Chapter 8
Practical Tile Storage

The previous chapter gave overviews for several different methods for storing tiled
images. In this chapter we will present two fully-implemented techniques for stor-
ing tiled images together in large files. This type of method proved to be the best
performing for writing, random reading, cached reading, and bulk copying. Further-
more, it is rather simple to implement. The first implementation shown is a fully
functional method for writing and reading tile files and takes only about 200 lines
of Java code for the reading, writing, and indexing methods.

Additionally, we will present the techniques with accompanying methods for
creating tile indexes. These storage methods are designed to handle large and small
sets of tiled images and are portable and updateable.

8.1 Introduction to Tile Indexes

Our goal is to store many hundreds or thousands of tiled images in a single file.
This could be done by simply writing each image sequentially to a file. However,
there would be no way to retrieve the images individually. There would be no way
to know which tile address corresponded to which image. We could store the tile
address before each image in our file, as shown in Figure 8.1. The problem with this
method should be obvious. In order to access a specific tiled image, we have to scan
the whole file. For tiled images sets of any significant size this method would be
prohibitively inefficient. Instead we need to create a separate index into the file that
will allow us to quickly look up the location of a specific tile in the file.
There are two principal ways we can construct the index:

e Sequential list of tile address to file position pairs
e Direct lookup table of file positions.

The simplest method is just to store the tile address, the position in the file and
the size of the tiled image in a sequential list. This method is shown in Figure 8.2.
The sequential list must still be searched for each tile query. However, the index

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 133
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__8,
(© Springer Science+Business Media, LLC 2010

134 8 Practical Tile Storage

Retori Tile Address Tile Image

(Row, Column, Level) (N bytes)
Recand2 (Rov\‘rl:“go‘?:ri:sl_sevel) 1;“':1:3:2;
Racong 3 (Row‘l:“go?t?riﬁsl_sevel) -I;iflfl:a:g;
Record 4 (RovligoT:r?\r:sfevel) T(ill\ftl;:g)e

Fig. 8.1 Tile file with embedded addresses.

Index File

Basord Tile Address File Address
(Row, Column, Level) (Position, Size)
Record 2 Tile Address File Address
(Row, Column, Level) (Position, Size)
Record 3 Tile Address File Address
(Row, Column, Level) (Position, Size)
Becaida Tile Address File Address
(Row, Column, Level) (Position, Size)
Tile File
Tile Image P
(N bytes) ki
Tile Image o
(N bytes) -
Tile Image _
(N bytes) -
Tile Image =
(N bytes) -

Fig. 8.2 Tile index stored as sequential list of addresses.

8.1 Introduction to Tile Indexes 135

information is several orders of magnitude smaller than the actual tiles, thus scan-
ning a separate index file for each query, while still inefficient, is must faster than
scanning the whole file. An optimized variant of this method is to sort the data in
the tile index. In this fashion a linear search could be used to speed up searching the
index list.

The second method is to create a direct lookup table of file positions. For ex-
ample, as shown in Figure 8.3, tile zoom level 3 has 8 columns and 4 rows, so the
lookup table only requires 32 records. The table could be stored in a file in row-
major or column-major format. The position of any given record can be directly
computed, and only a single seek and read is required to retrieve the file position
for a specific tile. We can store a null value in the lookup table to indicate that a
tile does not exist for that specific address. If the table is stored in row-major order,

Lookup Table: Zoom Level 3

Column0 | Column1 | Column2 | Column3 | Column4 | Column$S | Column& | Column 7
Row 0 File File File File File File File File
Address Address Address Address Address. Address Address Address
(Fosition, (Position, (Position, (Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)
Row 1 File File File File File File File File
Address Address Address Address Address Address Address Address
(Position, (Position, {Position, (Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)
Row 2 File File File File File File File File
Address Address Address Address Address Address Address Address
(Position, (Position, {Position, {Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)
Row 3 File File File File File File File File
Address Address Address Address Address Address Address Address
(Position, (Position, {Position, (Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)

Fig. 8.3 Lookup table for zoom level 3.

