
Chapter 7
Tile Storage

The two previous chapters presented several algorithms for creation of tiled images.
Each of those algorithms assumed that some mechanism was in place to support
storage and retrieval of tiled images. In this chapter, we will discuss such mecha-
nisms and provide technical guidance on choosing a tile storage system. We will
also discuss some advanced topics in tile storage, such as storage of tile metadata
and distributed storage of tiles.

7.1 Introduction to Tile Storage

Tiled image layers are divided into levels. Each level is divided into rows and
columns. Figure 7.1 shows a tiled layer divided into levels, then columns, and then
tiles. The general problem of tile storage is linking a tile’s address (Layer, Level,
Row, and Column) to a binary block of data. That linking should be quickly gener-
ated, retrieved, or altered. The practical problem of tile storage is how to organize
the blocks of data into levels, rows, and columns so that the tiled images can be
efficiently written to and read from disk.

All tiled images are stored in computer files on disk. Tiles can be stored in a
separate file for each image, bundled together into larger files, or in database tables.
(Database systems use files like any other computer program, so storing tiles in a
database indirectly stores them to file.)

The next three sections provide detailed explanations of alternative methods for
storing tiles in files. A fourth section provides performance comparisons between
the three methods.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 117
Principles and Practices, DOI 10.1007/978-1-4419-7631-4 7,
c© Springer Science+Business Media, LLC 2010

118 7 Tile Storage

Fig. 7.1 Tiled image layer divided into components.

7.2 Storing Image Tiles as Separate Files

A simple and common method for storing tiled images is to simply store each image
in a separate computer file on the computer’s file system. Recall from Chapter 5, our
tiled images are formatted in standard image formats, like JPEG or PNG. Each of
these formats was designed to store an image as a single computer file. Folders (or
directories) on the file system can be used to provide structure and organization to
the tiled images. For example, we can use a top level folder for the layer, sub-folders
within the layer folder for each level, and then subfolders within the level folders
for each column. Within the column folders are the individual tiled images for each
row in that column. Figure 7.2 shows such an organization.

This type of organization is attractive to developers for several reasons. First, tiles
can be addressed directly by simply forming the filename and opening the file. For
example, if I want to create a tile, for layer ”BlueMarble” at level 7, column 5, and
row 4 I can simply create the string ”BlueMarble/7/5/4.jpg” and I have the filename
for the desired tile. With this method, there is no need for a separate index of tiles.
A second benefit is that tiled images can be replaced by newer versions with little
impact on the rest of the system.

Finally, and most importantly, building a Web server to host the tiled images in
this structure is trivial. Most HTTP servers, including Apache, can, by default, host

7.2 Storing Image Tiles as Separate Files 119

files directly on the file system accessible by the sub-path. So, to access a tile over
the web, I can construct a URL like the following:
http://www.sometileserver.com/BlueMarble/7/5/4.jpg
The HTTP server will simply retrieve the image directly from the file system with
minimal configuration.

Fig. 7.2 Folder based organization of tiled images.

However, there are several disadvantages of storing tiles in this method. From the
perspective of a software developer, file systems can appear to function by magic.
A developer simply names the file he wants, and it appears. He can add to it, delete
it, or move it. The system magically knows the size and location of the file, the date
it was modified, and which users have what permissions on the file.

In reality, file systems are among the most complicated parts of an operating
system. Even though a file can be created with a single line of computer code, there
are many things going on behind the scenes that enable that file to magically appear.
Space on the hard drive has to be located and allocated for the file. Lists of blocks
used to store the file have to be written along with the file’s metadata. To store this
information, file systems have their own meta-storage allocated. The file system’s
meta-storage has to be accessed for every file that is created or accessed. In everyday
use these operations often seem instant because modern operating systems can cache
the file system’s meta-storage in memory. However, when writing and reading many

http://www.sometileserver.com/BlueMarble/7/5/4.jpg

120 7 Tile Storage

millions of files the memory cache will fail to hold all the needed information, and
the file accesses will take much longer. When the small price of a single file access
is added to the creation of each and every tile, this method becomes very inefficient
and unsuitable for very large tile sets.

