Chapter 2
Glass-Forming Substances and Systems

2.1 Current Status of the Glass Transition Problem

The glass transition or vitrification, which refers to the dramatic slowing down of
kinetic processes, such as diffusion, viscous flow, and molecular reorientations, is a
general phenomenon found in organic, inorganic, metallic, polymeric, colloidal, and
biomolecular materials, as well as synthetic materials and systems. On decreasing
temperature T or increasing pressure P, the structural relaxation time 7, of super-
cooled liquids becomes increasingly long. Eventually the molecules cannot attain
their dynamic equilibrium configurations on the timescale of observation, and vit-
rification commences. The science and technology of glass formation has a long
history, starting from the first recorded recipe for glass that appeared a few mil-
lennia ago in Babylon. Nowadays, glasses are formed from many different kinds
of materials. The use of glass is widespread, and the glass-making industry alone
contributes significantly to the world economy.

A fundamental understanding of glass transition requires elucidation of the
dynamics of the structural relaxation and identification of the factors that make
Ty to slow down drastically with decreasing temperature or increasing pressure.
Surprisingly, in spite of the long history of the phenomenon and technological sig-
nificance of glass, there is still no universally accepted view on the dynamics of
the structural relaxation. There is no consensus on the factors governing the dra-
matic slowing down of the structural relaxation and related kinetic processes, such
as viscous flow and diffusion. This situation is a testament of the complexity of
the structural relaxation process in the precursor supercooled liquid. Development
of a microscopic and quantitatively accurate theory of the glass transition that is
generally applicable to real materials has become even more challenging with the
improvement of experimental techniques and the introduction of new ones. These
advances have led to the discovery of an increasing number of general properties
of the dynamics of glass-forming materials spanning the range from picoseconds to
years. Glass transition is still the subject of active research with many participants,
and the theme of many international scientific conferences. Its study is no longer
limited to the few traditional areas, but has branched out to electronics and opto-
electronics, metallurgy, pharmaceuticals, food science, biomaterials, geoscience,
volcanology, petrology, materials for energy source applications, and others. The
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study of glass transition has recently received a boost from activities in nanoscience
and technology, where the changes found in the dynamics of the structural relaxation
and glass transition temperature present new challenges.

There are plenty of theoretical activities in the quest to understand the funda-
mentals of glass transition and to explain the multitude of experimental data and
physical phenomena. It is worthwhile to reiterate the criterion of viability of a the-
ory/model of glass transition laid out at the end of the last chapter. The criterion is
that it has predictions that are consistent with all the observed properties, especially
the anomalous ones. I do not accept the claim that the problem of glass transition is
solved by any theory/model if only a selected few properties have been explained.
Is this stringent requirement subjective or unnecessary? I do not think so, the rea-
son being that because the other properties and anomalies not addressed are equally
important and they may have already shown that the theory/model is either deficient
or even untenable.

In the sections to follow, the unexpected but general experimental facts (i.e.,
anomalies) will be the subjects of detailed discussion. As shall be demonstrated,
the root cause of the anomalies is the many-body effects in relaxation and diffu-
sion in glass-forming substances and systems. Since many-body dynamics is either
neglected altogether or not given an adequate treatment in most conventional the-
ories and models, it is not surprising that they cannot explain the anomalies. New
theory and model of glass transition that incorporate the many-body dynamics at the
very start should have a better chance of being truly successful.

2.2 General Properties and Anomalies

An observed anomaly, or unusual behavior or property, is important only if it is
general. Some anomalies are better known possibly because they have longer his-
tory or are more accessible from the literature. Some of the anomalies have become
so familiar to workers in the field of glass transition that no one is surprised by
their generality. There are still other anomalies that are not well known or discov-
ered only recently. In considering anomalies, it is important to consider all of them
because, a priori, no one can tell which anomaly is more pivotal than the other for
the purpose of gaining a deeper understanding. It also allows us to see if the vari-
ous anomalies are related or not. If they are related, the relations may allow us to
extract the quintessential factor or parameter that governs all the anomalies. The
quintessential parameter may reveal directly and unambiguously the fundamental
physics behind glass transition that so far has escaped general attention. Finally,
theories capturing the quintessential parameter may emerge that can explain all the
anomalies and other experimental facts with the help of the quintessential param-
eter. As I shall demonstrate in this chapter, it turns out that this scenario can be
realized.

Instead of keeping the readers in suspense, I hasten to point out the identity of
the quintessential parameter. It is n appearing in the exponent of the Kohlrausch
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stretched exponential function, ¢k () = exp[—(t/ 7)17"] where (0 < n < 1), given
before by Eq. (1.1). As we shall see, n not only governs all anomalies but also indi-
cates the extent or degree of the many-body dynamics occurring in the structural
a-relaxation of the glassformer. The proviso is that ¢k (7) describes well the time
dependence of some correlation function, (A(f)A), of the structural relaxation. For
example, when normalized, (A(1)A) can be ®,(7), the dipole moment time corre-
lation function in Eq. (1.84), if the rotations of the dipoles are related to structural
relaxation. In light scattering, it can be the field correlation function, g'"(g, 1), given
by Eq. (1.107) [81-91, 198-211]. If the structural relaxation is probed in the fre-
quency domain and given in terms of susceptibility such as Eq. (1.88) for dielectric
relaxation, then the one-sided Fourier transform of ¢k () describes well the data.
Historically, Williams and Watts are the first to use the Fourier transform of ¢k (¢) to
fit the frequency dependence of isothermal dielectric relaxation data [212, 213], and
hence the name Kohlrausch—Williams—Watts (KWW) is appropriate when referring
to this practice of using the Fourier transform of the Kohlrausch function. The mag-
nitude of n is a measure of the increase in the width of the dispersion of (A(f)A)
over and above that of the linear exponential, exp(—#/t). A limiting case of the
Kohlrausch function is when n = 0, which is the correlation function for the clas-
sical Brownian diffusion and Debye relaxation in simple systems without the effect
of many-body interactions (see Chapter 1). According to Egs. (1.78a) and (1.82a),
the dynamic (frequency-dependent) susceptibility function x44(w) is the one-sided
Fourier transform of Wyu(t) = —(1/kgT) (A(HA). This, together with the fact that
(A(1)A) is the time derivative of (A(1)A), follows that x4(w) is proportional to the
one-sided Fourier transform of the time derivative of the Kohlrausch function. This
connection to the Kohlrausch function applies also to the various dynamic response
functions discussed in Chapter 1. For dielectric relaxation, £*(w) = &'(w) — ie” (w),
the relation is represented by Eqs. (1.52), (1.97), and (1.85). For shear modulus,
G*(w) = G(w) + iG"(w), the relation is given by Egs. (1.26) and (1.27). For
dynamics heat capacity, ¢,* () =c,'(w)—ic,” (w), it is Eq. (1.58).

The Fourier transform of the Kohlrausch function [212, 213] with larger n is
needed to fit the measured dynamic response in the frequency domain with broader
dispersion. The imaginary part of the Fourier transform of the Kohlrausch function
has the shape of a skew asymmetric peak. Naturally, the full-width at half-maximum
of the peak can also be used as a measure of the width of the dispersion. There is an
approximate relation between n and w, the full-width at half-maximum of the KWW
loss peak normalized to that of the loss peak from the linear exponential, exp(—¢/71),
which is equal to 1.144 decade. It is given by [214]

n~1.047(1 —w™h. (2.1

From this relation between n and w, we can use the width of the structural
relaxation dispersion as the quintessential parameter as an alternative to n.

The two claims made above that (i) the various observed anomalies are related
and (ii) n is the quintessential parameter that governs or correlates with all the
dynamic properties of the structural relaxation including the anomalous ones are
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quite extraordinary and not anticipated a priori. They need serious justification by
experimental data. This task is carried out throughout the following subsections in
this chapter, where each anomaly is discussed in detail and shown how it is related
to or governed by the parameter 7.

Although every worker has noticed that the dispersion of the structural o-
relaxation of most glassformers is broader than that of the linear exponential,
surprisingly they have not made use of the degree of non-exponentiality or n to
get insight into the dynamics and explain the anomalies (except perhaps the author
himself in the coupling model). Instead, emphasis is on other characteristics and
parameters. These include the length scale of the structural a-relaxation and the
temperature dependence of the a-relaxation time 7, or viscosity 1. The most popu-
lar one is the shape of the Ty-scaled temperature dependence of log 7, or log 1, and
the word “fragility” was coined to describe the degree of concaveness of the plot
[215, 216]. It is remarkable that “fragility” has become the center of attention and
one of the most discussed parameter in current glass transition research. Therefore,
following non-exponentiality or z in the next subsection, length scale and “fragility”
are reexamined in detail as well. Experimental results will be given to show that
length scale is impractical and “fragility” is overly complex to be used as parame-
ter or concept to gain insight into the dynamics. Thus, the non-exponentiality or n
is not only practical but also essential to unravel the many anomalies exhibited by
glassformers.

2.2.1 Non-exponential Time Correlation Function of the
Structural o-Relaxation, exp[—(t/ra)l‘"], the Kohlrausch
Stretched Exponential Function

In most glass-forming substances and systems, the slower structural a-relaxation
usually does not decay linear exponentially as a function of time. The depar-
ture is well approximated in most cases by the Kohlrausch’s stretched exponential
expression [2, 3]:

@) = exp[—(t/1e) ™). 0 <ny < 1. (2.2)

There are other empirical functions given by Cole and Cole [217], Cole and
Davidson [218], Havriliak and Negami [219], Dixon and Nagel [220], Bergman
[221], Blochowicz [222], and others. Some of these may fit some raw experimental
data better than the Kohlrausch function. However, one must be aware of the fact
that some of these other forms have more parameters than the Kohlrausch func-
tion. Also, raw experimental data though principally coming from the a-relaxation
may nevertheless have contributions from other relaxation processes such as sec-
ondary B-relaxation at higher frequencies and unwanted conductivity relaxation at
lower frequencies from charged impurities. As a result, if present, these extrane-
ous relaxation processes make it difficult to know the actual contribution from the
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a-relaxation. Thus, better fits to the raw data by these other functions do not nec-

essarily mean that they are more cogent representation of the a-relaxation than the
Kohlrausch (K) function. A good example is the Havriliak—Negami (HN) equation:

e*(v) = Ae

) 2.3
(1 + (i2nvr)1_"‘)y @3)

where v is the frequency, Ae the relaxation strength, and o and y two shape param-
eters, both less than unity. The one extra exponent of the HN equation may fit some
data of non-polymeric glassformers over a wider frequency range than the Fourier
transform of the K-function. But, the lure to a “better” fit with the exponents o and
y chosen may make the limiting low-frequency dependence of &”’(v), the imaginary
part of £*(v), not proportional to v. This consequence violates the requirement that
genuine structural a-relaxation must have &”(v) proportional to v at low frequencies
for non-polymeric glassformers. Some empirical function for the dispersion carries
a specific interpretation of the a-relaxation. An example is the Dixon—Nagel func-
tion, which is now defunct because of violations by experiments found. The most
probable or the average relaxation time determined from fits to the raw data will
differ from one empirical form to another. However, in most cases the differences
between these relaxation times are not large and their temperature dependences are
very similar.

The Kohlrausch stretched exponential functions have some mathematical prop-
erties in probability theory that may make them more fundamental [223]. They are
characteristic functions of the stable Lévy distributions, out of which the normal
or Gaussian distribution is a special case. This property of the K-function has been
exploited to make it more palatable to relaxation in complex systems [180] and Lévy
flights [224, 225].

Any non-exponential time correlation function ¢(#) including the K-function
can always be rewritten formally as a sum of linear exponentials, ¢(f) =
¥igiexp(—t/t;), which may have led many in the past to interpret the dispersion
of the structural a-relaxation as originating from superposition of exponential relax-
ation processes with different relaxation times 7; and weighted by g;. Macroscopic
mechanical and dielectric measurements can neither support nor refute this inter-
pretation. Thus, this easy interpretation of dispersion of the structural relaxation
has often been conveniently used to rationalize the dispersion, thus rendering dis-
persion inconsequential. This interpretation is, however, not correct in the light of
results by microscopic probes of the a-relaxation. Multidimensional NMR experi-
ments and other techniques showed in poly(vinyl acetate) and other non-polymeric
glassformers [226-233] that the structural relaxation is not a static superposition
of independent exponential relaxation processes. Instead the non-exponential time
dependence is due to the presence of rapidly and slowly moving molecular units
exchanging their roles at a time of the order of . This complicated process is often
referred to as dynamically heterogeneous and was anticipated conceptually in the
light of the coupling model (CM) [234] in a year before the first publication of exper-
imental evidence by Schmidt-Rohr and Spiess [226]. More recent multidimensional
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NMR experiments by Sillescu et al. [235] have shown in the molecular glassformers
studied that molecular reorientation in the heterogeneous a-relaxation occurs by rel-
atively small jump angles, just like some secondary relaxations that have important
connection with the a-relaxation to be discussed later in Section 2.3 on secondary
relaxations.

The Kohlrausch exponent, (1 — ny) = Bqy, usually tends to increase with tem-
perature, although the amount of change varies from one glassformer to another
as illustrated by examples [236-239]. Hence, objective comparison of ny or By
between different glassformers should be made at the same specified relaxation
time, 1y, or at their glass transition temperatures. Next, if one wants to discover
any systematic trend that n, may have, it is important to restrict the comparison to
glassformers belonging to the same family. If not, then the widely different chemical
bonds and physical structures of the glassformers examined may obscure the trend
of ny. Some examples of trends are given in the following paragraphs.

(i) Glycerol, threitol, xylitol, and sorbitol are hydrogen-bonded glassformers of
the same family of polyhydric alcohols. The only difference between them is
the number of carbon atoms, which is three for glycerol, four for threitol, five
for xylitol, and six for sorbitol. The values of ny(T;) deduced from dielec-
tric relaxation measurements [237-240] by the Kohlrausch—Williams—Watts
(KWW) fits [195] systematically increase with the number of carbon atoms.
The value of ny is 0.29 for glycerol, 0.36 for threitol, 0.46 for xylitol, and 0.52
for sorbitol. Qualitatively, a molecule with more carbon atoms is expected
to have larger intermolecular constraints to its motion by other molecules,
simply due to the increased number of carbon atoms and intermolecular poten-
tials. Thus, the observed trend suggests intermolecular constraint or coupling
is responsible for it. Dielectric relaxation measurements were performed on
propylene glycol and oligomers having different number N of repeat units
(N=2, 3, and 69) [241]. The a-relaxation in all these glassformers has the
Kohlrausch—Williams—Watts (KWW) form, with ny, which increases with
increasing N. For propylene glycol (N = 1), n, = 0.28; dipropylene glycol
(N =2), nq =0.33; tri-propylene glycol (N =3), n, =0.37; and poly(propylene
glycol) (N=69 and molecular weight=4000 g/mol), n, =0.37. As the number
N of carbon atoms bonded together in the molecule increases, there is cor-
responding increase of intermolecular constraint or coupling. The observed
trend of increase of n, with N is attributed to the increase of intermolecular
constraint or coupling. Similar increase of n, with the molecular weight of the
oligomers of diglycidylether of bisphenol A (DGEBA) can be seen by com-
paring the dielectric loss data of a sample with molecular weight of 380 g/mol
[242] with that having molecular weight of 1750 g/mol [243]. Compared

at the same value of 7, = 1s, the lower molecular weight DGEBA has
nye =0.47, smaller than the value of about 0.63 for the higher molecular weight
sample.

(i) Amorphous polymers of different chemical structures in general have dif-
ferent values of nq(7,). Correlation between ny(Ty) and the capacity for
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(iii)

intermolecular coupling can be inferred by comparing the chemical structures
of closely related polymers [244]. Polyisobutylene (PIB) and polystyrene (PS)
are two extensively studied amorphous polymers. The value of ny is 0.45
for PIB [208-210] and in the range of 0.63-0.65 for PS from light scat-
tering [85, 245, 246] and shear creep measurements [247, 248], and 0.67
from novel NMR technique [226]. Both have two carbon backbone atoms
in the repeat unit. PIB has two methyl groups attached to one of the carbon
atoms, but PS has one hydrogen atom and a bulky phenyl ring attached to the
corresponding carbon. The chemical structure of PIB is compact and sym-
metric. By contrast, PS has a bulky and rigid phenyl ring attached to the
backbone, making it less flexible than PIB as reflected by a much higher
T,. The differences in structure and flexibility suggest larger intermolec-
ular constraint or coupling in PS than PIB, which again correlates with
their difference in ny (7). Aromatic backbone polymers such as bisphenol
A-polycarbonate, polysulfone, poly(aryl ether ether ketone) [249-251] have
bulky rings in the backbone and as expected they have much larger nq(7y)
than polymers with carbon atoms in the backbone but without bulky rings
attached. 1,2-Polybutadiene (1,2-PBD, ny(Ty) = 0.60) differs from 1,4-
polybutadiene (1,4-PBD, ny(T,) = 0.50) by having the unit with rigid carbon
double bond sticking out of the polymer backbone instead of located on it.
Isotactic poly(methylmethacrylate) (iIPMMA) has the side chains all on one
side while syndiotactic PMMA has them alternating on both sides. Intuitively
we may expect the repeat units in syndiotactic PMMA to be intermingled to
a higher degree, to experience higher constraints and hence have a larger n
than in isotactic PMMA, as found experimentally by dielectric spectroscopic
measurements [252].

Small molecular glassformers that are formed with rigid rings like 1,2-
diphenylbenzene (OTP, ny(Ty) = 0.50) is expected to have higher inter-
molecular coupling than the more flexible linear chain molecules like 3-
bromopentane (3BP, ny(Ty) = 0.30) [253], and in fact the former has larger
ny(Tg) than the latter. In all cases, increase of constraints between the relaxing
units by changing the chemical structure invariably leads to a largern, a smaller
Kohlrausch exponent, or a broader dispersion. We shall see later that change
in n correlates or governs the corresponding changes in dynamic properties of
many classes of glassformers.

The motions of colloidal particles [141-143] and polymer-micronetwork col-
loidal particles [254] suspended at high concentrations in a liquid offer a
clear example of the increase of n, with increasing volume fraction ¢ of the
particles or decreasing average distance between particles, and hence increas-
ing particle—particle interaction. The particles are nearly monodisperse with a
mean radius of about 10? nm. In contrast to molecular systems, the diffusion
of the large colloidal particles occurs at macroscopic times longer than a s.
Dynamic light scattering was used to measure the normalized intensity auto-
correlation function g»(q,7) =< I(g,0)l(g,t) > / < I(g,0) >2 from 10~° to
103 s, where q is the scattering wave vector. As discussed in Section 1.3.2, the
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(iv)
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difference, g2(g,1) — 1, is < p(g,0)p(g,1) > / < p(g,0) >2 or the interme-
diate scattering function f(q, ) for diffusion of the colloidal particles within
the single scattering and the Gaussian approximation. At long times, f(q,?)
follows the time dependence of exp[—(/7s)!~"]. Information on dynamics
of the particles is contained in f(q, 7). Although the colloidal suspensions are
athermal systems and differ in several respects from glass-forming liquids,
the light-scattering data readily show that the dispersion of f(g, ) is broader
in suspensions with higher volume fraction ¢ of the particles and stronger
inter-particle interaction. In terms of the Kohlrausch function, the value of the
exponent n is equal to 0.35 for ¢ = 0.465 and increases monotonically with
increasing ¢ [143].

Confocal microscopy was also used to directly observe three-dimensional
dynamics of particles in colloidal suspensions [141]. The ensemble-averaged
mean-squared displacement (MSD), < Ar(t) >, was determined as a func-
tion of time in the range from 10 to 10° s for different volume fractions ¢ in
the supercooled liquid state from 0.46 to 0.57, and in the glassy states when
¢ = 0.60 and 0.61. Since the displacement of a single particle is a Gaussian
variable known to be reasonably accurate for colloidal suspensions in their
equilibrium fluid states [255], the relation f(q, 1) = exp[—2¢> < Ar*(f) > /6]
holds. From this relation and Fig. 1, the increase of dispersion of f(q,?)
increasing with volume fraction follows from that of < Ar(z) >, all reflecting
the increase of inter-particle interaction.

As already been mentioned, the comparison of ny of glassformers with dif-
ferent kinds of chemical bonding and different basic structural units can
lead to ambiguous conclusions. This situation is clear for someone who
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Fig. 1 One-dimensional mean-squared displacement < x> > for several volume fractions ¢ of
colloidal particles obtained by three-dimensional direct imaging by Weeks et al. [141]. Open sym-
bols for 0.46 < ¢ < 0.56 are in the supercooled liquid state. The vertical arrow indicates 500 s,
the time a typical particle takes to shift position and leave the cage for the case of ¢ = 0.56. The
line has slope =1.0. Closed symbols are glasses for ¢ = 0.60 and 0.61. Reproduced from [141] by
permission
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approaches the problem by molecular dynamics simulation [256]. The first
order of business is to construct a realistic potential for the glassformer. For
1,2-diphenylbenzene (o-terphenyl or OTP), it is the potential based on that of
Lennard-Jones [257] proposed by Lewis and Wahnstrom [258], while for silica
it is the very different BKS model potential [259] used by Horbach et al. [260]
and by Sciortino et al. [261]. For sodium silicate melts the potential used [262]
by Horbach et al. [263] is also different. These three different potentials yield
different ny(7y) at the same 1, comparable ny(ty) for OTP and Na silicates,
and small for silica. However, because these potentials are drastically different
in quality and quantity, there is no sensible way to interpret the comparison of
the observed values of ny(ty).

The way may become clearer if the potentials are obtained by varying a
parameter or parameters systematically, as has been done recently for the
binary Lennard-Jones particles by controlled changes of the potential, V(r),
and performance of the molecular dynamics simulations by Bordat et al. [264].
Earlier, Kob and Andersen [265] had used the standard LJ potential

E
V(r) = ——[p(ro/r)! — q(ro/rP] 2.4)
(g—p)

with g=12 and p=6 to simulate the binary Lennard-Jones system consisting
of two kinds of particles A and B. The parameters rp and E( represent the
position of the minimum of the well and its depth, respectively. These two
parameters of the LJ potentials for interaction between particles A and A, A
and B, and B and B are all different in the Kob—Andersen model, and these
features of the model ensure the system does not crystallize to form a glass on
cooling.

For the purpose of systematic investigation of the change of dynamics with
controlled change of V(r), two other models were constructed by changing
only the exponents, ¢ and p, of the LJ potential in Eq. (2.4) for the A—A inter-
actions. They are (¢ = 8, p = 5) and (¢ = 12, p = 11) and these new LJ
potentials are shown together with the standard (¢ = 12, p = 6) LJ potential
in Fig. 2. The well-depth and the location of the minimum of V(r) are the same
for all three potentials, and the standard (¢ = 12, p = 6) LJ potentials of the
Kob-Andersen model for the A—B and B—B interactions were kept, in order to
retain the glass-forming ability of the Kob—Andersen model.

It can be seen by inspection of Fig. 2 that the (¢ = 12, p = 11) LJ poten-
tial is more harmonic than the classical (¢ = 12, p = 6) LJ potential, while
the (¢ = 8, p = 5) LJ potential is a flat well and exceedingly anharmonic.
Anharmonicity was not defined using the usual prefactor of the cubic term of
a Taylor expansion of the potential close to its minimum. Rather, anharmonic-
ity was defined as the width of the well at V(r) = —0.5 in order to take into
account the global shape of the potential and its implication on the longer
range interaction between the A particles allowed by each potential. The
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Fig. 2 Potential V(r) governing the A—A interaction of three binary LJ particles models. Model
1 (g = 12, p = 11): dashed curve, model 1l (¢ = 12, p = 6): solid curve, and model III
(g = 8, p = 5): dotted curve. The inset shows the radial distribution function g(r) of species A at
T = 1.02T.r for the three models (see text for the definition of Tr.r). Reproduced from [264] by
permission

models using the (¢ = 12, p = 11), (g =12, p=6),and (g =8, p = 5)
potentials were referred to, in order of increasing anharmonicity, as models I,
II and III, respectively.

Molecular dynamics simulation was carried out for the three models in the
binary LJ system with a total of 1500 uncharged particles (1200 species A and
300 species B). The self-intermediate scattering function, Fs(Qp, t) (for defi-
nition, see Eq. (1.114)), for the A particles was calculated from the simulation
data for Qg = 2m/rg and presented in Fig. 3. Here rg is the position of the
maximum of the first peak of the static A—A pair correlation function, gaa (7),
shown in Fig. 2.
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Fig. 3 Self-intermediate scattering function Fs(Qo,?) vs. scaled time t/ta. Dashed, solid, and
dotted lines are for models I, 11, and III, respectively. For all three models, ta(Trer) = 46435.8. The
inset shows the stretched exponent 8 = (1 — n) as a function of the scaled reciprocal temperature
Tret/T for the three models: (¢) model 1, () model II, and () model III. For definitions of 7 and
B, see text. Reproduced from [264] by permission
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)

At high temperatures, F(Qy, t) decays linear exponentially to zero with a
characteristic time of about 0.45 in LJ units of time, which is close to crossover
time 7. & 1 — 2 used as a fundamental time in the coupling model [190].
When temperature is lowered, the dynamics slows down dramatically and a
two-step decay process appears in Fs(Qo, t). The decay in the first step is due
to relaxation of particles A while confined by the fluctuating cages. The decay
of Fs(Qo, t) in the second step at each of the lower temperatures 7 was fit to the
Kohlrausch function, Eq. (2.2). From the fits, the relaxation times, 7y, and the
stretched exponents, 8 = (1 —ny), of particles A were determined for a number
of temperatures in models I, II, and III. A very long relaxation time from the
simulation, 7y rer equal to 46435.8 (LJ units), was chosen to compare rq( Ty ref)
of the three models at the same 7y rer- A more comprehensive comparison of
ny was made by first determining the temperature, Trer, at which 74 (Trer) =
Toref = 46435.8 for each model, and plot 8 = (1 — ny(7)) from all three
models againstTie/T as shown in Fig. 3. The values of Tier are 0.688, 0.431,
and 0.263 (in LJ units) for models I, I, and III, respectively. It can be seen that
with increasing anharmonicity (in going from models I to IT and to III) not only
does B(Tq ref) decrease or ng(Ty ref) increase at Trer/T = 1 and v (Tref) = Toref»
but also B(Trer/T) decreases or ny(Trer/T) increases at the same Trer/T for all
Tref/ T.

In going from models I to III through II, the inset of Fig. 2 shows that
the first peak of gaa(7) becomes broader and extends to smaller pair separa-
tion distance values, and hence the A-particles can come closer together and
the interactions between them are enhanced. Since ny(Tqref) also increases
in the same order of the models, the simulation results support the correla-
tion between ny(tq ef) and the effects that inter-particle interaction have on
slowing down the relaxation. We shall return in later sections to discuss sev-
eral dynamic properties of the A-particles obtained by Bordat et al. from the
three models that correlate with ny(ty ref). Taken together, these correlations
strongly indicate that the non-exponentiality parameter n, is an indicator of
the strength of intermolecular coupling, and it controls the dynamic properties
of relaxation in the binary LJ glassformers.

In the same glassformer, different time correlation functions of the same
dynamic variable or different dynamic variables relating to the structural relax-
ation may all be well described by Kohlrausch functions, but the parameters t,
and ny may be different. There are many examples of this behavior. Moynihan
et al. [266] had reported the observation of such differences in using enthalpy,
light scattering, and refractive index to monitor structural relaxation of the
same glassformer, although for enthalpy relaxation the result was obtained not
directly but through a model-dependent analysis. Directly obtained results of
7y and ny from isothermal photon correlation spectroscopy, dielectric relax-
ation, and mechanical relaxation experiments of several glassformers had
found they were different [267-270]. Molecular dynamics simulations can
easily obtain different correlation functions including Ci(¢) and C>(#) of the
first- and second-order Legendre polynomials Pi[cos6(#)] and P;[cos6(f)] of
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the rotation angle 6 given by Eqs. (1.101) and (1.102), and the self- or inco-
herent intermediate scattering function, Fs(k 1), in Eq (1.114). From Fs(k 1),
we can obtain the mean-squared displacement (Ir(t)l ), and the self-diffusion
coefficient D; from the Green—Kubo relation given in Section 1.3.5. The
results of several simulations of polymeric [271-273] and non-polymeric
[274, 275] glassformers all show different 7, and ny for the different corre-
lation functions. Conventional theories usually have no explanation for these
observations.

The differences in 7, and n, for different correlation functions can be
attributed to intermolecular coupling. The origin is based on the reasoning
that different dynamic variables i weigh the intermolecular coupling differ-
ently, and hence the slowing down (related to t) and the stretching (related
to ny) of their correlation functions by the many-body dynamics are not the
same. It is possible that the correlations Cyg(f) given by Eq. (1.100) of the
off-diagonal components of the stress tensor oqp = (3ugug — 8ap)/2 can be
more susceptible to influence by intermolecular coupling than the correlation
function Cj(#) for the rotation of a certain part of a molecule, although both
are related to the structural a-relaxation. Consequently, mechanical relaxation
which measures Cyg(f) may be more stretched (a larger ny) and have a longer
7y than dielectric relaxation which comes from Ci ().

One obvious difference between center-of-mass diffusion and stress relax-
ation or rotation is that the former involves the correlation of the center of mass
(one point), while rotation is determined by the time correlation of the transi-
tion dipole of the molecule, which is a vector, and stress relaxation involves a
tensor quantity. The dipole vector and the stress tensor are defined by two or
more points in space than self-diffusion. Hence, one can expect intermolecular
constraints to have stronger slowing effect on rotation or stress relaxation than
the translational motion of the center of mass [268]. This intuitive deduction
can be justified on a firmer ground from the theoretical consideration of con-
straint entropy [181-183, 276] based on the Dirac constraint dynamics [277].
In this formulation, the dynamics under constraints is governed by the time-
dependent constraint entropy, which is Sc; for translational diffusion and Sc,
for rotation. In order that the constraint entropies Sc; and Sc; all lead to the
Kohlrausch forms for the correlation functions, they necessarily have the time
dependences given by Sc ¢ = Smax — k7¢ In(wet) and Ser = Smax — knr In(wct),
respectively. Here Smax, &, and w. are constants. From the fact that there
are more dynamic constraints imposed on motion when considering rota-
tion of a vector or stress relaxation of a tensor than the translation of the
center of mass, we have Sc; < Sci, from which it follows that n; < n;.
Similarly, we have ny < ny,. Such rationalization is not sufficient to convinc-
ingly support the differences in 1, and n, for different correlation functions
originating from intermolecular coupling in many-body relaxation. We need
additional prediction or predictions of different nature from any theory/model
and confirmation by experiment before this feature of the structural relax-
ation can be attributed to many-body relaxation. Such additional prediction
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(vi)

(vii)

has been provided by the coupling model to be presented and discussed in later
sections.

Bonn and Kegel [278] studied the frequency dependence of the diffusion coef-
ficient and viscosity of concentrated hard-sphere colloidal suspensions. On
comparing the frequency dependence of 1/n(w) with that of D(w) in Fig. 2
of Bonn and Kegel, it is clear that the frequency dispersion of 1/n(w) is
broader than that of D(w). Thus, for the colloidal hard spheres we have exper-
imental evidence to support that, if 1/n(w) and D(w) were fit to the Fourier
transform of the Kohlrausch function, np would be smaller than n,, just like
molecular glassformers. Expressing all quantities in reduced units by Bonn
and Kegel, the frequency-dependent Stokes—Einstein relation (1.48) takes the
form of n(w) = 1/D(w). In the low-frequency or long-time regime, significant
deviations from this relation were observed. The values of the inverse viscos-
ity are significantly smaller than the values of the diffusion coefficients, and
the Stokes—Einstein relation is violated, which will be revisited in a section
where the breakdown of Stokes—Einstein and Debye—Stokes—Einstein rela-
tions in various systems are discussed in detail and explained by the coupling
model.

The differences in 7y and ny for different correlation functions for structural
relaxation in glass-forming liquids and colloidal suspensions were found in
entirely dissimilar processes in other systems. Although this subject belongs
to Chapter 3, it is worthwhile to cite an example here. The example is
the ionic motion in glassy ionic conductors, which can be probed by mea-
surement of the frequency-dependent conductivity o(w) or by spin-lattice
relaxation (SLR) rate of the diffusing ion nucleus, Tfl(T), as a function of
temperature at constant Larmor frequency in nuclear magnetic resonance. The
frequency-dependent conductivity, o (), is related to the Fourier transform of
the current—current correlation function (see Eq. (1.130)) and is given by

o (w) = (e/KTV) / ” (JL(0)J.(D) exp(ion)dt, 2.5)
0

where J; is the sum of the z-component of the velocity of the ions, with total
number equal to N and each carrying charge e. On the other hand, the SLR
rate, T} 1(T), is given in terms of another correlation function,

Csir() = (1/N) 3 (FOFL ), 2.6)

where F g])(t) = (q/87/15)Y3(Q;(1)/r3, Y3 is the spherical harmonics with
g=1 or 2, r;; is the distance between two ions i and j, and £2;; is the spherical
coordinates of the vector r;; [92]. The (r,-j)’3 factor in the SLR correlation
function accentuates the contribution to the spin-lattice relaxation rate at
shorter distances, where the ion—ion interaction is larger. Consequently, the
effects of ion—ion interactions are stronger for SLR than o (w).
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Experiments were able to determine from the Tf](T) data the Kohlrausch
correlation function for SLR [279-286]

CsLr(1) = exp(—(t/TsLr(T)) 7"SLR), (2.7a)

and, from the o (w) data, the Kohlrausch conductivity relaxation correlation function

Co () = exp(—(t/ T, (7)) 7). (2.7b)

For several different glassy ionic conductors [147, 279-289] and a crystalline
ionic conductor [290], the general experimental finding [291-295] is that

NSLR = Ng. (2~8)

This general result supports once more that n (appearing in the exponent of the
Kohlrausch correlation function) is a measure of the effect that many-body interac-
tion has on relaxation. In the present case, they are n, and ngy r, and their difference
is determined by the stronger effect of inter-ion coupling on SLR than conductiv-
ity relaxation. Also from experiments, the SLR relaxation time, tsi r(7), is much
longer than the conductivity relaxation time, 7,(7) and has a larger activation energy
(see Chapter 3 for details). These accompanying experimental facts on the relation
between s r(7) and t,(7) turn out to be consequences of the relation between
ny and ngrr given by the inequality (2.8) in the context of the coupling model
[291-294] and will be discussed in a later section devoted to ion dynamics.

Before we leave this section, some words of caution are in order for the readers
when considering the width of the dispersion of the structural relaxation in certain
situations. Let us start with the polymers in the family of poly(n-alkyl methacry-
lates) [296]. The members of the family have the same backbone but differ only
in the length of the alkyl side chain measured here by the number C of carbons in
the chain. The shortest is in poly(methyl methacrylate) with C=1 (PMMA). Higher
members like poly(n-hexyl methacrylate) has C=6, poly(n-decyl methacrylate) has
C=10, and poly(n-lauryl methacrylate) has C=12. In higher members of the poly(n-
alkyl methacrylates) starting from C=4, the alkyl groups from different side chains
aggregate in the melt and form self-assembled alkyl nanodomains of sizes in the
range 0.5-2 nm, where a larger size corresponds to a larger C [297, 298]. Randomly
arranged in space, the alkyl nanodomains create concentration fluctuations or het-
erogeneous spatial environments seen by the polymer backbone repeat units. The
consequence for poly(n-alkyl methacrylates) with C>4 is extra broadening of the
dispersion of the structural relaxation beyond that caused by the many-body relax-
ation. This extraneous broadening may even modify the frequency dispersion to
the extent that the observed result cannot be reconciled with the Fourier trans-
form of any of the Kohlrausch functions. Similar examples are mixtures of two
glassformers where concentration fluctuations additionally broaden the dispersion
of the structural relaxation of either component. A more subtle case occurs in the
glassformer bis-5-hydroxypentylphthalate that has two dipoles moving more or less
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independently of each other and contributing to the observed dielectric spectrum
attributed to the structural relaxation [299]. In all the situations discussed above,
if not recognized, the presence of the extraneous broadening may confound the
connection of the width of dispersion to many-body relaxation.

The deviation from single exponential (referred to from now on as non-
exponential) of structural relaxation function ¢(f) was widely recognized since
the beginning of research on glass transition. The prevalent rationalization of this
property is by the superposition of independent and exponential relaxations with
different relaxation times t; out of a distribution with weights g;, i.e., ¢(f) =
> giexp(—t/7;). Some models attribute it to the physical presence of regions with
different relaxation times, e.g., the environmental relaxation model of Simmons
and Macedo [300], the density fluctuation model of Robertson [301], or the coop-
eratively rearranging region model of Donth [302]. This simple hypothesis was
reasonable at earlier times when there was absence of microscopic investigations
on the relaxation to understand the true nature of the structural relaxation and was
widely used to rationalize the non-exponential property and to trivialize its fun-
damental importance unfortunately. It is still used by others for convenience at the
present times as the basis of the Kohlrausch function [266, 303, 304]. One can argue
any of the above correlations of the width of the dispersion or n with various changes
is due to an increase in the width of the distribution of relaxation times t;. However,
microscopic information on the structural relaxation now available by modern
experimental techniques can be used to rule out this hypothesis. An example is the
momentum transfer dependence in neutron and light scattering, which will be dis-
cussed later. Furthermore, the most probable 7 and the width of the dispersion from
the hypothesis, ¢(1) = ) _; gi exp(—1/7;), are independent of each other. Experiments
using variable combinations of pressure and temperature show that these two quan-
tities are related, as will be shown in Section 2.2.4. Also worth pointing out is that
some still write the correlation function as ¢(f) = ) _; g; exp(—1/7;), while having
accepted the fact that the structural relaxation is dynamically heterogeneous. The
two may not be compatible.

Other models proposed an inherently non-exponential mechanism, e.g., the
defect diffusion model of Glarum [305] and the fractal time version of it [306].
These models are not consistent with microscopic data either because all units relax
uniformly with time and contradict the dynamic heterogeneous character found by
experiments as pointed out in [235]; the subject will be further discussed in the next
section.

2.2.1.1 Crossover of Correlation Function from exp(—#/t) to exp[—(t/t)l‘"]
at ¢., a Temperature-Insensitive Time

Neutron Scattering

The first direct experimental evidence of the incoherent intermediate scattering
function (i.e., the self-correlation function) associated with local segmental relax-
ation, Fre1 (O, 1), crossing over from exp(—t/7p) to exp[—(t/t)l_"] at a temperature-
insensitive and scattering vector Q-independent time, 7., came from quasielastic



64 2 Glass-Forming Substances and Systems

neutron scattering experiments in the polymer polyvinylchloride (PVC), in 1993
[307], and refinements later [308] by Colmenero et al. These authors modified a pro-
cedure of Kiebel et al. [309] who assumed that the intermediate scattering function
F (Q, t) measured for OTP is the product of a vibrational contribution Fyip (Q, f) and
a relaxational contribution Fye) (Q, f). The former was obtained by scaling a spec-
trum measured at low 7, where there is negligible relaxation to the temperature of
interest by the ratio of Bose—Einstein and Debye—Waller factors. F¢ (Q, t) was then
obtained by dividing F (Q, ) by the scaled Fyj, (Q,1). Actually, the data of OTP
obtained by Kiebel et al. already indicate the presence of a faster relaxation preced-
ing the Kohlrausch relaxation at about 1-2 ps, same as that found by Colmenero
et al. The study of Colmenero et al. [307] was followed by similar measurements
on polyisoprene and polybutadiene, by Zorn et al. [310], polyisobutylene [311], and
more recently in other polymers, poly(ethylene oxide), either pure or in blends with
poly(methyl methacrylate) by Garcia Sakai et al. [312], and the same conclusion was
made. The magnitude of 7. found is about 1-2 ps for all these polymers. As exam-
ples, the data of pure PEO and hPEO in mixtures with dPMMA are reproduced in
Figs. 4 and 5 to show the crossover. The time dependence of the faster relaxation is
consistent with exp(—#/7p). This identification is particularly clear at high temper-
atures where F (Q, t) decays principally via exp(—t/tg) at times before 7., and the
rest after 7, by a Kohlrausch-like function, and 7 is of the order of picoseconds. In
some of the neutron scattering studies [307, 308, 310, 312, 313, 314], 7¢ is found
to have the signatures of independent motion, which include its Q~2 dependence
of normal diffusion and its activation energy at higher temperatures being close to
the conformation energy barrier of rotation of monomers in a single chain for poly-
mers. At lower temperatures, the vibrational part is not the only other contribution
present in the spectra. There is a nearly constant loss appearing in the frequency
dependence of the susceptibility spectrum, which is the loss while molecules are
confined within cages defined by the anharmonic intermolecular potential of other
molecules or atomic units at times before escaping to execute relaxation. This com-
plication makes it harder and sometimes impossible to detect the fast relaxation
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Fig. 4 Effect of composition on the self-intermediate scattering function of neat PEO and hPEO
in blends with dPMMA at (a) 0=0.89 A~ and (b) 0=2.51 A~'. The temperatures of the measure-
ments are 343 K (100% PEO), 345 K (10 and 30% PEO), and 348 K (20% PEO). Data of Garcia
Sakai et al. Reproduced from [312] by permission



2.2 General Properties and Anomalies 65

Hag

#0.62 HFBS
A 0BT HFBS
W 1.11HFBS
®1.22 HFBS
W151HFBS
* 168 HFBS

069003

0.0100 0.1000 1.0000 10,0000 100.0000 1000.0000  10000.0000

time {ps)

Fig. 5 Combined DCS and HFBS scattering decay curves for hPEO in dPMMA at 308 K. Seven
spatial scales are shown. Lines represent a KWW fit with parameters falling within the error bars
determined using the DCS data alone. The disk chopper time-of-flight spectrometer (DCS) was
operated at an incident wavelength of 4.2 A and an energy resolution of 81.6 weV. A dynamic
range of £20 eV was used for the high-flux backscattering spectrometer (HFBS), with an energy
resolution of 0.87 peV. Reproduced from [312] by permission

at low temperatures where t( is long. The subject of caged relaxation and nearly
constant loss will be discussed later.

Molecular Dynamics Simulations

Furthermore, molecular dynamics simulations of different molecular systems with
realistic Lennard-Jones intermolecular potentials invariably show that the correla-
tion function has a faster and more rapidly decaying part at times shorter than 7, ~ 1
or 2 ps and crosses over to the slower part having stretched exponential (Kohlrausch)
time dependence. Examples include molecular dynamics simulations of the dynam-
ics of (i) ortho-terphenyl by Lewis and Wahnstrom [258, 315] and analysis of the
data [187, 316, 317]; (ii) methanol [318, 319]; (iii) the rotational degrees of free-
dom in a supercooled system composed of rigid, diatomic molecules [320]; (iv) the
standard glass-forming binary mixture of Lennard-Jones particles [321, 322] and
variations with different anharmonicity of the interaction potential [264]; (v) orien-
tational degrees of freedom in an equimolar mixture of ellipsoids of revolution and
spheres [274]; (vi) biatomic molecular liquid [323]; (vii) local segmental relaxation
of polyisoprene [324] and several polyolefins, namely poly(ethylene propylene),
poly(ethylene butene), isotactic polypropylene, and head-to-head polypropylene
[325]; and (viii) difluorotetrachloroethane (CFCl,—CFCl,) glassy crystal [326].
The results of the molecular dynamics simulation of OTP by Lewis and
Wahnstrom are reproduced in Fig. 6. Shown are the incoherent part Fy(q,t) of
the intermediate scattering function as function of log(¢) for the site—site correla-
tions (corresponding to neutrons scattering off the centers of the different benzene
rings). The change of concavity of Fs(q,t) from concave to convex in a neighbor-
hood near 1-2 ps can be seen at higher temperatures, 318 and 400 K, and can be
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taken as evidence of crossover. When temperature is lowered, the relaxation times
of both the fast primitive (exponential) and the slow cooperative (Kohlrausch) pro-
cesses become significantly longer, and caged dynamics appear before them. Over
much of the time range, F(q, f) is dominated by the motion of molecules confined
within anharmonic cages, giving rise to the very gradual and plateau-like decay. This
obscures the crossover at t, = 1 — 2 ps, and it can no longer be easily discerned.
Instead it looks more like a two-step decay of Fy(q, t), which has led others [321,
322, 326] to analyze it using the idealized mode coupling theory [31, 32]. The above
discussion applies to molecular dynamics simulation of binary mixture of Lennard-
Jones particles. For this system, the crossover in the neighborhood of 7. = 1 (LJ
unit) can be seen from the time dependence of the intermediate scattering function
of the A particles in Fig. 20 of [321] and in Fig. 1 of [322].

Pakula and coworkers [327, 3283] introduced the microscopic simulation method
with parallel algorithm which takes into account coincidences of elementary molec-
ular movements resulting in local cooperative structural transformations. The
efficient method, known as the dynamic lattice liquid (DLL) model, was used to
obtain static and dynamic properties of different interacting systems on a lattice,
which include simple liquids, linear polymers, multi-arm star polymers, and micro-
gels. Here we show the results for the dynamics of solvent in polymer solution
systems with various linear polymer chain lengths (V) in the range from N = 2 to
N=32 and different concentrations of polymers (¢) in the range from ¢ = 0.05 to
¢ = 0.95. The mean-squared displacement of solvent beads < r2(f) > vs. time for
the solutions with polymer chains of length N=32 at various polymer concentrations
are shown in Fig. 7. The proportionality, < r*(f) >= Dst, at short times corre-
spond to primitive diffusion with exponential correlation function. The crossover
of < r2(s) > from linear t-dependence to fractional power law < r2(t) >o i
in the neighborhood of #. is clear for solutions with higher polymer concen-
trations due to enhanced interaction/constraint by the less mobile polymer. The
combined < rz(t) >o 17" and the eventual return of < r2(t) > to another linear
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t-dependence, < r2(t) > = Drt, can be derived from the Kohlrausch stretch
exponential correlation function for diffusion [329].

The crossover from < r2(f) >= Dgt to < r(f) >x ! " at 1, ~ 1 ps was found
in the molecular dynamics simulation of several polyolefins. This can seen from
Fig. 7 in [325], if only the data of < r2(r) > at times not much shorter than 1 ps
are considered. The data of < r2(f) > at much shorter times may come from the
ballistic motion.

Optical Kerr Effect Experiments

Optically heterodyne-detected optical Kerr effect (OHD-OKE) experiments can
probe in a broad time range from sub-picoseconds to about 30 ns the orien-
tational dynamics of glassformers such as salol [330], dibutylphthalate [331],
benzophenone [332], and ionic organic liquids, N-propyl-3-methylpyridinium
bis(trifluoromethylsulfonyl)imide (PMPIm) and 1-ethyl-3-methylimidazolium tosy-
late (EMImTOS) [333]. At times from sub-ps to a few ps, a faster and more rapid
decay of the OHD-OKE signal was seen. Although occurring in a small range, this
decay can be distinguished from the shortest timescale part of the OHD-OKE signal,
which has oscillations arising from intramolecular modes [330]. It is represented in
one paper [333] by a power law ar® with s increasing with decreasing temperature
from 2.3 to 4.3. This fast process was identified by the authors as the so-called fast
B-process of mode coupling theory (MCT) [31], but the exponent s of the superlinear
power law is much larger than allowed by the idealized MCT after having accounted
for the fact that the OHD-OKE signal F(f) measures the derivative of the correlation
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function. Instead, appearing only in a narrow range of time, it may as well be the fast
exp(—t/tp) decay particularly at higher temperatures and shorter 7, where it can-
not be distinguished from the power law ar~* with large s appearing in the assumed
form of the function F(¢) = (at™ + pt—% + di®=1 exp(—1t/ty) used to fit the data.
The term pr with z &~ 1 is the time-domain equivalent of the nearly constant loss
observed in susceptibility spectrum, and the term dr”~! is the von Schweidler power
law in MCT, and the product dr’~! exp(—1/7,) may be considered to account for
the a-relaxation. Further discussion of the nearly constant loss (NCL) will be given
later.

Conductivity Relaxation of the Molten Salt 0.4Ca(NO3),—0.6KNO3; (CKN)

CKN is an ion-containing material which has the structural relaxation time given
by the measured shear relaxation time < t; > being nearly the same as the ionic
conductivity relaxation time < 7, > at high temperatures where these relaxation
times become short [55]. This condition ensures that one can study the fast dynam-
ics of structural relaxation by making ionic conductivity relaxation measurements.
Conductivity relaxation measurements of CKN were made by Cramer et al. [334,
335] at frequencies below and above 10'! Hz (corresponding to about 2 ps) and into
the far infrared region, where the vibrational contribution is evident as absorption
peaks. It was established phenomenologically in glasses [336] that the vibrational
contribution to o (w) extends down to low frequencies with a w>-dependence. A
similar frequency dependence of o (w) is found in CKN melt at high temperatures.
These facts suggest the removal of the vibrational contribution from o (w) at lower
frequencies by subtracting off the w?-dependent contribution extrapolated from the
data at high frequencies. The difference at the highest temperature of measurements
is solely coming from the conductivity relaxation contribution from ion diffusion,
oion(w), and as shown in Fig. 8 taken from [335] it exhibits the crossover at some
frequency between 10'! and 10'? Hz which corresponds to 7, of the order of 1 ps.

Dynamic Light Scattering in Colloidal Suspensions

Mention is made before in Section 2.2.1 (iii) of dynamic light-scattering measure-
ments of the intermediate scattering function f(q,7) =< p(q,0)p(q,t) > / < p
(g,0) >2 for diffusion of the colloidal particles of PMMA with a mean radius of
about 200 nm (size polydispersity o = 0.05.) and volume fraction ¢ from 0.4 to
0.57 suspended in a liquid. The Brownian motions of colloidal particles suspended
at higher concentrations in a liquid constitute another problem of relaxations in a
many-body interacting system that bear some resemblance to the motions of atoms
and molecules in a liquid. In contrast to molecular systems, the diffusion of the
large colloidal particles occurs at macroscopic times longer than a s and there is no
vibrational contribution to complicate the analysis of the diffusional dynamics. This
advantage of colloidal particles has enabled a direct observation of the crossover in
dynamics proposed by the CM. For the colloidal suspension with ¢ = 0.465 [143],
Fig. 9 shows mean-squared displacement, Ar2(f), having the linear ¢-dependence
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Fig. 8 (a) Conductivity spectra o (v) of 0.4Ca(NO3),—0.6KNO3 including the v‘z—dependence of
the low-frequency flank of the vibrational contribution (on the right), and the VFTH temperature
dependence of o ¢ on the left. (b) Conductivity spectra from ions only ojon(v) after the vibrational
contribution has been subtracted off o (), showing the crossover to the high-frequency (frequency-
independent) ion conductivity ons. Symbol size indicates experimental error. The temperature
dependence of o is Arrhenius

for 1 < 3ms, and changing to a fractional power law proportional to r!=" for
6ms <t < 0.1s. This is consistent with the intermediate scattering function f(q, 1)
crossing over from exponential to the stretched exponential in the neighborhood
of t. ~ 4 ms because f(q,7) = exp[—2q2 < AF2(t) > /6]. For t < t. ~ 4ms,
when rewriting f(q, ) as exp(—t/ty), it is clear that ¢ has the ¢ 2-dependence of
normal Brownian motion. The return of Ar%(¢) back to the linear t-dependence for
t > 0.2 s is the natural consequence of diffusion even with the correlation function
being a stretched exponential function [329]. The Ar?(r) data of colloidal particles
with ¢ = 0.465 are exact analogue of that of dynamic lattice liquid (DLL) shown
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before in Fig. 7. At higher concentrations, caged dynamics intervene and obscure
the crossover near f.

Suspensions of hard-sphere colloidal particles can be prepared to have short-
range attraction between the particles by the introduction of non-adsorbing linear
polymer which induces a depletion attraction between the particles. Light-scattering
study of the structure and dynamics of glassy states of these suspensions have been
made by Pham et al. [337] to provide detailed information. For the present purpose,
we only mention that the intermediate scattering function (dynamics structure fac-
tor) f(q, 1) at short times shows single particle diffusion consistent with the time
dependence of exp(—t/1p).

Dynamic Light Scattering in Aqueous Suspension of Laponite

Similar crossover of the intermediate scattering function from exponential to
stretched exponential was found by dynamic light scattering in aqueous colloidal
suspension of Laponite, a synthetic clay composed of discs with diameter=25 nm
and thickness=1 nm that are not monodisperse [338-345]. At short times, the time
dependence of f(g, t) was found to be exp(—1/t¢), with 7 having the ¢—2-dependence
normal Brownian motion [338], and thus it corresponds to the primitive diffusion
in the CM. At longer times, f(q, t) follows the time dependence of exp[—(#/ ).
In practice, f(q, 1) was fitted by the sum A exp(—#/t) + (1 — A)exp[—(t/75)' ™).
Although this looks like the two-step decay of mode coupling theory (MCT), the
faster relaxation is an exponential function rather than a power law as predicted
by MCT.

2.2.1.2 Crossover of Temperature Dependence of Viscosity at High
Temperatures

As mentioned in the previous subsection, at high temperatures where neutron scat-
tering measurements of polymers observe the fast exp(—#/7tp) decay and Arrhenius
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temperature dependence of t(, the activation energy is close to the conformation
energy barrier of the polymer [313, 314, 317]. Thus, the crossover to exp(—t/7p)
can also be detected by measuring either the viscosity 7 or the structural relaxation
time as a function of temperature to reach high temperatures, where the structural
relaxation time 7, is of the order of picoseconds or shorter, and observing the
crossover of their 7-dependence from the VFTH law to the Arrhenius law at some
high temperatures. If 7. is of the order of 2 ps, the crossover in 7-dependence of
n should occur near the temperature at which 7, ~ 2ps or n calculated from the
Maxwell relation, n = G Ty, Where < 1; >~ 2ps and G is the high-frequency
shear modulus typically of the order of 10'© dyne/cm? or slightly less. Figure 10
shows the shear viscosity data of ortho-terphenyl (OTP), bis(2-ethylhexyl)phthalate
(DOP), polychlorinated biphenyl (Aroclor), and toluene in high-temperature and
low-viscosity regime [346]. The corresponding open symbols stand for log(z/s)
from Fabry—Perot interferometry (FPI) experiments. The horizontal dotted line
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Fig. 10 The viscosity 7 of tri-naphthyl benzene (TNB), ortho-terphenyl, Aroclor, dioctalphthalate
(DOP), and toluene at high temperatures to show the change to Arrhenius temperature depen-
dence when the relaxation times are less than about 2 ps (dotted horizontal line). The solid lines
extrapolating the apparent Arrhenius temperature dependences to infinite temperature indicate the
prefactor T, has the physically reasonable value corresponding to angular attempt frequencies of
the order of 10~133 s for independent rotation of the molecules at high temperatures
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indicates the viscosity calculated from the Maxwell relation n = GooTy, With
< 1 >~ 2psand Gy ~ 10'0 dyne/cm?. The value of Go, used here may be
too high at these high temperatures where the glassformers are in the near fluid
state. Evidence of the crossover at #,~2 ps can be gleaned from the facts that (1)
< 1, > assumes the Arrhenius temperature dependence 7o exp (H / RT) for time
shorter than < 1, >~2 ps, (2) T is about 10133 5, the reciprocal of which corre-
sponds to a physically meaningful vibrational attempt frequency, and (3) H has the
magnitude of a true barrier energy for a molecule of these van der Waals liquids.

In Fig. 11 and in the inset we show the viscosity, 1, data of 1,3-bis(1-naphthyl)-
5-(2-naphthyl)benzene (TNB) plotted against reciprocal temperature. The data are
taken from three sets of measurements by Plazek, Magill, and Greet (see [347])
and shown by filled circles, open diamonds, and filled triangles separately. The
two curves labeled VFTH(1) and VFTH(2) are the fits to the data for T < Tg
and for T > Tg, respectively, by the Vogel-Fulcher-Tammann—Hesse empirical
form. Note that the VFTH(2) curve cannot fit the data for T > T, which has a true
Arrhenius temperature dependence (not shown). The main figure is the Stickel plot
of [d logn / d(1/7) 172 against 1000/T using the viscosity data in the inset. The
derivative, [d logn /] d(1/ T)], is approximated by the ratio of finite differences. The
three straight lines are obtained from the Arrhenius fit and the two VFTH fits to the
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viscosity data in the three separate regions shown in the inset. The same symbols are
used for the viscosity data and the [dlogn/d (1/ T)]_l/ ? calculated from the vis-
cosity data sets by ratio of finite differences. The two crossover temperatures 74 and
T are indicated in both the main figure and in the inset. VFTH fits to the viscosity
data in the three separate regions are shown in the inset. Again at 75, the viscosity
is of the order of 10~!7 poise, which corresponds to a shear relaxation time of the
order of ps.

At temperatures higher than T and 7, of the order of ps, extrapolations of dielec-
tric relaxation data taken at lower frequencies suggest the dispersion narrows to
the extent consistent with correlation function having the exp(—t/tp) form [253].
The temperature dependence of 1, has the Arrhenius form, 7, exp (H / RT), with
the prefactor 7o, ~ 10718 s like that of a vibrational time and H between 1 and
2 kcal/mol. These numbers are indicative of primitive relaxation.

Similar crossover to Arrhenius 7-dependence of n at the same order of magni-
tude as TNB as well as dielectric relaxation time 7, at temperatures higher than
Ta were found in butylbenzene, propylbenzene, and salol by Hansen et al. [348].
Some of these data will be shown later in Section 2.2.5.1 where the change of
T-dependence of 1, will be discussed in detail.