Equation 8.1 is used to compute the position in the array of addresses.
p=j*Cti @.1)
where

i = column index
j =row index
C = number of columns
p = position of tile record

The disadvantage of this approach is that the size of our lookup table file grows
by 4 times for each successive level. If the file address is stored as an 8 byte integer

136 8 Practical Tile Storage

and the size is stored as a 4 byte integer, we need 12 bytes for each record. Zoom
level 17 contains 131,072 columns and 65,536 rows for a total of 8,589,934,592
tiles. This would require over 100 gigabytes just for the index file. If we had a
tile set with a complete (or nearly complete) coverage of the earth’s surface at that
resolution, this approach would be appropriate.

However, this is unlikely. Most of the earth’s surface is covered with water (liquid
and ice) that is rarely imaged at high resolution. Few tile sets will cover even a
fraction of the earth’s surface. In these cases, we should develop an indexing method
that provides direct lookup of tile locations, but also allows us to have lookup tables
that cover only a subset of the entire level. This can be easily accomplished by
providing for offsets attached to the index table. Rather than having all index tables
start at (0,0) and covering the full range of tile addresses, we can provide external
start and end addresses for index tables.

The next two sections will each present an algorithm for storing large amounts of
tiled images. Each algorithm comes with its own unique method for indexing tiles.
Those methods are modified versions of the direct lookup algorithm.

8.2 Storage by Zoom Level

Our first technique for storing tiles is to store all the tiles for a specific zoom level
in a single file. This is the same technique that was tested and benchmarked in the
previous chapter. This technique uses three files for each zoom level, one file for the
tiled images and two files for the index.

The file containing the tiled images is simply a sequential list of tiled images.
It first stores a magic number to serve as a sentinel value. Then it stores the tile’s
address and size. Finally it stores the tiled image data. The sentinel values and tile
addresses are stored to make the tile images recoverable in the case that the tile file
or index files become corrupted. Figure 8.4 shows the record structure for the tiled
image file. Since the tiles do not have to be stored in any particular order, tiles can
be written over a period of time. New tiles can be added to the file by simply writing
them at the end of the file.

The index storage is slightly more complicated. Recall from the previous sec-
tion that our lookup table based method can require a very large lookup table for
the higher resolution zoom levels. To reduce the required size we have designed a
two-step lookup table. We use the same approach to writing the lookup table from
Figure 8.3, except that we only store rows in the index file that actually have tiles
in them. So if our tile set only has 100 rows, then our tile index will only have 100
rows worth of tile addresses.

To accomplish this we have to create an additional index file, a row index file.
This file contains a single value for each row in our set. If the row has any tiles, we
store the location of that row’s index records from the tile index file. If the row does
not have any tiles, we store a null value in the file.

8.2 Storage by Zoom Level 137

Magic Tile Address Tile Size Tile Image
Number (Row, Column) (N bytes)
Number | (Row Gl | TeSEe Novien
Number | (Row Gl | T SEe Novieny
Number | (RowColm) | TWeSEe oy

Fig. 8.4 Structure of tiled image file.

An example of this method is shown in Figure 8.5. We have used the same table
from Figure 8.3, but we have assumed that rows 0 and 2 contain zero tiles. In this
case, neither of those rows is stored in the index table, and the subsequent table is
only half the size. Thus, the advantage of this technique is reduced space require-
ments for the index file. The disadvantage is that we have to do two seeks and reads
to get the tile address. However, as shown in the previous chapter’s benchmarks, the
performance is still very good.

Row Index File

Row 0
NULL

Row 1
M

Row 2
NULL

Row 3

Tile Index File

Column 0 | Column 1 | Column2 | Column 3 | Column 4 | Column5 | Column6& | Column 7
Row 1 File File File File File
L Address Address NULL NULL NULL Address Address Address
(Position, (Position, (Position, (Position, (Position,
Size) Size) Size) Size) Size)
Row 3 File File File File File
Address Address NULL NULL NULL Address Address Address
(Position, (Position, (Position, (Position, (Position,
Size) Size) Size) Size) Size)

Fig. 8.5 Two-step tile index method.

138 8 Practical Tile Storage

To get the address for a specific tile, seek to the position of the row pointer in the
row index file and read the value. If the value is non-null, use that value to position
the tile index file. Then seek additional positions for the column index and read
the tile address. Listings 8.1 and 8.2 present example code for writing and reading
indexed tiles.

