the mesogenic
groups closer together, enhance their mutual constraints, and cause the coupling
parameter n to increase. In fact, the values of n calculated from the expression(

1 − Eaβ

/
E∗

aβ

)
for different mesophases are in agreement with this expected trend,

as shown in Table 3.7 as well as in Fig. 298.
With the values of n for the SCLCPs with various mesophases determined, the

critical stage is reached to test if these values of n will be able to explain the
compensation law followed by f ∗β∞ ≡ 1/(2πτ ∗β∞) and the large spread of its

observed values ranging from 1012.8 Hz to 1019.4 Hz, which is exhibited in the
right panel of Fig. 298 in a plot of f ∗β∞ against n (solid triangles) of the various

mesophases. This test is made by solving f ∗β∞ = (2π )−1
[
t−n
c τβ∞

]−1/(1−n) for the
primitive prefactor τβ∞ for each SCLCP with its experimentally determined f ∗β∞ and
n from Table 3.7 and tc = 2 ps for polymers. The results for τβ∞ give immediately
fβ∞ = 1

/(
2πτβ∞

)
. The values of fβ∞ obtained for all 10 SCLCPs are also listed in

Table 3.7 and shown in the right panel of Fig. 298. It is important to recognize that
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Fig. 298 (Left) The x-axis is the coupling parameter n of 10 SCLCPs with various mesophase
structures (see Table 3.7). Each of the 10 open diamonds stands for the point (n, Eβ ). Each of the
10 solid triangles stands for the point (n, E∗

βE∗
β ). (Right) The x-axis is the coupling parameter n of

10 SCLCPs with various mesophase structures. Each of the 10 solid triangles stands for the point
(n, f ∗β∞). Each of the 10 open diamonds stands for the point (n, f ∗β∞), where fβ∞ is calculated with

tc = 2 ps and f ∗β∞ (from experiment, see Table 3.7). Reproduced from [1619] by permission

these results have been obtained in effect without any adjustable parameters because
n has been independently determined by the relation between the experimental value
of the activation enthalpy E∗

aβ and the known value of Eaβ.
In the right panel of Fig. 298, f ∗β∞ and the corresponding fβ∞ (open diamonds)

are plotted simultaneously against n of the SCLCPs. In contrast to the large spread
of almost seven decades shown by f ∗β∞, the primitive prefactor fβ∞ has a narrow
spread of one decade. The trend that fβ∞ increases moderately with n is apparent
from the figure. Since n increases with decreasing lateral mesogenic distance, the
observed trend can be restated as a moderate increase of fβ∞ with decreasing lateral
mesogenic distance. The latter is physically possible and reasonable because fβ∞ is
an attempt frequency which, like a vibration frequency, is expected to increase with
decreasing inter-mesogenic distance because the latter causes the potential energy
well to become steeper. All values of fβ∞ lie within the narrow range of physically
reasonable values, 1011.5 ≤ fβ∞ ≤ 1012.5, and can be readily interpreted as the pre-
exponential factor of the rotational frequency of the mesogenic group. Moreover, the
values are close to the primitive prefactor of the γ-relaxation in BPA-PC fγ∞ defined
as fγ∞ = 1

/(
2πτγ∞

)
and have been previously determined to have the value of

1011.48 Hz. In fact, this value of fγ∞ obtained from an earlier work [1620] is nearly
identical to fβ∞ of the SCLCP with isotropic mesophase (P1 in Table 3.7). The good
correspondence between the order of magnitude of the primitive prefactor of the β-
relaxation of the SCLCPs and that of the closely related γ-relaxation of BPA-PC
is not an accident but the result of similar physics, i.e., cooperative dynamics of
densely packed mesogenic groups and phenyl rings of similar chemical structures.
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The observed dramatic increases of the pre-exponential factor f ∗β∞ and the activa-
tion energy E∗

aβ of the β-relaxation rate with the mesophase structure can now be
understood in the framework of the coupling model. The increase in the order of the
mesophase enables the mesogenic groups to pack closer together and causes inter-
molecular cooperativity or the coupling parameter n to increase. The increase of n is
responsible for the large observed variations of f ∗β∞, and E∗

aβ and the compensation
law obeyed by their variations. The prefactor and the activation energy of the primi-
tive relaxation time recovered from the anomalous experimental data are physically
reasonable. This supports reality of the primitive relaxation as well as its relation to
the many-body cooperative relaxation as described by the CM equations.

3.2.6.2 Dynamics of Cross-Linked Junction of a Polymer Network

The classical approach to rubber elasticity considers only the chain entropy and
internal energy contributions to the elastic energy of a network. Any effect of
intermolecular interactions is ignored, based on the idea that such interactions are
independent of the chain configurations and thus do not modify the stress. The devi-
ation of experimental results from the predictions of classical theory, as exemplified
by the strain dependency of the elastic modulus (defined as the ratio σ/(λ − λ−2),
where σ is the stress and λ the extension ratio), has led to refinements which
take into account the effect of interactions among the network chains. In the Flory
description [1621–1623], the intermolecular interactions reduce the configurations
available to the network chains by constraining the network junctions. The reduced
effectiveness of these constraints upon deformation gives rise to a strain-dependent
elastic modulus.

Rubber elasticity theories restrict their concerns to the properties of the net-
work in mechanical equilibrium. However, experimental studies reveal analogies
in the behavior of elastomers and polymer melts [1624], which bespeak a connec-
tion between elastic and dynamic properties, suggesting that unifying concepts may
underlie thermodynamic theories and dynamic models. By providing information
on the dynamics of networks, recent experimental advances reinforce the idea that
the microscopic motions and the elastic properties can be usefully interrelated. For
example, quasielastic neutron scattering measurements probe the motions of the net-
work cross-links [1625, 1626]. In end-linked polydimethylsiloxane, it was observed
that the junctions diffuse on the same timescale as the network chains, although
the spatial extent of the cross-link motion is reduced by intermolecular constraints
[1626].

31P-NMR spin-lattice relaxation measurements on a series of polytetrahydro-
furan networks with tris(4-isocyanatophenyl)thiophosphate junctions have been
carried out [1515] to study junction dynamics and their dependencies on cross-
link density and diluent concentration. These less conventional techniques (as
far as the study of rubber elasticity is concerned) provide information that is
consistent with existing rubber elasticity models, yet demonstrates that a void
exists. There is a conspicuous absence of theories which specifically describe the



704 3 Universal Properties of Relaxation and Diffusion

junction dynamics. The new experimental findings invite a new approach from a
totally dynamic point of view; mechanical equilibrium properties can be considered
as only a special or a limiting case (albeit a very important one). The CM has pro-
vided such a new approach [1516, 1517]. The adequacy of this application of the
CM to address dynamic response of networks is demonstrated here by analyzing
the informative 31P-NMR spin-lattice relaxation data [1515] and by revisiting the
change of mechanical relaxation on deforming glassy polymers presented before
in Section (2.2.5.9 (I)). Before addressing the experimental data, it is instructive to
show the connection between the constrained junction model of Flory for rubber
elasticity and the CM approach for dynamics of junctions.

Connections Between Flory’s Constrained Junction Model and the Coupling Model

The restrictions on the configurations available to the cross-link junctions of a net-
work, arising from its presence in dense phase, govern the mechanical properties of
elastomers. These constraints also give rise to intermolecular correlations and coop-
erativity of the junction motions, and hence can be described by the CM. The close
connection between the elasticity of networks and junction dynamics can be illus-
trated through a comparison of the predictions of the CM for constraint dynamics
with the constrained junction model of Flory. This comparison given in Table 3.8
is enlightening because it shows that the gist of the CM for interacting or con-
strained dynamics is compatible with the idea of Flory in his constrained junction
model.

Flory modeled the effects of restrictions imposed by neighboring chains on the
fluctuations of network junctions, deriving an expression for the modification of the
elastic stress for a network of phantom chains. Analogously, the CM (when applied
to junctions in polymer networks) uses the dynamics of the constraints on junc-
tions to model the slowing down of the motions of the network junctions caused
by interactions with neighboring chains and thus obtain the modification of the
(primitive) correlation function of relaxation of junctions C0(t). From the idea that
phantom chains are able to freely pass through one another, we expect that C0(t)
has an exponential time dependence exp

[−(t/τ0)
]
. At temperatures sufficiently

above Tg, τ0 can be well approximated by the Arrhenius temperature dependence
τ = τ∞ exp(Ea/RT) with the activation energy Ea given by the true microscopic
conformational energy barrier to motion of junctions in the phantom network model.
Following the general physical principle behind the CM, the junction constraints
will modify C0(t) to Cc(t) = exp[−(t/τ ∗)1−n] with τ ∗ (T) ≡ τ ∗∞exp

(
E∗

a

/
RT
)
, and

will give rise to the two relations τ ∗∞ = (t−n
c τ∞)1/(1−n) = τ∞(τ∞/tc)n/(1−n) and

E∗
a = Ea/(1−n). These relations tells us that the degrees of modification of the pre-

exponential and the activation energy from the phantom network values τ∞ and Ea
to the constrained values τ ∗∞ and E∗

a increase with n. Typically τ∞ is of the order of
10–13–10–14 s. This, together with tc ≥ 2 ps, indicates that the ratio τ∞/tc is much
less than unity. Hence, both log(τ∞/τ ∗∞) and the ratio E∗

a/Ea increase with n or the
severity of constraints. Higher cross-link densities and cross-link functionality will
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enhance the strength of the intermolecular constraints and consequently n. On the
other hand, with the addition of diluent, the junctions become increasingly isolated
from the neighboring chain segments so that the strength of the intermolecular con-
straints and hence n decreases. Such a decrease of n with diluent concentration has
been seen in the case of the local segmental motion in amorphous polymer solutions
(see Section 2.2.5.7) and the terminal motion of barely entangled polymer solu-
tions (see Section 3.22). The data of these other systems have been explained by a
reduction of intermolecular constraints and the coupling parameter. In fact, in these
cases the experimental data gave direct evidence of the decrease of n with diluent
concentration [849, 1634].

Comparison with Experimental Results of 31P-NMR Spectroscopy

New insight has been provided by the solid-state 31P-NMR spin-lattice relaxation
measurements of Shi et.al. [1515] on a series of polytetrahydrofuran networks. The
relaxation properties of the tris(4-isocyanatophenyl) thiophosphate junctions were
characterized in networks with strand molecular weights ranging from 250 to 2900.
The dominant mechanism for 31P nuclear spin relaxation was identified to be chem-
ical shift anisotropy. The spin-lattice relaxation times measured over a wide range
of temperatures were fitted by spectral density functions derived from the appro-
priate Fourier transforms of the stretched exponential correlation function, with τ∗
assumed to have the Arrhenius temperature dependence. From these fits, Shi et al.
obtained the coupling parameter n, the apparent pre-exponential factor τ ∗∞, and the
apparent activation energy E∗

a for the networks of different cross-link densities, both
neat and diluted. The coupling parameter was found to increase with decreasing
molecular weight between cross-links and, at constant cross-link density, decrease
with the addition of diluent. Averages of the values of n determined for each sam-
ple from 31P spin-lattice relaxation data by two parallel methods (cross polarization
and direct polarization) are plotted in Fig. 299. These results are in accord with
expectations based on the CM [1516, 1517].

The apparent activation energy E∗
a is also found to increase significantly with

higher cross-link density and, at constant cross-link density, decrease with the addi-
tion of diluent. In the right panel of Fig. 299 we have plotted the averages of the
E∗

a values determined by the two NMR methods. The products (1–n)E∗
a obtained by

using the experimentally determined values of the coupling parameter (left panel)
and the apparent activation energy E∗

a for all samples have essentially the same
value of 26.2 kJ/mol. This constancy is predicted by the coupling model, since the
product, being the true microscopic energy barrier Ea to motion of junctions in a
phantom network, is independent of intermolecular interactions or constraints and
hence should be independent of cross-link density and dilution. It is worthwhile to
point out that 26.2 kJ/mol is of the correct magnitude for the intramolecular con-
formational energy barrier of polymers with structure similar to the PTHF network
junctions. Alternatively, we have calculated E∗

a by the relation E∗
a = Ea/(1 − n)

using the experimentally determined coupling parameters (right panel of Fig. 299)
and a constant value of Ea = 26.2 kJ/mol. The results in the right panel of Fig. 299
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Fig. 299 (Left) The coupling parameter of junction dynamics n (filled circles) obtained by tak-
ing the average of the two values determined by Shi et al. from their 31P-NMR data taken using
cross and direct polarizations [1515] for four polymer networks with different molecular weights
between cross-links Mc. The filled square is the corresponding coupling parameter obtained in
a similar manner for a swollen sample with Mc = 650. The smooth curve drawn through the
data points is a visual aid only. (Right) Filled triangles represent the apparent activation enthalpy
E∗

a , obtained by an average of the two values determined by Shi et al. from their 31P-NMR data
using direct and cross polarizations for four polymer networks. Filled square is E∗

a for the swollen
polymer network having Mc = 650. The corresponding unfilled symbols are the theoretical pre-
dicted values of the coupling model calculated by the equation E∗

a = Ea/(1 − n) using a constant
Ea = 26.2 kJ/mol and the coupling parameters n for the same five network polymers given in the
left panel. A smooth curve has been drawn through the calculated points to guide the eyes. Data
from [1516] are replotted in all figures here

suggest good agreement with the experimental values of E∗
a for five samples of

different cross-link densities and diluent concentrations.
The raw 31P-NMR data give unphysically short times of the pre-exponential fac-

tor τ ∗∞ (10–16 to 10–19 s) and the trend that τ ∗∞ decreases dramatically with higher
cross-link density (see Fig. 300). The experimental values for τ ∗∞ in this figure
are the geometric mean of the values obtained by the two NMR methods used.
These anomalous properties of τ ∗∞ can be explained by the other equation of the
CM τ ∗∞ = (t−n

c τ∞)1/(1−n) = τ∞(τ∞/tc)n/(1−n). The prefactor τ∞ corresponds to
relaxation of junctions of a phantom network. Thus, its value should be independent
of intermolecular interaction and hence of cross-link density and diluent concentra-
tion. Since τ∞ has not been determined directly by experiment, it is taken to be an
adjustable (albeit constant) parameter. With the experimentally determined n and a
value for the crossover time, tc = 4 × 10−12 s and τ∞ = 1.5 × 10−14 s, the calcu-
lated values of τ ∗∞ are found to be in good agreement with the experimental values
obtained for all five samples, as shown in Fig. 300. The trends of a rapid decrease
of τ ∗∞ with cross-link density and an increase upon dilution are reproduced.

Universal Features

The physical aspects of junction dynamics of networks discussed above are isomor-
phic to the dynamics of β-relaxation of the mesogenic group in side-chain liquid
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Fig. 300 Filled diamonds are the apparent pre-exponential factor τ ∗∞ determined by Shi et al. from
their experimental data [1515] for the four polymer networks by cross and direct polarizations.
Filled square is τ ∗∞ for the swollen polymer network with Mc = 650. The corresponding open
symbols represent the theoretical predictions of the coupling model calculated by the equation
indicated in the figure using constant values of τ∞ = 1.5×10−14 s and tc = 4×10−12 s independent
of Mc and diluent concentration. The coupling parameters used here are taken from the data in
Fig. 299. For clarity a smooth curve is drawn through the calculated points. Data from [1516] are
replotted here

crystalline polymers discussed in Section 3.2.6.1 and ion dynamics in crystalline
and glassy ionic conductors (Section 3.2.5). These are entirely different systems
and relaxation processes, and yet the anomalies found are analogous.

Effect of Deformation

In Flory’s constrained junction model of elasticity, elongation alleviates the restric-
tions of junctions from neighboring segments [1623], in that the “domain” of the
constraints extends along the stretch direction. The elastic behavior of the network
thus becomes more phantom-like at higher elongations, in agreement with exper-
iments [1630–1633]. We anticipate that this alleviation of the constraints on the
junctions by elongation will be manifested in the junction dynamics. The junctions
have higher mobility at higher elongations. If this is the case, the coupling model
predicts a decrease of n with extension, along with corresponding changes in relax-
ation time τ ∗ and its E∗

a and τ ∗∞. Such experiment has not been carried out to reveal
the expected changes in the network dynamics associated with elongation. An ana-
logue of this is the non-linear deformation of glassy polymers including bisphenol
A polycarbonate and polystyrene. As discussed in Section 2.2.5.9(I), decrease of n
and shorter τ ∗ by large deformation were found experimentally in glassy polymers.
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3.2.6.3 Cooperative Oxygen Ion Dynamics in Gd2Ti2−yZryO7

The oxygen ion conductors with pyrochlore structure A2B2O7 are promising
materials for use in fuel cells [1635–1637]. The pyrochlores Gd2Ti2−yZryO7 are
particularly interesting since the concentration of mobile oxygen vacancies can be
increased by substitution of Zr for Ti, and oxygen ion conductivity shows the highest
value found among materials with pyrochlore structure. For y < 1.8 the conductivity
is comparable to that of YSZ (10−2 S/cm at 700◦C). Molecular dynamics [151, 152]
and static lattice energy minimization simulations [153] have suggested that oxygen
diffusion in Gd2Ti2−yZryO7 occurs by hopping from 48f site to 48f site. This result
has been later confirmed by XPS measurements [1637]. The oxygen occupancy of
48f sites is 1 (or very close to 1) for Zr contents below y = 0.6 but decreases pro-
gressively as Zr content is further increased [1638]. These vacancies in 48f sites are
responsible for oxygen hopping and diffusion, and explain the increase of more than
two orders of magnitude in dc conductivity at 600◦C observed when increasing Zr
content from Gd2Ti1.4Zr0.6O7 to Gd2Zr2O7 [1635]. Although the activation ener-
gies Eσ of the dc conductivity increases monotonically with y from Eσ = 0.70 eV
for y = 0.5 to Eσ = 1 eV for y = 2 [1639, 1640].

More recent measurements of Eσ by Moreno et al. [150] are shown in the left
panel of Fig. 301 for six samples with Zr content of y = 0.5, 0.7, 0.9, 1.3, 1.8, and
2. However, the energy barrier for oxygen hopping from 48f to 48f sites Ea has
been previously calculated. From molecular dynamics simulations [151, 152], Ea
ranges from 0.57 to 0.64 eV, and from static lattice energy minimization simula-
tions [153], Ea = 0.58 eV. Two problems or anomalies present themselves. One is
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Fig. 301 (Left) Arrhenius plot of dc conductivity in the series Gd2Ti2−yZryO7 for different Zr
contents: y = 0.5 (open squares), 0.7 (closed diamonds), 0.9 (open circles), 1.3 (closed triangles),
1.8 (open triangles), and 2 (closed squares). (Right) Dependence of the exponent n obtained from
fits of electric modulus data to Fourier transform of the Kohlrausch function, as a function of Zr
content in Gd2Ti2−yZryO7. The inset shows the imaginary part of the electric modulus for samples
(from top to bottom) with y = 2, 1.3, 0.9, and 0.5. Note that experimental data in the inset have
been horizontally and vertically shifted for clarity. Reproduced from [150] by permission
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that the actual energy barrier for oxygen ion hopping Ea is significantly smaller than
the observed Eσ . The other is the monotonic increase of Eσ with y. These anoma-
lies are analogous to those found in other interacting systems. These include the
conductivity relaxation in other ionic conductors, β-relaxation in side-chain liquid
crystalline polymers, and motions of polymer chains, where the anomalies originate
from many-body relaxation dynamics and have been explained by the CM through
the coupling parameter n.

To resolve the anomalies, the key step was taken by Moreno et al. in determining
n for the conductivity relaxation as a function of frequency in Gd2Ti2−yZryO7 using
impedance spectroscopy. The imaginary part of the electric modulus M′′(f ) from
the impedance spectroscopy measurements of Gd2Ti2−yZryO7 is shown in the inset
of the right panel of Fig. 301. It can be seen that the width of the M′′(f ) loss peak
increases with y. M′′(f ) calculated by using the Kohlrausch function for (t) in Eq.
(1.56) was used to fit the data, and the coupling parameter n was determined for all
six samples from the good fits found. The results shown in the right panel of Fig. 301
show systematic and significant increase in n as Zr content is increased from y = 0.5
to 2.0. It is known that increasing Zr content above y = 0.5 results in creating
vacant 48f sites which are responsible for oxygen hopping motion [1638], resulting
in higher charge carrier (oxygen vacancies at 48f sites) concentration. The increase
also creates higher disorder in both the cationic and anionic sublattices [1637]. Both
effects act in concert to enhance mutual interactions between the carriers, which
lead to the increase of the coupling parameter n with y as expected by the CM, as
observed by experiment. From this, the observed increase of the dc conductivity
activation energy Eσ with y follows as a consequence of the CM equation (3.23),
now written as

Eσ (y) = Ea/
[
1 − n(y)

]
, (3.42)

together with the facts that the energy barrier for oxygen hopping from 48f to 48f
sites Ea is independent of y and n is a monotonic increasing function of y.