2.2.1.3 A Relation Between Primitive Relaxation Time and Many-Body
Relaxation Time Resulting from the Crossover at 7. (the Coupling
Model)

The Original Model Based on Universal Statistics of Energy Levels

The crossover of the correlation function from exp(—t/1g) to exp[—(t/r)l’”] at
a temperature-insensitive time 7., the magnitude of which is determined by the
strength of the interaction, has been amply shown by experiments and molecular
dynamics simulations in the previous two subsections (see also [190]). Actually,
this property was pointed out in the first version of the coupling model (CM) [175—
179] on relaxation of interacting systems long before the experimental observations.
In this very first version of the CM published in 1979 [175], the interacting system is
semiclassically quantized and the energy levels distribution is described by Wigner’s
statistical theory [349, 350]. This theory of Wigner originated from his idea that the
complex Hamiltonians of many-body interacting systems (in the original case by
Wigner it is that of heavy atom nuclei such as uranium) could be approximated
by a random Hamiltonian representing the probability distribution of individual
Hamiltonians for the purpose of finding the energy levels. This idea was then further
developed with advances in random matrix theory and statistics [350, 351]. For sys-
tems invariant under time reversal, it is given by the Gaussian orthogonal ensemble
(GOE) in random matrix theory [350-353]. It makes sense to use GOE because it
was shown in 1965 by Gorkov and Eliashberg [354] to apply to electronic energy
levels of small (sounds like nanophysics) metallic particles, and variety of atomic,
molecular, and nuclear systems [350-353]. In GOE, the distribution of level spac-
ings E is given by the expression P(E/D) = (/2)(E/D)exp[—(r/4)(E/D)*] of
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Wigner, where D is the average spacing. It has the characteristic linear dependence
of P(E)  E that can be traced back to be caused by energy level repulsions, and this
dependence holds up to a high-energy cutoff at E.. The CM considers a primitive or
one-body relaxation with constant rate Wy = (t9)~! and correlation function given
by exp(—t/7tp) starting at short times. Due to interactions, this one-body relaxation
cannot continue indefinitely, and many-body relaxation eventually takes over. It is
the response of the level structure to the primitive relaxation that is used to account
for the many-body relaxation which necessarily slows down its primitive relaxation
rate Wy [175]. Calculated by perturbation theory [175-179], the response coming
from P(E) with the linear dependence on E slows down the relaxation rate Wy to
have the time-dependent form of W(f) = Wy(w.t)~" and the correlation function to
have the Kohlrausch form given by Eq. (1.1) or Eq. (2.2), but only for times longer
than 7. = (w.)~'. This is because the linear dependence of the level spacing dis-
tribution no longer holds for E > E., which corresponds to times shorter than f,
the reciprocal of the frequency, w. = E./h, where £ is the Planck’s constant. From
this connection to E, it is clear that ¢, decreases with strength of interaction, but
is insensitive to temperature or pressure. The power, n, called the coupling param-
eter, is a fraction of unity which increases with the strength of interaction. Thus,
the relaxation rate of interacting many-body systems is time dependent. It is the
primitive relaxation rate

W) = Wy fort < 1, (2.92)
and the many-body relaxation rate,
W) = Wo(wet) ™ (2.9b)

takes over when r > f.. This crossover from the primitive to the many-body
relaxation rate does not occur necessarily sharply at 7. but rather smoothly in a
neighborhood of 7., so that the correlation function and its derivatives are continu-
ous across .. The factor, exp[— (7 /4)(E /D)2], in P(E) effects the transition between
the two rates. Its width parameter D suggests that the width of the neighborhood
is of the order of 7. itself, and hence narrow, if there is no other factor like poly-
dispersity of relaxation units entering into the problem. Some of the experimental
data discussed in Section 2.2.1.1 show that the crossover is quite sharp. In view
of this and in the absence of reliable way to account quantitatively for the narrow
crossover, the sharp crossover of the two relaxation rates at #. is used to gener-
ate predictions. The correlation function ¢(f) obtained from the CM rate equation,
ag(r)/at = —W(t)¢ (1), by integration is given by

¢(t) = exp(—t/79) fort < ¢, (2.10)
where 79 = 1/W, and

(1) = Aexp[—(t/1)' "] fort > 1., (2.11)
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where

= [(1=n) (1) " 7] 77 2.12)

and

A = exp([n/(1 — ]t/ 7). (2.13)

The average time is (t) = [["(1/8)/B]t, where 8 = (1 — n) and T" is the gamma
function.

When 1 is much longer than 7., A — 1, and requirement of continuity of ¢(f)
at t. leads to the relation

T=[)" ro]ﬁ . (2.14)

There is no difference between Egs. (2.12) and (2.14) when the CM is used
merely to predict the relation between the dependence of the many-body relax-
ation time t with that of the primitive t¢ on some variable U. For example if ¢
has Arrhenius 7-dependence with activation energy E,, then both equations pre-
dict that the activation energy of t is given by E,/(1 — n). Quantitatively for the
relation between t¢ and t, the two expressions make some difference particularly
when n becomes larger. In that case, Eq. (2.12) should be used when 7 is not
much longer than ¢ for the sake of accuracy, as demonstrated in comparing predic-
tion [355] with molecular dynamics simulation data [356] where » has unusually
large value. When using the prediction to deduce quantitatively 7 from the exper-
imentally observed T with known values of n and ¢., Egs. (2.12) and (2.14) lead,
respectively, to o = (1) (t)! /(1 — n) and 79 = (t.)"(t)!~". The difference is a
factor 2 forn = 0.5.

The significance of the CM equation (2.12) or (2.14) is that it makes a connec-
tion between the many-body relaxation time t usually endowed with anomalous
properties and the primitive one-body relaxation, the properties of which are normal
and known. Thus, the connection provides falsifiable explanation/predictions of the
anomalous properties of v from the known or familiar properties of to. The con-
nection is made via the Kohlrausch exponent n and the crossover time #.. These two
parameters of the many-body relaxation naturally are ultimately determined by the
interaction and its strength. This is clearly so in the context of the CM because both
quantities originate from interaction. Also this can be inferred from the dependence
of the size of both quantities on the strength of interaction from many experimen-
tal examples given throughout this book, showing that n decreases and z. becomes
longer on weakening the interaction strength. Equation (2.12) or (2.14) coupled
with the Kohlrausch function (2.11) of the CM spawns many predictions that can
be tested by experiments and used to explain anomalous properties. Many such
tests and applications are given in the sections to follow. Since it was derived for
complex Hamiltonians in general, the predictions that form these equations should
apply to relaxation and diffusion in interacting many-body systems of all kinds,
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and the dynamics of glass-forming systems in the glass transition problem is only a
special case. Thus, ever since the inception of the CM in 1979, I have been the advo-
cate of the existence of universal relaxation and diffusion properties of interacting
many-body systems, and this belief has led to concurrent explorations of several
fields using the three coupled equations (2.10), (2.11), and (2.12) or (2.14) as the
tool [109-111, 113]. It must be borne in mind that these equations hold strictly for
systems in which all relaxation/diffusing units are identical and monodisperse, and
heterogeneity is not introduced by boundaries, randomness, mixing, etc. If extrin-
sic heterogeneity is present, these equations have to be modified by incorporating
extraneous factors, and the test of applicability of the CM become less precise and
direct, but nevertheless can be done.

The CM does not provide description of how many-body relaxation evolves with
time in either space, configurational space, or phase space, except the exploitation
of the crossover in some neighborhood of #.. However, the CM has anticipated that
relaxation in interacting many-body systems is dynamically heterogeneous, includ-
ing the case of the structural a-relaxation in glass-forming liquids. The analogy
to the heterogeneous process in the solution of the “dining philosophers prob-
lem” in computer science [357] was pointed out in the context of the CM [234]
a year before the first experimental evidence of dynamic heterogeneity of structural
a-relaxation was published [226]. In the CM, dynamic heterogeneity and
Kohlrausch non-exponentiality are regarded as parallel consequences of the coop-
erative many-body molecular dynamics, but the former is not emphasized in the
applications of the CM. Description of the motions as a function of time is best
obtained by special experimental techniques like confocal microscopy for colloidal
suspensions [141] or by molecular dynamics simulation and specially designed
computer simulation method such as the dynamic lattice liquid model [327, 328].
Such description is worthwhile as well as pleasing to acquire, but being able to
describe motions as a function of time does not necessarily mean that it can explain
the anomalous properties of 7, while the CM equation can. It is this problem-solving
capability of the CM equation that has attracted my attention and influenced my
research activities ever since it was first derived in 1979 by the crude model. Before
that, I had neither formal training nor experience in the various fields of relaxation
and diffusion of classical systems including glass transition, polymer viscoelastic-
ity, and ionically conducting materials. I thought the best way to enter these new
fields without heavy investment in time and effort is to apply the CM predictions to
some notable problems and see if that works. If the predictions were wrong, then
it would be high time to abandon the CM and return to my principal occupation
before 1979, which is research on electronic properties in condensed matter physics.
It turned out that the initial applications of the CM predictions are not disappoint-
ing, and some are even surprisingly successful particularly in two areas, polymer
diffusion/viscoelasticity [104, 172, 201, 202, 267, 358-361] and dynamics of ions
in glassy ionic conductors [362]. Some of the early applications in the first half of
the 1980s are summarized in a book chapter [111]. The initial successes lured me
to educate myself in the sciences of the new fields and to look for more oppor-
tunities in applying the predictions to explain experimental results and established
phenomenology. This effort has become my preoccupation and this comes at the
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expense of not being able to spend sufficient time in making substantial improve-
ment in the theory for a long time. Nevertheless there are some developments in the
early years based on related physics including stable Lévy distributions [180(a)],
Paley—Wiener criterion for relaxation functions [180(b)], and classical constraint
dynamics [181-184].

Tracing the Key Result of the CM, W(f) = Wy(w.1)~", Back to R. Kohlrausch

In 1979 when I first published the CM [175], I was not aware of the works of
R. Kohlrausch in 1854 [2] and his son F. Kohlrausch in 1863 and 1866 [3, 4], and not
until 2 years later. This was acknowledged in reference 27 of [180(c)], where I cite
the abstract of Struik from which I first found mention of the work of F. Kohlrausch’s
1866 paper, and this led me thereafter to search for other works of Kohlrausch. One
of the crucial results of the CM in my 1979 paper is the time-dependent relaxation
rate, W(r) = Wy(#/t.)~". Nowadays, to most workers in the field of relaxation, R.
and F. Kohlrausch are known for their stretched exponential function. However,
if one reads the 1854 paper by R. Kohlrausch, on page 198 he actually started
with the time-dependent rate equation, d(pQ; — r,)/dt = —bt"™(pQ; — r;), dupli-
cated faithfully here. For the notations he used, m is a negative fraction of unity,
b is a constant, and (pQ; — ry) is the relaxing quantity he considered. Integrating
the differential equation from t+ = 0 to t = ¢ and with Q;(t = 0) = Qp and
r(t = 0) = 0, he then arrived at log[(pQ; — r1)/pQo] = —[b/(m + DyemtL,
This is just the same as (pQ; — r1)/pQo = exp(—Bt’”“), where B = b/(m + 1).
In other words, R. Kohlrausch derived the stretched exponential function from the
time-dependent relaxation rate br™, with —1 < m < 0. Using his own data [2], he
deduced m = —0.5744, and b = 0.4289. F. Kohlrausch [3, 4] wrote down a similar
equation, dx/dr = —g - x/1", before getting the stretched exponential function. Now
it becomes clear that the primary result of the CM, W(r) = Wy(t/t.)™", is exactly the
same as time-dependent relaxation rate, b, of R. Kohlrausch after putting m = —n
and b = Wy(t.)". From the rate equation, d¢/dr = —W(¢)¢p, and W(r) given by Egs.
(2.9a) and (2.9b), one can not only obtain the Kohlrausch function, exp[—(#/ r)l -,
but also the second relation T = [(1 — n)(t.) "70]"/!'=™, where 19 = 1/Wj. This
second relation introduces new physics and immensely enhances the applications
of the Kohlrausch function beyond an empirical function to fit data. In the CM, n
is indicator of the extent of the many-body relaxation. As will be shown in many
sections to follow, the second relation can explain the experimentally observed
anomalous and universal properties of 7 from the normal properties of the primitive
relaxation time t¢. These important advances cannot be achieved without using the
time-dependent relaxation rate, W(t) = Wy(t/t.)™", originally proposed in terms of
bt™ with —1 < m < 0 by R. Kohlrausch phenomenologically. Therefore, when pay-
ing homage to Kohlrausch, I propose that it is more appropriate to cite Kohlrausch’s
fractional-power time-dependent relaxation rate, bt™ with —1 < m < 0, instead of
his already famous stretched exponential function, or at least together with it. The
function follows as a consequence of the rate, b, but not vice versa. Moreover,
there can be different interpretations of the stretched exponential function, such
as the more trivial one of distribution of linear exponentials due to randomness,



78 2 Glass-Forming Substances and Systems

while the interpretation of the rate is more restrictive and possibly the consequence
derivable from fundamental physics as discussed in the above and below.

Personally, I am flabbergasted to find in 1983 that one of the key results of the
CM based on fundamental physics was already proposed by R. Kohlrausch back in
1854.

Coupling Model from Classical Chaos

In classical mechanics, it is well known that systems with anharmonic interac-
tions universally exhibit classical non-linear dynamics (chaotic classical motion)
[363]. In the 1980s, many publications show that classically chaotic systems when
quantized have quantum energy spectra characterized by the universal statistics
of random matrix eigenvalue ensembles [364-369]. Overwhelming experimental
and numerical evidence supports this connection for systems as diverse as atomic
nuclei, Rydberg atoms, and quantum billiards [350, 370]. The relation between clas-
sical non-linear dynamics and quantum energy spectra is natural because in the
macroscopic size regime, laws of classical mechanics are expected to emerge in the
semiclassical limit, 2 — 0. It suggests that the many-body relaxation stems from
classical non-linear mechanics and from which one can find another way to derive
the CM equations applicable to relaxation/diffusion in systems exhibiting classi-
cal chaos. The first attempt in this direction involves the use of the characteristic
of classical chaos, which is the emergence of complexity on infinitely fine scales
in classical phase space. The structure of the infinitely fine phase space was used
as the basis of qualitative models to generate the Kohlrausch correlation function
[184, 186]. Some residual order in phase space in terms of quasiperiodic motions
(vague tori) was found to exist on a short timescale even in the chaotic regions
of phase space for a large class of systems [371, 372]. The quasiperiodic motions
are attributed to remnants of destroyed invariant tori in phase space This property
ensures the relaxation/diffusion at short times is normal and its correlation function
is given by the linear exponential of Eq. (2.10).

Starting from simple non-integrable Hamiltonian models that exhibit classical
chaos, the results of the CM have been reproduced [186, 188, 189, 191, 192, 193].
The crux of the CM is the existence of a rather sharp crossover of the relaxation
function from linear exponential to the Kohlrausch stretched exponential, and this
has been found from the numerical solutions of the simple models. Moreover,
stretching (or n) increases with increase in non-linearity or interaction strength of
the Hamiltonian, consistent with the same expected heuristically from the CM on
increasing the strength of coupling or constraints in glass-forming substances and
other interacting systems.

Relaxation of Interacting Arrays of Phase-Coupled Oscillators

We [188, 192] start from an array of N oscillators. The phase ¢;(¢) of the ith oscilla-
tor, 1 <i < N, is coupled non-linearly by a sine function to the phases of the other
oscillators and obey the equation of motion
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—w, =—— Zsm(w, @), (2.15)

with uniform interaction K/N. We are interested in the decay of the phase coherence
r, which is the absolute value of the order parameter, r exp(iy), defined by

. 1 .
r=|re¥| = |sze”"f } (2.16)

It has been shown that the decay of r for an array of phase-coupled oscillators is
exponential [373], like the primitive relaxation of an isolated molecule in a solvent
such as described by the Debye model. As an analogue of anharmonic potentials in
interacting many-body systems, we consider now a number M (larger than one) of
such arrays and couple these arrays non-linearly together, again by the sine function

K/ M N . .
VN =170 Tjm1 S Djg — bia ), (2.17)

where K’ /MN is the inter-array interaction strength. The new equation of motion of
the phase of the ith oscillator in the «th array, | < o < M, is now given by

U

K K
¢/ia = ¢io¢ Y j—] Sll’l( ¢]O{ ¢l()t )+MN Eﬂ 1 /3750( 1 Sll’l( ¢]ﬁ ¢w¢ ) (2 18)

The problem is simplified to a map by picking the appropriate time steps and
rescaling the time, so that time ¢ is now discrete and incremented by 1 after each
iteration of the map. The effect of the interactions between the M arrays on r of
each array is studied by considering the new map. The interacting arrays mimic an
assembly of interacting molecules in a small molecule liquid. In the absence of inter-
array interaction (i.e., K’ = 0), r of the non-interacting arrays of coupled oscillators
decays exponentially to an incoherent state, i.e., r = 0, for K > 0, in analogy to the
primitive Debye relaxation of isolated molecules in dilute solution. However, since
the interacting arrays do not model translational or rotational motion, they cannot
be identified exactly with the structural relaxation in a glass-forming liquid. A non-
linear Hamiltonian that resembles more closely a glass-forming liquid has to be
much more complicated than the interacting arrays, and likely its dynamics cannot
be solved exactly. In spite of its limitations, the interacting arrays of oscillators
model have the advantage that their dynamics can be obtained readily, as shown
below, and is an analogue of the relaxation of interacting many-body systems.

With arrays of random initial oscillator phases, we iterate the map in Eq. (2.18) to
obtain the evolutions of the coupled arrays numerically. The evolutions of three (i.e.,
M=3) interacting arrays, each of N=32 oscillators initially with random phases, are
obtained by iteration of the map defined by Eq. (2.18). From the results we calculate
the decay of the phase coherence r(f) for each array. First for a fixed K we calcu-
late r (¢) for five values of K’ = 0, 0.6, 0.8, 1.0, and 1.2. The results are shown in
Fig. 12. The figure shows that with increasing inter-array coupling strength K’, the
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decay of r(¢) becomes slower and its time dependence more non-exponential. The
accompanying Fig. 13 is replotting the same results as log;o{— log.[r(#)]} vs. log;, t.
At short times the slope is exactly 1, indicating that initially #(f) is an exponen-
tial function of time, exp(—#/7p), in analogy to the primitive relaxation of the CM,
Eq. (2.10). However, the linear exponential decay does not hold at longer times.
There exists a crossover time ¢, after which the slope becomes less than 1, and r(7)
departs from the exp(—?/tp) time dependence. Actually, for t > ¢, the slope varies
slightly with time but the result is still reasonably well approximated by a straight
line having a constant slope equal to 8 = (1 —n) < 1, indicating r(¢) has crossed
over to assume the stretched exponential time dependence, Eq. (2.11), of the CM.
Naturally, Eq. (2.12) of the CM is satisfied. The systematic decrease of the long time
slope B (see inset in Fig. 13) with increase of K'/K supports the intuitively reason-
able surmise that n, the coupling parameter in the CM, increases with the mutual
interaction strength of the relaxing units in real materials. We observe that there is a
slight increase of 7. with decrease in the interaction strength, which is also consistent
with real materials.

The interacting arrays of oscillators is a prototype non-linear Hamiltonian. We
expect the crossover property to be general and carried over to other Hamiltonians
that model more realistically the non-linear interaction potentials in a molecular
liquid. To some extent, the results can be considered as a justification of the physical
principle behind the CM for molecular systems.

Structural Relaxation Properties of Glassformers Captured

Next we study the change of the decay of r(¢) on varying K at constant K. As we
shall see later in this section, K has the effect on r(f) like temperature in relaxation
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of real materials. The results as a function of K at constant K" mimic remarkably
well the characteristics of the temperature dependence of structural relaxation prop-
erties of glass-forming substances, including the temperature dependence of the
stretch exponent 8 and the relaxation time 7 of the Kohlrausch relaxation function,
exp[—(#/7)?]. The results for increasing K’ change progressively like correspond-
ing quantities of structural relaxation in glassformers with increasing intermolecular
coupling by changing the chemical structure (Fig. 14).

The values of T and (1-n) obtained as a function of K for several constant K’ val-
ues equal to 0.030, 0.024, 0.018, 0.012, 0.006, and 0.000 are displayed in Fig. 15,
which shows that t decreases monotonically with K. Since the analogue of K’ is
the intermolecular interaction strength and K has the effect like temperature in
glass-forming liquids, the results 7(f) are appropriately compared with the change
of dielectric relaxation and dynamic light-scattering properties with temperature
of the molecular liquids with different intermolecular interactions. For any K', on
decreasing K, t increases and the increase becomes increasingly more rapid. It is
apparent also that the logjot rises more rapidly with decreasing K for a larger K'.
The model results for K’ = 0.030 (e), 0.018 (¢), 0.012 (A), and 0.006 (¥) resemble
the four glassformers, ortho-terphenyl (OTP), salol, glycerol, and propylene glycol
(PG), respectively (see inset in Fig. 15).

For each K', a cross-plot of (1 — n) vs. log;, (i.e., at the same K) is made.
The relations between (1 — n) and log;,t for several values of K’ are shown
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Fig. 14 Log t calculated as a
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in Fig. 15. From this figure it is observed that the dependences of (1 — n) on
log;o T are similar, i.e., all showing with decreasing log;, T monotonic increas-
ing (1 — n), which eventually reach the maximum value of 1. However, at the
same value of log;, 7, (1 — n) is larger for smaller K’. The limiting case K’ = 0,
corresponding to the absence of inter-array coupling, has (1 — n) = 1 (i.e., expo-
nential relaxation) for any log;, v or K. These properties of the model are shown
to be similar to that found in the structural or a-relaxation of small molecule
glass-forming liquids with increasing temperature. For example, in the molecular
liquids, OTP, salol, glycerol, and propylene glycol, the stretch exponent S, of the
a-relaxation correlation function, exp[—(¢/ 74)P2], obtained by dielectric and light-
scattering measurements increases toward unity as temperature increases and the
effective a-relaxation time, 7, decreases. This is shown in the inset of Fig. 15.
There is a correlation between ng(Ty) = [1 — Bu(T,)] and the T;-scaled tempera-
ture dependence of 7. Here, T; is the glass temperature at which 74(Ty) = 102 s.
The temperature dependence of log; 7y of the four liquids, propylene glycol, glyc-
erol, salol, and OTP, is mimicked by the K-dependence of log,, t for increasing
K’ (see Fig. 14). Thus the results obtained from our model at various fixed val-
ues of the inter-array interaction strength K’ reproduce the pattern of changes in
relaxation properties of “strong,” intermediate, and “fragile” glass-forming liquids
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Fig. 15 A cross-plot of (1-n) vs. logjg T (i.e., for the same K). The results shown are for
K’ = 0.030 (o), 0.024 (O0), 0.018 (#), 0.012 (A), 0.006 (¥), and 0.00 (x). Similar dependences of
Ba onlog,, 7o are shown for OTP (e), salol (A), glycerol (), and PG (4) in the inset. Reproduced
from [188, 192] by permission

in the Oldekop-Laughlin-Uhlmann—Angell plot [215, 216, 374, 375]. Since K’ is
the analogue of intermolecular interaction in glassformers, the results obtained here
indicate that the relaxation properties of glassformers within the same class are
determined principally by the intermolecular coupling.

The Dissipative Fermi Map in a Stadium: The Fermi-Stadium Map

In 1949, Fermi introduced a theory of cosmic radiation in which cosmic rays orig-
inated and accelerated in the interstellar space of the galaxy by collision against
moving magnetic fields [376-378]. The model of Fermi was adapted to describe
transient chaos by simplifying it to a ball bouncing in one-dimensional motion
between a fixed and a moving wall [379]. The latter oscillating sinusoidally with
time in the same direction, x = acos(wt), and elastically imparts momentum to
the ball dependent on its velocity « and without the wall changing its position in
space. The ball suffers a fraction loss § in velocity for every collision with the fixed
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dissipative Fermi map.
Reproduced from [189] by

Fig. 16 One-dimensional
permission @_U’
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amplitude parameter
a 8

wall, and thus the Fermi map is dissipative. It is illustrated by Fig. 16, and L is the
distance between the two walls. Tsang and Lieberman [377] considered the case
where L/16a >> 1 and § << 1 and calculated the evolution of the distribution in
velocities. They found that almost all initial distributions in velocities fo(u) evolve
to the invariant one f(u) ~ exp(—28u2). Numerical computations for various values
of L/16a were reported to be in agreement with such calculations. The evolution is
determined by a Fokker—Planck equation. The average energy relaxes to the equilib-
rium energy exponentially in time. Thus the Fermi map offers a model of primitive
or normal relaxation, and based on it we can introduce non-linearity and see how
chaos modifies the primitive relaxation. This was done [189] by introducing some
curvature to the elastic boundary at the two ends of the fixed dissipative wall as
shown in Fig. 17. The motion of the ball is now two dimensional. The composite
system is actually the combination of the Fermi map system and half a stadium,

Fig. 17 (a) Two-dimensional
Fermi-stadium map; (b) a
curved corner of the added
stadium portion. Reproduced
from [189] by permission
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appropriately called the Fermi-stadium map. The details of this map can be found
in [189]. In the problem of a billiard ball idealized as a point reflected elastically
from the boundary of a stadium without any loss of energy [368], it is well known
that the motion of the ball is chaotic, following no regular pattern at all. Moreover,
when the motion of the billiard in the stadium is quantized, the eigenvalue spac-
ings have the Wigner distribution characteristic of a random Hamiltonian and GOE
[364]. Hence, we can expect that chaos of the appropriate kind will appear in the
Fermi-stadium map with a degree that is proportional to the curvature or the radius
R. The relaxation of the average energy in the Fermi-stadium map, with parameters
6 =0.01 and M = L/16a = 100, for various values of R = 0.0, 0.02, 0.1, and 0.5.
The normalized difference ® between the mean energy and the equilibrium energy
is plotted against time 7 in Fig. 18 which shows the relaxation of ® is slowed down
when R is non-zero and the degree of slowing down increases with R. Note that
for R = 0 (the dashed line at the bottom), the map is reduced to the Fermi map
and there is no slowing down of the relaxation. At t = 140, the calculated solid
curve, corresponding to R = 0.02, begins to significantly deviate from the Fermi
curve. The next curve above corresponds to R = 0.1, and it begins to deviate sig-
nificantly from the Fermi curve starting at # = 120. For R = 0.5 since the change
from the Fermi map is substantial, we rescale the curve horizontally so that it coin-
cides for a significant portion with the Fermi curve. The rescaling is shown by the
arrow in Fig. 18. At t+ = 85, the curve corresponding to R = 0.5 begins to devi-
ate significantly from the Fermi curve. Thus, there exists a crossover time 7. (the
magnitude of which depends on R), before which the Fermi-stadium curve decays
exponentially like the Fermi curve, but thereafter its decay is slower than the Fermi
curve. The existence of such a crossover time from primitive to complex relaxation
dynamics is thus present in the Fermi-stadium map, a result which can be expected
to have general validity in classical chaotic systems as anticipated by the CM. The
crossover is made more explicit in Fig. 19 where we plot log;y(—log;, ®) against

T T T T T T T T TTTT] T =TT

Fig. 18 Numerical result of
the Fermi-stadium map with 08}
parameters § = 0.01 and =
M = 100, for various values i

of R=0.0,0.02,0.1,and 0.5, & 06
from left to right. The el
normalized difference ¢ 3
between the mean energy and
the equilibrium energy is
plotted against time 7. The 0.2
arrow indicates a rescaling of

the R = 0.5 curve to show a

longer coincidence with the 0.0 L iaeul ek L
Fermi curve. Reproduced 10° 10! 10
from [189] by permission t
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Fig. 19 Log;o(—log;o ®)
against log; ¢. The curves
become nearly straight after a
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log;( t. After a crossover time #. (which depends on R), the curves become nearly
straight. The portion of the curves can be fitted to straight lines of slopes § = 1.0,
0.86, 0.8, and 0.78, respectively, for R = 0.0, 0.02, 0.1, and 0.5.

Similar Results from Related Problems

There are studies of relaxation and diffusion in other non-linear Hamiltonian sys-
tems which also show slow decay well described by the Kohlrausch stretched
exponential. Here we cite a few examples. This was found by Pettini and Landolfi
in 1990 who showed the time evolution toward equipartition of energy in non-linear
Hamiltonian systems with a large number of degrees of freedom. The systems stud-
ied include the Fermi—Pasta—Ulam (FPU) B-model [380] and the lattice ¢* model.
The Hamiltonian of the former is given by

Hp.9 =3 0H/2+ @it —a)?/2+ nlis =)'l (2.19)

and latter by

Hp.q) =Y p}/2+ (@i — g)*/2+ mg}/2+ gl /4l. (220)

The two Hamiltonians would describe phonon dynamics in one-dimensional
anharmonic lattice if the coordinates g; are interpreted as deviations from the equi-
librium positions of point masses. Tsironis and Aubry [381] and their coworkers
[382] have studied relaxation properties of one- and two-dimensional non-linear
lattices described by Hamiltonians with the non-linear potential given by the ¢*
potential and by the Morse potential. They found stretched exponential lattice
energy relaxation in contrast to the standard exponential relaxation law of the cor-
responding linear system. The results were attributed to hierarchies of discrete
breathers that relax with different time constants, leading to a hierarchy of relaxation
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timescales in the system. Discrete breathers are intrinsic localized and time periodic
lattice solutions that exist in non-linear lattice systems. For more on breathers, see
review by Flach and Gorbach [383].

Kalosakas et al. [384] investigated the diffusive motion of a charge interact-
ing with the non-linear dynamics of a thermalized underlying lattice. Signatures
of anomalous diffusive properties are found at relatively high temperatures, where
highly non-linear excitations are present. A sublinear diffusion and a plateau appear
before the standard long-time diffusion during the evolution of the mean-squared
displacement with time, and a significant degree of heterogeneity is exhibited among
individual trajectories. This behavior of the mean-squared displacement is similar
to that found in other interacting systems. The results are in contrast with those of
the linearized case, in the absence of breathers, indicating that they are the effects
caused by non-linearity of the Hamiltonian.

Outlook

Hopefully, the results discussed above are sufficiently convincing and encouraging
for others to pursue further and to take them to higher level and with mathemat-
ical rigor. As mentioned before, ever since the inception of the CM in 1979, the
author has been preoccupied with applications of the CM predictions to experimen-
tal data in several fields. All theoretical efforts discussed above were made over
short periods of time and with limited resource. Frankly, the theoretical skill of
the author is overmatched by the difficulty of the problem of relaxation/diffusion
in interacting many-body systems. Despite the meager theoretical support, the CM
predictions have been remarkably successful in explaining experiments and phe-
nomenology, as well as making predictions before experiments were performed and
subsequently verified. These successes will be discussed in conjunction with the
experimental findings throughout the rest of this book. I certainly agree that the
problem is not solved until a rigorous physical-mathematical theory emerges that
gives a full description of the motions at all times and also can explain the many
properties, especially the anomalies found experimentally. For the latter, I submit
that the three coupled equations (2.10), (2.11), and (2.12) have done a credible job,
which the readers can judge for themselves from the contents of this book. The final
solution of the problem we are waiting for has to match the multiple successes of
these equations of the CM in applications to experimental data. On this connec-
tion between the final solution one is looking for in the future and the existing CM
equations, it is perhaps appropriate to cite the philosopher, William of Occam, who
wrote: “It is vain to do with more what can be done with less.”

It is clear from the history of the CM given above that it has not attracted other
theorists to contribute in making it a more complete theory, even though it has been
applied successfully to many different fields. Thus, what is available in its theoret-
ical development is limited, essentially that given by a one-man effort. In contrast,
even in a subfield of relaxation and diffusion of complex systems, some theories
have benefited from its development from participation and contribution of many
able theorists. An example in polymer rheology is the reptation theory, and in glass
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transition it is the mode coupling theory. The materials in the sections in this chap-
ter and the next will show how well the CM relations can explain the multitude
of experimental data. The author hopes these will convince others that the CM has
captured some fundamental physics of relaxation and diffusion in complex inter-
acting systems in general, and it is a worthwhile starting point to build a rigorous
theory.

2.2.2 Length Scale and Dynamic Heterogeneous Nature of the
Structural Relaxation

When treating a relaxation process and particularly the structural relaxation in
glass-forming liquids, naturally some length related to the motion is an important
characteristic and has to be considered at some arbitrarily chosen value of 7, at any
temperature, or at 7.

2.2.2.1 Length Scale from the Free Volume Model

In the free volume model [385], the length is the size of the unoccupied (free)
volume, which decreases with decrease in temperature, and can be measured by
positronium annihilation lifetime spectroscopy (PALS) [386-390]. This length has
no direct link to the length scale of dynamically heterogeneous dynamics or many-
body relaxation dynamics because the free volume model does not have the concept
of many-body relaxation. Nevertheless, correlation of the free volume measured by
PALS with some outstanding characteristics of the observed dynamics, to be dis-
cussed in Section 2.2.5.1, was first found by Ngai et al. [387] in ortho-terphenyl and
propylene carbonate, glycerol, and propylene glycol, and subsequently verified by
others.

2.2.2.2 Length Scale from the Configuration Entropy Model

In the configurational entropy model of Adam and Gibbs [30], the size of the coop-
erative rearranging regions (CRR) offers a length scale of the structural relaxation.
Kauzmann [391] pointed out that the extrapolated entropy of an equilibrium super-
cooled liquid may become less than that of a crystal and approach a negative value at
0 K. In order to avoid the paradox of Kauzmann, the entropy theory was developed
by Gibbs and DiMarzio [392] originally for polymeric glassformers. The theory was
extended to non-polymeric liquids by a phenomenological consideration by Adam
and Gibbs (AG). They proposed that the rearrangements over energy barriers of
molecular units must be cooperative involving altogether a number z* of molecular
units that necessarily increases with decreasing temperature. Several assumptions
were made in the AG theory. The first one is that the transition of a CRR involves the
z* molecules simultaneously, and individually each molecule has to surmount the
potential energy barriers, Au, which is temperature independent. This assumption
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enabled AG to write the relaxation time, 7, (7'), and the corresponding exponential
relaxation correlation function as

ta(T) = AaG exp(z" Ap/RT) and ¢(1) = exp(—1/7a(T)), (2.21)

where the preexponential term, Aag, is a physically reasonable time that is largely
determined by molecular vibrations of the liquid, and R is the gas constant. AG
expressed z* in terms of the molar configurational entropy Sc(7T") of the macroscopic
sample as

Z(T) = Nasy /Sc(T), (2.22)

Here, s¢ is the configurational entropy of a single molecule and N4 is Avogadro’s
number. The value of s¢ is determined experimentally by extrapolating the S.(7')
data to infinite temperature. Inserting this equation into the expression for the
relaxation time, the result of the AG model is given by

1o(T) = Apg exp A s’ /kgTSe(T)]. (2.23)

This equation has four unknown quantities, Aag, si, Ap, and Sc, and some
of these have not been determined by experiment. In practice, the combination
seAp/kg in Eq. (2.23) is replaced by Cag, which is treated as a temperature-
independent constant of the glassformer, and the AG equation is rewritten as

Ta(T) = Aac exp[Cac/TSc(T)]. (2.24)

The AG equation was intended mainly to describe the super Arrhenius behav-
ior of a liquid approaching 7;. Over some range of temperatures above Iy, the
temperature dependence of 1 or 7, of many liquids conforms to the Vogel-Fulcher—
Tammann—Hesse (VFTH) equation [393—-395]

o = AvprH exp [B/(T — To)] . (2.25)

However, the preexponential factor, Avpry, is often found to be many orders
of magnitudes shorter than the vibrational times [347, 348, 396-399], which is
assumed for Aag. This glaring discrepancy between Avpry and Aag already has
signaled the inadequacy of the AG theory. The critical entropy, s.*, in the AG equa-
tion supposedly given by kgln 2(= 0.9563 x 10~23 J molecule "' K~!) is less than
even the residual entropy per molecule in a glass at 0 K. Other limitations of the
AG theory and the problems encountered in testing it against experimental data are
best given in an article by Johari [400]. Since S. is not known, the excess entropy
of a liquid over that of its ordered crystal state, Sexc, is used instead of the required
S in the AG equation. The validity of the AG equation can be tested by showing
whether log 1 or log 7, bears a linear relation with (TSexc) ™! or not over a temper-
ature range down to Ty. This procedure to examine the validity of the AG equation
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was used by Magill [396] in 1967 and by Laughlin and Uhlmann [375] in 1972.
For the three liquids, including salol and ortho-terphenyl, whose viscosity they had
carefully measured over a range of about 14 decades covering a wide temperature
range down to T, they found the plots of log n against (TSexc)~! were non-linear
and concluded that the AG equation is not valid for those liquids. The approximately
linear relation between logarithm of the dielectric relaxation time t, and (TSexe)™
found at lower temperatures invariably breaks down at higher temperatures [398,
401]. In spite of the aforementioned problems of the AG model, the predicted lin-
ear relation between log n or log 7, and (TSexc)~! has continued to be the main
point used to test and support the validity of the AG theory [398]. Others found that
the AG model extended to include pressure dependence is consistent with experi-
mental data [399, 402], while an extended free volume model for the same purpose
failed [403]. Even if in some cases the AG equation prediction is consistent with the
experimentally observed temperature/pressure dependence of 1 or ty, the latter is
only one among many notable properties and anomalies of glassformers. One must
confront the AG theory with the other anomalous properties before any conclusion
can be made on its ultimate validity. It is true that the AG theory does not have any
immediate prediction other than the temperature or pressure dependence of 1 or 1.
But this shortcoming of the AG theory does not mean we can use it as an excuse and
accept the theory without reservation.

The relaxation process of a CRR envisaged by AG is so much simplified that it
is unlikely to represent the actual many-body relaxation. Equation (2.22) for z*(T)
indicates that it is determined exclusively by configurational entropy, a thermody-
namic quantity. The dispersion of the structural relaxation in the AG model is a
linear exponential. All these features of the AG model indicate that the length scale,
Lag(T), associated with z*(7) is unrelated to the many-body relaxation dynamics of
the structural relaxation.

Actually there is no way to test directly the entropy theory of AG simply because
Sconf Values are not available. Instead, studies which had tested the entropy theory
and found it to be valid had used the excess entropy of a liquid over that of its
ordered crystal state, Sexc, instead of the required S¢. This practice has assumed that
the non-configurational part of a viscous liquid’s entropy is equal to the entropy of
its ordered crystal, Scrys, over the range of temperatures being studied. However, it
was known as early as the Goldstein’s analysis of entropy change in glasses below Ty
that this is a poor approximation in many cases [404]. This study together with the
amplification by Johari [405] has shown that the configurational part of the excess
entropy Sexc may be as small as 40% of Sexc at Tg, and there is no obvious pattern
for different kinds of liquids. This assumption together with other assumptions often
used in applying the AG model predictions was proven incorrect by Johari in a series
of papers [405-413].

The non-configurational part of a viscous liquid’s entropy is the sum of the
vibrational and anharmonic force contributions, Syip, and any secondary relaxation
contribution, and cannot be equated to Sc;ys. Thus, in general S # Sexc. However,
if Sc were proportional to Sexc over the relevant temperature range, Eq. (2.24) is
replaced by n(T) = 1o exp[Cy/TSexc(T)], With Sexc taking the place of Sconf, and
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the AG theory can still be tested directly against experiment. The assumption that S,
is proportional to Sexc was made [414] and the new equation used. This proportion-
ality assumption has been questioned [409, 413] and shown quantitatively incorrect
for 8 out of 10 standard glassformers [415]. Thus, in general S is not proportional
to Sexc. Other tests of the relations based upon the Adam—Gibbs equation (2.23)
were made by using newly obtained data of Sexc and heat capacity in some cases
[416-419]. These studies have concluded that the AG entropy theory may not be
valid.

Despite the difficulty in determining S. by experiment, it can be estimated by
subtracting Syip, Which is the sum of both harmonic phonons and anharmonic forces
contributions, from the experimentally determined entropy. Yamamuro et al. [420]
have calculated Sy, by using the lattice, the librational, and the internal modes in the
Debye equation for Cy and then corrected the values for the volume change. Their
estimate of S. is more complete, but still approximate. The values of z*(7T) were
obtained by Eq. (2.22) with the approximate S, calculated from the heat capacity
measured by adiabatic calorimetry. z*(T) was determined from some high tem-
perature down to below 7; for many glass-forming molecular liquids [420]. The
glassformers include butyronitrile, isopropylbenzene, 1-propanol, 3-bromopentane,
salol, 1-butene, ethylbenzene, 3-methylpentane, 2-methyltetrahydrofuran, propy-
lene carbonate, 1-pentene, toluene, and ortho-terphenyl (Fig. 20). At T = Ty, the
values of 7*(Ty) fall within the range 3.5 < z*(Ty) < 7.0. Hence the length scale
Lag(Ty) of AG from pure thermodynamic consideration is not large, and apparently
significantly smaller than the length scale &,¢; determined from the heterogeneous
nature of the dynamics by solid-state NMR experiments [226, 227, 421, 422] to be
discussed in detail in a subsection to follow. The reported values of &ne; [422] are
éhet = 3. 71 nmat T = Ty+9 K for poly(vinyl acetate) (PVAC); &per = 2.2—2.9 nm
at T = Ty + 9 K for 1,2-diphenylbenzene (ortho-terphenyl); and &per = 1.3 nm at

Fig. 20 Temperature
dependence of the number of
the molecules in CRR
glass-forming molecular
liquids. O: butyronitrile,

[ isopropylbenzene,

Q1 1-propanol,

A: 3-bromopentane, v/: salol,
o: 1-butene, M ethylbenzene,
¢: 3-methylpentane,

A: 2-methyltetrahydrofuran,
V: propylene carbonate,

x: 1-pentene, +: toluene, : P —— - 1
©: ortho-terphenyl. Data Y P X
taken from [420] and 40 80 120 160 200 240 280 320 360

replotted K
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T=Ty+10K, éhet = 1.1 nmat T = Ty+14 K, and g = 1.0nmat 7 = T, +18 K
for 1,2,3-propanetriol (glycerol). Since the length scale is expected to increase with
decreasing temperature, the values of &he¢ at 7; would be even larger. Putting more
faith in the length scale determined directly by NMR, the much smaller Lag(T)
determined from S. using the AG theory presents a problem.

The disparity can be explained as follows. S¢(7') is a pure thermodynamic quan-
tity and hence the AG theory at best can only account for the effect of configurational
entropy on the relaxation rate, but not the effect from the heterogeneous many-
body relaxation dynamics and its length scale, while the NMR measurement can.
To explain the disparity, the consideration must include both effects. This was car-
ried out by using the CM to account for the many-body dynamics as follows [401].
It is clear from the relation between t, and the primitive relaxation time 7 from Eq.
(2.14) that the configurational entropy dependence of 7, implies the same for 7 and
vice versa. Chronologically, Sc(T) actually first enters into the dynamics by making
7¢ to have the temperature dependence given by

t0(T) = Ao exp[Bo/TSc(T)]. (2.26)

This dependence of t on configurational entropy can be rationalized by the same
reasoning as in the original AG theory. From the CM relation (2.14), it follows that
the dependence of 7,(7T) on Sc(7) is given by [401]

7o(T) = [1;" DoV = (17D Ag exp[Bo/TSe(T)1} /1)

c (2.27)
o exp[Bo/TSc(T)],

where
Se(T) = [1 = n(T)ISe(T). (2.28)

S’C(T) is smaller than S¢(7), but z*(7) calculated from it by the CM-modified AG
relation

ZH(T) = Nas}/Sc(T) (2.29)

would be larger than that from Eq. (2.22) of the original AG model by the factor
(1 — n)~!, which helps to reconcile the disparity of length scales determined from
the thermodynamic data and by NMR. Experimental evidence will be given later
in Section 2.3.2, particularly Sections 2.3.2.19, 2.3.2.29, and 2.3.2.30 thereof, to
support that 7 already depends on entropy and volume.
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There is one problem in applying the original AG theory mentioned before which
can be resolved by the modification discussed above. The problem is the devi-
ation from the linear relation between log 7,(7") and 1/[TS.(T)] predicted by the
Adam—Gibbs equation (2.24) and found in many glassformers [396-398, 401]. This
problem does not appear in plotting log to(7) against 1/[TS.(T)] [401], where to(T)
is calculated from the experimental data of t4(7) and n(7) by inverting the CM
equation t4(7T) = [t. "(T)ro(T)]l/ (=) Figure 21 demonstrates this linear rela-
tion between log 7o(T) and 1/[TS.(T)] by an example taken from salol [401]. While
log 74(T) exhibits two very different linear dependences on 1/[TS.(T)] separated
by Tg, log to(T) is a linear function of 1/[TS.(7T)] in the whole temperature range
within the error involved in calculating log to(T'). The latter supports that the depen-
dence of the dynamics on Sc(7) starts at the primitive relaxation of the CM, and
the dependence of its relaxation time to(7) on 1/[TS.(T)] may be described by
Eq. (2.26). According to the CM, the structural relaxation time 7,(7) is determined
by the slowing-down and stretching effects of many-body relaxation dynamics. Due
to the more rapid increase of n(7) with decreasing temperature on crossing the char-
acteristic temperature 7g [423], the linear dependence of log 7o(T) on 1/[TS.(T)]
no longer holds for log 7,(7).

Although for some of the glassformers shown in Fig. 20 z*(T) correlates with
ny(Tg), there are also some outright violations. For example, z*(T;) of propylene
carbonate and ortho-terphenyl are nearly the same, 5.49 and 5.46, respectively, but
ny(Ty) of propylene carbonate (= 0.27) is significantly smaller than ortho-terphenyl
(=0.50) from dielectric relaxation measurements [237, 424]. The violations are not
surprising if ny(7Tg) reflects many-body relaxation dynamics as suggested by the

4+

log, (relaxation time)

0.04 0.08 0.12 0.16 0.20
1/7TS, ((kJmol))

Fig. 21 Test of the Adam—Gibbs equation for the a-relaxation time t,(7) of salol at tempera-
tures above 7;. The data (filled circles) are from dielectric measurements. The horizontal arrow
indicates the value of log(zy(7g)). The filled triangles are values of log t¢ calculated from 7o (7))
data according to the CM equation (2.14) with n(7) obtained also from dielectric relaxation data.
Replotted from data in [401]
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evidences in the previous and later sections, while z*(Ty) or LaG(Ty) are constructs
exclusively from thermodynamics.

Another attempt was made to calculate the values of z*(7y), the size of
the cooperatively rearranging region at 7Tg, for different liquids with the follow-
ing assumptions [400, 413]. From the Vogel-Fulcher-Tammann-Hesse equation
(2.25) for the dielectric relaxation time t, or for viscosity 7, it is argued that
7 = [1 = (To/T)]""; the energy term, A, is equal to RB; and the pre-exponential
term, T, Of 7y is equal to the pre-exponential term Aypry. For details see [400].
These 7*(T) values of different liquids have been found to be in the range 2.4-14.3
[400]. The values z*(T) of some glassformers including propylene carbonate and
ortho-terphenyl are about the same as those determined by Yamamuro et al. [420].
There are some that are difficult to accept. For example, tri-a-naphthylbenzene has
the anomalously low value of z*(T) = 2.4 while it is like ortho-terphenyl in many
other respects of dynamic properties including the magnitude of ny(7g), which is
about 0.50. For 1-butene, the value z*(T) = 10 is much larger than the value of 4.3
obtained by Yamamuro et al.[420].

There are several experimental facts of glass transition that the Adam and Gibbs
(AG) model either cannot explain or is contradicted. Some of these experimental
facts have been given before [253, 401] and more will be given in the sections to
follow. The problem of the AG model stems from its oversimplification of the many-
body relaxation dynamics by the cooperative rearranging regions and their transition
rate. At the time when Adam and Gibbs constructed their model more than 40 years
ago, none of the experimental data that now give us better idea of the nature of the
many-body relaxation dynamics were available to them. Considering this handicap,
the AG model is a remarkable historic accomplishment, and Adam and Gibbs need
not apologize for the shortcomings of their model. It is still much discussed, justi-
fiably so because configurational entropy can be measured and must contribute in
some manner to molecular mobility. However, one should not use the AG model in
its original form or with minor modification to explain experimental data unless the
fundamental problems of the 40-year-old theory have been rectified to incorporate
many-body dynamics. Unfortunately, this practice still continues in the current lit-
erature of liquids, glasses, and glass transition. This current practice is indefensible
because by now one should be aware of the overwhelming experimental evidences
(the thrust of this treatise) showing that many-body effects are an important part of
the structural relaxation and they cannot be handled by any purely thermodynamic
formulation such as the AG model or the free volume model. Explaining the rapid
increase of 14(7") with decreasing temperature (i.e., the glass transition problem) is
the focus and merit of the AG model. But, we should not forget that at any fixed
temperature 7, there are rich dynamics extending from microscopic times down to
74(T) that are worth considering and challenging to explain. As we shall see later,
the dynamics are fundamental and bear intriguing relations to the structural relax-
ation, which the AG model cannot handle. A solution of the glass transition problem
is not complete unless it can explain these essential details of the dynamics at con-
stant 7. Put another way, if one has not fully understood the dynamics at a constant
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temperature, how can one have confidence to construct a theory designed principally
to explain the temperature dependence of 7,(7)?

2.2.2.3 Length Scale from the Thermodynamic Fluctuation Theory

Donth [302] basically accepted the notion of cooperatively rearranging regions
(CRR) of Adam—Gibbs, but proposed a different method to calculate the size of
cooperatively rearranging regions CRR of Adam and Gibbs, V,, and the corre-
sponding characteristic length & = (V,)!/3. The idea in Donth’s theory was to
use the relation between the mean square temperature fluctuation 672 of a CRR
and N,, the number of particles per CRR. The relation was originally proposed as
8T? = kgT?/N,C, where C is the heat capacity per particle and kg is the Boltzmann
constant [302]. In the modern version of the thermodynamic fluctuation theory [121,
425], the relevant quantities are given by

Vo = &3 = kgT*[(1/C)& —(1/Cy)1i9)/p8T?  and Ny = Vup/Mo, (2.30)

where Cy is the specific heat at constant volume, M is the molar mass of the
fundamental unit (monomer in the case of polymer), p is the mass density, and
8T? = (8T)?, where 3T is taken as the width in temperature of the a-relaxation peak
of C"'(w = constant, T), the imaginary part of the dynamics specific heat at constant
frequency w. The procedure to extract the relevant parameters from calorimetric data
is given in detail in [425]. From the calorimetry data of many glassformers with dif-
ferent chemical and physical structures, the size of the CRR was determined by Eq.
(2.30) and the values of &, near 7; fall within the range of 1.0-3.6 nm. On close
scrutiny, £, does not seem to correlate with any other notable property such as non-
exponentiality measured by the Kohlrausch exponent n, or the Tg-scaled temperature
dependence of the a-relaxation time [112] quantified by the steepness or “fragility”
index:

_ deo(Ty/T)

. (2.31)
d(T/T) Ty/T=1

For example, &, of poly(methyl methacrylate) (PMMA) is 1.5 nm, which is sig-
nificantly smaller than 2.9 nm, the &, of glycerol [425, 296, 426], but both n and
m of the former are much larger than the latter. Another example is the comparison
of BMPC with OTP and polystyrene (PS). They all have the same &, = 3.0 nm,
but the dielectric dispersion of BMPC is narrower than OTP and PS, and the 7;-
scaled temperature dependence of the relaxation time of BMPC is much weaker
than that of OTP and PS. The application of the theory to the family of poly(n-alkyl
methacrylates) gave results on &, that correlate with m. The higher members of the
family with longer alkyl side chains have smaller &, and correspondingly smaller
m. However, the large width of the a-relaxation of higher members is contributed
significantly by concentration fluctuations originating from internal plasticization
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by the long alkyl side chains. This contribution to the width conceptually has noth-
ing to do with mean square temperature fluctuation of CRR, 872, but nevertheless is
used in Eq. (2.30) to calculate &,. Since only thermodynamic quantities are used to
deduce £, the inconsistencies of the values obtained may be due to the likely sce-
nario that many-body relaxation dynamics cannot be adequately described in terms
of CRR, irrespective of whether &, is calculated by the Adam—Gibbs method or
by the Donth method. Support of this comes from dynamic properties (to be pre-
sented later) which cannot be explained by the thermodynamic fluctuation theory.
In spite of the skepticism on the thermodynamic fluctuation theory, qualitatively its
results including the onset of cooperativity at some temperature higher than 7; and
the growing length scale with decreasing temperature are correct. Certainly, ther-
modynamics has a role in determining length scale. There is evidence of synergy
between thermodynamics and many-body effects [253, 387], and this may explain
why some of the results from Donth’s theory are qualitatively correct.

2.2.2.4 Dynamic Heterogeneity and Its Length Scale
The Structural a-Relaxation Is Dynamically Heterogeneous

Anyone giving any thought to many-body relaxation dynamics in interacting sys-
tems (e.g., glass-forming substances) naturally would be led to the question: How
do the fundamental units (molecules) move? It is not easy to answer this ques-
tion for real systems and substances because it is nearly impossible to describe
the movements of the large number of units, which is the Avogadro’s number
Nav = 6.022 x 10% molde™" for molecular glassformers, altogether simulta-
neously and as a function of time. There was no experimental or computational
technique that can do something toward this goal before 1991. Inability to answer
this demanding but natural question may be the cause of lack of theoretical efforts
to tackle directly the many-body relaxation problem. Asking anyone to describe the
movements of a large number of interacting units in detail may be unrealistic, but
some simpler questions on less specific properties of the motions in the many-body
dynamics may have an answer. Simple questions coming to mind are the follow-
ing. Are all units moving (relaxing) uniformly at the same time, and has each the
same Kohlrausch time dependence? This scenario was referred to as homogeneous
relaxation. If not, then necessarily there are some fast units which relax earlier and
some slow units which relax later, and the structural relaxation is dynamically het-
erogeneous. But then, is there any interplay between the fast and the slow units?
Glass-forming systems in general are amorphous, and the spatial and orientational
relations between the structural units fluctuate. From this fact, intuition alone would
be sufficient to tell us that it is highly unlikely that homogeneous relaxation can
occur. In 1989, the approximate analogy of the CM’s view on motion of molecules
with the process in the solution of the “dining philosophers problem” in computer
science [427] was pointed out [234] to gain insight into the dynamics of glassform-
ers from the solution of the computer science problem. The dining philosophers
problem is restated as follows. Imagine there are N philosophers sitting on chairs
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at the circumference of a round table and spend their entire time either eating or
thinking (i.e., not eating). On the table, at the center is a bowl of noodles, but
there is only one chopstick placed in between a neighboring pair of philosophers.
To eat, any philosopher absolutely needs to have in possession two chopsticks at
the same time. Each philosopher can only pick up the chopsticks on his immedi-
ate right or left. If a philosopher can pick up both chopsticks, he eats for a while.
After a philosopher finishes eating, he puts down the chopsticks on the table and
starts to think. However, at any time some philosophers may find either one or both
chopsticks on his left and right in the possession of his neighbors. In that case, he
keeps on thinking. The problem to solve is to find protocols for the philosophers to
eat and think in such a manner that everyone eventually gets to eat. A symmetric
and fully distributed solution to the dining philosophers problem was obtained by
Lehmann and Rabin [428]. This solution guarantees with probability one that every
philosopher gets to eat. The procedure of the solution can be described as follows
[427]. When a philosopher wants to eat, he randomly chooses between the left and
the right chopsticks with equal probability. Suppose his choice is the chopstick on
his right. Now he waits for that chopstick to be available. When that chopstick is
available, he picks it up. Next, he looks to his left. If the chopstick on the left is
available, he picks it up, eats, and afterwards returns both chopsticks to their orig-
inal places. If that chopstick is not available, he releases the first chopstick and
starts the whole process over again. Demonstration of a simple Java solution to the
dining philosophers problem can be found in the Internet. There are some “fast”
philosophers who have eaten earlier and some “slow” philosophers who eat later,
and they exchange roles later. The purpose of bringing up the solution of the din-
ing philosophers problem [234] is not only to suggest the presence of fast and slow
relaxing units and their interplay in structural relaxation in glassformers, but also
to enunciate that heterogeneous dynamics is envisaged by the coupling model. The
Kohlrausch function of the coupling model is a two-time correlation function. Like
all the two-time and two-space point correlation functions discussed in Sections 1.2
and 1.3 above, the Kohlrausch correlation function provides no information on het-
erogeneous dynamics of glassformers because the slow and fast motions have been
averaged out in the two-time correlation functions. Thus, there is no way to judge
whether a model is advocating homogeneous or heterogeneously dynamics based
on just the fact that the Kohlrausch function is invoked or employed. In particu-
lar, only averages over the dynamic heterogeneities are considered in the two-time
correlation function in the usual coupling model equations or, by the same token,
in the mode coupling equations. Besides, the CM abstains from giving a detailed
description of the motions of the molecules, as is evident from its description given
in Section 2.2.1.3.

It is unfortunate that in the 2000 review by Ediger [429], there is the following
statement: “Ngai recently used the coupling model to provide an alternate, homoge-
neous explanation for experimental observations of enhanced translational diffusion
(79a).” This statement effectively labels the coupling model as a model for homo-
geneous dynamics that contradicts experiments, in spite of my paper cited by him
(reference 79a in Ediger’s review, and [268] in the present treatise) explicitly making
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it clear that the dynamics in the coupling model is heterogeneous. The article on the
analogy of the CM to the dining philosophers problem published in 1990 [234] was
cited in [268] to make the point. The statement made by Ediger is plainly wrong.
The amount of damage done by this statement on the CM although cannot be esti-
mated but could be substantial because the 2000 review by Ediger has been cited
already 680 times by others up to 2009.

There was a similar misunderstanding of the CM by Sillescu [430], but he cor-
rected this mistaken view of the CM in a follow-up paper with others [431] by citing
the CM exclusively by my 1990 paper on the dining philosophers problem [234].