Additionally, many file systems do not index files by name. File lookups involve
a linear search within a given directory. This is especially problematic given our
structure in which a single column folder could hold thousands of image files.

Files are somewhat wasteful with regards to storage space because files are stored
in fixed size blocks. A common block size is 4096 bytes, so a file will be broken up
into pieces of this size. Files almost always consume an uneven number of blocks.
For example, a 10000 byte file will consume three blocks, and a total of 12288
bytes. The average wasted data per file is one half the block size. If the average
size of a tiled image file is 50,000 bytes, then the average wasted space is 2048
bytes. Therefore we are wasting around 4% of our storage space with this approach.
Four% would be a small price to pay in storage space if this approach yielded sig-
nificant performance improvements. However, since this approach will likely yield
significant performance degradations, the wasted space adds insult to injury.

In many cases tile sets must be copied from one location to another. Perhaps the
system that created the tiles is not the same one that will serve them to users over a
network, or perhaps multiple systems will be used to serve the same set of tiles. In
these cases copies of the entire tile set must be created. To create a copy of the tile
set with this storage method requires a separate file access and file write for each
tile. This process can take as long as the original tile creation step.

In general, storing tiles as separate image files is a horribly inefficient use of
the computer’s resources. However, there are a few scenarios in which this is a
good approach. First, when dealing with very small tile sets, those with only a few
thousand tiled images, this approach is perfectly valid. A more complicated solution
would be a waste of time. Second, when the inherent properties of the file system
are actually needed, this approach might be useful. For example, a developer might
need full use of permissions on each and every tiled image. If the tiles are updated
very frequently, and the older tiles can be discarded, this approach might be valid.
File systems have sophisticated methods of recapturing used storage space that is
no longer needed. Frequent changes to tiles would necessitate this capability.

There is one final scenario in which storing tiles as separate image files makes
sense. The File System in Userspace (FUSE) API1 allows developers to create
custom file systems that mimic the properties of a file system on the front end, but
store the actual file data with a custom method defined by the developer. A FUSE
file system implementation could be created that would allow tiles to be written by
software as separate files. On the back end, the tiled images would be stored in an
efficient manner that eliminates much of the overhead associated with full featured
file systems. This FUSE implementation would also integrate with the HTTP server
used to distribute the tiled images. This approach would allow tile system developers

1 http://fuse.sourceforge.net/

http://fuse.sourceforge.net/

7.4 Custom File Formats 121

to use a variety of existing, open-source tile creation and distribution tools on very
large tile sets.

7.3 Database-Based Tile Storage

A second approach to storing tiled images is to store the images within a relational
database management system (DBMS) as binary large objects (BLOB). Most mod-
ern database systems allow arbitrary size binary arrays to be stored along side struc-
tured columns. Using this approach, we can build a ”tiles” table with a column for
the image data and other columns for the address components of the tile: level, row,
and column. This approach is slightly more complicated than simply storing the data
in files. However, since modern database systems use sophisticated techniques for
paging of storage this approach might be more efficient. Additionally, we can create
indices on the address columns, which could reduce search time.

A disadvantage of this approach is that database systems can be costly in terms
of expense, setup, configuration, and maintenance. Like the file system approach,
this approach brings a lot of unneeded features that may introduce overhead into the
system. Database systems are designed to operate on highly structured data, such as
small numeric and character fields. A tile storage system has little need for queries
on structured data. Databases also excel at revision control which is unlikely to be
needed for a tile system.