8.3 Introduction to Tile Clusters

The previous method works well and could be modified such that all levels can be
contained in a single file. This would require addition of a third index file, a level
index file similar to the row index file. Each tile address lookup would require 3
seeks and reads.

However, this method would not address two of the problems discussed in the
tile creation chapter. Recall both the performance improvements made possible by
caching tiles in memory (Section 6.1) and the requirement to have logically defined
sub-groupings of tiles for distributed tile creation (Section 6.3.2). To address both
of these requirements we propose a method for grouping tiled images in clusters.

Tiled image layers follow a pyramid type structure, see Figure 8.6. Each level
has 4 times the number of tiles as its predecessor. Also, each lower resolution level
is based on the image data from the next higher resolution level.

Tile Set with 5 Levels

Level 1 (2 Tiles) 00 |01
Level 2 (8 Tiles) |U.O |n.1 Io.z ‘0.3 |1.n ‘1.1 ‘1,2]l,:}]
Level 3 (32 Tiles) 0% 19 | 192 92 L 1] rafras e

) 00 |01 [o2 [o3 1528 [15,29 | 1530 | 1531
Level 4 (128 Tiles)

00 |01 Joz o3 at, | a1 | a1 | 3,
Level 5 (512 Tiles) € | &1 | &2 | &3

Fig. 8.6 Pyramid structure of tile images.

Our cluster-based grouping method starts by dividing the world into two clusters,
(0,0) and (0,1). Figure 8.7 shows that division, and Figure 8.8 shows the structure
of a cluster with 5 levels. The tiles that fall into the area marked by address (0,0) are
stored in cluster (0,0), and all the tiles that fall into the area marked by address (0,1)
are stored in cluster (0,1). By choosing this division we ensure that there are no tiles
that overlap both clusters.

The number of tiles for a tile set with 1 levels is computed with Equation 8.2:

8.4 Tile Cluster Files

139

Level 1

Fig. 8.7 World divided into two clusters.

Tile Cluster with 5 Levels

Level 1 (1 Tile) 00
Level 2 (4 Tiles) 00 |01 [10 |11
Level 3 (16 Tiles) oo jo foz. 103 30 [31] 32|33
Lsvel 4:(64 Tiles) 00 [o1 [o2 [o3 15,12 | 15,13 | 15,14 | 15,15
eve iles

00 (o1 [oz [o3 3, | a1, [31, | 3,
Level 5 (256 Tiles) 28 | 29 | 30 | 3
Fig. 8.8 Structure of a cluster with 5 levels.

L . .
N=3 22" (8.2)

i=1

The number of tiles for a cluster with 1 levels is the value from Equation 8.2 divided

by two, or as shown in Equation 8.3:

! 2 2i—2
N =) 277
2

8.4 Tile Cluster Files

(8.3)

To store tiles in cluster files, we must first set the number of levels to be stored. For
a tile set with a base level of 7, we will need two cluster files, each with 7 levels of
tiles and 5,461 tiles. Because the possible number of tiles is fixed for each cluster,

140 8 Practical Tile Storage

we can build a single fixed length lookup index and store it at the beginning of the
cluster file. The index size will be the number of possible tiles times the size of the
tile address record. After the index, we can store the tiled images sequentially in the
file. Since we have an index, we do not need to store the tiles in any particular order.
Figure 8.9 shows the file structure for a cluster file.

Tile Cluster File

7| File Address File Address File Address File Address File Address
(Position, Size) (Position, Size) (Position, Size) {Position, Size) (Position, Size)
File Address File Address File Address File Address File Address
Index (Position, Size) (Position, Size) (Position, Size) (Position, Size) (Position, Size)
SectiOn File Address File Address File Address File Address File Address
(Position, Size) (Position, Size) (Position, Size) {Position, Size) {Position, Size)
File Address File Address File Address File Address File Address
(Pasition, Size) (Position, Size) (Position, Size) (Position, Size) (Position, Size)
>- Magic Tile Address Tile Image
Mumber {Level, Row, Column) Tile Stz (N bytes)
Magic Tile Address Tile Siz Tile Image
Tile 1mage Number (Level, Row, Column) S (M bytes)
Section Magic Tile Address Tile Size Tile Image
Mumber {Level, Row, Column) (N bytes)
Magic Tile Address Tile Image
_ | Nomber | evel.Row Colurmn 1ieStze (N bytes)

Fig. 8.9 Structure of a tile cluster file.