The paper invoking the analogy to the dining philosophers problem [234] was
published in 1990, a year before the seminal experimental work of Schmidt-Rohr
and Spiess [226]. In stating this, the intent in no way is to take credit away from the
contribution by Schmidt-Rohr and Spiess who had proven the dynamic are hetero-
geneous for the first time in 1991. Instead, the purpose is to let it be known that this
aspect of the dynamics, considered before the actual experimental proof, is within
the spirit of the coupling model.

The 4D-NMR experiment by Schmidt-Rohr and Spiess enabled them to examine
multi-time correlation functions beyond the usual two-time correlation functions,
which made possible to probe the complex dynamics of molecular reorientation. In
the 4D-NMR experiment and additional experiments following it [227, 228, 235,
421, 422, 432, 435], one can select a subensemble of slow molecules that have not
relaxed and subsequently monitor its relaxation on a different timescale. The het-
erogeneities are not static. Molecules slow at one time will exchange their dynamics
with the fast ones to maintain ergodicity. In a temperature region slightly above Tg,
the life-times of the heterogeneities, Tpet, are of the order of the a-relaxation time,
Ty, OF the mean a-relaxation time, < ty, > [227, 431, 436, 437]. If the two-time
correlation function is the Kohlrausch function (Eq. (2.22)), < 7, > is equal to
[T'(1/(1 —n))/(1 — n)]ty, where I' stands for the gamma function.

Other experimental methods used to show the existence of dynamic hetero-
geneity in supercooled liquids include optical deep bleaching [438], solvation
spectroscopy [231, 439], and polarization noise measurements [440]. The results
from all these other methods confirmed that near the calorimetric glass transition
temperature 7, the primary relaxation is dynamically heterogeneous. NMR and
polarization noise measurements all found that the heterogeneity lifetime tpe; is
of the order of 7, in PVAc, PS, ortho-terphenyl, toluene, glycerol, and 2-methyl
tetrahydrofuran (MTHF) [441] as shown in Fig. 22. However, optical deep bleaching
[442] gave much larger values of the ratio thet/7y of about 10 at 7/7T; ~ 1.015 that
increase rapidly with decreasing T /T, reaching almost to about 1000 at 7/T, ~ 1.0
(see Fig. 22). Solvation experiments on MTHF [231, 439] concluded a long-lived
heterogeneity, Thet/7q ~ 10, in the range of T/Ty > 1.055 at which NMR mea-
surements on the same substance found thei/7 =~ 1 (see Fig. 22). Since NMR
measurement is more precise and applied to more glassformers, it is likely that
the deduction of thei/7q ~ 10 from solvation experiment has to be taken with a
grain of salt. The glaring inconsistency of the lifetimes of the heterogeneities from
optical deep bleaching and solvation experiments with NMR and polarization noise



2.2 General Properties and Anomalies 99

3] L R R .
| * PVAc ® 4 glycerol A ]
. %0 PS ®m O toluene w |
oS 2k OTP ® O MTHF e |
<~ 12, ]
13 :

" > -

Tl - . SONE0) :
o | ]
L AFM NMR |
OF < "y oo * a4

1 " 1 i L i 1 " 1
100 102 104 106 T/T
g

Fig. 22 Temperature-dependent ratio of typical heterogeneity lifetimes and of structural relaxation
times, Thet/Tq, as deduced for various glassformers from NMR (closed symbols, the source of
the data are given in [441]) and from polarization noise measurements (AFM, +, [440]), from
optical deep bleaching (open symbols, [442]), and from solvation spectroscopy (dashed line, [39]).
According to [12] the dashed line marks a lower bound. Data from [441] are replotted in color

measurements can be seen in Fig. 22. The deductions from optical deep bleaching
is likely wrong, because if it were true then the ratio the;/7y Would increase by a
factor of nearly 100 in the range 1.015 > T//T, > 1.0, or about 1000 in the range
1.055 > T/Tg > 1.0 when NMR data are included. Such a large increase of et/ 7y
would engender a corresponding large change in the dispersion of the structural
a-relaxation. However, broadband dielectric relaxation of MTHF measured from
96.3 K (with 7, &~ 1073 s down to 89.9 K (with 7, &~ 10*s) shows little change
of the a-relaxation spectrum of MTHF [441]. This observation can be used as evi-
dence against the deduction of t¢1/7, from optical deep bleaching experiments.
There is another experimental fact that leads to the same conclusion. The study of
tri-m-cresyl phosphate (TCP) in mixture with poly(methyl methacrylate) contain-
ing 50.1 wt% of TCP by one- and two-dimensional ' P-NMR spectroscopy showed
the TCP molecules reorient isotropically [443]. Two-dimensional spectra for TCP
show the dynamics are heterogeneities and are transient in nature, i.e., The; Cannot
be much longer than 7, of TCP. This occurs for TCP even in a rigid polymer matrix
at temperatures well below the glass transition of the plasticized PMMA.

Non-resonant hole burning spectroscopy is another technique that shows the
existence of dynamic heterogeneity in supercooled liquids. This is a non-linear
dielectric method which allows one to achieve a frequency-selective modification
of the dielectric step-response function by the application of an intense electric field
[444, 445].

Molecular dynamics simulations of the binary Lennard-Jones particles [321, 446,
447] and simulations of the dynamic lattice liquid [327, 328, 448] also show hetero-
geneous dynamics. So is the experimental technique of confocal microscopy which
can monitor the motion of all the colloidal particles in suspension over several
decades of time [141]. There are mobile, less mobile, and immobile particles. The
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Fig. 23 A cut through a three-dimensional sample of colloidal suspension having ¢ = 0.52, with
arrows indicating the direction of motion for particles with displacements Ar > 0.24m, at the cage
rearranging time, At* = 600 s, estimated by finding the maximum of the non-Gaussian parameter,
ap(Af). The cut is 2.5 pm thick (~1 layer of particles). The arrows are all the same length in three
dimensions, so shortened arrows indicate motion in or out of the picture. Lighter colors indicate
particles with larger displacements. Inset: 120 min trajectory of a typical particle from this sample.
It exhibits caged motion, with a sudden cage rearrangement which lasts ~600 s. Reproduced from
[141(b)] by permission

mobile (or fast) particles were found to be strongly spatially correlated and exhib-
ited large extended clusters. These features are illustrated in Fig. 23 and the result
demonstrates that the structural relaxation in colloidal fluids occurs by means of
cooperative particles motion.

All the above experimental studies have established as a fact that in general the
structural relaxation is dynamically heterogeneous. However, one must not overes-
timate the degree of fundamental importance of dynamic heterogeneity. Like the
dispersion of the correlation function (or the Kohlrausch fractional exponent) and
other properties to be described later (such as the breakdown of Stokes—Einstein
relation), dynamic heterogeneity is one of several notable consequences of the
many-body relaxation. Each property is tantamount to just one glimpse into the
multi-facets of the complex many-body dynamics, the details of which cannot be
completely embodied by one property. All being parallel consequences, they are
consistent with each other, but this does not mean that one can consider one of them
more fundamental than the others and derive all the other properties from it. An
example of this attempt (to be discussed in great detail in Section 2.2.5.6) is the use
of dynamic heterogeneity (with additional assumption) to explain the breakdown of
Stokes—Einstein relation [429, 449-454]. This explanation had been proven unten-
able by several experiments which showed its other consequence contradicts data
[274, 275, 355, 455-458]. The situation has an analogy to the Indian fable often
used in science to warn against jumping to conclusion based on limited or partial
experimental facts. The fable describes several blind men each trying to identify an
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animal (which is an elephant) by his own touch. They touch different parts of the
elephant and naturally they give different identifications of the animal but not as the
elephant. Believing dynamic heterogeneity as most fundamental and identifying it
as the cause of all other dynamic properties of glassformers is as wrong as one of
the blind men who mistakenly identified the elephant as a mule by touching the tail
of the elephant.

Controversy on Homogeneous or Heterogeneous Dynamics of the «-Relaxation of
Polymers

In spite of the overwhelming evidences pointing to the dynamically heterogeneous
nature of structural relaxation of glass-forming systems, there is still an opposite
point of view from some workers studying dynamics using neutron scattering [459,
460] that might continue to influence others to do the same [461]. These authors
[459, 460] professed that incoherent neutron scattering results agree well with a
homogeneous scenario for the a-relaxation in glass-forming polymers, at least in
the timescale covered by their neutron scattering measurements which is about a
few nanoseconds. To them, homogeneous scenario is a process and I quote: “that all
of the particles in the system relax identically but by an intrinsically non-exponential
process.” This drastic difference in opinion with others created a lasting controversy
[462, 463] that continues on [235, 324, 464]. The homogeneous scenario was judged
by others [235, 462] to be erroneous.

There are two sources of misunderstanding by the authors of [459,460] that may
have led them to create the controversy. First, these authors defined heterogeneous
dynamics specifically as when the correlation function is a “superposition of dif-
ferent simple exponential relaxations weighted by a broad distribution of relaxation
times g(In7),” and they went further to state that “This picture is usually known
as the ‘heterogeneous’ ” [459, 460]. Their definition of heterogeneous dynamics
in glass-forming liquids is at variance with that from other experiments because
heterogeneities in supercooled liquids are transient in nature with lifetimes as found
out by multidimensional NMR [227, 228, 235, 421, 422, 432, 435] and non-resonant
dielectric hole-burning experiments [444, 445], and hence cannot be considered as a
superposition of independent exponential relaxations with different relaxation times.
AtT > Tj, the dynamical heterogeneity of the a-relaxation probed by these experi-
ments shows up in the manner that a dynamically distinguishable subensemble can
be selected, and its return to the full equilibrium ensemble on a timescale of the order
of the a-relaxation time 7, has been subsequently monitored. Thus the supercooled
liquid becomes ergodic when ¢ >> 1.

Using their unconventional definition of heterogeneous dynamics, Arbe et al.
[459, 460, 463] fitted the intermediate scattering function, F(Q,?), observed by
incoherent neutron scattering, by the Kohlrausch function

Fy(Q,1) = Aexpl—(t/7(Q, 7)1, (2.32)
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where 7, is the Q- and T-dependent relaxation time, § < 1 the stretching expo-
nent, and A= exp(— (uz) 0?) the Lamb—Mdssbauer factor to account for faster
processes characterized by an effective mean-squared displacement <u2) Arbe et al.
argued if a superposition of independent exponential relaxations were the origin of
the Kohlrausch time dependence of Fg(Q,?), then the Kohlrausch relaxation time
7, would have the same Q~2-dependence as each of the independent exponential
relaxations. This was used by these authors to rule out heterogeneous relaxation
(according to their definition as superposition of independent exponential relax-
ations) because from their own previous as well as subsequent incoherent neutron
scattering studies of several polymers [307, 308, 310, 313, 314, 464] they found
that the Q-dependence of 7,, in the Q-range restricted to Q < 1A~!, can be
approximately described by a power law determined by the stretching exponent :

(Q) occ 07Y/P. (2.33)

As polymers have § usually within the range 0.4-0.65, Eq. (2.33) predicts much
stronger Q-dependences than the Q~2-dependence of simple diffusion (see Eq.
(1.14)). This way of ruling out heterogeneous dynamics is moot because the real
heterogeneous dynamics in glass-forming liquids found by multidimensional NMR
is not a superposition of independent exponential relaxations. Present are exchange
processes between fast and slow particles or units. The question of heterogeneities
or homogeneous dynamics cannot be settled by considering Fy(Q, ) and the Q—/#-
dependence of its correlation time. Moreover, dynamic light scattering in colloidal
particles suspensions [143] also found the intermediate scattering function Fs(Q, 1)
and relaxation time given by Eqgs. (2.32) and (2.33), respectively, exactly the same
as neutron scattering in polymers. The motions of all the particles seen by confocal
microscopy [141] is without a doubt heterogeneous, and the results rule out homo-
geneous dynamics as would be expected by Arbe et al. from the Q~%/#-dependence.
Besides, even though the dynamics is spatially and dynamically heterogeneous, it
is hard to believe that F(Q, f) can be represented by a superposition of independent
exponential relaxations according to the definition of Arbe et al.

Second, a special homogeneous scenario was arrived at by the authors of [464]
by analyzing intermediate scattering function, Fs(Q, ), of incoherent neutron scat-
tering in glass-forming polymer melts. Results obtained were concluded by them
to be only compatible with the homogeneous scenario. The arguments [460, 463]
leading them to this conclusion go as follows. The #-dependence of F(Q, f) given in
Eq. (2.32) and the Q-dependence of 7, therein given by Eq. (2.33) are results from
neutron scattering experiments. Substituting Eq. (2.33) into Eq. (2.32), they [459,
464] obtained

Fy(Q,1) = Aexp[—Q*(rX(1)) /6] = A exp[—Q*D(T)iP), (2.34)

where D(T) governs the 7-dependence of 7,. From this equation, they concluded
that the increase of the mean-squared displacement associated with the a-relaxation
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is sublinear in time, i.€e., <r2(T )) ~ B with B < 1. This interpretation of neutron scat-
tering data was used by them to support their homogeneous a-relaxation scenario.
The controversy was created in several statements made by the authors in [459]
that include the following: “In this Letter we show that incoherent neutron scat-
tering results agree rather well with a homogeneous scenario for the a-relaxation
in glass-forming polymers, at least in the time scale covered by neutron scattering
techniques” and “From the Q dependent KWW relaxation times t,,, it could be
demonstrated that the apparent stretching of the a-relaxation function relates dom-
inantly to sublinear diffusion and is not a result of heterogeneities in the material.
Although this result was obtained at temperatures well above the glass transition,
the almost temperature independent stretching exponents suggest that this behav-
ior also prevails close to Tg.” It is important to note that the authors did not give
the origin of the sublinear diffusion, but nevertheless invoke it as the hallmark
for homogeneous relaxation. This is not necessarily true. Counter examples can
be found from the molecular dynamics simulation data of binary Lennard-Jones
particles [321]. There is sublinear diffusion in the LJ liquid like that found in
polymers by neutron scattering, but the dynamics are dynamically heterogeneous
as illustrated by motions of the particles. Another counter example is the col-
loidal particles in suspension monitored by confocal microscopy, where there is
sublinear diffusion but the motions of all particles are dynamically heterogeneous
[141]. Hence, one cannot conclude, based on the sublinear diffusion alone, that
the dynamics is homogeneous [463]. As will be shown in Chapter 3 on universal
relaxation/diffusion properties of interacting systems, subdiffusion is found by neu-
tron scattering in the center-of-mass diffusion of entangled linear polymer chains
[465] and by molecular dynamic simulations in diffusion of ions in glass [149,
466-472]. In all these cited cases, the motions have been shown to be dynamically
heterogeneous.

We have shown in the above that the controversy was created [459] first by the
wrong definition of dynamic heterogeneities and second by inference [464] from the
sublinear time dependence of the mean-squared displacement obtained by substitut-
ing the experimentally observed Q~2/#-dependence of the correlation time into the
intermediate scattering function Fg(Q, ) having the Kohlrausch time dependence.
The second step involves only experimental facts and no theory was introduced
to support the claim that the resulting (rz(t)> ~ 1P with B < 1 corresponds to
homogeneous dynamics. Actually, there is a way to interpret neutron scattering data
that avoids running into the controversy with others who have already shown the
a-relaxation, having the Kohlrausch time dependence (Eq. (2.32)) for its correla-
tion function, is heterogeneous by NMR and dielectric experiments [227, 228, 431,
444]. The way is to use the coupling model (CM), its concept, and predictions,
and it confers the bonus of having the Q~%*/#-dependence of 7, derived. As we
recall, the CM has professed that the many-body relaxation dynamics is heteroge-
neous [234]. For a-relaxation having the Kohlrausch form ¢(f) = exp[—(¢/ ru)l_"],
for its correlation function such as F(Q, ) from neutron scattering given by Eq.
(2.32), the exponent n is the indicator of many-body relaxation. The CM also
has predicted a relation between 1, and the primitive relaxation time t( by the
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quantitative relation now rewritten to show the dependences on various variables U
including Q:

(T, P, U, -, Q) = [t;"t(T, P, -, U, -, Q)] /1= (2.35)

This relation was the consequence of the crossover from independent relaxation
to heterogeneous cooperative many-body relaxation at a temperature-insensitive
time #. predicted by the CM and actually observed at . & 2ps by neutron scat-
tering experiments [307, 308, 310, 312-314] and molecular dynamics simulations
[258, 315, 316, 324-326]. From Eq. (2.35), dependences of 7 on any variable U,
including temperature 7, pressure P, and scattering vector Q shown explicitly, will
all be modified by the power 1/(1 — n), to stronger dependences. Since 7 of inde-
pendent relaxation has the Q2-dependence, it follows from this equation that 7, has
the Q=% (1_”)-dependence (Eq. (2.33)) as observed by experiments. We shall see
more of the utility and versatility of Eq. (2.35) in explaining other properties of the
a-relaxation of glassformers as well as in other complex systems. We also hasten to
add that the primitive relaxation time 7 calculated from the known values of ¢, n,
and 7, by the counterpart of Eq. (2.14), 7o(T, P) = (t.)"[1o(T, P)]' ™", is in order of
magnitude agreement with the relaxation time of an observed secondary relaxation
with properties showing connection to the a-relaxation. This remarkable fact about
the primitive relaxation time is the subject of extensive discussion in Section 2.3.

A new twist in the interpretation of F(Q,t) obtained by neutron scattering and
simulation was given later [324, 464, 473]. In these references, the Gaussian or non-
Gaussian nature of the space distribution was used to characterize the dynamics.
Gaussianity was either interpreted from the Q-dependence of F(Q,f) of neu-
tron scattering experiments or from the non-Gaussian parameter o;(#) obtained by
molecular dynamics simulation. As we may recall, Fs(Q, ) is related to the self-
part of the van Hove function Gg(7, ) which give the space and time-dependent
distribution function (see Eqs. (1.111)—(1.115)), and the non-Gaussian parameter
() is defined by Eq. (1.125). From the Q>-term appearing explicitly in Eq. (2.34),
the authors of [464, 473, 474] concluded that the self-part of the van Hove cor-
relation function is a Gaussian function. For larger Q, Fs(Q, t) no longer has the
dependence on Q as appearing in Eq. (2.34), and this regime was considered to be
non-Gaussian. These authors interpreted the data as a crossover from a Gaussian
regime of sublinear diffusion at longer distances to a strongly non-Gaussian regime
at short distances. Thus they reaffirmed the idea of identifying Kohlrausch time
dependence of F(Q, t) in the form of Eq. (2.34) as Gaussian and dynamically homo-
geneous behavior [324, 464]. They went on to say that their proposed crossover
from Gaussian to non-Gaussian “. .. could be understood as a homogeneous to het-
erogeneous crossover of the incoherent dynamics involved in the a-relaxation.” This
understanding shows they maintain their view that F(Q, r) having the Kohlrausch
time dependence of F(Q,t) in the form of Eq. (2.34) indicates homogeneous
dynamics, contradicting the view of others and the CM interpretation. Nevertheless,
they constructed an anomalous jump diffusion model with a distribution of jump
lengths to explain the so-called Gaussian-to-non-Gaussian crossover. Actually, there
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is no need to invoke the new model to explain the crossover because the data are
fully consistent with the transient nature and the finite life-time of dynamic het-
erogeneities of the a-relaxation. It was pointed out [468] that a»(7) as a function
of time and the relation between a»(f) and < r2(f) > are similar in three differ-
ent interacting systems, binary Lennard-Jones particles [321], the colloidal particles
[141], and ions in oxide glasses [468]. In these systems, o(f) starts from zero at
short times, increases with increasing time to reach a maximum, and finally goes
to zero at long times. As T decreases (or as volume fraction increases in the case
of colloidal particles), the position of the maximum #y,,x shifts toward longer times,
and the height of the maximum r%(f) increases. For all temperatures or volume frac-
tions, whichever is appropriate, the maximum occurs at time #,x, which is after the
plateau of < r2(r) > signifying caged dynamics [468, 475] has ended by primitive
relaxations and near the time when the sublinear diffusion, <r2> ~ P with B <1,
starts (called 7, in [468]). The decrease of «y(f) down to zero at times longer than
max 1S simply the consequence of a finite life-time, Tpe(, Of the heterogeneities. As
time increases to approach the, there are increasing exchanges between the fast
and the slow units. Heterogeneity and «»(#) decrease together. At even longer times
when t > Ty, it is no longer possible to distinguish fast and slow particles; het-
erogeneity as well as oa(¢) vanishes. In other words, the systems becomes ergodic
and the spatial distribution is Gaussian. The decrease of a>(#) down to zero at times
shorter than 7, is because the shorter is the time in the plateau regime, the more
likely are the particles being caged.

The features described above can be found also in the ay(f) and <r2> obtained
for the polymer, polyisoprene, by molecular dynamics (MD) simulations (see Fig. 3
of [324]), although the terminal steady-state diffusion regime, <r2> ~ t, is absent
because the calculated (r?) is for a repeat unit of a long chain in a polymer, which
does not translate to long distances and contribute to viscosity. The advantage that
neutron scattering and MD simulation have on some other experimental techniques
is the extra Q-dependence, which is evident from the form of intermediate scattering
function in Eq. (2.34). From this expression, it is clear that a smaller Q means a
longer relaxation time 7,(Q) for Fs(Q, r). In discussing the data here, let us start at
some Q. such that 7,(Qc) > Thet. Under this condition and at times longer than
74(Qc), the exchange processes between slow and fast units are nearly complete,
dynamic heterogeneity is no longer important, and the space distribution is hence
Gaussian. On decreasing Q beyond Q., 7,(Q) increases further past 7, (Q.); for times
longer than t,(Q), a2(t > 14(Q)) decreases down to near zero value (see Fig. 6 of
[324]) and the spatial distribution is Gaussian. Also for the same times, t > 7,(Q),
the system is ergodic. However, for times shorter than and not much longer than
74(Q), the dynamics of the a-relaxation described by F(Q, ¢) having the Kohlrausch
time dependence in Eq. (2.34) is dynamically heterogeneous, and o is non-zero.
Therefore, in the region, Q < Q, the system is ergodic and the spatial distribution
is Gaussian only for 7 > 74,(Q), but otherwise for r < 7,(Q) the dynamics of Fs(Q, 1)
is heterogeneous, contradicting the opposite conclusion of homogeneous dynamics
by authors of [324]. Like discussed before, this contradiction is artificial and can
be avoided by using the CM, and the Q~%/#-dependence of 7, found for O < Q.
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can be obtained via Eq. (2.35) without contradicting the heterogeneous dynamics
of Fs(Q,1).

The MD simulation at 363 K [324] found that Q. is slightly smaller than Qpax,
where Omax 18 the value of Q at the first maximum of the static structure factor.
Hence, when Q is increased to exceed Qc, the length scale probed is small and
F(0Q, 1) is contributed by local and non-cooperative relaxation processes all having
O~ 2-dependence for their relaxation times. This is supported by 74(Q) becoming
comparable and less than the onset time of the (r*) ~ ¥ with 8 = 0.4 which
has the same order of magnitude (see Fig. 3 of [324]) as 7,(Qc:) =~ 30 ps (see
Fig. 6 of [324]). The observed crossover of the O-dependence is thus explained.
The maximum of «; is located at r* = 4 ps. Its width at half-maximum encompasses
7,(Q) for all Q larger than Q. reported [324], and hence the spatial distribution is
non-Gaussian.

In the above, we have brought into consideration the relation of the lifetime of
dynamic heterogeneity to 74(Q), the very local length scales probed by Fs(Q, 1)
when Q > Q., and the derivation of the Q‘Z/ ﬁ-dependence of , for O < Q. by the
CM. These elements are necessary for interpreting neutron scattering and simula-
tion data, and the crossover of the Q~2/ B-dependence of 7, for Q < Q. to a weaker
Q-dependence for Q > Q. can be explained without contradicting dynamically
heterogeneous nature of the many-body a-relaxation for Q < Q.. Alone, F(Q, 1)
and its Q-dependences from neutron scattering and simulation cannot unravel the
nature of the dynamics as attempted in [324]. Higher order space and time correla-
tion functions than F(Q, ) are needed for this purpose, and they have been given
by multidimensional NMR measurements.

Length Scale of Dynamic Heterogeneity

As mentioned before, the length scale of the dynamic heterogeneity of several
archetypal glassformers had been measured by an advanced solid-state NMR experi-
ment [421]. This multidimensional NMR experiment of Tracht et al. makes possible
selection of a slow subensemble which has distinct 13C-NMR characteristics. Then,
the magnetization of this subensemble is allowed to diffuse. After various times,
13C spins are interrogated to determine if they are still the slow units. At sufficiently
long times, the '3C spins are found on sites whose dynamics are characteristic of
the entire ensemble. From the time required to leave the slow subensemble, the het-
erogeneity length scale, &, can be calculated using an independent measurement
of the spin diffusion coefficient. The most recent reported values of &ne; [422] are
éhet = 3. 71 nmat T = Ty+9 K for poly(vinyl acetate) (PVAC); &pey = 2.2—2.9 nm
at T = Ty + 9 K for 1,2-diphenylbenzene (ortho-terphenyl); and &per = 1.3 nm at
T=Ty+10K, &het = 1.1 nmat T = Ty +14 K, and épe = 1.0 nmat 7 = T, + 18K
for 1,2,3-propanetriol (glycerol). The numbers of molecules per slow domain with
length scale & are estimated to be 390 monomer units of PVAc, 76 molecules of
OTP, and 10 molecules of glycerol. Due to the sophistication of the technique and
the need of 13C labeling of the material, no more measurements of &,e for other
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glassformers were made except for D-sorbitol [476]. At 275 K(T; + 7 K), the value
of &pe; of sorbitol was reported to be 2.5 & 1.2 nm.

Correlation of &pe¢ with n

Although we have data of &pe¢ for only four glassformers, they are worth further
consideration since they were obtained directly from experiments. Simple reasoning
in several possible ways can lead one to see correlation between &pe; and the width
of the dispersion of the structural relaxation. In [476] it was argued that, in a system
with a smaller &¢q, particles might move with a lesser spread of mobility and hence
narrow distribution of relaxation rates than particles in a system with large &pe¢. Such
argument must be right because the width of the dispersion and the size of & are
both parallel consequences of the many-body relaxation dynamics, and hence the
two quantities must be correlated. In fact, an attempt was made to test the correlation
between n and & (actually the equivalent anti-correlation between the Kohlrausch
exponent, Sk = 1—n, and &ne) [476] with data of PVAc, OTP, sorbitol, and glycerol.
The correlation between n and &y is not perfect. The bad actor is sorbitol which has
the smallest fx = 0.41 or the largest n = 0.59 [476], but not the largest &ne. The
problem of this test is that the values of Bg of PVAc, OTP, sorbitol, and glycerol
were taken from different sources where different criteria were used to analyze the
dispersions. The only objective way to carry out the test is to obtain Sk or n values
for all four glassformers using dispersions all obtained by the same technique and
the same criterion in fitting the data by the Kohlrausch functions. When fitting the
frequency dependence of the a-loss peaks obtained by dielectric relaxation by the
one-sided Fourier transform of the Kohlrausch function, one criterion used is the
emphasis of good agreement with the loss data on the main peak especially the
low-frequency side, if no significant conductivity contribution is present there or it
has been removed if present. Deviations of the Kohlrausch fit to the data invariably
occur at frequencies sufficiently high above the loss maximum. The deviations are
considered natural in the coupling model interpretation of the evolution of dynamics
with time as explained in [477] and practiced in [195] and other works. They come
from processes of smaller length scales that transpire at shorter times before the
dynamics evolves to the one with maximum length scale and correlation function
given by the Kohlrausch function. This criterion had been applied uniformly to all
four glassformers in previous works. The n value in decreasing order is 0.53-0.57
for PVAc [238, 267, 478], 0.52 for sorbitol [195], 0.50 for OTP [237], and 0.29
for glycerol [195]. These systematically and consistently determined values of n are
well correlated with the & values of the four glassformers.

An attempt was made to correlate the steepness or the “fragility” index m with
&net for these four glassformers. No correlation between & and m was found. As
will be discussed in greater details later, 7, is determined not only by the effects of
slowing down by many-body relaxation but also by thermodynamic factors includ-
ing specific volume and entropy. The same can be said about m since it is the
Ts-scaled temperature dependence of 7. Furthermore, glycerol and sorbitol belong
to the same family of polyols, with hydrogen bonding; ortho-terphenyl has benzene
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rings and is a van der Waals liquid; and PVAc is a polymer. Differences in chemi-
cal bond and structure of these four glassformers cannot guarantee similar changes
of specific volume and entropy with Ty-scaled temperature. All the different factors
contributing to m will frustrate the relation between it and other more fundamen-
tal quantities such as ¢ in the present case, and correlation cannot survive. We
shall see later other examples of failure of correlations of m with other quantities
including n. Nevertheless, if restricted to the same chemical family of glassformers
to minimize the influence of extraneous factors, some correlations of m with other
quantities can be restored [112, 479, 480]. Examples include restriction to carbon
backbone polymers [479] and to Ge—As—Se glass-forming chalcogenides [480].

2.2.2.5 Length Scale from Relaxation Behavior of Nanophase-Separated
Side-Chain Polymers

Nanophase separation of incompatible main and side-chain parts is a general
phenomenon in amorphous side-chain polymers with long alkyl groups. This prop-
erty was shown [297, 298] by X-ray scattering and relaxation spectroscopy data
acquired from higher members of the poly(n-alkyl acrylates) (PnAA) and poly(n-
alkyl methacrylates) (PrAMA) that alkyl groups aggregate in the melt and form
self-assembled alkyl nanodomains with a typical size d of 0.5-2 nm. Such sizes
have been deduced from Bragg spacings dyj obtained from prepeaks found by X-ray
scattering.

This is shown in Fig. 24 together with a comparison with some data for other
polymer series having alkyl groups, including poly(di-n-alkyl itaconates), hairy
rod polyimides, and poly(alkylbenzimidazol-als-thiophene). The data of Beiner and
Huth reveal that the alkyl nanodomain size and the dynamics are mainly determined
by the number, C, of alkyl carbon atoms per side chain and depends slightly on
the microstructure of the main chain. A polyethylene-like glass transition driven by
a process called apg within the alkyl nanodomains has been observed by dielec-
tric, mechanical, and dynamic heat capacity spectroscopy [297, 298]. The results
described for different series of side-chain polymers support that apg is a gen-
eral phenomenon. The angular relaxation frequencies 1/tcpg of apg are shown
as a function of 1000/T in Fig. 25 for three higher PnAA with C=4 (filled trian-
gles), C=8 (filled diamonds), and C=10 (filled circles), together with the VFTH
fits to 1/t pr and 719 pg for C=8 and C=10, respectively, and an Arrhenius fit to
1/t4pg for C=4 [481]. The open symbols on the VFTH fits mark the temperatures
at which 7g pg and 19 pg have reached 1 s. The nanodomain size d serves as an upper
bound of the heterogeneity length scale, &, of apg. Hence the observed change of
dynamics of apg with C provides the corresponding dependence of the dynamics
on &per. For example, increasingly weaker 7-dependence of 1/7¢ pg with decreasing
C or d is evident. The fragility m(C) calculated from 1/7¢cpg with Ty defined by
7cpe = 1s for all C < 10 show correspondingly monotonic decrease. This trend
can be seen from the values of m in the inset of Fig. 25. For C=4 with the small
alkyl nanodomain size &~ 0.5 nm, its apg processes have properties different from
that of the higher PrAA and PnAMA members. The apg process in C=4 (PnBMA



2.2 General Properties and Anomalies 109

Fig. 24 (a) Equivalent Bragg

spacings djj as obtained from (a)

prepeaks for methacrylates 3+ P © 6 1
(circles), acrylates (squares), a > @
itaconates (stars), and hairy 1 o

rod polyimides (diamonds).
The lengths of extended alkyl =

groups are given for < .
comparison. (b) Schematic c o | 50 £t *\g
pictures for the situation in | G\

the nanophase-separated T

melt. A local 1D picture (left) T . '{3?;
and a global 3D view (right) =
are compared. The light grey
regions are the alkyl

nanodomains and the small 0 1 i1 | R R A |
dark ellipses represent the 5 6 10 14 18
carboxyl groups. Reproduced a|ky| carbons per side chain

from [297] by permission

(b)
o
E %; g E % dy
d,
rﬂ\

or PnBA) has small intensity; its relaxation time, t4 pg, has nearly Arrhenius tem-
perature dependence; and its steepness (fragility) index m is about 14, close to the
minimum value of fragility. The Arrhenius fit to the 4 pg data of C=4 in Fig. 25 is
given by the expression 74pg &~ 107138 exp(40.3 kJ/RT). These features all seem
to indicate that cooperativity is close to being totally removed in the apg process of
Cc=4.

The apg of PhAMA exhibits the same property as shown for PnAA as shown in
Fig. 26. The polyethylene-like glass transition in self-assembled alkyl nanodomains
is perhaps the best case for experimental support of the correlation of fragility with
length scale. Nothing is changed except for the size of the alkyl nanodomains. For
C=4, the Arrhenius 7-dependence of 1/74 pg together with the near minimum value
of m reached indicates the total absence of cooperativity when the alkyl nanodomain
size is less than 0.5 nm. This estimate of the minimum size for cooperativity applies
to the polyethylene-like dynamics and may not apply to other glassformers because
of the difference in intermolecular interaction/constraint. The absence of cooper-
ativity in apg of C=4 means it is no different from a secondary P-relaxation of
the Johari—Goldstein (JG) kind [481]. In other words, the observed apg process
of C=4 may appropriately be identified as the Ppg process. This indicates that
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Fig. 25 Arrhenius plot for the angular relaxation frequencies, w = 1/tcpg, of apg processes
in higher PnAA with C=4 (filled triangles), C=8 (filled diamonds), and C=10 (filled circles) as
obtained from dielectric spectroscopy [297]. The lines are fits to the Vogel-Fulcher—-Tammann—
Hesse equation for C=8 and C=10, and a fit to the Arrhenius equation for C=4. For explanation
of the other symbols and vertical arrows, see text. The inset is the cross-plot of nc against m(C)
for C=4, 8, and 10 of the PnAA series (squares) and C=4, 7, and 10 of the PnAMA series (cir-
cles). The data point (m,n) from amorphous PE is included (triangle). Reproduced from [481] by
permission
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Fig. 26 (Left) Arrhenius plot for the relaxation times tcpg of apg processes in higher PnAMA
with C=4 (triangles), C=7 (diamonds), and C=10 (circles). Data from dielectric spectroscopy
(full symbols), mechanical spectroscopy (open symbols), and heat capacity spectroscopy () are
shown. The lines are fits to the Vogel-Fulcher—Tammann—Hesse equation for C=7 and C=10, and
a fit to the Arrhenius equation for C=4. For explanation of the vertical arrows, see text. Plotted
also are the JG B-relaxation times of bulk PuBMA (C=4) samples with different degrees of poly-
merization of 1000 (), 52 (V¥), and 18 (»). The figure on the right is the cross-plot of n¢ against
m(C) for various C values of the PnAA series and the Pt AMA series. Reproduced from [481] by
permission
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for polyethylene-like dynamics, the length scale of the a-process must be larger
than the small alkyl nanodomain size &~ 0.5 nm of C=4 in order to have usual
characteristics of the usual cooperative structural a-relaxation such as VFTH tem-
perature dependence and heat capacity response at glass transition. For C>4, apg has
these characteristics because the size of the nanodomain is larger than the minimum
requirement of 0.5 nm. The higher glass transition temperature and larger m¢ that
the nanodomain of larger C has are a reflection of the increase of the length scale
with increasing C up to the maximum value in bulk PE. The alkyl nanodomain size
~ 1.5 nm of C=10 poly(n-decyl methacrylate) (PnDMA) could be used as a lower
bound of the maximum length scale of the a-relaxation in PE.

The universality and fundamental importance of the JG secondary relaxation in
glass-forming systems will be discussed in Section 2.3. Moreover, there is a relation
between JG B-relaxation time and the a-relaxation time via the coupling or non-
exponentiality parameter of the a-relaxation afforded by the CM. Applied here to
7c,JG (or its approximant 74 pg) and tc pE, the relation enables the coupling parame-
ter nc of the apg process to be calculated for C > 4 [481], and the results are plotted
against mc in the insets of Figs. 25 and 26. These plots serve to show the correlation
between n¢ and mc, as well as the length scale of the apg process. This is because
all three quantities increase monotonically with C.

In calculating n of the apg process for C > 4 in the above, we have assumed
that the observed apg = Bpg process of C=4 can be identified as the JG B-process
for C > 4 and the universal existence of the JG B-process for all glassformers
including alkyl nanodomains of C > 4. Although not resolved by normal cool-
ing rates, the JG B-relaxation associated with apg for C>4 should exist if the JG
B-relaxation in glass-forming systems is indeed universal. Also its relaxation time
7c G should be nearly the same as 74 pg since apg for C=4 is non-cooperative and
identifiable as the fpg process [481]. These expectations were subsequently verified
experimentally by Beiner and coworker by rapidly quenching C=10 poly(n-decyl
methacrylate) (PnDMA) and C=7 poly(n-heptyl methacrylate) [482]. For rapidly
quenched samples, sometimes one or two additional peaks were detected on the
high-frequency flank of the apg process in the frequency range where the apg = Bpg
process is observed for the slowly cooled C=4 side-chain polymers with short alkyl
groups and small alkyl nanodomains. Shown in the left panel of Fig. 27 is the case
where a small peak appears on the high-frequency side of the apg process after
rapid quenching (1st) the sample. This peak disappears after periods (2nd and 3rd)
of physical aging slightly below 7, the conventional glass transition temperature
of the a process (not the apg process). The two peak maxima frequencies from
dielectric measurements at different temperatures on quenched samples (1st sweeps)
are shown in the right panel of Fig. 27. The frequencies of the two additional
peaks in the quenched C=10 samples have Arrhenius-like temperature dependence.
They are higher than the relaxation frequencies of the conventional structural relax-
ation process a and the polyethylene-like structural relaxation process opg (open
symbols) in C=10 (PnDMA). Interestingly they are in good agreement with the
frequencies of the apg = Ppg process in C=4 (PnBMA) shown in Fig. 26 and rep-
resented in Fig. 27 (right panel) by the thick dashed-dotted line. The observation
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Fig. 27 (Left) Dielectric loss ¢” vs. logarithm of the angular frequency @ measured for C=10
poly(n-decyl methacrylate) (PnDMA) at —80°C after rapid quench without aging (1% sweep), and
after physical aging of the quenched sample for 20 min (2™ sweep), and for 40 min (3" sweep) at
a temperature 7. = —73°C slightly below the glass temperature [482]. (Right) Arrhenius plots of
the two peak maxima frequencies from dielectric measurements on quenched samples (1st sweeps)
are indicated by closed triangles and circles. The relaxation frequencies for the conventional glass
transition a (open symbols) and for the polyethylene-like glass transition apg (open symbols) in
C=10 (PnDMA) are shown for comparison. Data of a and apg for C=10 from dielectric spec-
troscopy (triangles), shear (diamonds), and heat capacity spectroscopy (squares) are included. The
thick dashed-dotted line corresponds to the apg = Ppg process in C=4 (PnBMA) as shown in
Fig. 26. Reproduced from [482] by permission

of the localized B-process in the alkyl nanodomains of C=10 after rapid quench
is due to enhancement of its amplitude of motion by additional free volume intro-
duced, which disappears during physical aging slightly below Tg(a). These effects
of quenching and aging on the B-process are similar to that found for conventional
bulk glassformers to be discussed in Section 2.3.

A recent experimental study of PnBMA and PnHMA [482(c)] has verified
the conclusions made first in [481] and previously confirmed by experiment in
[482(a), 482(b)]. Another confirmation is the study of alkyl nanodomains in
poly(3-alkylthiophenes) by Pankaj and Beiner [297].

2.2.2.6 Length Scale from Nanoconfinement

In some models of glass transition, such as Adam—Gibbs [30], Donth [121], and
several others such as [483], the cooperative structural relaxation dynamics is char-
acterized by a temperature-dependent correlation length & (7). The increase of (7))
with decreasing temperature was used to explain the corresponding rapid increase
of 7,(T) in the manner of the Vogel-Fulcher—-Tammann—Hesse (VFTH). As we have
seen above, near the glass transition temperature, £ estimated from some glassform-
ers is in the range of a few nanometers as expected [484]. Therefore, if one or more
than one dimension is reduced to some nanometer size d, the increases of & on
decreasing temperature will be arrested when &(7}) exceeds d. Consequently, the
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VFTH temperature dependence of t,(7") found at high temperatures T > T, cannot
continue below Ty, where 7,(7) will have a milder temperature dependence. Such
an effect was found in small molecule glassformers in nanometer spaces [485-506].
However, interpretation of the observed effect by the Adam—Gibbs model turns out
to be problematic as will be discussed later in Section 2.2.5.8.

A comprehensive investigation of the effect on nanoconfinement was performed
by Schoénhals and coworkers [498-500] on poly(dimethyl siloxane) (PDMS, with
My, = 1400 g/mol, and Ty = 151 K) and poly(methyl phenyl siloxane) (PMPS,
My, = 1000g/mol, and T, = 212K). Dielectric spectroscopy, temperature-
modulated differential scanning calorimetry (TMDSC), and quasielastic neutron
scattering were employed to investigate the molecular dynamics of poly(dimethyl
siloxane) (PDMS) and poly(methyl phenyl siloxane) (PMPS) confined to random
nanoporous glasses with mean pore dimensions of 2.5, 5.0, 7.5, and 20 nm to con-
fine the two polymers. In all pores, the confined PDMS and PMPS had faster local
segmental (structural a-) relaxation than the bulk state. The temperature dependence
of 7, from dielectric measurements still had the VFTH form for pore size of 20 and
7.5 nm (see Figs. 28 and 29).
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Fig. 28 Relaxation map for PDMS: (H) bulk, (e) 20 nm, (A) 7.5 nm, () 5 nm, from dielectric
measurements. Corresponding open symbols are from TMDSC measurements. The dashed lines
are fits of the VFT equation to the data. The solid line is a fit of the Arrhenius equation to the data.
E, = 48.4 kJ/mol, log(foc[Hz]) = 20.1. Inset (A) gives the dielectric loss vs. frequency for PDMS
confined to nanoporous glasses with a pore size of 5 nm: (A) T = 153.9K, (0) T = 142.4 K, (0J)
T = 136.6 K. The lines are fits of the HN-function including a conductivity contribution to the
data. Inset (B) gives the uncorrected dielectric relaxation strength Ae vs. inverse temperature: (H)
bulk, (e) 20 nm, (A) 7.5 nm, (#) 5 nm. The lines are linear regressions to the data. Reproduced
from [498] by permission
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Fig. 29 Relaxation map of PMPS plotting the maximal loss f, vs. 1/T of PMPS: () bulk, (&)
7.5 nm, (¢) 5 nm, and (x) 2.5 nm are from dielectric measurements. Corresponding open symbols
are from TMDSC measurements. The dashed line is fit by the VFTH equation to the bulk data.
The dashed-dotted line is a fit by the VFTH equation to the data of PMPS confined in 7.5 nm
pores. The solid lines are fits by the Arrhenius equation to the data of PMPS confined in 5 nm
(Ey = 73.7 kJ/mol, log(foo[Hz] = 18.5) and in 2.5 nm (E, = 39.8 kJ/mol, log(fs[Hz] = 11.9).
The inset gives the uncorrected dielectric relaxation strength Ae vs. inverse temperature: (H) bulk,
(%) 2.5 nm. The lines are linear regressions to the data. Reproduced from [499] by permission

However, at pore size of 5 nm, the temperature dependence of 7, was changed
to an Arrhenius dependence, 7 (7) = 7o exp(E,/KpT). The activation energy E, is
48.4 kJ/mol for PDMS and 73 kJ/mol for PMPS. The temperature dependence of 7,
of PMPS confined in 2.5 nm pores also is Arrhenius with E; = 40 kJ/mol and
Too = 1071275, like the sizes of the corresponding parameters of a local and
independent relaxation. When the 7-dependence of t, is still VFTH-like (bulk or
confined in 20 and 7.5 nm pores), the dielectric strength Ae of PDMS and PMPS
decreases with increasing temperature, typical for structural a-relaxation in all
glassformers. The change in the temperature dependence of 7, to Arrhenius depen-
dence of PDMS when confined in 5.0 nm pores or PMPS in 5.0 and 2.5 nm pores is
accompanied by a change in the temperature dependence of the dielectric relaxation
strength: it increases with increasing temperature (see insets of Figs. 28 and 29). The
changed temperature dependence of Ae is a characteristic for localized molecular
motions.

Temperature-modulated differential scanning calorimetry (TMDSC) measure-
ments also provide valuable information on dependence in pore size. The step in the
specific heat AC), at Ty, normalized to the weight of the confined polymer, decreases
strongly with decreasing pore size. For PDMS and PMPS confined to pores with a
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Fig. 30 AC, normalized to the weight of the confined polymer vs. pore size: (ll) PDMS, (o)
PMPS. The lines are guides for the eyes. The inset gives the real part of the complex heat capacity
obtained by TMDSC for PDMS at the labeled pore sizes. The temperature was modulated with a
modulation time of 200 s and an amplitude of 0.5 K. The underlying heating rate was 0.25 K/min.
The dashed lines are extrapolations of ¢, below T; to temperatures above Ty. Reproduced from
[499] by permission

dimension of 5.0 and 2.5 nm, signature of glass transition was not observed from
AC, by the temperature-modulated differential scanning calorimetry measurements
within the experimental uncertainty (see inset of Fig. 30 in the case of PDMS).
These results provide independent evidence that a cooperative length scale is rele-
vant for the glassy dynamics in PDMS and PMPS. From this trend of the calorimetry
data, the cooperative length scale of about 5 nm was proposed, which is larger than
other reported values. The discrepancy could be due to the presence of an immo-
bilized boundary layer found for PMPS, which means that effective pore size is
smaller than 5 nm.

Neutron scattering experiments were carried out only for PDMS [498] and PMPS
[499]. The samples were protonated, and thus incoherent scattering dominates and
the data are for the self-correlation function F(k, f) defined in Eq. (1.114). Neutron
backscattering instruments used has high energy resolution in the range of 1 peV,
corresponding to observation times of the order of t ~ h/E ~ 4 ns. The elastically
scattered intensity Ig) measured as a function of temperature is normalized by the
total scattering intensity Ip measured below 2 K where all molecular motions are
frozen. Assuming a Gaussian form for the elastically scattered intensities the mean-
squared displacement < 2 >t is deduced from the relation

La/lo = exp[—Q* < r* > /3]. (2.36)
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Fig. 31 Temperature dependence of < 12 >x of PMPS for the different pore sizes: open

squares—bulk, open circles—7.5 nm, open diamonds—S5 nm, open triangles—2.5 nm. The inset
gives the slope d < P >eff /dT for T > Tgpu vs. inverse pore size. Reproduced from [500] by
permission

The temperature dependence of < 2 > ¢ for bulk PMPS and PMPS confined in
7.5, 5.0, and 2.5 nm pores are shown in Fig. 31. The PMPS sample used in neutron
scattering studies has higher molecular weight and 7; than the one discussed above.
The parameters are M,, = 2600 g/mol, polydispersity index My, /M, = 1.20, and
T, = 223 K. On increasing temperature, the first rise of < P >.ff in the vicinity
of 100 K is due to the fast methyl group rotation (see Fig. 31). This is a localized
and independent relaxation and therefore it is not much influenced by the confine-
ment. After this step rise, < r> > exhibits a plateau of slow increase of < r2 >
with temperature, and the height of the plateau is not much changed by confine-
ment. Shown before, the plateau reflects the caged molecule dynamics [115, 195,
507, 508], and this will be discussed in detail in Section 2.3. Since caged dynam-
ics is insensitive to confinement, it follows the same for the plateau as observed.
The plateau continues till near a temperature Ty, beyond which < r? > of bulk
PMPS shows a steeper increase with temperature. For the unconfined PMPS, T is
approximately 223 K, the T; of bulk PMPS. This elbow shape of the temperature
dependence of < 12 > with Ty ~ T, is general and found in many bulk glass-
formers of different types [114, 115, 509, 510]. Some examples of bulk glassformers
including the classical case of Se by Buchenau and Zorn [509] are shown together
with PDMS confined in 7.5 nm pores in Fig. 32. The same change was found for
the PMPS confined in the pores (Fig. 31). The absolute value of < % > and
the slope of its change with increasing temperature characterized by the derivative
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d< r? > /dT for T > Ty decrease significantly with decreasing pore size (Fig. 31).
This trend is the same as that found when comparing different bulk glassformers,
where glassformer with smaller n and fragility index m has smaller d < r? >/dT
for T > T, found empirically to hold, particularly when restricting to glassformers
of the same class [115, 239]. This trend in bulk glassformers has been rational-
ized by the CM [507]. If we recall the dielectric and TMDSC data of nanoconfined
PDMS and PMPS definitely show decrease of 7; and the fragility index m when con-
fined in pore of smaller size. The change toward local and non-cooperative dynamics
with Arrhenius 7-dependence when decreasing pore size suggests decrease of coop-
erativity, and hence decrease of its index n. Thus, the trend of d < 2 >of /AT
for T > Ty observed in nanoconfined PMPS with decreasing pore size and con-
comitant decrease of m and n are analogous in all respects to that found in bulk
glassformers.

Before we leave this section, some words of caution are needed. Although in this
section the models of glass transition by Adam—Gibbs, Donth, and others were used
to motivate the connection between VFTH temperature dependence of 7,(7) and
increasing length scale with decreasing temperature, by no means the connection
validates these models. The actual molecular dynamics in unconfined glassformers
may be entirely different from that suggested by these models. More scrutiny of
these models like that given before in Sections 2.2.2.2 and 2.2.2.3 and in later sec-
tions can reveal the deficiencies of these models. Therefore, one should not rush to
make any judgment on the veracity of these models based only on their success in
rationalizing the VFTH dependence of 7,(7T) in the bulk, and the decrease of 7,(7T)
as well as the change toward Arrhenius temperature dependence by nanoconfine-
ment. Later, we shall return to show that there is a connection between the structural
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relaxation times of PDMS and PMPS confined in 5 and 2.5 nm pores and the Johari—
Goldstein secondary relaxation time in their bulk states. This connection offers a
deeper insight into the molecular mechanism of the structural relaxation not given
by these models.

2.2.2.7 Length Scale from Multi-point Dynamical Susceptibilities

A familiar quantity in describing dynamics is the two-point correlation function such
as the self or incoherent intermediate scattering function given by Eq. (1.114), and

rewritten here as Fs(z, 1) = (fs(k,1)). Less familiar is the four-point susceptibility,
xa(?), defined as a variance by

xa(n) = N[(fsz(;,t)) — (k. )] (2.37)

It is a measure of the strength of the spontaneous fluctuations about the aver-
age dynamics. For density, energy, or orientation fluctuations generally denoted by

U (7, 1), the four-point correlation function [511, 512] is defined by

Ga(r,1) = (UO,00 U0, HU(r ,00U(T , 1)) — (U, 00U, ) (U(r,00U(r,1).
(2.38)
It was constructed to measure the correlation in space of the local two-time cor-
relation functions, (U(0,0)U(0, 1)), which is the density—density correlation when
U is the density p, or the dipole moment—dipole moment time correlation functions

when U is the dipole moment M. Let us consider at point O that a decorrelation of
the local density is occurring over time interval t. Then G4( r, f) measures the prob-
ability that a similar event has occurred at position r away within the same time

interval ¢. In view of this, Ga4( 7, t) is a measure of the heterogeneity and cooperativ-
ity of the dynamics. So is the associated four-point susceptibility y4(f) given by the

integral over volume of G4(7, 1), which is equal to the variance of the correlation
function [513, 514]. The x4(¢) for several model glassformers has been computed
numerically, and all show x4(f) exhibits a maximum at the structural relaxation time
Ty [515-522]. The peak value, x4(ty), is found to increase as temperature decreases

or density increases. From the relation between y4(ty) and G4(7, 1), this indicates
that the range of heterogeneity and cooperativity of the dynamics increases with
increase of 7, toward glass transition. Except for a factor of order unity, x4(ty) is a
measure of a correlation volume, or a number of molecules N¢or4 that are dynam-
ically correlated over a time period of the order of 7. Although the maximum of
x4(?) is located near t = 14, Ncorra is actually defined by the maximum value of
x4(t) at some ¢ near ty.

Unfortunately so far no one has been able to measure x4() in glass-forming
liquids and polymers. Berthier et al. [523, 524] came to the rescue by propos-
ing a method to obtain Ncor4 from a three-point function, x,(f), related to the
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sensitivity of the two-time dynamics to external control parameters such as tem-
perature or density. For temperature, yx,(f) is the temperature derivative of the
intermediate scattering function FS(%, t) or a local two-time correlation function,
C@t) = (U@O,00U(0,1)), ie., x;(t) = dC(1)/dT. By means of the fluctuation-
dissipation theorem, Berthier et al. were able to relate x,(¢) to xa(t), show x,(¢)
has a maximum at ¢ ~ 7, like x4(#), and obtain the following expression for Neor, 7

Neow(T) = [ksT*/ AC,(T)]{max, x,(1}?, (2.39)

where AC), is the configurational heat capacity per molecule at constant pressure.
Neorr,T 1s the number of molecules whose dynamics on the timescale of the a-
relaxation at 7 is correlated to a local enthalpy fluctuation. Berthier et al. [523]
initially suggested that NcorrT from Eq. (2.39) is a lower bound for Ncorr4, but
later showed [524, 525] that it is a very good estimate of N¢orr4 by numerical cal-
culations of x,(f) and x4(f) from molecular dynamics simulations of binary LJ
particles and silica. If C(r) is well described by a stretched exponential function,
C(t) = exp{—[t/ (TP}, Neore.1 is given by

Neo7(T) = [kp B(T)* /e* AC,(T)]{d In 7o /d In T}, (2.40)

Two other terms with one involving dB(7)/dT have been neglected in Eq. (2.40)
because in practice they only contribute 1% to the value of N¢orra [526].

Values of Neow,r(T) and its value at T = T, for many different glassformers
were obtained from yx ,(¢) in the manner as discussed above first by Berthier et al.
[523] for a few archetypal glassformers including glycerol from dielectric relax-
ation data, colloidal hard spheres from dynamic light-scattering data, and binary LJ
particles and silica [524] from molecular dynamics simulation. Additional values of
Neorr,7(T) of other small molecular glassformers and BoO3 are given from dielec-
tric relaxation, light and neutron scattering, and optical Kerr effect experimental
data by Dalle-Ferrier et al. [525]. Values of Neor,7(T) for even more glassform-
ers of all kinds including amorphous polymers were obtained by Capaccioli et al.
[526] principally from dielectric relaxation data. All these studies show, as a func-
tion of 7T, Neor,7(T) increases with decreasing temperature, or as a function of
To, Neorr, 7(Ty) increases with increase of to. If Neor,7(T) truly reflects Neorra(T),
these results do indicate the growth of some length scale of dynamic heterogeneity,
cooperativity, or correlation in the motion on decreasing temperature. However, the
quantitative details of the N¢orr4(7T) obtained are perplexing. After normalizing 7,
by a microscopic time t( specific to different systems, Dalle-Ferrier et al. found
the Neorr4(T) as a function of 7, /7o falls remarkably close to one another for many
different glassformers (see Fig. 4 in [525]). Examples are results from molecular
dynamics simulations of silica compared with binary LJ particles, propylene gly-
col compared with ortho-terphenyl, and B>O3 compared with decalin. In each of
the three pairs, other characteristics of the dynamics, however, are very different.
Notable are non-exponentiality (or n appearing in the fractional exponent of the
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Kohlrausch correlation function) and fragility (or steepness index m). The result of
Neorr,7(T) that it differs little from one glassformer to another, including at glass
transition (at the same t/70), poses a problem for many theories of glass transition
that ascribe the strong temperature dependence of the dynamics solely coming from
a length scale that grows as one approaches the glass transition, if the length scale is
truly Neorr,7- This is obvious because in these theories the Neorr, 7 results would say
that many pairs of glassformers have the same dynamics, which is not borne out by
the experimental facts on other properties shown immediately below.

Dependence of Neorr,7 0n 7o of more glassformers obtained by Capaccioli et al.
[526] from experimental data shows there are differences for some. However, over-
all the results are still perplexing. For example, the strong glassformer GeO» has
exponential time dependence (n=0) for the correlation function [112], Arrhenius 7-
dependence for 7y, and small AC,, and yet its Neor,r = 413 is so much larger than
Neorr,r = 92 of fragile glassformer tri-naphthyl benzene (TNB) which has non-
exponential time dependence (n~0.44) for the correlation function [455], VFTH
T-dependence for 7y, and much larger AC,. Capaccioli et al. found at the glass
transition temperature, Neor,7(1) and the configurational entropy per unit volume
Sc(Ty) are anticorrelated, as originally predicted by the Adam-Gibbs theory. Using
the same data as tabulated in the paper by Capaccioli et al., we attempt to see if
there is anticorrelation between Neor,7(Tg) and B(Ty) = [1 — n(Ty)] or correla-
tion between Neor, 7(T) and m(Ty). The results shown in Figs. (33-1a) and (33-1b)
indicate absence of any anticorrelation and correlation, respectively, even when
restricted to glassformers in the same class.
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Fig. 33-1a Plot of N¢ or Neorr,7(T) obtained from the y,.(#) approximation vs. Kohlrausch expo-
nent at 7y and atmospheric pressure for 45 glassformers (data from [526]). Polymers (diamonds),
oxide glassformers and selenium (circles), hydrogen-bonded materials (triangles), and van der
Waals glassformers (squares). The absence of correlation is indicated by the small value of the
Pearson linear correlation coefficient
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The lack of correlation Ncor,7 With other key indicators of dynamics espe-
cially non-exponentiality seriously undermines its relevance as a measure of the
length scale of heterogeneous or cooperative dynamics. As mentioned before and
later on in various other connections, in my view the heterogeneous dynamics and
non-exponentiality are parallel consequences of the many-body structural relax-
ation dynamics. Therefore the length scale of the heterogeneous dynamics &pe; and
the non-exponentiality parameter n should correlate unless certain extraneous fac-
tor has entered in determining these two quantities. The problem encountered by
Neor,7 probably originates from Eq. (2.40) through the term 7. Not only many-
body relaxation but also specific volume and entropy enter in determining t,, and
thus Neor,7 is not as directly and simply related to many-body relaxation as is the
non-exponentiality parameter n. It is clear that n and 7, are two essential param-
eters in C(¢) = (U(0,0)U(0, t)) needed to characterize the structural relaxation.
Furthermore, n and 7, play independent roles. This fact is made evident by the
invariance of n to different combinations of P and T which keep t, constant, a gen-
eral experimental fact to be presented in Section 2.2.4 later. The fact that only 1,
enters in Eq. (2.40) but not n in determining Ncor,7 indicates not all aspects of
many-body dynamics have been accounted for by Ncor,7, and this explains its lack
of correlation with n or m. The essential and independent role played by n becomes
transparent if dynamics are discussed in the framework of the CM. In this model, the
primitive relaxation time 7 has already the pressure P/volume V and temperature
T/entropy S dependences [196] (verified experimentally via the Johari—-Goldstein
relaxation, see Section 2.3). These dependences of 7 are magnified by the many-
body dynamics leading to stronger corresponding dependences of 7, obtainable by
the CM relation, 7y = [1." 70]"/0="_in which the role played by n is evident.