As will become apparent in the Comparative Performance section, databases are
unlikely to be widely used for storage of tiles. However, there are a couple of scenar-
ios in which they may apply. First, some commercial Web hosting systems provide
users with read/write access to a database but not to the file system. If we were
forced to use this type of system, we would have to store our tiles in a database.
Secondly, if our tile application required sophisticated query functionality we might
need a database. For example, if our tiled images also came with extensive metadata
like dates, places, names, and keywords that need to be queried for tile retrieval, a
database would be useful. A database/file hybrid approach is also a possibility. In
this case, the tiles metadata and addresses would be stored in a database, and the
image data stored in large flat files.

7.4 Custom File Formats

Another approach to storing tiled images is to use a custom designed file format. In
this case many tiled images are packed together in a single file instead of in multiple
files. This approach necessitates development of an organizational system to keep
up with the locations of the tiled images in the single file. It also requires a custom
index that allows lookup of tile positions within the large files. This method can
offer vastly improved performance, since the inefficiencies of the underlying file

122 7 Tile Storage

system are mitigated. Another benefit is that the large custom files can more easily
be copied from one location to another than many millions of smaller files.

A disadvantage of this system is that, if tiled images change frequently, the cus-
tom files may become fragmented. That is, they are littered with out-of-date tiled
images that need to be cleaned up. Another disadvantage is that the tiled images
cannot be directly accessed by an HTTP server. The server will need a custom mod-
ule to read the custom formatted files.

In the next chapter we will present two methods for storing images in custom file
formats. We will explain the tiled image organization system as well as some high
performance indexing schemes.

7.5 Comparative Performance

The three previous sections have explained three alternative methods for storing
tiled images. In each of those sections we presented some conceptual and practical
advantages and disadvantages of each method. In this section we will use some test
programs to show the differences in performance.

Benchmarking file writing and reading is very challenging. Modern operating
systems perform a lot of caching that can interfere with the results. The best way
to measure performance is to create benchmarks that are very close to real-world
tasks and run those many times. In this fashion, you can replicate a realistic user
environment and average out anomalous results. Before each test we will clear the
file system’s cache by executing the following Linux command as superuser:

echo 3 > /proc/sys/vm/drop_caches
This will help ensure each test is performed in a similar environment. The hardware
and software configuration for these tests is the same for all tests and is listed in
Table 7.1.

Operating System Debian 5
Java Virtual Machine 1.6.0 15 (64 bit)
DBMS Postgres 8.4, default configuration
Processors 2 2.0Ghz AMD Opteron
RAM Size 16GB DDR2 776Mhz
Hard Drive Specification Dell MD1000 with 15 1TB SAS drives
File System XFS

Table 7.1 Test configuration.

7.5 Comparative Performance 123

7.5.1 Writing Tests

This first set of tests will examine writing tiled images. We will write a large num-
ber of tile-sized pieces of memory to disk in three different ways and compare the
results. In each of the writing tests, we will write tile-sized pieces for each tile
in zoom levels 5 through 11. Zoom levels 5 though 11 have 512; 2,048; 8,192;
32,768; 131,072; 524,288; and 2,097,152 tiles, respectively. Each piece of data will
be 50,000 bytes in length. The data we write will be simple arrays of random or
zero data. We are concerned only with testing the different types of I/O, so the ac-
tual contents of the files are not important. We will run each test 30 times to get
average performance numbers.

To represent the three methods, we have written three simple implementations.
The first implementation writes each tile to a separate file. The second implementa-
tion writes all the tiles into a single file for each zoom level and includes an index
of tile locations. The third implementation writes all the tiles into a single database
table for each zoom level. Each test writes the data to new files and not over existing
files.