8.5 Multiple Levels of Clusters

When applying this method to tile sets with several more than 7 levels, we will
experience the same problem discussed in Section 8.1. Our index will be too large.
Imagine a tile set with only 100 tiles at level 15. Scaled versions of those 100 tiles
will give us about 50 additional tiles with levels 14 to 1. That is a total of 150 tiles. If
each tile is 50,000 bytes then the size of the tiles in total is 7.5 megabytes. However,
a cluster file with 15 levels can have up to 357,913,941 tiles. If each index record
takes up 12 bytes, the size of the index table would be 4,294 megabytes, or almost
600 times the size of the actual image data. This is a highly impractical consequence.

To alleviate this problem we allow multiple levels of clusters, with each level
covering a continuous sub-range of levels. For example, if we have a tile set with 15
levels, we will have two levels of clusters, one level with contain tile levels 1-7, and
the other level of clusters will contain levels 8-15. The first level contains 7 levels,

8.6 Practical Implementation of Tile Clusters 141

and the second level contains 8 levels. The indexes for multi-level cluster groups
will never grow unmanageably large.

Continuing the example of a multi-level set of clusters, the first set, those with
levels 1-7, can only have up to two clusters. While the second set, representing
levels 8-15 can contain as many clusters as there are tiles in level 8. This number is
32,768. However, in practice we will only create clusters files when there are tiles
that belong in the cluster. Few tile sets will have complete coverage of the whole
world at a high resolution, and thus the full 32,768 would never actually be needed.
The actual required number would fluctuate based on the size of the tile set.

Multi-Level Cluster Structure

Levels 1-7
(2 Clusters)

Cluster (0,0)
Levels 1-7

Cluster (0,1)
Levels 1-7

Levels 8-15
(32,768 Clusters)

Cluster
(0,0)
Levels 8-15

Cluster
(255,511)
Levels 8-15

Fig. 8.10 Organization of multiple levels of tile clusters.

8.6 Practical Implementation of Tile Clusters

Listing 8.3 implements a cluster-based tile storage method. Since the internal file
structure of our cluster files is relatively simple the implementation is relatively
straightforward. The most difficult component of the practical implementation of
our cluster-based storage system is the algorithm to determine in which cluster a
given tile should be placed. That algorithm can be seen in the methods ~getIndex-
Position” and “getClusterFileTileAddress”.

142 8 Practical Tile Storage

8.7 Application to Memory Cached Tiles

In Chapter 5, we saw potential performance improvements from holding tiles in
memory while they were being created. The cluster-based storage technique works
very well with this concept. To implement this with the cluster technique, we first en-
sure that our clusters are divided small enough to be held uncompressed completely
in memory. If that is the case, then we alter our tile creation method to create tiles
for one cluster at a time. We modify our clustered tile storage algorithm by simply
adding a cache that holds all the tiles in memory as they are written. It writes them to
file at the end of the tile creation process. This offers an additional performance im-
provement. If we write all the tiles at one time, we can write them sequentially and
avoid using random file seeks, reads and writes. Random file accesses are generally
slower than sequential accesses.

8.8 Application to Distributed Computing

The application of the tile clusters technique to distributed computing should be
obvious. Multiple computer systems can be tasked with creating the tiles locally for
specific cluster files. The individual cluster files can exist separately and function
with minimal interaction, so they are a natural fit for highly distributed computing.
After a cluster is completed, the single file can be copied back to a centralized
location.

8.9 Performance Optimizations of Tile Cluster Method

There are several other potential performance optimizations available with the clus-
tered storage technique. First, in our example code we opened and closed the various
cluster files for each read and write. This is generally slower than maintaining con-
stantly open files and reading and writing from them. Therefore, we might alter our
algorithm to keep all the cluster files open throughout the process. However, many
systems enforce a limit on the number of open files at any one time. Therefore, to
get some performance benefit we can maintain a cache of recently opened files. The
cache needs to be of sufficient size to ensure that open files are reused, but it must
not be larger than the allowed maximum number of open files.