The shortcomings of Neorr, 7 do not translate to y4(f). The latter has sound phys-
ical underpinning and provides important information on the dynamics despite not
having been measured by experiment in glass-forming liquids and polymers so
far. For the binary LJ particles system, x4(f) obtained numerically at 7 = 0.42



122 2 Glass-Forming Substances and Systems

(LJ unit) shows x4(f) ~ ¢* in the ballistic regime at very short times [527(a)].
Later, when the particles are caged, x4(f) becomes weakly dependent on z. After
the caged particles dynamics regime, there is the onset of the fractional power law
time dependence, x4(f) ~ #*, with u = 0.73, which starts from small value and
rises to maximum located close to the relaxation time of the correlation function.
This rise of x4(f) ~ #* starting from small value is consistent with the existence
of the uncorrelated primitive relaxation to be followed by many-body dynamics
whose length scale increases monotonically with time as more and more particles
participate in cooperative motion. The increase continues until the maximum num-
ber allowed by the inter-particle potentials of the system is reached at time near
7. Cessation of growth of length scale at times beyond times of the order of
naturally is reflected by the rapid decay of x4(#) from the maximum down to its
long time limiting value. The evolution of dynamics with time starts from the caged
regime (1) which is terminated by the most elementary relaxation (2), which is the
primitive relaxation in the context of the CM. Thereafter it is followed by cooper-
ative motions with increasing participation of particles (3) and continues until the
terminal regime at time of the order of the structural relaxation time (4) is reached.
This description of evolution of dynamics proffered by x4(¢) is consistent with that
of the CM [120, 507, 508] as will become evident when dynamics at shorter times
than 7, are discussed in Section 2.3. The x4(¢) and the corresponding dynamical
correlation length £4(f) obtained from molecular dynamics simulations of binary
LJ particles by Lacevi¢ et al. [522] offer the same insight. £4(¢) provides an esti-
mate of the range of correlated particle motion. Like x4(#), £4(¢) has a maximum
as a function of time ¢. The value of the maximum of &4(¢) is less than one particle
diameter at higher temperature (I’ = 0.94 and 2) where for the coherent interme-
diate scattering function its relaxation time 7y is short (of the order of a few LIJ
units of time) and its time dependence is close to exponential. The correspond-
ing x4(f) is negligibly small, indicating particle motion is essentially uncorrelated.
These results are consistent in all respects with the primitive relaxation of the CM,
and it is observed because at these high temperatures 7, is comparable to f., which
is of the order of unity in LJ unit. On lowering temperatures, £4(f) also starts from
small values and increases with time to reach maximum value. The latter increases
with decreasing temperature, reaching a value of about nine particle diameters
atT = 0.6.

We have seen from the analysis of experimental data for a broad range of real
materials from Fig. 33-1(a), wherein values of N¢ or Neor,7(T) or at T = T, were
obtained from x,(f), that there is absence of any relationship between N and Bx.
However, this does not happen for N, calculated from simulations of the Kob—
Andersen model of Lennard-Jones mixture with the 12-6 LJ potentials as a function
of temperature T and density p [527(b)]. The non-exponentiality parameter Sk is
obtained from the self-intermediate scattering function, and N, from the maximum
in x4(t) obtained as a function of ¢. The results for different state points (7 and p)
given in a plot of N; = max{x4(#)} in Fig. 33-1(c) show N, does indeed corre-
late with Bk over a range of thermodynamic conditions. The good correspondence
is in accord with the interpretation of increasing N. or the degree of dynamic
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Fig. 33-1c N, from y4(¢) vs. Kohlrausch exponent for simulated Lennard-Jones particles. Each
symbol represents a distinct state point. Increasing dynamic heterogeneity is associated with a
broader distribution of relaxation times [527(b)]

heterogeneity is associated with an increasing breadth of the relaxation function or
smaller Bk or larger n. The result here supports that both length scale of a-relaxation
given by N, and n are parallel consequences of the many-body a-relaxation.

2.2.2.8 Length Scale Is Not Practical to Use as Measure of Many-Body
Dynamics

We have seen from the discussions above that the length scale of structural relax-
ation given by theories and models based on thermodynamic considerations and
thermodynamic quantities is unreliable. Although the four-point susceptibility x4(f)
is fundamentally sound as the quantity to extract a length scale, so far no one has
been able to measure it for glass-forming liquids and polymers. The only depend-
able measurement of the heterogeneity length scale, &pet, is by multidimensional
13C solid-state NMR technique. But this technique is elaborate and expensive to
carry out and that is why so far it had only been carried out for four glassform-
ers. Alternative experimental methods had been proposed and used to determine
cooperative length scale or heterogeneity length scale. They all utilize some special
effects that enable length scale to be deduced. References to the other techniques
not covered in this section can be found in two reviews [228, 528].

One method used the effect of modification of the solvent by addition of a
polymer to determine the length scale of the structural relaxation of the solvent,
& [529]. The solvent used is polychlorinated biphenol (Aroclor) and the polymers
are polyisoprene (PI) and 1,4-polybutadiene (PB). The characteristics of the Aroclor
reorientation motion seen by photon correlation and dielectric relaxation spectro-
scopies in Aroclor solutions of high molecular weight PI and PB are distinctively
different from those in Aroclor solutions of low molecular weight polymers. At
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constant polymer concentration, when the molecular weight of PI or PB is low, the
photon correlation function shows a larger broadening of the dispersion of Aroclor
relaxation and a more rapid change with temperature. The effect is broadening of
the dispersion of the solvent by the polymer, which is different in the two regimes,
& > Ry and § < R, where R, is the radius of gyration of the polymer. The dis-
persion was measured for solutions of polymers at a fixed concentration but with
polymers of different molecular weights (Ry). Plotted as a function of Ry, the width
of the dispersion changes rather abruptly in the vicinity of Rz = 1.5 nm. This
property was explained by the molecular weight dependence of the concentration
fluctuation of Aroclor due to the presence of the dissolved polymer. When the size
of the dissolved polymer coil is comparable to or smaller than the size of the Aroclor
cooperative rearranging regions, concentration fluctuations are enhanced, resulting
in a concomitant increase of broadening of the Aroclor reorientational relaxation
spectrum. This result indicates that & of Aroclor is about 1.5 nm when temperature
is near Tg.

Another example worth further description is based on an effect seen by light
scattering from glass-forming liquids. The light-scattering intensity vs. temperature
curve exhibits a maximum during heating in the glass transition region from the
glassy state to the liquid state [530, 531]. This effect does not afford a direct mea-
surement of the heterogeneous dynamics. Nevertheless, with some assumptions and
structural relaxation kinetic parameters taken from other experiments, Moynihan
and Schroeder [531] were able to deduce the size of nanoscale inhomogeneities
(density fluctuations) which relax at different rates. The predicted length scales
obtained by way of the Adam—Gibbs model and given in terms of the cube root
of volumes are 2.3, 2.7, and 4.6 nm for BoO3, glycerol, and PVAc, respectively. The
corresponding values obtained by using the free volume model are larger and equal
to 5.3, 5.4, and 8.4 nm for B,03, glycerol, and PVAc, respectively.

Many experimental techniques discussed all have confirmed the existence of
length scale that determines the number of molecules or particles involved in the
structural relaxation. Thus, although length scale alone does not tell us the actual
dynamics, it implies some form of many-body relaxation. However, most of the
experimental techniques have given the length scales of a few glassformers, and it is
uncertain the length scales of the same glassformer obtained by different techniques
are compatible with each other.

Only calorimetry has determined the length scales of many more glassformers,
but the results were obtained through some Adam-Gibbs model-dependent anal-
yses of the thermodynamics data [420]. As we have discussed earlier, the results
seem internally inconsistent and doubtful. Probably, this is because thermodynamic
quantities alone cannot account for the many-body relaxation part of the dynam-
ics. Besides, there is still disagreement on how to account for the configurational
entropy, which is only one part of the supercooled liquid’s entropy. Another part is
the vibrational entropy. The importance of both parts of entropy and heat capacity
C) has been recognized since the Kauzmann’s discussion of entropy of supercooled
liquids [391]. On the one hand, Johari found the configurational entropy of a liquid
cannot be assumed to be equal to, or even proportional to, the excess entropy of the
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liquid over its ordered crystal state, and this is compounded by the implausibility
of Kauzmann’s extrapolation [413]. On the other hand, Angell and Borick [414]
argued in favor of the opposite that the vibrational part of C, is the same as the C,
of the ordered crystal phase, or proportional to it, although subsequently this pro-
posal seems to have been withdrawn [532]. However, the controversy continues. By
analyzing the vibrational density of states in the low-frequency (Boson peak) region
and combining it with a computer simulation, Angell and coworkers [532] deduced
that there is a discontinuous increase in the vibrational C;, due to unfreezing of the
structure of a glass on heating through 7;. They concluded that the vibrational part
of a liquid’s C), is much greater than the value used in all earlier analyses of calori-
metric data using the Adam—Gibbs theory [420], and questioned the results obtained
by claiming that the behavior of the vibrational heat capacity was not properly taken
into account. Later on, Johari found for three different glassformers that the change
in the vibrational part at liquid—glass transformation is negligible [533]. A different
conclusion was reached that there is no discontinuity in the vibrational parts of C,
on structural unfreezing in the 7; range, and hence the change in C), at T is almost
entirely due to change in the configurational part.

2.2.2.9 Why Fixation on the Length Scale of the «-Relaxation, and Disregard
of the Width of the Dispersion?

The length scales of the a-relaxation determined from pure thermodynamic consid-
eration, such as those using the Adam—Gibbs model or the Donth’s model, show
inconsistencies. This is unsurprising because the models have assumed that thermo-
dynamics alone determine the a-relaxation and its relaxation time. The assumption
can hardly be justified because the a-relaxation is a many-body process and its
effects are not expected to be captured by thermodynamic variables including
configuration entropy, heat capacity, free volume, and the like. The length scales
determined from different methods hinged on thermodynamics often are inconsis-
tent with each other, creating the situation of which one should use. For example, we
can take some values of the length scale £,(T;) for some glassformers from Donth’s
model [425] and compare them with Neor,7(T,), the number of molecules whose
dynamics on the timescale of the a-relaxation at T, is correlated to a local enthalpy
fluctuation, of Bethier et al. [523-525]. For example, the values of &,(Ty) for
PMMA, OTP, and B,0O3 are 1.5, 3.0, and 1.5 nm, respectively [425], and the corre-
sponding values of Neor,7(T) are 572, 148, and 107, respectively [526]. Obviously
the two sets of values for the length scale from the two sources are irreconcilable
with each other.

The dynamic heterogeneous nature of the structural relaxation, like its non-
exponentiality and other anomalous dynamics properties (to be discussed later),
is a direct consequence of many-body relaxation. Hence the length scale of
dynamic heterogeneity is a true measure of the extent of the many-body relaxation.
Multidimensional NMR experiment is a microscopic technique that has been suc-
cessfully applied to determine the length scale of dynamic heterogeneity [226-228].
The size of the length scale has been determined at temperatures near but still above



126 2 Glass-Forming Substances and Systems

1, but unfortunately this has been done so far for a paucity of four glassformers
within the last two decades. The four-point susceptibility y4(¢) has the potential of
providing the length scale, but experimental technique has yet to be developed to
measure this quantity proficiently for a large number of glassformers in order to
be useful. Thus, at least for the present time, it is not practical to use length scale
from any source as the measure of the extent of many-body relaxation. A prag-
matic choice is the width of the dispersion of the intermediate scattering function,
F(k, 1), or a local two-time correlation function, C(7) = (U(0,0)U(0, 1)), pertaining
to the structural relaxation. This is because these quantities are widely and easily
accessible by a variety of spectroscopic techniques and are already available for
many glassformers and polymers in the literature. If the Kohlrausch function or its
Fourier transform describes well the time dependence or the frequency dispersion
of the measurement, the exponent n can be used instead of the width of the dis-
persion. The correlation found between length scale of dynamic heterogeneity &peq
from NMR and #n also gives assurance that the two are equivalent in the usage as
the indicator of the many-body nature of the structural relaxation, albeit &pe¢ of only
four glassformers is on hand. A longer &pe; associated with a larger n is borne out
by considering & for glycerol, o-terphenyl, and poly(vinyl acetate) obtained by
multidimensional '3C solid-state exchange NMR experiments by Reinsberg et al.
[422], where &pe; is 1.3, 2.2, and 3.7 nm for glycerol, o-terphenyl, and poly(vinyl
acetate), respectively, all determined uniformly at 7 = Ty + 9 K. These values of
&net correlate with the corresponding values of 0.29 [195], 0.50 [237], and 0.55 [238]
of n, all obtained by fitting dielectric measurements by the Fourier transform of the
Kohlrausch function when 74, & 1 s for the three glassformers. Description of the
procedure used to fit the dielectric loss data can be found in [477]. An independent
13C solid-state exchange NMR measurement of & for supercooled D-sorbitol at
T = T, + 7 K by Qiu and Ediger [476] yields 2.5 & 1.2 nm. These authors quoted
KWW parameter Bxkww = (1 — n) of sorbitol as well as glycerol, o-terphenyl,
and poly(vinyl acetate) from publications of others. These values may not be used
together fairly because they were obtained by various authors using different fitting
procedures and criteria. For sorbitol, they took fxww = 0.41 or n = 0.59 (cit-
ing private communication from Richert) which is quite different from the value of
n = 0.52 [195] obtained by the aforementioned procedure [477]. The large value
of n=0.59 for sorbitol taken by Qiu and Ediger causes sorbitol not to conform to
the correlation between &peiand 7. On the other hand, when the fair value n = 0.52
is used together with &,eq = 2.5 £ 1.2 nm for sorbitol, the correlation between &peq
and n holds for glycerol, o-terphenyl, sorbitol, and poly(vinyl acetate) as shown in
Fig. 33-2.

The most convincing argument favoring the width of dispersion or n as the key
parameter characterizing the many-body structural relaxation is the existence of cor-
relations between n and many other properties of the structural relaxation to be
discussed in Sections 2.2.3-2.2.5 to follow and the explanations by the CM. In con-
trast, such correlations with other properties do not exist between the length scale
determined from pure thermodynamic consideration by using the Adam-Gibbs
model or the Donth’s model, or with Neor,7(T). For Neorw,7(Ty), this conclusion
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Fig. 33-2 Plot showing the correlation found between length-scale of dynamic heterogeneity &heq
from NMR and n

comes from the absence of correlation between Ncow,7(Tg) and n (see Fig. 33)
while n correlates with the other properties. One such property is the breakdown of
Stokes—Einstein (SE) and Debye—Stokes—Einstein (DSE) relations to be discussed
in Section 2.2.5.6. Actually this property has attracted explanation from dynamical
heterogeneous nature of the a-relaxation, and naturally Neor,7(T) is relevant and
it should correlate with the size of the breakdown at 7;. The values of Neow, 7(Ty)
for silica and TNB are 579 and 92, respectively, and one would be led to expect
larger degree of breakdown in silica than in TNB. Experimentally it is the opposite
with major breakdown found in TNB and none in silica (see Section 2.2.5). Despite
all that said above on the virtue of considering dispersion and its width or n, it is
remarkable that main stream theories of glass transition did not take it seriously as a
key parameter of the dynamics, and instead focused on the length scale. As far as I
know, the CM is the only approach that emphasizes the dispersion and has its width
or n determining dynamic properties.

2.2.3 Tg-Scaled Temperature Dependence of 1 or T and the
Steepness or “Fragility” Index

2.2.3.1 The Tg-Scaled Plot of n by Oldekop-Laughlin—~-Uhlmann-Angell

It is instructive to compare the same property of different glassformers under the
same condition, such as the isobaric glass transition temperature 7, (or the isother-
mal glass transition pressure Pg) at which the structural relaxation time reaches a
predetermined long time, say 107 s. Furthermore, if a quantity can be measured as
a function of temperature T or pressure P, insight may be gained by comparing the
variation of the quantity of different glassformers at the same corresponding-states
variable such as the 7T;-scaled temperature, Tg/T or T/Tg, or Pg-scaled pressure,
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Pg/P or P/Py. In 1957, Oldekop [374] seems to be the first one to compare in this
way the liquid viscosity 1 of 10 different oxide and fluoride glassformers with and
without the addition of alkali oxide or alkali earth oxides. His plot of log 1 against
T, /T shows a pattern of variation from one glassformer to another. It was assumed
that the viscosity at T = Ty is about the same for all his non-polymeric glassformers.
This can be expected from the Maxwell’s relation, n = G (74), because the mean
structural relaxation time (ty) and high-frequency shear modulus G at T = T are
about the same for the same class of glassformers.

Later in 1972, apparently unaware of the Oldekop’s paper, Laughlin and
Uhlmann [375] repeated the use of 7; as a corresponding-states parameter to
correlate and compare the flow behavior of different non-polymeric liquids. By
comparing log 7 in a plot against T/ of three different classes of materials, (i)
SiO, and GeOg, (ii) BoO3 and the alkali silicate glasses, and (iii) three organic
small molecule liquids including ortho-terphenyl (OTP), salol, a-phenyl-o-cresol,
and 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene (TNB), and molten salt Ca(NO3),—
KNO3, Laughlin and Uhlmann found liquids within each class have nearly the same
T5-scaled temperature dependence. However, the T, /T-dependences of log n of the
three classes have very different curvatures. Laughlin and Uhlmann did not give
a physical interpretation of the difference in the Ty /T-dependences they found for
different glassformers.

Angell [215, 216] recognized the importance of the Laughlin—-Uhlmann plot as
a means to classify the transport properties of glassformers. He included more non-
polymeric materials into the plot of Laughlin and Uhlmann and expanded the pattern
found by them. Thus, it seems logical to refer to the plot of log 1 vs. Ty /T as the
Oldekop-Laughlin—-Uhlmann—Angell (OLUA) plot. But most workers called it the
Angell plot, ostensibly giving all the credit to Angell for inventing this plot, which
is arguably inappropriate. However, credit has to be given to Angell for recognizing
the efficacy of this plot, and for coining the words “fragile” and “strong” to separate
out those glassformers having, respectively, stronger and weaker T/ T-dependence
on log n. When using the phrase “strong and fragile classification of glassformers,”
it is appropriate to refer to Angell as the originator. However, it is not scientifically
accurate to call the log n vs. Ty /T plot as the “Angell plot.” This is a minor point,
but there is no reason for anyone who values the importance of T;-scaled plot to
ignore the historical contributions of Oldekop, Laughlin, and Uhlmann.

The terms “fragile” and “strong” originated from an idea of Angell [215, 216]
used to explain why some glassformers like 0.4 Ca(NO3);—0.6 KNO3, OTP, and
propylene carbonate show rapid changes in 1 or relaxation time t, for the same
change of scaled reciprocal temperature, Ty /7, at temperatures near T = T, in
the OLUA plot. The key concept in his idea was the loss of the local structure (short
range order) with increasing T above the glass transition. He suggested the structures
of these glass-forming liquids change significantly with increase in temperature, and
hence he labeled them “fragile” glassformers. On the other extreme in the OLUA
plot are glassformers having smaller changes in 1 or 7, for a given change of T, /T
near I’ = T,. Their minimal slopes and curvatures in the OLUA plot mean that n or
Ty has Arrhenius or near Arrhenius temperature dependence. Angell attributed this
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behavior of these glassformers to their ability to maintain the short range order to
higher temperatures and consequently there are relatively smaller changes in 7 or 7,
for a given change of T /T near T = T,. Angell called them “strong” glassformers,
naturally since in English “strong” has the opposite meaning of “fragile.” In fact,
“strong” glassformers like SiO, and GeO, are networks with strong covalent bonds,
and the structure is not changed much by temperature. The class of glassformers
lying between the “fragile” and “strong” classes in the OLUA plot was referred to
as intermediate liquids. A similar pattern has been found for amorphous polymers
by plotting log 7, against T/Tg [479] where 1, is the local segmental relaxation time.
It was also found when plotting against Ty /7T the a-relaxation time 7, of the tertiary
chalcogenide glassformers, Ge,As,Se, [480], and in some combination of various
glassformers [535]. The viscosity of polymers involves the motion of entire chains
and its value depends sensitively on molecular weight and polydispersity, and the
plot of log 1 against 7y /T should not be used. However, the pattern exhibited by the
plot of log 7, against T/T, for polymers cannot be rationalized by Angell’s inter-
pretation of fragile—strong pattern given by him in early years because in polymers
repeat units are bonded together and there is no obvious difference of the change of
short range order from one polymer to another with change in temperature.

Nowadays, the words “strong” and “fragile” are often used to convey the cur-
vature or location of either log n or log 7, of the glassformer in the OLUA plot.
However, one must bear in mind that the use of these words may have committed
oneself to the interpretation by Angell of the source of the pattern either the one
originally suggested [215, 216, 534] or his other alternative interpretations, one of
which is based on landscape description. The landscapes may consist of a single
megabasin for “strong” glassformers, whereas “fragile” ones have an abundance of
well-separated megabasins [37]. These interpretations are qualitative and may not
be accurate for some cases. There may be other factors including many-body relax-
ation dynamics which are neglected in these interpretations but do have effect on
the observed 73-scaled temperature dependence of 7 or 7,. Therefore, it is prudent
not to use the terms “fragile” and “strong” indiscriminately to describe the pattern
seen in the OLUA plot for all different kinds of glassformers. Since the viscosity
of a “fragile” glassformer is more sensitive to the temperature change than “strong”
glassformer, it takes a shorter duration of time to shape an object from its melt and
to anneal out the internal stresses from the finished object. Therefore, for a century,
glass-makers have used the used the terms “long” and “short” instead of “strong”
and “fragile,” respectively [400]. But, the latter has been repeatedly used in the cur-
rent literature; it is unlikely there will be any change in the practice. In fact, having
said that, this author sometimes does conform to this practice in using the terms
“fragile” and “fragility.”

2.2.3.2 The Steepness or “Fragility”’ Index

One way to quantify the overall T /T-dependence of log 7 or log 7, of a glass-
former in the OLUA plot is by its slope m evaluated at T, /T = 1 [480, 112]. That is,
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m = dlogx/d(Ty/T) evaluated at Ty /T = 1, where x is either  or 7,. This quan-
tity was mentioned before in Section 2.2.2.3 in connection with length scale of the
structural relaxation. The terms “steepness index” and “fragility” are the notations
commonly used nowadays for m. If 7, has the VFTH dependence written in the
form, Ty = 700 €xp[DTo/(T — To)], then m = DT To/[2.303(Ty — To)?].

A different steepness index S was also introduced even a year earlier than m when
considering viscoelastic data [479]. It is defined by S = d log(ar)/d(T/Ty) evalu-
ated at T = T, where ar is the shift factor of the measured shear compliance of the
local segmental relaxation. The difference between m and S comes from the scaled
variable T /T used in the former and 7'/T; in the latter. As soon as S for polymers
had been introduced, examination was made for possible correlation between S and
the parameter characterizing the non-exponential time dependence of the structural
relaxation given by the exponent n of the Kohlrausch function also at T = T}. This
step taken was motivated by a previously published paper [535] which showed from
the effect of many-body relaxation of the coupling model that a correlation can be
expected between the T /T-dependence of 1 or 7, and non-exponentiality of the
structural relaxation of a glassformer.

The correlation was also seen between m and n in the family of the ternary
chalcogenide glassformers, Ge,AspSe., on varying the composition by changing
the average coordination number, < r >= 4a + 3b + 2¢, while keeping the ratio
y = a/(a + b) constant and equal to 0.5 [480]. More glassformers were considered
in the combined effort [112].

Glassformers come from many different classes distinguished by their chemi-
cal bondings and structures. Polymers are obviously different from non-polymeric
materials because of bonds between repeat units in a long chain. Within polymers,
there are the subclasses with carbon backbones or non-carbon backbones. Non-
polymeric glassformers are further divided into liquids with hydrogen bonds, van
der Waals liquids, plastic crystals, molten salts, inorganic glasses with covalent
or non-covalent bonds, metallic glassformers, and others. Volume and entropy and
their temperature dependences can be widely different in these different classes of
glassformers and they may vary greatly in their influence on the temperature depen-
dence of n or 7. Taking glassformers from different classes altogether at one time
into consideration may suffer from the consequence of smearing out any correla-
tion that m and n may have. Therefore, sharper or rigorous correlation can only
be observed if the glassformers belong to the same class and are related in chemi-
cal structures. These aspects demonstrated already in the initial paper [112] will be
further illustrated by other examples to be given later.

It is instructive to show the merit of the concept of fragility as well as pointing out
possible perils encountered when interpreting it from the experimental data of glass-
forming chalcogenides alone. For these covalently bonded network glassformers,
Phillips introduced the constraint theory [536] to answer the fundamental question
of why some of them, such as SiO and the binary and ternary chalcogenide glasses
AsySes and Ge,AspSe., form glasses much more proficiently than others. He con-
sidered the strongest covalent bond stretching and bond bending forces between
nearest neighbors to serve as Lagrangian (mechanical) constraints. The number of
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Lagrangian bond-stretching constraints per atom with average coordination number
< r >is < r > /2, and of the bond-bending constraints is 2 < r > —3. He
suggested that glass-forming ability is optimal when the averaged total number of
Lagrangian local-bonding constraints per atom, 5 < r > /2 — 3, is equal to the
number of degrees of freedom, which is 3 for three dimensional networks. Thus
the optimal glass-forming composition corresponds to < r >= 2.4. Subsequently,
Thorpe [537] reformulated the constraint theory as a problem of rigidity percola-
tion. In random networks numerical calculations have shown that a floppy-to-rigid
transition occurs when < r > increases to a value quite close to the predicted
mean-field value of 2.40. Experimental confirmations of the transition suggested
by Phillips and Thorpe in various ways have been found in binary (Ge or Si),Se_
and ternary Ge,AspSe. glasses [480, 538-541]. Of interest here is the finding in
the same family of chalcogenides that the “fragility” exhibits a minimum as a func-
tion of < r > with the minimum value occurring near < r >= 2.4, where the
jump of heat capacity at 7; is small. More recently, measurement of the glass-
forming (Nay0),(P20s5);— liquids was made by photon correlation spectroscopy
at temperatures near the glass transition for compositions extending from pure
phosphorus pentoxide to the metaphosphate (x = 0.5) [542]. Pure P,Os5 forms
a three-dimensional network and has < r >= 3. On increasing Na;0O, < r >
decreases monotonically to 2. The “fragility” index m when plotted against < r >
also exhibits a very shallow minimum near < r >= 2.4.

Later on, Raman scattering and 7-modulated differential scanning calorimetry
(TMDSC) showed that in (Ge or Si),Sej_y actually there are two transitions, one
near r.(1) = 2.40 from a floppy to an (intermediate) unstressed rigid phase and
another transition near r.(2) = 2.52 from an (intermediate) unstressed rigid to a
stressed rigid phase [543-545]. The intermediate phase lies within the composi-
tional window defined by r.(1) < (< r >) < r.(2) and has unusual properties
compared with the other two phases. These include the fragility index m, the
Arrhenius activation energy barrier of mechanical relaxation E, and the non-
reversing heat flow term, AH,,, obtained by MDSC. All these quantities exhibit
a minimum in the intermediate phase. AHy, provides a measure of the latent heat
between the relaxed solid glass and its melt, and hence the degree of configurational
difference between the glass and the liquid. In the intermediate phase, AH,,; is found
not only to nearly vanish, but also not to age, in contrast to that found in the floppy
and stressed rigid phases. The same was found in the ternary Ge,AspSe,. chalco-
genides which has r.(1) = 2.27 and r.(2) = 2.42 [546]. As < r > increases across
the floppy, intermediate, and the stressed rigid phases, fragility correlates well with
the magnitude of AH,,, and the implication it has on the structure and the degree of
aging. As mentioned before for the Ge,As,Se, chalcogenides, if y = a/(a + b) is
kept constant at 0.5, there is also a correlation between the fragility m and n at 7 on
varying < r > [480]. The values of m &~ 80 and n &~ 0.58 are largest at < r >= 2.0:
both decrease monotonically on increasing < r > to reach the minimum values of
m ~ 30 and n =~ 0.36 when < r > falls within the intermediate state regime defined
by rc(1) = 2.27 and r.(2) = 2.42. However, when the ratio y = a/(a + b) is not
kept constant at 0.5, for Ge,AspSe, having the same < r >= 2.4, m is the same,
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but n & 0.67 for y = 0.2 and n = 0.52 for y = 1.0. This breakdown of correlation
between m and n was pointed out by Bohmer and Angell [480] themselves, which
they attribute to the chemical effects near the binary edges of the ternary system.
The admonition by these authors for the case of the Ge,AspSe, chalcogenides is
a special case of a more general breakdown of correlation between m and n when
glassformers with widely different chemical structures are considered together.

2.2.3.3 Isobaric Fragility mp Decreases with Increasing Pressure

The commonly quoted “fragility” and its index m are determined from the temper-
ature dependence of n or 7, at ambient pressure. Isobaric “fragility” at elevated
pressure P and the index mp had been obtained by relaxation measurements of
many glassformers, small molecular [547-551] and polymeric [552-555]. Generally
speaking, the isobaric mp of van der Waals glassformers and polymers decreases
with P although the rate of change varies greatly to the extent that for some
such as poly(bisphenol A coepichlorohydrin) [552, 553], poly(vinyl acetate), and
poly(ethylene acrylate) [555], mp is independent of pressure. For examples from
van der Waals liquids see Fig. 34a. Exceptions to this trend are found in strongly
H-bonded materials such as glycerol [556].

2.2.3.4 The Isochoric “Fragility” my Is Significantly Less Than the Isobaric
“Fragility” mp

The isobaric “fragility”” and its index mp are obtained simply by plotting the temper-
ature dependence of 7 or 7y vs. Tg/T at each pressure. For the isochoric “fragility,”
one has to use PVT data in combination with the measured pressure and temperature
dependence of 1 or 7, to obtain these quantities at constant specific volume and then
plot them against T/T. The isochoric “fragility” index my is then obtained as the
slope of the plot log(n or 1) vs. Ty /T at T = Ty, in the same way as for mp. In
general for small molecular and polymeric glassformers, the values for my are all
smaller than the corresponding isobaric mp [555, 557]. For examples from van der
Waals liquids see Fig. 34a. The dependence of the isobaric “fragility” on specific
volume varies from no dependence for poly(vinyl acetate) and poly(ethyl acrylate),
slight increase with specific volume for polystyrene, to significant increase with spe-
cific volume for poly(methyl acrylate) and poly(vinyl chloride). Interestingly, under
isochoric conditions, the temperature dependence of the segmental relaxation time
of poly(methyl acrylate) and poly(vinyl chloride) cannot be represented by a VFTH
equation except over a very narrow temperature range. These results seem to suggest
that although the VFTH equation is widely applicable to describe the temperature
dependence of 1 or 7, under isochoric condition, it may not have general validity
under isochoric condition.

From the values of my obtained for molecular liquids and polymers [119, 558]
one can observe that there is no correlation between my and the non-exponentiality
parameter n even when restricted to the same chemical class of glassformers.
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Fig. 34a Isobaric dielectric relaxation times for salol, PC, BMMPC, PDE, KDE, and PCB62 vs.
To/T where 7(Ty) = 10 s. Isochors were calculated at the volume at which 7 = 10 s at atmospheric
pressure; V = 0.7907 (salol), 0.7558 (PC), 0.9067 (BMMPC), 0.7297 (PDE), 0.7748 (KDE), and
0.6131 (PCB62) ml/g. Reproduced from [588(c)] by permission

2.2.3.5 Correlation Between Kinetic “Fragility’” and Thermodynamic
“Fragility”?

There is no doubt that volume and entropy do influence the mobility of basic struc-
tural unit of a liquid. On changing temperature/pressure, volume and entropy of the
liquid change and in turn impart changes of 1 or 7, and their temperature/pressure
dependence. This certainly happens, independent of the presence of any addition
determining factor of 1 or 1y such as the many-body relaxation dynamics, which lies
outside the realm of thermodynamic description. If an additional factor exists, then
m is not a quantity that is determined solely by thermodynamics. Moreover, since the
degree of the influence of volume and entropy on 7 or 7, depends on the chemical
and physical structure, even the thermodynamics contribution to m can vary greatly
from one class of glassformers to another. Thus, the steepness or “fragility” index
m is a complex or mixed parameter. It does not point exclusively to any single and
fundamental factor determining glass transition, and hence its importance should
not be overstated. When used as a central or key quantity to characterize or corre-
late glass transition dynamics of glassformers with widely different chemical and
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physical structures, it may lead to dubious or even wrong conclusions. This danger
is acute at recent times because “fragility” has been so well promoted in the litera-
ture that by now it has become the center of attention of many workers in the field.
Somehow, these workers think that “fragility” is the key to a full understanding of
glass transition, and establishing any such correlation with it will be a step forward.
This frame of mind has led to the pursuit of correlations between various properties
and “fragility” or m (or other alternative parameters like F1/2) exclusively.

The most serious push in this direction is the correlation between thermodynamic
quantities or their ZTg-scaled temperature dependence and “fragility” or m by Angell
and coworkers with the intention of showing that glass transition is determined by
thermodynamics and its change with temperature. The first proposal that related
“fragility” to the jump in heat capacity C, at T [37, 215, 216, 534] has been shown
to be incorrect [417, 559-561] and subsequently withdrawn, even after an account
had been taken of the number of rearrangeable units per mole of glassformer [562].

Still building on the notion that relaxation properties are related to thermody-
namic quantities, Angell and co-workers put forth the proposition that fragilities
could be determined from other thermodynamic quantities [563]. In one proposal,
1/Sexc, the reciprocal of the excess of liquid entropy over that of the crystal, at differ-
ent temperatures 7, /T above T; is scaled by 1/Sexc(T), the reciprocal of the excess
entropy at T;. The initial paper [563] plotted Sexc(Tg)/Sexc against Ty /T above
1; for three different glassformers, As;Ses, bromopentane, and Ca(NO3) - 4H;0.
The data show the same pattern as that found in the “fragility” plot of these three
glassformers, and this result led the authors of [563] to conclude that thermodynam-
ics, in particular entropy, determines “fragility.” This different 7y /7-dependences
of the scaled Sexc(Tg)/Sexc called “thermodynamic fragilities” was probably moti-
vated by the Adam—Gibbs equations (2.21) and (2.22), indicating that log(zy) is
proportional to reciprocal of the configurational entropy, S¢, and the assumption
that either S¢ = Sexc or S¢ is proportional to Sexc.. However, as we have discussed,
neither of these two assumptions are valid. Nevertheless, the publication of [563]
invited further the investigation of the correlation of the T, /T-dependences of the
scaled Sexc(Tg)/Sexc (thermodynamic “fragilities™) with their T /T-dependences of
the log(ty) (kinetic “fragilities”) [416]. The glassformers chosen are within the class
of organic small molecular glassformers, where one can find plenty of the most
accurately determined entropy data by adiabatic calorimetry with vibration contri-
bution taken into account [420]. The results show a number of violations and cast
doubt on the proposed correlation between “thermodynamic fragility” and “kinetic
fragility” [416]. More glassformers of different classes were added by Martinez and
Angell [564] to show the correlation. The inorganic glassformers have extended
both “thermodynamic fragility” and “kinetic fragility” to much lower values than
the organic small molecular glassformers. With all kinds of glassformers included,
arough correlation seems to exist between “thermodynamic fragilities” and “kinetic
fragilities.” However, when confined to the organic small molecular glassformers,
their results (see Fig. 3 in [564]) do not show any correlation, consistent with the
previous work [416] that show explicitly the various breakdowns of correlation. In
another paper [562] that favors the correlation of m with thermodynamic fragility
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[66], the thermodynamic fragility of glycerol (m = 53) was shown to be smaller
than that of cis-decalin (m = 147) and hence the correlation. However, the thermo-
dynamic fragility of Ca(NO3),-4H,O is still larger than that of cis-decalin, although
the m value of the former was not given. The correlation would still break down
unless m of Ca(NOj3), - 4H»O is larger than 147 of cis-decalin, which is unlikely
because CKN has m = 93.

Here is an example of the difference in view that can occur between workers
coming from different scientific backgrounds. While the breakdowns equated to
anomalies are emphasized by physicists as clues to find the solution to the prob-
lem [25, 160, 161], they do not seem to be a matter of concern to chemists such as
Martinez and Angell. Instead, they cited support from computer simulation studies
of hard spheres [565], supercooled water [566], and binary Lennard-Jones particles
[567]. Their belief in thermodynamic factors are sufficient to describe a-relaxation
and glass transition is made clear by the statement “... it is now being suggested
by molecular-dynamics (MD) studies that liquid diffusion is a process dominated
by thermodynamic factors.” It is risky to jump to this conclusion based on a corre-
lation which has exceptions without taking into consideration other experimental
aspects, particularly those pointing to the role played by the dispersion of the
a-relaxation. There is no doubt that thermodynamic factors constitute the major
cause for the rapid increase of t, and vitrification, but the role of other factors may
not be so easily dismissed. The a-relaxation is definitely a many-body process, and
most workers would not disagree. But, can all the effects of many-body dynamics
be captured by thermodynamics alone, as some theories such as the Adam—Gibbs
model and the free volume model suggest? For the sake of argument, let us not
be so ambitious to solve the glass transition problem, and instead consider just the
properties of the a-relaxation of a liquid either at constant 7, P, or V, or at con-
stant 7. As we shall see by many examples throughout this treatise, there are still
several important and general properties of the a-relaxation that have no relation to
thermodynamic factors but require explanation. These situations suggest thermody-
namic factors alone cannot fully describe the a-relaxation, and some basic physics
of many-body relaxation leading to the thermodynamic factors have yet to be found
and implemented into any theory of glass transition before it can claim to have
solved the problem. Undaunted by this possibility, Martinez and Angell sought to
rationalize the correlation in terms of thermodynamic factors by the Adam—Gibbs
equation. As has been discussed before in a previous section, the Adam—Gibbs the-
ory shows explicitly that the reciprocal of the configurational entropy S. governs
log(ty). Sc is only a part of Sexc. In order to have the correlation as a conse-
quence of the Adam—Gibbs equation, Martinez and Angell asserted that S; and Sexc
change proportionally with increase of temperature above 7. This assertion was not
supported by analysis of thermodynamic data by Johari [409, 413, 415].

For 11 amorphous polymers for which sufficient thermodynamic and relax-
ation data were available, it was found that their “thermodynamic fragilities” in
the plot of Sexc(Tg)/Sexc against Tg/T bear no relationship to their corresponding
“kinetic fragilities” in the plot of log(ty) against T /7T [417]. Though polymers have
many repeat units bonded together to form long chains, their thermodynamic and
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dynamic properties related to glass transition are qualitatively no different from non-
polymeric glassformers, and even selenium and some metaphosphate glassformers
which have long chains. One has to reconcile with the non-existence of strong
connection between “thermodynamic fragility” and “kinetic fragility” in polymers.

Establishing correlations between physical quantities is a worthwhile pursuit in a
research problem such as glass transition that has no satisfactory solution. Yet even
a perfect correlation is at best an indication of a possibility but cannot be used as a
proof of any theory. If a correlation has exceptions or breakdowns, like in the present
case of thermodynamics and kinetic “fragilities,” they should not be ignored. They
are anomalies which signal that some other piece of physics may be missing in the
consideration of the correlation (see Section 1.4.2 for a discussion on the importance
of anomalies as guides to solution of a problem). Now, thermodynamics and kinetic
“fragilities” are just two out of more quantities that characterize the thermodynam-
ics and dynamics of glassformers. Even if undisturbed by the imperfect correlation
between thermodynamics and kinetic “fragilities,” one should follow this up with
the next question, which is whether other properties are also correlated with them.
One outstanding property is the non-exponentiality of the structural relaxation char-
acterized by n that appears in the exponent (1 — n), of the Kohlrausch correlation
function. We have mentioned before that if all kinds of glassformers are included in
the consideration, there are many breakdowns of the correlation between m and n.
Correlation is strong or perfect only when restricted to glassformer from the same
family with related chemical and physical structures. Martinez and Angell defined a
thermodynamics “fragility” index F34 by the value of Ty /T at which Sexc(Tg)/Sexc
assumes the value of 0.75. The next question is: how good is the correlation between
F34 and n? By inspection of Fig. 3 of [564], we see F3,4 ~ 0.44 of B,0Os3 is
smaller than F3,4 ~ 0.76 of 3-bromopentane and F3,4 ~ 0.80 of propylene car-
bonate (note that the scale of F3.4 in the figure is different for values above 0.7).
In the opposite direction, among the three, B,O3 has the largest n ~ 0.40 [112]
compared with n =~ 0.29 for 3-bromopentane [253] and n ~ 0.27 for propylene
carbonate [195]. Comparing ZnCl, with BO3, both inorganic glassformers, ZnCl,
has F3,4 ~ 0.55 larger than that of B,Os3, but its n ~ 0.27 is smaller than that of
B;03. Selenium has F3/4 =~ 0.65 less than the F3/4 values of all the small molecular
glassformers considered by Martinez and Angell, and yet it has the largest n =~ 0.58
[480]. An example of such violation is given by comparing selenium with glyc-
erol (F3/4 ~ 0.70, n ~ 0.29). More examples can be given to show that F34
does not correlate with n. One may turn around and say that the above compar-
isons actually indicate the existence of an anticorrelation between F34 and n, e.g.,
a small F3/4 is associated with a large n. This hope is dashed by GeO, which has
F3/4 ~ 0.12 and n ~ 0.0; both figures are the smallest. One may go to the extreme
to declare that the time/frequency dispersion of the structural relaxation is not as
important or fundamental a property as m and F3.4, and hence correlation of the
latter with 7 is not expected. However, this view needs serious justification. By con-
sidering all kinds of glassformers as done by Martinez and Angell, the upside is that
it does give an impression that thermodynamics and kinetic “fragilities” correlate
for a number of glassformers, but the downside is that it exposes the other problem.
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The problem is no longer that serious if the glassformers chosen all belong to the
same class as demonstrated for some small molecular glass-forming liquids [253].
For a selected few, it was shown there that z*(7) obtained from thermodynamic
data correlates with the steepness index m and exponent n. Moreover, the tempera-
ture dependences above Ty of n, m, and z* are quite similar. This observation may be
the consequence of synergy of all the factors that determine n, m, and z*. There is
serious doubt on this correlation from the multiple violations of the proposed corre-
lation found even within the same class of glassformers. The failure of extending the
correlation between “thermodynamic fragility” and “kinetic fragility” to include the
time/frequency dispersion of the structural relaxation or n is another indication that
the correlation is not fundamental. According to the coupling model, thermodynam-
ics is not the only factor that determines the properties of glassformers as envisaged
in the Adam—Gibbs theory or other models. Many-body relaxation dynamics and
their effects must be included before any good sense out of any correlation or lack
of correlation between two quantities or parameters.

The effort of Angell and coworkers to establish a connection between the ther-
modynamic properties and dynamics and relaxation properties was motivated by
the Adam—-Gibbs model and the development of an energy landscape model and
they used it to analyze data on various small molecular glassformers [37]. The
central idea of the model for the structural and transport properties of a glass-
former is that the manner by which they evolve with temperature is governed by
the density of configurational states comprising the potential energy hypersurface.
The topology of this energy landscape (i.e., the number of minima and the bar-
rier heights between them) provides a measure of the steepness of the excitation
profile for glass-forming liquids. According to the model, when heated through
1, fragile liquids readily transition among many configurational states, giving rise
to substantial changes in relaxation times and viscosities. In general, one may
expect that the topographic features of the potential energy surface are possible
sources of the apparent connection between thermodynamics and kinetics in super-
cooled liquids. However, this picture was not supported by the families of model
“rugged landscape” potential energy functions using a modular basin approach by
Stillinger and Debenedetti [568]. This study was intended to clarify the molecu-
lar level basis for the relationship between thermodynamic and kinetic properties
of glassformers. Topographically, the families of model functions are sufficiently
diverse such that pairs of model functions can be chosen to share exactly the same
thermodynamic behavior (depth distribution of potential energy minima), but they
differ drastically in those topographic attributes that control kinetic and relaxation
behavior. Hence, within this landscape model, there is no correlation between “ther-
modynamic fragility” and “kinetic fragility.” These authors did not question the
possibility of validity of the correlation between thermodynamic and kinetic behav-
iors as suggested by the Adam—Gibbs equation and the empirical studies by Angell
and coworkers. Instead, in order to bring the landscape model to produce the cor-
relation, they suggested considering “an additional physical principle involving
details of interparticle interactions, transcending the purely mathematical aspects
of potential energy landscape topography.” This suggestion interestingly originated
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from the authors who have some faith that the correlation between thermodynamic
and kinetic behavior has been firmly established and is fundamental. The coupling
model (CM) has often stressed besides thermodynamics the importance of including
the effects of many-body relaxation dynamics due to intermolecular interactions in
capturing the true nature of the structural relaxation. Apparently, many-body relax-
ation captured by the CM is the “additional physical principle involving details of
interparticle interactions” that Stillinger and Debenedetti (in their own words) are
looking for.

A different way of constructing the potential energy surface was given by Wales
and Doye [569]. They found the model which exhibits higher kinetic fragility usu-
ally has a larger change in the heat capacity at the glass transition. However, this
is not always the case. In some regions of parameter space, they found the correla-
tions between dynamics and thermodynamics are not present. Thus, the conclusion
of Wales and Doye are qualitatively similar to that of Stillinger and Debenedetti,
namely the thermodynamic and kinetic properties are decoupled in the landscape
models. There is another analysis of the relation between statistical properties of the
landscape and fragility [570]. These authors cautioned that the knowledge of num-
ber, energy depth, and shape of the basins of the potential energy landscape may not
be sufficient for predicting “fragility.”

Sastry studied the relationship between kinetic and thermodynamic “fragilities,”
configurational entropy, and the potential energy landscape of binary LJ particles
systems by molecular dynamics simulations [567]. From the simulation, the diffu-
sion coefficient, D, and the configurational entropy, S., were obtained. All systems
have the same number of A-type and B-type particles but differ in density. For each
system, a kinetic “fragility” index, Kyvpr, was obtained from the VFTH fit to the tem-
perature dependence of D. It was found that Kypr increases with density. The plot of
log D against (TS.)~! shows approximately a linear relation, in agreement with the
Adam-Gibbs equation. From the scaled temperature dependence of TS, the slope,
KT1,AG, Was defined and used as the quantitative index of thermodynamic “fragility.”
Another thermodynamic “fragility” index, Kpgr aG, was defined and obtained from
the potential energy landscape. K11 aG is nearly the same as Kpgr, aG, and both are
in agreement with kinetic “fragility” Kygr for systems of different densities. The
results led Sastry to conclude that the rate of increase of 7S. does indeed deter-
mine the kinetic “fragility,” and there is a quantitative relationship between fragility
and the energy landscape of the liquid. The fixation with “fragility,” configurational
entropy, and Adam-Gibbs equation by many including Sastry in [567] has some-
how prevented them from looking into other equally important properties such as
the time/frequency dispersion, and seeking more general interpretation by consid-
ering also the many-body dynamics. Sastry gives only the long-time steady-state
diffusion coefficient, but not the time dependence of the diffusion coefficient and
its change with density. This practice is like in the Adam—Gibbs theory where only
n or 7, is the quantity of interest, but not the dispersion. On decreasing density, on
the average, the L] particles are further apart. Intuitively, we can expect that entropy
and volume become less sensitive to change in temperature. But, in addition there
is concomitant reduction of inter-particle interaction and the effects of many-body
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relaxation on slowing down relaxation and diffusion that cannot be accounted for
by the decrease of configurational entropy and specific volume. Thus, by decreas-
ing density of the LJ particles, thermodynamics and many-body relaxation work
in the same direction to reduce the scaled temperature dependence of D, as found
by Sastry. But, attributing the change of the scaled temperature dependence of D
(i.e., “fragility”) exclusively to the configurational entropy is an oversimplification.
The colloidal particles suspension systems with different volume fractions (densi-
ties) have been studied by confocal spectroscopy [141] and dynamic light scattering
[143]. Both sets of data clearly show the dispersion of the time dependence of the
mean-squared displacement or the diffusion coefficient decreases with decreasing
volume fraction of the colloidal particles. This trend is expected to be there for
the systems studied by Sastry, but unfortunately the data are not present. We recall
here the molecular dynamics simulation by Bordat et al. [264] discussed in Section
2.2.1. They studied the change of dynamic properties of the binary LJ particles with
change of the interaction potential. They showed the dispersion of the intermedi-
ate scattering function or n changes with the change in potential, caused by the
change of the capacity of inter-particle coupling. The change in n correlates with
the corresponding change in m, the kinetic “fragility,” and the Tg-scaled temperature
dependence of the non-ergodicity parameter determined by the vibrations at low
temperatures in the glassy state observed experimentally by Scopigno et al. [571,
572]. Thus, from these other studies which have shown the important role played by
the dispersion or 7, it is premature for Sastry to interpret his data entirely in terms
of thermodynamics and the Adam—Gibbs equation.

There is yet another interesting correlation suggested by Wang et al. [573,
574] which compares the “fragility” index m with a dimensionless combina-
tion of the heat capacity jump AC,(Ty) = Cpliquid(Tg) — Cpglass(Tg) at Ty
and the melting enthalpy Hp,. This empirical relation, m =~ mc,, found, where
Mea1 = 56Tg ACy(Ty)/Hm, has no obvious connection to the Adam—Gibbs theory,
but has subsequently been rationalized [575, 576] from the random first-order transi-
tion theory [577, 578]. For many glassformers of all kinds, there is good agreement
between m obtained by experiment from the T, /T-dependence of 1 or 7, and the
value of 5673 AC,(Ty)/Hn, calculated from thermodynamic data, although are still
a few exceptions. In spite of the correlation of m with m, found in many glassform-
ers, there is no escape from facing the multiple breakdowns of correlation of these
two parameters with n. This problem cannot be overcome at this time even with
the help of the random first-order transition theory. However, the works by Wang
et al. [573, 574] are important for further understanding of the connection between
thermodynamics and dynamics.

The glass-forming metallic liquids are particularly intriguing. The non-
exponential parameters n determined from the modulus measurements of these
metallic liquids do not exhibit significant difference, while the kinetic fragility index
m determined by mechanical modulus relaxation changes appreciably, and hence
breakdown of the correlation between n and m [574(c)]. The same was found from
extensive analyses of mechanical modulus relaxation data of molecular (mechan-
ical) and electrical modulus data of ionic liquids [574(c)]. For the glass-forming
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metallic liquids, the analyses of enthalpy relaxation measurements of metallic
glasses gave values of n,) different from 7, and the use of n¢, restored the correla-
tion between n¢, and m. Nevertheless, one has to bear in mind that the determination
of the non-exponential parameters nc, from enthalpy relaxation is not direct, in
contrast to n from mechanical modulus, but indirectly from fitting the data by the
Tool-Narayanaswamy—Moynihan model [782—-784(a)] using the program of Hodge
[785, 786] that involves parameters in addition to 7.

2.2.3.6 Correlation of Kinetic “Fragility” with Other Quantities?

The kinetic “fragility” has been so well publicized that by now it is considered
by most researchers to be a critical and fundamental property of glassformers in
glass transition. Consequently, many other properties of glassformers have been
compared with its measure, the “fragility” index m, with the purpose to find cor-
relation. Correlation of a property with m if found would allow one to claim that
the very property has a strong connection to the mechanism of structural relaxation
and glass transition. We have seen before in this section several attempts to correlate
some thermodynamic properties or quantities from experiments or theoretical mod-
els [565, 567, 570, 579] with m. Other properties invoked to demonstrate correlation
with m include (i) the strength of the vibrational boson peak [580], (ii) the compress-
ibility at 7, [572], (iii) the Tg-scaled temperature dependence of the non-ergodicity
parameter determined by the vibrations at low temperatures in the glassy state [571,
572], (iv) T-dependence of the shear modulus [581-583], and (v) the Poisson’s ratio
in the glassy state [584]. The degree of success in showing the existence of a correla-
tion with fragility varies from one property to another. The extreme happened in the
case of the proposed correlation of m with Poisson’s ratio. It was later found that the
correlation of m with the ratio of elastic moduli breaks down even within the same
family of glassformers including polymers and alkali borate glasses with differ-
ent concentrations of alkali-metal atoms. In particular, it was found in polystyrene
samples with different molecular weights that “fragility” changes in the direction
opposite to the proposed correlation with Poisson’s ratio [585]. Within the family
of metallic glasses, subsequent addition of more experimental data has led to the
final conclusion that the correlation is very poor, if present at all [586, 587]. The
application of pressure also has led to the result that 7 is a function of TV¥ where
V is the specific volume, and y is positive and varies over a wide range from near
zero to about 9 depending on the glassformer [119]. By examining the values of y
in Table 2 and mp or my in Table 3 in [119] of many glassformers, it is clear that
there is no correlation between y and mp or my, even when restricted to the same
class of glassformers. This is another indication that fragility is a complex and not
fundamental parameter.

All the activities mentioned above rely on the hope that “fragility” is indeed
the single most important concept of glass transition and key to the solution of the
problem, or it is the sole parameter that controls other properties. These are false
hopes that cannot be realized because “fragility” is a complex parameter, determined
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not only by the thermodynamic and mechanical properties but also by the dynamics
of many-body relaxation.

2.2.3.7 Different Patterns of Change of m with the Molecular Weight M of
Polymers

If the molecular weight of a polymer M exceeds some critical high molecular
weight, M., polymer chains become entangled and 7; remains constant. For low
molecular weight polymers with M < M., in general T, increases with molec-
ular weight without exception. However, in the same region with increasing M,
“fragility” can increase [589-592] like in polystyrene, and remain the same as in
poly(dimethylsiloxane) [593]. In polyisobutylene, “fragility” from dielectric relax-
ation measurements decreases with increasing M. On the other hand, “fragility”
from dynamic mechanical measurements remains constant with increase in M [592].
These inexplicable widely different changes of “fragility” with M of different poly-
mers, and in the same polymer obtained by different techniques, all indicate that
“fragility” is neither simple nor fundamental.

2.2.3.8 Breakdown of Correlation Between m and n
Small Molecule Organic Glassformers

Even restricted to some glassformers within the class of small molecules made of
carbon, oxygen, and hydrogen atoms, the diverse chemical structures available to
them may bring in different volume and entropy contributions to change of t, to
Tg-scaled temperature dependence, or m. As a result, there is no correlation of m
with n. An example of bad actors is the much studied glassformer propylene carbon-
ate (4-methyl-2-oxo-1,3-dioxolane), which has large m=90 which is larger than that
of salol (m = 73) and ortho-terphenyl (m = 84), and much larger than that of glyc-
erol (m = 57), and the methylated hydrocarbons including 2,4,6-trimethylheptane
and 3-methylheptane with m values falling in the range from 46 to 63 [594, 595].
All these m values were obtained at T = T, where T; is the temperature at which
7y = 100 s. On the other hand, the n value of propylene carbonate from dielec-
tric relaxation measurements is 0.27 [195, 424], which is significantly smaller than
the dielectric values of salol (n = 0.37) [596], ortho-terphenyl (n = 0.50) [237],
2,4,6-trimethylheptane (n = 0.44), and 3-methylheptane (n = 0.45) [595]. The
same situation applies to phenylphthalate dimethylether (PDE) and cresolphtha-
late dimethylether (CDE or KDE). The chemical structure of propylene carbonate
has the oxygen-bonded unit not shared by the other glassformers. Plausibly, this
unusual chemical structure of propylene carbonate with flexible oxygen bonds
enhances the volume and entropy contribution to the 7;-scaled temperature depen-
dence of 1. Support of this possibility comes from propylene carbonate having a
larger z*(T,), calculated from the excess entropy obtained by adiabatic calorimetry
[597], than ortho-terphenyl. Corroborating piece of evidence comes from positron-
ium annihilation spectroscopy that shows the unoccupied volume measured by the
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ortho-positronium lifetime, 73, has T;-scaled temperature dependence as strong as
that of ortho-terphenyl [387]. These two experimental results indicate the strong
influence that volume and entropy may have on the Z3-scaled temperature depen-
dence of the structural relaxation time of propylene carbonate because of its special
chemical structure. On the other hand, comparing propylene carbonate with PDE
and CDE that have similar oxygen-bonded units, the correlation between m and n
works well for these three glassformers [597]. The lesson we learn is that correla-
tion between m and n may hold well only for glassformers having similar chemical
and physical structures. Consideration of glassformers with different chemical struc-
tures and physical interactions will not find any recognizable correlation found as
early as 1990 by Torell et al. [598] and later by Schroter and Donth [599]. The lat-
ter considered metallic glass, inorganic glass, van der Waals, and hydrogen-bonded
glassformers, and the absence of correlation between fragility and » is unsurpris-
ing. Schroter and Donth did not understand this point and instead used the lack of
correlation against the CM. They cite the study of a series of polybutadienes of
different microstructure by Zorn et al. [600], which are closely related glassform-
ers and the correlation indeed works. Nevertheless, Schroter and Donth mentioned
another (unrelated) prediction of the CM on the difference in temperature depen-
dence between viscosity and local segmental relaxation, which Zorn et al. found
to be qualitatively correct but not quantitatively. Actually the lack of quantitative
agreement is due to the fact that Zorn et al. could not measure both the viscosity
and the local segmental relaxation at the same temperatures close to 7; by dynamic
mechanical method. They had to extrapolate the viscosity or terminal relaxation
shift factor measured at higher temperatures to lower temperatures by using the
VFTH dependence, introducing large uncertainties in the process. The data are
insufficient to test the prediction quantitatively. The test can only be made with creep
measurement of Plazek [165, 168-171, 360], who measured both terminal and local
segmental relaxation near 7;. Schriter and Donth cited also the lack of correlation
in three different substituted poly(p-phenylenes) by Connolly et al. [601], who men-
tioned the presence of internal plasticization in one sample and the influence of free
volume inferred from macroscopic expansion coefficient. Schroter and Donth cited
also the dynamic mechanical measurements by Santangelo and Roland on low and
high molecular weight polystyrenes which show a variation in fragility but a con-
stant shape of the relaxation curves at the dynamic glass transition [589], but they
did not cite another publication by Rizos and Ngai [590] which explained this as
due to broadening of the dispersion by chain ends in low molecular weight PS by
providing measurement over a much broader frequency and temperature range.