Listing 7.1 shows the three implementations. In the section ”WriteTilesSin-
gleFile” we reference the classes IndexedTileOutputStream and IndexedTileInput-
Stream. These classes are part of the first tile storage implementation discussed in
the next chapter and their code is presented there. Table 7.2 shows the results from
running the write tests 30 times each. The mean times are in seconds. ¿From this

Level Number of Tiles Single File per Tile Single File per Level Database Table per Level
Mean StdDev Mean StdDev Mean StdDev

5 512 0.1049 0.027 0.086 0.022 0.683 0.033
6 2,048 0.8477 0.075 0.257 0.029 2.654 0.198
7 8,192 3.5807 1.623 1.090 0.115 10.540 0.509
8 32,768 14.2025 1.857 3.795 0.187 42.145 1.140
9 131,072 56.7045 2.567 21.532 0.265 167.979 3.964

10 524,288 244.9717 3.862 91.684 0.695 673.950 12.783
11 2,097,152 999.9249 27.582 383.365 2.762 2767.647 67.018

Table 7.2 Mean times in seconds and standard deviations from 30 trials of write tests.

table we can see that writing multiple tiles to a single large file yields the best per-
formance. Writing each tile to a separate file takes 2 to 3 times the amount of time.
Writing tiles to a DBMS takes 5 to 10 times the amount of time. Figure 7.3 plots
the results in terms of average write per tile. The write times for each level are fairly
consistent.

Many DBMS systems support bulk imports of data. It would be possible to write
tiles out using the fast single file method and then import the data into the database.
We have not benchmarked this procedure. Though it would offer some improvement
in write performance, it would still be slower than simply writing to the single file.
We will see in the next section that reading from the database is also significantly
slower.

124 7 Tile Storage

Fig. 7.3 Plot of average write times per tile.

7.5.2 Reading Tests

For the reading tests, we will use the tiles written in the previous step. The first test
will mimic random access of tiles stored on disk, and the second test will mimic
random access of tiles cached in memory by the operating system.

7.5.2.1 Random Tile Access Tests

For this test we will generate a single random list of tiles of levels 5 through 11. The
list will contain 10,000 tile addresses. For each of the three file storage methods, we
will iterate over the list of tiles and read each tile from disk. The code for the test is
shown in Listing 7.2, and the results are shown in Table 7.3. In this test the single
file per level method is fastest, but the database method is a close second. The single
file per tile method is slowest.

Single File per Tile Single File per Level Database Table per Level
Total Read Time (10,000 tiles) 379.455 seconds 112.357 seconds 146.926 seconds

Read Time per Tile 37.9 milliseconds 11.2 milliseconds 14.7 milliseconds

Table 7.3 Read times for random tile access.

7.5 Comparative Performance 125

7.5.2.2 Effect of Cached Tile Data

As stated earlier, modern operating systems cache disk file data in memory to speed
up access. This test will demonstrate and measure the effect of such caching. In the
previous test we read 10,000 random tiles from disk. In this test, we will read 1000
tiles 20 times. The first read will read from disk, and subsequent reads should pull
from system memory.

Trial Single File per Tile Single File per Level Database Table per Level
1 40.994 15.952 23.838
2 0.881 0.190 2.328
3 0.828 0.183 2.357
4 0.162 0.211 2.339
5 0.162 0.137 2.284
6 0.159 0.129 2.269
7 0.117 0.121 2.280
8 0.116 0.121 2.298
9 0.117 0.197 2.273
10 0.117 0.121 2.285
11 0.127 0.116 2.200
12 0.101 0.112 2.174
13 0.101 0.110 2.195
14 0.099 0.105 2.171
15 0.098 0.121 2.178
16 0.100 0.105 2.249
17 0.098 0.112 2.226
18 0.100 0.105 2.200
19 0.098 0.106 2.242
20 0.100 0.111 2.228

Table 7.4 Cached tile read times in seconds.

In Table 7.4, we can see that the first read of the 1000 tiles took by far the longest.
Table 7.5 shows the results averaged with and without the first trial. We can see that
the average times decreased significantly without the first trial.

Single File per Tile Single File per Level Database Table per Level
Including first trial 2.2337 0.9232 3.3307
Excluding first trial 0.1937 0.1323 2.2514

Table 7.5 Average read times in seconds with and without first trial.