Furthermore, from the values of Eσ (y) and n(y) obtained from experiment, we can
form the product [1−n(y)]Eσ (y). According to the CM, it should be the microscopic
energy barrier Ea for an oxygen ion to jump from one 48f site to a neighboring 48f
sites. The products from the six samples all lie within the range of 0.60 ± 0.03 eV
and can be considered as nearly independent of y as expected. This is shown in
Fig. 302.

The mean value of 0.60 eV is in excellent agreement with recent calculations
of the energy barrier an oxygen ion must overcome to hop from one 48f site
to a neighboring one from molecular dynamics simulations (0.57–0.64 eV) [151,
152] and from static lattice energy minimization simulations (0.58 eV) [153]. This
result offers proof of the verity of the primitive relaxation time. The observed slow
relaxation time and its properties are the consequence of the many-ion cooperative
dynamics originating from Coulomb interaction between the ions. Cooperative oxy-
gen ion dynamics is not only a subject of fundamental interest but also a key factor
in determining the dc ionic conductivity value for practical applications.
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Fig. 302 Activation energies
Eσ (�) and Ea = (1− n)Eσ (•)
as a function of Zr content in
Gd2Ti2−yZryO7. Solid line
represents the average value
Ea = 0.60 eV obtained for the
primitive energy barrier for
oxygen hopping. Reproduced
from [150] by permission

In the discussion above for Gd2Ti2−yZryO7, increase in activation energy Eσ

when increasing Zr content is explained by the increase in the degree of cor-
relations among mobile oxygen ions in the oxygen ion diffusion process as the
structure becomes more disordered. This explanation is supported by the concomi-
tant increase in n, which is a measure of the many-ion conductivity relaxation
dynamics. If the effect and the interpretation are general, one would expect that
replacing Gd in Gd2Ti2−yZryO7 by other lanthanides such as Y and Dy, both the
exponent n and the activation energy Eσ also will increase with Zr content in
Y2Ti2−yZryO7 and in Dy2Ti2−yZryO7. This is in fact observed by Díaz-Guillén et al.
[1645]. It is noted that the increase in Eσ occurs despite increasing cell volume, indi-
cating that it is caused by the enhancement of ion–ion correlations and the increase
in n, in accordance with the coupling model predictions.

As for the primitive energy barrier Ea(y), its value is given by the product
[1 − n(y)]Eσ (y), according to the CM. We have seen from Fig. 302 for the
Gd2Ti2−yZryO7 series that the calculated values of Ea(y) are approximately con-
stant and in agreement with the values obtained by molecular dynamics simulations
and by static lattice energy minimization simulations. The same was found for the
two other series Y2Ti2−yZryO7 and Dy2Ti2−yZryO7, as shown in Fig. 303(a)–(c),
which are like Figs. 301 and 302 for the Gd2Ti2−yZryO7 series.

Moreover, increasing order and concomitant decrease in Eσ as well as n was
found by annealing at a higher temperature of Dy2Ti0.45Zr0,56O7 [1646]. On the
other hand, Ea calculated by the product [1 − n]Eσ remains nearly independent
of the annealing temperature. All these supplementary data support once more the
verity of the primitive relaxation through its primitive activation energy.

3.2.6.4 The Crystalline Lithium Ionic Conductor Li3xLa2/3-xTiO3 (LLTO)

For some ionic conductors that have the dc conductivity σdc measured over an
extended range of temperature to reach high σdc levels, the complete temperature
dependence of σdc is non-Arrhenius. Examples can be taken from some ionic con-
ductors in Table 3.1, and they can be glassy, molten, or even crystalline. Specific
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Fig. 303 Dependences on the average cation size RB of (a) the exponent n, (b) the dc conduc-
tivity activation energy Edc, and (c) the primitive activation energy Ea for samples in the series
of Dy2Zr2-yTiyO7 (DZT), Y2Zr2-yTiyO7 (YZT), and Gd2Zr2-yTiyO7 (GZT). Note that the absolute
scales in (b) and (c) are the same, and the solid lines are shown only to emphasize the trends.
Reproduced from [1645] by permission

examples include the fast silver ion-conducting glasses by Kincs and Martin [1536]
and the crystalline lithium ionic conductors Li3xLa2/3-xTiO3 (LLTO); a special case
is Li0.18La0.61TiO3 by León et al. [1484]. This non-Arrhenius behavior, seemingly
a universal feature in fast ionic conductors as dc conductivity approaches val-
ues about 10–1 S/cm (see Table 3.1), may not be too surprising. This is because
when σdc ≈ 1 S/cm, the conductivity relaxation time τσ would be shorter than
the crossover (to primitive relaxation) time tc≈1 ps as discussed in Section 3.2.3
and demonstrated in [1537, 1538]. However, the crystalline ionic conductor LLTO
exhibits non-Arrhenius behavior at levels of σdc much lower than 1 S/cm, as shown
in the left panel of Fig. 304.

For crystalline ionic conductors such as LLTO and glassy ionic conductors
that remain deep in the glassy state throughout the entire temperature range, the
observed non-Arrhenius T dependence of σdc or τσ offers a challenge for an expla-
nation. This is because the activation energy should be constant since the structure
and hence the energy barrier opposing ion hopping remains unchanged. By the
same token, the primitive activation energy Ea in the CM should also be constant.
Notwithstanding, the explanation from the CM model is the change of ion–ion
correlation effects caused by decrease of coupling parameter nσ as τσ becomes
shorter on increasing temperature. There is an analogue of this behavior in the
structural relaxation of many glass-forming substances (see Chapter 2), where the
coupling parameter nα of the structural α-relaxation shows monotonic decrease
with decrease in τα by raising temperature. It can be readily seen from the CM
equation τσ (T) = [t−nσ (T)

c τ0(T)]1/(1−nσ (T) that τσ (T) is non-Arrhenius even though
τ0(T) = τ0∞ exp(Ea/kT) is strictly Arrhenius if nσ is temperature dependent. The
same applies to σdc because σdc(T) = ε0ε∞/ < τσ (T) >, where < τσ (T) >=
[�(1/βσ )/βσ ]τσ (T) and βσ = (1 − nσ ). This CM explanation also offers an oppor-
tunity to recover the primitive relaxation time and the primitive activation energy
from the experimental data.
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Fig. 304 (Left) dc conductivity vs. 1000/T of LLTO, showing a strongly non-Arrhenius behavior.
Dashed lines indicate the low- and high-temperature activation energies of the Li ion spin relax-
ation rate, which are 0.4 and 0.26 eV, respectively. Solid line is a fitting to VFTH law. Data from
León et al. [1484] is replotted here. (Right) (Upper) Temperature dependence of the dc activation
energy Eσ (diamonds) and of the Kohlrausch exponent [1 − n(T)] (solid squares) describing the
dynamic response of ions in Li0.18La0.61TiO3. Eσ has been determined up to 385 K, but [1− n(T)]
only up to 256 K. Circles represent the microscopic activation energy Ea estimated by using the
CM equation (3.23). It has the constant value of 0.175 eV (horizontal line). Open squares are
the predicted values of the exponent [1 − n(T)] for 256 < T < 385 K in order that the same
constant value, Ea = 0.175 eV, is maintained at the higher temperatures according to the relation
Ea = [1 − n(T)]Eσ . Data from [1482] is replotted here. (Lower) Spectra of the real (open circles)
and imaginary parts (open squares) of the electric modulus of Li0.18La0.61TiO3 obtained from 121,
131, 141, 150, and 160 K from left to right. Solid symbols represent spectra of real and imaginary
parts of the electric modulus at higher temperatures, 191, 212, 232, and 256 K from the left to right.
The narrowing of the loss peak on increasing temperature is clear. Data from [1647(a)] is replotted

Combination of time domain and dynamic frequency measurements of the
complex electric modulus M∗(v) of LLTO has been performed to investigate ion
dynamics in the wide frequency range of 11 decades from 10–5 to 106 Hz and
temperatures up to 256 K [1647(a)]. The spectra are shown in the right (lower) panel
of Fig. 304, where the narrowing of the loss modulus peak on increasing temperature
can be clearly seen. Indeed, this study have found that the exponent [1 − nσ (T)] of
the Kohlrausch function used to fit the spectra increases with increasing temperature
as shown by the solid squares in the right (upper) panel of Fig. 304. The primitive
activation energy Ea(T) calculated via Eq. (3.42) by the product [1 − nσ (T)Eσ (T)]
are shown by the open circles in the same figure. It can be seen that within errors
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the values of Ea(T) obtained are independent of temperature as it should be since it
corresponds to the microscopic energy barrier of the crystalline LLTO.

So far, the published electric modulus data give [1 − n(T)] for T up to 256 K,
while sizeable decrease of Eσ (T) continues up to 385 K. If the CM explana-
tion holds, Ea(T) must still be temperature independent all the way up to 385 K.
Assuming this is the case and taking the temperature-independent value of Ea =
0.175 eV determined at temperatures lower than 256 K, [1 − n(T)] must have the
values shown by open squares in order that the product [1 − nσ (T)] Eσ (T) remains
constant and is equal to Ea = 0.175 eV for all temperatures up to 385 K. This
offers a further critical test of the CM explanation by extending the measurement of
the electric modulus at higher frequencies up to the gigahertz region to determine
[1 − nσ (T)] directly at temperatures higher than 256 K. Actually, such measure-
ments of M∗(ν) for frequencies as high as 1 GHz and temperature reaching 385 K
have been made but so far unpublished [1647(b)]. The coupling parameter nσ (T)
obtained by fitting the electric modulus by Eq. (1.56) with (t) as the Kohlrausch
function at temperature above 256 K and up to 385 K is in agreement with the pre-
dicted values of the exponent [1 − nσ (T)] for 256 < T < 385 K shown in the right
panel of Fig. 304. New measurements confirming the same will be published in
the future [1647(c)]. Using the experimentally obtained values of Eσ (T) and nσ (T),
the calculated products (1 − n(T))Eσ (T) should be good estimates of the primi-
tive energy barrier Ea. An approximately constant value of Ea = 175 ± 10 meV is
obtained over the whole temperature range (line in the right upper panel of Fig. 304),
which is remarkably similar to the value of 170 mV previously determined from
electrical conductivity relaxation and NMR spin-lattice relaxation for the micro-
scopic energy barrier [1484]. This result strongly supports the interpretation of a
decrease in ion–ion correlation with increasing temperature as the origin of the
observed decrease in the exponent n, which in turn explains the parallel decrease
of Eσ . For the present purpose, the primitive activation energy Ea is not only recov-
ered from the data but also indeed independent of temperature as it should be in a
crystalline ionic conductor.

3.2.6.5 The Crystalline Lithium Ion Conductor Li1.2Ti1.8Al0.2(PO4)3

Rivera et al. [1647(c)] have also analyzed in a similar way the recent experimen-
tal conductivity data of the Nasicon-type ionic conductor Li1.2Ti1.8Al0.2(PO4)3
obtained by Arbi et al. [1647(d)]. It also shows a non-Arrhenius temperature depen-
dence of the dc conductivity and a decrease of the exponent n with increasing
temperature, although it has been measured in a smaller temperature range (from
173 to 323 K). Figure 305 shows the temperature dependence of the dc activation
energy Eσ obtained from [1647(d)] (open squares), which changes from 350 meV
at low temperatures to 220 meV at the highest temperatures. Using the values of
the exponent n determined by those authors (solid squares in the figure), Rivera
et al. have calculated the energy barrier Ea by the product (1 − n(T))Eσ (T) and
found that again an approximately constant value of Ea (open circles in the figure)
is obtained over the whole temperature range. This similar finding in a different
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Fig. 305 Temperature dependence of the dc activation energy Edc (open squares) and of the expo-
nent n (solid squares) describing the dynamic response of ions in Li1.2Ti1.8Al0.2(PO4)3 after Arbi
et al. [1647(d)]. Open circles represent the microscopic activation energy estimated by using the
coupling model. Reproduced from [1647(c)] by permission

ionic conductor further supports our conclusions derived from the CM analysis of
temperature-dependent dynamics in LLTO.

3.2.6.6 Ionic Conductivity of Nanometer Thin Films of Yttria-Stabilized
Zirconia

Discussions of the change in dynamics of various glassformers on reducing one or
more dimensions to nanometer scale were made Section 2.3.2.33. There experimen-
tal data have shown the suppression of the many-body relaxation, obviously due to
the reduction in its length scale, and much faster structural α-relaxation than in the
bulk. Under extreme confinement or restricting to consideration of the surface layer
of thin films, the suppression can be so severe that the observed α-relaxation time τα
approaches or even assumes the primitive relaxation time τ0 calculated from the CM
or the JG β-relaxation time τJG of the bulk glassformer. The effect has been demon-
strated in ultrathin poly(methylphenylsiloxane) (PMPS) and poly(ethylene oxide)
(PEO) films with thickness of the order of 1.5–2.0 nm intercalated into galleries of
organically modified layered silicates in Fig. 261 and PDMS confined in 2.5-nm
glass pores in Fig. 260. Here we present experimental data of the oxygen ion con-
ductivity relaxation in thin films of yttria-stabilized zirconia (YSZ) to demonstrate
that the same effect is observed. This is another example of the universal dynamics
manifested in relaxation of interacting systems.

Before we proceed to discuss the oxygen ion conductivity in thin films of YSZ,
mention has to be made on the earlier studies by Maier and coworkers in which
they found substantial increase of the dc ionic conductivity in superlattices of CaF2
and BaF2 when the thickness of the individual layers was decreased down to 16 nm
[1648]. The first case involving YSZ is the large enhancement of the in-plane elec-
trical conductivity σ of highly textured thin film of yttria-stabilized zirconia (YSZ)
deposited onto an MgO substrate found by Kosacki et al. [1649]. The enhancement
started to be observed for films with thickness d less than 60 nm, and σ increases
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Fig. 306-1 (Left) Temperature dependence of the electrical conductivity determined for epitaxial
YSZ thin films of different thicknesses. The thick vertical arrows indicate the order of magnitude
increase of the conductivity at T ∼ 400 and 800◦C. Reproduced from [1649] by permission. (Right)
Same as Fig. 288 except for the two thick arrows at T ∼ 400 and 800◦C to indicate that the
difference between the measured conductivity relaxation time of bulk YSZ and the calculated
primitive relaxation time is of nearly same order of magnitude as the increase of conductivity of
the 15-nm YSZ thin film at the same temperature in the left panel. Note that the compositions of
the samples in the two figures are not exactly the same

by orders of magnitude with decreasing d down to 15 nm as shown in the left panel
of Fig. 306-1. The thick arrows at T∼400 and 800◦C indicate enhancement of σ by
about 2 and 0.75 decades, respectively.

The observed increase in conductivity σ was attributed by Kosacki et al. to a
significant and dominating contribution from the oxygen transport at the interface,
which becomes increasingly important with decrease in the film thickness. From an
analysis of the data by these authors, it was estimated that the thickness of inter-
face layer is about 1.6 nm, and interfacial conductivity can be orders of magnitude
greater than the bulk-like, lattice-related conductivity depending on the temperature.
In the deposited YSZ thin film, there is reduction of inter-ion coupling because of
the absence of oxygen ions on one side of the air-YSZ surface as well as in the
1.6-nm interfacial YSZ layer on top of the MgO substrate. The analogy with sup-
ported polymer thin films on substrate is evident, where we have seen the surface
layer has much higher segmental mobility than bulk from AFM probe of the surface
layer of polystyrene thin films by Tanaka et al. [1465(c)] and Forrest and coworker
[1465(d), (e)]. The reduction of coupling parameter and the relation to the primitive
relaxation time have been demonstrated by Tanaka et al. This is also the case in the
observed enhancement of conductivity in the 15-nm YSZ film. The two arrows in
the right panel of Fig. 306-1 indicate the difference in order of magnitude between
the bulk conductivity relaxation time τσ and the primitive relaxation time τ0 at 400
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and 800◦C. They are nearly the same as the enhancement of σ observed in the
15-nm epitaxial YSZ thin film at the same temperatures in the left panel of
Fig. 306-1. Also the activation energy of σ in the 15-nm epitaxial YSZ thin film
is 0.62 eV, which is not far from the 0.50 eV of τ0, considering the fact that the YSZ
in the two cases does not have the same mole percentage of yttria.

Motivated by the observation of Kosacki et al. that enhancement of conductivity
increases with decreasing YSZ film thickness and the suggestion that it comes from
oxygen ions in the interfacial layer, Garcia-Barriocanal et al. fabricated heterostruc-
tures where YSZ layers (with 8 mol% nominal yttria content) in the thickness range
from 62 nm down to 1 nm were sandwiched between two 10-nm-thick layers of
insulating SrTiO3 (STO) [1650(a), 1650(b)]. Also, superlattices were grown, alter-
nating 10-nm-thick STO films with YSZ layers of thickness between 62 and 1 nm.
The thickness of 1 nm corresponds to the dimension of two unit cells of YSZ. The
ultrathin layer of YSZ grows rotated by 45◦ around the c-axis and strains to match
the STO lattice. Because the bulk lattice constants of STO and YSZ are 0.3905 and
0.514 nm, respectively, the epitaxial growth of the YSZ on top of the STO engen-
ders a large, expansive strain in the thin YSZ layers of 7% in the ab plane. The real
part of the lateral electrical conductivity σ ′ of the thinnest 1-nm YSZ film between
two 10-nm-thick STO films plotted against frequency f is shown in the left panel
of Fig. 306-2. The dc ionic conductivity σdc of this [STO10 nm/YSZ1 nm/STO10 nm]
trilayer was determined by the plateau level of σ ′ (f) and the values are identified
by the stars in the figure. The electronic contribution to the ac measurements was
negligible, and thus the measured ac transport is attributable to oxygen ion diffu-
sion process [1650(a), 1650(b)]. In the right panel of Fig. 306-2, the temperature
dependence of σdc of the [STO10 nm/YSZ1 nm/STO10 nm] trilayers is shown together
with data from a single crystal and the 700-nm film. Whereas the bulk and the thick

Fig. 306-2 (Left) Real part of the conductivity as a function of frequency at several temperatures
for a 1-nm YSZ (∼8 mol.% yttria content) trilayer with 10-nm STO top and bottom layers grown
on a (100) STO substrate. Isotherms were measured in the range of 357–531 K. The solid line
represents likely stray capacitance from the STO and not an NCL contribution as originally sug-
gested in [1650(a)]. Stars identify the value of σdc. (Inset) Imaginary vs. real part of the impedance
(Nyquist) plots at 492, 511, and 531 K. The high-frequency contribution is a Debye-like process
characterized by a conductivity exponent n = 0
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film of YSZ show the well-known Arrhenius behavior with an activation energy
Eσ ∼ 1.1 eV, the trilayers show much larger conductivity values and smaller
values of the activation energy Eσ ,film but compensated by much larger pre-
exponential factor ∼ σ∞,film. The thickest trilayer (62-nm YSZ) already shows an
increase of about two orders of magnitude in the high-temperature dc conductiv-
ity, and Eσ ,film decreases to 0.72 eV. When decreasing the thickness of the YSZ
layer to 30 nm and then to 1 nm, the dc conductivity increases another three or
more orders of magnitude, and Eσ ,film decreases further to 0.6 eV, nearly the same
as 0.62 eV for the 15-nm-thin film of YSZ deposited on MgO (see left panel of
Fig. 306-1) and 0.50 eV, the activation energy of the primitive oxygen ion hop. The
values of the pre-exponential factor ∼ σ∞,film are as high as ∼107 (ohm cm)−1.
Garcia-Barriocanal et al. concluded that the high conductance observed comes from
some interface conduction mechanism, which they supported by conductance mea-
surements of superlattices with [YSZ1 nm/STO10 nm] as the repeat unit. From the
good epitaxial quality of the heterostructures, they believe that the large in-plane
expansive strain on the YSZ interface plane, together with the high concentration
of vacant oxygen positions and probable positional disorder, leads to uncorrelated
ion diffusion at the interface, resulting in the reduction of the activation energy and
the huge enhancement of the ionic conductivity. Here, to the cause of the effect,
we add the reduction of inter-ion coupling due to the absence of ions on both sides
of the YSZ thin films. Like Garcia-Barriocanal et al. have done before, the reduc-
tion in coupling parameter n from the bulk value of 0.56 [1542] accounts for the
concomitant decrease of activation energy from the bulk value Eσ ∼ 1.1 eV to
0.60 eV according to the CM equation (3.42). Garcia-Barriocanal et al. suggested
that the very large pre-exponential factor ∼ σ∞,film is possibly due to an increase
in the concentration of oxygen vacancies and a larger entropy term [exp(S/kB)] is
due to an increased number of available positions for the oxygen ions (enhanced
positional disorder for the oxygen vacancies) [1650(b)]. Pennycook et al. reported
density-functional calculations that trace the origin of the effect to a combination of
lattice-mismatch strain and O sublattice incompatibility [1650(c)].