For propylene carbonate PC, PDE, and CDE, however, more needs to be said
about the narrow dielectric susceptibility dispersion £*(v) of these highly polar
glassformers with large €, the high-frequency dielectric constant. Light scat-
tering [598, 211, 602] and mechanical shear modulus [599] measurements of
these glassformers have found much broader dispersion. The Kohlrausch exponent
Bk = (1 — n) of PDE from light scattering is about 0.5-0.6, while from dielectric
relaxation Bk lies between 0.7 and 0.84 in a similar temperature range. On the other
hand, for less polar glassformers such as BMMPC and BMPC that have smaller
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£c0, both the relaxation times and Bk obtained by dielectric susceptibility and by
light scattering are the same. It was also found that after transforming the dielectric
data of propylene carbonate and PDE from susceptibility, £*(w), to electric modu-
lus, M*(w), the frequency dispersion of M*(w) is as broad as seen by light scattering
and mechanical relaxation [603, 604]. The larger width of M*(w) found in PC, PDE,
and CDE having large &4, could be due to the M a-loss peak overlapping with the
unresolved secondary relaxation in these glassformers, and hence the broadening.
These findings and implications need further investigation.

Plastic Crystalline Materials

Even restricted to glassformers having the same physical structure, m will not cor-
relate with n if the glassformers have widely different chemical structures (and thus
different unoccupied volume and entropy). An example can be given by the class
of plastic crystalline materials. The plastic crystals refer to the class of molecular
materials having the centers of mass of the molecules located on sites of a regular
crystalline lattice but the molecules are dynamically disordered in their orienta-
tional degrees of freedom. The orientational relaxation dynamics of plastic crystals
are similar in many respects to the relaxation dynamics of ordinary glassformers
[144, 145, 605-612]. By sufficiently fast cooling, complete orientational ordering
can be avoided and the dynamically disordered state can be supercooled. The ori-
entational dynamics slow down on decreasing temperature and the relaxation time
increases over many orders of magnitude. At temperatures below the orientational
glass temperature, Ty, the relaxation time becomes so long that the orientational
degrees of freedom are frozen and a glass-like orientationally disordered state is
reached. Six plastic crystalline materials having widely different chemical struc-
tures were studied by Brand et al. [145] by dielectric relaxation measurements
over a broad frequency range. They are 1-cyanoadamantane (CNA), adamantanone
(AON), pentachloronitrobenzene (PCNB), cyclo-hexanol (CHEX), ethanol [145],
and cyclo-octanol (COCT) [613]. The “fragility” index m was determined with 7,
defined as the temperature at which the dielectric a-relaxation time reaches 100 s.
In increasing order, the m values are 17 for PCNB, 19 for AON (phase II), 33 for
COCT, 38 for ethanol, and 48 for CHEX. On the other hand, the n values are 0.5
for PCNB, 0.53 for AON (phase II), 0.25 for COCT, 0.25 for ethanol, and 0.38 for
CHEX. On comparing the values of m and n in the five plastic crystals, it is clear
there is no correlation. For example, PCNB has the smallest m but almost the largest
n. The chemical and physical structures of these plastic crystals are quite different,
and these differences may be the cause of the dissimilar dependences of their 7, on
temperature.

Neat Glassformer and When Mixed with Another Glassformer

One way to demonstrate that volume and/or entropy enter into the determination of
“fragility” is by comparing the dynamics of a neat glassformer A with that of the
same molecules A when mixed with another glassformer B. The packing of the A
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molecules, and hence volume and entropy, can be quite different in the two situa-
tions, resulting in breakdown of the correlation between n and the “fragility” index m
of the same molecules A. Such breakdown was found in tert-butylpyridine (TBP) or
quinaldine (Qn) in their pure states and in mixtures with trimer of styrene (tristyrene
or 3Styr). TBP and Qn are polar rigid molecules with large dipole moments, while
3Styr has negligible dipole moment and a much higher 7;. Consequently, the dielec-
tric relaxation experiment [614] only probes the dynamics and determines the
quantities m and n of TBP or Qn in the mixtures. In binary mixtures, concentration
fluctuations are present, which cause additional broadening of the dispersion of the
a-relaxation and the true value of n cannot be determined by fitting the experimental
complex dielectric constant £*(w) in Eq. (1.94) with v (¢) given by the Kohlrausch
function. There is a way to deduce the true value of n from the data by a relation
of the ratio of 7, /78, where 7g is the secondary relaxation time. This method will
be discussed later in Section 2.3. Anticipating the results, on increasing the con-
centration of 3Styr in the binary mixtures, it was found that m of either TBP or
Qn decreases almost monotonically whilst n increases monotonically. As an exam-
ple, for the TBP/3Styr mixtures, m (n) assumes the maximum (minimum) value of
101 (0.36) for neat (100%) TNB, and decreases (increases) nearly monotonically
with increasing 3Styr concentration down to 79 (0.63) at 5% TBP. This spectacular
breakdown of correlation between m and n is likely due to the change in packing of
the rigid TBP or Qn molecules in the mixtures with increasing presence of the more
flexible 3Styr molecules. Consequently, the influence of volume and entropy on the
dynamics of TBP or Qn is much reduced, and hence also the “fragility.” On the other
hand, when present, the much slower 3Styr molecules slow down the dynamics of
TBP or Qn and stretch its a-relaxation over a longer period of time, thus increasing
n. This increase of n has the potential of increasing the fragility of TBP or Qn, but it
is opposed by the stronger decrease from the diminishing sensitivity of 7, to volume
and entropy, resulting in the observed decrease of m. This explanation is qualitative.
Nevertheless, the complex nature of “fragility” is brought out by the experimental
results.

2.2.3.9 Restoration of Correlation Between m and n When Restricted to the
Same Family

The pursuit of correlations is in part due to the lack of a reliable theory of glass tran-
sition. The correlation of n with m discussed above was one of the very first of such
attempts in 1987 [535],in 1991 [479], and in 1993 [112], and we have seen that there
are many instances of breakdown of the correlation if glassformers of all kinds are
considered all at one time. The change of thermodynamics with temperature, which
is one of the factors that determine m, is not expected to be significantly different
if the glassformers considered belong to the same family with similar chemical and
physical structures. Examples include the carbon backbone polymers [244, 479]
and the supercooled chalcogenide systems composed of different amounts of Ge,
As, and Se [480]. These systems studied in these previous works show the existence
of correlation between m and n.
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The same chemical composition of the repeat units of a polymer but having the
pendant group arranged in different ways in repeat units (i.e., different tacticity) is
perhaps the best case for testing the correlation between m and n. The most complete
study of the dependence of dynamics on tacticity is on poly(methyl methacrylate)
(PMMA) and poly(ethyl methacrylate) (PEMA). For the same molecular weight,
syndiotactic and atactic PMMA and PEMA have higher 7; and smaller fragility
index m than their isotactic homologues, i-PMMA and i-PEMA. The i-PMMA and
i-PEMA are more ordered because the pendant groups are all on the same side as
opposed to more random arrangements in the syndiotactic and atatic polymers. This
suggests at least intuitively weaker intermolecular coupling and smaller coupling
parameter n in i-PMMA and i-PMMA. Experimental support of this was given in
[252], establishing the correlation between m and n for the polymers differing only
in tacticity.

Another example is the family of hydrogen-bonded polyalcohols. Glycerol, thre-
itol, xylitol, and sorbitol belong to this family and they differ mainly in the number
of carbon atoms on the backbone which increases from 3 to 6 in the order given.
The values of (m,n) for them are glycerol (m = 57, n = 0.29), threitol (m = 79,
n = 0.36), xylitol (m = 94, n = 0.46), and sorbitol (m = 128, n = 0.52). The
m values are from [239, 615], and » values are from [195].

Another example can be drawn from the family of epoxy resins [616]. The
members of this family have the same basic chemical structure. These include
t-butylphenylglycidylether (BPGE), diglycidylether of bisphenol F (DFDGE),
phenylglycidylether (PGE), the monoepoxy o-cresylglycidylether (0CGE), the
diepoxies DGEBA and PPGE, the triepoxy TPMGE. The good correlation between
m and n is shown in Fig. 34b.

The glass-forming (Na;O),(P>O5)1—_ liquids with compositions extending from
pure phosphorus pentoxide to the metaphosphate (x = 0.5) have been studied by
dynamic light scattering [542]. Correlation between m and n was found. This is
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no surprise because these glassformers belong to the same family. The value of n
has not been determined at 7y and its value should be taken from the Kohlrausch
function fitting the dynamic light-scattering data with 7, equal to some fixed but
sufficiently large value say 1 s. This is because in samples with higher x, the Na ion
conductivity relaxation overlaps the structural relaxation at shorter t, and broadens
the a-dispersion.

We have previously described the molecular dynamics simulations of the family
of binary Lennard-Jones (LJ) systems consisting of two kinds of particles A and B,
but with different LJ potentials [264]. The general form of the LJ potential is given
by Eq. (2.68). The three LJ potentials come from three different combinations of
gandp : (g =12, p =6),(gq =38, p =195),and (g = 12, p = 11). From the
molecular dynamics simulation data of t,(7’), m for each LJ system is defined as the
Trer/T-dependence of 1, where Tir is the temperature at which 7o (Tief) = 46,435.8
(LJ units of time), which is a very long time in simulations. It was found that m
correlates well with n for these three binary Lennard-Jones systems. Therefore,
when restricted to glassformers that are closely related members in the same family,
“fragility” and its index m correlate well with n. This shows again that n does not
fail in correlation with other quantities when the latter are unambiguous.

2.2.3.10 Colloidal Suspension of Soft Spherical Particles: Proving
Non-exponentiality (r) and Fragility (m) Are Parallel Consequences
of Inter-particle Interaction

An enlightening experimental fact indicating that many-body a-relaxation from
intermolecular interaction is one of the determining factors of fragility in ordinary
glassformers can be inferred from a report by Weitz and collaborators [617a] and
Mattsson et al. [617b]. They studied the dynamics of colloidal suspensions of soft
spherical particles, specifically closely packed microgels. The softness of the par-
ticles fabricated can be adjusted, ranging from very soft, intermediate soft, to the
conventional hard spheres (with PMMA core, studied before in [617c]). For hard-
sphere suspensions, the particle concentration is quantified by the volume fraction,
¢ = NV,, where N is the number density of particles and V), is their volume.
However, because the microgel particles are deformable, their volume is not fixed
and ¢ is no longer a good measure of concentration. Instead, { = NV, was used,
where V) = 4n (Ro)3 /3 is the volume of an undeformed particle of radius Ry mea-
sured in dilute suspension. The dynamics of each of these colloidal suspensions was
measured by confocal microscopy. The time-dependent correlation function was
fitted to the Kohlrausch correlation function, exp[—(z/ 14)P], for all the colloidal sus-
pensions at different volume fractions ¢. Their relaxation times 7, as a function of ¢
are compared in Fig. 34c, left panel. For each microgel sample, they also determined
the frequency-dependent shear moduli, G'(w) and G”(w), by oscillatory rheology.
They obtained the viscoelastic 7, as the timescale corresponding to the frequency
for which G’(w) = G"'(w). Shown by plus symbols in the figure, the viscoelastic
has the same dependence on ¢ as 7, observed by light scattering.
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Fig. 34c (Left) Plot of kty vs. ¢ for stiff (diamonds, Ry = 95 nm), intermediate (empty circles,
Ro = 92 nm), and soft (triangles, Ry = 80 nm) microgels, where k is chosen to collapse the
data onto those of the intermediate sample at low ¢ values. Data for a second intermediate sample
(empty squares, Ry = 168 nm) scale onto those of the first for { > ¢*, as expected. Rescaled shear
viscosities (intermediate: crosses in circles, Ry = 92 nm, and crosses in squares, Ry = 168 nm;
soft: crosses, Ry = 80 nm) and rheological structural relaxation times (intermediate: pluses in
circles, Ry = 92 nm, and pluses in squares, Ry = 168 nm; soft: pluses, Ry = 80 nm). (Right)
Same as (Left), with ¢ normalized by {; = ¢(tq = 100 s). Reproduced from [617b] by permission

Defining ¢ as the value of ¢ at which 7, = 100 s uniformly for all suspensions,
the data of log 7y are replotted against ¢ /¢g. This plot shown in the right panel of
Fig. 34c is the analogue of the OLUA plot of log t vs. Ty /T for molecular glass-
formers. A pattern emerges from this plot for the colloidal suspensions. The softer
the spherical particles, the weaker the dependence of log 7, on ¢ /¢, and smaller the
steepness index m; defined by dlog /d(¢/¢,) evaluated at ¢ /¢, = 1. This pattern
reproduces the OLUA plot for ordinary glassformers.

Mattsson et al. also compared the stretch exponent 8 = (1 —n) of the Kohlrausch
correlation function, exp[—(z/ 70)P] (Fig. 34d). They found, for ¢ greater than some
critical ¢*, B is larger or n is smaller in colloidal suspension of softer particles, with
B =~ 0.8 or n ~ 0.2 for the softest spheres, and 8 ~ 0.6 or n & 0.4 for the interme-
diate soft spheres. The photon correlation spectroscopy data of Bartsch et al. on the
hard spheres show monotonic decrease of 8 with increasing ¢ or 7. 8 is about 0.6
when 7, ~ 107! s and decreases to 8 &~ 0.4 or n = 0.6 when 1, ~ 10®sor ¢ = Lo
Since softer spheres have weaker dependence of log 7, on ¢ /¢, and smaller steep-
ness or fragility index m,, therefore n correlates with m, which is equivalent to the
correlation between n and m for ordinary glassformers. In the present case of ather-
mal colloidal particles, thermodynamic factors do not enter. Thus, both n and m, are
controlled solely by the softness of the particles, or more exactly the strength of the
particle—particle interaction. Naturally softer the particles, weaker the inter-particle
interaction, and smaller the degree of many-particle cooperative dynamics. Thus



148 2 Glass-Forming Substances and Systems

Fig. 34d The stretching e T T T T
exponent 8 remains constant 1.0

for values of ¢ greater than ¢*

(the range of ¢* is indicated

by the shaded region) for

both intermediate (circles, B (o)
Ro = 92 nm; squares, osf &
Ro = 168 nm) and soft o
(triangles, Ry = 80 nm)
microgels. Reproduced from 04F * 1
[617b] by permission ¢

08F DA-——.—-...—-...-.—-..—____.___.

the results of Weitz et al. nicely elucidate two important points. First, n and m; or
“fragility” are parallel consequences of solely the many-particle dynamics. Second,
the correlation between them is necessarily true because no other factor enters into
the problem, unlike the case of molecular glassformers where thermodynamic fac-
tors also enter. Having identified many-particle dynamics to be the sole source in
determining n and m, in colloidal suspensions, it is rational to presume that many-
molecule dynamics are important also for molecular glassformers in determining
their non-exponentiality (n) and “fragility” (m).

Although I have emphasized the correlation (anticorrelation) of n (8) with
fragility m; in the colloidal systems, this was mentioned only in passing by Mattsson
et al. Moreover, we have identified the trends observed in both n and fragility are
caused by the change in inter-particle interaction in varying the softness of the
microgel. Thus the correlation between n and fragility is a natural consequence
On the other hand, Mattsson et al. put their emphasis on fragility and went on to
show fragility is dictated by elastic properties on the scale of individual colloidal
particles. Their findings are interesting and instructive. However, elastic property
is just one of those properties that are derivable from the inter-particle interac-
tion. So is fragility, because no doubt 7, is governed by the inter-particle potential.
More properties of these colloidal systems other than elasticity may also correlate
with fragility. I speculate that another one is dynamic heterogeneity. If this is true
and proven in the future by experiment or simulation, then one may be led by the
importance of elasticity argued by Mattsson et al. to think that dynamic hetero-
geneity is also dictated by elastic properties. This seems questionable. In my view,
all properties mentioned including fragility, elastic properties, dynamic heterogene-
ity, and non-exponentiality are consequences of the many-particles dynamics, the
intensity of which is dictated by the inter-particle potential. Therefore I argue that
it is more fundamental to relate fragility, elasticity, and dynamic heterogeneity to
the simplest and most direct indicator of the many-particle dynamics; a candidate
is the degree of non-exponentiality or n = (1 — B). Softer the microgel particles,
weaker the inter-particle interaction, and lesser the degree of anomaly in these prop-
erties. Naturally fragility, elasticity, dynamic heterogeneity, and non-exponentiality
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of colloidal suspensions, all derivable from the inter-particle potential, correlate
well with each other. The correlations are even better than molecular glassformers
because the colloidal suspensions are athermal systems and thermodynamic factors
including volume and entropy no longer enter in conjunction with many-particle
potential to determine fragility. The reader can find in this chapter many exam-
ples of breakdown of correlation of fragility molecular glassformers with other
properties because the temperature dependence of 7, is governed by volume and
entropy in addition to the inter-particle potential. Study of the glass transition prob-
lem by the soft colloidal systems has the advantage that thermodynamic factors
are absent, hence not only simplifying the problem but also exposing the impor-
tance of the many-particle dynamics governed by the inter-particle interaction. It
is because of the simplification and revelation that I agree with Mattsson et al. in
saying “Colloidal suspensions may thus provide new insight into glass formation in
molecular systems” [617b].

Concluding Remarks on “Fragility” and the “Fragility” Index m

The concept of “fragility” or its index m or F1y stems totally from the dependence
of 7y on T (after scaling T by Tiet or 1y). For it to be considered as a fundamental
quantity in glass transition, the assumption has to be made that no other factor deter-
mines 1, except the scaled temperature and associated thermodynamic quantities.
This is a bold assumption which is unjustifiable because the effects of many-body
a-relaxation dynamics on 7, cannot be completely described by scaled temperature.
We have seen that mp changes with pressure P and my changes with specific volume
V. Also mp does not correlate faithfully with other observed dynamic and thermo-
dynamic properties when different kinds of glassformers are considered altogether,
or even within the same class of glassformers. The cause of these shortcomings of
“fragility” is that it is a complex quantity because 7, depends not only on 7 /T et
but also on other factors. These include P for isobaric condition and V for iso-
choric condition, as well as the effects coming from the many-body nature of the
a-relaxation. The latter can vary greatly with the intermolecular potentials in differ-
ent glassformers. From these multiple dependences of 7, “fragility” and its index m
or F1;, cannot faithfully correlate with other observed dynamic and thermodynamic
properties when glassformers of different chemical bonding and physical structures
are considered together.

While “fragility” and its indices mp and my can vary a great deal with pressure
and specific volumes in the same glassformer and for the same 7 (Tref) o1 74(T%), the
time/frequency dispersion (or n) of the a-relaxation remains the same independent
of the different possible combinations of P, V, and T leading to the same 7y (Tter) OF
To(Ty) [120, 588, 618]. This remarkable property of the time/frequency dispersion
(or n), applicable not only at constant 7y (Tref) or 74(T,) but also at any constant
7, value, is the subject of discussion of the following section. This remarkable link
between 1, and n, independent of P, V, and T, demonstrates that the dispersion of
the a-relaxation or its non-exponential parameter n is a more faithful indicator of
a fundamental mechanism behind the a-relaxation of glassformers than “fragility”
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or the indices mp and my. A fundamental mechanism is the many-body relaxation.
This is indicated by the strong correlations found between the dispersion (or n) and
other properties of 7, presented in previous sections and more to come in the next
section. Thus, while 7 is solely determined by many-body relaxation dynamics, mp
and my depend on thermodynamic variables as well as many-body dynamics. The
combined dependences make “fragility” a complex quantity not as useful as n in
solving the problem of glass transition.

To illustrate once more that fragility has the combination dependences, a com-
parison of its value for hyper-branched polystyrene (HBPS) with that for linear PS
was made by mechanical relaxation data [619]. While the linear PS is entangled, the
HBPS is not, even though their glass transition temperatures are nearly the same.
The lack of intermolecular chain entanglements in HBPS suggests the segmental
motion for HBPS is less cooperative than that of the linear PS. The density of HBPS
was measured, and it is comparable to or less than that of linear PS. Both factors
may contribute in causing the fragility index of HBPS to be lower than that of the
linear PS as was observed experimentally. Evidence for both factors in action also
comes from the results of the study of hyper-branched poly(ether ketone) and its
linear analogue [620]. The study reported that hyper-branched poly(ether ketone)
was more fragile than the corresponding linear analogue opposite to the trend found
in polystyrene [619], but here the hyper-branched polymer was denser than the lin-
ear polymer. These two experimental results suggest both density and cooperative
many-body dynamics determine the fragility index.

2.2.4 Invariance of the a-Dispersion to Various Combinations of T
and P While Keeping t, Constant

Studies of changes of relaxation dynamics of glassformers with temperature at
ambient pressure (0.1 MPa) have traditionally been the way to study glass transition.
This practice is due largely to experimental convenience in varying temperature.
Most of the experimental data of structural a-relaxation in the literature are ambient
pressure measurements carried out at different temperatures. From the experimen-
tal data, it is well established that the shape of the a-dispersion (or the exponent n
in Eq. (1) if fitted by the Kohlrausch function) can vary from one glassformer to
another, when compared at T, or some other reference value of 7, [112, 244]. Many
experimental studies have shown also that for a given material, often the width of
the a-relaxation dispersion monotonically increases with decreasing temperature or
increasing 1, [238, 423, 621, 622], although the rate of change varies. Less common
than temperature studies at ambient pressure are experiments employing hydrostatic
pressure, notwithstanding the fact that some pioneering dielectric measurements
at applied elevated pressures were carried out half a century ago by Robert Cole
and coworkers [623] and followed by others in the earlier days to cite a few [76,
624-632].

Recently, the technique of applying high pressure in broadband dielectric relax-
ation measurements has been greatly improved. Now, pressure from 0.1 MPa up
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to several GPa can be routinely employed as an experimental variable in various
spectroscopies including light scattering, neutron scattering, and broadband dielec-
tric spectroscopy to probe the dynamics of glassformers and other substances. Only
some representative publications are cited here in [633-679]. Consequently, exper-
imental measurements can be made at different combinations of P and T over
wide ranges of both variables. The specific volume V corresponding to any com-
bination of P and T can be inferred from P-V-T measurements made separately.
Elevated pressure increases 1, but the increase can be compensated by raising
temperature. Hence, various combinations of P and T can be chosen for which
the a-loss peak frequency v, and the corresponding relaxation time 7, are the
same.

If measurements under this condition are carried out, then an interesting question
is whether the shape of the frequency dispersion of the a-relaxation changes or not?
Sufficiently large amount of experimental data of this kind have accumulated till
2005 so that the answer can be given. An important experimental fact has emerged
from the combined pressure and temperature studies of many different glassformers.
At any chosen constant value of the structural relaxation time 7, or frequency v, the
dispersion of the structural a-relaxation is invariant. Some examples of data prior to
2005 found in [618] are shown in Figs. 35 and 36. There are instances in which the
heights of the dielectric a-loss peak, e{;ax, of some of the P and T combinations are
not exactly the same. Nevertheless, after the measured dielectric loss ¢”(v) has been
normalized by e, the frequency dispersions of ¢”(v)/elr. . is invariant for any
chosen vy. Thus, generally at any fixed value of 7, the time/frequency dependence
of the relaxation function (or n) is invariant to changes in thermodynamic condition
(temperature, pressure, and volume). In other words, temperature—pressure superpo-
sitioning holds for the dispersion of the structural a-relaxation at constant 7. Lack
of superposition may occur at frequencies high compared with vy. Such deviations
at high frequencies or shorter times are attributed to the contribution to dielec-
tric loss from resolved or unresolved faster secondary relaxation, whose dielectric
relaxation strength does not necessarily have the same P and T dependences as the
a-relaxation. The superpositions in Figs. 35 and 36 are shown as log ¢”'(v) vs. log v.
Had the superpositions been shown as &¢”/(v) vs. log v, the small deviations from per-
fect superposition at high frequencies seen in the log ¢’/(v) vs. log v superpositions
will be invisible.

Since the general property is remarkable and important, some examples of dielec-
tric experimental data from different kinds of glassformers shown or not shown
before are presented here. In the paper of 2005 [618], the glassformers considered
include both molecular liquids (Fig. 35) and amorphous polymers (Fig. 36) with
diverse chemical structures. All show the property of temperature—pressure super-
positioning of the dispersion of the structural a-relaxation at constant 7. In some
cases, experimental data of the same glassformer at several different dielectric relax-
ation times are presented to demonstrate that P—T superpositioning holds for any
choice of constant 7. In many of them, the width of the a-relaxation increases with
increasing t,. Therefore, one cannot trivialize the observation by saying that it is
due to the dispersion being independent of temperature and pressure.



152 2 Glass-Forming Substances and Systems

a) KDE

10 d) (jiisobutyl phthalate

o

V318K 0.1MPa | o s,
A 363K 167MPa &
1 | X 325K 0.1MPa

107 §% 363K 137MPa
D> 337K 0.1MPa
< 363K 87.0MPa|
© 355K 0.1MPa
0 363K 268MPa

V 140 MPa 238K | 3
10" E O 0.1MPa214K [
+ 180 MPa 238K
0 0.1 MPa 208K

1072 al al al AN B A B B B e e ]
107 10" 1 10 10° 10° 10* 10° 10° 10" 1010210 1 10 10? 10° 10* 10° 10° 107 10°
4 b) PC e) dipropyleneglycol dibenzoate (DPGDB)
E 1L o - AO0OEERGA00
£ w g
107" o 2722k 178 GPa Dé 5“
= O 162.2K, 0.1 MPa) g
w A 2832K,1.69 GPa 107F ©
2 J X 168.2K, 0.1 MPa) o N
10 < 283.2K, 1.5 GPa o
+ 173K, 0.1 MPa) °
5 ]| 2832 121GPa AV 253K; 48-72-94-115-142-163 MP
10° 4V 16K ofmMPa | B > | O O 244-240-236.7-233-229-226 K; 0.1 MPal ., &8

10 L
102102107 1 10 10 10° 10* 10°10° 10710° 102 10" 1 10 10® 10° 10* 10° 10°
f) benzoyn butylether
¢) PCB62 10

1 f@%

R,

4
00
ERI

o
O 335K, 162MPa
< 284K, 0.1MPa
A 335K, 932MPa
¥ 302K, 0.1MPa
102 f | O 385K, 46MPa
+ 317K, 0.1MPa

O high pressure data “°%0qq
ambient pressure data
T

107 1 10 10% 10° 10* 10° 10° 10" 402 47 1 10 10* 10° 10* 10° 10° 107

frequency [Hz] frequency [Hz]

Fig. 35 Dielectric loss data at various combinations of temperature and pressure as indicated to
demonstrate the invariance of the dispersion of the a-relaxation at constant a-loss peak frequency
vy or equivalently at constant a-relaxation time 7, for (a) cresolphthalein-dimethylether (KDE),
(b) propylene carbonate (PC) (loss normalized to the value of the maximum of the a-loss peak), (¢)
polychlorinated biphenyl (PCB62), (d) diisobutyl phthalate (DiBP). (e) Dielectric loss of dipropy-
leneglycol dibenzoate (DPGDB). Loss normalized to the value of the maximum of the a-loss peak.
The dc conductivity contribution has been subtracted. Red triangles are isothermal measurements
at T=253 K and P=48, 72, 94, 115, 142, 163 MPa (from right to left). Black symbols are isobaric
measurements done at P=0.1 MPa and T= 244, 240, 236.7, 233, 229, 226 K (from right to left).
The spectrum at 7=226 K has been shifted along X-axis by multiplying frequency by a factor
1.3. (f) Dielectric loss of benzoyn isobutylether (BIBE) at different 7 and P. The dc conductivity
contribution has been subtracted. Spectra obtained at higher P are normalized to the value of the
maximum of the loss peak obtained at the same frequency at atmospheric pressure. From right to
left: Black lines are atmospheric pressure data at 7= 271 (a), 263 (b), 253 (c), 240 (d), 236 (e), 230
(), 228 (g), 226 (h), 223 (i), 220.5 (j), 218 (k) K. Symbols are high-pressure data: 7=278.5 K and
P=32 (a), 65 (b), 118 (c), 204 (d), 225 (e), 320 (h), 370 (j), 396 (k) MPa, T=288.2 K and P=350
(), 370 (g), 423 (i), 450 (j) MPa, T=298 K and P=330 (d), 467 (h) MPa. Figures redrawn from
original data in each case

2.2.4.1 Molecular Glassformers

Numerous molecular glass-forming liquids have narrow dispersions of the
a-relaxation and an excess wing on the high-frequency flank, but otherwise
no other resolved secondary relaxation in their dielectric spectra. There are
experimental results [424, 508, 657, 658, 679-684] indicating that the excess
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Fig. 36 Dielectric loss data at various combinations of temperature and pressure as indicated
to demonstrate the invariance of the dispersion of the a-relaxation at constant a-loss peak fre-
quency v or equivalently at constant a-relaxation time 7y, for (a) poly(vinyl acetate) (PVAc); (b)
poly(methyltolylsiloxane) (PMTS); (¢) poly(phenylglycidylether)-co-formaldehyde (PPGE); (d)
poly(oxybutylene) (POB). In all cases spectra obtained at higher P are normalized to the value of
the maximum of the loss peak obtained at the same frequency at atmospheric pressure. Figures
redrawn from original data in each case

wing is an unresolved Johari—Goldstein secondary relaxation. More detailed
discussion of these experimental results will be given in a later section on
Johari-Goldstein secondary relaxation. The glassformers of this type that exhibit
P-T superpositioning of the a-relaxation holding for any choice of constant 7,
are cresolphthalein-dimethylether (KDE), phenylphthalein-dimethylether (PDE),
propylene carbonate (PC), and polychlorinated biphenyl (PCB62) included in
Fig. 35. In each of these figures, data are used to show that this property holds for
more than one value of t,. Shown elsewhere [120] and not be duplicated here are
the same behavior found in phenylphthalein-dimethylether (PDE), phenyl salicylate
(salol), 3,3’,4,4'-benzophenonetetracarboxylic dianhydride (BPTCDaH), 1,1’-bis
(p-methoxyphenyl)cyclohexane  (BMPC),  1,1’-di(4-methoxy-5-methylphenyl)
cyclohexane (BMMPC), diethyl phthalate (DEP), and di-isooctal phthalate (DiOP).
More small molecular glassformers obeying P—T superpositioning at constant T,
have been found since the publication of [120, 618].
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Some molecular glassformers have a resolved secondary relaxation whose peak
frequency is practically pressure independent; these are not Johari—Goldstein (JG)
processes (according to the definition given in [685]). The slower JG relaxation
is not resolved from the a-relaxation in the equilibrium liquid state. Such liquids
include 1,1’-bis(p-methoxyphenyl)cyclohexane (BMPC) [659], diethyl phthalate
(DEP) [660], di-n-butyl phthalate (DBP) [661], diisobutyl phthalate (DiBP) [661],
di-isooctal phthalate (DiOP) [684], decahydroisoquinoline (DHIQ) [667], dipropy-
leneglycol dibenzoate (DPGDB) [669], and benzoin isobutylether (BIBE) [687].
Also are the epoxy compounds including the more familiar diglycidylether of
bisphenol A (EPON828) [640], shown in Fig. 37, and less common 4,4’-methylene
bis(N,N-diglycidylaniline) (MBDGA) [688, 689], bisphenol A propoxylate(1-
PO/phenol)diglycidylether) (1IPODGE) [690], N,N-diglycidyl-4-glycidyloxyaniline
(DGGOA) [691], and N,N-diglycidylaniline (DGA) [691]. For all members of this
class of glassformers, the dispersion associated with any fixed value of t, is invariant
to change of thermodynamic condition (7 and P combinations).

Fig. 37 Dielectric loss data . r . . :
of EPONS28, diglycidylether 14 EPON&28
of bisphenol A (DGEBA), at 1 4
two combinations of

temperature and pressure as x
indicated to demonstrate the E
invariance of the dispersion %
of the a-relaxation at constant N

a-loss peak frequency. Open N l{

symbols (P =110 MPa),
closed symbols (0.1 MPa). 1
Data from [676] replotted 1

F T=6C, P=0.1 MPa
here k T=20C, P=110 MPa

10° 10° 10* 10° 10° 10’
Frequency [Hz]

Earlier dielectric studies under elevated pressure [632] had found temperature—
pressure superpositioning at constant 7, in a few molecular glassformers including
ortho-terphenyl (OTP), di(2-ethylhexyl) phthalate, tricresyl phosphate, polyphenyl
ether, and refined naphthenic mineral oil, albeit the temperature and pressure ranges
are not as wide as achieved in the more recent measurements.

We add in Fig. 38 to show the P-T superposition of the dielectric loss data of
liquid triphenyl phosphite [676] at ambient and elevated pressure of 500 MPa, and
also in Figs. 39 and 40 here the same for diphenyl-vinylene carbonate (DPVC) with
Ty = 251 K [697] for more than one purpose. The figures show (1) superpositioning
in the log "/ (v) vs. log v plot as well as in the ¢/(v) vs. log v plot of not only the
main a-loss peak but also the excess wing at high frequencies; (2) the broadening of
the dispersion on increasing ty; (3) the loss data plotted linearly against log v that
are very well fitted by the one-sided Fourier transform of the Kohlrausch function
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Fig. 38 T-P superposition of dielectric loss data of liquid triphenyl phosphite at ambient pressure
(line) and elevated pressure of 500 MPa (circles). Data from [24] replotted
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Fig. 39 Normalized loss spectra of DPVC. Symbols represent experimental data (atmospheric and
high-pressure data) showing same frequency dispersion if the loss peak frequency is the same, and
broadening of the dispersion with decreasing peak frequency. Dotted lines are fits to the data by
the Fourier transform of the KWW function (Bxkww = 0.77, 0.73, and 0.71 from right to left).
Discrepancies between the KWW fit and experimental data only occur at high frequencies. Data

from [697] are replotted here
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Fig. 40 Log-log plot of the
same spectra of DPVC in
previous figure to show the
excess wing. The arrows are
the primitive frequencies vg
calculated from the CM
equation. Data from [697] are
replotted here
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(lines). Small excess of the data over the KWW fit occurs only starting at frequen-
cies about two decades higher than the loss peak frequency. The Havriliak—Negami
function gives a better fit to the high-frequency part of the data but at the expense of
introducing one more fitting parameter that has to be interpreted than the Kohlrausch
function.

The dielectric loss spectra of benzoyn isobutylether (BIBE) shown before in
Fig. 35f has two resolved secondary relaxation. The peak frequency of the slower
one shifts to lower values on elevating pressure and is the JG p-relaxation, but not
the faster one. This is an example of small molecular glassformer in which the JG
B-relaxation has been resolved in the liquid state, and P-T superpositioning at con-
stant 7, holds for both the a- and the JG B-relaxation. A complement to Fig. 35f
to show P-T superpositioning of both the a- and the JG p-relaxation was given by
Capaccioli et al. [697] in Fig. 41.

Fig. 41 KWW parameter for 1.0 0 By isobar P=0.1 MPa ' ' 6
the a-relaxation (left y-axis) 0.9 { ¥ Byyyisotherm T =278 K e

and logarithm of relaxation 0.8 * ProvwisothermT=298K ,.;/"' e _
time, tjg of the JG relaxation 0.7 4 . 5 2
(right y-axis) of BIBE plotted 6] % §:
vs. logarithm of a-relaxation g 051 : 5
time for different 7 and P. = 041 14 s
Symbols are from 03] é
experimental data of BIBE. ’ o Tgisobar P=0.1 MPa

Continuous and dotted lines 021 o T isotherm T=278 K 13
are fitting functions explained 8(1) ] 4 Ggisotherm T=298 K

in the text of [697]. The W 5 0 3 . :

figure is reconstructed from
the data in [697]
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Fig. 42 (Left) Superposed dielectric loss spectra of poly(vinylmethylether) (PVME) with weight
average molecular weight of 99,000 Da and a polydispersity=2.1 as a function of pressure, for
various temperatures such that the relaxation times are almost equal (frequencies were shifted by
less than 30%). Data from [618] are replotted here. (Right) Superposition of normalized dielectric
loss data of DPGDB at various combinations of P and T as indicated. All have the same loss peak
frequency. Data from [678] are replotted here

As a last example, the left panel of Fig. 42 shows that P-T superpositioning
at constant 1, also holds for dipropyleneglycol dibenzoate (DPGDB) [678]. We
shall see in a later section that P-T superpositioning for both the a- and the JG
B-relaxation of DPGDB holds at 7.

2.2.4.2 Amorphous Polymers

Dielectric relaxation measurements under pressure have been carried out on several
amorphous polymers, and for all cases studied the dispersion of the local segmen-
tal relaxation (i.e., the structural a-relaxation) conforms to temperature—pressure
superpositioning at constant 7,. These polymers include poly(vinylmethylether)
(PVME) [652], poly(vinyl acetate) (PVAc) [631], poly(ethylene-co-vinyl acetate)
(EVA, having 70 wt% vinyl acetate) [698]. polymethylphenylsiloxane (PMPS)
[549], poly(methyltolylsiloxane) (PMTS) [549], 1,2-polybutadiene (1,2-PBD,
also referred to as polyvinylethylene, PVE) [699], poly(phenylglycidylether)-co-
formaldehyde (PPGE) [553], 1.4-polyisoprene (PI) [700], poly(propylene glycol)
(molecular weight: 4000 Da) PPG4000 [701], poly(oxybutylene) POB [668], and
poly(isobutyl vinylether) (PiBVE) [703]. Constant dispersions at a fixed value of
7y independent of thermodynamic conditions (7 and P) are shown for more than
one 1, in Fig. 36 for PVAc, PMTS, PPGE, and POB. Note that for POB there is a
dielectrically active normal mode at lower frequencies. The normal mode originat-
ing from global chain motion has entirely different character than the local structural
a-relaxation, different P and T dependences, and hence its dispersion is not expected
to obey 7—P superpositioning at constant 7. The dielectric data of some more com-
mon polymers showing 7—P superposition of the dispersion of the a-relaxation at
fixed 7, are presented in Fig. 42 (right panel) for PVME, Fig. 43 for PVE, Fig. 44
for PPG400, and Fig. 45 for the less common PiBVE.
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Fig. 43 Dielectric loss data of 1,2-polybutadiene (1,2-PBD) with molecular weight of 3000 Da
(about 56 monomer units) at various combinations of temperature and pressure as indicated to
demonstrate the invariance of the dispersion of the a-relaxation at constant a-loss peak frequency
Vg or equivalently at constant a-relaxation time 7. Data from [699] redrawn here

Fig. 44 Dielectric loss data
of poly(propylene glycol)
(PPG4000, molecular weight:
4000 Da) at various
combinations of temperature
and pressure as indicated to
demonstrate the invariance of
the dispersion of the
a-relaxation at constant
a-loss peak frequency vy or
equivalently at constant
a-relaxation time 7. Data of
Casalini and Roland replotted
here
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As illustrated in some of the figures of small molecular and polymeric glass-
formers, all the a-loss peaks are well fit by the one-sided Fourier transform of the
Kohlrausch function (Eq. (1.1)) over the main part of the dispersion. Thus, the exper-
imental fact of constant dispersion at constant 7, can be restated as the invariance
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Fig. 45 P-T superposition of dielectric loss data of PIBVE at three log f. Reproduced from [703]
by permission

of the fractional exponent n (or fxkww = 1 — n) at constant 7. In other words,
7, and n are co-invariants of changing thermodynamic condition (7 and P). So
is the full-width at half-maximum of the dielectric loss peak, since after normal-
ized to that of Debye loss peak, its value w is uniquely related to n by n = 1.047
(1 —wH[214].

Hydrogen-bonded networks or clusters, if present, are modified at elevated pres-
sure and temperature, changing the structure of the glassformer in the process. This
occurs, for example, in glycerol, threitol [556], dimer (2PG) and trimer (3PG) of
propylene glycol [657, 658], and m-fluoroaniline [671]. These hydrogen-bonded
glassformers do not obey temperature—pressure superpositioning of the a-relaxation
at constant 7, because the material itself is changed with different combinations of
T and P. Such behavior is shown for glycerol and threitol in Fig. 46, 2PG in Fig. 46,
and m-fluoroaniline in Fig. 47. In higher members of the polyols, such as xylitol
and sorbitol, the departure from 7—P superpositioning at constant t, is smaller com-
pared with the lower member glycerol. This is shown for sorbitol in Fig. 48, left
panel [659(b)]. Also this trend can be seen when comparing PPG4000 (see Fig. 44)
with dimer and trimer of PG.

Isobaric fragility index mp generally decreases with increasing pressure [588(c)]
for non-hydrogen-bonded glassformers. On the other hand, for hydrogen-bonded
glassformers, mp increase with pressure is found in lower molecular weight propy-
lene glycols [652(b)], heptapropylene glycol (7PG) [636], PPG400, PPG4000
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Fig. 46 Dielectric loss data of glycerol and threitol [659] (left side) and dimer of PG [658] (right
side) at various combinations of temperature and pressure as indicated to demonstrate the departure
of invariance of the dispersion of the a-relaxation at constant loss peak frequency v, [556]. Data
from the references cited have been replotted in all the figures
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Fig. 47 Dielectric loss spectrum of m-FA at 279 K and 1.69 GPa (H), 1.60 GPa (#), 1.52 GPa data
(o), and 1.4 GPa data (A). Dielectric loss spectrum of m-FA at ambient pressure and 174 K (0J),
177 K (), and 180 K (A). The dashed lines are fits to the data at 279 K and under GPa pressures
by the one-sided Fourier transform of the KWW function. The solid lines are similar fits to the
ambient pressure data. The dispersion of the a-loss peak is always wider at higher temperature and
pressure for the same loss peak frequency v,. The vertical arrows indicate the calculated primitive
relaxation frequencies, v, for all the data sets and will be discussed in Section 2.3. Reproduced
from [671] by permission
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Fig. 48 (Left) The dielectric loss of sorbitol () at elevated pressure (340 MPa) at 286.4 K and
at atmospheric pressure at () 272 and (x) 274 K. The inset shows the superposition obtained by
shifting the 272 K spectrum by 0.8 decades. The conductivity contribution, assumed proportional
to 1/w, has been subtracted from the spectra. Reproduced from [659(b)] by permission. (Right)
Invariance of the o dispersion at constant a peak frequency upon removal of the hydrogen bonding.
Loss spectra of 7PGDE at various combinations of 7 and P (as indicated). The data on the high-
frequency flank also superpose. Reproduced from [652(c)] by permission

[652(d)], and in other hydrogen-bonded materials [633(b)]. The increase of mp with
increasing pressure is accompanied by the broadening of the a-dispersion in accord
with the correlation between m and n. The broadening of the a-dispersion sug-
gests an increase of the intermolecular coupling parameter n, and this explains the
increase of mp with increasing pressure of hydrogen-bonded glassformers by using
the CM. While hydrogen-bonded glassformers such as 7PG do not strictly obey P, T’
superpositioning at constant 7, its non-hydrogen-bonded analogue, heptapropylene
glycol dimethyl ether (7PGDE), does. For the 7PGDE, the terminal hydroxyl groups
are exchanged for methoxy groups (O-CH3) in 7PG to create an analogous structure
lacking hydrogen bonding. In fact, 7PGDE obeys P, T superpositioning at constant
74 (see Fig. 48, right panel), and its mp decreases with increasing pressure [652(c)].

2.2.4.3 Ionic Liquids

Room-temperature ionic liquids (IL) are made of oppositely charged molecules that
are liquids at or near room temperature. For environmental considerations, they are
favorable compared with the highly volatile organic solvents currently used in many
chemical processes because of their low vapor pressures, thermal stability, high
electric conductivity, and low viscosity [704, 705]. The ILs are also glass-forming
substances.

Dielectric relaxation measurements were reported on the ionic liquid 1-butyl-1-
methylpyrrolidinium bis[oxalato]borate (BMP-BOB), over wide temperature (123—
300 K) and pressure ranges (0.1-500 MPa) [706]. The measured complex dielectric
susceptibility £*(v) was presented in terms of the electric modulus M*(v) = 1/&*(v)
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[707]. The imaginary part of M*(v), M" (v), exhibits a maximum. The frequency dis-
persion of the loss peak and the peak frequencies characterize the ionic conductivity
relaxation. These quantities have features that are similar to those observed in con-
ventional glassformers. The relaxation time of the primary relaxation 7, strongly
increases with applied pressure. The M"'(v) loss peak broadens with increasing 7,
on lowering temperature or by elevating pressure. Remarkably, at constant 7, its
shape is the same whether the pressure is 0.1 MPa or 500 MPa, as demonstrated in
Fig. 49.
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Fig. 49 (Left) Electric modulus relaxation spectra (M") of the ionic liquid BMP-BOB at ambient
pressure and 231 and 245 K are plotted as solid lines. High-pressure M” data (0.5 GPa) at the
temperatures that yield relaxation times similar to those of the ambient pressure data, 283 and
308 K, are included in the figure as squares. Data at 0.5 GPa data are slightly shifted in frequency
to match perfectly the atmospheric peak frequencies. Long and short dashed lines are fits to a
Kohlrausch relaxation function with 8 = (1 — n) = 0.56 and 0.50, respectively. (Right) The figure
shows the co-invariance of B and the relaxation time at different temperatures and at atmospheric
pressure and at elevated pressure of 0.5 GPa. Data from [706] are replotted here

The invariance of the shape of the M"(v) loss peak to P and T combinations
that maintain 7, constant was also found in another room temperature ionic liquid,
1-hexyl-3-methylimidazolium chloride (or bromide), by Mierzwa et al. [702] (see
Fig. 50, left panel).

2.2.4.4 Pharmaceutical and Saccharides

An example from the pharmaceuticals, indomethacin used for treatment of inflam-
mation like gout, is chosen to show invariance of the a-dispersion to variations of P
and T at constant 7, in Fig. 50 (right panel). The data come from [397].

Glucose, fructose, galactose, sorbose, and ribose are monosaccharides and mem-
bers of the sugar family and they are hydrogen-bonded glass-forming organic
substances. They have important applications in food science, medicine, and biol-
ogy. For this reason, the molecular relaxation dynamics of these sugars has been
investigated in their liquid and glassy states by various techniques including dielec-
tric relaxation and enthalpy relaxation [708]. The a-loss peaks of ribose measured



2.2 General Properties and Anomalies 163

e B B B mae me e 0.0
Indomethacin
1074 3 044 : m
; !
1075 1 084 S %
-3 L
‘E 1075 1 é; 124
104 = T=198K p=50MPa 4 asd [ » pe226mPa T=37EK
= = =136MPa, T=356K
 T205 p=20Pa ]| 3 pamm
10° = p=4 | e p=01MPa, T=321K
| v T=228K p=600MPa |} 20
107 ey v ey e A o
107 10" 10° 10' 10* 10° 10' 10° 10° 10 4 2 4 0 1 2 3 4 5 & T
f(HZ} log (frequency / Hz)

Fig. 50 (Left) Invariance of the shape of the electric modulus M’/ (v) loss peak to P and T
combinations that maintain 7, constant in another room temperature ionic liquid, 1-hexyl-3-
methylimidazolium bromide. Courtesy of M. Mierzwa, the data will be published elsewhere in
the future as [702]. (Right) Master dielectric loss &”(v) curve of the pharmaceutical, indomethacin,
constructed from the loss spectra obtained at different combinations of 7 and P. All loss spectra
were chosen to have almost the same 7. Data from [397] are replotted here
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Fig. 51 Ribose. Open symbols are loss data taken at 500 MPa at 7=297.8, 292.9, 288.1, 283.2,
and 278.2 K (from right to left). The closed squares, crosses (+), and closed circles are loss data
taken at ambient pressure (0.1 MPa) at 7=269, 267, and 265 K and shifted horizontally by —
0.25, -0.275, and +0.205 decades, respectively. The dashed lines are fits by the one-sided Fourier
transform of the Kohlrausch function with n=0.45. The loss data taken at the elevated pressure and
higher temperatures superpose well with that taken at ambient pressure and lower temperatures.
To be discussed later in Section 2.3, the data (inverted triangles) taken below Ty show the presence
of a secondary relaxation and its location in frequency is consistent with the primitive relaxation
frequency vg of the CM. Reproduced from [708] by permission

isothermally at ambient pressure (0.1 MPa) and at 500 MPa and various tempera-
tures are shown in Fig. 51. The a-loss peak shape at the elevated pressure is almost
the same as that at ambient pressure provided temperature is raised to maintain
constant a-loss peak frequency [708].
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2.2.4.5 Invariance of the «-Dispersion to Different 7 and P Combinations at
Constant 7, Investigated by Other Techniques than Dielectric
Spectroscopy

The spectra for molecular and polymeric glassformers shown above to demon-
strate the invariance of the a-dispersion to changes of 7' and P at constant 7,
were all acquired by dielectric spectroscopy. This reflects the utility of dielectric
spectroscopy in investigating broadband dynamics under pressure, particularly with
recent developments of techniques. Therefore, an extensive database of broadband
dielectric spectra of different materials in different 7-P conditions is available,
enabling an assessment of the 7—P superpositioning. Although we believe the phe-
nomena to be quite general, there is a paucity of data from other experimental
techniques. However, some results are available, as described below.

For polymeric systems, only a few photon correlation spectroscopy (PCS) stud-
ies have been carried out with applied pressure and these were done more than 20
years ago. Within the experimental resolution, the shape of the a-relaxation was
found to be essentially invariant to temperature and pressure at fixed 7, and time—
temperature—pressure (-—7—P) superposition was valid. The investigated systems
were poly(ethylacrylate) [709, 710], poly(methylacrylate) [711], and polystyrene
[712]. A recent PCS experiment done on poly(propylene oxide) also found that
+—T—P superposition was applicable [713].

More small molecular glassformers had been studied under pressure by more
techniques than PCS. For ortho-terphenyl (OTP), the Kohlrausch parameters for
the a-relaxation by PCS at different temperatures and pressures [714, 715] have
been reported. The stretching parameters SBxww Vvs. a-relaxation time g, for differ-
ent 7 and P fall on a single curve within the experimental uncertainty, with Sxww
decreasing slightly with increasing 7. On the other hand, a shape invariance of the
a-relaxation has been observed for OTP by specific heat spectroscopy under ele-
vated pressure [716]. Additionally, experiments done on OTP by neutron scattering
at different T and P revealed a negligible dependence of the shape of the structural
relaxation, while the static structure factor yielded a master curve only for isochronal
conditions, i.e., for the same relaxation time 7, [717].

Salol is another system where the invariance of the shape of the a-relaxation dis-
persion was reported under pressure. Recent PCS experiments [718, 719] revealed
that the correlation functions acquired at different pressures up to 180 MPa and
at room temperature superposed. The stretching parameter Sxww was 0.68, in
agreement with the PCS measurements done at ambient pressure [720, 721].

Very accurate PCS measurements under different 7 and P conditions were car-
ried out on different molecular glass-forming systems by Patkowski and coworkers,
including epoxy oligomers [722-724], and the van der Waals liquid PDE [725,
726], BMPC [727], and BMMPC [728]. In most of the systems investigated, master
curves are obtained for Sxww(T, P) of the a-relaxation plotted vs. 74(T, P), with
the value decreasing (broader dispersion) as the dynamics slows (longer 7,(7’, P)).
These are additional evidences indicating that the dispersion and the relaxation time
are strongly correlated with each other and the relation remains unchanged with
changes in the combinations of 7 and P.
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From the above discussion, we can conclude the result that the a-dispersion
is invariant to 7 and P at constant 7, is generally found in different kinds of
glassformers and by different experimental techniques.

2.2.4.6 The o-Dispersion of a Component in Binary Polymer Blends Is
Invariant to T and P When 7, Is Constant

Dielectric spectroscopic study of the component dynamics in the miscible 50/50
blend of poly(vinylmethylether) (PVME) and poly(2-chlorosytrene) (P2CS) was
reported [729]. For the PVME component (which has the more intense loss peak
due to its higher polarity), the shape of the segmental relaxation loss peak depends
only on the relaxation time 7, and is otherwise independent of thermodynamic con-
ditions, i.e., different P and T combinations. An example is shown in Fig. 52a. The
same result was obtained before for the PVME component in the miscible blend
of PVME with polystyrene (PS) [730]. This property of the component dynamics
of miscible polymer blends is in accord with the general behavior of neat mate-
rials discussed in the preceding subsections. Several models have been proposed
to address the component dynamics of polymer blends [731-733]. None of these
models except that based on the coupling model [734-739] consider the dispersion
of the a-relaxation of a component in the blend (or in its neat state), and naturally
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Fig. 52a Comparison of loss spectra for the 50 PVME/50 P2CS blend at combinations of 7" and
P such that 7, for the PVME component is essentially constant. To superpose the peaks, the fre-
quencies for P = 0.1 and 227 MPa have been multiplied by 1.2 and 1.4, respectively, while the
ordinate values for P = 88 and 227 MPa have been multiplied by 1.33 and 1.3, respectively. Data
from [729] are replotted here
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these models cannot address the observation of the invariance of the dispersion of
the segmental relaxation of the component PVME for different 7 and P at constant
relaxation time. Besides, these models are based on thermodynamic considerations
and if considered the dispersion will change on changing T and P. On the other hand,
the CM for component dynamics of polymer blends and mixtures of glassformers
is based on considering the dispersion of the segmental relaxation of component in
each environment i created by possible composition or concentration fluctuations.
As discussed in detail in published works, the segmental relaxation in environment
i with relaxation time t,; has its own coupling parameter n;, and the corresponding
Kohlrausch function with stretch exponent, (1 — #n;), determines the dispersion. In
the same manner as shown for neat glassformers in the preceding section, the CM
equation, Ty = [fc "izo]V/=1)  ensures co-invariance of T; and n; (or the shape of
loss contributed by 7) for different combinations of 7 and P. The observed segmental
relaxation of the component is composed of contributions from all i, and hence its
overall shape depends only on the most probable relaxation time 7, and is otherwise
independent of thermodynamic conditions (7 and P combinations), as observed for
PVME in two different blends mentioned above

That the generality of the invariance of the a-dispersion of a component in
binary polymer blends to variations of 7 and P when 7, is kept constant is fur-
ther borne out by the dielectric loss data taken at ambient and elevated pressures
of neat poly(cyclohexyl methacrylate) (PCHMA) and its 50/50 blend with poly(a-
methylstyrene) (PaMS) [740], and presented in Fig. 52b. Superposition of a-loss
peak is achieved in both neat PCHMA and the blend. As an aside, the width of the
neat PCHMA is broad due to internal plasticization of the alkyl chain. This is evi-
denced by the forced fit of the a-loss peak at Ty to the Kohlrausch function with
Bxkww = (1 —n) = 0.41 or n=0.59, which is even larger than n=0.51 for atac-
tic PMMA, and n=0.40 for PEMA. Thus, using the value of n=0.59 to calculate
the primitive relaxation time would seriously obtain a much shorter value than the
experimental value, a conclusion also reached by the authors of [740]. The correct
value of n for PCHMA seems to be 0.40.

2.2.4.7 The a-Dispersion of a Component in Mixtures of Two Small
Molecular Glassformers Is Invariant to 7 and P When 7, Is Constant

The invariance of the dispersion of the structural a-relaxation of a component in
polymer blends discussed in the paragraph above is also found for a component in
binary mixtures of small molecular glassformers. The systems studied by dielectric
spectroscopy at ambient and elevated pressure are a mixture of 25 wt% of 2-picoline
with tri-styrene [676] and a mixture of 10 wt% of quinaldine with tri-styrene [677].
Since the dipole moments of picoline and quinaldine are much larger than tri-
styrene, the observed spectra are contributed effectively by the motions of picoline
or quinaldine. Both picoline and quinaldine are rigid molecules without any inter-
nal degree of freedom. In each mixture, the shape of the a-loss peak of picoline
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or quinaldine is invariant to 7 and P when 7y is held constant, just like PVME
in blends with P2CS and PS. The invariance of the shape was found to hold for
more than one constant 7, value. Examples of superposed spectra from the two
mixtures are shown in Figs. 53 and 54. In Fig. 55, the a-relaxation of the polar
rigid molecule benzonitrile with 10 wt% in mixture with polystyrene with molec-
ular weight of 370 shows perfect superposition for several combinations of P and
T [741].