Table 7.6 compares the cached and non-cached tile read times. The single file
per zoom level sees over an 8 to 1 improvement. The database table per zoom level
sees over a 6 to 1 improvement. Finally, the single file per tile sees nearly a 20 to 1
improvement. In all cases, the single file per zoom level performs the best overall.

Consideration of memory cached tile files is important. In most cases the tiles
from the top zoom levels will be the most commonly accessed, though they are the

126 7 Tile Storage

Single File per Tile Single File per Level Database Table per Level
No Caching 37.9 11.2 14.7

With Caching 1.9 1.3 2.2

Table 7.6 Cached versus non-cached tile read times in milliseconds.

lowest resolution. Tiled map clients will often start with a default view at the world
or national level. Users will then zoom in to the specific areas they wish to view.
Following this process will cause the top level tiles to be seen by almost all users.
A very significant performance improvement can be realized by holding the most
commonly accessed tiles in memory, either implicitly by the operating system or
explicitly by the tile serving system.

7.6 Storage of Tile Metadata

So far we have not considered the need to store metadata about our source im-
ages and tiled images. Metadata includes all of the non-imagery data that might be
needed. Important pieces of metadata that should be stored along side the tiled im-
ages include the date and version number of each tile and the source image(s) used
to create each tile. Technical details like the resolution of source imagery used to
make the tile or the original map level of the source data should also be included.

A system for maintaining tiled image sets should know which source images
have been used to create which tiles so it can perform proper updates to those tiles
when the source imagery changes. Large tiled image sets are often created from
heterogeneous collections of imagery. Users of a tile-based system will want to
know specifically what data was used to create the tiles.

This data is typically smaller than the image data. It can be stored in manners
similar to storage of tiled images. In the case where we used a separate file for a
tiled image, we could make a separate file for the metadata. We could also put the
tile metadata in a database table or packed together in large files with tiled images.
The specific means of storing of metadata is not as important as understanding and
fulfilling the need to keep up with the data.

7.7 Storage of Tiles in Multi-Resolution Image Formats

The two key benefits of a tile-based system are that:

• Tiles are stored pre-rendered, exactly as needed for user consumption.
• Lower resolution views are pre-generated and quickly available.

The primary drawback of tile-based systems is the source imagery must undergo
extensive reformatting. Multi-resolution image formats like JPEG2000 and MrSID

7.9 Online Tile Storage 127

are a possible alternative to this reformatting. As is, they meet one of the two key
requirements for a tile based system. They use image transforms (typically wavelet
based) to generate a multi-resolution encoding of an image. The multi-resolution
views can be used to provide the lower resolution zoom level imagery for a tile-
based system.

However, these formats do not meet the first requirement. To get a useable sub-
image from a wavelet encoded image, several steps must be performed. Because the
data is stored in multiple resolutions in multiple places in the file, several file seeks
and reads are required. Use of these formats is a tradeoff. They eliminate the need
for pre-processing and require less storage space, but they will always require more
processing and I/O for tiled image retrieval.

7.8 Memory-Cached Tile Storage

In some cases tile retrieval performance must be as fast as possible. This can be a
requirement to support real-time applications or to support many millions of users.
In these cases, developers may want to create a method for caching entire tile sets
in memory. Tile sets will still be archived to file but will be held in memory at
run-time. Sizable tile sets will have to be spanned over several computers for this
approach to work. Software systems like Memcached2 are designed for exactly this
type of problem. Memcached is used to cache large data sets in the memory of many
separate computers.