3.2.6.7 Activation Energy of the Snoek–Köster Relaxation in Cold-Worked,
Body-Centered Cubic Metals

In body-centered cubic metals such as α-Fe and group-V transition metals, inter-
stitial solute atoms (ISAs) including oxygen, carbon, and nitrogen prefer to sit on
octahedral sites and give rise to local strain distortion of tetragonal symmetry. Thus
an ISA contributes an elastic dipole of tetragonal symmetry, which can produce
anelastic relaxation that can be observed by dynamic mechanical measurements.
Recognizing this possibility, Snoek found these anelastic relaxations as peaks by
internal friction measurements of Q–1 as a function of temperature [1651]. If the
ISA concentration is low, the Snoek peak is well described by an exponential Debye
relaxation with a single relaxation time τS, which is related to the reciprocal of
the jump transition rate of the ISA to neighboring sites. It was found that τS has
an Arrhenius temperature dependence τS = τS∞exp (HS/kT), where HS is the
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activation enthalpy of diffusion of the interstitial atoms. After the ISA-containing
metal has been cold worked, an additional internal friction peak, called the Snoek–
Köster (SK) peak, appears at a higher temperature [1652]. Both the peak position
and the peak height depend on the degree of cold work and the ISA concentra-
tion [1653–1655]. The activation enthalpy HSK and the width of the SK peak are
usually substantially larger than the corresponding quantities of the Snoek peak
[1653–1655].

It is generally agreed that the SK relaxation is caused by the bowing out of
a dislocation segment under applied stress, dragging along with it the surround-
ing Cottrell atmosphere of rather high density of ISAs, as suggested by Schoeck
[1656]. However, Schoeck’s own model did not take into account of the effect
that interactions and correlations between the diffusing ISAs have on the SK relax-
ation. In an application of the CM to the SK relaxation [1653–1655], this effect was
incorporated into Schoeck’s model. The primitive jump relaxation time of a single
ISA without the influence of others is given by the Snoek expression. The inter-
action/correlation between the diffusing ISAs slows down the diffusion coefficient,
resulting in the correlation function of the SK relaxation to the Kohlrausch stretched
exponential form:

CSK (t) = exp[−(t/τSK)1−n], with τSK = τSK∞ exp[HSK/kT]. (3.43)

The CM equation relates its activation energy HSK to the activation enthalpy of
Snoek HS by

HSK = HS/(1 − n). (3.44)

Since the Snoek relaxation activation enthalpies HS are available from the lit-
erature, the SK relaxation offers an excellent opportunity to critically test this CM
relation and also to recover the primitive activation energy of the SK relaxation. To
verify this relation, literature data of the internal friction peaks from SK relaxation
were analyzed and fitted to those calculated from CSK(t). The fits yield the coupling
parameters n and the activation energy HSK. These quantities together with HS are
shown in Table 3.9 for α-Fe, Ta, and Nb containing nitrogen (N), carbon (C) and
oxygen (O) as ISAs. The product (1 − n)HSK in the last column is to be compared
with HS in the neighboring column. It can be seen that HSK is larger than HS, but
the product (1 − n)HSK is approximately the same as HS.

These results of getting the primitive activation energy HS from HSK of SK
relaxation in metals are analogues of the procedure used in the cases of (1) β-
relaxation in side-chain liquid crystalline polymers discussed in Section 3.2.6.1 and
(2) junction dynamics in Section 3.2.6.2 and Li ion dynamics in Sections 3.2.6.4
and 3.2.6.5.

Reduction of n in Snoek–Köster Relaxation by Decreasing Carbon Concentration

One way of reducing the interaction between ISAs is to decrease their concentration.
This can be accomplished in ultra-high purity iron where the carbon concentration
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Table 3.9 Values of the coupling parameter n and activation enthalpy HSK of the Snoek–Köster
(SK) relaxation together with the activation enthalpy of the Snoek relaxation HS for α-Fe, Ta, and
Nb containing nitrogen (N), carbon (C), and oxygen (O) as ISAs

High-purity
specimen

Doped
ISA HSK(eV) n HS(eV) (1 − n)HSK [eV]

α-Fe N 1.40 0.38 0.796 0.87
α-Fe C 1.84 0.60 0.87 0.74
Ta (A) O 1.45 0.30 1.10 1.02
Ta (B) O 1.68 0.48 1.10 0.88
Ta monocrystal O 2.24 0.46 1.10 1.21
Nb O 1.49 0.40 1.15 0.90
Nb monocrystal O 1.68 0.50 1.15 0.84

is smaller. One can expect from the CM a reduction of n and a smaller activation
energy HSK of the SK relaxation in the ultra pure iron from Eq. (3.44) [1655]. This
expectation is fulfilled by the results of an experiment on SK relaxation in ultra-high
purity iron carried out by Magalas [1655]. The data of the relaxation parameters
HSK, τSK∞ , and TSK

max, of the Snoek–Köster relaxation are presented in Table 3.10.
Here TSK

max is the temperature of the SK peak at 1 Hz. It can be seen from the table
that HSK of the ultra pure iron is reduced to 0.95 eV, which is slightly higher than
the value of HS = 0.87 eV (see Table 3.9) and much smaller than 2.1 eV for the
HSK of the less pure iron.

The prefactor τSK∞ of the ultra-high purity iron is 6.26 × 10−12 s compared with
3.71 × 10−19 s of less pure iron. The latter has not only the anomalously short
τSK∞ but also the large HSK = 2.12 eV, an example of the Meyer–Neldel rule or
compensation law of relaxation time in interacting systems. These have analogues
in the side-chain liquid crystalline polymers, the junction dynamics, and Li ion
conductors. Let us take n = 0.60 from the SK relaxation of carbon ISA in Fe
given in Table 3.9 from another experiment and assume that this is the same as
that of 1000 ppm carbon sample of Magalas, and also assume tc = 10−11 s. With

Table 3.10 Relaxation parameters of stable SK peak in deformed ultra-high purity iron with car-
bon as ISA at concentration of 25 ppm, compared with another sample with carbon at concentration
of 1000 ppm

Carbon concentration

Total
In solid solution
(at ppm)

Deformation
at RT (%) HSK(eV) τSK∞ (s)

TSK
max (K) at

1 Hz

1000 110 24∗ 2.12 ± 0.04 3.71 × 10–19 546.8 ± 0.6
25 5/10 13∗∗ 0.95 ± 0.01 6.26 × 10–12 461.3 ± 0.4

∗ Successive deformation at RT: 13% (Ta = 673 K) + 6% (Ta = 673 K) + 6% (Ta = 673 K)
∗∗First run-up to Ta = 673 K, deformation 13%
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these assumptions, near physical value of the primitive prefactor τ∞ = 10−14 s is
obtained from the CM equation

τSK∞ = [(tc)−nτ∞
]1/(1−n)

(3.45)

and τSK∞ = 3.71 × 10−19 of less pure iron.

3.2.6.8 Precipitates in Al–Ag Alloys, Ta–H, and Ti–H Systems

The thermal-activated relaxation originating from motion in solute clusters of pre-
cipitate in a number of alloys was studied by internal friction measurement at a fixed
frequency. The energy loss Q–1 measured by internal friction plotted as a function
of reciprocal temperature shows up as a broad and asymmetric peak. The shape
deviates strongly from the Debye-type relaxation peak with exponential relaxation
function but is well accounted for by the Lévy function, which is basically the
Laplace transform of the Kohlrausch function [1657(a)]. From the best fit of the
position and shape of each internal friction peak, Wang and coworkers [1657(a)]
obtained the Kohlrausch exponent (1–n) and the activation energy E∗

a (fit). The
results of E∗

a (fit) and n shown together with the experimentally observed value E∗
a

(obs.) are given in Table 3.11 for five alloys Al–Ag, Ti–H and Ta–H. The compo-
sitions of the alloys are as follows: Al–30 wt% Ag; A1–20 wt% Ag; A1–20.1 wt%
Ag; Ti–5.4 at.% H; and Ta–5 at.% H.

Because of solute clustering in the precipitates, Wang and coworkers argued the
presence of interaction between the solute atoms and many-body relaxation in the
motions of solute atoms, and hence the application of the CM to deduce the true
activation energy Ea. Clustering of H in hydrides has been suggested in the light of
neutron scattering experiment [1658]. This approach differs from the interpretations
proposed by others for the internal friction peak associated with precipitates, all of
which neglect the many-body relaxation aspect of the mechanism [1659, 1660].
From the results of Wang and coworkers using the CM, it is easy to understand why
the internal friction peak due to the Ag clusters in Al–Ag alloys has the same peak

Table 3.11 The observed apparent activation energy E∗
a (obs.), the calculated apparent activation

energy E∗
a (fit), the true activation energy Ea, and the coupling parameter n

Alloy
Structure
of alloy

Structure of
precipitate

E∗
a (obs.)

(eV)
E∗

a (fit)
(eV) Ea (eV) n

Al–30 wt% Ag FCC HCP 1.2 ± 0.1 1.3 0.91 0.3
Al–20 wt% Ag FCC HCP 1.2 ± 0.1 1.3 0.91 0.3
Al–20.1 wt% Ag FCC HCP 1.09 ±

0.02
1.3 0.91 0.3

Ta–5 at.% H BCC BCT 0.38 ±
0.05

0.40 0.10 0.75

Ti–5.4 at.% H HCP FCT 0.47 ±
0.01

0.47 0.25 0.44
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temperature as that due to γ′ precipitates. The latter is due to the stress-induced
change in the particle shape (i.e., precipitation and dissolution) for which the rate-
limiting process is atom migration around the matrix–precipitate interface. For the
Ta–H system, it is puzzling why E∗

a (obs.) (=0.38 eV) in the β2 phase is much larger
than the activation energy (0.12 eV) of hydrogen in α-Ta phase (see Table 3.11).
However, it becomes understandable if we take into account of the fact that the true
activation energy Ea is 0.10 eV, which is comparable with 0.12 eV.

3.2.6.9 Grain Boundary Relaxation

Kong and coworkers [1657(b)–(e)] made internal friction measurements on various
<111> tilt and twist grain boundaries in high-purity Al bicrystals. The temper-
ature dependence of the grain boundary internal friction peak originating from
grain boundary relaxation was determined. The activation enthalpy and the pre-
exponential factor of the relaxation time are related by the compensation law, just
like that discussed for the relaxation parameters of the SK peak in Table 3.10.
The large values of the activation parameters measured for high-angle tilt and twist
grain boundaries are attributed to a cooperative motion of atoms (group mechanism)
during boundary relaxation and are explained by application of the CM.

3.2.6.10 Conformational Transition Energy Barrier of Polymers

This subject already has been touched upon in Section 3.2.5.2 and results are shown
in Tables 3.4–3.6. For polymers with low Tg such as PE and PDMS, the primi-
tive activation energy Ea, which is the conformational transition energy barrier in
this case, can be obtained from the measured activation energies Eη and ED of vis-
cosity η and self-diffusion coefficient D by the relations Ea = (1 − nη)Eη and
Ea = (1 − nD)ED, respectively The success has been demonstrated before. The
value of Ea obtained is supported by measurements of the local segmental relaxation
in (1) PDMS by neutron scattering [1579, 1580], (2) PE by 13C-NMR measure-
ments [1582] and molecular dynamics simulations [1581], and (3) aPP by molecular
dynamics simulations [1585].

3.2.7 Changes Effected by Mixing or Interfacing

Shown in Section 2.2.5.7 are many examples from experiments and molecular
dynamics simulations of the many-body structural relaxation of glassformers being
modified by mixing with another glassformer, and in Section 2.3.2.38 by the inter-
facing with another glassformer or confining immobile solid wall. In this section,
analogues of the changes in properties found for structural relaxation in glassform-
ers on mixing or interfacing found in entirely different processes and/or systems
are presented. These are other examples of universal dynamics of relaxation and
diffusion in interacting systems.
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3.2.7.1 Global Chain Dynamics of Each Component in Binary Polymer
Blends

In the binary mixtures of glassformers, each component has its own structural α-
relaxation and temperature dependence of its relaxation time. Both the relaxation
time and the width of the dispersion of the more mobile or faster component
increase with increasing concentration of the less mobile or slower component.
These changes have been explained by enhancement of intermolecular coupling of
the faster component when it is replaced in part by the slower component. In the con-
text of the CM, enhancement of intermolecular coupling is equivalent to increase
in the coupling parameter nα, from which several predictions in agreement with
experiments follow including the increased separation between the α-relaxation and
the JG β-relaxation. On the other hand, the relaxation time of the slower compo-
nent decreases on addition of the faster component. For polymeric glassformers,
examples discussed before are local segmental α-relaxation in blends of PVME
with PS (see Fig. 166), PEO with PMMA (see Fig. 157), and LB-PBD with CR-
PBD (see Fig. 170). Here we show analogues of these properties of local segmental
α-relaxation from polymer chain relaxation in binary miscible polymer blends.

A new rheo-optical technique to measure dynamic infrared dichroism was
invented by Fuller and applied to binary polymer blends [1661]. The technique was
able to measure not only the total relaxation modulus from global chain motion but
also the contribution of each component in a bidisperse entangled polymer melt.
The bulk relaxation is measured simultaneously by using birefringence. The first
family of blends studied is nearly monodisperse pairs of hydrogenated and deuter-
ated polyisoprenes of molecular weights 53,000 and 370,000, both several times
the entanglement molecular weight [1661]. This study was repeated with binary
blends of nearly monodisperse poly(ethylene propylene) (PEP) samples of molec-
ular weights 53 K, 125 K, and 370 K, all above the critical molecular weight for
entanglement. The results of both studies are similar, and shown in Fig. 306-3 is
the relaxation dynamics of each of the two components of the blends of 53 K PEP
with 370 K PEP together with the components in their pure state. The blends have
compositions of L = 75, 50, 30, 20, and 10% by volume of the longer chains.

It can be seen by comparing the left panel for the longer chains and right panel for
the shorter chains that the global chain dynamics of the two components is differ-
ent in all blends. The long-chain relaxation is significantly altered by the addition of
short chains to the surrounding matrix, as had been inferred from dynamic mechani-
cal relaxation measurement of bulk polymer [1663, 1664]. The dichroism relaxation
of the long chains presented in the left panel of Fig. 306 directly shows the change
to faster relaxation and narrower dispersion monotonically on increasing the vol-
ume fraction of the short chains. Another observation is that increasing presence
of long chains in the blend produces a significant retardation of the relaxation of
the short chains, accompanied by broadening of the dispersion (see right panel of
Fig. 306). All these changes of the global chain relaxation properties individually
of the long and short chains are analogous to those found in structural relaxation of
glassformers. This serves as another example of universal properties of interacting
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Longer component
Mw = 370 K

poly(ethylene propylene)

Shorter component
Mw = 53 K

poly(ethylene propylene)

Fig. 306-3 (Left) Long-chain dichroism relaxation following a step strain for the S/L blends,
where S and L stand for shorter and longer nearly monodisperse poly(ethylene propylene) chains
with molecular weights of 53 K and 370 K, respectively. From right to left are data of long chain
in the order of 100, 75, 50, 30, 20, and 10% by volume of the longer chains. (Right) Short-chain
dichroism relaxation following a step strain for the S/L blends. From left to right are data of short
chain in the order of 100, 75, 50, 30, 20, and 10% by volume of the shorter chains. Reproduced
from [1662] by permission

systems. For the present case, the interaction between polymer chains of the two
components comes from the entanglements as well as the short-range or nematic-
like orientational coupling between the polymer chains of the two components.
The nematic-like orientational coupling was known to many authors [1665–1675],
and existence of such interaction has been established in the study of stress opti-
cal coefficients for rubbers [1676, 1677] before the dichroism relaxation studies of
the blends published in 1989 [1661]. The effect of the “nematic interaction” is to
force neighboring polymer segments to orient in the same direction. One of clearest
evidence of nematic-like orientational coupling comes from deuterium nuclear mag-
netic resonance study [1674] of short probe polymer chains dissolved in a strained
elastomer. The data showed the presence of imposed orientational anisotropy of the
probe chain at very short length scales of the bond level.

Explanation from the CM

The CM applied to global chain dynamics of entangled polymers [202, 203, 359,
360, 837, 870, 872, 904] readily explains the observed changes of global chain
dynamics in the blends from the decrease and increase in the entanglement coupling
parameters nL and nS of the long and short chains respectively as follows. Short
chains cannot entangle the long chains as well as long chains themselves, and hence
entanglement coupling is decreased by the addition of short chains. This, together
with faster motion of the short chains, should reduce the entanglement coupling and
its parameter nL(L) of the long chains in the blends by adding short chains. The
CM equation, the counterpart of Eq. (3.33), for the long chains is

τL(L, T) = [t−nL(L)
c τ0L(L, T)]1/(1−nL(L)), (3.46)
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with tc≈1 ns for entanglement coupling (see Fig. 289). This equation together
with the monotonic decrease of nL(L) with decrease in L readily explains the
changes of the dynamics of the long chains shown in Fig. 306. On the other hand,
the long chains replacing short chains have much longer relaxation time. Hence,
the unrelaxed modes of the long chains impose stronger constraint on the short
chains, effectively enhancing the entanglement coupling parameter nS(L). In more
technical terms, the unrelaxed long chains in the blend enforce sustained orienta-
tion anisotropy on the level of Rouse segments of the short chains at times past
τs(L = 0, T), the global chain relaxation time of the short chains without the
addition of long chains. The sustained orientation anisotropy result in prolonged
relaxation of the short chains in the blend and relaxation time τS(L, T) longer than
τS (L = 0, T). This effect of the long chains on the short chains originates from the
short-range or nematic-like orientational coupling between polymer chains in the
melt [1665–1675]. This intermolecular orientational coupling interaction between
the unrelaxed long chains and the short chains is the cause of the increase of nS(L)
with increase of L in the CM description. A CM expression for τS(L, T) similar
to Eq. (3.46) predicts the increase of τS(L, T) with increasing L.