Since new tiles are written at the end of the file, this technique supports adding
tiles over a period of time. When an existing tile is overwritten, the index is updated
to point to the new tile. Old tiles remain in the file and take up space. Some devel-
opers may want to implement a system to try to re-use that space, either by trying to
fit other tile images in the old space or by periodically rebuilding the entire cluster.

Finally, when tiles are served to users from clusters the performance can be quite
good. Users typically view tiles for a specific area, and with our system those tiles

8.9 Performance Optimizations of Tile Cluster Method 143

would be clustered in the same file. However, there is one case where the perfor-
mance can be rather poor. Recall our example in which we had tiles in levels 1-15,
and separated the clusters into groups of 1-7 and 8-15 levels. If a user is viewing
level 8, and requesting several tiles from level 8, the system will have to access a
different file for each tile. The benchmarks in the previous chapter showed that us-
ing a separate file per tile can be somewhat slow. A workaround to this problem is
to build in some overlap in our cluster structure. Instead of a 1-7 and 8-15 break, we
will use a 1-8 and 8-15 break. The tiles from level § are stored in two places. This
does introduce some inefficiency; level 8 can have up to 32,768 tiles. But the read
performance improvements may be worth the cost.

O 00NN AW~

144 8 Practical Tile Storage

Listing 8.1 Output of indexed tiles by zoom level.

public class IndexedTileOutputStream {
static final long magicNumber = 0x772211ee;

String imagefilename;
String rowindexname;
String tileindexname;

RandomAccessFile imagefile ;
RandomAccessFile rowindex;
RandomAccessFile tileindex ;

long numrows, numcolumns ;
int rowRecordSize = 8;

int tileRecordSize = 8 + 4;

public IndexedTileOutputStream (String folder, String setname, int level

) {
imagefilename = folder + ”/” + setname + "—” + level + ”.tiles”;
rowindexname = folder + ”/” + setname + "—” + level + ”.rowindex”;
tileindexname = folder + ”/” + setname + "—” + level + ”.tileindex”
numrows = TileStandards .zoomRows[level];
numcolumns = TileStandards .zoomColumns[level];
try {

imagefile = new RandomAccessFile (imagefilename , "rw”);

//if the row file is empty, fill it with —1 to indicate empty

values
rowindex = new RandomAccessFile (rowindexname , “rw”);
if (rowindex.length() == 0) {
rowindex.seek (0) ;
for (int i = 0; i < numrows; i++) {
rowindex . writeLong(—1L);
tileindex = new RandomAccessFile (tileindexname , “rw”);

} catch (Exception e) {
e.printStackTrace () ;

¥
¥
public void writeTile (long col, long row, byte[] data) {
try {
//position tile file to write at end of file
long writepos = imagefile .length ();

imagefile . seek (writepos);

//write tile address and imagedata to file

//write two magic numbers so that tile records can be recovered
in case of corrupted file

imagefile . writeLong (magicNumber) ;

imagefile . writeLong (magicNumber) ;

imagefile . writeLong (col);

imagefile . writeLong (row) ;

imagefile . writeInt(data.length);

imagefile . write (data);

//update index
updatelndex (col, row, writepos, data.length);

} catch (IOException e) {
e.printStackTrace ();

O 00NN AW —

8.9 Performance Optimizations of Tile Cluster Method

145

}
¥
private void updatelndex (long col, long row, long writepos, int length)
{
try {
//check if row is in the row index
long rowposition = rowRecordSize x row;

rowindex .seek (rowposition);
long rowpointer = rowindex.readLong();

if (rowpointer == —IL) {
//this means the row data is new and not already in the
index
rowpointer = tileindex .length ()

tileindex .seek(rowpointer);

//write an array of empty values

for (int i = 0; i < numcolumns; i++) {
tileindex . writeLong(—1L);
tileindex . writelnt(—1);

//write the position back to the original row index
rowindex.seek (rowposition);

rowindex . writeLong (rowpointer);

//compute offset into row for specific col

long offset = rowpointer + col * tileRecordSize;
//position tile index for writing the file address of the
image

tileindex .seek(offset);
tileindex . writeLong (writepos);
tileindex . writeInt(length);

} catch (IOException e) {
e.printStackTrace ();