7.9 Online Tile Storage

So far we have considered storing tiles in files on a computer’s file system or mem-
ory. There are online file storage alternatives. Several services exist which allow
Web accessible storage space to be rented. These services provide the storage space
hosting with a high degree of reliability, often with multiple backups. One such
service is Amazon’s Simple Storage Service (S3)3. S3 is accessible through a web
services interface that allows users to write and read data over HTTP. S3 uses a
simple key-value storage system. Data objects (similar to BLOBs) are stored and
accessible with a key. The key is used in the formation of an HTTP URL for access
to the resource. For example, the following URL could be used to retrieve the binary
resource.

http://www.somestorageservice.com/mykey
Since tiled images are discretely addressable and designed for use over HTTP,

approaches like this are promising for tile-based systems. The primary disadvan-

2 http://memcached.org/
3 http://aws.amazon.com/s3/

http://www.somestorageservice.com/mykey
http://memcached.org/
http://aws.amazon.com/s3/

128 7 Tile Storage

tages of this type of storage will be cost and efficiency. However, for very large
tile sets with many users, this type of system might be more cost-effective than the
required hardware and bandwidth of a self-hosted solution.

7.9 Online Tile Storage 129

Listing 7.1 Write test implementations.

1
2 p u b l i c s t a t i c vo id w r i t e T i l e M u l t i p l e F i l e s (S t r i n g o u t p u t F o l d e r , i n t c o l s ,

i n t rows) {
3 F i l e f = new F i l e (o u t p u t F o l d e r) ;
4 f . mkd i r s () ;
5 byte [] d a t a = new byte [b y t e S i z e] ;
6 f o r (i n t i = 0 ; i < c o l s ; i ++) {
7 S t r i n g folderName = o u t p u t F o l d e r + ” / ” + i ;
8 F i l e f o l d e r = new F i l e (folderName) ;
9 f o l d e r . mkd i r s () ;

10 f o r (i n t j = 0 ; j < rows ; j ++) {
11 F i l e t i l e F i l e = new F i l e (folderName + ” / ” + j + ” . b i n ”) ;
12 F i l e O u t p u t S t r e a m f o s ;
13 t r y {
14 f o s = new F i l e O u t p u t S t r e a m (t i l e F i l e) ;
15 B u f f e r e d O u t p u t S t r e a m bos = new B u f f e r e d O u t p u t S t r e a m (f o s) ;
16 bos . w r i t e (d a t a) ;
17 bos . c l o s e () ;
18 } ca tch (E x c e p t i o n e) {
19 e . p r i n t S t a c k T r a c e () ;
20 }
21 }
22 }
23 }
24
25 p u b l i c s t a t i c vo id w r i t e T i l e s S i n g l e F i l e (S t r i n g o u t p u t F o l d e r , i n t c o l s , i n t

rows , i n t l e v e l) {
26 F i l e f = new F i l e (o u t p u t F o l d e r) ;
27 f . mkdi r s () ;
28 byte [] d a t a = new byte [b y t e S i z e] ;
29 I n d e x e d T i l e O u t p u t S t r e a m p t o s = new I n d e x e d T i l e O u t p u t S t r e a m (f .

g e t A b s o l u t e P a t h () , ” t e s t i n g ” , new T i leRange (0 , c o l s − 1 , 0 , rows −
1 , l e v e l)) ;

30 f o r (i n t i = 0 ; i < c o l s ; i ++) {
31 f o r (i n t j = 0 ; j < rows ; j ++) {
32 p t o s . w r i t e T i l e (i , j , d a t a) ;
33 }
34 }
35 p t o s . c l o s e () ;
36 S t r i n g s = p t o s . g e t B i n F i l e () ;
37 I n d e x e d T i l e I n p u t S t r e a m i i i = new I n d e x e d T i l e I n p u t S t r e a m (s) ;
38 i i i . c l o s e () ;
39 }
40
41 p u b l i c s t a t i c vo id w r i t e T i l e D a t a b a s e (S t r i n g tableName , i n t c o l s , i n t rows ,

i n t l e v e l) {
42 t r y {
43 Connec t ion c = Dr ive rM anage r . g e t C o n n e c t i o n (” j d b c : p o s t g r e s q l : / / ” + ”

l o c a l h o s t / ” + ” t i l e d b ” , ” u s e r ” , ” pas s word ”) ;
44 S t a t e m e n t s t m t ;
45 s t m t = c . c r e a t e S t a t e m e n t () ;
46 byte [] d a t a = new byte [b y t e S i z e] ;
47 t r y {
48 s t m t . e x e c u t e (”DROP TABLE ” + tableName) ;
49 } ca tch (E x c e p t i o n e) {
50 }
51 t r y {
52 s t m t . e x e c u t e (”CREATE TABLE ” + tableName + ” (i d b i g s e r i a l