Explanation from the Reptation-Based Model After Incorporating Nematic-Like
Coupling

The component global chain dynamics found by dichroism relaxation studies of
the entangled blends [1661, 1662] cannot be explained by various models which
incorporate the effects of constraint release into a reptation-based model [43, 1678–
1681]. An example is the strong retardation of the relaxation of the short chains
with increasing L. These reptation-based models predict that the time required for
a short chain to completely diffuse out from the initial “tube” of constraints imposed
by the mean field just after the strain is applied should be the same for all L. This
prediction is at odds with experiment as can be seen from the left panel of Fig. 306
that the measurable relaxation of the short chains in the blend with 75 vol.% long
chains takes place at times more than an order of magnitude longer than those of the
monodisperse short chains. Another experimental observation at variance with the
reptation-based models is the terminal long-chain relaxation appearing to become
single exponential with a long relaxation time for long-chain volume fractions L
less than 0.5, which decreases as L decreases [1661]. In order to reconcile the
dichroism relaxation of the entangled blends [1661, 1662] with the reptation-based
model, Doi et al. [1682] pointed out that nematic interaction has to be incorporated
into the model. This was implemented by Ylitalo et al. on top of the reptation with
constraint release model of Rubinstein–Helfand–Pearson (RHP) [1678]. The RHP
model describes the stress relaxation of a blend as the result of two independent
mechanisms: reptation, by which the stressed chain disengages from the deformed
tube, and constraint release, by which the deformed tube relaxes. With the addition
of the short-range nematic interaction, the decorated reptation model can explain
the data.
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Difference in Spirit of the Explanations by the CM and the Reptation–Constraint
Release–Nematic Interaction

It is instructive to point out the difference in spirit of the explanation of the global
chain dynamics of entangled blends [1661, 1662] by the CM and the reptation–
constraint release–nematic interaction model [1662]. The CM emphasizes that the
global chain dynamics of entangled blends is analogous to similar results of com-
ponent structural relaxation of mixtures of two glass-forming liquids. For the global
chain dynamics of entangled blends, the interactions, including long-range entan-
glement and short-range intermolecular orientation coupling, are different from the
Lennard–Jones-like interaction between repeat units in structural relaxation of poly-
mers. Nevertheless, both are genuine many-body relaxation in interacting systems
that exhibit similar dynamic properties governed by the same physics and laws.
Although the CM equations are used in the explanation given here, these can be
replaced by those from a more sophisticated and rigorous theory of universal relax-
ation of interacting systems when it appears in the future. This spirit of the CM
explanation is in stark contrast to the explanation given by the reptation–constraint
release–nematic interaction model. The reptation model itself, without the other
mechanisms added, considered that the entangled polymer chain dynamics observed
including the M3.4 dependence of viscosity is the consequence of the topology of
long linear chains and the fact that neighboring chains cannot cross. The model
views each polymer chain confined by neighboring chains in a tube-like region with
diameter equal to the average distance between entanglements. This tube limits the
lateral motion of the chain but allows its curvilinear diffusion along its mean contour
or its reptation [41–44]. Each linear chain moves like a slithering snake, basically
independent of other chains. Thus, the reptation model emphasizes that the partic-
ular geometry of entangled thread-like polymer chains is the principal cause of the
observed dynamics. Obviously it does not apply to other many-body relaxation pro-
cesses in other interacting systems, and not even the structural relaxation in the same
polymer. Cyclic polymers have no ends and cannot reptate, but yet the viscoelas-
tic and diffusion properties of entangled cyclic polymers are essentially the same
as linear polymers including similar molecular weight dependence. Actually the
reptation model has used the geometric argument to reduce the many-chain relax-
ation problem to a one-chain relaxation (reptation motion) problem, which provides
immediate answers to be compared with experiments [42, 44] including the time
dependence of the end-to-end vector correlation function φe(t) given by

φe(t) =< Re(t) · Re(0) >/< Re(0)2 ≥
∑∞

p=1,odd

(
8

p2π2

)
exp

(
−p2t

τd

)
. (3.47)

where τd is the disentanglement time of the reptation-tube model. Remarkably, this
expression for φe(t) is the same for the Rouse model, except that τd is to be replaced
by the Rouse time τR. The dispersion predicted by Eq. (3.47) of the pure repta-
tion model is too narrow and cannot explain the terminal frequency dispersion of
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monodisperse linear polymers in the dynamic modulus or creep experiment mea-
surements. This, together with other problems including τd ∝ M3.0 and not the
observed M3.4 dependence of viscosity, has led to the addition of the new mecha-
nism of constraint release to the reptation model [43, 1678–1681] in order to bring
consistency with experiment. The constraint release mechanism is due to the motion
of neighboring chains that form the fixed tube of the original reptation model and has
the flavor of many-chain dynamics. However, it is implemented as a correction of
the chain reptative motion independent of the other chains. The reptation–constraint
release model still is leaning heavily on the premise that each linear chain moves
like a slithering snake, and therefore it is far from solving the problem by treating
it as relaxation of many chains interacting by entanglements. Basically the prob-
lem of all reptation-based models is that they have accepted from the start that the
chain motion is reptation and its predictions, and corrections are made by adding
new mechanisms such as constraint release or tube renewal to bring consistency
of the model with experiment in monodisperse polymers [43, 1678–1681]. The
component chain dynamics of bidisperse entangled polymer blends discussed here
[1661, 1662] requires another correction of including nematic interaction, lead-
ing ultimately to the reptation–constraint release–nematic interaction model. The
deviation of the center-of-mass MSD data from neutron spin echo experiments by
Zamponi et al. [1503] from the reptation prediction (see Fig. 281) would require
another correction. Instead of correction after correction on the reptation motion,
it may be worthwhile to restart anew to solve the problem as a many-chain relax-
ation problem, without jumping to reptation but taking into account of the limited
lateral motion of thread-like molecules. Although the CM does not describe the lat-
eral constraints as elaborately as done in the tube model [42, 44], lateral constraints
and their mitigation have been considered in an attempt to rationalize the experi-
mental results of monodisperse polymers in [837], and the component dynamics of
bidisperse entangled blends here.

3.2.7.2 Other Examples of Change of Global Chain Dynamics of Entangled
Polymers by Mixing

Plasticized Poly(Cyclohexy1 Methacrylate)

Polarized photon correlation measurements of high molecular weight, entangled
neat and plasticized poly(cyclohexyl methacrylate) (PCHMA) by dioctyl phtha-
late (DOP) were able to observe both the density fluctuations caused by the local
segmental relaxation and concentration fluctuations due to cooperative diffusion
of chain diffusion [203]. The plasticized PCHMA contain DOP = 5, 10, and
15 wt% DOP. Over a common temperature range, the data show that the local seg-
mental relaxation time exhibits a stronger temperature dependence than does chain
diffusion, a result which is consistent with the breakdown of thermorheological sim-
plicity of polymers observed before by mechanical spectroscopy [165–171]. The
other observation relevant in the present context is the time correlation function of
entangled chain diffusion narrows on increasing the content of DOP in the mixture.
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The trend indicates a decrease of the entanglement coupling parameter. The nar-
rowing of the dispersion on increasing weight percentage of DOP in the plasticized
PCHMA is accompanied by the observation of a weaker (T − Tg) dependence of
the chain diffusion relaxation time. Following the CM relation similar to Eq. (3.46),
this trend corroborates the decrease of entanglement coupling parameter, which in
turn is caused by the decrease in chain entanglement interaction by the presence of
the plasticizer to separate the chains further apart.

Dilute Polyisoprene Probes in Networks

Adachi and coworkers [1685] studied the dielectric normal mode relaxation of
nearly monodisperse PI trapped in cross-linked natural rubber networks [1684] and
in PB networks. The experimental data were reviewed by Adachi and Kotaka [1686,
1687]. The PB networks used were loosely cross-linked with the molecular weight
between cross-links Mx > Me, where Me is the molecular weight between entangle-
ments. The dielectric relaxation loss curve ε′′(ω) is broader than that of pure bulk
monodisperse entangled PI. The experimental data of 14 K-PI trapped in a PB net-
work labeled BR(0.1:20) are shown in Fig. 307 (filled circles). In the same figure the
solid curve represents the ε′′(ω) calculated by the CM with the entanglement cou-
pling parameter n equal to 0.45 [837]. This value of n is determined by Eq. (3.32)
from the observed (MPI)3.6 dependence of the dielectric relaxation time of the PI
chains. The dielectric loss peak in Fig. 307 is significantly broader than the loss
peak of pure monodisperse PI melt, and the relaxation time of the former is much
longer than the latter. These changes of PI when introduced into PB network are
similar to those experienced by the short chains when long chains are present in the
bidisperse entangled polymer blends studied by Fuller and coworkers [1661, 1662].

3.2.7.3 Mixed Alkali Effect in Ionic Conductors

The “mixed-alkali (MA) effect” refers to deviation from linear additivity in
isotherms of several dynamic properties of ions in alkali oxide glasses as one
kind of alkali ion is replaced by another kind [1689–1692]. For example, it is

Fig. 307 Normalized ε′′(ω)
data of free PI chains with
MPI = 13, 500 trapped in
loosely cross-linked
polybutadiene network with
Mx = 11, 000 (solid circles).
Normalized ε′′(ω) curve
calculated with n = 0.45 by
the CM. Reproduced from
[837] by permission
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frequently observed that the electrical conductivity σ of a single alkali ion glass
rapidly decreases when a small amount of the alkali A is replaced by alkali B. A
similar effect occurs on the other composition extreme with the roles of A and B
interchanged, giving rise in many cases to a deep minimum in σ at some inter-
mediate composition. The left panel of Fig. 308 shows the MA effect on the dc
conductivity of the 0.2[xNa2O–(1–x)Rb2O]–0.8B2O3 mixed-alkali borate glasses
with x= 0.0, 0.2, 0.4, 0.6, 0.8. The right panel shows tracer diffusion coefficients of
22Na and 86Rb at 653 K in these glasses. The data come from the work of Imre et al.
[1693], and similar results had been obtained by Jain et al. [1694].

Fig. 308 (Left) Isotherms of the product σdcT of 0.2[xNa2O–(1–x)Rb2O]–0.8B2O3 glasses for
three temperatures. (Right) Composition dependence of the tracer diffusion coefficients of 22Na
and 86Rb at 653 K in these glasses at 653 K. Reproduced from [1693] by permission

The effect turns out to be more general and has been found in glasses with
other mobile non-alkali monovalent cations and anions (such as F–) and in crys-
talline ionic conductors (such as alkali β-alumina). Various experimental techniques
have shown that the local environments of the two different alkali ions in the MA
glasses are different [1695–1700]. The alkalis retain more or less the same local
environment as in the respective single alkali (SA) glasses, and they are randomly
distributed in the glass structure. Since there is a large difference between the sites
for the two alkali ions with large differences in their site energies [1701, 1702],
jumps of an alkali ion to the sites of a different alkali ion cannot occur. This implies
that ions of one kind tend to block the pathways for the other kind of ions and vice
versa, as found out also by reverse Monte Carlo method [1703]. It follows that there
are fewer sites for ionic motion of the more mobile alkali species when some of
them are replaced by the less mobile alkali species, and these fewer sites are more
separated in space. This is one of the main causes of the MA effect. The other is
the immobilization or the reduction of mobility of ions of one kind by the pres-
ence of relatively immobile ions of the other kind [1704, 1705]. Both effects lead
to decrease in the number of mobile ions and increase in their average distance of
separation, resulting in diminishing ion–ion interaction and correlation. The situ-
ation can be likened to the effect found on the reduction of ion concentration in
single alkali glasses, where it is well known that reduction of ion concentration
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increases the activation energy of conductivity due to lower level of cooperativ-
ity between ions [115, 1706]. Thus the MA effect, when considered in terms of
the change in activation enthalpy and isothermal conductivity, can be qualitatively
understood by its similarity to the effect of decreasing the alkali ion concentration
of an SA glass, a suggestion that was made earlier by Greaves and Ngai [1706(b)].
The reduction of cooperativity or the degree of many-ion dynamics of ions by the
presence of immobile ions of another kind is observed by molecular dynamics sim-
ulation [1707]. More recent results that enhance understanding of the MA effect
come from molecular dynamics simulations [1707–1711] and experiments [1693,
1711], some of which will be further discussed.

Consistent with the purpose of this chapter of showing universal relaxation and
diffusion properties on interacting systems presented here are some of those exper-
imental facts and simulation results of MA effect that either support the importance
of ion–ion interaction or show analogous properties in other interacting systems.

Mixed Alkali Effect in the Dilute Foreign Alkali Regime Requires Ion–Ion
Interaction for Explanation

The derivative (∂ln σdc/∂x) is a measure of how rapid the conductivity changes with
replacement of the majority ions. Here x is the fraction of the majority ions and
(1–x) the fraction of the minority ions. The most rapid change measured by the
largest value of (∂log σdc/∂x) occurs at x = 1, i.e., the dilute limit of the foreign
alkali region. This very rapid decrease in σdc by replacement of the host alkali ions
by a small amount of foreign alkali ions indicates that many host ions suffer large
decreases of mobility (or are immobilized) per single foreign alkali ion introduced.
Such a very large number Z of host alkali ions immobilized by a foreign alkali ion
was deduced from the experimental values of the limiting rate of change of σdc with
the host ion fraction x, limx→1(∂ln σdc/∂x), by Moynihan et al. [1693], assuming
that the single alkali (SA) silicate glass they studied was a strong electrolyte. Z
increases with decreasing temperature and reaches values of order of around 50 at
the lowest temperature studied. However, at that time it was difficult for Moynihan
et al. to understand how a single foreign alkali can immobilize so many host alkali
ions. In fact, this puzzling result led Moynihan et al. to conclude that it was unac-
ceptable and that the faulty result originated from the assumption that the SA glass
is a strong electrolyte. However, very recent NMR chemical shift measurements of
MA glasses by Eckert [1712] have confirmed that indeed many host alkali ions are
affected by every single foreign ion. Thus, it appears to be true that a single for-
eign alkali ion can immobilize a large number of host alkali ions. Furthermore, we
have confirmation from molecular dynamics simulations of diffusion of Li ions in
Li2SiO3, where a small proportion of Li ions randomly chosen were frozen, and
also of Li in (Li1–xKx)2SiO3 with small x [1707]. This is an important experimental
fact, because it can be used to rule out immediately some current models of the MA
effect by showing that in the dilute foreign alkali region the models do not predict a
large number of host ions being immobilized by a single foreign ion.
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An explanation of largest value of (∂ log σdc/∂x) occurs in the dilute limit of
the foreign alkali region was provided [1705] by drawing the analogy to the sim-
ulation results of mobile particles confined by walls formed by immobile particles
[322, 1463]. All immobile and mobile particles interact with each other by the same
Lennard–Jones potential, and the effects of immobile particles on the mobile parti-
cles are obtained from the simulation. The immobile or frozen particles were made
to form a “wall,” and the effects that the immobile particles have on the dynamics
of the mobile particles at any distance z away from the wall were obtained from
the spatially resolved self-part of the intermediate scattering function Fs(z, t) with
wave vector at the maximum in the static structure factor. The results have been
discussed before in Section 2.3.2.38 and results shown in Fig. 265. Particles in the
layer closest to the wall (smallest z) have their relaxation time increased by orders
of magnitude. The immense slowing down of the particles by the immobile particles
does not stop at the first layer at the interface. From Fig. 265 one can see that the
effect propagates to the next layer and so on, although the increase of relaxation
time becomes less with increasing distance away from the wall. The immobilizing
effect of the immobile wall particles on the initially (before the wall is introduced)
mobile particles is not limited to the immediate layer but propagates further away to
affect more layers.

In the MA glass in the dilute foreign alkali limit, the foreign alkali has mobil-
ity orders of magnitude smaller than the host ions (see right panel of Fig. 308
for the case that Rb is the foreign ion in 0.2 [xNa2O − (1 − x)Rb2O] − 0.8B2O3,
and there is interaction between the Rb ion and the host Na ions. Thus, if this
result from Lennard–Jones liquid can be used as an indication of the effect that
an immobile foreign alkali ion can have on the dynamics of the initially mobile
host ions, we are led to conclude that not just the five or six nearest neighbor host
alkali ions will be severely immobilized by the foreign alkali ion but also second
nearest neighbor host alkali ions will be immobilized, although to a lesser extent,
and so on. The immobilizing effect propagates and dies off with distance away
from the foreign alkali ion. It is now conceivable in the glasses of composition
0.242 [xK2O + (1 − x)Na2O] − 0.758SiO2 studied by Moynihan et al. [1693] in
the dilute Na+ ion composition range that an Na+ ion can effectively immobilize
48 K+ ions, as the data at 25◦C of the value of limx→1(∂ ln σ/∂x) require, under
the assumption that the alkali silicate glass is a strong electrolyte. The early work
[1693] did not have the benefit of recent progress in the knowledge of the change
in dynamics of interacting systems, but only the crude concept of immobile com-
plexes of alkali composition NaKZ. This large number Z of K+ ions immobilized
by an Na+ ion required by the data at 25◦C was considered inconceivable in the
framework of this crude concept and led Moynihan et al. to fault the assumption
that the alkali silicate glasses are strong electrolytes [1693]. However, in the inter-
vening years and at the present time, the structural and dynamic studies of alkali
oxide glasses seem to show that they are indeed strong electrolytes. Now, with the
justification that the large Z is reasonable when ion–ion interactions are taken into
account, the data at 25◦C can be rationalized without rejecting the presumption that
alkali silicate glasses are strong electrolytes.
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The dynamics of L–J particles confined by walls made of immobile L–J par-
ticles show interesting temperature dependence. The large increase of relaxation
time compared to the bulk was shown before at a low temperature in Fig. 265,
but the increase diminishes rapidly with increasing temperature. In the inset of
Fig. 309, the ratio of the relaxation times τ of particles at z= 0.8 close to the
wall to that at z= 7.5 at the center of the confined liquid is plotted as a function
of temperature. The data are taken again from [1463]. It can be seen that the ratio
τ (z = 0.8)/τ (z = 7.5) decreases rapidly with temperature. Thus, the degree of
immobilization caused by the frozen particles in the wall decreases with increasing
temperature. When this temperature dependence of immobilization is applied to the
mixed alkali effect, the observed decrease of limx→1(∂ ln σ/∂x) or the correspond-
ing Z with temperature [1693] as shown in Fig. 309 can be rationalized by the same
explanation as given before for the confined L–J liquid [900].

The discussion of the results above serves the purpose of highlighting the impor-
tance of ion–ion correlation/interaction in considering the MA effect. Maass [1713]

Fig. 309 Temperature dependence of the limiting slopes limx→1(∂ ln σ/∂x) of ln σ vs. x isotherms
obtained for 0.242[xK2O + (1 − x)Na2O] − 0.758SiO2 glasses by Moynihan et al. [1693] in the
dilute Na+ ion composition range. This quantity, an indication of how many host K+ ions are
immobilized by a single foreign Na+ ion, is a decreasing function of temperature. The inset shows
ratio of the relaxation time τ (z = 0.8) of particles in the L–J liquid located at z= 0.8 close to
the frozen L–J glass forming the wall to τ (z = 7.5) far from the wall. The ratio, an indication
of the extent of the immobilization of particles in the L–J liquid, is also a decreasing function of
temperature like limx→1(∂ ln σ/∂x) in the main figure. Results in the inset are obtained from data
of molecular dynamics simulation result of Schneider et al. [322, 1463] on Fs(z, t) and shown in
Fig. 265. Reproduced from [1705] by permission
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had called attention to interaction between the moving ions in considering the MA
effect, although for a different reason than we discussed here. Swenson et al. also
mention this point made by Maass in their work [1714]. Ion–ion correlation cer-
tainly plays an important role in determining the ionic conductivity and its frequency
dispersion in SA glasses, as indicated by various experimental facts discussed in
Sections 3.2.2–3.2.6 and incorporated into the coupling model.

Immobilization of Li Ions by Frozen Li Ions in the Confining Walls

The immobilization of more mobile ions by less mobile ions in the MA effect has
been rationalized by analogy to similar effect found in L–J particles confined by
frozen L–J particles forming the walls. To demonstrate the physics of two systems
closer, a molecular dynamics simulation was made on the dynamics of Li ions in
Li2SiO3 glass confined by parallel walls formed by the same glass except that the Li
ions therein were frozen but still interacting with the Li ion in the confined Li2SiO3
glass [1707]. The geometry of the systems is illustrated in the left panel of Fig. 310.
The self-part of the density–density correlation function Fs(k, t; z) was obtained at
any distance z from the wall for Li ions located at z ≤ 0. The unit of z is L/10, where
L is the side length of the basic cell of the simulation. The Fs(k, t; z) obtained has
the Kohlrausch stretched exponential time dependence exp[−(t/τ (k; z))]β(k,z). The
frozen Li ions in the walls cause slowing down of Li ion as seen by the increase of
τ (k; z) in the middle panel of Fig. 310 and the concomitant increase in stretching
of Fs(k, t; z) as seen by the decrease of β(k; z) in the right panel for two chosen
values of k = 2π/10 and 2π/3. The effect is largest for the Li ions closest to
the wall and decreases monotonically with distance from the wall. The values of
τ (k, z) for Li ions residing in the innermost z= 5 region are close to those for the
unmodified bulk Li2SiO3 glass, which are τ (k) = 1292 ps for k = 2π/10 and 340 ps
for k = 2π/3. Values of β(k; z) in the innermost z= 5 region are also close to those

Fig. 310 (Left) Li metasilicate glass confined by two walls of the same Li metasilicate glass except
that the Li ions therein are frozen. (Middle) Plot of τ (z) against z for the stretched exponential
region of Fs(k, t) of Li ions in Li2SiO3 glass (in ps). Filled circle: k = 2π/10. Filled square:
k = 2π/3. (Right) β(z) against z for the stretched exponential region of Fs(k, t) of Li ions. Filled
circle: k = 2π/10. Filled square: k = 2π/3. The values of β(z) in the z=5 region are close to the
values for the bulk Li2SiO3, which are β = 0.67 and 0.32 for k = 2π/10 and 2π/3, respectively.
Data from [1707] are replotted in all figures here
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for the unmodified bulk system, which are β(k) = 0.67 for k = 2π/10 and 0.32
for k = 2π/3. The changes in the dynamics of Li ions interacting with the frozen
Li ions in the confining walls are exact analogues of the L–J particles confined by
frozen L–J particles in the confining walls obtained by Scheidler et al. [322, 1463].
This becomes obvious when comparing the dependence of τ (k; z) and β(k; z) on
distance from the wall in Fig. 310 with that of the same quantities for the confined
L–J particles in Fig. 265. Thus, this is another example of universal behavior of
relaxation in interacting systems.