}
}
public void close () {
try {
imagefile . close () ;
rowindex.close () ;
tileindex .close () ;
} catch (Exception e) {
}
}

tile

Listing 8.2 Reading indexed tiles.

public class IndexedTileInputStream {

String imagefilename;
String rowindexname;
String tileindexname;

RandomAccessFile imagefile ;
RandomAccessFile rowindex;
RandomAccessFile tileindex ;

long numrows, numcolumns ;
int rowRecordSize = 8;
int tileRecordSize = 8 + 4;

0NN W —

146 8 Practical Tile Storage
public IndexedTileInputStream(String folder, String setname, int level)
imagefilename = folder + ”/” + setname + "—” + level + ”.tiles”;
rowindexname = folder + ”/” + setname + "—" + level + ”.rowindex”;

tileindexname = folder + ”/” + setname + "—” + level + ”.tileindex”
numrows = TileStandards .zoomRows|[level |;
numcolumns = TileStandards .zoomColumns|[level];
try {
imagefile = new RandomAccessFile (imagefilename , "rw”);
rowindex = new RandomAccessFile (rowindexname , “rw”);
tileindex = new RandomAccessFile (tileindexname , “rw”);
} catch (Exception e) {
e.printStackTrace ();
¥
¥
public byte[] getTile(long col, long row) {
try {
//check if row is in the row index
long rowposition = rowRecordSize * row;
rowindex .seek (rowposition);
long rowpointer = rowindex.readLong();
if (rowpointer == —IL) {
//this means the row data is not in the index, and so the
tile doesn’t exist
return null;
}
//compute offset into row for specific col
long offset = rowpointer + col * tileRecordSize;
//position tile index for reading the position and size of the
tile image
tileindex .seek (offset);
long tileposition = tileindex .readLong();
int size = tileindex .readInt();
if (tileposition == —1L)
// this means that the tile isn’t there
return null;
//adjust the tile position to skip the magic numbers and
address information
long adjustedTilePosition = tileposition + 8 + 8 + 8 + 8 + 4;
byte[] data = new byte[size];
//position the image file and read the image data
imagefile . seek(adjustedTilePosition);
imagefile .readFully (data);
return data;
} catch (IOException e) {
e.printStackTrace () ;
return null;
¥
}

Listing 8.3 Tile clusters implementation.

public class ClusteredTileStream {

static final long magicNumber = 0x772211ee;
private String location;

private String setname;

private int numlevels;

private int breakpoint;

8.9 Performance Optimizations of Tile Cluster Method

147

public ClusteredTileStream (String location , String setname, int

numlevels, int breakpoint) {

this.location = location;
this .setname = setname;
this.numlevels = numlevels ;

this . breakpoint = breakpoint;

}

public void writeTile (long row, long column, int level, byte[]
imagedata) {

// first determine the cluster that will hold the data

ClusterAddress ca = getClusterForTileAddress (row, column,
String clusterFile = getClusterFileForAddress (ca);
if (clusterFile == null) {

return;

File f = new File(clusterFile);

//if the file doesn’t exist, set up an empty cluster file
if (!f.exists()) {

createNewClusterFile (f, ca.endlevel — ca.startlevel +
¥

try {
RandomAccessFile raf = new RandomAccessFile (f,

7w’
//write the tile and info at the end of the tile file
long tilePosition = raf.length();

raf .seek(tilePosition);

raf . writeLong (magicNumber) ;

raf . writeLong (magicNumber) ;

raf . writeLong (column) ;

raf . writeLong (row) ;

raf . writeInt(imagedata.length);

raf . write (imagedata) ;

level);

1)

//determine the position in the index of the tile address
long indexPosition = getIndexPosition(row, column, level);

raf.seek(indexPosition);

//write the tile position and size in the index
raf . writeLong (tilePosition);
raf . writeInt(imagedata.length);
raf.close () ;
} catch (Exception e) {
e.printStackTrace ();
¥

}

public byte[] readTile (long row, long column, int level) {
// first determine the cluster that will hold the data

ClusterAddress ca = getClusterForTileAddress (row, column,
String clusterFile = getClusterFileForAddress (ca);
if (clusterFile == null) {

return null;

File f = new File(clusterFile);

try {
RandomAccessFile raf = new RandomAccessFile (f, "r”);

level);