Moreover, the data show that not only the dispersion of the a-loss peak, but also
the JG B-relaxation time tjg (~ the primitive relaxation time t( of the CM, see
Section 2.3) of picoline or quinaldine in the mixtures is invariant to different com-
binations of 7 and P while keeping 7, constant, like neat glassformers DPGDB and
BIBE (see Fig. 35e and f). This means that 7, T (or TjG), and the dispersion (or
n) of picoline or quinaldine in the mixtures are co-invariants to changes in 7 and P,
exactly as prescribed by the CM equation, 7, = [(tc) 0]/,
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2.2.4.8 Impact on Theory by 7-P Superpositioning of the «-Dispersion at
Constant 7

We now discuss the impact of this general property on theories and models of the
glass transition. The primary concern of most published theories seems to explain
the temperature and pressure dependences of the structural relaxation time 7. The
dispersion (n or Bxww) of the structural relaxation is either not addressed, or else
considered separately with additional input not involved in the main part of the the-
ory. For example, the original free volume models [26, 29] and the Adam-Gibbs
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model [30] treat the variation of relaxation times with 7" and P but do not pre-
dict the dispersion of the a-relaxation or the distribution of molecular relaxation
rates. Additional inputs such as some specific fluctuation or distribution of some
parameter were introduced to generate a distribution of relaxation times consistent
with the empirical KWW time correlation function, as have been done by others in
some extended versions of these theories. It is not difficult for any model to find
combinations of 7 and P such that the predicted 74(7, P) is constant. However,
it is unlikely that the same combinations will also keep the predicted dispersion
or n(T, P) constant. There is change in volume and also in entropy S for differ-
ent combinations of 7' and P as can be expected from the thermodynamic relation,
(@S/oP)r = (0V/aT)p [742]. For one glassformer it may be possible to intro-
duce additional assumptions to force both 7,(7, P) and n(T, P) to be simultaneously
constant. However, this would not be a worthwhile undertaking since 7,(7, P) and
n(T, P) are simultaneously constant for many glassformers, with different physical
and chemical structures and broadly different sensitivities to temperature and den-
sity. Thus, the experimental observations (i.e., simultaneous constancy of 7, (7, P)
and n(T, P)) impose severe constraint on any theoretical effort to understand the
glass transition phenomena in toto, past and present. Theories and models, in
which the structural relaxation time does not define or govern the dispersion of
the structural relaxation, cannot explain the simultaneous constancy of 7, (7', P) and
the dispersion of the a-relaxation or Bxww(T, P). Most theories and models of
glass transition fall into this category. Revision is required to bring them back to
consistency with this general experiment fact.

Also can be seen from Figs. 53 to 55 is, in addition to the dispersion of the a-
relaxation, the JG B-relaxation time tjg (or t() of the CM is invariant to different
combinations of 7 and P while keeping t, constant, not only in mixtures but also
in neat glassformers. This apparently general property of the dynamics of glass-
forming systems poses another challenge for formulating a perfect theory of glass
transition.
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Glass transition is a broad and interdisciplinary field of research. Due to the large
amount of experimental data and multiple phenomena, it is possible that even this
spectacular t—7—P superposition property of the a-relaxation may not be recognized
or valued by some workers. If this important experimental fact is not taken into
account by others in future development, I see no hope that the glass transition
problem will be genuinely solved.

The experimental fact of constant dispersion of the a-relaxation at constant 7,
can be restated as the invariance of the fractional exponent or the Kohlrausch expo-
nent, (1 — n), to different combinations of 7 and P that hold 7, constant. Stated this
way, it is easy to see that the coupling model (CM) is consistent with this experi-
mental fact. In the CM, the heterogeneous many-molecule dynamics gives rise to
the Kohlrausch correlation function with its relaxation time t, directly linked to its
fractional exponent n by the CM equation, 1o, = [f; 1]/ =" This CM equation
clearly indicates that constant z is a necessary condition in order for 7, to hold for
different combinations of 7 and P. In Section 2.3.2.1 we present experimental data
showing that not only 7 but also 7 remains constant to variations in combinations
of T and P that hold 1, constant. Anticipating this result and the fact that 7. is insen-
sitive to 7 and P, the CM equation proves that constant n or a-dispersion is both
necessary and sufficient condition to have 7, maintained constant for different com-
binations of 7 and P. Not only is 7, uniquely defined by the dispersion and vice
versa on changing thermodynamic conditions as shown herein, but also many prop-
erties of 7, are governed by the dispersion or the fractional exponent n seen by other
examples to be discussed in the sections to follow.

2.2.5 Other Structural Relaxation Properties Either Governed by
or Correlated with the Dispersion of the o-Relaxation

In Section 2.2.1, we have shown that the width of the dispersion of the structural
a-relaxation (or n appearing in the exponent of the Kohlrausch function) system-
atically increases with the number of intermolecular constraints and the strength
of intermolecular interaction. The trend indicates that the dispersion reflects the
many-body nature of the a-relaxation. If the latter plays a role in determining the
dynamic and thermodynamic properties, then the dispersion or n can be expected to
either govern general properties of the a-relaxation or at least correlate with them. In
Section 2.2.2, we have seen the correlation between n and &, the length scale of the
heterogeneous dynamics of the a-relaxation measured by multidimensional NMR.
In Section 2.2.3, it is pointed out that “fragility” and its index m also correlate to n so
long as the glassformers are restricted to the same family with similar chemical and
physical structures. The restriction helps to avoid interference from thermodynamic
factors on which m also depends. The strong connection between 1, and n is shown
in Section 2.2.4 by the co-invariance of the two quantities to various combinations
of T and P at constant 74(7, P). These previously discussed results are indica-
tors that the dispersion or n is a key parameter in understanding the dynamics of
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glassformers. In this section, we review other general properties of the a-relaxation
that lead to the same conclusion. Explanation of a selected one or a small sub-
set of these properties is possible without ever invoking the dispersion or n as
demonstrated by some theoretical attempts. However, these explanations have the
shortcomings of ignoring the empirically established correlation of the properties
with the dispersion or n, and leaving the other equally important properties unex-
plained. Naturally, simultaneous explanation of all the properties by a theory based
on the dispersion or n will not have the shortcomings, as achieved in the coupling
model.

2.2.5.1 Failure of a Single Vogel-Fulcher—Tammann-Hesse (VFTH)
Expression to Describe the Temperature Dependence of 7,(7)

The temperature dependence of 1, or the viscosity n of the majority of glass-forming
liquids is non-Arrhenian and the VFTH expression,

7o(T) or n(T) = Aexp[B/(T — Tp)], (2.41)

is often used to fit the experimental data. More than 30 years ago, Plazek,
Magill, and Greet [743-745] measured the viscosity of 1,3-bis(1-naphthyl)-5-(2-
naphthyl)benzene (TNB) over a wide range of almost 16 decades. They showed that
a single VFTH expression cannot fit the data over such a wide range. A satisfactory
account can only be obtained by an Arrhenius expression at high temperatures above
Ta with a crossover to a VFTH expression denoted here by (VFTH); below T4.
However, VFTH] is no longer adequate when temperature falls below T = 412 K.
A second VFTH equation, VFTH3, has to be used to describe  for Tg > T > Ty.
The complete measurements of the viscosity 1 spanning almost 15 decades together
with the VFTH; and VFTHj fits to the data are shown in the inset of Fig. 11.

It is much easier to spot the failure of a single VFTH expression to fit tempera-
ture dependence of 7, or 1 over a wide range by replotting the data as the derivative
of log 7, with respect to reciprocal temperature, [d log 7, /d(1/ 112, vs. 1/T [236,
347, 348, 621]. In this plot, VFTH temperature dependence for 7, or n is trans-
formed to a linear dependence of [dlog 7, /d(1/T)]~1/? on 1/T with non-zero slope
equal to (B/2.303)~1/2T, and is given by

—12
[—i?;%‘;] — (B/2.303)" 1/ (1 - %) . (2.42)

For Arrhenius temperature dependence, A exp(E,/RT) is transformed to

|:d10g Ta

—1/2
_ —1/2
a7 } = (E,/2.303R)™1/2, (2.43)

which is a constant or a line with zero slope in the plot. The inadequacy of any
single expression, Arrhenius or VFTH, to fit the data over the whole temperature
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range becomes obvious. The change of temperature dependence at 74 and 7g can
be seen by inspection. The requirement for obtaining dlog t,/d(1/7T) with high
accuracy demands measurement of 7, or n at many temperatures with spacings that
are sufficiently small. This requirement is not always met in the data of 7, or 5
reported in the literature. Broadband dielectric relaxation is the technique to obtain
7o meeting the requirement. Therefore, most of the data showing the need of an
Arrhenius expression at high temperatures and two VFTH expressions separately
at lower temperatures were obtained by dielectric relaxation and a few by viscos-
ity measurements. The high-temperature Arrhenius dependence of 7, is not usually
uncovered by dielectric measurements because it occurs when v, is larger than
1 GHz which is not easy to make dielectric relaxation measurement. Consequently,
the crossover to Arrhenius dependence of viscosity was only seen in several
small molecule glassformers [236, 237, 347, 348, 746], and in a few polymers
[242, 361].

The viscosity data of TNB are historic in first revealing the presence of three dis-
tinctly different temperature regimes. The complete data satisfy the requirement for
the derivative analysis. Indeed, the data when replotted as [d log n/d(1/T)]~"/? vs.
1000/T in Fig. 11 show the presence of three regimes. The points in the figure are
obtained from the experimental viscosity data by using the ratio of differences as
approximation of d log /d(1/T). The scattering of points about the straight lines is
largely due to an insufficient number of data points to represent the derivative by the
ratio of finite differences. The two straight lines with non-zero slopes and labeled by
VFT(1) and VFT(2) correspond to the two VFTH expressions found originally by
Plazek and Magill [743-745]. The two lines intersect at Tg = 412 K, the temper-
ature below which VFTH; fits the temperature dependence of 7, and above which
VFTH; holds instead. The dashed horizontal line in the figure indicates that the
T-dependence of the viscosity data is Arrhenius at high temperatures. The inter-
section of horizontal line with the steep full line determines T4 = 588K, the
temperature near which another change of temperature dependence of 5 from
VFTHj5 to the Arrhenius dependence occurs. The same behavior as TNB was found
in salol, butyl-benzene, and propyl-benzene by Hansen et al. [348]. The data and
analysis of propyl-benzene are shown in Fig. 56.

Many more small molecular glassformers [236, 347, 348, 621] and polymers
including PVAc [236, 238], PPGE, and DGEBA [242] show the crossover of
T-dependence of either 7, or n at Tg. Here I add the data of two inorganic
glassformers to demonstrate generality. The viscosity of boron trioxide (B,O3) also
has two crossovers, one at 74 from Arrhenius to VFTH», and at 75 from VFTH,
to VFTH|, which turns out to be almost Arrhenius as shown in Fig. 57. The dielec-
tric and mechanical relaxation times combined of the molten salt 0.4 Ca(NO3),-0.6
KNO3 (CKN) also show the crossover from (VFTH), to VFTH; at Ty in the inset
of Fig. 58 [748]. Included in the main part of the figure are the secondary relax-
ation times of CKN determined by mechanical spectroscopy deep in the glassy state
[749].

By now, the crossover of the temperature dependence of 7, or n from VFTH;
to VFTH, at some 7B has been found in so many glass-forming liquids that it is
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Fig. 56 Left panel: Temperature dependence of the dielectric peak frequency (e, x = fmax/Hz)
and of the inverse viscosity (A, x = « - n~! Poise, logk = 7.70) for propylbenzene. The solid line
is a VFTH fit to the Tg < T < Ty data, the dashed line is an Arrhenius fit to the T > Ts dielectric
data. The dotted line is an Arrhenius fit to the T > T4 viscosity data, log;(x - n~'Poise) =
11.92 — 620 K/T. The inset shows the Arrhenius regime on enlarged scales and including the data
for x o« T - »n~' (O) in addition to x o n~'(A). Right panel: Temperature dependence of the
dielectric peak frequency and of the viscosity for propylbenzene, plotted as [dlog x/d(1/T)]~'/?
vs. 1/T. The data, fits, and symbols correspond to those in the left panel. The indicated characteristic
temperatures are 7a(n) = 264 K, Ta(D) = 240 K, and 7Tg = 170 K. The inset shows the Arrhenius
regime on enlarged scales and including the data for x o< « - n~! () in addition to x &< n~! (A).
Reproduced from [348] by permission
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a general property or phenomenon of glass-forming liquids. Fewer cases show the
crossover at T because this usually occurs when t, is much shorter than nanosec-
ond and data of this sort are not common. From the results one can observe several
correlations between the parameters characterizing the phenomena and n (or the
width of the dispersion of the a-relaxation) as a function of temperature [237, 238,
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Fig. 58 Dielectric (squares)
and mechanical (circles) 2+
relaxation time 7, of CKN
data from [748] showing the
change of dependence from or
VFTH; to VFTH; at T
clearly in the inset. The main
figure shows also the -2+
secondary relaxation time
from mechanical
spectroscopy deep in the
glassy state (large circles).
Data from [749]
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253, 192, 115(a)]. They are discussed in greater detail below than in previous publi-
cations. Theories claiming to have the temperature dependence of 7, or 1 explained
need also address these correlations.

Correlation of Crossover in T-Dependence of 7 or n with Corresponding
T-Dependence of n

Dielectric and light-scattering data of a-relaxation [192, 236, 237, 253, 347, 348]
of mostly small molecular glassformers when analyzed show that for 7 > T, n is
either unity (i.e., exponential relaxation) or nearly equal to unity (see Fig. 59 for a
collection of glassformers, inset of Fig. 15, and Fig. 1A in [237]), and relaxation
time has Arrhenius 7-dependence (see Fig. 60 and Fig. 14 inset). These features
are shown more clearly in Fig. 61 for propylene carbonate alone. Both behaviors
indicate absence of intermolecular cooperativity of the motions when T > Ta. The
relaxation times of four liquids have Arrhenius dependence T > T's as shown before
in Fig. 10. The prefactor 10~ '3 has the physically reasonable value corresponding
to angular attempt frequencies of the order of 10~!3- s for independent rotation of
the molecules at high temperatures.

In a table of [750], relaxation times at the onset of Arrhenius behavior for several
liquids and one polymer are given. Averaging the 10 values yields log(t(Ta)/s) =
—10.5 £ 0.4; that is, the relaxation time at 7' is approximately the same for all the
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Fig. 59 n(7T) obtained from the exponent (1-n) of the Kohlrausch function used to fit dispersion
of dielectric relaxation data plotted as function of T, /T for 25% benzyl chloride/75% toluene
(open squares), 3BP (), propylbenzene (A), and salol (A). Shown also are n(T) of ortho-terphenyl
(OTP) (closed squares) and toluene (closed circles) obtained from dynamic light-scattering data.
The normalized temperatures T, /Tg indicated by vertical arrows are for propylbenzene (PBZ) and
3-bromopentane (3BP) and toluene. The normalized temperature Ty /T4 is nearly the same for all
liquids and is indicated by a single vertical arrow. Data assembled in [253] are replotted
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Fig. 60 The steepness index, m = [dlog 7o /d(T/T)], calculated from experimental 7, as a func-
tion of Ty /T for toluene (M), propylbenzene (PBZ) (A,A), 3BP (¢), and 25% benzyl chloride/75%
toluene (solid curve). The normalized temperatures T, /Tg defined in the text are indicated by ver-
tical arrows for propylbenzene (PBZ) and 3-bromopentane (3BP) and toluene. Ty of toluene is
not available and instead Tj is used. The normalized temperature Ty /TA is nearly the same for
all liquids and is indicated by a single vertical arrow. The viscosity data of toluene are used to
calculate m at high temperatures. The inset enlarges the region around T /Ta and Ty /T to exhibit
the constant m for T > Ta for 3BP ({), PBZ (A,A), toluene ([J), and OTP (e). Data collected in
[253] are replotted
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Fig. 61 Temperature dependences of the propylene carbonate a-relaxation peak frequency (filled
circles) and the B-relaxation peak frequency (open squares) from the Cole—Cole curves from [424].
Shown also are the a-relaxation peak frequency (open circles) from the dielectric data from [236,
621]. The open diamonds are logarithm of the reciprocal of the viscosity data from [236, 621]
shifted by a constant to match the dielectric data. The solid and dashed lines are, respectively, the
VFTH law for the a-relaxation peak frequency for the lower temperature regime (7<192 K) and
for the intermediate higher temperature regime of (192 K<7<265 K), with 78 =192 K as indicated.
The dashed straight line is the Arrhenius fit to the high-temperature data of [236, 621], with Ty
indicated. The inset shows the temperature dependence of the coupling parameter, n, or equiva-
lently (I — Bkww), used in the KWW function to fit the dielectric dispersion (filled circles). The
open triangles are (1 — Bxww) calculated from w, the full-width at half-maximum of the dielectric
loss peak normalized to that of an ideal Debye loss peak, given in [236, 621] by using Eq. (2.1).
Data collected in [424] are replotted here

materials. This value of ~30 ps is three orders of magnitude longer than the vibra-
tional frequencies, naturally so because the relevant length scale for liquid motions
is the intermolecular distance, rather than interatomic distances. Interestingly, 7(7's)
is within about one decade from 2 ps, the onset time of cooperative motions accord-
ing to the coupling model. This correspondence is consistent with the idea that the
loss of Arrhenius behavior upon cooling to temperatures below T4 is due to develop-
ment of intermolecular cooperativity. The narrow spread of 7(7Ts) for the different
liquids indicates only a weak sensitivity to chemical structure, from which a rea-
sonable inference is that the relaxation time at the onset of Arrhenius behavior is a
material constant.

There is an increase of n as temperature is decreased from 7o down to 7. The
increase is slight such that at T = Tg, n(TB) is still a fraction of n(7g). A more rapid
increase of n is evident as temperature falls below T until it reaches n(Tg) at T = Ty
[751]. This feature can be seen in Figs. 59 and 61. Thus, 7p is the temperature at
which dn(T')/dT exhibits a step-like change, suggesting that the latter is the cause of
the change of temperature dependence of 7, from VFTH; to VFTH; at Tg. Data of
74(T) and n(T) of several other small molecular glassformers [423] and poly(vinyl
acetate) [238] all show the step-like increase of dn(T)/dT when crossing T from
above to below. Hence, generally at Tg, the change of T-dependence of 7,(7) or n
is correlated with that of dn(7)/dT.
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The Disparity Between (VFTH); and (VFTH), Correlates with n(T,)

Moreover, one can observe [115, 237, 253] that glassformer having larger n(Ty)
or smaller Kohlrausch exponent B(7,) has larger difference between VFTH; and
VFTH;. Difference between VFTH; and VFTH; can be gauged by the difference
between the values of 7, given by these two functions, at any chosen value of the
scaled temperature 7g /7. VFTH| and VFTH; can be extrapolated from their valid
ranges to a common temperature range of 7o > T > T,. Generally it is true that
glassformer having larger n(7,) at T = T, exhibits a larger difference between the
two values of 7,(Tg/Tref) at a common reference temperature, Tref, obtained by the
extrapolated VFTH; and VFTH,. This trend is shown in Fig. 62 by comparing the
ratio as a function of Tg/T for three glassformers in descending order of n: OTP
(n(Tg) =~ 0.5, Ty = 244, Tg = 290 K), glycerol (n(Ty) ~ 0.30, Ty = 190K,
Tg = 285K), and propylene glycol (n(Ty) ~ 0.25, T, = 167K). The one
with larger n(7;) shows larger difference between VFTH{(Tier) and VFTH(Tret).
This trend suggests that the difference between (VFTH); and (VFTH), would van-
ish for glassformer having n(T,) = 0, and a single VFTH is sufficient. GeO,
can be considered to be such an example, which has n=0 and Arrhenius 7-
dependence if the latter is taken as a special case of VFTH dependence. This trend
is another way to see that n(1y) governs the change in 7T-dependence of 7, when
crossing Tg.
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Fig. 62 Frequency of the maximum of the dielectric loss, fiax, of OTP and propylene glycol com-
pared on a plot against 7s/7T, where T is the crossover temperature from VFTH; (dashed curve) to
another VFTH| (solid curve). OTP (black circles), propylene glycol (open triangles). Reciprocal
of the viscosity data of OTP scaled by a constant log ¢=8.77 (open circles). At the highest tem-
perature, the reciprocal viscosity of OTP has a true Arrhenius temperature dependence. The two
vertical arrows indicate that there is a larger difference between VFTH| (T¢x) and VFTH(7¢x) for
OTP than propylene glycol
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The CM Explanation

From the experimental facts discussed above, it is clear that the change of
T-dependence of 7,(7T) or n from VFTH, to VFTH; at Tg is correlated with that
of dn(T)dT. Since n is the indicator of many-body dynamics, the cause of the
crossover can be restated as due to the onset at 7 of more rapid increase of the
extent of many-body dynamics with falling temperature toward 7. This explana-
tion by the CM of the crossover from VFTH; to VFTH; was tested [423] against
experimental data of 7,(7") and n(T) of several small molecular glassformers by
calculating the primitive relaxation time to(7") from these data by the CM equa-
tion 1o(T) = [ta "D ro(T)1/1=1D) . All calculated 1(T) are well described by a
single VFTH law and no crossover appears as shown by the example of OTP in
Fig. 63, thus indicating that n(7T) governs the T-dependence of t,(7T) or n. More
such examples can be found in [423]. These general results support the CM expla-
nation of the crossover as 7-dependence of t, from VFTH, to VFTH, at Tp is due
to corresponding changes in the 7T-dependence of n.

Correlation with Structural Changes Supporting the CM Explanation

Wide Angle X-Ray Scattering

Studies of the change in structure of two low-molecular weight glass-forming lig-
uids, propylene carbonate and salol, with temperature were carried out by using
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Fig. 63 The experimental t,(7) and the calculated to(7') in upper panel, together with Bxww =
(1—=n(T)) (lower panel) of salol (left) and OTP (right), plotted as a function of inverse temperature.
The lines in the upper panel are the best fit to VFTH. The location of 1000/7 is indicated by the
vertical arrow. The inset shows the differences between the experimental points and the best fit to
VFTH. Reproduced from [423] by permission
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wide angle X-ray scattering (WAXS) and molecular dynamics simulation [752].
The experiment measured the WAXS intensities of propylene carbonate and salol
as a function of the magnitude of the scattering vector ¢, and at different tem-
peratures. For PC, at temperatures T > T4(290 K), an almost symmetric peak as
amorphous halo is centered at about ¢ = 1.38 A~!. There is no indication for a
shoulder on either the right or left side of the maximum. However, below T on
decreasing 7, intensity from the g-region of the amorphous halo around 1.4 A1 is
transferred to higher gs around 2 A~!. The pronounced changes in the diffraction
curves with decreasing 7T indicate development of new peaks with different temper-
ature dependences, which correspond to next neighbor and next neighbor distances.
Consequently, there is increasing orientational correlation of the molecules with
decreasing temperature below Ta. The intensity of the main peak around 1.4 A~!
also sees more rapid drop with decreasing temperature when crossing 74 = 290 K
and T = 200 K. These structural changes observed by WAXS support increased
spatial correlations of molecules and hence enhanced many-body dynamics and
increase in dispersion or n. Thus, the step-like increase of |dn(T)/dT| observed
when crossing T4 and T on decreasing temperature can be understood, and the
CM explanation of the changes in 7T-dependence of 7, on crossing 7s and Tg is
made more evident by the structural changes observed by WAXS.

Structure of atatic poly(ethylmethacrylate) (T; = 339 K) was studied by WAXS
[753]. The diffraction WAXS curves show two peaks. The peak at the highest g
value corresponds to an equivalent “Bragg” spacing of d = 0.5 nm. It is assigned
to the mean van der Waals distance of not chemically bonded atoms. The g value
of the peak position as a function of temperature exhibits an abrupt change of slope
at some temperature 7. = 390 K which coincides with Tyg, the merging/splitting
temperature of the o and P relaxations of atactic PEMA. Since the B relaxation
is local and non-cooperative, when merging with it, the a relaxation will tend to
have the same character, and has small n at 7. = 390 K. Dielectric [252, 296]
and NMR [754, 755] have shown that n of atactic PEMA is a significant frac-
tion of unity (~0.40) at 7. From this and above, one may infer that the observed
changes of structure of atactic PEMA at 7. has something to do with the corre-
sponding change in dynamics due to the increase of n with decreasing temperature
toward Tg.

Positron Annihilation Lifetime Spectroscopy

Positron annihilation lifetime spectroscopy (PALS) is a technique to probe the unoc-
cupied volume, or so-called “free volume,” of glassformers. In organic glasses, the
ortho-positronium (o-Ps) bound state of a positron has a strong tendency to localize
in heterogeneous regions of low electron density. If the heterogeneity is assumed
to be a spherical cavity, the o-Ps lifetime t3 can be related to an average cavity
or nanopore radius R. Over the range of 73 values usually measured, the relation
between 73 and R is nearly linear. The variations of t3 with temperature of propy-
lene carbonate (PC), ortho-terphenyl (OTP), glycerol, and propylene glycol (PG)
from [387] are shown in Fig. 64. The thermal variations of 3 are qualitatively
similar in all four small molecule glassformers. At low temperatures in the glassy
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Fig. 64 73 as a function of the 73-scaled temperature for OTP, PC, PG, and glycerol. A crossover
in the thermal dependence of 73 is observed both at Ty and an upper temperature 7, indicated by
the vertical arrows. Typical standard uncertainties in 3 are £0.025 ns. T is nearly the same as 7
for all four glassformers. Reproduced from [387] by permission

state, T3 exhibits a weak temperature dependence which changes to a much stronger
dependence after crossing Ty. This change reflects the glass—liquid transition. On
further increasing 7, a second crossover of the temperature dependence of 73 occurs
at 7; beyond which 73 becomes slowly varying and assumes a plateau-like value.
This high-temperature crossover occurs at 7;/T; ~ 1.2 for OTP and PC and ~1.5
for PG and glycerol. Remarkably, T; is nearly the same as T for all four glass-
formers. The observed more rapid decrease of t3 or nanopore radius R with falling
temperature past 7 or T suggests the molecules are closer together, and hence
the more rapid increase of the intermolecular coupling parameter n below 7p as
observed via the change in 7-dependence of the Kohlrausch stretch exponent 8(7)
[423, 424] or the full-width at half-height of the dielectric loss peak [236].

From Configurational Entropy S¢(T)

Another thermodynamic quantity that has been extensively measured is the molar
configurational entropy Sc(7). In Section 2.2.2.2, we discussed the Adam-Gibbs
model which gives the number of molecules inside the cooperative rearranging
region z* from S¢(T) via z*(T') = Nas}: /Sc(T) (given before by Eq. (2.22)). Although
the Adam—Gibbs model is inadequate as discussed before in Section 2.2.2.2 [401],
the z*(T) calculated as a function of temperature from S.(7") shows a more rapid
increase with decreasing temperature after crossing 7g for many small molecu-
lar glassformers, some of them as shown in Fig. 65. This general result suggests
the onset at 7 = Tp of more rapid increase in the number of molecules partic-
ipating in the a-relaxation (and hence also n) with decreasing temperature. This
inferred behavior of n is the cause of the change of temperature dependence of
7y from VFTH; to VFTH; at Ts. Worth mentioning here is the plot of log t,(7T)
against 1/[TS¢(T)]. A linear relation between log 7,(7") and 1/[TS.(T)] is predicted
by the Adam—Gibbs relation, 7,(T) = Aag exp[Aus:/ksTSc(T)] (given before by
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Eq. (2.23)). In reality, there are two separate linear relations, a weaker one for
7y < To(TB) and a stronger one for t, > t4(7B). The first such observation of
the departure from Adam—Gibbs prediction was based on viscosity data by Magill
[396], to be followed by Richert and Angell [398] and the author [401]. Since t, is
determined by both configurational entropy Sc(7") and many-body effects on dynam-
ics, it is unsurprising that linear dependence of t, on 1/[7S.(7)] cannot hold. On the
other hand, many-body effects is absent in the primitive relaxation time v, and the
relation 7y o< 1/[TSc(T)] holds. Like the change of T-dependence of 7, at Tg, the
appearance of two different linear dependences between log 7,(7") and 1/[TS.(T)],
one for T < T and another for T > Tp, is caused by the onset of more rapid
increase of n when T falls below Tg [401].

Crossovers at Elevated Pressures

(a) At Tp: The crossover from VFTH; to VFTH, was observed isobarically at
ambient pressure but also at elevated pressures. The crossover temperature 7g
generally increases with applied pressure P, but remarkably the value of 7, or
the viscosity at the crossover, 74(7B), is the same for a given glassformer, inde-
pendent of pressure or under the condition of constant volume V [653, 756].
Four examples, PC, KDE, BMMPC, and salol, are shown in Figs. 66 and 67.
The reader may recall all these glassformers have the same dispersion or n at
constant 7y, independent of 7 and P, a general property discussed before in
Section 2.2.4. Hence, the dispersion or 7 is invariant at all crossover tempera-
tures 7 and crossover relaxation time tg independent of P or at constant V.
The value of n(7Tg) as well as the increase of dn(T)/dT when crossing Ty, from
above to below it, is also independent of P.

(') At T4: The same is found of the crossover from Arrhenius 7-dependence to
the (VFTH); at T for salol [750]. For glassformers that have data above Ty,
the value of 7,(7Ta) falls within the range of 5-150 ps, and for the majority
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Fig. 66 Left upper panel: Dielectric relaxation time for PC (experimental data for 0.1 MPa; other
isobars and isochoric curve were calculated). The horizontal dotted line indicates the average of
log(tp) for the different curves. Left lower panel: Stickel function for PC, with low and high 7 lin-
ear fits, done over the range —6.14 < log;y(r/s) < 0.63 and —10.21 < logo(z/s) < —8.03,
respectively. The vertical dotted lines in both panels represent the dynamic crossover. Right
upper panel: Dielectric relaxation time for KDE (experimental data for 0.1 MPa; other iso-
bars and the isochoric curve at V = 0.7709 ml/g were calculated). Dotted line indicates the
average of log(tg) = —6.35 for the different curves. Right lower panel: Stickel function for
KDE, with low and high T linear fits, done over the range —4.62 < log;y(t/s) < 2.72 and
—94 < logo(t/s) < —7.28, respectively. Vertical dotted lines indicate the dynamic crossover.
Reproduced from [653, 756, 757] by permission

it is of the order of 100 ps [750]. The relaxation times t,(7") for salol under
different pressures are presented in Fig. 68-1. The plot includes experimental
data at ambient pressure and those calculated t, for two higher pressures using
the scaling law, © = f(7V"), in which f represents a function, V is the spe-
cific volume, and y is a material constant specifically for salol. The deviation
from the Arrhenius slopes at high temperature occurs at a constant value of
w= 95 ps, as indicated by the horizontal dashed line. Thus, the relaxation
time at the crossover is the same independent of pressure. From the previously
established co-invariance of 7, and the shape (or n) of the a-relaxation, this
implies that the value of n(7T'a) as well as the increase of dn(T)/dT when cross-
ing Ta, from above to below it, is also independent of P. These quantities are
function of 1.

The property seems general because the same behavior was found in propy-
lene carbonate (PC) from dielectric relaxation data and ortho-terphenyl (OTP)
from viscosity data. These behaviors are shown in Figs. 68-2 and 68-3.
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Fig. 67 Left upper panel: Dielectric relaxation time for BMMPC experimental data for 0.1 MPa,
other isobars at 200 and 600 MPa and the isochore at V = 0.9032 ml/g were calculated. Dotted line
indicates the average of log(tg) = —6.1 for the different curves. Left lower panel: Stickel function
for BMMPC, with low and high 7 linear fits, done over the range —4.68 < log;y(t/s) < 3.85 and
—8.55 < logo(r/s) < —6.4, respectively. Vertical dotted lines indicate the dynamic crossover.
Right upper panel: Dielectric relaxation times for salol experimental data for 0.1 MPa, calculated
curves for P=0.3 and 1 GPa, and V = 0.7896 ml/g. Right lower panel: Stickel functions for salol,
with linear fits over the respective ranges —4.58 < log;((7/s) < 1.6 and —9.59 < log;y(t/s) <
—7.44. Reproduced from [653, 756, 757] by permission

(b) At some chosen constant temperature 7, increase of 7, or n can be made by
applying pressure. It is customary to use the empirical VFTH-like equation
[627],

To(P) or n(P) = Apexp[DpP/(Po — P)], (2.44)

to fit the P-dependence of experimental data. The corresponding function,
wp = [dlog t(,(/dP]’l/2 or [dlog n/dP]’l/z, transforms Eq. (2.44) to become
the linear dependence ¢p = ap — bpP. Hence, deviation of experimental data
from the fit using Eq. (2.44) can be easily detected. For several small molecu-
lar glassformers, crossover from one VFTH-like P-dependence to another was
found in 7, and n at some pressure Pg. Examples from 7, data are presented
for PDE in Fig. 69, and two samples of poly(chlorinated biphenols), PCB62
and PCB42, are shown in Fig. 70 [653], and viscosity data of salol in Fig. 71
[547]. The same is found from the viscosity data of OTP (not shown here). It
is remarkable that the crossover values of 7,(Pg) or n(Pg) under isothermal
condition for different choices of constant T and the crossover values 7,(7g) or
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Fig. 68-1 Relaxation times for salol, including experimental data for ambient pressure and cal-
culated 7 for two higher pressures using the scaling law t = f(TV?), in which f represents a
function, V is the specific volume, and y is a material constant (see section on this topic). The
deviation from the Arrhenius slopes at high temperature occurs at a constant value of T = 95 ps,
as indicated by the horizontal dashed line. The vertical arrows indicate the crossover occurs at the
same t. Reproduced from [750] by permission

n(Tp) at isobaric condition are the same (see Figs. 69 and 70). Again, from the
general property of the same a-dispersion or n for the same 1, independent of 7
and P, it follows that at the various crossovers the values of n(Pg) or n(Tg) are
the same. In other words, n(Pg) or n(Tg) is a material constant associated with a
characteristic of the P or T dependence of 1, i.e., its change when crossing Pp
or Tg. Since this characteristic of 7, is invariant to change in thermodynamic
conditions, we can further say that this characteristic of , is not caused by P, T,
and V, and instead by the many-body dynamics manifested by the a-dispersion,
n(Pg) or n(Tg), as well as the change in the P or T dependence of n when cross-
ing Pp or Tg. This is clear evidence of contribution from many-body dynamics
to P or T dependence of 7, besides volume and entropy.

(c) Although encountered before, it is worth to re-emphasize that the crossover
from VFTH; to VFTH, also was found generally under constant volume
(isochoric) condition for PCB62, PDE, KDE, PC, BMMPC, and salol
[757]. This has been shown in Figs. 66 and 67 where the isochoric curve,
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Fig. 68-2 Caption same as previous figure, now for PC. The vertical lines indicate T at various
P, and the horizontal line indicates a constant value of 7 at the crossovers

(d)

[dlog 74/d(1/T)]~!/2, was obtained by calculation at some constant specific
volume. From the crossover, the crossover temperatures 7p and relaxation
times 7,(7g) were obtained. Remarkably, 7,(7g) under isochoric condition
is the same as t4(7g) under isobaric condition, and 74(Pp) under isothermal
condition.

Before we discuss further other properties, items (a)—(c) in the above can be
summarized as a remarkable experimental fact: the two crossover parameters
174(TB) and n(Tg) or t4(Pp) and n(Pp) are constant independent of the ther-
modynamic condition (constant P on varying 7, constant 7 on varying P, or
constant V on varying 7). This can be readily shown to be an immediate conse-
quence of the co-invariance of (P, V,T) and n(P, V, T) to all thermodynamic
conditions discussed in Section 2.2.4.4, and explained by the CM. The invari-
ance of n(Tg) and n(Pp) to thermodynamic condition is to be contrasted with
the decrease of the isobaric fragility index mp with increasing P and densifica-
tion found in many glassformers [119]. Also the isochoric fragility index my at
constant volume V is less than mp. This result may be expected since for my
only temperature affects t,, while for mp both volume and temperature con-
tribute to change of t,. The widely different values of my and mp obtainable for
one and the same glassformer are sufficient evidence to show that “fragility” is
not as fundamental as the time/frequency dispersion (or n) of the a-relaxation.
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Fig. 68-3 Caption same as previous figure, now for OTP, except here the data are from viscosity.
The vertical lines indicate T at various P, and the horizontal line indicates a constant value of
viscosity at the crossovers

An Important Deduction from the Invariance of t,(7g) and n(Tg), or 74(Pp) and
n(Pg),to BT,V

From the above subsections, on the change of 7-dependence of 7, at T under con-
stant P (isobaric) or constant V (isochoric), and the change of P-dependence of t,
at Pg under constant T (isothermal), the experimental facts presented are telling us
that the general characteristics of 7, are independent of P, 7, V. The only invariant
other than 7, (7g) or t4(Pp) itself is n(Tg) or n(Pp). From this, we can conclude that
the P- and T-dependences of t, are determined by not only thermodynamic factors
including volume and entropy, but also many-body dynamics exemplified by n.

Other Facts and Fiction on the Crossover of Temperature Dependence of 1,

Correlated Changes of Behaviors of T4 and the Dielectric Relaxation Strength Ag
at Tp

The change of the temperature dependence of the dynamics causing the crossover
of the 7-dependence of 7, from VFTH; to VFTH; at Tp is expected to have an
effect of the relaxation strength. This is because both the relaxation strength Ae and
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Fig. 69 Dielectric relaxation time data for PDE from [653]. Left upper panel: Derivative func-
tion ¢p vs. pressure, calculated for isotherms at temperature indicated. Left lower panel: log t
vs. pressure for 7=327.8 (A), 337.7 (O), 349.5 (O), and 363.1 K (). Right upper panel:
Derivative function ¢ vs. inverse temperature at atmospheric pressure. Right lower panel: log t
vs. inverse temperature from Stickel et al. [621]. Note the same crossover time 7g from change
of T-dependence at ambient pressure and change of P-dependence at constant temperature. Data
from [653] are replotted here

the relaxation time 7, are characteristics of the dynamics, and has led Schonhals
[758] to look for correlated changes of behaviors of 7, and the dielectric relaxation
strength Ae at T by broadband dielectric measurements. The correlated changes
indeed exist as shown in Figs. 72 and 73, where Ae¢ is plotted against log f,, for
dibutyl phthalate, salol, propylene carbonate, propylene glycol, dipropylene gly-
col, and poly(propylene glycol). Here f, is the dielectric a-loss peak frequency and
is approximately equal to 1/(2mwt,). These plots indicate two different frequency
regions of dynamics separated by fg. The two relations when extrapolated intersect
at a crossover frequency fg. It turns out that for all the glassformers f3 is nearly the
same as 1/[2m7,(Ts)]. Hence Ae shows also a change of 7-dependence at Tg.

Similar results were found also for the polymer, poly(vinyl acetate) (PVAc), first
by Ngai and Roland [238] and reaffirmed later by Tyagi et al. [759]. These are shown
altogether in Fig. 74. The change of the dependence of A on log f,, also occurs at
the temperature 7g.

This phenomenon can also be explained in terms of the CM by the more rapid
increase of n with decreasing temperature (frequency) after crossing 7T (fg), because
n reflects the extent or length scale of the many-body relaxation and in turn the mag-
nitude of Ae. The temperature dependence of Ag¢ is roughly proportional to 1/T at
temperature much higher than T consistent with the Kirkwood—Frohlich theory



188 2 Glass-Forming Substances and Systems

18] o1 o N PCB42 ]
17 N\ \"\
1 18 o\ B
16
< < 17{ 2 \ ]
15 %\ NI
16 A l B0 o
A
141 | TS AAAAAD
21 o 374K 7 oA A 283K 1
ol v 8BIK 0 T A o° o 2736K . o ]
A 335K o° v\’ﬁaa o o 283K W20 0 e
= -2 o 344K ooozvv Z A A R o ~ _2_ A&a o . ] |
-,“'; DDG woa o % { B ° @
5 4 - D? v?_v _a‘i_‘&._c_c., ______ L@@fﬁ‘.‘.?_. D '4 .......... é.é ..... R - A
E’ o° Tha 5o © 3 a8 t
Rps N
v ¥ @ o
8{% . 8 |
0 50 100 150 200 250 0 50 100 150 200 250
Pressure [MPa] Pressure [MPa]
o PCB62 [
. o PCB42
031 ” ? cl
P
= 02
@
E
g

Fig. 70 Above: Dielectric relaxation time data for PCB62 (upper left) and PCB42 (upper right).
Upper panel: Derivative function ¢p vs. pressure, calculated for isotherms at temperatures indi-
cated. Lower panel: log © vs. pressure. Right side: Lower panel: Derivative function ¢ vs.
inverse temperature at atmospheric pressure vs. inverse temperature normalized to 7; for PCB62
and PCB42. Note the same crossover time tg with log(tg) = —4.3 is obtained from change
of P-dependence at various constant temperatures and from change of 7-dependence at ambient
pressure. Data supplied by authors of [653] are replotted in color in all the figures here
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Fig. 71 Left upper panel: Crossover of pressure dependence of viscosity of salol at constant tem-
peratures (reproduced from [547(b)] by permission). Left lower panel: Derivative function ¢p
vs. pressure, calculated for isotherms at temperatures indicated. Right upper panel: Crossover
of T-dependence of viscosity of salol at ambient pressure (reproduced from [547(b)] by permis-
sion). Value of 7 at the crossover is independent of pressure and temperature. Right lower panel:
Derivative function ¢7

Fig. 72 Ace vs. log f,, for

dibutyl phthalate ([J). The

inset shows the same for salol

(+). The lines are linear

regressions to the different
branches of the data.

Reproduced from [758] by g
permission
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based on the assumption of non-interacting isolated dipoles, which is consistent
with the small values of n. However, this dependence does not continue when tem-
perature is lowered to approach T and fall below Tg. Thus, the observed change
of T-dependence of Ae is another indication of the increase of coupling and coop-
erativity (or n) of the a-relaxation with falling temperature after crossing 7g. The
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Fig. 73 Ae vs.log f, for
propylene carbonate (¢). The
inset shows the same for the
propylene glycols of different
molecular weights: from fop
to bottom, (A) propylene
glycol, (x) dipropylene glycol
(right scale), (V)
poly(propylene glycol) (left
scale). The lines are linear
regressions to the different
branches of the data.
Reproduced from [758] by
permission
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Fig. 74 The inset is a plot of the dielectric relaxation strength of the a-relaxation, Ag, of PVAc
against log;y(fmax) showing a change of temperature dependence of Ae when crossing T [236,
238]. The arrow indicates the location of log;([fmax(78)], which is determined by the fits of 7, by
the two VFTH equations shown in the main figure. The main figure is the plot of log;y(7s/s) of
PVAc against 1000/7. Filled circles are data from [236, 238], and the two curves through some
of the data points are the relaxation times that correspond to the two VFTH equations for the fre-
quencies. Open circles are Tgs obtained by assuming the f-relaxation and the a-relaxation make
additive contributions to the dielectric spectra [238, 760]. The crosses are Tgs obtained by assum-
ing the dielectric spectra is a convolution of the p-relaxation and the a-relaxation [238, 760]. The
straight line drawn through the open circles at low temperatures intersect log;( (7, /) at a temper-
ature close to Tg. The filled squares are the primitive relaxation times, 7, calculated by the CM
equation with the experimental values of n [238], 7,, and 7, = 2 ps
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reader may find it surprising that the change of Ae with f, in the f, > f regime
is more rapid than in the f, > fg regime. The cause of this is the slow variation
of fp with temperature in the range T > T where 1, is described by VFTH;, and
by contrast f, varies more rapidly with temperature in the range T < Tp where
Ty is described by VFTH;. Thus, the same increment of f,, corresponds to a larger
increment in temperature, and hence causes a larger decrement of A¢ in the f;, > f
regime than in the f, < f regime.

Analogy to Relaxations of Different Length Scales from Quasielastic Neutron
Scattering

Relaxations of different spatial scales can be probed by quasielastic neutron scat-
tering experiments at various scattering vectors Q. The reciprocal of Q gives the
spatial scale of the relaxation. Incoherent neutron scattering experiment follows the
motion of protons within distances of size Q~!. The first maximum of the static
structure factor, S(Q), located at Q = Qmax, gives a measure of the intramolecular
spatial distance through (Qmax)_l. Data of the self intermediate scattering function
F(Q, t) obtained at Q_l < (Qmax)_l, corresponding to small spatial scales, show its
relaxation time t, has Arrhenius temperature dependence. For larger spatial scales
data taken at Q! > (Omax) ', deviation from Arrhenius behavior of 7, to become
VFTH-like is observed in PMMA [761].

A similar result was observed for pure polybutadiene [762], although the neutron
data for polybutadiene are for collective motion. These observations of the change
of temperature dependence with spatial scale across (Qmax)~! by neutron scattering
provide support for the explanation we have given for the change of temperature
dependence of 7, across Ta or Tp obtained by dielectric relaxation. The reason
is given as follows. The length, (Qmax)_l, corresponds to the interchain spacing.
Therefore, data taken at Q_1 < (Qmax)_1 come from motions of protons within indi-
vidual polymer chains. The motions probed are of local and intramolecular nature,
without the participation of other chains, and hence many-body relaxation index n
is small or even zero. On the other hand for low Q data such that Q’1 > (Qmax)’l,
the data give information of motions in space containing protons in other chains.
Many-body dynamics are involved and the index » is not zero. Thus, the change of
temperature dependence of 7, when spatial scale is changed in crossing (Qmax) "
is associated with the change in n, in analogy to the change of the temperature
dependence of 1, when crossing T'a or Tg.

It is worthwhile to caution the reader that even local segmental relaxation of
an isolated polymer chain has correlation function which is more dispersive than
a linear exponential function due to connectivity of repeat units along the chain
[763, 764]. This means that the intermediate scattering function obtained by neu-
tron scattering at 0! < (Omax)~! when fitted to the Kohlrausch function has
the stretch exponent f significantly less than 1, even though the many-body relax-
ation index n is small or even zero. There is support of the above interpretation
from the Q-dependence of 7,. As discussed before in Section 2.2.2.4, 7, changes
its O-dependence when crossing Qmax, from 0~ 20=1 for 071 > (Qmax)”! to
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072 for 07! < (Omax)~". The Q’z/("”)—dependence of 7y for 07! > (Omax) ™"
is the consequence of cooperative and heterogeneous many-body relaxation taking
place at longer length scales with involvement of repeat units of other chains, and
can be derived from the coupling model as shown in Section 2.2.2.4. On the other
hand, Q’2-dependence of 7, for 07! < (Qmax) ™! reflects local and non-cooperative
motions of protons within individual polymer chains, which naturally have the Q—2-
dependence of simple rotation and diffusion. More discussion of the Q-dependence
of 7, will be given in Section 2.2.5.2 to follow.

Comments on Works of Others

Before closing this subsection, a remark is appropriate here to dispel an incorrect
notion circulated in the literature that the magnitude of the crossover time, t,(7B),
of all glassformers is located within the narrow range of 10703 — 107735 [765].
The following facts on 7,(7g) are sufficient for this purpose. At T = T, PDE
has the longest relaxation times with t4(7Ts) = 107305 (10733 s in Fig. 69), and
propanol [348(b)] has t4(T) = 10737 s. Figure 70 shows that PCB62 has 7,(Tg) =
10~*3 5. From Figs. 66 and 67, BMMPC has 74(Tg) = 10~%! s, KDE and salol
have 7,(T8) = 107%3 s, and PC has 74(7g) = 10770 s, and polymethylacrylate
has 107103 5 [766]. The much studied epoxy resin, diglycidylether of bisphenol A
(DGEBA), has Tg=275 K and 74(Tg) = 10~*3 s [242]. From these results, it is
clear that 7, (7g) varies over a wide range (seven orders of magnitude from 10733
to 107103 s) when all glassformers are considered. Hence, the results invalidate the
claim that 7,(7g) has “universal” or “magic” value lying within the narrow range
of 10765 — 10~7 5 [765]. Connection was made of the crossover temperature T
to the critical temperature 7, of mode coupling theory [765]. This proposal is also
refuted by PDE, propanol, PCB62 having 7,(7g) ranging from 103 to 1073 s.
This is because it is inconceivable that such a long or macroscopic relaxation time
can be identified as relaxation time at 7, of mode coupling theory.

On the other hand, lest the reader forgets, the smaller values of n at temperatures
higher than 7 and relatively more rapid increase of n with decreasing temperature
(frequency) after crossing Tg(fg) are always found in all glassformers despite the
large variations in their values of t4(7g). This general property of n associating with
the crossover of 7-dependence of 7, at T is the basis of the explanation of the lat-
ter by the coupling model [423]. As mentioned before, 7,(7B) at the crossover of
T-dependence is independent of pressure or 7, (Pp) at the crossover of P-dependence
is independent of temperature. Hence, we have the invariance of t4(7g) and
74(PB) to thermodynamic conditions. The experimental results demonstrate that the
dynamic crossover phenomenon arises not at some critical temperature or volume,
rather it is governed by 7, and the corresponding value of n. The last conclusion
follows from the co-invariance of 7, and n to changing thermodynamic conditions,
consistent with the prediction of the CM. The invariance of 7,(7g) and t4(PB) to
thermodynamic conditions further supports that the a-relaxation is governed by
many-body relaxation through the surrogate n, since the phenomenon is independent
of thermodynamic conditions.
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There are recent theoretical [767] and experimental studies [768] that reported a
change in the temperature dependence of the equilibrium structural relaxation time
at temperatures near and below the conventional 7;. The VFTH temperature depen-
dence valid for T > T, is changed to a milder Arrhenius temperature dependence
as T approaches and falls below 7. In one experiment, glassy samples of bisphenol
A polycarbonate (BPA-PC) were aged into equilibrium at temperatures up to 17°C
below Ty ~ 140°C [768]. Mechanical stress relaxation measurements were made
to obtain the temperature dependence of the equilibrium viscoelastic response of
BPA-PC for temperatures extending from 3°C above to 17°C below ;. A gradual
transition from VFTH temperature dependence to Arrhenius temperature depen-
dence below Ty was concluded from the shift of the mechanical torque time response
with T. There is no doubt that the measurements are accurate. But, before the conclu-
sion is fully accepted, the following possibility has to be excluded. Deep below T,
the measured torque did not decay more than half a decade. The small decay could
possibly be contributed in part by secondary relaxation, and this contribution could
be responsible for the equilibrium dynamics being faster than an extrapolation of
the VFTH dependence at higher temperatures would suggest. Nevertheless, there is
support of the conclusion from study of the rotational and translational diffusion of
probe molecules (rubrene and tetracene) in the same BPA-PC sample aged to equi-
librium [769]. The temperature dependence of probe motions in equilibrium PC was
studied from 149 to 124°C, and a change in the temperature dependence of probe
molecule motion near 134°C was reported. Below this temperature, the activation
energies of the translational diffusion coefficient and the rotational correlation time
decreases by factors about 3.

2.2.5.2 The Q~2/1-"_Dependence of 7,

Quasielastic neutron scattering experiments and molecular dynamics simulations on
polymeric and non-polymeric glassformers are capable of investigating the depen-
dence of 1, on the scattering vector Q. These techniques give an important and
measurable dependence of 7, on another variable that is worth consideration in
constructing theory of glass transition. As discussed before, for non-interacting
particles, the incoherent intermediate scattering function obtained by incoherent
neutron scattering or simulation has the form given by Fs(Q,f) = exp(—Qtht)
(see Eq. (1.124)). Rewritten as exp[—1/t4(Q)], it follows from the last equation that
(0) = Q_2 /Dy. From studies by neutron scattering and molecular dynamics sim-
ulations, this Q~2-dependence of 7, was observed for Q > Qmax or at spatial scales
shorter than intermolecular distance or interchain spacing in the case of polymers
[324, 474, 761, 762]. Here, Omax is the location of the first maximum of the static
structure factor, S(Q). This result was explained before in the subsection above.
At short spatial scales corresponding to Q > Qmax, many-body participation is sup-
pressed and the local relaxation probed is effectively as if in non-interacting systems
and hence the Q~2-dependence of 7.
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For O < Omax or longer spatial scales, the O-dependence of 7, instead was
found by quasielastic neutron scattering experiments and molecular dynamics sim-
ulations to be given by Q‘z/ (=) for several polymers, PVC, PIB, PBD, PVE, PIP,
PPO, PDMS, PH, PE, PVME, PMMA (307, 310, 313, 314, 324, 325, 459, 461,
474, 762, 770-773], PMMA in blends with PEO [761], and a few small molec-
ular glassformers, OTP [316], glycerol [774], and methanol [318]. Here, n is the
exponent appearing in Eq. (1.1) for the Kohlrausch function that was used to fit
the time dependence of the intermediate scattering function, F(Q, ), measured by
incoherent neutron scattering or obtained by molecular dynamics simulations. An
interesting case is the “strong” glassformer, methanol. Molecular dynamics sim-
ulations [318] found n assumes nearly zero value at high temperatures and
has Q-dependence approaching Q2 as pointed out in [319]. Hence the observed
Q-dependence of T is governed by n or the breadth of the a-dispersion.

An exception was found in poly(vinyl acetate) (PVAc) [759]. Neutron scatter-
ing data of F(Q, ) were fitted to the Kohlrausch function with n &~ 0.50. From
this, the dependence of 7, expected from Q~2/(=" in the low Q-region would be
O~*. However, the experimentally observed dependence is Q~22, which indicates
that n = 0.21. The discrepancy found in PVAc but not in the other polymers could
be due to the presence of flexible side chain in PVAc. The PVAc sample studied
was fully protonated and thus the motions of both the backbone and the side chain
contribute to F(Q, t), broadening its dispersion and resulting in a larger n than the
actual value. Interestingly, the dispersions of the a-relaxation from dielectric relax-
ation measurements are significantly narrower than F(Q, f) in the same temperature
range. The values of n obtained by fitting the dielectric data in the temperature range
from 400 to 460 K where neutron scattering measurements were performed [759]
fall between 0.30 and 0.25 (see Fig. 4 in [238]). These values are not far from the
value n = 0.21 required to explain the O~>2-dependence of 7,. A similar explana-
tion was offered in [759]. I have examined the neutron scattering data of the room
temperature ionic liquid, BMIM-PFg, obtained by Triolo et al. in 2003 [311]. They
found 7,(Q) = IO?Q_V, with v = 2.5. The stretch exponent 8 = (1-n) is not constant
but the average value is about 0.75. If this value is taken, the predicted exponent v
has the value of (2/0.75) = 2.67, which is not far from the experimental value.

A superposition of Fy(Q,t) = exp(—QZDtt) = exp(—t/Q_2Dt_l) with a dis-
tribution of D; to make the resulting intermediate scattering function having the
Kohlrausch form of Eq. (1.1) will not be able to explain the observed Q—2/(1=")-
dependence of t,. As mentioned before in Section 2.2.2.4, the resulting Kohlrausch
relaxation time still has the Q‘2-dependence [460]. This is another indication that
the observed Q~2/(1=")_dependence of 1, is a consequence of many-body relaxation
and the exponent n of the Kohlrausch function is its index.

The observed Q—2/!1="_dependence of the a-relaxation time of glass-forming
liquids is also found in other systems including suspensions of colloidal particles
[143], semidilute polymer solutions [198, 776, 777], associating polymer solutions
[778, 779], and polymer cluster solutions [780]. This rather universal dependence of
relaxation time on the scattering vector is the exemplification of many-body relax-
ations that are common to these systems all having mutual interaction between
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the basic units. These together with more common properties of these interacting
systems will be further discussed later on in Chapter 3.

The anomalous Q~2/(!=")_dependence of 1, is derivable from the CM equation
(2.35) simply by substituting the known Q~>-dependence of 7 into it.

2.2.5.3 Non-linear Enthalpy Relaxation of Glassformers Near and Below T’y

The properties of the a-relaxation near and below T; are important as well as inter-
esting. In the neighborhood of the glass transformation region, 7, is dependent on
thermal history, including cooling and heating rates, aging protocol, and pressure.
These have been challenging research problems of practical importance. The two
essential features of structural relaxation near and below 7; were brought out by
experiments [62, 266, 303]. They are (1) the structural relaxation time depends not
only on temperature 7, but also on the instantaneous structure (non-linearity) and
(2) the time dependence of the structural relaxation process is not a simple exponen-
tial function (non-exponentiality). Non-linearity is demonstrated by the asymmetry
of relaxation in structural recovery following positive or negative departures from
equilibrium. Non-exponentiality is shown by the memory effect, in which relax-
ation from some initial state depends on how that state was reached. These effects
were found in the pioneering experimental studies of borosilicate glass by Ritland
[781] and of poly(vinyl acetate) (PVAc) by Kovacs and coworkers [62, 303], and
in more glassformers by Moynihan and coworkers [266]. There are two models
that have taken into account non-linearity and non-exponentiality and they are
essentially equivalent. The one formulated by Moynihan and coworkers [266] for
enthalpy H relaxation is based on the constructs of Tool [782] and Narayanaswamy
[783] and is now known as the TNM model. The other is the KAHR model
developed by Kovacs and coworkers for volume relaxation [303]. For reviews
see [173, 304].