Additional Evidence of Immobilization of Ions and Reduction of Ion–Ion
Interaction of Mobile Ions in MA Effect

In MA glasses there are two kinds of ions and even the more mobile kind has some
immobilized, less mobile, and more mobile ions. The electric modulus representa-
tion is known to suppress low-frequency contributions, not only from the electrode
polarization but also from the less mobile and the immobile ions in the MA glasses.
The story is different, however, when the same MA data are shown in the ε∗(f )
or the complex impedance Z∗ vs. log f representation. In these representations of
the data, the low-frequency contributions from less mobile and immobile ions are
emphasized and show up prominently as large deviations from the prediction of the
Kohlrausch relaxation at low frequencies well below the frequency maximum in the
M′′ vs. log f plot. The large deviations from Kohlrausch relaxation were first seen
in the complex impedance plots of Z′′ vs. Z′ of MA glasses and later at lower fre-
quencies in ε′(f ), the real part of ε∗(f ). Whereas Z′′ vs. Z′ plots of actual data for
the single alkali glasses or Z′′ vs. Z′ curves predicted by the Kohlrausch fit to the SA
glass electric modulus data display approximately the shape of a submerged semi-
circle, the data for MA glasses show large deviations from this shape. This deviation
was pointed out by Moynihan and Boesch [1716] and by Tomozawa and cowork-
ers [1717, 1718]. Tomozawa and coworkers further showed enormous differences
between SA and MA glasses in ε′(f ) and Z∗(f ) at low frequencies by comparing the
data of Li2O–2SiO2 and [0.5Na2O+0.5LiO2]–2SiO2 glasses. The dielectric relax-
ation strength (εs − ε∞) of the MA glass is much higher than that of the SA glass,
suggesting the presence of an additional relaxation contribution in MA glasses at
lower frequencies, over and above the normal conductivity relaxation from mobile
ions. They showed that this additional relaxation was responsible for the large value
of ε′(f ) in MA glasses at low frequencies and corresponded to a large polarization
contributed by ions of low mobility, which are the alkali ions immobilized to various
degrees in the neighborhoods of the other kind alkali ions discussed above.

Therefore, when shown as ε′(f ) vs. log f, the data of MA glasses support the
presence of contributions to polarization from immobilized or partially immobi-
lized alkali ions that are not accounted for by the electric modulus M∗(f ) due to its
suppression of the low-frequency polarizations from the immobilized or partially
immobilized ions. In effect, by showing the data as M∗(f ) one has selected only
the faster dielectric response of the mobile ions in the MA glass. Kohlrausch fit to
the M∗(f ) data of MA glasses is often found to be successful, but the Kohlrausch
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exponent β of the fit merely reflects the width of the dispersion because of contribu-
tions from ions with different mobility. The frequency dispersion of M∗(f ) data of
MA glasses is narrower than the parent single alkali glasses as found in experiments
by many workers [1704, 1717, 1719–1725]. This can be considered as evidence
for the reduced ion–ion interaction due to fewer mobile ions and wider separations
between them in the MA glasses mentioned before. An example is shown in the
left and middle panels of Fig. 311 by the variation of the Kohlrausch exponent β
with x from fits using the Kohlrausch function to the electric modulus of the alkali
silicate glasses [xK2O + (1 − x)Na2O] − 3SiO2. Here β for all x are obtained from
electric modulus data that have nearly constant values of τ (within a factor 2 of
3×10–3 s). The data show that β increases or the dispersion narrows with increasing
amounts of foreign alkali in the dilute foreign-alkali region, leading to a maximum
in β at an intermediate composition close to the minimum of dc conductivity. The
same was found by Karlsson et al. in mixed alkali LixRb1−xPO3 glasses [1725],
and they also consider this as indicating that the mixed alkali glasses behave as sin-
gle alkali glasses of effectively lower concentrations. Another example in the right
panel of Fig. 311 shows the narrower loss modulus M′′(f ) data of the MA glass,
0.242[xK2O+(1−x)Na2O]−0.758SiO2 with x = 0.950, in the dilute Na+ ion com-
position range compared with the parent SA with x = 1.00 studied by Moynihan
et al. [1693].

Decrease of the Strength of MA Effect with Increase in Ion–Ion Distance

If ion–ion interaction/correlation is an important element in determining the MA
effect, then a natural consequence is that the MA effect should go away on

Fig. 311 (Left) The variation of the dc conductivity with x for the alkali silicate glasses
[xK2O + (1 − x)Na2O] − 3SiO2. Data taken from [1726] and replotted. (Middle) The variation
of the Kohlrausch exponent β with x from fits using the Kohlrausch function to the electric mod-
ulus. Here β for all x is obtained from electric modulus data that have nearly constant values of
τ (within a factor 2 of 3×10–3 s). The data show that β increases or the dispersion narrows with
increasing amounts of foreign Na in the dilute foreign Na region, leading to a maximum in β at an
intermediate composition. Data taken from [1726] and replotted. (Right) Electric modulus spectra
of the MA glass, 0.242[xK2O + (1 − x)Na2O] − 0.758SiO2 with x = 0.950, in the dilute Na+ ion
composition range compared with the parent SA with x = 1.00 studied by Moynihan et al. [1693]
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increasing the mean ion–ion separation distance. Tomozawa et al. [1722, 1727] mea-
sured the MA effect in alkali germanate glasses of molar percentage composition
0.019[xK2O + (1 − x)Na2O] − 99.981GeO2 with an extremely low (0.019 mol%)
total alkali content for x values of 0, 0.44 and 0.71. Their results at a temperature of
350◦C show that the log σ vs. x plot did not exhibit the minimum associated with
the MA effect. In glasses with low alkali content there is a negligible effect of ion–
ion interaction on the dynamics of ion transport in the SA or the MA cases. After
mixing the alkalis, the ions remain far apart, and there is no immobilization of one
kind of alkali ions by another kind as supported by the normal semicircular trace of
the data in a plot of Z′′ vs. Z′. This trend of decreasing magnitude of the MA effect
on increasing separation of the ions was verified by Voss et al. [1711] by measure-
ments of a number of Na–Rb alumino-germanate glasses and Na–Rb borate glasses
that permit wide range of the values of < dion > / < dnetwork >, the average Na–Na
distance to the network distance. The left panel of Fig. 312 shows the strength of
the mixed-alkali effect �MAE as a function of < dion > / < dnetwork >.

Fig. 312 (Left) Strength of the mixed-alkali effect �MAE as a function of the average Na–Na
distance to the network distance <dion >/<dnetwork >. Open symbols represent Na–Rb alumino-
germanate glasses, whereas the two filled circles refer to Na–Rb borate glasses. Reproduced from
[1711] by permission. (Right) Haven ratio HR as a function of the ratio of the average Na–Na
distance to the network distance <dNa >/<dnetwork >. Values for Na-borate glasses: •, Voss et al.
[1715] (T = 380◦C); ◦, Kelly et al. [1728] (T = 300◦C). Na-alumino-germanate glasses: �, from
[1711] (T = 380◦C), �, Kelly et al. [1728] (T = 300◦C). Reproduced from [1711] by permission

3.2.8 Evidence of Ion Transport Governed by Ion–Ion Interaction
from Molecular Dynamics Simulation

To further support ion–ion interaction and the many-ion relaxation governing ion
transport in glassy ionic conductors, we cite an important observation by Binder
[1732(a)] and Horbach et al. [1732(b)] from the results of molecular dynamics
simulations on the Na2O–SiO2 melt.

From the simulations, Horbach et al. obtained the probability function PNa−Na(t)
that a “bond” that exists between a Na ion and another Na ion at t= 0 is also
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Fig. 313 (Left) Time dependence of PNa−Na, the probability that a bond between two sodium
atoms which exists at time zero is also present at time t, for all temperatures investigated. Inset: plot
of the same data vs. the scaled time t/τNa−Na, as a function of temperature. (Right) Temperature
dependence of the products ταβDα shows whether or not the diffusion constant Dα is correlated
with the lifetime of a bond ταβ . Reproduced from [1732(b)] by permission

present at time t. The time dependence of PNa−Na(t) are shown in the left panel
of Fig. 313, together with the fits to the Kohlrausch function having exponent
βKWW = (1 − n) = 0.54 and relaxation time τNa−Na. The two Na ions are consid-
ered as “bonded” if their distance is less than rmin, the location of the first minimum
of the pair distribution function gNa−Na(r). They also obtained the probability func-
tions Pαβ(t) for other atoms (ions), where α and β range over Na, Si, and O, and the
corresponding lifetimes ταβ of the α–β bonds for different temperatures. The life-
times ταβ can now be correlated with the diffusion constants by plotting different
products ταβDα vs. temperature, which are shown in the right panel of Fig. 313.
The product τNa−NaDNa is essentially constant over the whole temperature range.
Therefore, the sodium diffusion constant seems to be linked to Na–Na “bonds,” and
the role of Na-Na interaction/correlation in governing Na ion transport is clear.

On the other hand τNa−ODNa increases with decreasing temperature. This means
that the elementary diffusion step for the sodium diffusion is not related to that of a
Na–O bond, although the nearest neighbor distance is smaller for Na − O(rNa−O =
2.2

◦
A ) than for Na − Na (rNa−O = 3.3

◦
A ). In other words, Na ion diffusion is

decoupled from the silicate matrix.

3.2.9 Haven Ratio, Breakdown of Nernst–Einstein Relation:
Analogue of Breakdown of Stokes–Einstein Relation

The breakdown of the Stoke–Einstein relation in molecular glassformers discussed
in Section 2.2.5.6 has been considered to be one of the most important and gen-
eral characteristics by the glass transition research community. It occurs not only in
molecular glassformers such as OTP and tri-naphthyl benzene but also in metallic
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glasses [812], where the diffusing entities are atoms. An analogue of this anomaly
in glass-forming systems can be found in glassy and crystalline ionic conductors
by the fact that the self (tracer)-diffusion coefficient D∗ and the conductivity diffu-
sion coefficient Dσ are not the same. In glassy single-alkali ionic conductors, D∗ is
measured by tracer diffusion of an radioactive isotope of the same alkali, and Dσ

is calculated from the measured dc conductivity σdc via the Nernst–Einstein rela-
tion σdc = (Nq2/kBT)Dσ between conductivity and diffusion coefficient that holds
for non-interacting systems. Here N is the number density of alkali ions, q the ion
charge, kB the Boltzmann constant, and T the temperature. The experimental fact
that D∗ is larger than Dσ in many glassy ionic conductors with large concentration
of mobile alkali ions is evidence of the breakdown of the Nernst–Einstein relation,
which should be σdc = (Nq2/kBT)D∗. The degree of breakdown is usually indicated
by the Haven ratio HR = D∗/Dσ , which has values less than equal to one [1490].
The smaller the HR is, the larger is the breakdown. Since ion–ion interaction and
many-ion dynamics have been identified as important in glassy and crystalline ionic
conductors containing high concentration of mobile ions, it is natural to consider
it as the cause of the breakdown. Simulation of Li ion motion in lithium silicate
glasses by Heuer et al. [1728] has also concluded that the inverse of the Haven ratio
can be considered as a measure of the degree of “collectivity” in ionic motion.

One way to support this is consistency of the prediction that HR should increase
with decreasing ion–ion interaction strength as can be realized by increasing the
average separation between ions. The limit of HR = 1 is reached and Nernst–
Einstein relation holds when ion–ion interaction becomes negligible. The equivalent
of this in the CM description is the expected increase of HR with decrease of the cou-
pling parameter n with decreasing ion concentration, where n can be obtained from
the fit to the electric modulus data by the Kohlrausch function exp

[−(t/τ )1−n
]
. The

decrease of n with decreasing ion concentration in the same family of glassy ionic
conductors has been verified before in [1706(a), 1721] and in crystalline ionic con-
ductors in [150]. The reader may recall that there is an analogous example in the
breakdown of the Stokes–Einstein relation. As mentioned before in Section 2.2.5.6,
silica having smaller n than OTP exhibits no breakdown of the Stokes–Einstein rela-
tion [822]. For glassy ionic conductors, the support of the ion–ion interaction as
the cause of the breakdown of the Nernst–Einstein relation can be drawn from the
collection of experimental data of the dependence of HR on total alkali content of
alkali borate, germinate, and silicate glasses by Kelly et al. [1729] and Na alumino-
germanate and Na borate glasses by Voss et al. [1711]. Kelly et al. have reported
for each family of alkali oxide glass that HR increases with decreasing total alkali
content for alkali borate, germanate, and silicate glasses. Voss et al. combined their
Haven ratio data of Na borate and Na alumino-germanate glasses with the data of
Kelly et al. and plotted all data of HR altogether against the ratio of the average
Na–Na distance to the network distance < dNa > / < dnetwork >. This plot shown
here in the right panel of Fig. 312 verifies the expected increase of HR on increasing
ion–ion distance, and the limit HR = 1 is attained at low alkali concentration.

The degree of breakdown of the Stokes–Einstein relation of glassformers
increases with decreasing temperature toward Tg (see Section 2.2.5.6). Similar T
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dependence of the degree of breakdown of the Nernst–Einstein relation was found
by simulation and experiment. Decrease of the Haven ratio with decreasing tem-
perature was found by Knödler et al. [1730] by simulation of a stochastic lattice
gas model with ion–ion interaction included into the Hamiltonian and by exper-
imental measurements in a Rb borate glass 0.2Rb2O–0.8B2O3 [1731] However,
HR of the corresponding Na borate glass 0.2Na2O–0.8B2O3 shows no temperature
dependence.

Explanation of the breakdown of the Stokes–Einstein relation in glassform-
ers given by the CM was based on the correlation functions for center-of-mass
diffusion and viscosity which weigh differently the effects of the many-body relax-
ation, resulting in different coupling parameters and relaxation times. A similar
reasoning was given to explain the difference in relaxation times between nuclear
spin relaxation and conductivity relaxation of glassy ionic conductors (see Section
3.2.5.1). The origin of the Haven ratio being less than unity in glassy ionics may
also be explained by the slight difference between the tracer diffusion correla-
tion function CD(t) =< ri(0)ri(t) > and the conductivity correlation function
Cσ (t) = (1/N)�ij < vi(0)vj(t) >, where ri and vi are the position and the velocity
of the diffusing ions, respectively. The i �= j cross-correlation terms in Cσ (t) do not
appear in the CD(t).

3.2.9.1 The Haven Ratio for Mixed Alkali Glass

Having shown for single alkali glasses that the Haven ratio HR anti-correlates with
ion–ion interaction and many-ion cooperative dynamics, here the “common” Haven
ratios of the mixed alkali glasses 0.2 [xNa2O − (1 − x)Rb2O] − 0.8B2O3 obtained
by Imre et al. [1693] are used to further support the decrease of ion–ion interaction
and many-ion dynamics in the mixed alkali effect.

The common HR(x) of the mixed alkali glass with composition x is defined by

H(x) =
(

Nq2

kBTσdc(x)

)[
xDNa(x) + (1 − x)DRb(x)

]
, (3.48)

where DNa and DRb are the tracer diffusion coefficients of Na and Rb, respec-
tively. The right panel of Fig. 314 shows that HR increases on introducing foreign
alkali into the host, and it peaks at the same composition (x= 0.4) as the activation
enthalpy �Hσ of dc conductivity (see left panel). These properties of HR and �Hσ

corroborate in indicating the decrease of ion–ion interaction and many-ion dynamics
as one of the manifestations of the mixed alkali effect.

3.2.10 Caged Dynamics, Nearly Constant Loss, and Termination
by the Primitive Relaxation

For glassformers, we have discussed in Sections 2.3.2.6 and 2.3.2.33 the short time
regime when the molecules are still caged and the local JG β-relaxation has not yet
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Fig. 314 (Left) Activation enthalpy �Hσ and pre-exponential factor D0
σ of the conductivity

diffusion coefficient as a function of composition below the glass transition temperature for
0.2 [xNa2O − (1 − x)Rb2O] − 0.8B2O3 glasses. (Right) Composition dependence of the common
Haven ratio of the same glass. Reproduced from [1693] by permission

appeared. In this caged regime, the dynamics shows up in susceptibility generally
as the nearly constant loss (NCL) over an extended range of frequencies at lower
temperatures. The lower bound of the frequency range of NCL is higher but not
by much in frequency than the JG β-relaxation frequency νJG or the primitive fre-
quency ν0. This relation between the lower bound of NCL and νJG or ν0 found in
general for various glassformers supports the interpretation of the JG β-relaxation
or the primitive relaxation terminates the caged dynamics regime and the NCL.
Examples can be found in Figs. 1, 247, and 276 for colloidal particle suspensions;
Fig. 119 for propylene carbonate; Fig. 135 for PIB; Fig. 241 for threitol and NMEC;
and Figs. 243 and 244 for 0.4Ca(NO3)2 − 0.6KNO3 (CKN). More examples from
metallic glasses (see Fig. 170 for Zr65Al7.5Cu27.5) and ionic liquids can be found
in Section 2.3.2.33. On increasing temperature, both να and νJG increase and they
tend to merge together, and this also increases the lower bound of the frequency
regime in which the NCL can be detected. At high enough temperatures, the NCL
regime is shrunk to the extent that it cannot be seen and is replaced by a susceptibil-
ity minimum. In time-domain experiments such as optical Kerr effect (OHD-OKE),
the counterpart of the NCL is the term pt−1+c with c≈0, called the intermediate
power law (IPL), that usually appears at temperature below the critical temperature
Tc of MCT and at times before the dtb−1 exp(−t/τα) term, which accounts for the
α-relaxation at high temperatures (see Section 2.3.2.33).

In glass-forming systems involving long-range diffusion such as binary mix-
tures of L–J particles and Li ion in Li metasilicate glass at low temperatures by
simulations and colloidal particle suspensions at high concentrations by confocal
microscopy, the counterpart of the NCL is the mean-square displacement < r2(t)>
having the tc dependence with c≈0 shown in Figs. 275 and 276. For the glass-
forming ionic molten salt CKN, the NCL of caged dynamics was shown before
by data of dielectric loss ε′′(ω) ∝ ω−c with c≈0 in Figs. 243 and 244, consis-
tent with < r2(t) >∝ tc. This is because the relation between < r2(t)> and the
complex conductivity σ ∗(ω) shown in Eq. (3.3). The tc dependence of < r2(t)>
gives rise to the ω1−c dependence of σ ′(ω), the real part of σ ∗(ω), from which the
ω–c-dependence of ε′′(ω) follows from the Maxwell relation σ ∗(ω) = iε0ε

∗(ω). For
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CKN, also shown in the figures is the relation of the lower bound of the NCL regime
to the primitive relaxation frequency. The latter is slightly lower than the former. For
colloidal particle suspension at volume fraction φ = 0.56, the primitive relaxation
time can be identified with the average time τc of 500 s for a typical particle to shift
position and leaves the cage given by Weeks et al. from their experiment [141]. This
time, indicated in the log–log plot of MSD in Fig. 247, clearly terminates the t0.13

dependence of the MSD, which ends at about 250 s. The cage correlation function
obtained by Weeks and Weitz [141(b)] also starts its decay at about 500 s as shown
in the inset of the figure. The characteristics of the NCL and its termination by some
primitive relaxation are common to relaxation in different families of interacting
systems, the majority of examples come from the glassformers.

In this section, experimental conductivity relaxation data of NCL in glassy,
molten, and crystalline ionic conductors are presented to show exactly the same
behavior as the other interacting systems. For the benefit of making clear compar-
ison of the characteristics of the NCL in ionic conductors with other systems, the
rich dielectric loss data of the glassformer N-methyl-ε-caprolactam (NMEC) [508,
1733] are presented once more in Fig. 315. The data show clearly the NCL, the
excess wing (i.e., the unresolved JG β-relaxation), and the structural α-relaxation.

Fig. 315 Dielectric loss spectra of NMEC at temperatures above and slightly below Tg (from right
to left: 186, 184, 182, 180, 178, 176, 174, 172, 170, 168, 164, 162 K) showing the following three
distinct relaxation mechanisms. (1) The α-loss peaks and the fits (red and pale blue dashed lines)
at two temperatures by the Fourier transform of the KWW function ϕ(t) = exp[−(t/τα)1−n], with
n = 0.24. (2) The excess loss ε′′(ν) ∼ ν−c with c = 0.29 (long dashed line) at 178 K and with
c = 0.47 (solid line) at 168 K. The very different slopes of the excess loss at the same levels at the
two temperatures rule out frequency–temperature superposition of the loss data of the excess loss
in this region. (3) The emergence of the NCL ε′′(ν) ∼ ν−c with c ≈ 0.1 (black short dashed line)
with lower intensity at lower temperatures. The green dashed line with the label c ≈ 0.76 shows
the frequency dependence of the high-frequency flank of the KWW fit to the (unobserved) loss
peak at 168 K. The vertical arrows indicate the relaxation time of the unresolved Johari–Goldstein
β-relaxation suggested by the coupling model. Data are supplied by R. Richert and replotted here
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Indicated by arrows in the figure, the locations of the primitive relaxation frequency
calculated from the CM equation (3.1) are consistent with the interpretation that the
NCL is terminated by the primitive relaxation.