//determine the position in the index of the tile address
long indexPosition = getIndexPosition(row, column, level);

raf .seek(indexPosition);
long tilePosition = raf.readLong();
int tileSize = raf.readInt();

124
125

126
127
128
129

131

148

}

8 Practical Tile Storage

if (tilePosition == —1L) {
//tile is not in the cluster
raf.close();
return null;

byte[] imageData = new byte[tileSize];
//offset tile position for header information
long tilePositionOffset = tilePosition + 8 + 8 + 8 + 8 + 4;
raf.seek(tilePositionOffset);
raf .readFully (imageData);
raf.close ();
return imageData;
} catch (Exception e) {
e.printStackTrace ()
¥

return null;

private long getlndexPosition(long row, long column, int level) {

}

ClusterAddress ca = this. getClusterForTileAddress (row, column,
level);

//compute the local address, that’s the relative address of the
tile in the cluster

int locallevel = level — ca.startlevel;

long localRow = (long) (row — (Math.pow(2, locallevel) * ca.row));

long localColumn = (long) (column — (Math.pow(2, locallevel) * ca.
column)) ;

int numColumnsAtLocallevel = (int) Math.pow(2, locallevel);

long indexPosition = this.getCumulativeNumTiles (locallevel — 1) +

localRow * numColumnsAtLocallevel + localColumn;
// multiply index position times byte size of a tile address
indexPosition = indexPosition x (8 + 4);
return indexPosition;

public ClusterAddress getClusterForTileAddress (long row, long column,

int level) {

if (level > this.numlevels) {
//error, level is outside of ok range
return null;

¥

int targetLevel = 0;

int endLevel = 0;

if (level < breakpoint) {
//tile goes in one of top two clusters
targetLevel = 1;
endLevel = breakpoint — 1;

} else {
//tile goes in bottom cluster
targetLevel = this.breakpoint;
endLevel = this.numlevels ;

//compute the difference between the target cluster level and the
tile level

int powerDiff = level — targetLevel;

//level factor is the number of tiles at level "level” for a
cluster that starts at "target level”

double levelFactor = Math.pow(2, powerDiff);

// divide the row and column by the level factor to get the row and
column address of the cluster we are using

long clusterRow = (int) Math. floor (row / levelFactor);
long clusterColumn = (int) Math. floor(column / levelFactor);
ClusterAddress ca = new ClusterAddress(clusterRow , clusterColumn ,

targetLevel , endLevel);
return ca;

8.9 Performance Optimizations of Tile Cluster Method

String getClusterFileForAddress (ClusterAddress ca) {
String filename = this.location + ”/” + this.setname + "—” + ca.

startlevel + =7 + ca.row + =" 4+ ca.column + ”.cluster”;
return filename ;
//this methods create an empty file and fills the index with null

values
void createNewClusterFile (File f, int numlevels) {
RandomAccessFile raf;
try {
raf = new RandomAccessFile (f,
raf.seek(0);
long tiles = this.getCumulativeNumTiles (numlevels);
for (long i = 0; i < tiles; i++) {
raf . writeLong(—1L); //NULL position of tile
raf . writeLong(—1L); //NULL size of tile

i

™w”’);

raf.close ();
} catch (Exception e) {
e.printStackTrace () ;

}

public int getCumulativeNumTiles (int finallevel) {
int count = 0;
for (int i = I; i <= finallevel; i++) {
count += (int) (Math.pow(2, 2 % i — 2));
}

return count;

}
public class ClusterAddress {

long row;

long column;
int startlevel;
int endlevel;

public ClusterAddress(long row, long column, int startlevel , int
endlevel) {
this .row = row;
this.column = column;
this.startlevel = startlevel;
this.endlevel = endlevel;

149

	8 Practical Tile Storage
	8.1 Introduction to Tile Indexes
	8.2 Storage by Zoom Level
	8.3 Introduction to Tile Clusters
	8.4 Tile Cluster Files
	8.5 Multiple Levels of Clusters
	8.6 Practical Implementation of Tile Clusters
	8.7 Application to Memory Cached Tiles
	8.8 Application to Distributed Computing
	8.9 Performance Optimizations of Tile Cluster Method