In the TNM model, non-linearity is taken into account by modifying the lin-
ear differential equation, d(H — H.)/dt = —(H — H.)/t, describing relaxation of
enthalpy H toward equilibrium value H.. This is handled by making T dependent not
only on 7 but also on H. Actually the model is formulated on the evolution of the fic-
tive temperature Ty, instead of H. Tt can be defined as the instantaneous contribution
of the structural relaxation process to H expressed in temperature units. For exam-
ple, following quenching of an equilibrium liquid at temperature 7y down to 77, the
enthalpy H(¢) relaxes from the initial value Hy toward the equilibrium enthalpy He
at temperature 7. Correspondingly Ty(7") varies from Ty to 7T in parallel with the
changes in H(f). Departure from equilibrium is measured by 7y — 7. The progress
of structural relaxation with time described by the normalized relaxation function,
¢(t) = [H(t) — He1l/(Hy — He)), 1s now replaced by [T¢(T) — T11/(To — T1). Non-
exponentiality is implemented by replacing ¢(f) = exp(—¢/t) by the Kohlrausch
relaxation function,

t
(1) = exp{— fo [ /2(T, Tp)]’). (2.45)
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In the TNM model, the following expression for t (7, Tf) was proposed:

xAh (11— x)Ah:| ' (2.46)

©(T,Tr) = 1o exp I:ﬁ + RT;

Here x(0 < x < 1) is the non-linear parameter, t( a pre-exponential factor, Ah
an activation enthalpy, and R the ideal gas constant and all of them are taken to be
fitting parameters. Moynihan has warned that the TNM model cannot take care of
temperature or structural dependence of S, if present.

Another way of introducing non-linearity is by modifying [784-786] the
Adam-Gibbs equation for the relaxation time of an equilibrium liquid, 7 =
79 exp[Cac/TSc(T)], by replacing S¢(T) therein by Sc(7¢). The resulting equation is
(T, Tr) = toexp[C/TS.(Tr)]. Hodge [786] used the approximate hyperbolic form
for the temperature dependence of the configurational heat capacity AC,(T) o< 1/T
to obtain S.(77) and the following Hodge—Scherer expression for t(7', Tt):

©(T,Ts) = Aexp |: (2.47)

T(1 — Tz/Tf)} '

In the specific case when equilibrium condition is satisfied, 7f = T and this
expression is reduced to the VFTH 7-dependence.

(i) Correlation Between n and Degree of Non-linearity (i.e., Smaller x) and Ah:
The parameters of Eqs. (2.46) and (2.47) were shown to be related to one
another by appropriate differentiation with respect to temperature in the equi-
librium and glassy states [785]. The results are x ~ (1 — Tg/Té) and Ah/R ~
B/(1 —Ty/ TE)2 ~ B/x?, where T¢ is the value of Tt in the glassy state. These
relations have been confirmed for polymers [785] by fitting the same experi-
mental heat capacity data using either expressions for 7(7, Tr) and obtaining
comparable best fits. Structural relaxation in response to any thermal history,
simple or complicated, can now be calculated by the TNM model using the
Kohlrausch relaxation function given by Eq. (2.45) and (T, Tt) by Eq. (2.46)
or (2.47). The Kohlrausch exponent 8 in Eq. (2.45) obtained from analysis of
non-linear enthalpic relaxation was found to be generally weak functions of
thermal history, and usually in agreement with the exponent (1 — ) in Eq. (1.1)
obtained by dielectric relaxation and other techniques in the linear response
region above 7, [785, 786].

The important results for our present purpose is the finding by Hodge [785,
786] of the strong correlation between the parameters x, Ah, and 8. The indi-
vidual correlations between x and 8 and correlation between Ak and (1—8) =n
are shown in Figs. 75 and 76, respectively. In other words, larger n (smaller j)
corresponds to higher degree of non-linearity (i.e., smaller x) and larger Ah.
Thus, n also governs the parameters of non-linear enthalpy relaxation near and
below T,.
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Fig. 76 Correlation between Ak and (1 — 8) = n for the materials considered in [786], which
include polymeric, small molecular, and inorganic glassformers (). The correlation is better if
restricted to glassformers of the same class. Shown also is similar correlation between A/ and
(I — B) = n for polymers only obtained by linear shear compliance measurements at 7

(ii) Correlation Between n and Equilibration Time to, for Different Quantities
in Physical Aging: A glass is not in a state of thermodynamic equilib-
rium. Consequently, its physical and mechanical properties change with time
as the material attempts to reach equilibrium. In the literature, this phe-
nomenon is referred to as structural recovery or physical aging [788]. Studies
of physical aging often find that enthalpy, volume, dielectric relaxation, and
creep compliance (or stress relaxation) reach equilibrium at widely different
times. For examples from a number of polymeric glassformers, see [789].



198

2 Glass-Forming Substances and Systems

In BPA-polycarbonate there is evidence that volume relaxation occurs more
slowly than mechanical relaxation [790].

A specific example is taken here from the study of volume and enthalpy
recovery of polystyrene [791]. The sample has Ty = 94.9°C determined by the
volume vs. temperature curve obtained at a cooling rate of 0.28°C/min. After
the sample was quenched from equilibrium at a temperature above Ty to various
temperatures T below about 94°C, the study shows that the times required for
volume and enthalpy to reach equilibrium, 7, are different. It takes a longer
foo OF feq for volume to equilibrate than enthalpy. Deeper the quench (lower
T), longer are both equilibration times and larger their difference becomes.
Since we have seen from the above that n governs non-linear enthalpy relax-
ation below Ty, a possible explanation is that the dynamics of enthalpy, volume,
and shear compliance (or modulus) not necessarily have the same n, although all
are related to the structural relaxation of molecules, as shown before in [267].
Analysis of the data using the TNM model does show that both the parame-
ters x and B = (1 — n) are smaller, and A# is larger for volume than enthalpy.
Hence, from the correlations between x and 8 and correlation between Ah and
(1 — B) = n shown before in Figs. 75 and 76, it can be concluded that ny
of volume is larger than ny of enthalpy. However, one must be mindful that
these parameters were obtained by fitting data with the TNM model. The actual
ny and ny values of volume and enthalpy relaxation at isothermal condition
have to be determined directly before the suggested possible role of n in the
observed different behaviors of volume and enthalpy in physical aging can be
fully confirmed.

A photobleaching method has been used to measure both the rotational and
translational diffusion of a small molecule probe, tetracene, during physical
aging in polystyrene with molecular weight of 60,000 g/mol [792]. The glass
transition temperature of the PS/tetracene sample, measured by differential
scanning calorimetry, was determined to be 7y = 100°C. Rotational relaxation
time 7. and translational diffusion coefficient D; increase during isothermal
aging after quenching the sample from above 7; into the glass. Physical aging
affects rotational relaxation and translational diffusion differently. For shallow
quenches down to 7 = 98.6 and 97.1°C, the rotation time and translation coef-
ficient reach equilibrium at about the same time. However, for a deeper quench
to T = 95.6°C, translational diffusion reaches equilibrium before rotational
relaxation (see Fig. 77), and #o or f¢q of rotational relaxation is thus longer than
that of translational diffusion (see Fig. 78). The temperature dependence of Zeq
is different for rotational relaxation and translational diffusion, with rotation
exhibiting stronger temperature dependence than translation. The difference in
feq values and T-dependence for rotational relaxation and translational diffusion
in physical aging is one demonstration of the breakdown of Debye—Stokes—
Einstein relation in the glassy state. Breakdown of the relation is found also in
the equilibrium state above T, which is the subject of detailed discussion in the
subsection to follow.

It will become clear later from discussion in a later section that a likely cause
of the breakdown of the Debye—Stokes—Einstein relation above T, is the larger n
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Fig. 77 Comparison of rotational and translational diffusion measurements of tetracene during
isothermal physical aging at 97.1°C. Rotational correlation times 7. correspond to the right-hand
axis while the translational diffusion coefficient D; corresponds to the left. The solid line located
in the upper left corner of the figure marks the equilibrium value of Dy at 102°C before the temper-
ature quench. The line in the lower left corner corresponds to the equilibrium value of 7. at 102°C
before quenching into the glass. The arrows guide the eye from the initial equilibrium dynamics to
the corresponding aging curves. Data from [792] are digitized and replotted
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Fig. 78 Comparison of equilibration times f¢q for various observables in polystyrene. The times
to reach equilibrium for probe rotation and translation show different temperature dependences.
Compared to macroscopic observables, translation and enthalpy exhibit similar equilibration times,
while the to, values for probe rotation and for volume show similar temperature dependence.
Volume and enthalpy data from [791], probe rotation and translation from [792]. All data from
these references are replotted here in this figure

value for rotational relaxation than for translational diffusion. Figure 78 shows
that translation diffusion and enthalpy exhibit similar equilibration times, while
feq for probe rotation and for volume show similar and stronger temperature
dependence. From this, and also recalling that we have previously deduced
that ny > ny, we infer that a larger n value is associated with rotational than
with translational diffusion. The latter is the possible cause for the difference in
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the aging behavior of rotational relaxation from that of translational diffusion.
Later on in Section 2.2.5.6, we show that this is indeed the cause by applying
the coupling model to address physical aging to derive the result that relaxation
property having a larger n has a longer 7.q. This explanation is to be contrasted
with that given by Thurau and Ediger [792] based on spatial heterogeneities in
the segmental dynamics of PS being responsible for the differences in aging
behavior of tetracene translational and rotational diffusion. What they offered
is actually not an explanation but a transcription of the observed difference in
the way these two macroscopic observables age to the Kohlrausch exponent
B = (1 — n) parameter used to characterize the dispersion (non-exponentiality)
of the rotational correlation function. This was done by using an empirical cor-
relation between (1-8) and the product Dit. (normalized to the ideal value
when the Debye—Stokes—Einstein relation is valid) at T = T, established by
data of various glassformers [451]. The observed change of the normalized Dt
during physical aging was converted to change in 8 or the dispersion, which in
turn was reinterpreted as due to regions of different mobility age at different
rates in the context of the spatially heterogeneous model. However, this change
of $ had not been directly observed in the experiment because the error bars for
B are large. Thus, this is not a direct explanation of why probe translation and
rotation age differently, but is at best a demonstration that the observation can be
consistent with spatial heterogeneous dynamics. The use of the spatial heteroge-
neous dynamics model to interpret physical aging of probe rotation relaxation
and translation diffusion is natural for the authors of [792] because the same
model had been employed to explain the breakdown of Stokes—Einstein (SE)
and Debye—Stokes—FEinstein (DSE) relation in equilibrium liquids [450-452,
793-796]. The explanation for the breakdown of the SE relation turns out to be
invalid because it was contradicted by recent experiments [454—458, 274, 275,
797], which will be discussed in the next section. The collapse of the expla-
nation by spatial heterogeneous dynamics of a simpler problem in equilibrium
liquids does not help it in rationalizing a more complicated problem (i.e., the
difference in aging of probe rotational relaxation and translational diffusion) by
using the same model. A statement was made in the same [792]: “Current mod-
els of physical aging, such as the TNM and KAHR models, assume spatially
homogeneous dynamics during aging, and fail to explain what causes differ-
ent observables to age differently. Our results suggest that this homogeneous
assumption is incorrect, and that heterogeneous dynamics are important for
the description and prediction of physical aging deep in the glassy state.” This
charge against the TNM and KAHR models in the statement is unwarranted.
The TNM model and its other forms [785, 786] do not address the microscopic
nature of the structural relaxation, and are used principally to consider macro-
scopic quantities such as enthalpy and volume. In these models, the use of a
Kohlrausch function merely describes the time dependence of the macroscopic
structural relaxation, which is obtained after averaging over the microscopic
and dynamically heterogeneous processes. Therefore, these models make no
assumption that the dynamics are necessarily homogeneous. Moynihan, one of
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the architects of the TNM model, is an advocate of heterogeneous dynamics
as evidenced by his paper in [531]. Moreover, he had shown in the 1975 paper
[266] that various relaxing properties including enthalpy, volume, stress, strain,
and refractive index behave differently in the glass transition region, and have
different TNM model parameters Ak, 8, and x. Probe rotation and translational
diffusion are merely two additional relaxing properties and their difference in
aging would be explained again by the TNM model from their different param-
eters Ah, 8, and x. Thus, the criticism of the TNM model, “fail to explain what
causes different observables to age differently,” is not correct. In the TNM
model’s explanation of probe rotation and translation diffusion to age differ-
ently, the difference of the values of § for these two observables turns out to be
main point in the coupling model explanation of the breakdown of the SE and
the DSE relations in Section 2.2.5.6 [268, 275, 797].

2.2.5.4 Correlation Between n and Aging Time
Suspension of Colloidal Particles (Radius=1.18 pwm, Packing Fraction=0.62)

Courtland and Weeks [798] used confocal microscopy to directly monitor the
dynamics of aging in colloidal glasses prepared from colloidal suspensions of
PMMA particles of radius=1.18 wm at high densities (packing fraction ¢ larger
than ¢ = 0.58), after stirring the sample. They followed the motion of several
thousand colloidal particles and observed that their motion significantly slowed as
the sample aged but continued to occur on all times scales. The aging is both spa-
tially and temporally heterogeneous. For their aging samples and different aging
times ty, they identified the locations of mobile particles and showed that they are
generally grouped into large clusters for all values of t,. The dependence of the spa-
tial clustering of mobile particles on #, was obtained by observing the clusters and
measuring their average size for each t,,. To their surprise, overall the cluster sizes
do not increase with t,,. Definitely, for the colloidal glass to age, the particles must
move to rearrange themselves, but Weeks and coworkers were not able to find any
characteristics of the rearrangements which changes as the sample ages. Although
from confocal microscopy aging is both spatially and temporally heterogeneous,
the physical mechanism that ultimately causes the dynamics to slow down as their
sample ages is not clear. In another effort [799], the static structure was analyzed
in terms of tetrahedral packing. It was found that none of the geometrical quanti-
ties associated with the tetrahedra changes with age. Nevertheless, Courtland and
Weeks did point out that, with increasing t,, the changing character of the mean-
squared displacement (MSD) seems to be the most significant dynamical changes
in aging. The changes of the aging MSD, < r*(Af) >, are shown in Fig. 79 for a
colloidal glass at packing fraction ¢ = 0.62 [797]. The three sets of data represent
three different ages of the sample, t,, = 0 tgifr, tw = 100 7gifr, and #, = 300 iy,
where t4iff = 11 s. The dotted line has a slope of 1 and represents diffusive behav-
ior at much longer times than can be seen by experiment in this glassy sample. For
each sample of different ages, at shorter lag times the MSD varies very slowly with
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Fig. 79 Aging mean-squared displacement for a colloidal glass with ¢=0.62. The three curves
represent three different ages of the sample. The three sets of data represent three different ages of
the sample. From top to bottom, t, = 0 t4ifr (closed triangles), ty, = 100 14 (open squares), and
tw = 300 qifr (closed circles) where tgisf = 11 s. The dotted line has a slope of 1 and represents
steady-state diffusion regime, not seen in this glassy sample. The data of #, = 100 tqif at shorter
times are from the particles when they are still caged. The dashed line drawn through them has
slope=0.13. Data from [798] supplied digitally by Eric Weeks and replotted here

time essentially on a plateau, because particles are locally confined or caged by their
neighbors. It was interpreted as loss coming from cage decay [141, 797, 800, 801]
or equivalently onset of particles leaving the cages [195, 196, 468, 802]. The dashed
lines in Fig. 79 [797] drawn with small slopes ranging from 0.18 for #,, = 0 tgjsr,
0.16 for ty, = 100 74ifr, and 0.13 for t, = 300 74ifr merely serve to illustrate the slow
increase of MSD, and its actual time dependence may not be strictly a power law.
At larger lag times, At, each MSD curve shows a more rapid rise shown as a power
law (A7) =" as found before in the liquid states [141]. It can be seen that (1-n) is a
function of #,, decreasing from 0.52 for #, = 0 7gift to 0.47 for t,, = 100 rgifr and
0.35 for t, = 300 z4ifr. The change of the slope of increase of the MSD indicates the
crossover from the shorter time regime of caged dynamics to many-body diffusion
dynamics.

If the displacement r of a single particle is approximated as a Gaussian variable
(the Gaussian approximation is known to be valid for colloidal suspensions in their
equilibrium fluid states [255]), the self intermediate scattering function Fer(Q, f)
can be written in terms of the MSD by Fy1(Q,1) = exp(—Q%> < r*(Ar) >).
With power law (Af)" for < (AL >, Fee1f(Q, 1) assumes the Kohlrausch form
(Eq. (1.1)), and hence n can be taken as a measure of the many-particle relaxation
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dynamics in the aged colloidal glass. The increase in n with t, is due to the non-
trivial motions of the particles observed at all timescales of aging, which somehow
enhance the many-particle relaxation. As mentioned before, Courtland and Weeks
did point out themselves that the changing character of the MSD is the most sig-
nificant dynamical changes in aging. However, this pertinent observation by itself
does not lead to an explanation of the principal effect of aging, i.e., the timescale for
motions needed for a further structural change increases with the age of the sample
or ty. A theory or model is needed to rationalize this observation. This task is ful-
filled expediently by the coupling model which does relate the increase of n(ty) to
increase of relaxation time on aging, as shown in [797], and to be discussed further
later.

Aqueous Colloidal Suspension of Laponite (Discs with Diameter=25 nm,
Thickness=1 nm)

The aging dynamics of aqueous colloidal suspensions of a synthetic clay, Laponite,
from fraction of 1 wt% to a few wt% was investigated by several groups [338-345]
using dynamic light scattering which measured the normalized intensity autocorre-
lation function from 1076 to 10° s in time g2(q, 1, tw) =< I(q, tw)I(g, 1 + t) > /
< I(g,ty) >2, where 1, is aging or waiting time, ¢ the delay time, and ¢ the scat-
tering vector. This system and the aging behavior are typical of soft glass-forming
materials. As discussed in Section 1.3.2, g2(q,t,tw) — 1 =< p(q, tw)p(q,t+ 1) > /
< p(g.ty) >? is the intermediate scattering function F(g,t,1,,) for diffusion of
the colloidal discs within the Gaussian approximation. At short times, the time
dependence of F(q, 1, ty) was found to have the exp(—/t), with ¢ having the ¢~2-
dependence normal Brownian motion [338], and thus it corresponds to the primitive
diffusion in the CM. The same ¢ 2-dependence at short times was found by dynamic
light scattering in colloidal suspensions of PMMA particles [143]. At longer times,
F(q.1,1y) follows the time dependence of exp[—(t/7s)!~"]. In practice, F(q, 1, ty)
was fitted by the sum A exp(—t/7¢) + (1 — A) exp[—(t/ ‘L’S)] ~]. Although this looks
like the two-step decay of mode coupling theory (MCT), the faster relaxation is
an exponential function rather than a power law as predicted by MCT. On increas-
ing ty, there is a large increase of T4 accompanied by increase of 7, indicating that
the two quantities of the structural relaxation of the suspension are correlated. This
correlation is expected by the CM. A preliminary test of the CM used the experi-
mental data from dynamic light-scattering studies on a charged colloidal suspension
of Laponite by Zulian et al. [344]. These authors derived a general relation from
the CM which relates 7, t¢, n, and the crossover time #. from primitive diffusion
to many-body Kohlrausch diffusion. Good agreement of the relation with experi-
mental data was found for very low concentration samples. The discrepancies with
the model with experiments may be due to the fact that the experimental parameters
used for this test have been obtained from the fit of the intensity autocorrelation
function [344] which is not the same as that prescribed by the CM. Moreover the
presence of polydispersity in the system should be taken into account but was not.
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Aging of a Very Rapidly Cooled High Molecular Weight Polystyrene

The two colloidal suspension systems discussed above have the advantage that the
increase of dispersion or n with aging can be monitored experimentally. Ordinary
organic, inorganic, and polymeric glassformers may show the same behavior on
aging, but experimental verification is much more difficult because the relaxation
time 7y at 7y is already very long and increases with aging. There is no dependable
experimental technique to observe the change of dispersion on aging. Moreover, the
reductions of specific or free volume and entropy on aging play perhaps a major
role in the increase of the 7, of ordinary glassformers. If present in some ordinary
glassformers, the increase of n on aging plays only a supplementary role in the
increase of 7. Significant change of dispersion on aging can only be seen if the
glassformer is very rapidly cooled. This will ensure that the structure of the very
rapidly quenched glass is far from equilibrium, and there is a chance to detect the
change of dispersion after aging for some time. Most aging experiments have not
met this condition, and change or no change of dispersion cannot be ascertained.
Apparently the favorable condition to observe change in dispersion was met in the
study of aging of a high molecular weight (3.8 x 10°) and monodisperse polystyrene
sample after it had been very rapidly cooled from 100°C to 95°C and to 90°C [803].
Measurements of the creep compliance J(f) were made after the quenched sample
had been aged for times up to 1 day. The data of J(¢) after aging at 95°C for a
sequence of increasing times are shown in Fig. 80. The J(f) measured within the
range 10710 < J(r) < 2.5 x 10~ %m?/dyne are contributed entirely by the local
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Fig. 80 Selected creep-compliance, J(1), curves for a high molecular weight (3.8 x 10°)
polystyrene obtained at 95°C following rapid cooling from 100°C plotted against the cube root of
the time of creep, 3, Creep measurements were started (a) 5, (e) 90, (f) 1140, and () 2530 min
after temperature equilibrium is obtained. Reproduced from [803] by permission
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segmental (structural) relaxation of polystyrene [248]. The plot of J(f) against r!/3
follows the practice of Plazek and O’Rourke [168] for the local segmental relaxation
of polystyrene at equilibrium, which is a straight line. By inspection of the creep
curves measured after aging for £, = 5, 90, 1140, and 2530 min, it is clear that
departure from r'3>-dependence is most significant at 7, = 5 min, and becomes less
for longer #,. Obviously the width of the dispersion increases with aging. The data
were fitted by the approximate expression of J(#) = Jg +bt' " that is consistent with
the Kohlrausch function, exp[—(#/ )17, The results show n=0.55, 0.60, 0.61, and
0.64 after aging for #, = 5, 90, 1140, and 2530 min, respectively, showing that the
increase of n is correlated with the increase of t on aging.

2.2.5.5 The Effect of Shear on the Non-equilibrium Structural Dynamics of
an Aging Colloidal Suspension of Laponite

Interesting effects were found in the non-linear rheological behavior resulting from
the interplay of the microscopic dynamics of aging and shear flow in aqueous col-
loidal suspensions of Laponite. The viscosity as well as the structural relaxation
time v, decreases strongly with the shear rate y (the velocity gradient) applied to
the system [804]. Aging in the absence of shear causes concomitant increases of g
and dispersion or n of the intermediate scattering function, F(q, t, ty), as discussed in
the previous section. Di Leonardo et al. [343] used dynamic light scattering to probe
the change of F(q, t, ty) of an aging 3 wt% Laponite suspension by shear at different
levels of y. They found the shear flow influences significantly the aging dynamics as
soon as structural relaxation enters the timescale set by the inverse shear rate, )}’1,
as shown in Fig. 81. Aging is strongly reduced in this shear-dominated regime when
75 > y~!, which can be seen in the figure by the decrease of the average slow relax-
ation time < 73 >, and the decrease increases with the shear rate y. Remarkably,
the change of < 7y > and its dependence on y are the same as that of n shown in
Fig. 81 by its counterpart B = (1 — n). Di Leonardo et al. also studied the effect
of sudden increase of y at some #,. Rejuvenation was observed leading to faster
< 13 > and narrower dispersion (i.e., larger B or smaller n). This effect is shown
by the crosses in Fig. 81, which are < 75 > in the upper panel and 8 in the lower
panel of two rejuvenated samples obtained by the two subsequent shear rate jumps:
67s7! — 2235 ! and 223s~! — 446s~!. Thus, the effect of shear on aging of
Laponite suspension alters both < tg > and #n, but the changes of the two quantities
are always correlated.

Later on in Section 2.2.5.9, correlated changes of 7, and the dispersion or n of
the structural (local segmental) relaxation were found by non-linear deformation of
“hard” glassy polymers, in the same manner as shown here for the “soft” aqueous
suspension of Laponite. Despite many orders of magnitude of difference in mechan-
ical modulus of the two systems, the phenomenon is similar because the underlying
physics of many-body relaxation is the same.
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Fig. 81 Average slow
relaxation time < tg > and
stretching exponent

B = (1 — n) as a function of
waiting time #y, during aging
under different shear rates y:
(A) 446, (0) 223, (O) 67,
(@) 227!, Solid symbols (e)
refer to aging without shear.
The uncertainties on the
reported fitted values are
comparable to symbol size.
Arrows in top frame indicate
the ! values corresponding
to each curve. Inset in top
frame shows the same data in
a double-logarithmic scale.
For the crosses, see text.
Reproduced from [343] by
permission

/J]

2 Glass-Forming Substances and Systems

10°

107" 4

10724

103

0.7 4

0.6

0.3 -

0.2

2.2.5.6 Breakdown of the Stokes—Einstein Equation
and the Debye-Stokes—Einstein Relation

The Stokes—Einstein Equation

60

When presenting the historical development of the field in Chapter 1, it has been
made clear that the classic Stokes—FEinstein (SE) equation (1.48) and the Debye
equation (1.48) were originally designed for application to translational and rota-
tional diffusion, respectively, in simple systems in which the diffusing and relaxing
units are not interacting with each other. Thus, breakdown of these relations in
glassformers and other materials is unsurprising because in these systems invari-
ably non-trivial mutual interactions between the molecular units are present. The SE
relation given before by Eqs. (1.48), with rg, the spherical radius of the molecule, is

D = kT /6w nrs.

(2.48)
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It is not an easy task to measure self-diffusion coefficient D and viscosity in any
glassformer over an extended common temperature range down to near 7;. As a
result, the breakdown of the SE in any glassformers was not discovered experi-
mentally until 1966 in fris-naphthylbenzene (TNB) and 1,2-diphenylbenzene (OTP)
[347, 744, 793-797]. In these studies, the transport-dominated crystal growth rates
G/(T) of TNB and OTP were deduced from the measured crystal growth rate G(T).
Since G'(T) is proportional to the self-diffusion coefficient D(T), with the proper
choice of a reference temperature T, the temperature dependence of the ratio,
D(T)/D(Ts), of TNB can be obtained from G'(T)/G'(Ts). The viscosity of TNB
ranging over 15 orders of magnitude had been measured [743, 744]. The temper-
ature dependence of the normalized reciprocal viscosity n(75)/n(T) was compared
with G'(T)/G'(Ts). It was found [805, 806] that the temperature dependence for
n(Ts)/n(T) is significantly stronger than that of G'(T)/G' (Ts) = D(T)/D(Ts) as
shown in Fig. 82-1.

Another way to show this disparity is by plotting log[G'(T)/G'(Ts)] against log
n in the main Fig. 82-2 (left panel). On comparing the temperature dependence
of n(Ts)/n(T) and G'(T)/G'(Ts), there is good agreement at high temperatures.
The departure at the highest temperature may arise because the growth rate G is
increasingly dominated by nucleation growth, as well as the larger uncertainty that
accompanies the analysis and the values of G'. Departure is evident below Tg ~ 413
K. Incidentally this temperature is the same as the temperature 73 = 412 K at
which occurs the crossover of temperature dependence of 7, of TNB from VFTH;
to VFTH;, as shown before in Fig. 56. The departure increases as the temperature
is lowered toward Ty(= 342K). For Tg > T > T, + 26 K, the temperature depen-
dence of G/(T)/G/'(Ts) = D(T)/D(Ty) is approximately the same as 1(T)~"7*. The
phenomenon when expressed as

T T T
1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene

Log(G/G,)+6.25

Log,o(n/ Pa.s)

Fig. 82-1 The transport-dominated crystal growth rate log(G’'/G’s) of TNB plotted against logn
(H). The subscript s indicates the values of G’ and 7 at the reference temperature Ty = 373.15
K. The solid and dashed lines have slopes given by n~! and 7%7* respectively. Tg = 140°C. The
difference in the temperature dependences of G/Gs and 1/ns is shown in another manner in the next
figure. Data from [347] are reconstructed in the new figure here
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Fig. 82-2 (Left) Same data as Fig. 82-1 now plotted against temperature. (Right) Comparison of
the temperature dependence of translational diffusion with the viscosity. Dt for TNB determined
from FReS and NMR is given on the left axis. Temperature over viscosity is given by the solid
line, with scale on the right-hand axis, shifted in order to permit overlap of the high-temperature
values of the viscosity and D values. The dashed line is n‘0‘77, vertically shifted. Data from [453]
reproduced by permission

Doy forD o T/nf, where & < 1, (2.49)

is sometimes referred to as fractional SE relation [64, 65, 105].

Similar results of breakdown of SE equation in 1,2-diphenylbenzene (OTP) were
obtained by comparing G'(T)/G'(Ts) with viscosity data as shown in Fig. 83. For
OTP (Ty = 243K), the breakdown occurs at temperatures below 75 = 290K,
which is again near the temperature where the 7-dependence of 7, crosses over
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from VFTH; to VFTH; (see Fig. 63). The increasing weaker 7-dependence of
G'(T)/G'(Ts) compared with n(T5)/n(T) with decreasing temperature from T down
to about 10 K above 7; can be seen in Fig. 83. For OTP, the fractional SE relation
was found to be G'(T)/G'(Ts) = D(T)/D(Ts) o< [n(T)]~%74.

Disparity in magnitude and 7-dependence of relaxation times of different
dynamic variables was found and explained by the CM in 1988 [267]. Thus, if the
breakdown of SE relation is simply put as disparity between translational diffusion
and viscosity, then SE is just a special case of a more general phenomenon.

Starting from 1992, there were renewed interest in breakdown of the SE and
the DSE equations in glassformers. Measurements by an NMR technique (proton
nuclear magnetic resonance stimulated echoes in a static magnetic field gradient)
of the self-diffusion coefficient, D, of small molecular glass-forming liquid such as
1,2-diphenylbenzene (OTP) were reported [808, 809]. Starting at high temperatures,
it was found that D follows the temperature dependence 1/n of the Stokes—Einstein
relation. But, at a certain temperature 7g ~ 290 K, approximately equal to 1.2
times the glass temperature T, = 244 K, D shows a weaker temperature dependence
than does 1/5. However, this NMR technique is unable to measure D values smaller
than 10~'* m?/s and at temperatures significantly below Tg & 290 K to see larger
enhancement of translational self-diffusion. At temperatures below Ty, only diffu-
sion coefficients, Dy, of the tracer molecules similar in size to OTP were obtained
by forced Rayleigh scattering technique. The normalized self-diffusion and tracer
diffusion data D/Dg and D;/Dys from [808] and [809] are included in Fig. 83 for
comparison with the transport-dominated crystal growth rate and viscosity. There is
quantitative agreement between G'(T)/G'(Ts) and D/Dy as well as Dy/Dys, and they
all have a weaker temperature dependence than n(7s)/n(T).

In recent years, direct measurements of self-diffusion of TNB were reported
by forward recoil spectrometry to measure the concentration profiles of deuterio
and protio TNB following annealing-induced diffusion in a vapor-deposited bilayer
[453]. For OTP, self-diffusion coefficients were obtained by isothermally desorbing
thin film bilayers of deuterio and protio o-terphenyl in a vacuum chamber [454]. The
directly measured self-diffusion coefficients D of TNB at temperatures from 7y + 18
K down to Tg(= 342 K) shown in Fig. 82 (right panel) extend the range of the data of
G'(T)/G'(Ts) = D(T)/D(T;). The much weaker temperature dependence of D than
T/n becomes clearer. When the forward recoil spectrometry data of D are combined
with NMR measurements at higher temperatures, the relation D(T) o n(T)~%77 is
obtained for TNB, which is about the same as D(T) o n(T)~%7* obtained from using
the data of G'(T)/G'(Ts) = D(T)/D(Ts) [347, 805-807]. For OTP, the later work
by Mapes et al. [454] also shows self-diffusion coefficients they determined are in
agreement with that deduced from crystal growth in o-terphenyl by Magill and Li
[807], which is controlled by self-diffusion from 253 K to the melting point. Mapes
et al. also include the crystal growth rate data below 253 K by Oguni and coworkers
[810, 811]. These data by Oguni should not be included by Mapes et al. because at
temperatures below 253 K a different crystal growth mechanism takes over, and the
observed crystal growth rate is no longer proportional to self-diffusion. The mech-
anism is the so-called “homogeneous nucleation” and was attributed by Oguni and
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coworkers to the secondary relaxation of OTP, giving rise to a new crystal shape.
More discussion of this can be found in Section 2.3.2.22.

The breakdown of the Stokes—FEinstein relation was observed also in the super-
cooled liquid state of a metallic glass, Zrs67Tig3Cu75NijgBes7 s, as revealed by
a comparison of beryllium diffusion data with viscosity data [812]. Translation
diffusion coefficient of Be is increased by 1-2 orders of magnitude and has a
weaker 7-dependence when compared to the Stokes—Einstein prediction. The sim-
ilarity of the effect to that found in molecular glassformers was considered as an
indication of cooperative diffusion mechanism in the supercooled liquid state of
Zr46.7Tig 3Cu75sNijgBey7 5. Breakdown was found also in room temperature ionic
liquid by Ito and Richert [158] and explained by the CM [159].

The Debye—Stokes—Einstein Relation

The Debye rotational diffusion equation [18-20] was originally derived for time-
dependent orientation of non-interacting spherical Brownian particles (see Section
1.1). It was assumed that the Brownian particle undergoes many collisions with
the host solvent molecules before it reorients through an appreciable angle. The
Debye model is governed by Eq. (1.10), which can be solved by using the spher-
ical harmonics, Y7,(it), as eigenfunctions of ﬁgzz in this equation. The orientation
time correlation function (it(#)i(0)) is an exponential function of time given by
Eq. (1.11). The orientational correlation function, Cy(t) = 4m (Y}, (it(0)) Y}, (ik(1))),
can be rewritten in terms of the ensemble average of the Legendre polynomials
Pi(cos O(t)) for any order [ as follows:

Ci(t) = 21+ 1){(Py(cos 6(1))). (2.50)

Here cos6(r) is the cosine of the angle, 6(r) = u()i(0), through which a
particle rotates in time ¢. As shown before in Section 1.3.1, dielectric relax-
ation measurements pick out the response corresponding to / = 1 and give
C1(t) = 3(P1(cos6(t))), where Pi(cos 6(t)) = cos 6(t). On the other hand, measure-
ments using photon correlation spectroscopy, holographic fluorescence recovery
after photobleaching (holographic FRAP) technique [813], and some NMR tech-
niques pick out the responses corresponding to [ = 2, and yield C(f) =
5(P>(cos 6(1))), where Pa(cos0(t)) = (5/2)[3 cos2(0(1)) — 1]. In the Debye model,
for all [, C;(¢) is a linear exponential function of time for all times and is given by

Ci(t) = exp[—I(l + 1)Dit] (2.51)
A typical relaxation time t. for/ = 2 is

1 kT
D= — = (2.52)
6t 8mnrd

where 7y is the radius of the spherical particle.
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For a probe molecule in viscous glassformer, its rotational motion is not expected
to have exponential correlation function as in the Brownian spherical particle in the
Debye model. This is obvious in the case that the probe is identical to the host,
where dielectric (I = 1) and photon correlation spectroscopic (I = 2) measurements
of neat glassformers have shown that the correlation function has the Kohlrausch
stretched exponential time dependence,

C1(orCa(t) = expl—(t/7e)' 1. (2.53)

Nevertheless, the result of the Debye model can be generalized by replacing the
Debye 7. in Eq. (2.52) by the Kohlrausch rotational correlation time 7. of the probe
molecule. Dy, defined in the same way as in the Debye equation, is the average
rotational diffusion coefficient. This generalized Debye relation seems to hold in
neat OTP where the measured D, followed the temperature dependence practically
at all temperatures above T, where the viscosity n changes by 12 orders of magnitude
[808, 809].

On combining this Debye relation with the SE relation for the probe molecule,
D = kT /6 nrs, we obtain the so-called Debye—Stokes—Einstein relation

Dyt = 2r2)9. (2.54)

That is, if both the SE and the Debye relations hold for the probe, the product
Dyt should be equal to 2r§ /9. Henceforth, this ideal value of the product is desig-
nated by (D¢7.)sg pse. Measurements of probe translational diffusion and rotational
diffusion were made in a variety of probes of low concentrations in many differ-
ent host glassformers principally by the holographic fluorescence recovery after
photobleaching (holographic FRAP) technique [457, 813] and forced Rayleigh scat-
tering technique for translational diffusion, and rotational FRAP technique for probe
rotation [449-452, 793-796, 814, 815], and other techniques [8§16—819]. In many
systems it was found that the product Dt is a function of temperature, increases
with decreasing temperature toward 7 of the host, and can reach values much larger
than (Dt¢)sg,pse. To quantify translational enhancement, the product D;t is nor-
malized to (Dit.)sg,pDsE- Some examples are shown in Fig. 84. This breakdown of
the Debye—Stokes—Einstein (DSE) relation is due to enhancement of probe transla-
tional diffusion in comparison with rotational diffusion. The ratio D;t./(D;7¢)SE.DSE
evaluated at T = T, is a measure of the degree of the breakdown of the SE and
DSE relations for various combinations of probes and host glassformers. In OTP
the enhancement of tetracene translation measured by log[Dit¢/(Ditc)sE.DSE] is
about 2.5 decades near T;. Different behaviors are shown by larger probe molecules
such as rubrene in OTP where the enhancement of translational diffusion becomes
negligible as evidenced by Dy, T/n, and < 7. > all having about the same temper-
ature dependence, and log[D;t./(D:7¢)sE.pse] is small for all temperatures down
to Ty (see Fig. 84). The study of the rotational motion and translational diffusion
of probe molecules was extended [449-452, 793-796, 814, 815] to other hosts
including several polymers. In all cases, the time dependence of the probe rotational
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Fig. 84 The figure shows the correlation of enhanced translation log[Dyt. /(D¢ )sg,psg] at 7 with
n(Tg) = [1 = B(Ty)], where B(Ty) is the Kohlrausch exponent for the probe rotation in four matri-
ces, OTP, TNB, polystyrene (PS), and polysulfone (PSF) at T = T. The probes are tetracene,
rubrene, anthracene, and BPEA. The symbols represent PS/tetracene (closed circle), PS/rubrene
(open circle), PSF/tetracene (closed triangle), PSF/rubrene (open triangle), OTP/tetracene (closed
square), OTP/rubrene (open square), OTP/anthracene (open diamond), OTP/BPEA (closed dia-
mond), TNB/tetracene (closed hourglass), TNB/rubrene (open hourglass). Data taken from [449,
451, 452, 795], and replotted here together with the lone star, which represents the datum of
rubrene/sucrose benzoate [457]

time correlation functions F;(¢) was found to be well described by the Kohlrausch
function of Eq. (2.53). At T = Ty, a strong correlation was observed between the
ratio Dytc/(Dyte)sg,psE and n(Tg) = [1 — B(Tg)]. This is equivalent to an anti-
correlation between B(Ty) = (1 — n(Ty)) and Dyt /(Dy7c)sE,pSE, Which is actually
shown in Fig. 84. In other words, at 7y, more enhanced probe translation com-
pared with probe rotation (or the degree of breakdown of SE and DSE relations) is
found for probe having rotation correlation functions which are more dispersive or
larger ny.

Figure 84 shows the correlation using practically all the data from different
probes in several matrices. Restricted to the same probe, e.g., rubrene, the increase
of the ratio Dytc/(DyTc)sg,psE With increasing n:(Ty) or decreasing B(Ty) is also
clear. For example, Dyt /(Dyt)sg,DSE increases with decreasing values of B(T) for
rubrene rotation at 7; from 0.86 (in polyisobutylene), 0.89 (in OTP), 0.74 (TNB),
0.61 (in polystyrene), 0.44 (in polysulfone), and 0.42 (in BPA-polycarbonate).
When the probe is identical to the host, probe diffusion becomes self-diffusion
in a neat glassformer. By extrapolating the results of probe/host systems to neat
glass glassformers, the breakdown of SE and DSE relations in neat glassformers
is expected, and the correlation between Dyt /(Dtc)sg,pse and ny(Tg) should still
hold.
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Explanation of the Breakdown of SE-DSE Relations by the Coupling Model

The empirical correlation found between the size of the deviation from the SE-DSE
relation and n,(Tg) shown in Fig. 84 is an indication that many-body relaxation
dynamics are responsible for the occurrence of such a general phenomena, and the
explanation can be obtained from the coupling model (CM). Such a CM explanation
was indeed proposed in 1999 [268]. In the framework of the CM, the explanation
is based on the fact that different dynamic variables p weigh the intermolecular
coupling differently and have different coupling parameters (i.e., different degrees
of intermolecular cooperativity), n,, which enter into the stretch exponents of their
correlation functions, (u(0)u(t))/ (/12(0)) = exp[—(¢/ ru)l_”ﬂ], represented in the
Kohlrausch form. This together with CM equations,

T (T) = [te " 7o, (T)]/ 70, (2.55)

immediately leads to differences between the 7,s as well as their temperature
dependences. A larger n,, for the observable p will bestow a stronger temperature
dependence for the relaxation time 7. This is because the primitive relaxation times
of all observables 7¢,, uninfluenced by many-body relaxation dynamics, should
have one and the same temperature dependence.

Let us here consider the case of #ris-naphthylbenzene (TNB). Although the value
of n, for viscosity is known from shear mechanical measurement [743, 744] or
light-scattering data (n.s = 0.45) [820], nq for dielectric relaxation [455] and nnMmR
for NMR [821] are 0.50, np for self-diffusion is not yet available from experiment.
Nevertheless, theoretical arguments based on comparing constraints have been given
before to show that the coupling parameter n, for rotational relaxation obtained by
dielectric relaxation (first-order Legendre polynomial) or light scattering (second-
order Legendre polynomial) and the coupling parameter 7, for shear viscosity are
all larger than the coupling parameter for center-of-mass diffusion np [182, 183,
268], and the explanation of the breakdown of the SE and DSE relations follows
from this relation. There is support of the inequality, n, > np, from the results of
molecular dynamics simulation of relaxation in the van der Waals liquid o-terphenyl
by Wahnstrom and Lewis [315]. They found the orientational correlation function
shows somewhat more stretching (8, = 1 — n, = 0.69 (forqg = 1.94 A=) com-
pared with Bp = 1 — np = 0.82 for the center-of-mass motion. There is also
similar support from experimental measurements of a room temperature ionic liquid
[158, 159].

This CM explanation holds independent of whether n; and n, are temperature
dependent or independent. We demonstrate this for TNB by taking n, = 0.50 of
dielectric relaxation to be temperature independent from below Ty = 342 — 417 K
as found experimentally by Richert et al. [455]. The recoverable shear creep com-
pliance, Ji(?), data near and above 7; of TNB in [182, 183] have been fitted by the
function Jy(t) = Jg + (Je — J {1 — exp[—(t/ran)l_””]}, where J, and J are the
glassy and the steady-state compliances, respectively, and 7, is also close to 0.50
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[275, 797]. Richert et al. [455] gave the dielectric a-relaxation time by the Vogel-
Fulcher-Tammann-Hesse equation, log[z.(T)] = —18.05 + 1620/(T — 246). With
these values of 7.(T) and #, known to be equal to about 2 ps, Eq. (2.55) is used to
calculate the primitive dielectric relaxation times to:(7"). We assume the primitive
self-diffusion relaxation time top(7) is the same as to(7), and calculate tp(7') by
using a np to have a smaller value than n, = 0.50 as suggested by the CM expla-
nation [268]. In Fig. 85 we present the results of 7o.(7) calculated by Eq. (2.55) for
u = r with the temperature-independent value of n, = 0.50, and 7,4(T) also calcu-
lated by the same equation for © = D with constant np = 0.37, and t, = 2 ps for
both. Before making quantitative comparisons, from n, > np and top(7) having the
same 7-dependence as tq.(7), readily Eq. (2.55) leads to the conclusion that t(T)
has a stronger T-dependence than tp(7) . As a result, the separation between 7,(T)
and tp(7T) increases with decreasing temperature even if n, is constant, as observed
experimentally for TNB [455], OTP [456], and sucrose benzoate [457]. We hasten
to mention here that in contrast to the CM explanation of the breakdown of the
SE-DSE relations, the explanation based on spatial heterogeneous dynamics by
Ediger and coworkers [429, 450, 453, 454] runs into problem for TNB, OTP, and
sucrose benzoate. This is because validity of the latter explanation requires the
dispersion of the rotation correlation function to broaden or § to decrease with
decrease in temperature. More discussion of this will be given later.
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Fig. 85 Plots of various relaxation times of TNB against temperature. t,4(7’) is from the Vogel-
Fulcher-Tammann-Hesse fit to dielectric data (continuous line), tog(T) = top(T) = to(T) is
calculated with constant ng = 0.50 (dashed line), and t44(T) calculated with constant ng = 0.37
(dashed-dotted line). Plotted is also T/n (closed circles), after a vertical shift of 7.1 decades
upward has been applied. The results from the CM reproduce the decoupling of self-diffusion
from dielectric relaxation, which increases with decreasing temperature even though nq is con-
stant. In the inset, the ratio t4q(7")/74q(T) normalized to its value at the high temperature of 475 K,
(Tad/Tad)T=475K = 1.5, 1s shown as a function of temperature. Data from various sources described
in [275] are replotted here
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The ratio, t(T)/tp(T), is a way to show the breakdown of the DSE relations.
At the high temperature of 475 K, the ratio (7;/7p)7=475K is nearly unity. After
normalizing it by this high temperature value of 1.5, the monotonic increase of the
ratio 7(T)/tp(T) with decreasing temperature toward 7; is shown in the inset of
Fig. 85. The ratio, 7:(T)/tp(T), is equivalent to the product D(T)n(T) often used to
show the breakdown of the SE relation. It exhibits monotonic increase as tempera-
ture is lowered toward 7; in the same manner as D(T)n(T)/(Dn)night- The results in
Fig. 85 are qualitatively the same for other choices of np less than n, = 0.50. The
particular choice of np = 0.37 was made in Fig. 85 because the decoupling of 7p (7))
from 1,(T) becomes quantitatively approximately the same as that deduced from a
comparison of the temperature dependences of the measured D(T) [453, 454] and
the measured 7.(7T') [455] of TNB. Next, we show the breakdown of the SE relation
by comparing in Fig. 85 the temperature dependence of tp(7) with that of 7/5. The
shear viscosity data were taken from the works of Plazek and Magill [805, 806].
For comparison, the actual values of 7/ have been shifted vertically by 7.1 decades
(shown by closed circles) such that its value is about the same as t.(7") and tp(7T) .
It is clear by inspection of Fig. 85 that 7/n decreases more rapidly with falling tem-
perature than tp(7) . Since tp(7) is inversely proportional to D, from this we have
demonstrated the breakdown of the SE relation from the CM in those cases where
ny Or ny is constant.

Explanation of the Correlation of Size of Breakdown with n,(T)

Bainbridge and Ediger [451] found the existence of a correlation between the ratio
Dite/(Dite)sepsg at T = Ty and n(Ty) = [1 — B(Ty)] shown in Fig. 84 by
compiling data from different combinations of probes and matrices. From the CM
explanation given above, it is plausible that probe with larger n,(T,) can lead to
larger Dyt /(Dite)sgpsg at T = Ty, if the ratio np(Tg)/n(T) is maintained con-
stant. Although plausible, this assumption cannot be verified until np(T) has been
determined by measurement of the diffusion correlation function, which has not
been achieved so far for the probes and matrices shown in Fig. 84 (only the long-
term diffusion has been measured). The correlation certainly has drawn attention,
but a deeper question that follows is what causes the variation of n,(Tg) of different
probes and host combinations?

This question has been answered by the CM on adapting its previous applica-
tion to mixtures to the case of probe dynamics [268, 736, 737], which after all is
the special case of binary mixtures when concentration of one component becomes
small. The component dynamics of mixtures is the subject of detailed discussion in
Section 2.2.5.7. A probe in a host matrix cannot rotate with large angles without
participation of motions of the host molecules. In other words, it is still involved in
a many-body relaxation unless the host molecules are much more mobile than the
probe. In that case, the motion of the probe occurs in the hydrodynamic regime of
the host. There is absence of many-body effects and n,(Ty) = 0, analogous to the
Debye relaxation of a molecule in a solvent. If the probe is more mobile than the host
molecules, its motion is necessarily stretched to longer times by the host molecules.
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A practical measure of the difference in mobility of the probe and the host is the
ratio 7(T)/to(T) at T = T, where 14(T) is the structural a-relaxation time of the
host. It is obvious that longer is 7, (7T) compared with 7(T'), the more the rotational
correlation function of the probe will be stretched out to longer times or smaller is
its Kohlrausch exponent 8(T) and larger coupling parameter n:(T) of the CM. This
deduction following the precept of the CM suggests 8(T) of probe in matrix is con-
trolled by 7,(7)/7a(T), and hence there should be a correlation between these two
quantities. Indeed, such a correlation was found from experimental data [268] and
is shown here in Fig. 86 (left panel). Since 7.(Tg)/7a(Ty) is the control parameter
of the cause, it should correlate with the consequence which is D;t./(D;t:)SEDSE
at T = T,. This correlation was also found from the experimental data [268] and
shown in the right panel of Fig. 86. Thus, the correlation between Dy t¢/(D;T¢)SE.DSE
at T = Ty and n(Ty) = [1 — B(Ty)] found empirically by Bainbridge and Ediger
[451] shown in Fig. 84 is the result from combining the two more fundamental cor-
relations in the left and right panels of Fig. 86. All said above is further supported
by the correlation between n,(T) and the fragility or steepness index m obtained
from the T-dependence of t.(7) shown in [268].

No Breakdown of SE Relation in Silica

For Stokes—Einstein relation between self-diffusion and viscosity, the best example
to show the correlation of the size of its breakdown with the coupling parameter of
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Fig. 86 Left panel: Correlation of the KWW B parameter for probe rotation at 7; in various
hosts with the extent of probe—host coupling measured by the ratio t.(7'g)/to(Tg). Right panel:
Correlation of enhanced translation log[Dz./(Ditc)sg,pse] at Ty of the probes in various hosts
with the extent of probe—host coupling measured by the ratio t.(7'g)/7,(7'g). For the source of data
and more explanation of the plots see [268]. Data from [268] are replotted in both figures here
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viscosity, ny, is afforded by the data of silica that has Ty = 1451 Kand T, = 2007 K
[822]. In the temperature range 1.17; < T < T, the diffusion coefficient deduced
from viscosity is nearly the same as the self-diffusion coefficient, and thus SE relax-
ation is obeyed by silica. This is expected by the CM because many-body dynamics
are practically absent in silica as evidenced by n, ~ 0.1 from a molecular dynam-
ics simulation [823], and suggested from its small value of the steepness index m
together with the correlation between n and m. Hence, both coupling parameters
being small, any difference between np for self-diffusion and n, for viscosity is
correspondingly small. The correlation is clear when comparing no breakdown of
the SE relation in silica having n, ~ 0.1 with the prominent breakdown found in
o-terphenyl and TNB, all of which have larger n,. These data were part of a larger
collection showing a correlation between degree of breakdown of SE relation and
fragility by Ediger et al. [824]. These authors rationalize the correlation by spa-
tially heterogeneous dynamics and the argument that more fragile liquid is more
heterogeneous. There is a flaw in their rationalization. As we have discussed before,
spatially heterogeneous dynamics cannot explain breakdown of SE relation in the
most well-studied cases including TNB, OTP, and sucrose benzoate. Nevertheless,
since fragility roughly correlates with non-exponentiality or n particularly when
restricted to the same class of liquids, their empirical observation is consistent with
the correlation of degree of breakdown of the SE relation with n expected by the CM.

The CM Was Mistaken as a Homogeneous Relaxation Theory

The advances in this field up to the year 2000 were reviewed by Ediger [429]. It
mentioned the explanation of the breakdown of SE and DSE relations given by the
CM in 1999 [268]. Unfortunately, this review mistakenly labeled the coupling model
(CM) as a homogeneous relaxation model, even though it was explicitly stated in
the very same 1999 paper [268] that the dynamics envisaged in the CM is dynam-
ically heterogeneous, and a previous work explicitly demonstrating this [234] was
referenced therein. It is hard to imagine that many-body relaxation in glass-forming
liquids can be homogeneous, and the CM has constantly emphasized the impor-
tance of many-body aspect of the a-relaxation. This misrepresentation of my work
is unfortunate because the review by Ediger is highly cited by others. This mis-
take by Ediger may have caused some colleagues including himself to ignore the
CM explanation till now. As it will become clear from the discussions below, the
explanation by spatially heterogeneous dynamics is contradicted by more recent
experiments, while the CM explanation remains a viable explanation [275], which
will be revisited later in a separate section devoted to the many different applications
of the CM.

Explanations for the Breakdown of the SE and DSE Relations Based on Spatially
Heterogeneous Dynamics

The enhancements of translational diffusion compared with viscosity and probe
rotational diffusion (i.e., breakdown of the SE and DSE relations) are so general
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a phenomenon that it attracts attention. Several attempts to explain it are all based
on spatially heterogeneous dynamics in one form or the other [450, 825, 826]. For
example, in one model it is assumed that in some regions of the liquid both rota-
tion and translation are orders of magnitude faster than the corresponding dynamics
in other regions. There is experimental evidence for dynamic heterogeneity as dis-
cussed before in Section 2.2.2, although it is far from clear that the assumed spatial
heterogeneity in the model is consistent with the observed dynamic heterogeneity.
It was argued in such a heterogeneous system, translation and rotation experiments
average over the heterogeneity differently. The orientation correlation function is
a superposition of the orientation relaxation functions for the different regions of
the sample. Since the average rotational correlation time < t. > is the integral
of the correlation function, it weighs regions of slower mobility to a much greater
extent. By contrast, molecules tend to diffuse in paths through regions of faster
dynamics. The self or the probe translational diffusion coefficient is determined
effectively by regions of higher mobility, and it is enhanced over the rotational diffu-
sion. Spatially heterogeneous dynamics engenders a distribution of relaxation times
and is consistent with non-exponential rotational correlation function. Therefore,
this explanation implies that a direct correlation should exist between enhanced
translational diffusion and the non-exponentiality of the rotational correlation func-
tion, which is in fact observed (see Fig. 84). However, there are problems of this
explanation as discussed below.

Problems of Explanations Based on Spatial Heterogeneous Dynamics

The models based on spatial heterogeneous dynamics sound reasonable and have
been considered for a long while to provide the correct explanation of the breakdown
of SE and DSE relations until recent experiments [455—457] and simulation [274,
275] have found contradiction to their premise. The contradictions invalidate the
explanation. The problems of these models can be traced to the fact that all dynamic
properties originate from the many-body relaxation, and heterogeneous dynamics
and non-exponentiality are just two among many properties (including the break-
down of SE and DSE relations) that are parallel consequences of the many-body
relaxation. Naturally, these parallel consequences are consistent with each other,
and correlations between them must exist, such as that between D;7./(D;T.)SEDSE
and the degree of non-exponentiality or n, shown in Fig. 84. However, it is not
possible to fully rationalize or derive one property from another. This is simply
because, being parallel consequences, neither property retains the full attributes of
the source, which is the many-body relaxation. Only by going back to the source
(and with the help of a theory that can predict how many-body relaxation governs
relaxation time and transport coefficients) can each of the parallel consequences be
fully explained. An analogy is the attempt to completely solve the glass transition
problem by considering only thermodynamics and thermodynamic variables, which
obviously cannot succeed because many-body relaxation and its consequences are
left out.
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In the following, the contradictions with experiments as well as conceptual
difficulties encountered by the models based on spatial heterogeneous dynamics
(particularly the broadening of the distribution of local relaxation times as the tem-
perature is lowered required by the models) are presented and discussed. Since
spatial heterogeneous dynamics is an appealing and popular notion and has been
highly promoted to be a fundamental, considerable number of points is given below
to show that it is not a viable explanation. Again, the reason is that it is merely one of
the consequences of many-body dynamics. Understandably, one consequence may
not be able to explain another parallel consequence such as the breakdown of SE
and DSE relations.

[1] Why viscous flow is not enhanced compared with local orientation like transla-
tional diffusion? Like translation diffusion, viscous flow also could emphasize
regions of higher mobility. If considered, by the same argument for enhance-
ment of translational diffusion in the spatial heterogeneous dynamics model,
one would expect also enhancement of viscous flow compared with local orien-
tational relaxation. But this is not observed in neat OTP [808, 809] because the
rotational diffusion coefficient, Dy, and viscosity n are found to obey the DSE
equation practically at all temperatures above 7, where the viscosity 7 changes
by 12 orders of magnitude. This is explained by the coupling parameters n; and
ny having the same value as found in TNB.

[2] The distribution of rotational relaxation times does not broaden as the tem-
perature is lowered toward Tg: In order to explain translational motion having
weaker temperature dependence than rotational motion, models based on spa-
tially heterogeneous dynamics require the distribution of local relaxation times
to broaden as the temperature is lowered toward Tg. Other models proposed
to explain the same effect [827, 828] are also associated with a strong tem-
perature dependence of the relaxation time distribution. This basic premise of
the models is contradicted by several measurements of the orientational cor-
relation function Fy(¢) of TNB by several techniques. The exponents 8 of the
Kohlrausch function used to fit the time/frequency dispersion of various data are
quite consistent with each other and all indicate a temperature-independent S or
distribution of relaxation times. Dielectric relaxation measurements of TNB in
the range of T/T from 1.01 to 1.22, where Dt changes significantly, show no
change in the shape of the loss spectra. The dielectric frequency dispersions
at all these temperatures are well described by the one-sided Fourier trans-
form of the Kohlrausch function (see Eq. (1.97)) with 8 equal to 0.50. The
orientation correlation function, C1(t) = 3(P;(cos 6(?))), measured by dielec-
tric relaxation is thus consistent with the Kohlrausch function with constant
B = 0.50 [455]. The orientational correlation function, C,(f) = 5(P2(cos 6(¢))),
of TNB obtained by photon correlation spectroscopy (see Eq. (1.108)) as the
field correlation function of the scattered light, g(l)(Zl, 1), was reported to have
B = 0.55 £ 0.01 for T/T, ranging from 1.02 to 1.12 [820]. The orientation
correlation functions obtained by NMR measurements, also 5 (), are consis-
tent with a constant 8 = 0.5 over the range of T/7,; from 1.01 to 1.09 [821].
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These results indicate that the rotational FRAP experiments, which also mea-
sure F>,(t), has a constant B. The recoverable creep compliance data J.(t) of
TNB taken at different temperatures obey time—temperature superposition [743,
805], which is evidence of insensitivity of the mechanical dispersion to change
in temperature.