PRIMARY KEY , ” + ” row b i g i n t , ” + ” c o l b i g i n t , ” + ” image
b y t e a) ”) ;

53 } ca tch (E x c e p t i o n e) {
54 e . p r i n t S t a c k T r a c e () ;
55 re turn ;
56 }
57 P r e p a r e d S t a t e m e n t ps = c . p r e p a r e S t a t e m e n t (”INSERT INTO ” +

tableName + ” (row , co l , image) VALUES (? , ? , ?) ”) ;

130 7 Tile Storage

58 f o r (i n t i = 0 ; i < c o l s ; i ++) {
59 f o r (i n t j = 0 ; j < rows ; j ++) {
60 ps . s e tL ong (1 , j) ;
61 ps . s e tL ong (2 , i) ;
62 ps . s e t B y t e s (3 , d a t a) ;
63 ps . e x e c u t e () ;
64 }
65 }
66 t r y {
67 s t m t . e x e c u t e (”CREATE i n d e x ” + tableName + ” i n d e x on ” +

tableName + ” (co l , row) ”) ;
68 } ca tch (E x c e p t i o n e) {
69 e . p r i n t S t a c k T r a c e () ;
70 re turn ;
71 }
72 } ca tch (SQLExcept ion e1) {
73 e1 . p r i n t S t a c k T r a c e () ;
74 }
75 }

Listing 7.2 Random read tests.

1 p r i v a t e s t a t i c vo id r e a d T i l e s M u l t i p l e F i l e s (S t r i n g d a t a L o c a t i o n , A r r a y L i s t<
S t r i n g > l i n e s , i n t t r i a l , i n t numreads) {

2 i n t c o u n t = 0 ;
3 f o r (S t r i n g s : l i n e s) {
4 i f (c o u n t == numreads) {
5 break ;
6 }
7 c o u n t ++;
8 S t r i n g [] d a t a = s . s p l i t (” : ”) ;
9 S t r i n g l e v e l = d a t a [0] ;

10 S t r i n g column = d a t a [1] ;
11 S t r i n g row = d a t a [2] ;
12 S t r i n g f i l e n a m e = d a t a L o c a t i o n + ” / ” + t r i a l + ” ” + l e v e l + ” / ” +

column + ” / ” + row + ” . b i n ” ;
13 F i l e f = new F i l e (f i l e n a m e) ;
14 byte [] b y t e s = new byte [(i n t) f . l e n g t h ()] ;
15 t r y {
16 F i l e I n p u t S t r e a m f i s = new F i l e I n p u t S t r e a m (f) ;
17 B u f f e r e d I n p u t S t r e a m b i s = new B u f f e r e d I n p u t S t r e a m (f i s) ;
18 D a t a I n p u t S t r e a m d i s = new D a t a I n p u t S t r e a m (b i s) ;
19 d i s . r e a d F u l l y (b y t e s) ;
20 d i s . c l o s e () ;
21 i f (c o u n t % 1000 == 0) {
22 System . o u t . p r i n t l n (c o u n t + ” : ” + b y t e s . l e n g t h) ;
23 }
24 } ca tch (E x c e p t i o n e) {
25 e . p r i n t S t a c k T r a c e () ;
26 }
27 }
28 }
29
30 p r i v a t e s t a t i c vo id r e a d T i l e s S i n g l e F i l e (S t r i n g d a t a L o c a t i o n , A r r a y L i s t<