Actually the best systems to show the NCL of caged dynamics are the glassy
and crystalline ionic conductors. In contrast to glass-forming liquids, the existence
of NCL in glassy ionic conductors has been known for more than half a century.
Evidences for its existence were suggested repeatedly over the span of several
decades starting from 1946 by Garton [1529] and many to follow [56(a), 115(b),
146, 149, 467, 1055–1061, 1424, 1522, 1523, 1530–1535, 1730, 1734–1751]. Not
only there is an abundance of experimental data available but also the measure-
ments are made over wide range of frequency and temperature in which the NCL
has been detected. In many cases the spectral information is also complete to allow
the primitive relaxation frequency/time to be calculated from the relaxation time and
stretch exponent of the Kohlrausch function used to fit the electric modulus data
and show the primitive relaxation terminates the NCL regime. Examples demon-
strating this can be found in [1057–1059] and will be further discussed here. The
existence of NCL in crystalline or polycrystalline ionic conductor including Na β-
alumina [1486], YSZ [1484, 1755], LLTO [1059, 1755] and LiAlSi2O6 [1060] is
particularly instructive to demonstrate that they exhibit the same caged dynamics
as found in glass-forming systems. Some examples of the universal properties of
caged dynamics will be presented later on in this section. Thus, any theory of caged
dynamics, with applicability restricted to liquids such as MCT or to glasses such as
random energy barrier model [1478], is not general enough to address the apparently
universal properties of caged dynamics. To address the dynamics of ions beyond
caged regime, ion–ion interaction and the many-ion dynamics generated have to be
included, as has been demonstrated in several subsections above.

One general properties of the NCL in glassy as well as crystalline ionic conduc-
tors is its weak T dependence that can be described by either a power law, Tα with
α not much greater than unity, or exp(T/T0) [1056, 1058, 1059, 1060, 1752], sim-
ilar to the temperature dependence of the NCL found in glassformers by dielectric
relaxation [508, 971, 1026] and OHD-OKE (see Fig. 253). More examples of gen-
eral properties of NCL in ionic conductors that are analogous to glassformers are
presented below.

NCL exists not only in glassy LiAlSi2O6 but also in polycrystalline LiAlSi2O6.
The magnitude of the NCL in polycrystalline LiAlSi2O6 is only about a factor
between 2 and 3 times smaller than that in the glassy LiAlSi2O6 at the same temper-
ature [1060]. It is not necessary to have structural disorder as in a glass or a liquid to
generate the NCL. The comparable magnitudes of the NCL in polycrystalline and
glassy LiAlSi2O6 suggest that the mechanism that gives rise to the NCL is some-
how related to the local motion of the ion confined within the cage formed by the
other ions. The cage defined by the anharmonic potential confining the ion is likely
the only characteristic shared by both forms of LiAlSi2O6 as far as the NCL is con-
cerned. Anharmonicity of the potential as well as mean-square displacement of the
caged ion is expected to be larger in the glassy state than in the polycrystals, and
this may explain the larger NCL observed in the former rather than in the latter.
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The discussion and the analysis of conductivity relaxation data of crystalline and
glassy ionic conductors follow the same line as those for CKN in Section 2.3.2.33.
There two characteristic times tx1 and tx2 and the corresponding frequencies νx1
and νx2 are used to delineate three dynamic regimes. These two times are also
involved in the description of the motions of ions in the space–time pictures gen-
erated by molecular dynamics simulations of Li metasilicate glass. The pictures
presented in Fig. 280 are helpful when reading the following description. The very
first dynamic regime is located at frequencies ν higher than νx1 or at times t shorter
than tx1 ≡ 1/(2πνx1), where ε′′(ν) = pv−c or σ ′(ν) ∝ ν1−c, and c is small. This
is the caged ion regime or the NCL regime. The cage decays after tx1 by the onset
of the primitive relaxation, which is an independent ion hop to neighboring sites
in the case of ionic conductors. Naturally, we have τ0 > tx1 or νx1 > ν0. The
NCL regime is followed by the transition region defined by νx1 > ν > νx2 or
tx1 < t < tx2 ≡ 1/(2πνx2), in which more ions are hopping to neighboring sites and
the motions become increasingly more cooperative with time. Here tx2 is the onset
time of the “fully cooperative regime,” where the Fourier transform of the deriva-
tive of the Kohlrausch function exp

[−(t/τK)1−n
]

fits well the data in the complex
modulus M∗(ν) representation for all ν < νx2. Perhaps it is appropriate to call this
the “fully cooperative regime” because the Kohlrausch function is the characteristic
function of the stable Levy distribution, a generalization of the Gaussian distribution
[223]. Although τ0 and ν0 have been mentioned earlier, after all they can be calcu-
lated by Eq. (3.1) using the parameters τK and n of the Kohlrausch function, together
with tc ≈ 2 ps or νc ≈ 1011 Hz from high-frequency/high-temperature measure-
ments shown in Section 3.2.3.1. If conductivity relaxation data are presented in
terms of ε′′(ν) or σ ′(ν), instead of M′′(ν), then νx2 is defined as the frequency above
which the power laws ε′′(ν) ∝ ν−1+n and σ ′(ν) ∝ νn no longer hold. Demonstration
of the evolution of the dynamics in the order of the frequencies νx1, ν0, νx2, and
νK = 1/τK has been given before for CKN in several figures of Section 2.3.2.33.
For data presented as the MSD, < r2(t)>, tx2 is the onset time of the tn dependence
of < r2(t)>. It has been shown together with tx1 and τ0 in the plot of < r2(t)> vs.
time for Li ions in metasilicate glass (Fig. 277), binary mixtures of L–J particles
(Fig. 275), and colloidal particle suspensions (Fig. 276) in Section 3.2.1 before.

Conductive relaxation data of some crystalline and glassy ionic conductors are
now shown to have the same time evolution of dynamics as glassformers in support
of the universal dynamics in interacting systems. To familiarize the reader with such
data given in terms of σ ′(ν), the same data of the molten salt, CKN, presented before
in terms of ε′′(ν) and M′′(ν) in Figs. 243 and 244 are recast in this form in the left
panel of Fig. 316. Shown also are the locations of νx1, ν0, νx2, and νK. The line with
slope equal to 1 is drawn to indicate σ ′(ν) ∝ ν1−c with c << 1, corresponding to
the NCL. The dashed line represents σ ′(ν) exactly calculated from the Kohlrausch
fit to M∗(ν), and it gives the dc conductivity at low frequencies and the power law
σ ′(ν) ∝ νn at high frequencies. Actually, σ ′(ν) data of glassy ionic conductors
0.44LiBr–0.56Li2O–B2O3 at 323 and 573 K and 0.5Ag2S–0.5GeS2 glass at 273 K
in Fig. 282 have shown some of the same features already. Here we show in more
detail the σ ′(ν) data of other glassy ionic conductor 0.80LiF–0.20Al(PO3)3 from
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Fig. 316 (Left) Replotting the CKN data of Fig. 243 as log σ (ν) vs. log(frequency/Hz) to show the
nearly linear frequency dependence of the NCL. The dashed line that includes the dc conductiv-
ity and the high-frequency power law ν1−β or νn corresponds to the Kohlrausch fit to the electric
modulus with n=0.34. Reproduced from [1057] by permission. (Right) Log σ (ν) at several temper-
atures of a glassy ionic conductor 0.80LiF–0.20Al(PO3)3 vs. log(frequency/Hz). The data show a
near linear frequency (ν1.0)-dependent conductivity and a broad crossover to the ν0.44 dependence
(obtained from the Kohlrausch function fit to the electric modulus in the inset) and finally to the
dc conductivity. ν0 (erroneously replaced by τ0) is the independent relaxation frequency of an ion
hopping out of its cage, which is calculated from the CM. Redrawn from data of Kulkarni et al.
[1756]. Reproduced from [1057] by permission

the work of Kulkarni et al. [1756] in the right panel of Fig. 316, the data of glassy
0.5Ag2S–0.5GeS2 from the work of Ribes et al. [1757] in the left panel of Fig. 317,
and the data of 0.48(AgI)2–0.52Ag2SeO4 from the work of Cramer and Buscher
[1528] in the right panel of Fig. 317. In all cases, n = (1−β) was determined by the
fit to the same data in the electric modulus representation by the Fourier transform
of the Kohlrausch function (t) in Eq. (1.56), and τ0 is calculated from the CM
equation.

The reader may recall that 0.5Ag2S–0.5GeS2 was discussed before in Section
3.2.3 on the comparison between activation energies of short-time silver ion dif-
fusion measured by quasielastic neutron scattering and long-time conductivity
relaxation (see Table 3.2). The glass 0.48(AgI)2–0.52Ag2SeO4 was also discussed
in Section 3.2.3 in a similar context. As an aside, the dielectric loss data of this
glassy ionic conductor was shown to fit the MCT predictions (see Fig. 284), even
though MCT does not apply to ionic conductivity relaxation in glasses. This warns
the possibility that good fits to susceptibility minima to MCT predictions in super-
cooled liquids do not necessarily validate MCT as the uniquely correct description
of caged dynamics of glassformers.

In all the ionic conductors shown in Figs. 316 and 317, the caged dynamics
(NCL) regime ending at νx1 is terminated by the primitive relaxation as evidenced
by the location of its relaxation frequency ν0 not much longer than νx1. At frequen-
cies lower than ν0, there is a gradual transition of σ ′(ν) before it finally assumes the
frequency dependence of the cooperative Kohlrausch ion hopping starting at νx2.
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Fig. 317 (Left) Log σ (ν)at several temperatures of a glassy ionic conductor, 0.5Ag2S–0.5GeS2,
from the work of Ribes et al. [1757] vs. log(frequency/Hz). The data show a near-linear frequency
(ν1.0)-dependent conductivity and a broad crossover to the ν0.45 dependence (obtained from the
Kohlrausch function fit to the electric modulus) and finally to the dc conductivity. ν0(= 1/2πτ0) is
the independent relaxation frequency of an ion hopping out of its cage, which is calculated from the
CM. Reproduced from [1057] by permission. (Right) Log σ (ν)vs. log(frequency/Hz) at 153 K of
a glassy ionic conductor 0.48(AgI)2–0.52Ag2SeO4 from the work of Cramer and Buscher [1528].
The data show a near-linear frequency (ν1.0)-dependent conductivity and a broad crossover to the
ν0.49 dependence (obtained from the Kohlrausch function fit to the electric modulus) and finally to
the dc conductivity. ν0(= 1/2πτ0) is the independent relaxation frequency of an ion hopping out
of its cage, which is calculated from the CM. The dashed line is the cooperative ion conductivity
relaxation. Reproduced from [1057] by permission

The latter begins with the fractional power σ ′(ν) ∝ ν−n and on decreasing fre-
quency it flattens out to assume the frequency-independent dc conductivity σdc at
low frequencies. This behavior is clearly demonstrated in Figs. 316 and 317.

The examples of glassy ionic conductors discussed above all have sizeable n in
the exponent (1–n) of the Kohlrausch function, n = 0.34, 0.44, 0.45, and 0.49 for
CKN, 0.80LiF–0.20Al(PO3)3, 0.5Ag2S–0.5GeS2, and 0.48(AgI)2–0.52Ag2SeO4,
respectively. The sizeable n values are expected from significant many-ion coop-
erative relaxation in these ionic conductors containing high concentration of mobile
ions. It is instructive to compare them with the dynamics of ions in conductors with
lower ion concentrations. In Section 3.2.2.1, the decrease of n reflecting diminish-
ing many-ion cooperative dynamics with decreasing ion concentration has been
discussed. Here, at constant νK, the dependence of the magnitude of the caged
dynamics (NCL) on ion concentration (or n) is discussed, as well as the dependences
of the characteristic frequencies νx1, ν0, and νx2. This comparison is analogous
to the comparison made before for the glassformers, NMEC (n = 0.24), threitol
(n = 0.36), and xylitol (n = 0.46) in Fig. 241, and for CKN vs. ZnCl2, and CKN vs.
B2O3 in Fig. 250 at constant or approximate constant structural relaxation frequency
να . Although νx1, ν0, and νx2 are not illustrated in these figures, it can be gathered
by inspection of the spectra that glassformer with smaller n has lower values of
νx1, ν0, and νx2 as well as lower NCL (relative to the α-relaxation). In addition, the
NCL is also terminated by the primitive or JG relaxation frequency in each of these
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glassformers. Although similar trend can be deduced from several comparisons of
NCL in ionic conductors at the same temperature [1056, 1060, 1061], the cogent
comparison has to be made at the same νK. An example is given as follows.

A comparison of the entire range of dynamics including the NCL of two glassy
oxide Na ion conductors with very different ion concentrations is shown in Fig. 318.
Plotted in the left panel of the figure are log[σ ′(ν)] vs. log ν of a Na2O–3SiO2 glass
at –0.5◦C with a high concentration of mobile Na+ ions [1518] and of a Vycor glass
xNa2O − (1 − x)[0.04B2O3 − 0.96SiO2] at 313◦C with small x = 0.00044 and
hence containing very few Na+ ions [1506]. The conductivity relaxation frequency
νK of the two glasses at these temperatures has been determined by the Kohlrausch
fit to the same data in the electric modulus representation, which is shown in the
right panel of Fig. 318. νK is practically the same as the peak frequency νmax at the
maximum of M′′(ν). The νK of the two glasses differ only by a factor of about 2,
and thus this near-isoconductivity relaxation time condition is satisfied for making
objective comparison of the NCL in these two ionic conductors.

Fig. 318 (Left) Isothermal electrical relaxation data shown as plots of log
[
σ ′(f )/σdc

]
vs. log f for a

Na2O–3SiO2 glass at –0.5◦C and for a Vycor glass xNa2O−(1−x)[0.04B2O3−0.96SiO2] at 313◦C
with x = 0.00044. Reproduced from [1057] by permission. (Right) Scaled M′′(ν) data of several
ionic conductors. The Na trisilicate glass (open circles) and the Kohlrausch fit with n = 0.50
(dashed-dotted line). Vycor glass xNa2O − (1 − x)[0.04 B2O3 − 0.96 SiO2] with x = 0.00044
(open squares) and the Kohlrausch fit with n = 0.05 (solid line). The CKN data at 333 K (closed
diamonds) and at 342 K (closed circles), together with the Kohlrausch fits with n = 0.28 (thinner
dashed line) and 0.33 (thicker dashed line), respectively. The horizontal lines indicate the levels of
NCL. Reproduced from [1482] by permission

In the left panel of the figure, the M′′(ν) data of the Na trisilicate glass, the Vycor
glass, and CKN at two temperatures 333 and 342 K are compared after normalizing
M′′(ν) by M′′(νmax), the maximum value at the loss peak. The NCL appearing at
the high-frequency end, AMν−c with c << 1, is indicated for each case by the
horizontal line. It can be seen from the comparison that ionic conductor with broader
dispersion or large n in M′′(ν) has higher level of NCL relative to the M′′(νmax).
In the order of increasing ratio NCL/M′′(νmax), Vycor glass has n= 0.05, CKN has
n=0.28 and 0.33, and the Na trisilicate glass has n= 0.50. The reader may recognize
the similarity between the trend of the NCL in ionic conductors shown in the left
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panel of Fig. 318 and that of the NCL in glassformers in Figs. 241 and 250 at
constant or approximate constant structural relaxation frequency να . The correlation
between NCL and n found in the dynamics of the two systems is another evidence
for universal properties of interacting systems.

In the plot of
[
σ ′(ν)/σdc

]
against log ν in the left panel of Fig. 318, it can be

seen that the Vycor glass has νx2 much closer to νK than the Na2O–3SiO2 glass,
which is another indication of much narrower dispersion of the former compared
with the latter. The same is true for νx1; the location of it for the Vycor glass is
well inside the range of frequencies shown, while that for the Na2O–3SiO2 glass is
outside and not shown (data at higher frequencies are truncated in this plot). The
NCL appears in this plot as σ ′(ν)/σdc ≈ Aσ v1−c, with c << 1. The larger NCL of
Na trisilicate glass than Vycor glass is reflected in this plot by larger value of Aσ

of the former compared with the latter. A similar situation was found by Jain et al.
in the comparison of σ ′(ν) for two xK2O − (1 − x)GeO2 glasses with x = 0.20
and 0.0023 [1512]. Whether considered by AMν−c in M′′(ν)/M′′(νmax) at constant
νK or by Aσ ν

1−c in σ ′(ν)/σdc, NCL is smaller in ionic conductor having smaller
n. This trend is the same as that found for the glassformer such as the pair NMEC
and xylitol in Fig. 241, and the pair CKN and ZnCl2 in Fig. 250 (at the same να).
For ionic conductors, the trend has been rationalized in [1058, 1417] by the fact that
ν0 terminates the NCL and ν0 is located at higher frequency (at constant νK). A
similar explanation for glassformer is by the fact that νJG or ν0 terminates the NCL
and νJG or ν0 is located at higher frequency (at constant να) for glassformer with
smaller n [507]. Incidentally, this trend in glassformers readily explains the deep
and sharp susceptibility minimum found in “strong” glassformers having small n
such as ZnCl2 or B2O3 (Fig. 250–1). This is because the depth of the minimum is
determined by the NCL which is low in these glassformers. That is also the rea-
son why the idealized MCT fails to fit the susceptibility minimum χ ′′(ν) of these
“strong” glassformers because the predicted spectral shape of the minimum is given
by χ ′′(ν) = χ ′′

min
[
a(ν/νmin)−b + b(ν/νmin)a

]
/(a + b). Since a has to be less than

0.395, MCT cannot explain the sharp minimum seen in the “strong” glassformers.
Conversely, the higher level of NCL of “fragile” glassformers with larger n can
produce a shallower minimum satisfying the condition a < 0.395, and MCT fit
can be successful. The main point is that NCL is responsible for the susceptibility
minimum, which can be shallow or deep depending on the NCL level controlled
by n. This is another example of the connection of the faster dynamics to the ulti-
mate many-body relaxation dynamics characterized by its dispersion or the coupling
parameter n.

The examples from CKN, 0.80LiF–0.20Al(PO3)3, 0.5Ag2S–0.5GeS2, and
0.48(AgI)2–0.52Ag2SeO4 have been chosen to elucidate the NCL in isothermal
spectra because the measurements were made over enormous broad frequency range
for us to see the relation between the characteristic frequencies νx1, ν0, νx2, and νK.
If measurement is made over a limited range of frequency typically from 10 Hz
to 1 MHz, fast and slow processes only can be seen together in isochronal spec-
tra of σ ′

ν(T) at constant ν. The faster caged dynamics appears in σ ′
ν(T) at lower

temperatures, and it is unmistakably the NCL because σ ′
ν(T) has the frequency
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dependence of ν1–c with c << 1 at constant T [1059, 1758]. The crossover from
NCL to primitive ion relaxation and subsequently to cooperative ion dynamics can
be seen from the progressive change in T dependence of σ ′

ν(T). The best example
is the analysis of σ ′

ν(T) measured over finely spaced temperatures down to 8 K
in the frequency range 10 Hz–1 MHz reported by León and coworkers on two dif-
ferent Li ionic conductors, one is the crystalline Li0.18La0.61TiO3 (LLTO) and the
other is the glassy 61SiO2–35Li2O–3Al2O3–1P2O5 [1059], and by Rivera et al. in
(Y2O3)0.16(ZrO2)0.84 and glassy Li, Na, K, and Rb triborate glasses [1755]. At lower
temperatures, an NCL corresponding to linear frequency-dependent ac conductiv-
ity is the dominant contribution. As temperature is increased, a crossover from the
NCL to a fractional power law frequency dependence of the ac conductivity νn is
observed at fixed T (see left panel of Fig. 319 for LLTO).