A similar situation holds for o-terphenyl and sucrose benzoate. Dielectric
relaxation measurements on o-terphenyl [456] and sucrose benzoate [457] also
found very little or no change in the frequency dispersion in the temperature
range where Dt changes significantly. The spectra of o-terphenyl [829] cor-
respond to a constant value of 8 = 0.50 &= 0.04 in the range of 7/T, from
1.02 to 1.17 with T, = 242.3 K [237]. The values of 8 measured directly from
photon correlation spectroscopy [205] are roughly consistent with the dielectric
relaxation measurements, with a change from 0.55 to 0.62 over arange of 7/T,
from 1.01 to 1.12. NMR studies of OTP using stimulated-echo methods found
that 8 varies from 0.30 to 0.64 as the temperature increases from 252 to 264 K
with a plateau near 8 = 0.5 in the intermediate range. [809]. Another study
using deuteron NMR also reported temperature dependence of 8 but in narrow
relaxation time range of 1073 < 7. < 1s[830]. As stated in the case of OTP
by Richert in [456]: “It remains unclear whether the deviations from the present
dielectric results are a matter of experimental limitations of the stimulated-echo
methods or the result of the different natures of the correlation functions probed
by the NMR and the dielectric techniques.”

As a reminder of the results demonstrated in Fig. 85, the CM can explain the
breakdown of the SE-DSE relations independent of whether the distribution of
rotational relaxation times broadens or does not broaden as the temperature is
lowered toward T;.

Self-diffusion and viscosity of entangled polymers are still decoupled despite the
spatial heterogeneities having been averaged out: It was argued by Urakawa
et al. [831] from solid-state NMR measurements that the typical size of a
slow region of spatial heterogeneous dynamics in polymeric and non-polymeric
glassformers near 7; is 1-4 nm [422]. The average end-to-end distance of the
polystyrene (PS) chains with low molecular weight of 2000 g/mol is 3 nm. If the
heterogeneity size in polystyrene is comparable to other glass-forming systems
measured by NMR, it was concluded that the 2000 g/mol PS molecules experi-
ence an average environment, which eliminates decoupling of their translation
diffusion from viscosity due to the posited spatial heterogeneities. Actually, the
physics of mechanical relaxation and shear viscosity 7 is more complicated than
envisaged by Urakawa et al. as pointed out by Roland et al. [832]. The zero
shear viscosity 7 is related to mechanical retardation time 7 and the steady-
state shear compliance Jg by n = 7/Jg, the analogue of the Maxwell relation,
n = GooT, Where G is the short time shear modulus, and 7 is the relax-
ation time. For low molecular weight polymers such as the 2000 g/mol PS,
Js strongly decreases with decreasing temperature, and hence the temperature
dependence of 1 does not directly reflect the behavior of the global chain modes.
In fact, Dn/T increases with decreasing 7 reflecting a stronger 7-dependence of
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viscosity than self-diffusion coefficient D. However, for t deduced from the
product nJs, the product Dt is independent of T [832]. If the Rouse model is
a valid description of the chain modes, this last result is no surprise. This is
because self-diffusion and shear relaxation, although contributed by different
Rouse modes, have the same friction factor like all Rouse modes. The findings
that Dt is independent of T is thus a trivial consequence of chain dynamics of
unentangled polymers, and cannot be used by Urakawa et al. to support spatial
heterogeneous dynamics as the cause of breakdown of Stokes—FEinstein relation.

This misuse led Urakawa et al. further to expect that elimination of decou-
pling of translation diffusion and viscosity by spatial averaging would be even
more complete in high molecular weight entangled PS because of larger size of
the macromolecule. This expected effect, stated explicitly by Urakawa et al., is
contradicted by experimental data of high molecular weight entangled polyethy-
lene [833, 834] and hydrogenated polybutadiene [835, 836]. The viscosity
and self-diffusion coefficient exhibit different temperature dependences. The
Arrhenius activation energy for the viscosity is significantly larger than that
for self-diffusion [359, 837]. These molecules are much larger in size than
2000 g/mol PS, and so the putative averaging of spatial heterogeneities is com-
plete. Furthermore, the decoupling of 7 and D in these polymers was observed at
high temperatures above Ty, where spatial heterogeneous dynamic of the local
segmental relaxation is not an issue. Thus, the explanation based on spatially
heterogeneous dynamics is not operative in this regime, and yet decoupling of
n and D is still present. This suggests that decoupling of 1 and D originates
for a more fundamental reason than spatially heterogeneous dynamics. On the
other hand, this decoupling of n and D of entangled polymers was explained by
an approach directly linked to many-body entangled chain relaxation dynamics
[359, 837], and explained in the context of the coupling model. The explanation,
although is for entangled chain dynamics, is closely related to the explanation
[268] of enhancement of the diffusion of small probes in matrices or the self-
diffusion of low molecular weight glassformers (e.g., TNB and o-terphenyl).
More on the decoupling of n and D of entangled polymers is given in
Chapter 3.

[4] Decoupling between translational diffusion and rotational diffusion (or vis-
cous flow) is a special case of a more general phenomenon: The SE and DSE
relations are noteworthy because they are important and historical steps in the
development of modern physics. Therefore, the discovery of breakdown of these
relations in glassformers has attracted special attention among researchers on
the problem of glass transition. As discussed in Section 1.3, self and probe
translation diffusion coefficients, Dq and Dy, are given via the long time limit
of either < [F(f) — #0)|*> > or Fy(k, 1), the incoherent intermediate scattering
function (see Eqgs. (1.126) and (1.124)), or from the integral of the velocity—
velocity correlation function (v,(0) - v,(¢)) over time (see Eq. (1.129)). The
rotational diffusion counterparts of these functions are Cj () for dielectric relax-
ation measurements with relaxation time tgje, and C»(¢) for rotational FRAP,
light scattering, and NMR measurements with rotational correlation time .
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The correlation function for viscous deformation is Cug(t) = (0up(t)op(0)),
where oy is the off-diagonal component of the stress tensor, and the viscosity
n is given by integrating Cyg(?) over time (see Eq. (1.100)). In the ensemble
average performed to obtain any non-exponential time-dependent correlation
function such as Ci(7), Cy(?), and Cyg(f) from measurements, the details of
heterogeneous dynamics are lost. But this does not mean that homogeneous
dynamics is implied when only the non-exponentiality of the correlation func-
tions is considered. This is because many-body relaxation is the source of both
heterogeneous dynamics and non-exponentiality.

Seen as evidence of breakdown of SE and DSE relations, the difference
between the temperature dependences of D! and 5 or (Dt):1 and t. orig-
inates from the difference between Fs(k,t) and Cyp(f) or Fi(k,t) and Ca(2),
respectively. Similarly, any observation of difference in temperature depen-
dence between tgiel, T, and 1 also originates from the corresponding difference
between Ci(1), C2(2), and Cyg(?), and hence the observation should be viewed
as equally important as the breakdown of the SE and DSE relations.

In going back to examine and compare F(k, 1), C1(#), C2(t), and Cyp(t), not
only the differences in their relaxation times or the transport coefficients are
recaptured but also the possible differences in their time dependences or disper-
sions. The latter provide at least additional information, which may be critical
for the construction of a general and valid explanation. This is because time
dependence is the direct consequence of many-body relaxation, and the differ-
ences in the time dependences of Fy(k, 1), C1(1), Ca(1), and Cyp(?) reflect the
dissimilar effects that many-body relaxation has on the various observables. If
the Kohlrausch functions, exp[—(z/ tu)l_"l“], are valid representations of the
time dependences for all these correlation functions, the profitable steps are
(1) to see any difference between the exponents ny, ni, nz, and n, for F(k, 1),
C1(?), Ca(2), and Cyp(t), respectively, and (2) to examine possible correlation
between ny, np, nz, and n, and the temperature dependences of the correspond-
ing relaxation times, 7y, 71, 72, and t,. One may wonder why these steps were
not taken in the past when considering the breakdown of SE and DSE rela-
tions in the models cited above. The reason is because at that time only D was
obtained by the holographic FRAP technique [796] from the observed Fi(k, t)
that has exponential time dependence of Fickian diffusion. In this technique
the characteristic length scale for diffusion is the holographic grating period, a
distance equal to few pwm, although non-Fickian diffusion would be expected
for spatially heterogeneous dynamics with a broad enough distribution of relax-
ation times [769, 815]. Indeed, non-Fickian diffusion was later found in the
translation of tetracene in polystyrene [769] and in BPA-polycarbonate [815]
by holographic FRAP. The decay of F(k,?) was non-exponential and in the
manner of the Kohlrausch function, exp[—(#/ 7). For the translation of
tetracene in BPA-polycarbonate across a grating with a spacing d = 1.5 um,
values of n; equal to 0.84, 0.81, and 0.77 were reported at 129, 126, and 124°C,
respectively. Due to the large distance of the spacing compared with the size
of the tracer molecule, these results may not be the same as the microscopic
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F, S(lqc, t). Experimental technique has not yet been invented or reported to mea-
sure exp[—(t/7)! ] directly for distances of the order of the size of the tracer
molecule, and to determine the value of n; experimentally. So far, this has only
been achieved by molecular dynamics simulations, which will be discussed in
detail later.

(a)

(b)

From experimental data of polymers: As early as in 1988, attention was
paid to the large differences between the temperature dependences of the
dielectric relaxation time 7| of Cy(?), the correlation time 7, of C»(f) from
depolarized light scattering, and mechanical relaxation time Tyech 0f Cog(?)
from shear compliance measurements, all for the local segmental relax-
ation in the same amorphous polymer [267]. There, comparisons of the
exponents nir, na, and n; for Ci(t), C2(1), and Cyg(1), respectively, were
made for each of several polymeric glassformers, and the corresponding
differences in the temperature dependences of the relaxation times, 71, 72,
and Tmech, explained quantitatively by the CM equation (2.55). Such differ-
ences in non-exponentiality of other physical quantities in non-polymeric
glassformers near the glass transition region have been pointed out also by
Moynihan and coworkers [266]. The comparison made was indeed prof-
itable because the following correlation was found. Larger n,,, or smaller
Kohlrausch exponent (1 — n,,) is accompanied by a stronger temperature
dependence of 7,, a general consequence of the CM. This correlation
signals that the decouplings of the different observables originate from
many-body relaxation. The relaxation time 7, of a relaxing observable
having longer time and stronger temperature dependence is because the
process involves a higher degree of many-body dynamics and is stretched
out to longer times (i.e., larger n, in the exponent of the Kohlrausch
function).

From a molecular dynamics simulation of polyethylene: Molecular dynam-
ics simulation of local segmental relaxation in polyethylene have obtained
the correlation functions of the time correlation functions, M () =<
u(0) - u(?) > and M>(¢r) = (1/2) < 3[u(0) - u®)]* — 1 >, where u is a
unit vector embedded in a certain direction [79, 838]. Important properties
out of the simulations were extracted and discussed in [272]. One can rec-
ognize that M;(t) is the analogue of the correlation functions measured by
NMR, time-resolved optical spectroscopy, and dynamic light scattering. On
the other hand, M (¢) is the dielectric relaxation correlation function. Both
M;(t), i = 1,2, were well fitted by M;(t) = exp[—(t/ti)l_”i]. For u along
the chain axis, t1/1> is much larger than unity. For example, in the system
consisting of chains of length 500 at 300 K, (t1/72) ~ 10, n; = 0.60, and
ny = 0.50 [79, 838]. The ratio t1/7, for vector along the chain axis can
reach values over 100 at lower temperatures. Such extremely large value
of 11/t cannot be reconciled with either the Debye rotational diffusion
model which has t;/7> = 3 [839] or large angle jump motion which has
71 /72 = 1 [840]. Moreover, the temperature dependences of 7| and 7, are
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different with 7| having a stronger dependence, and consequently the ratio
71 /72 increases with decreasing temperature.

The aforementioned deviations of the behavior of 7 and 7, from the
Debye model are correlated with the difference between n; and ny, and in
particular that n; > njy. There is an intuitive way to understand why n;
is larger than n; for u along the chain axis in terms of many-body relax-
ation due to intermolecular interactions. M (¢) is related to cos 6(f) while
M (1) is related to cos? 6(¢). From the monotonic decrease of cos 6(r) with
increasing 6(?), it is clear that M (f) places more importance on the contri-
butions from larger polar angles 6(¢) than M>(¢). Larger 6(¢) corresponds to
closer encounters between the repeat units on neighboring chains and hence
stronger intermolecular interactions, more intense many-body relaxation,
and larger n;.

The simulation found that the local segmental relaxation depends
strongly on the direction of the vector u. The correlation functions
Mi(t) =< ¢(0) - ¢(r) > and M(#) =< b(0) - b(¥) >, obtained, respec-
tively, for vectors ¢ along the chain axis and the out-of-plane vector b,
were fitted to the Kohlrausch functions with relaxation times 7j and t1p,
and exponents n1¢ and nop. It was found that 7y is the longest and at some
temperature 71, is longer than tj by about three orders of magnitude. This
finding that 71 is much longer than 77y, is correlated with n1. being larger
than noy,. This can be seen from the smaller stretch exponent (1 — ny¢) than
(1—nap), as can be seen by inspection of Fig. 5 of [79]. The observed strong
dependence of the local segmental relaxation of polyethylene on the direc-
tion of the vector u out from the same correlation function M| (¢) obviously
cannot be explained by the spatial heterogeneous dynamics model.

The mean-squared displacement < r2(f) > has a time dependence of
1965 [273], which in the Gaussian approximation means the intermediate
scattering function has the time dependence of F(r) = exp[—(¢/ rt)] ] =
exp[—(1/7)%%]. Thus, n, = 0.35 which is smaller than n; = 0.60 and
ny = 0.50. The result of this molecular dynamics simulation verifies that
n; for translational diffusion is in fact the smallest among other coupling
parameters.

All the anomalies found by the simulations have been explained by the
CM in [272].

From the comparison of dielectric relaxation with viscosity: Dielectric
relaxation and shear viscosity data have been compared [819] for several
supercooled liquids including OTP for which translational diffusion was
found to decouple from viscous flow and from rotational diffusion. Like
the behavior of Dn/T showing breakdown of the SE relation, the quantity
n/T tgie| increases on decreasing temperature to approach T;. Here tgje is
the dielectric relaxation time of the glassformer. Also found is that tgie
is shorter than rotational correlation time . obtained from 2H-NMR in
deuterated OTP by about one order of magnitude. This difference between
tdiel and 7. has been seen also in supercooled toluene [841]. In some other
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liquids like salol, the increase of /T, with decreasing temperature down
to Ty is even larger, reaching to values of about one and a half decades
[819]. Thus, not only translational diffusion but also dielectric relaxation is
enhanced compared with rotational diffusion and viscosity, and this obser-
vation cannot be explained by the spatial heterogeneous dynamics model.
The same result was found from D, 7, and tg;e] measurements in the system
of 200 ppm rubrene in sucrose benzoate by Rajian et al. [457]. The find-
ings of Chang and Sillescu [819] show that decoupling of different dynamic
variables is a general phenomenon not restricted to just translational diffu-
sion and rotational diffusion or viscosity. The latter attract more attention
because it is the breakdown of the better known laws of Stokes—Einstein
and Debye—Stokes—Einstein.

The generality of the phenomenon is no surprise if the reader recalls

the discussion in Section 2.2.1 (v) that different dynamic variables such
as D, n, and 1gje) are related to different correlation functions, and have
different stretch exponents of the Kohlrausch function or different coupling
parameters in the coupling model (CM).
From the comparison of dynamic light scattering with viscosity and dielec-
tric relaxation: The combined studies of diglycidylether of bisphenol A
(DGEBA) by dynamic light scattering (DLS), mechanical relaxation [458],
and dielectric spectroscopy (DS) [842] gave the opportunity to compare
these different dynamic processes and examine the validity of the DSE
relation. The mechanical measurements gave the viscosity and the average
shear relaxation times < 7, >. The DSE relation was verified for dielec-
tric relaxation over the entire temperature range, i.e., < Tgie] >~< T >
and tgie] o 1. It was found that < Tpps > agrees with < g > in a
limited temperature range above 7, but beyond that at higher temperatures
they differ by an amount that increases with increasing temperature. The
fractional power relations, TpLs n0'89 and tprs & (zgie))™?, hold over
seven decades (see Fig. 87).

This decoupling occurs at high temperatures in contrast to the break-
down of the SE-DSE relations of other glass-forming liquids, which occurs
at low temperatures near T due to an enhancement of translational diffu-
sion over rotational diffusion or shear stress relaxation rate. Nevertheless,
the similarity between this decoupling and the fractional SE and DSE rela-
tions (see Eq. (2.49)) suggests that enhanced translation is a special case of
a more general phenomenon. DLS (by depolarized Rayleigh scattering),
dielectric relaxation, and shear stress relaxation all probe the rotational
dynamics of the molecules, which cannot be explained by theories that
explain enhancement of translational diffusion from spatial heterogeneity
of the a-relaxation. Although tprs o 170'89 and tpLs X (gie)*¥ show
that tprs has a weaker temperature dependence than n and tgiel, like Dy
compared with n and 7., < tpLs > is actually longer than < 7gig] >
and < 1, >. Here there is a reduction of DLS relaxation rate compared
with viscous flow rate, which is to be contrasted with an enhancement of
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Fig. 87 Plot of relaxation times of dynamic light scattering (closed circles) and dielectric
relaxation (open squares) against viscosity of DGEBA. Data from [842] and [843]

translational diffusion. This seems to contradict the spatial heterogeneous
dynamics models, which lead to only enhancement of local relaxation over
flow or viscosity. The authors of [842] also concluded that theories pro-
posed to explain enhanced translation over rotational diffusion based on
fluidized and correlated domains cannot explain their data. They argued
that application of these models would lead to an untenable situation that
different parts of the same molecule belong to different domains, i.e., epoxy
rings probed by dielectric relaxation in correlated domain and aromatic
rings probed by DLS in fluidized domain. The comparison of the true
exponents nprs and ngie] for DLS and dielectric relaxation cannot be car-
ried out by using the Havriliak—-Negami parameters, (1 — «1) and S that
describe the frequency dependence of isothermal dielectric data with that
of DLS by depolarized light scattering in the high-temperature range where
oLs & (Taie))?3? was observed. This is because the secondary relaxation
of DGEBA appears prominently in the dielectric spectrum and broadens
the dispersion, due to the large dipole moment of the epoxy group (see
Fig. 4 of [842]). The actual width of the a-relaxation dispersion is nar-
rower than indicated by the product of (1 — «1) and 1. On the other hand,
secondary relaxation makes no contribution visible in the susceptibility
spectrum from DLS.
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A quantitative explanation of the decoupling of DLS from viscosity and

dielectric relaxation has been given by the CM [270].
From molecular dynamics simulation of an equimolar mixture of Gay-
Berne ellipsoids of revolution and Lennard-Jones spheres: Chakrabarti
and Bagchi (CB) [274], performed molecular dynamics simulation of an
equimolar mixture of interacting Gay-Berne ellipsoids of revolution and
Lennard-Jones spheres along an isochore at a series of temperatures down
to the deeply supercooled state. This work is a natural extension of the sim-
ulations of the binary mixtures of Lennard-Jones spheres [265], and allow
for the study of rotational relaxation. For this system with orientational
degrees of freedom, CB obtains for the ellipsoids of revolution the self
intermediate scattering function Fg(kmax, ?), and the first and second rank
single particle orientational time correlation functions, C;(#) and Ca(f). The
latter two are given by Ci(1) = (3_; Pi(éi(t) - €:(0)))/(3_; Pi(€i(0) - €:(0))).
Here ¢; is the unit vector along the long axis of the ellipsoid of revolu-
tion 7, Py is the /th order Legendre polynomial, and the angular brackets
stand for ensemble averaging. All three functions have time dependences
well described by the Kohlrausch form at all temperatures. The Kohlrausch
correlation time and exponent are designated by tp(7) and Bp(T) =
(1 — np(T)), respectively, for Fs(kmax,?); T1(T) and B1(T) = (1 — ni (7)),
respectively, for C(?); and 12(7) and B2(T) = (1 — ny(T)) respectively,
for C»(¢). The translational diffusion coefficient D; was obtained from
F(kmax, ) in the usual way. At high temperatures (7 > 1.0 in LJ units),
the ratio 71(7T)/72(T) has a value close to 3 as predicted by the Debye
model, and Fg(kmax, ), C1(f), and C»(¢) have exponential or nearly expo-
nential time dependence. On decreasing 7 starting at 7 ~ 1.0, 71(T)/72(T)
decreases monotonically until it reaches a value about unity at 7 ~ 0.5,
meanwhile the time dependences of all three functions deviate increasingly
from exponential as temperature falls. Hence, the departure from the Debye
model is correlated with non-exponentiality. But this cannot be explained
by the spatial heterogeneous model because both C;(#) and C»(¢) are local
process, for the same reason as in the cases discussed above in (b) for
polyethylene simulation and (d) for DGEBA experiments. However, this
is consistent with the emergence and progressive increase of many-body
relaxation with falling temperature, as can be seen from the temperature
dependences of np(T), n1(T), and no(T) in Fig. 88. It can be seen from
the figure that all of them are very close to zero at high temperatures and
increase as temperature falls.

At high temperatures, 0.7 < T < 2.0, np(T) and ny(T) are both
smaller and nearly the same, and the product Di(T)72(T) is nearly inde-
pendent of temperature as predicted by the DSE relation. However,
as temperature is falling below T = 0.7, np(T) and n>(T) increase
rapidly and np(7T’) becomes increasingly less than ny(7T') (see Fig. 88 left
panel). Simultaneously, the product D((T)t>(T) increases rapidly from
its nearly constant value at high temperature by a factor of about 2
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Fig. 88 Left panel: The values of np(T), n1(T), and np(T) obtained by Chakrabarti and Bagchi
[274] replotted. Reproduced from [275] by permission. Right panel: The product of the transla-
tional diffusion coefficient DE and the second-rank rotational correlation time 7 for the ellipsoids
of revolution as a function of temperature. The inset shows the inverse temperature dependence
of the logarithm of t; (filled circles). On a different scale (appearing on the right of the inset)
shown is the inverse temperature dependence of the logarithm of the shear viscosity (squares). The
solid and dashed lines are the respective Arrhenius fits to data over a restricted temperature range.
Reproduced from [274] by permission

from T = 0.7 down to T = 0.5 (see Fig. 88 right panel), i.e.,
[Dto(T = 0.5)/(D;t2)highr] ~ 2. Thus, enhancement of translation over
rotation described by C»(f) is observed as found by FRAP and NMR
experiments for probes in glassformers (compare Fig. 88 with Fig. 85).
The advantage of the simulation over experiments is availability of np(7),
which enables the conclusion that the departure from the DSE relation is
correlated with ny(7T) being larger than np(7), and support the alterna-
tive explanation of the breakdown of the DSE relation originating from
np(T) becoming smaller than n7(7T) [268]. CB also obtained the viscos-
ity n from their simulations, and they found the fractional power law
dependence D; o« n~¢, with & = 0.75 for the ellipsoids of revolution.
The results of CB restated so far in this paragraph are consistent with the
spatial heterogeneous model. However, the observed much weaker tem-
perature dependence behavior of D(T)/72(T) contradicts the explanation
for the decoupling between rotational and translational diffusion in terms
of dynamical heterogeneity. Since the ratio 71(7)/t2(T) decreases by a
factor of 3 when temperature falls down to 7 = 0.5 while D(T)12(T)
increases by only a factor of 2 (see Fig. 88), one may even be led to
conclude that [Dyt1(T = 0.5)/(D¢tinight] ~ 0.7. Either one can say
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that Dy(T)t(T) exhibits no breakdown of the DSE relation or there is a
breakdown of the relation but in the opposite direction of Dy(T)t2(T). It
is worthwhile to point out that n1(T), ny(7T), and np(T) all have different
values at lower temperatures, and n1(7) is less than np(T) (see Fig. 88)
opposite to the relation between ny(7T) and np(T). Therefore, [Dit(T =
0.5)/(D¢t1)night] ~ 0.7 as found is also consistent with the CM because
ni(T) < np(T).

CB found the ratio 71(7T)/72(T) has a value close to 3 at high temper-

atures when both n1(7T) and ny(T) are small as expected for the ratio of
the first to second rank rotational correlation times of the Debye model
involving small steps in orientational motion. The ratio starts to decrease
monotonically at 7 =~ 1.0 until it reaches a value nearly unity at low tem-
peratures of 7' & 0.5. Values of t1(T)/72(T) larger than 3 was observed
in molecular dynamics simulations of a model polymer [79] and dis-
cussed in Section (b) before. The deviation from the normal value of 3
is in opposite direction to that found by CB in their system, but inter-
estingly in the polymer case, n{(7T) is larger than ny(T). For example, in
one polymer chain of length 500 at 300 K, 81 = (1 — n;) = 0.399
and 11 = 94.7 ps, while B = (1 —ny) = 0498 and » = 9.79
ps. The polymer result that t1/t> is more than three times larger than 3
was explained by the CM by the fact that nj is larger than ny(T) [272].
The CM can also explain the result when 71/7> is less than 3 in the
system simulated by CB because here n; is smaller than n; at lower
temperatures.
From other systems: Before closing discussion on this subject, it is worth
mentioning that this general phenomenon is found not only for structural
relaxation in molecular glass-forming systems, but also for different corre-
lations functions of other systems. Here we cite two examples, which have
been discussed in Section 2.2.1 for a different purpose. One is the motion of
ions in crystalline and glassy ionic conductors. Different experimental mea-
surements using different techniques (e.g., NMR spin-lattice relaxation vs.
conductivity relaxation) have obtained different relaxation times, activation
energies [279-290] as well as different stretch exponents in the Kohlrausch
correlation functions. For spin-lattice relaxation, its Kohlrausch correla-
tion function is more non-exponential (larger ngyr than ny), its relaxation
time tgp R is longer and has higher activation energy Espr than the corre-
sponding quantities 7, and E, of conductivity relaxation. The difference
between tsrr and 7, as well as that between their activation energies
Esir and E, have been explained quantitatively by the CM equation
[291-294].

The other is the study by Bonn and Kegel [278] of the frequency
dependence of the diffusion coefficient and viscosity of concentrated hard-
sphere colloidal suspensions. Expressing all quantities in reduced units,
their frequency-dependent Stokes—Einstein relation was given by n(w) =
1/D(w). In the low-frequency or long-time regime, significant deviations
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from this relation were observed. The values of the inverse viscosity are
significantly smaller than the values of the diffusion coefficients, and the
SE relation is violated. Moreover, on comparing the frequency dependence
of 1/n(w) with that of D(w) in Fig. 2 of the paper by Bonn and Kegel [278],
it is clear that the frequency dispersion of 1/n(w) is broader than that of
D(w). Thus, for the colloidal hard spheres we have experimental evidence
to support that np is smaller than n,, like in the MD simulation discussed
above in (e). Although the metallic glass, Zr467Tig3Cu7 5NijgBes7 s, is
different, its viscosity and the diffusion coefficient of beryllium are ana-
logues of n and D of colloidal suspensions, and similar breakdown of
the SE relation was observed in the supercooled liquid state [812a].
The explanation of the breakdown of SE relation in colloidal suspen-
sions, by np being smaller than n,, may apply to the case of metallic
glass.

Inference from radiotracer diffusivities in a Pds3Cuz;NijgP2o melt
[812(b)]: Radiotracer diffusivities of all components in a Pd43Cuy7NijoP2g
melt were measured over extended temperature range from near 7= 582 K
and up to nearly 1000 K for some components [812(b)]. Two important
observations were made by the authors, Bartsch et al. First, for Pd, the
Stokes—Einstein relation holds in the whole range investigated encompass-
ing more than 14 orders of magnitude, while the SE relation breaks down
for the smaller components. Second, a large decoupling of more than 4
orders of magnitude is observed between the diffusivity of the slowest Pd
and of the smaller components (Cu, Ni, P, and added tracer amount of
Cr), at the glass transition temperature T, but the decouplings decrease
on increasing temperature and vanishes at 7. or 7g ~ 710 K. In comment-
ing on the breakdown of SE relation and explanation of it in the literature,
Bartsch et al. mentioned only that based on dynamical heterogeneities. In
their own words, the explanation is “just a consequence of the effect of the
broadening of the distribution of mobilities and the different ways trans-
port and relaxation sample that distribution. ...” Apparently they are not
aware of the contradiction of this dynamical heterogeneities’ explanation
with invariance of the a-dispersion in the entire temperature range from
Tg down to Ty in TNB, OTP, and sucrose benzoate from shear mechani-
cal [743, 744], light scattering [820], dielectric relaxation [455, 457], and
NMR [821] measurements.

Interestingly, their observation of no breakdown of SE relation over at
least 14 orders of magnitude for the slow Pd component offers another
opportunity to show that the explanation of the breakdown of SE relation
cannot be based on dynamical heterogeneities. The slowest Pd compo-
nent is the determining factor for viscosity, and its motion has to be
still heterogeneous. Homogeneous motion of Pd atoms in response to
mechanical shear would be inconceivable although one cannot prove that
it is impossible without direct experimental evidence. Bartsch et al. also



2.2 General Properties and Anomalies 231

stated that *“. .. viscous flow requires rearrangement of the Pd subsystem,”
and rearrangement cannot be homogeneous relaxation. It is also difficult
to reconcile homogeneous relaxation with the stretched exponential time
dependence of the a-relaxation observed by neutron scattering in the same
system [812(c)] and in mechanical relaxation [957]. If indeed the dynam-
ics of Pd is heterogeneous, from the belief of the connection between
the breakdown of the SE relation and dynamic heterogeneities [812(d),
449-454] it follows that breakdown of the SE relation for the Pd compo-
nent has to occur. However, Bartsch et al. reported that it does not occur for
the Pd component over 14 orders of magnitude. I was told that this report
had led some colleague, who firmly and correctly believes dynamic hetero-
geneity is universal and hence necessarily causes the breakdown of the SE
relation even for Pd, to express his doubts on the experimental data of Pd
from Bartsch et al. There should be no doubt on the verity of the exper-
imental data obtained meticulously by Bartsch et al. who are experts of
using radiotracer technique to measure diffusivity. Therefore, observation
of Pd obeying the SE law by Bartsch et al. contradicts the necessary conse-
quence of the heterogeneous dynamics explanation of the breakdown of the
SE relation. This contradiction can be considered as yet another evidence
showing that the heterogeneous dynamics explanation of the breakdown of
the SE relation is untenable in general.

In the Pds3Cuy7NijgP9 multicomponent system, the predominant
metallic bonds have no fixed directions and hence no permanent relations
among the components. Thus, the diffusion of each component has its own
coupling parameter for the correlation function represented by Eq. (2.2.55)
with | now used to label the components. The coupling parameters of the
smaller components are smaller than the largest Pd majority component
naturally because of lesser inter-atomic constraints. From the CM relation
it follows that the diffusion coefficients of the smaller components have
weaker T-dependence than that of Pd. Hence this difference between the
T-dependence of the diffusivity of Pd and the diffusivities of smaller com-
ponents explains their decoupling which starts near 7. or 7g ~ 710 K and
reaches more than 4 orders of magnitude at the glass transition tempera-
ture Ty = 582 K. After having explained the observed large decoupling in
diffusivity of all the smaller components from Pd, it is easy to rationalize
by the CM why the SE relation holds for Pd. From the much higher mobil-
ity of the smaller components than Pd inferred from their diffusivities, it
is clear that viscosity of Pd43Cu,7NioPyg is principally determined by the
least mobile Pd. Since atomic Pd is in effect a point particle, we do not
expect any significant difference in the time dependence as well as the cor-
relation time of its correlation functions for viscosity or diffusion. Thus,
there is no difference in the coupling parameters of viscosity and diffusion
of Pd, and hence no breakdown of the SE relation from the CM explana-
tion. In contrast, OTP, TNB, and sucrose benzoate molecules have chemical
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structures extending into space. The correlation function of the center of
mass diffusion will differ from the correlation functions for rotation and
viscosity, and hence breakdown of the SE relation in these molecular
glassformers.

It is worthwhile to compare this CM explanation of the decoupling
of diffusivities of the smaller components from Pd with that offered by
Bartsch et al. They proposed that Pd atoms form a slow subsystem in the
supercooled melt inside which the smaller elements carry out fast diffu-
sion. This proposal is not much more than a paraphrase of the observed
decoupling. This restatement of the fact, however, comes short of address-
ing the questions of why the diffusivity of Pd has a stronger 7-dependence
than the smaller components and why the slow Pd subsystem obeys the SE
relation.

(h) Concluding remarks: The cases (a)—(g) given above have amply shown
in general that different correlation functions of structural relaxation in
glass-forming systems have different relaxation times as well as their
dependences on temperature. Therefore the breakdown of the SE and the
DSE relations are just special cases of this general phenomenon, when the
consideration is limited to translational diffusion, rotational diffusion, and
shear viscosity. The spatial heterogeneous dynamics model is exclusively
constructed to explain the breakdown of SE and DSE relations, but even for
this purpose the model is contradicted by some experimental data and sim-
ulations discussed above. The other examples of this general phenomenon
not involving translation diffusion absolutely cannot be explained by the
spatial heterogeneous dynamics model. To me, it is irrational to ignore
that this is a general phenomenon requiring an all-purpose explanation, and
instead holding on the spatial heterogeneous dynamics explanation for the
breakdown of SE and DSE relations.

2.2.5.7 Changes Effected by Mixing with Another Glassformer

The properties of the structural a-relaxation of a glassformer A are modified in
a miscible binary mixture by the presence of another glassformer B with large
difference in mobility gauged by the difference in their Tys (for a review and ref-
erences to the literature, see [736]). On a fundamental level, the modifications are
caused by several factors including the different intermolecular potential and chemi-
cal structures, possible reinforcement or mitigation of steric constraints, and change
in occupied volume and entropy introduced by the partial replacement of A by B
in the mixture. The frequency dispersion of susceptibility or time correlation func-
tion of the a-relaxation of component A in the mixture is modified by these factors.
In the following, we discuss experimental data that show evidence that the change
in dynamics of a component in mixtures is governed at least in part by the change
of intermolecular coupling due to the presence of the other component. In those
cases where broadening of dispersion by concentration fluctuations is unimportant,
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the component dynamics is governed by or correlated with the dispersion of the
a-relaxation or n of the same component in the mixture.

Component A Is More Mobile Than Component B

If molecules B are less mobile than molecules A in the mixture, the a-relaxation
of component A would be slowed down and its correlation function stretched to
longer times by component B further than the a-relaxation of pure glassformer A.
This heuristic description suggests increasing stretching of the correlation func-
tion or broadening of the frequency dispersion of the a-relaxation of component
A on increasing the concentration of component B. In the context of the coupling
model (CM), this effect is due to increasing coupling parameter na by increas-
ing intermolecular interactions/constraints imposed by the slower B molecules,
which leads to increased stretching of the Kohlrausch correlation function,
Por = exp[—(t/ raA)"”A], by the decrease of the stretch exponent (1 — na) [739].
However, this is not the only source of broadening. Even if the two components are
miscible, presence of concentration fluctuations also contributes to broadening. In
the CM description, the concentration fluctuations engender a distribution of envi-
ronments {i} and coupling parameters, {n;}. The observed correlation function ¢ya
is given by the sum ¢ua (1) = D _; pipai(1), where p; is the normalized probability of
environment i for the distribution, ¢a;(f) = exp[—(¢/ A) 741, and

Tar = [17" 7oAl /T, (2.56)

Here the primitive relaxation time tga is assumed the same for all i, but the
possibility of a distribution of it cannot be excluded. The most probable relaxation
time Tya of A in the mixture can be obtained from Eq. (2.56) using the most probable
na in the distribution {na;}:

Ton = [17 A gop] /I 70), (2.57)

By incorporating these distributions, a CM theory of component dynamics was
proposed [739]. For earlier works, see [245, 734-736]. Nevertheless, for the unini-
tiated public, the broadening by concentration fluctuations is so palatable that it is
difficult to ascertain from the observed broadening of dispersion of component A
that it is at least partly caused by increased intermolecular coupling or na;. There
is help from results of studies over a wide composition range down to dilute con-
centration of A [672, 674, 677], where heterogeneous broadening by concentration
fluctuations should diminish at low ¢4, the concentration of component A, and
vanish at dilute and certainly in the limit of probe concentrations when ¢p — O.
Dielectric measurements have been made on the a-loss peak of picoline, quinaldine,
or tert-butylpyridine serving as the low T, component A at 5 wt% low concentra-
tion in mixtures with oligomers of styrene (B) having much higher 7;. The fact
that the a-loss peak of the A component in these low concentration mixtures being
much broader than that of pure A with the same peak frequency is evidence for the
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broadening being due to increase of intermolecular coupling or na. The steepness or
“fragility” index mp determined from the temperature dependence of Ty of some
(with exception) of these mixtures shows monotonic decrease on decreasing ¢a.
The correlation between m and n should be reliable since the system is the same
except for variation of concentration. Hence, the observed monotonic increase of
mp supports the corresponding increase of n4.

Another example comes from the study of the much more mobile poly(ethylene
oxide) (PEO) in mixtures with poly(methyl methacrylate) (PMMA). The misci-
ble polymer blends PEO/PMMA contain 10, 20, and 30% hydrogenated PEO
in deuterated PMMA. Quasielastic neutron scattering in combination with deu-
terium labeling enabled determination of the characteristic relaxation times of
the PEO component A over spatial scales from 3 to 10 A [312]. The inter-
mediate scattering function F(Q, ) of pure PEO and hPEO in the blends can
be found in Figs. 4 and 5. On decreasing ¢, the data show parallel increases
of 7ya and np of the Kohlrausch function, exp[—(z/ Taa) A, employed to
fit Fs(Q,t). Concentration fluctuation is expected to decrease on decreasing ¢
from 30% down to 10%. Therefore the observed increase of na must be due to
increase in intermolecular coupling and is the cause of the concomitant increase
of TyA.

When concentration fluctuations are present to contribute broadening of the
isothermal dielectric loss peak, the broadening is more emphatic on the low-
frequency side, making it asymmetric and skew toward the low-frequency side [245,
845]. It is interesting to point out that the dielectric peak of neat A is not only nar-
rower than in the mixture but also has the opposite skew asymmetry. The one-sided
Fourier transform of the Kohlrausch function, the Cole-Davidson and the HN func-
tions, which give a reasonably good fit to the loss peak of most neat glass-forming
liquids, are asymmetric but all skew toward high frequencies. Thus, the opposite
skew asymmetry can be taken as indicator of concentration fluctuations. The loss
peak becomes progressively broader and more skew asymmetric toward low fre-
quencies as concentration of B is increased. This is observed in PVME [845] or
bis(2-ethylhexyl) phthalate [245] acting as A in mixtures with polystyrene acting
as B. These properties can be derived from the CM [245, 734-736, 739] from a
normal symmetric distribution of {na;} with the magnitude of na; increasing with
concentration of B to reflect increased stretching of the correlation functions @a;(f)
and slowing down of A. The relation between t4; and na; in Eq. (2.56) is non-linear,
and larger shift of t4; with change in temperature of toa occurs for larger na;. These
two properties of the CM account for the asymmetric broadening of the component
A loss peak skewing toward low frequencies, and the change of its shape of the
dispersion with temperature (i.e., breakdown of frequency—temperature superposi-
tion of spectra). These features are commonly experimentally observed in mixtures
where concentration fluctuations are non-negligible.

The reader may wonder why the dielectric spectra of these mixtures are not
shown here. The reason is the existence of yet another experimental fact coming
from the correlation between na and the ratio, A /TgA OF Toa/ToA, Where g4 is
the relaxation time of the so-called Johari—Goldstein secondary relaxation of A.
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Increase of 74A/TpA O Tua/Toa ON decreasing ¢o was indeed observed in many
mixtures and polymer blends, and thus the correlation gives another support of
corresponding monotonic increase of na. This empirical correlation between np
and Tea/TpA is a natural consequence of the CM, and is the subject of detailed
discussion in the next section. For this reason, we defer presentation of the data
showing changes of the dynamics of the a-relaxation discussed here to Section 2.3
in conjunction with the presentation of the correlation between na and t4a /A OF
TaA/TOA-

Probe Dynamics (¢4 — 0)

At very low concentrations, ¢, the component A is reduced to the role of a probe.
Each probe molecule experiences the same environment, which eliminates com-
plications from concentration fluctuations. Although not necessary, it is certainly
desirable for a model of component dynamics of mixtures to have valid predictions
for this limiting case. Since the crux of other models of component dynamics of mix-
tures [731, 732, 846, 847] is concentration fluctuations or self concentration [733],
they cannot address probe molecule dynamics. The CM description is unique in
having incorporated, in addition to concentration fluctuations, the essential physics
of intermolecular coupling and its change on mixing, which are applicable at all
concentrations. At probe concentration of A (i.e., ¢4 — 0), concentration fluctu-
ation vanishes and self concentration has no meaning, leaving only intermolecular
coupling as the sole controlling factor of the dynamics of the probe A molecule.
Thus, for probe molecules A dispersed in host B, a single coupling parameter ng
characterizes the degree of intermolecular coupling/constraint imposed on the rota-
tion or translation of the probe. The magnitude of np may depend on the chemical
structures of the probe and the host, but more importantly on the mobility difference
between A and B. A practical measure of the latter is the ratio, t./7y, Where 7. is
the rotation correlation time of probe A in the host B and 1, is the a-relaxation time
of the host B. According to the CM, the larger the ratio of 7, to 7, the larger is the
intermolecular coupling and stretching of the correlation function of the probe to
longer times, and hence a larger na for the probe molecule [268]. In the absence of
concentration fluctuations, the predicted correlation function of the probe rotation
is just the Kohlrausch function, exp[—(z/ 7.)174]. Indeed, this correlation function
is found [268] from experimental data of probe rotation experiments [793-796],
as mentioned before in Section 2.2.5.6 on the breakdown of DSE relation. The
coupling parameter na can be determined directly from the measured probe rota-
tional correlation function, and the prediction of its increase with the ratio, 7y /7,
can be falsified or verified. The data collectively presented in Fig. 86 show that
na increases in the predicted way with increasing 7, /t.. These results from probe
dynamics experiments provide the strongest support for an important physics for
component dynamics in mixtures and polymer blends incorporated into the CM,
which is the role played by intermolecular coupling and its change on varying the
composition.
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Component A Is Less Mobile Than Component B

The situation here is opposite to that discussed above. In this opposite case, the more
mobile B molecules of the mixture mitigate the intermolecular coupling/constraints
of molecular motions in the relaxation originating from the component A. Hence
the CM expects a decrease of {na;}, and the decrease contributes narrowing of
the dispersion, which counters the broadening by concentration fluctuations. If the
a-relaxation originating from A in the mixture is observed not broader than in pure
A, it may be considered as direct evidence of the narrowing effect by decrease
of {na;} and the average 7154. An indirect evidence is the decrease of steepness or
“fragility” index ma determined from the Tga-scaled temperature dependence of
Tya on decreasing ¢, from which the decrease of 715 follows from the correlation
between my and 7ia. These effects were seen experimentally in some mixtures to
be discussed below. In some of the following examples, the frequency dispersion of
the loss peak of A in the mixture does not show broadening that is skew toward the
low-frequency side, which can be taken as evidence that concentration fluctuations
are not important.

Effect of Low T, Diluent (B) on Local Segmental Relaxation of Polymer (A)

A good example can be taken from the dielectric study of the local segmental relax-
ation of poly(vinyl chloride) (PVC) diluted with tetrahydrofuran (THF) by Adachi
and Ishida [848]. Ty from differential thermal analysis was found to agree with
the dielectric one, defined as the temperature at which the dielectric relaxation
time of the a-relaxation of the PVC component reaches 100 s, and it is 349, 275,
195, 166 K, respectively, for the four concentrated solutions with 100, 84, 51, and
38 wt% of PVC studied. The presence of the low-frequency conductivity relaxation
in dielectric response hampers the normal procedure of determining the coupling
parameter 715 by fitting the loss peak by the Fourier transform of the Kohlrausch
function. Notwithstanding, Adachi and Ishida resorted to an analysis of the values
of 2¢”'(max)/Ae for the a-relaxation to determine its dispersion for each solution.
Here ¢’/(max) denotes the maximum value of the dielectric loss and Ae = (g9 — &)
is the relaxation strength determined from a Cole—Cole plot. As is well known, the
ratio 2¢”’(max)/Ae is unity if the relaxation is a Debye process having exp(—7/7)
as the correlation function, and the ratio decreases monotonically with increasing
width of the dispersion. Adachi and Ishida found the ratio decreases, and hence the
width of the dispersion increases, with increasing PVC concentration. By evaluat-
ing 2¢’’(max)/Ae¢ from the ¢*(v) obtained from one-sided Fourier transforms of
the Kohlrausch functions and comparing with the experimental values of Adachi
and Ishida, the na of the four concentrated PVC solutions were deduced [849],
and the results show increasing reduction of nx of PVC on increasing concentra-
tion of the diluent THF. Data of a-relaxation of PVC at dilute concentrations down
to weight fraction of 0.059 shows 1, has Arrhenius 7-dependence with activation
energy of about 5 kcal/mol corresponding to the energy barrier of local conforma-
tional transition, suggesting that intermolecular coupling is drastically reduced at
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dilute concentrations. The many-body nature of the a-relaxation is removed, and
conformational energy barrier of PVC of about 5 kcal/mol governs the relaxation
rate.

0.1 Molar Fraction of Bromoethylbenzene in Ethylbenzene

Pure ethylbenzene (EBz) has 7; 20 degrees lower than bromoethylbenzene (BrEBz).
By dielectric relaxation measurements, the loss peak of 0.1 molar fraction of polar
BrEBz in mixture with the apolar host EBz is slightly narrower than that of pure
BrEBz [850].

50% Poly(methyl methacrylate) Plasticized by tri-m-Cresyl Phosphate

Study by 2H-NMR of the dynamics of poly(methyl methacrylate) (PMMA,
T, = 381 K) plasticized with tri-m-cresyl phosphate (TCP, T, = 205 K) at a
TCP concentration of 50% (w/w) [851] found the dispersion of the segmental a-
relaxation of the slow PMMA remains essentially unchanged upon addition of the
plasticizer TCP, despite a large decrease in the correlation time. The result indicates
that concentration fluctuations are not dominant, otherwise the dispersion of PMMA
would be much broader, and skew toward low frequencies.

It is also found that faster TCP molecules reorient isotropically even in a rigid
polymer matrix at temperatures well below the glass transition of the plasticized
PMMA, and the dynamics of TCP is heterogeneous but transient in nature. The
orientational correlation functions of TCP change from Kohlrausch decay with
ng ~ 0.40 for pure TCP to extremely broad and quasi-logarithmic decay in the
mixture. Since concentration fluctuations are reciprocal for both components and
not overwhelming for the PMMA component, this dramatic broadening of the dis-
persion of TCP cannot be due solely to concentration fluctuations. The increase
of intermolecular coupling and {np;} of TCP by the presence of the much slower
PMMA seems to be crucial for the observed effect.

2% Polystyrene in Poly(vinylmethylether)

The segmental a-dynamics of pure backbone-deuterated polystyrenes with vary-
ing molecular weights (1.7-67 kg/mol, 331 < T, < 376 K) as well as 2% of it
in blends with poly(vinylmethylether) (PVME, M,, = 48.5kg/mol, T; = 250K)
was measured by 2H-NMR spin-lattice relaxation at 15 and 77 MHz [852]. For all
molecular weights, the relaxation time of PS becomes shorter by several orders of
magnitude when mixed with PVME, but the stretch exponent 8 of the Kohlrausch
correlation function of 2% PS in PVME within errors is essentially the same as
that of pure PS, indicating the width of the dispersion is effectively unchanged, and
broadening by concentration fluctuations is countered by narrowing due to reduction
of intermolecular coupling by the presence of the fast PVME host.
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Poly(methyl methacrylate) in Blends with Poly(ethylene oxide)

There is no reliable dispersion data of the a-relaxation of the PMMA component in
blends with poly(ethylene oxide) (PEO, T, = 214 K) to compare with pure PMMA.
Nevertheless, the ratio, tys /Tpa, Was observed to decrease on addition of PEO. This
will be shown in Section 2.3. Therefore the correlation between na and the ratio,
Taa/TpA (also to be established in Section 2.3), can be used to deduce that {na;} of
PMMA is decreased by the presence of the more mobile PEO.

Sorbitol in Mixtures with Glycerol

The same situation as in the previous paragraph was found for sorbitol in mixtures
with the more mobile glycerol [853], and the same conclusion can be reached by the
correlation between na and the ratio, Tqa/7gA [737]. In many other mixtures includ-
ing those discussed, the steepness index ma of the slower component decreases on
increasing the concentration of the faster component A, and hence the correlation
between n and m can be used to deduce the corresponding decrease of {rna;}.

Molecular Dynamics Simulations

Bedrov and Smith [80] performed molecular dynamics simulations of model misci-
ble polymer blends consisting of chemically realistic 1,4-polybutadiene (CR-PBD)
as the slow component (higher 7;) and PBD chains with reduced dihedral barriers
as the fast component (LB-PBD) with lower 7;. The simulation data also provide
information on the slower CR-PBD component in the blend. The a-relaxation time
of the slower CR-PBD component becomes shorter, and interestingly its frequency
dispersion becomes narrower when compared with neat CR-PBD. At low LB-PBD
content in the blend, broadening of the a-relaxation by concentration fluctuations
is not that important, and hence the narrowing caused by reduction of the coupling
parameter of CR-PBD dominates, and it shows up in the simulation data of Bedrov
and Smith. Consistency of this feature of the simulation result with prediction of the
CM on relaxation on the slower component was pointed out in [854].

Anomalous Component Dynamics in Polymer Blends

If the intention is to solve the fundamental problem of many-body relaxation and
its specialization to glass transition, anomalies found are useful guides to the right
approach and help to differentiate theories. This is in accord with the opinion offered
by Crick [161] and Andersen [160] and discussed before in Section 1.4.2. Several
anomalies of component dynamics found in blend and mixtures are highlighted here
for this purpose as well as to show different attitude of others who either knowingly
or unknowingly ignore these anomalies.
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The Unusual Component Dynamics in Poly(ethylene oxide)/Poly(methyl
methacrylate) Blends as Probed by Deuterium NMR

One example is Tgeo(¢p, T) or 79a of poly(ethylene oxide) (PEO, T, = 214 K) in
blends with poly(methyl methacrylate) (PMMA, T, = 391 K), x% PEO—(1-x)%
PMMA, for x = 0.5, 3, 6, 10, 20, 30, and neat PEO by deuteron NMR [855]. It
was found and shown in the left panel of Fig. 89 that s, of the PEO component
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Fig. 89 Left panel: The segmental relaxation times for PEO neat (bold solid line) and in blends
with PMMA (dashed lines) containing 3-30% PEO (from top to bottom) taken from the VFTH fits
of [855]. The most probable relaxation times are also shown, as calculated from the CM equation
for the lower (O, n = 0.76), mid-range ({J, 7 = 0.75), and higher concentrations of PEO (A, n =
0.715), respectively. Also shown is the independent relaxation time for PEO (dotted line, using n =
0.5), which lies close to the characteristic time, #. = 2 ps. Similar results are shown for PI neat (bold
solid line) and in blends with PVE containing 25-75% PI (labeled thinner lines), together with the
calculated 7eg for 25% (V) and 50% (M) compositions. Note the independent relaxation time for
PI (dotted line) is four or more decades longer than .. Similar results are included for PVME neat
(bold solid line) and blended with PS (dashed lines), along with the calculated curves for 55% ()
and 65% (x) PVME compositions. For PVME, 7 (not shown because it overlaps the PEO data) is
also much larger than 7 in the temperature range where we calculate 74,. Reproduced from [738]
with permission. Right panel: Comparison between the temperature dependences of the segmental
relaxation time for (1) the PEO homopolymer (thin dashed-dotted line), and (2) 3% of PEO in
PMMA (thick solid line) with that of (3) the dielectric segmental relaxation time of PMMA (thin
dashed line), (4) the terminal relaxation time of PMMA from Zawada et al. shifted downward by
9.1 decades (open circles), (5) the shift factor of the softening dispersion of PMMA given by shear
creep measurements shifted vertically downward by 0.82 decade to coincide with the dielectric
segmental relaxation time at the highest temperature (thick dashed line), and (6) the monomeric
friction factor of the PEO tracers in PMMA matrix from Haley and Lodge (continuous thick line).
The inset shows the same data of (1), (2), (3), and (5) plotted against reciprocal temperature.
Reproduced from [876] with permission



240 2 Glass-Forming Substances and Systems

is nearly composition-independent over the entire composition range from 0.5 to
30% PEO, and is retarded by less than one order of magnitude than ts, of pure
PEO over a wide temperature range extending to well below the glass transition of
the PMMA matrix, where the segmental relaxation times of PMMA are about 12
orders of magnitude greater than the fast PEO relaxation times. Similar behavior of
Tseg Of polyisoprene (PI) in blends with poly(vinylethylene) (PVE) [856] and PEO
in blends with poly(vinyl acetate) (PVAc) [857] was found by the same technique.
Quasielastic neutron scattering [858] performed on a 50% PI/50% PVE blend at
high frequencies also found that 7, of Pl is barely affected by blending with PVE.
Thus, this anomalous property is general, and cannot be explained by most models.
These observations at high frequencies are unusual when compared with the com-
ponent segmental dynamics of other miscible polymer blends measured at much
lower frequencies by dielectric spectroscopy or by another kind of deuteron NMR
technique [738, 859]. Shown in the same figure are data of 74, of the component
PI in blends with PVE and PVME in blends with PS taken at much lower frequen-
cies, which clearly show for PI and PVME large change of s, with composition
of the blends, conforming to normal behavior. So far only the CM has given an
explanation of the anomaly observed at high frequencies [738]. The cause of this
unusual behavior of 74z of the PEO component is due to the high frequencies (31—
76 MHz) used in the NMR measurements, resulting in the primitive relaxation times
790A of the PEO component that are short and not much longer than the crossover
time #. ~ 2 ps of the CM (see Fig. 89). Consequently, T4, or 7o calculated by
Eq. (2.57) does not change much with change of 7o on varying composition [738].
This CM explanation of the unusual short-time segmental dynamics of PEO in the
PEO/PMMA blends also applies to the similar short-time dynamics of PI in PI/PVE
blends probed by quasielastic neutron scattering [858].

More recently, Haley and Lodge [861] measured the tracer diffusion coef-
ficient of 0.3% unentangled PEO (M = 1000g/mol) in a matrix of PMMA
(M = 10* g/mol) over a temperature range from 125 to 220°C by forced Rayleigh
scattering. Also measured are the dynamic viscosities of blends of two different
high molecular weight PEO tracers (M = 440,000 and 900,000 g/mol) in the
same PMMA matrix at temperatures ranging from 160 to 220°C. The monomeric
friction factors determined by diffusion and rheology were in good agreement.
Surprisingly to them, the monomeric friction factors of the PEO tracer diffusion
in the PMMA matrix are much greater than that of the segmental dynamics of
PEO (My, = 1.25 x 10’ g/mol) at concentrations of 0.5 and 3% in a matrix of
PMMA (M, = 1.06 x 10° g/mol) measured by Lutz et al. [855] using NMR at
high frequencies from 31 to 76 MHz. The difference is about two orders of mag-
nitude at 220°C and increases with decreasing temperature to more than six orders
of magnitude at 125°C, as can be seen in the right panel of Fig. 89. Hence, in the
PMMA matrix, the PEO tracer terminal relaxation time is a much stronger func-
tion of temperature than the corresponding PEO segmental relaxation time obtained
by high-frequency NMR. The much stronger temperature dependence of the PEO
chain diffusion relaxation time than PEO segmental dynamics is not unique to PEO
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tracer in PMMA matrix. Lutz et al. [855] also found that in the 20% PEO/80%
PMMA blend by comparing the terminal relaxation time of PEO in this blend [861]
to its segmental dynamics obtained by high-frequency NMR in a common temper-
ature region. The temperature dependence of terminal relaxation time T erminal Of
PEO in the 20% PEO/80% PMMA blend is much stronger than 7, of segmental
dynamics.

The same effect was found in another blend of 2% PEO with PVAc. The seg-
mental g of PEO in this blend with PVAc measured by NMR at high frequencies
of 15.6 and 76.7 MHz shows weaker temperature dependence than the terminal
Tterminal Of PEO in the same blend [857].

Conventional theories of polymer viscoelasticity have the same monomeric fric-
tion factors and temperature dependence for segmental and global dynamics [29].
The same holds for polymer blend theories that follow this traditional approach
including that of [733, 862]. Hence, the observed anomalous behavior of PEO in
PMMA matrices either defies explanation by these polymer blend models. The
malady of these models is that they are extensions of conventional theories of vis-
coelasticity of neat polymers which have not taken into account the many-body
relaxation dynamics of local segmental motion, and cannot explain even the prop-
erties of segmental relaxation of neat polymers [165-168, 170—173]. In fact, in neat
polymer, the temperature dependences of 7ierminal (Whether unentangled or entan-
gled) and T, (obtained by low-frequency mechanical or dielectric relaxation) are
different, and this so-called “breakdown of thermorheological simplicity” problem
[29, 165, 171, 172, 201-203, 360, 837, 863—-875] cannot be resolved by conven-
tional viscoelasticity theory including the reptation model. Through the coupling
parameter n, which accounts for many-body relaxation dynamics of the local seg-
mental motio