S t r i n g > l i n e s , i n t t r i a l , i n t numreads) {
31 I n d e x e d T i l e I n p u t S t r e a m [] s t r e a m s = new I n d e x e d T i l e I n p u t S t r e a m [1 2] ;
32 i n t c o u n t = 0 ;
33 f o r (S t r i n g s : l i n e s) {
34 i f (c o u n t == numreads) {
35 break ;
36 }
37 c o u n t ++;
38
39 S t r i n g [] d a t a = s . s p l i t (” : ”) ;
40 i n t l e v e l = I n t e g e r . p a r s e I n t (d a t a [0]) ;
41 l ong column = Long . pa rs eL ong (d a t a [1]) ;

7.9 Online Tile Storage 131

42 l ong row = Long . pa rs eL ong (d a t a [2]) ;
43 i f (s t r e a m s [l e v e l] == n u l l) {
44 l ong maxCol = T i l e S t a n d a r d s . zoomColumns [l e v e l] − 1 ;
45 l ong maxRow = T i l e S t a n d a r d s . zoomRows [l e v e l] − 1 ;
46 s t r e a m s [l e v e l] = new I n d e x e d T i l e I n p u t S t r e a m (d a t a L o c a t i o n + ” / ”

+ t r i a l + ” ” + l e v e l , ” t e s t i n g ” , l e v e l) ;
47
48 }
49 I n d e x e d T i l e I n p u t S t r e a m i t i s = s t r e a m s [l e v e l] ;
50 byte [] b y t e s = i t i s . g e t T i l e (column , row) ;
51
52 }
53 f o r (i n t i = 0 ; i < s t r e a m s . l e n g t h ; i ++) {
54 i f (s t r e a m s [i] != n u l l) {
55 s t r e a m s [i] . c l o s e () ;
56 }
57 }
58
59 }
60
61 p r i v a t e s t a t i c vo id r e a d T i l e s D a t a b a s e (A r r a y L i s t<S t r i n g > l i n e s , i n t numreads

) {
62 t r y {
63 Connec t ion c = Dr ive rM anage r . g e t C o n n e c t i o n (” j d b c : p o s t g r e s q l : / / ” + ”

l o c a l h o s t / ” + ” t i l e d b ” , ” username ” , ” pas s word ”) ;
64 S t a t e m e n t s t m t ;
65 s t m t = c . c r e a t e S t a t e m e n t () ;
66 i n t c o u n t = 0 ;
67 f o r (S t r i n g s : l i n e s) {
68 i f (c o u n t == numreads) {
69 break ;
70 }
71 c o u n t ++;
72 S t r i n g [] d a t a = s . s p l i t (” : ”) ;
73 i n t l e v e l = I n t e g e r . p a r s e I n t (d a t a [0]) ;
74 l ong column = Long . pa rs eL ong (d a t a [1]) ;
75 l ong row = Long . pa rs eL ong (d a t a [2]) ;
76 S t r i n g tableName = ” t i l e s ” + l e v e l ;
77 R e s u l t S e t r s = s t m t . execu teQue ry (”SELECT image from ” +

tableName + ” where c o l =” + column + ” and row=” + row) ;
78 r s . n e x t () ;
79 byte [] b y t e s = r s . g e t B y t e s (1) ;
80 }
81 s t m t . c l o s e () ;
82 } ca tch (SQLExcept ion e1) {
83 e1 . p r i n t S t a c k T r a c e () ;
84 }
85
86 }

	7 Tile Storage
	7.1 Introduction to Tile Storage
	7.2 Storing Image Tiles as Separate Files
	7.3 Database-Based Tile Storage
	7.4 Custom File Formats
	7.5 Comparative Performance
	7.5.1 Writing Tests
	7.5.2 Reading Tests
	7.5.2.1 Random Tile Access Tests
	7.5.2.2 Effect of Cached Tile Data

	7.6 Storage of Tile Metadata
	7.7 Storage of Tiles in Multi-Resolution Image Formats
	7.8 Memory-Cached Tile Storage
	7.9 Online Tile Storage