The data in the left panel of the figure also show the weak dependence of the
NCL that is proportional to exp(T/To). For each isochronal at a fixed frequency ν,
the open square indicates the crossover point (Tx, σ ′

ν(Tx)) from the weak T depen-
dence of NCL to the stronger activated T dependence of the ac conductivity νn with
a criterion explained in [1758]. Naturally, the crossover can be identified with termi-
nation of the NCL regime. The coordinates of the crossover points are shown again
as open squares in the Arrhenius plot of conductivity in the right panel of Fig. 319.
The closed circles are additional crossover points at higher frequencies determined
by a method discussed in [1758]. Shown also is the dc conductivity as a function

Fig. 319 (Left) Conductivity vs. temperature plots for LLTO. Conductivity data are shown for dif-
ferent frequencies (300 Hz, 1, 3, 10, 30, and 100 kHz, from bottom to top) in a linear temperature
scale. Open square symbols represent the crossover between the linear frequency-dependent con-
ductivity (NCL regime) and the power law ν n regime, which is due to ionic hopping. Solid lines
are fits to exponential temperature dependence of conductivity data in the NCL regime. (Right)
Arrhenius plots of conductivity data of LLTO at different frequencies (300 Hz, 1, 3, 10, 30, and
100 kHz, from bottom to top). Open square symbols represent the crossover points obtained from
the left panel, and solid circles are the crossover points at higher frequencies determined by method
discussed in [1758]. The solid line is a fit to an Arrhenius law for the crossover temperature depen-
dence. Open circles are dc conductivity data. Closed diamonds are the crossover points calculated
by assuming the validity of the augmented Jonscher equation, which shows an activation energy
close to that observed for the dc conductivity. Reproduced from [1758] by permission
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of temperature (open circles), which is non-Arrhenius as the reader may recall from
Section 3.2.6.4.

The solid line is a fit to an Arrhenius law for the crossover points, showing the
relation σ ′

v(Tx) = σ∞ exp(−Em/kTx), where Em = 0.17 ± 0.03 eV, and σ∞ ≈
1 S/cm, which corresponds to a conductivity relaxation time τ of the order of magni-
tude of 10–11 s from the Maxwell relation σ = ε0ε∞/τ . It turns out that Em is nearly
the same as the temperature-independent primitive activation energy Ea ≈ 0.175 eV
of the independent ion hopping relaxation time τ0 that was calculated by the prod-
ucts [1 − nσ (T)] Eσ (T) over a range of temperatures for LLTO (see Section 3.2.6.4
and Fig. 304, upper right). Hence Em is identified with the energy of the barrier
preventing the Li+ ions to abandon their cages, and the relaxation time correspond-
ing to σ ′

ν(Tx) is the primitive ion relaxation time τ0. The result is another indication
that the NCL occurs while most of the ions are still caged and is terminated by the
primitive ion relaxation. Naturally an estimate in order of magnitude of the time for
the ions to leave their respective cages is given by the primitive relaxation time of
the CM. At a longer time tx2 after which essentially all ions have high probability of
successfully jumping out of their cages, they start the cooperative ion conductivity
relaxation process well described by the Kohlrausch correlation function.

3.2.10.1 Caution for Those Who Prefer Data Represented by σ′(ν) than
M∗(ν)

Before leaving Fig. 316, it is instructive to consider a popular expression of Jonscher
[124], often used to interpret conductivity relaxation of ionic conductors. Jonscher’s
expression for the real part of the conductivity is

σ (v) = σ0[1 + (v/vp)n], (3.49)

where σ 0 is the dc conductivity, νp the characteristic relaxation frequency, and n the
fractional exponent. At higher frequencies the ν dependence given by Eq. (3.49) no
longer works and is replaced by ν1–c with c << 1, the NCL term. To include the
NCL, some workers add a term Aν to the right-hand side of Eq. (3.49):

σ ′(v) = σ0

[
1 +

(
v

vp

)n]
+ Aσ v. (3.50)

Recalling Fig. 245, where it is shown the NCL in glassformers is not an additive
contribution to the susceptibility, one would be skeptical of this approach in ionic
conductors. Since σ 0 and νp are thermally activated with the dc activation energy
Eσ , meanwhile Aσ shows a much milder temperature dependence, it can be shown
from Eq. (3.50) that the crossover between the two terms should be thermally acti-
vated with the energy Eσ . The crossover point is readily obtained by equating the
NCL term to the real part of the ac conductivity given by the Jonscher’s expression
at the crossover frequency. The locations of the crossovers shown by the closed dia-
monds in Fig. 319 indeed have the T dependence of σdc and do not correspond in
any way to the NCL.



750 3 Universal Properties of Relaxation and Diffusion

Jonscher’s expression for the σ ′(ν) in Eq. (3.49) gives no characteristic times
explicitly. Users of this expression usually define a characteristic time via the char-
acteristic frequency νc by the equation σ ′(νc) = 2σdc. The νc so defined may be
close to νK in ionic conductors having higher concentrations of ions and larger
n like Na2O–3SiO2 glass shown in the left panel of Fig. 318, and has activation
energy nearly the same as σdc. However, when σ ′(νc) = 2σdc is applied to ionic
conductors with low concentration of ions and small n such as the Vycor glass
xNa2O−(1−x)[0.04B2O3−0.96SiO2], νc is more than two decades higher than νK
and it has much weaker T dependence than σdc. Thus, σ ′(νc) = 2σdc yields νc asso-
ciated with different dynamics for ions with different concentration and/or width of
dispersion and n. Imre et al. [1693] applied this to determine νc, which they called
νon, to the series of the mixed alkali glasses 0.2[xNa2O − (1 − x)Rb2O] − 0.8B2O3
with x = 0.0, 0.2, 0.4, 0.6, and 0.8. The mixed alkali (MA) effects were shown
before in Figs. 308 and 311. The activation enthalpies �Hσ of dc conductivity show
a maximum at some X = 0.4 in Fig. 311 and also in Fig. 320, but the activa-
tion enthalpies �Hvon of νon do not, which is almost independent of composition.
Thus �Hσ shows the mixed alkali effect as usual, but �Hνon do not. Imre et al.
were taken by surprise. But this is no surprise in view of the discussion above. The
number of mobile ions in the mixed alkali glasses is fewer than that in the single
alkali glasses, and νon in the MA glasses no longer corresponds to dc conductivity.
Consequently, the activation enthalpy �Hvon of MA glasses is smaller than �Hσ ,
and it shows no MA effect or at least smaller effect than �Hσ . The danger of using
the Jonscher’s expression to interpret deeper properties of ion dynamics is made
clear by this example.

Fig. 320 Composition
dependence of activation
enthalpies �Hσ (•) and
�Hvon (�) for the
0.2[xNa2O–(1-x)Rb2O]–
0.8B2O3 mixed alkali glasses
– left axis. The quantity S (o)
– right axis is of no interest
here and not discussed in the
text. Reproduced from [1693]
by permission

3.2.10.2 Rationalization of the Observed Properties of NCL by Its Relation
to the Primitive Relaxation

Crystalline and Ionic Conductors

From the close relation between tx1(T) and τ0(T), tx1(T) has the same activation
energy as Ea of τ0(T). This has been demonstrated in Fig. 319 for Li ion dynamics
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in LLTO and other crystalline and glassy ionic conductors [195, 1058, 1059, 1755,
1758], and hence we have tx1(T) = t∞ exp(Ea/kT). Given the fact that the NCL is
terminated at tx1(T)) by the same process (i.e., the primitive ion hop), < r2(tx1(T)) >
is expected to have the same value independent of temperature or tx1(T). From its
onset at ton and up to tx1(T), < r2(tx1(T)) > or the NCL increases by the same
amount for all temperatures. However, because tx1 is thermally activated, this same
increase of < r2(tx1(T)) > is spread over a number of decades of time given by
{loge [tx1(T)]− loge(ton)}/2.303. Therefore < r2(tx1(T)) > is inversely proportional
to loge

[
tx1(T)/ton

]
. From this proportionality and the relation between conductivity

and mean-square displacement (Eq. (3.4)), the magnitude A of the NCL, ε′′(ν) =
Aν1−c with c << 1, is given by the proportionality relation [1058]

A ∝ 1

Ea
[1 − (kT/Ea) loge(ton/t∞)]−1. (3.51)

This expression is well approximated by

A ∝ (Ea)−1exp(T/T0), for T << T0 (3.52)

with

To ≈ Ea/k loge(ton/t∞). (3.53)

Note that T0 is a positive number because loge(ton/t∞) is a positive number from
the fact that tx1 < τ0, and hence t∞ is even shorter than τ∞, the prefactor of τ0,
which is the reciprocal of a vibrational attempt frequency. Thus the weak temper-
ature dependence of the NCL is captured by the interpretation of the origin of the
NCL within the framework of the CM. Since the result given by Eqs. (3.51) and
(3.52) is obtained from a qualitative argument, we do not expect that it will accu-
rately describe the temperature dependence of the NCL, particularly if considered
over a very extended temperature range where another source of contribution to
NCL may come into play at very low temperatures and high frequencies, such as
transitions between the asymmetric double-well potentials (ADWPs) [1744, 1755,
1759]. Of course, the ADWPs constitute a different source of the NCL than the slow
cage decay process discussed here.

Note that according to Eq. (3.51), at constant temperature, A should decrease with
increasing Ea, had other factors like ion concentration that determines the absolute
value of A are the same for the ionic conductors to be compared. If this condition
holds for many ionic conductors, then an approximate anticorrelation between A
and Ea may exist at constant T. This is an important prediction and can be tested
by experiment. Previously, Rivera et al. [1061] measured the intensity of the NCL
A in four alkali triborate glasses M2O–3B2O3, with M=Li, Na, K, and Rb. They
observed that A approximately has the m−1/3-dependence and this dependence led
them to speculate vibrational relaxation as the origin of the NCL. The new inter-
pretation of the NCL given in this work was not available at the time of writing
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[1061]. Now it replaces the earlier speculation. Its prediction, A ∝ 1/Ea, replaces
the less general observation that A ∝ m−1/3. The former can be rigorously tested
by the alkali triborate glasses data of Rivera et al. [1061]. This test has been done
by calculating Ea from the experimental determined activation energy E∗

a of τK by
using the relation Ea = (1 − n)E∗

a and (1–n) from the Kohlrausch fit of the electric
modulus loss peak [1752]. The results of Ea in fact is inversely proportional to A in
the family of alkali triborate glasses investigated by Rivera et al., and this is shown
in the left panel of Fig. 321 among other ionic conductors.

The predicted approximate correlation between the magnitude A of the NCL
and the reciprocal of primitive activation energy Ea by Eq. (3.51) can be tested
beyond the family of alkali borate glasses. This has been carried out by León et al.
at T= 100 K for many ionic conductors [1752]. The results in the left panel of
Fig. 321 show the remarkable agreement between experimental data for a variety of
ionic conductors and the correlation predicted. The solid line in the figure represents
an exact inversely proportional relation. It is indeed noteworthy that such a correla-
tion holds considering there may be other factors which affect the magnitude of the

Fig. 321 (Left) A remarkable correlation is observed when plotting the magnitudes A of the
NCL at T= 100 K vs. the activation energy Ea for a variety of ionic conductors. Li2O−
3B2O3 (+), Na2O−3B2O3 (∗), K2O−3B2O3 (�), Rb2O−3B2O3 (∇), LiPO3 (�), 35Li2O−
61SiO2−3Al2O3−P2O5 (©), Li0.18La0.61TiO3 (×), (ZrO2)0.84(Y2O3)0.16 (	), Na2O−3SiO2
(�), (AgI)0.3−(AgPO3)0.7 ("),

(
AgI2

)
0.48 −(Ag2SeO4)0.52 (♦), Na−βAl2O3 (�), (Li2S)0.56 −

(SiS2)044 (
), (Ag2S)0.5−(GeS2)0.5 (�), Ag7GeSe5I (•), (LiF)0.8(Al(PO3)3)0.2 (�), xK2O−
(1−x)GeO2(x = 0.2) at T = 381 K ( ), xK2O−(1−x)GeO2 (x = 0.02) at T = 367 K (�), xK2O
−(1−x)GeO2 (x= 0.0023) at T = 374 K (�). Solid line represents an inversely proportional rela-
tion as derived from the model for the NCL (see Eq. (3.51)). Dashed line represents a fit to Eq.
(3.51) for the family of alkali triborate glasses. The inset shows that the smaller the value of Ea, the
smaller the activation energy Eσ for the dc conductivity for the set of ionic conductors shown in
the main panel. (Right) Main figure shows the correlation between the magnitude A of the NCL at
T= 100 K and the activation energy, Eσ , of the dc conductivity. Symbols are the same as those used
in the left panel. The inset shows the same NCL data vs. the dc conductivity at room temperature.
Lines are guides for the eye. Reproduced from [1752] by permission
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NCL and have not been taken into consideration. The question arises if the corre-
lation still holds when considering the activation energy Eσ for the dc conductivity
instead of Ea. It has been shown [1706(a)] for different families of ionic conductors
that the one with smaller activation energy Eσ has larger coupling parameter n and
hence correspondingly smaller Ea, and rationalized therein by enhanced inter-ionic
coupling in ionic conductors with smaller primitive energy barrier Ea. This corre-
lation between Ea and Eσ is obeyed by the ionic conductors considered here and is
shown in the inset of the left panel of Fig. 321. From this empirical relation between
Ea and Eσ , and the correlation that holds between A and Ea, we also expect a corre-
lation between A and Eσ . The magnitude A of the NCL is plotted in the right panel of
Fig. 321 vs. the activation energy Eσ , and a strong correlation indeed exists between
them. This correlation is noteworthy because very different time and spatial scales
are involved in dc conductivity and the NCL. While the dc conductivity is related to
charge transport over long range at long times, the NCL observed at high frequen-
cies in the ac conductivity originates from motion while the ions are still caged.
The inset shows that a correlation is also observed between A and the logarithm
of the dc conductivities at room temperature σ o. Since σ0(T) = σ∞ exp(−Eσ /kT)
and the prefactor σ∞ takes not too different values in all ionic conductors, the rule
that higher the Eσ , the smaller the dc conductivity at room temperature is usually
obeyed. Therefore, the correlation observed between A and the dc conductivities
at room temperature can also be considered simply to follow from the correlation
between A and Ea deduced from Eq. (3.51).

Even though NCL originates in the caged ions regime, yet its magnitude corre-
lates with the dc conductivity either via its activation enthalpy or its value at room
temperature. This happens because NCL is connected to the primitive ion hopping
motion, which in turn is connected to the many-ion cooperative hopping motions
and finally the dc conductivity. Without this insight, the correlation of the NCL with
dc conductivity may have tempted others to jump to the conclusion that the NCL
is associated with ion hopping motions of the mobile ions. In fact this erroneous
conclusion was proffered by Murugavel and Roling [1760] from their own findings
of a correlation between the magnitude of the NCL at T=173 K and the dc conduc-
tivity at room temperature of Li, K, and Na alumino-silicate and alumino-germanate
glasses. These authors also found that the magnitude of the NCL is higher for the
sodium ion conducting glass as compared to the lithium ion conducting glass. This
observation clearly is opposite to alkali mass dependence of the NCL found by
Rivera et al. [1061] for the alkali triborate glasses. Interestingly, in the case of the
alumino-silicate glasses, the dc conductivity of the sodium ion conducting glass is
approximately twice as high as the dc conductivity of the lithium ion conducting
glass. This is opposite for the alkali borate glasses, where lighter alkali has larger
dc conductivity at room temperature (see inset in the right panel of Fig. 321). The
reversal of trend in the alkali alumino-silicate glasses is caused by the replacement
of silicon by the trivalent aluminum, which changes the structure of the oxide glass.
Thus, the results of the alkali alumino-silicate glasses from Murugavel and Roling
[1760], as well as the alkali borate glasses from Rivera et al., are in accord with the
prediction stemming from Eq. (3.51). Here, the NCL is loss due to ions while still
caged due to the anharmonic potential and fluctuations of the cages.
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Glassformers

Experimentally, the NCL found in non-ionic glassformers in the equilibrium liq-
uids state or the glassy state is no different from the NCL of crystalline, molten,
or glassy ionic conductors. Conceptually they have similar origin due to caging by
anharmonic potential and fluctuations of cages, and are terminated by the primi-
tive relaxation. Therefore the same steps leading to the magnitude and temperature
dependence of the NCL in ionic conductors given above can be applied to deduce
the properties of the NCL in non-ionic glassformers.

Let us now consider two non-ionic glassformers of the same family but having
two different coupling parameters. For the same structural relaxation time τα, it fol-
lows from Eq. (3.1) that the glassformer with the larger coupling parameter has a
shorter primitive relaxation time τ0, and hence also a shorter tx1. Since < u2 >NCL
increases by the same amount in the period ton < t < tx1 in the two glassformers,
the magnitude of < u2 >NCL is inversely proportional to [loge(tx1) − loge(ton)].
Thus, under the condition of isochronal α-relaxation, the glassformer having larger
n is predicted to have larger < u2 >NCL. If the glass transition temperature Tg of all
glassformers is defined uniformly to be the temperature at which τα has reached the
same long time, say 103 s, then the prediction is larger < u2(Tg)NCL for glassformer
having larger n. This prediction is supported by experimental data of mean-square
displacement in various glassformers obtained from neutron scattering by spectrom-
eters of the same frequency resolution shown in the left panel of Fig. 248 and by
other spectroscopies in Figs. 249 and 250. Although the vibrational contribution has
not been subtracted off from < u2(T) >, it can be inferred from the data of polymers
in the main part of Fig. 248 that < u2(Tg) >NCL increases in ascending order from
PIB, cis-PB, aPP, and PS. This trend correlates with the corresponding increase of
n at Tg from 0.45 for PIB, 0.50 for cis-PB, 0.60 for aPP, and 0.64 for PS [112, 165].
The same holds for the data from IN6 in the inset of Fig. 248, with B2O3 having
the smallest n equal to 0.40 [112] and polycarbonate the largest n = 0.65. The IN10
and IN16 data in the right panel of Fig. 248 as well as the IN13 data in the inset tell
the same story. The inset compares < u2(T) > data of glycerol, which has n = 0.29
[195], with that of OTP, which has n = 0.50 (from dielectric relaxation) or 0.45
(from photon correlation spectroscopy), and it can be seen that < u2(Tg) > of OTP
is significantly larger than that of glycerol.

3.2.11 A Problem Related to Glass Transition: Breakdown of
Thermorheological Simplicity and Associated Viscoelastic
Anomalies in Polymers

Any theory of glass transition should be applicable to amorphous polymers because
the phenomena are no different from other classes of glassformers as shown here and
there in Chapter 2. In addition to structural relaxation and JG secondary relaxation,
polymers have slower relaxation (viscoelastic) mechanisms involving longer length
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scales up to the entire chain length. The relationship between the structural relax-
ation and these other relaxation modes is a basic problem in polymer viscoelasticity.
This is because of the presence of several viscoelastic anomalies throughout the vis-
coelastic spectrum, which become more prominent when temperature is lowered
towards Tg, suggesting relation to glass transition. Some of these anomalies have
been discussed in Section 2.2.5.9. There, the purpose is to show that the degree in
their manifestation is governed by or dependent on the characteristic of the structural
(local segmental) relaxation, including its width of the dispersion (or n), which in
turn depends on the chemical structure of the repeat unit. The reader is just reminded
in here of these viscoelastic anomalies and the fact that they are caused by the struc-
tural (local segmental) relaxation of the polymer, and hence are related to the glass
transition problem. We have already said that any viable theory of glass transition
must be general enough to be applicable to polymers. Moreover, it should be able to
explain the breakdown of thermorheological simplicity and associated viscoelastic
anomalies near Tg, because these are caused by the rapid increase of the relaxation
time of the structural relaxation with decreasing temperature toward vitrification,
which is the core of the glass transition problem.

Before closing this section, we discuss an apparent conundrum encountered
[1582] and also an invalid explanation [1761, 1762] offered by other researchers
in recent consideration of the difference in the temperature dependences of the local
segmental relaxation time τα and the viscosity η, or the temperature dependence of
their shift factor aT,α and aT,η of polymers.

3.2.11.1 A Conundrum

Polyethylene (PE) is a very flexible carbon backbone polymer, and its viscosity
and aT,η have Arrhenius temperature dependence instead of the VFTH dependence.
The viscosity of high molecular weight polyethylene (PE) was discussed in Section
3.2.5.2 and results given in Tables 3.4 and 3.5. The Arrhenius temperature depen-
dence of η has activation enthalpy EA = 6.4 kcal/mol or 26.8 kJ/mol [833]. On
the other hand, 13C-NMR measurements of unentangled polyethylene, C44H90, and
another one with Mw = 2150 in the nanosecond range by Qiu and Ediger [1582]
found that the local segmental relaxation is best described by an exponential cor-
relation function exp(−t/τα), and τα has an Arrhenius temperature dependence
with activation enthalpy EA,α equal to 4 kcal mol or 16.7 kJ/mol. Similar value of
14.8 kJ/mol for activation energy of conformational transitions in PE was obtained
by Boyd et al. [1581]. Evidently, EA,α is less than EA,η, showing once more that
the temperature dependences of aT,α and aT,η are different. Their own result from
PE posed a problem for Qiu and Ediger [1582], who were led to make the drastic
conclusion: “The activation energy for the conformational dynamics was found to
be 4 kcal/mol, which is significantly less than the flow activation energy. Therefore,
in contrast to some other well-studied examples, conformational transitions are not
the fundamental motions for flow in polyethylene.” The result also creates a conun-
drum for us because it is opposite to the stronger T dependence of aT ,α than that of
aT ,η found by mechanical (shear creep) measurements in high molecular weight PS,
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PVAc, and atactic poly(propylene) and explained by the CM equations (2.59) and
(2.65) in Section 2.2.5.9.

The conundrum can also be resolved by the CM as follows. In contrast to the
mechanical measurements at times longer than 0.1 s and temperatures near Tg, the
13C-NMR experiment was carried out at short times of the order of nanosecond.
From the exponential correlation function exp(−t/τα) observed by 13C-NMR, it
is clear that nα ≈ 0 for the local segmental relaxation at the short time range.
Therefore from Eq. (1.59) now with nα ≈ 0, the measured activation energy of
4 kcal/mol by the 13C-NMR experiment should be close to the primitive activa-
tion energy Ea ≈ 3.6 kcal/mol deduced in Section 3.2.5.2, or the potential energy
barrier of 3.5 kcal/mol (14.8 kJ/mol) for conformational transition in bulk polyethy-
lene obtained by molecular dynamics simulation [1581]. Moreover, 4 kcal/mol can
be explained by the CM with Ea = 3.6 kcal/mol and nα = 0.1. On the other
hand, the entanglement coupling parameter nη ≈0.40 does not change with tem-
perature because the chains are always entangled, and hence from Eq. (1.65),
EA,η = Ea/(1 − nη) = 6.4 kcal/mol. This is the reason why EA,η is larger than
the activation energy for the conformational dynamics determined by the 13C-NMR
experiment. The conundrum is resolved. The conformational transition is still the
fundamental motions for flow in polyethylene, albeit many-chain relaxation caused
by entanglement interaction slows down the flow and enhances its activation energy
EA,η over and above Ea of the conformational transition.

3.2.11.2 Problems Encountered in an Explanation of the Breakdown
of Thermorheological Simplicity

Although the breakdown of thermorheological simplicity discovered by Plazek and
coworkers and confirmed by others to be general phenomenon, solution of the prob-
lem was largely put aside by the polymer physics research community. Since the
phenomenon occurs when temperature is approaching Tg and it involves the struc-
tural relaxation, there is every reason to believe that it has strong connection to the
glass transition problem. This connection is innate in the CM explanation [206, 209,
837, 868–872]. Despite the fundamental nature of the problem, the CM is the one
and only theoretical attempt that both addresses the glass transition problem and
has given an explanation of the various breakdowns of thermorheological simplic-
ity and associated viscoelastic anomalies of entangled and unentangled polymers. In
contrast, the reptation theory of viscoelasticity of polymers neither touches the glass
transition problem nor offers explanation for the viscoelastic anomalies. Other theo-
ries and models of glass transition made no effort to solve the viscoelastic anomalies
either. This challenge is largely ignored by the majority of the research community.
However there are still many colleagues who recognized the importance of this fun-
damental problem in polymer viscoelasticity. One notable person is the late Prof.
John D. Ferry, who discussed this problem in his textbook Viscoelastic Properties of
Polymers, 3rd ed. [29]. He gave me much needed encouragement to tackle the prob-
lem during my visit to the University of Wisconsin in 1992, and thereafter. After
Don Plazek and I finished writing a draft of the review on the viscoelastic anoma-
lies of polymers [165], we sent it to Prof. Ferry for his comments before submitting
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it for publication. He sent us back valuable comments to improve the review, and
the most memorable one is his suggestion of the title of the review Identification of
Different Modes of Molecular Motion in Polymers That Cause Thermorheological
Complexity [165]. It is most appropriate for the review and we used it exactly as he
suggested.

Among other researchers who recognized the fundamental importance of the
viscoelastic anomalies to both viscoelasticity of polymers and glass transition are
Sokolov and Schweizer. I thank them for reviving interest of this fundamental prob-
lem to the research community by offering their own explanation [1761]. They
recognized the connection of the breakdown of thermorheological simplicity to the
glass transition problem and proposed the weaker temperature dependence of relax-
ation times of chain modes compared with local segmental relaxation, in their own
words, as follows: “. . .. decoupling of the temperature dependence of the local and
chain scale relaxation times in polymer liquids is the combined consequence of het-
erogeneous dynamics on the nanometer segmental scale and the diffusive nature of
macromolecular relaxation for which heterogeneities are temporally and spatially
averaged out. This idea provides an explanation for the long-standing puzzle of the
breakdown of time-temperature superposition in polymer melts.” “The underlying
qualitative idea is that chain relaxation is a mean-field process in the sense that het-
erogeneous dynamics and local chain stiffness effects are (largely) averaged over, in
contrast to nanometer-scale segmental relaxation.”

Unfortunately, the explanation proffered by SS is not viable for several reasons
[1762]. The temperature dependence of the chain dynamics coming from tempo-
ral and spatial averaging of the heterogeneous segmental dynamics, suggested by
Sokolov and Schweizer (SS), is no different from the effective friction factor of the
averaged segmental dynamics. In other words, the observed segmental dynamics is
also an average over its temporal and spatial heterogeneities, and thus the friction
factor of its averaged relaxation time < τα > has the same temperature depen-
dence as that obtained by the averaging performed for the chain modes suggested
by Sokolov and Schweizer. The anomaly remains unexplained.

There are other problems in the explanation given by SS. One is posed by
the viscosity η and self-diffusion coefficient D data of high molecular weight
PE and HPB discussed in Section 3.2.5.2. According to the averaging proposed
by SS, they should have the same chain friction obtained by averaging out the
spatially heterogeneous dynamics of the local structural relaxation, but this is con-
tradicted by experiments showing that η has higher activation energy than D (see
Table 3.4). The explanation of SS rests on the assumption that the decoupling of
translational and reorientational motions in non-polymeric liquids is due to het-
erogeneity of the local dynamics. However, for three well-known cases of such
decoupling, o-terphenyl [456], tris(naphthyl)benzene [455, 820, 821], and sucrose
benzoate [457], the distribution of relaxation times is unchanged with variation in
temperature over the range of T/Tg from about 1.02 to 1.2. As acknowledged by
Mapes et al. [454]: “The dielectric relaxation and photon correlation spectroscopy
results imply a relaxation time distribution whose shape is too temperature indepen-
dent to cause [translational-rotational decoupling], at least within the framework of
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current approaches.” Thus dynamic heterogeneity fails to explain even the decou-
pling of viscosity from self-diffusion in non-polymeric glassformers. Lest the reader
forgets, a viable explanation of this has been given by the CM [797]. The point
herein is that it is premature for SS to explain a second phenomenon using an expla-
nation that does not yet satisfactorily account for the first phenomenon. Next, SS
support their ansatz by its consistency with “the almost universal behavior of the
temperature dependence of chain relaxation” [1762]. This universal behavior is the
putative equivalence of the Tg-normalized temperature dependence (fragility) of the
viscosity η or global relaxation time τc for all polymers. However, with the exception
of polystyrenes of different molecular weights (wherein temperature dependences of
low molecular weight samples reflect contributions from a changing compliance and
the sub-Rouse modes), in addition to the usual friction factor [832], the fragility of
the chain dynamics of polymers differs substantially as shown in [1763]. Thus, while
coarse averaging of Tg-normalized temperature dependences can yield single curves
with large error bars (Fig. 3b in [1761]), the data points per se exhibit substantial
scatter. For example, the ordinate value of a fragility plot of τc poly(vinyl ethylene)
is more than twice that of poly(methylphenylsiloxane) at Tg/T ∼ 0.92; there is a
similar difference between polyisobutylene and polystyrene at Tg/T ∼ 0.95 [1763].
Other examples can be cited; there is no universal behavior.

In spite of the shortcomings of the explanation from SS, they are commended
for their recognition of the importance of this fundamental and valiant attempt to
solve it.

3.2.12 Looking Out for Universal Dynamics in Other Complex
Interacting Systems

Demonstrated in the preceding subsections of this chapter, similar relaxation and
diffusion dynamics are shared by diverse interacting systems. Among the systems
exhibiting similar dynamics, the class of glassformers is the most intensively and
extensively studied, and has by far the most examples to support universal proper-
ties. But even the lesser systems discussed before, there are sufficient experimental
studies to provide evidence of similar properties. All the results suggest universal-
ity of relaxation and diffusion in interacting systems. Therefore, it is a worthwhile
pursuit to look for universal dynamic properties in other interacting systems that
have not been either explored or attracted enough attention. This pursuit can bring
tremendous benefits to any of these systems because the dynamic properties par-
ticularly the anomalous ones can be immediately understood or explained by the
knowledge gained from the better known systems. Caution must be exercised when
considering complex interacting systems possessing extraneous factors to compli-
cate the observed dynamics and obscure the vestige of the universal many-body
relaxation. The contributions from the extraneous factors such as multicomponents
and spatial heterogeneity have to be separated or removed before the universal
dynamics can be revealed. Before closing this chapter, we give two examples of
such complex interacting systems that show features in the dynamics resembling
those of glassformers.
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3.2.12.1 Charge Density Wave Systems

The system is the modulated electronic superstructure called charge-density wave
(CDW) that appears in some quasi-one-dimensional materials such as K0.3MoO3
and orthorhombic TaS3 at low temperatures [1764–1770]. The first evidence of glass
state in CDW systems have been found in the heat capacity Cp measurements at
low temperature [1765] showing up as the excess contribution above the Debye
contribution from vibrations, Cp ∼ T3, like in glasses related to the Boson peak in
susceptibility found at high frequencies.

CDW is electronic in origin and far flung from any of the systems discussed
before. The first indication of similarity of dynamics in CDW to glassformers was
put forth by Kriza and Mihály in 1986 [1766] including the stretched exponential
dielectric relaxation they observed in K0.3MoO3 and the connection with the CM.
More striking resemblance of dynamics with glassformer was found by Starešinić
et al. from dielectric relaxation measurements of semiconducting CDW systems in
orthorhombic TaS3 [1768] and K0.3MoO3 [1769]. They found two relaxations α

and β in the dielectric loss spectra (see the example for TaS3 in the left panel of
Fig. 322) and also in thermally stimulated current spectra of o-TaS3 and K0.3MoO3
(right panel of Fig. 322).

The relaxation time τα of the α-process increases rapidly with decreasing temper-
ature and reaches very long time at some temperature Tg (see left panel of Fig. 323)
like structural relaxation of glassformers undergoing glass transition. The relax-
ation time τβ of the faster β-relaxation changes T dependence near Tg to assume
an Arrhenius dependence at temperatures below Tg, resembling the behavior of the
JG β-relaxation of glassformers. Starešinić and Biljaković [1771] explained their
results by the model of cooperatively relaxing CDW domains of coherent phase

Fig. 322 (Left) Imaginary part ε′′ of the dielectric function of orthorhombic TaS3 as a function of
frequency at several temperatures. The lines represent single-process Cole–Cole fits of the dielec-
tric loss data for T > 50 K. The solid lines correspond to the α-process above 1 MHz, the dashed
lines to the α-process below 1 MHz, and the dash-dotted lines correspond to the β-process seen
below 60 K. Reproduced from [1768] by permission. (Right) Thermally stimulated current spec-
tra of o-TaS3 and K0.3MoO3. The sample is cooled in the external electric field and heated in
short-circuit configuration and the depolarization current is recorded. Maxima correspond to the
“melting” of frozen relaxation processes. Reproduced from [1770] by permission
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Fig. 323 (Left) Characteristic relaxation times τα and τβ of the α and β processes in CDW systems
o-TaS3 and K0.3MoO3 as a function of the inverse temperature normalized to the glass transition
temperature Tg. Tg is 42 K for o-TaS3 and 23 K for K0.3MoO3. Full line represents the activated
increase of τα in K0.3MoO3 and dash-dotted line the Vogel–Fulcher increase of τα in o-TaS3.
Dashed lines represent the activated increase of τβ in both systems. Reproduced from [1770] with
permission. (Right) Data of τα and τβ in o-TaS3 (filled circles, same as in the left panel). The
open circles are the primitive relaxation time τ0 in o-TaS3 calculated by Starešinić and Biljaković
(unpublished) using the CM relation with the parameters given in the text

coupled through electrostatic interaction. At lower temperatures, in the absence of
free carrier screening, this causes slowing down and subsequent freezing of the elas-
tic degrees of freedom, i.e., the α-process. The β-process represents the dynamics
of topological defects developed on the domain boundaries. They used the CM rela-
tion to calculate the primitive relaxation time τ0 from the experimental values of
τα of TaS3 by using the CM equation τ0 = (tc)n(τα)1−n. They obtained an approx-
imate value of (1 − n) = 0.67 from the spectra and took tc = 2 × 10−11 s, the
reciprocal of the real pinning resonance frequency, because above this frequency,
CDW is depinned. The calculated values of τ0 shown in the right panel of Fig. 323
are in agreement with τβ. Despite the progress made by Starešinić, Biljaković, and
coworkers [1768–1770] in the dynamics of CDW system through the analogy to
glassformers and the possible connection to the CM, more study has to be made
before we can arrive at a full understanding.

3.2.12.2 Aqueous Colloidal Dispersions of Magnetic Nanoparticles

The nanometric magnetic particles dispersed in water have many applications in
technology [1772, 1773] and are also systems of fundamental interest as interacting
hard spheres in which the inter-particle interactions can be tuned by varying external
parameters. One class of these colloidal dispersions is constituted of chemically
stable nanocrystals of γ-Fe2O3 oxidized in maghemite with diameter of about 10 nm
or less dispersed in water and stabilized by electrostatic repulsion [1773]. The last
step was achieved by coating the surface of the nanoparticles with citrate molecules,
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which ensures a negative charge at neutral pH, compensated by sodium counterions.
The inter-particle interactions can be continuously tuned by varying the osmotic
pressure π through the ionic strength [1774]. With the ionic strength held constant,
the viscosity increases with the volume fraction  until the samples no longer flow,
and the state was referred to as the “macroscopic solid.”

Each particle bears a dipole moment μ(∼ 104 μB) and an uniaxial optical
anisotropy linked to μ through the magnetic energy of anisotropy of the nanocrystal.
In a fluid dispersion, without field, the crystal axes are oriented at random and no
optical birefringence is observed. The orientation of the particles via their magnetic
moment under an applied field induces a magnetobirefringence �n in the solution
due to the mechanical orientation of the nanoparticle axes. The rotational relaxation
of the nanoparticles was studied by the relaxation of the magneto-induced bire-
fringence signal. Indeed, the birefringence response of the suspension to a small
external field pulse is a transient orientation followed by a relaxation to a randomly
orientated state. If the sample is monodisperse and dilute (independent particles),
the relaxation of the birefringence is well described by a linear exponential decay
according to Perrin [12] with the relaxation time τR = 3ηVH/kT , where η is the sol-
vent viscosity and VH the hydrodynamic volume of the particle. The samples studied
by Mériguet et al. [1775, 1776] were polydisperse, and polydispersity induces a dis-
tribution of the τR, and hence departure from the ideal single exponential decay is
observed even for dilute dispersion. For a dilute dispersion of particles with a vol-
ume fraction close to  ∼ 0.01 with a mean diameter of 7 nm, a relaxation time of
τ = 4 μs was measured. Because of polydispersity (σ = 0.35) of the sample, the
relaxation function is not a single exponential. This can be seen in the right panel of
Fig. 324 at low . The data for all  are shown in Figs. 324 and 325. On the left
panel of Fig. 324 are the normalized optical intensity I(t)/I0 for citrate concentra-
tions of 0.03 mol l−1 at increasing volume fraction of nanoparticles. The right panel
of Fig. 324 shows the decrease of the Kohlrausch stretch exponent α ≡ (1 − n) vs.
normalized volume fraction /∗, where ∗ = 0.18.

On increasing , the relaxation is slowed down. Up to a volume fraction of 11%,
the relaxation function and the relaxation time depend weakly on . On further
increase of , a dramatic slowing down was observed by the stretching of the relax-
ation function to longer times (see Fig. 324) and the rapid increase of the relaxation
time τ2 (see left panel of Fig. 325). This occurs before the macroscopic solidification
of the sample. The decay of the optical intensity was well fitted by a sum of a single
exponential accounting for the short-time relaxation and a stretched exponential of
Kohlrausch for the long-time behavior:

I(t) = I1 exp

(
− t

τ1

)
+ I2 exp

[
−
(

t

τ2

)1−n
]

,

where I1 + I2 = I0 = I(t = 0). The reader may recall this time dependence of the
correlation function is the same as in other systems including the aqueous colloidal



762 3 Universal Properties of Relaxation and Diffusion

(b)(a) 

Fig. 324 (Left) Normalized optical intensity I(t)/I0 for citrate concentrations of 0.03 mol/l at
increasing volume fraction of nanoparticles. Here φ is  expressed as percentage. (Right) Variation
of the Kohlrausch stretch exponent α ≡ (1 − n) vs. normalized volume fraction /∗, where
∗ = 0.18. The dotted line is guide to the eyes. Reproduced from [1775] by permission

(a) (b)

Fig. 325 (Left) Variation of the relaxation time τ2 with the normalized volume fraction /∗,
where ∗ = 0.18. Reproduced from [1775] by permission. (Right) Variation of the relaxation
times τ1 and τ2 with the volume fraction . Reproduced from [1776] by permission

suspensions of a synthetic clay, Laponite (see Section 2.3.2.39), and in associating
or aggregating polymers solutions in Section 3.2.3.6.

The exponent α �= (1 − n) of the stretched exponential exhibits a significant
decrease starting near the same /∗ = 1 (Fig. 324), where the relaxation time τ2
also shows the rapid increase (left panel of Fig. 325). This is another example of
the correlation between the width of the dispersion (or n) and the relaxation time
found in many cases discussed before including the aqueous colloidal suspensions
of Laponite and the associating or aggregating polymers solutions. The right panel
of Fig. 325 shows variation of both the relaxation times τ1 and τ2 with the vol-
ume fraction . It can be seen that the separation between the two relaxation times
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increases as n increases with . Again this trend is found in many other interacting
systems.

A more recent paper by Wandersman et al. of the same group [1777] studied
the freezing of the orientational degrees of freedom of strongly interacting mag-
netic and charged nanoparticles by magneto-induced birefringence measurement,
as the colloidal glass transition is approached. Using a magneto-induced birefrin-
gence technique, they show that the rotational dynamics drastically slows down
following a modified Vogel–Fulcher law with the volume fraction  replacing T,
for  above a threshold, the value of which depends on the range of electrostatic
repulsion between nanoparticles. The birefringence measurement provides the time
correlation of the orientational degrees of freedom of the the nanoparticles, which

is given by C2(t) =< P2(
⇀
e i (t)· ⇀

e i (0)) >, where P2 is the second Legendre

polynomial and
⇀
e i is the direction of the optical axis of the ith nanoparticle. For

dilute ferrofluids, the magneto-induced birefringence relaxations are nearly expo-
nential. The relaxation becomes increasingly more non-exponential and stretched to
longer times on increasing volume fraction, but at short times it remains exponential
component. For this reason, the time dependence of the relaxation was fitted by the
function A exp(−t/τ1)+ (1−A) exp[−(t/τ2)1−n], like the earlier study by Mériguet
et al. [1775, 1776]. The data are shown in Fig. 326 (left). In the fitting process, A,
τ2, and (1 − n) are treated as fitting parameters, while the short characteristic time
τ1 is assumed to be constant and set equal to its value at low volume fraction. This
latter assumption is different from that of [1776], where τ1 increases with volume
fraction as shown in Fig. 325 (right). The changes of the fitting parameters τ2 and
(1−n) with the volume fraction are reproduced from [1777] in Fig. 326 (right).

Fig. 326 (Left). Normalized birefringence relaxations of ferrofluids A at different volume frac-
tions  increasing from left to right. The initial time t = 0 is defined when the magnetic field is cut
off. (Right) Rotational characteristic time τ2 extracted from the fit of birefringence relaxations as a
function of the volume fraction . The open symbol is the sample at volume fraction = 30% for
which no stationary birefringence can be reached after a pulse of magnetic field. The dashed line is
a Vogel-Fulcher fit of the data. Inset: Evolution of the stretched exponent α ≡ (1−n) as a function
of the volume fraction. The dotted line is a guide for the eye. Reproduced from Ref. [1777] by
permission.
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Despite the assumption in fitting the data in [1777] that is different from that
in [1775, 1776], both experiments essentially show the same universal features
of relaxation in other interacting systems. There are more interacting systems
exhibiting the universal properties but are not discussed in this volume.
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