
Chapter 6
Optimization of Tile Creation

The algorithms for creating tile sets presented in the previous chapter represent ba-
sic approaches. There are many possible optimizations to make the process more
efficient. Some geospatial image sets are small enough that these optimizations are
not needed. However, very large image sets will almost always require optimiza-
tion to make their computation a tractable problem. In this chapter we will present
algorithms for the following tiling optimizations:

• Caching tile sets in memory to improve performance
• Partial reading of source images to conserve memory
• Multi-threading of tile creation algorithms
• Tile creation algorithms for distributed computing
• Partial updating of existing tiled image sets

Each of these techniques should be thoroughly considered by those developing a
tile creation system. They have been reduced to practice and are essential improve-
ments in an otherwise resource-inefficient process.

6.1 Caching Tile Sets in Memory to Improve Performance

Because reading from and writing to disk are often the most time consuming steps
in the tile creation process, we will present an optimized algorithm that minimizes
both of these. In the previous chapter we presented two approaches to tile creation:
pull-based and push-based. Push-based had the advantage of having to read source
images only one time. Pull-based allowed us to write tiled images only one time.
We decided to use the pull-based system because, with the addition of a source
image cache, we could reduce some of the re-reading of source images. We are still
left with the problem of having to re-read the tiled images as we create the lower
resolution zoom levels.

However, if our computer system has enough memory to hold all (or a significant
subset) or our tiled images, we can use a very efficient push-based approach. We

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 97
Principles and Practices, DOI 10.1007/978-1-4419-7631-4 6,
c© Springer Science+Business Media, LLC 2010

98 6 Optimization of Tile Creation

can loop through the source images, read each one once and only once, and apply
the data from the source images to our cached tiled images. Only when we have
completed looping through the source images will we write our tiled images to
memory. Furthermore, since our tiled images remain in memory, there is no need to
re-read them when creating the lower resolution levels.

In practice, few systems will have enough RAM to hold a complete tile set, un-
compressed, in memory. Therefore, we will need some logical scheme to sub-divide
our tile sets into manageable pieces. Recall an earlier example of a high-resolution
aerial imagery collection of the world’s 50 largest cities. This dataset has a logical
separation of tiles built into its structure. We could separately process, in memory,
the tiles for each city and merge the results later. For source image sets without
logical groupings, we would have to develop some method for geographically par-
titioning the tile sets. In the next chapter, we will discuss in some detail a general
method for solving this problem. For the purposes of the current section assume that
such a system is in place.

The algorithm for push-based tile creation with in memory tile cache is as fol-
lows:

1. Choose the base level for the tile set.
2. Determine the geographic bounds of the tile set. (This can be based on the bounds

of the source images.)
3. Determine the bounds of the tile set in tile coordinates.
4. Initialize the tile cache.
5. Iterate over the source images. For each source image, do the following:

a. Compute the bounds of the source image in tile coordinates.
b. Read the source image into memory.
c. Iterate over the tile set coordinates. For each tile do the following:

i. Compute the geographic bounds of the tile.
ii. Check the cache for the tile image. If it is not in the cache, create an empty

image and put it in the cache.
iii. Extract the required image data from the source image and store it in the

tiled image.

6. For each level from (base_level - 1) to 1, do the following.

a. Determine the bounds of the current tile level in tile coordinates.
b. Iterate over the tile set coordinates. For each tile, do the following:

i. Determine the four tiles from the higher level that contribute to the current
tile.

ii. Retrieve the four tile images from the cache or as many as exist.
iii. Combine the four tile images into a single, scaled-down image.
iv. Save the completed tiled image to the tile cache

7. Finalize the tile cache and store the images on disk

Before presenting the computer code for executing these steps, we will define
the data types in Listing 6.1. TileCache represents the mechanism for holding tiled

6.2 Partial Reading of Source Images 99

Listing 6.1 TileCache class.

1 a b s t r a c t c l a s s T i leCache {
2
3 p u b l i c a b s t r a c t Buffe red Image g e t T i l e (T i l e A d d r e s s t a) ;
4
5 p u b l i c a b s t r a c t vo id p u t T i l e (T i l e A d d r e s s t a , Buf fe red Image image) ;
6
7 }

images in memory. Additionally, we will make use of the data types defined in the
previous chapter. Listing 6.6 shows the algorithm for creating tiles with a memory
cache.

6.2 Partial Reading of Source Images

Each of the previously defined algorithms for tile creation assumed that source im-
ages can be read and held completely in memory. In some cases this is either not
possible or not practical. Some image formats, like MrSID or JPEG2000, support
very large images. It is not unusual to encounter images that are several gigabytes
compressed.

Uncompressed versions could be 10 times the original size. Even if sufficient
memory exists to hold the entire image, we may want to only process a part of the
image. Therefore, we need to examine techniques for partial reading of images. Five
logical methods for reading images are as follows:

• Whole Image: Only allows users to read entire images in one step.
• Scanlines: Allows users to read one or more scanlines in one step. This is the

most common method for low-level access to image pixels.
• Tiles: Allows users to read tiled subsections of images. This is usually only avail-

able with image formats that natively store images in subdivided tiles. The reader
should note that the concept of ”tile” in this context is slightly different from how
we have used it throughout the book. In this context, tiles represent rectangular
blocks of an image. They are not full images by themselves.

• Random Areas: Allows users to read user-defined rectangular areas of images.

The ability to read only a part of an image is dependent on both the file format
used to store the image and the software library used to decode the image. The pro-
cess is straightforward for uncompressed images. However, it may be impossible
with compressed image formats. Java and Python support reading a variety of im-
age formats. However, they do not allow partial reading of images. In general, the
most flexible methods for reading images can be found in their C/C++ reference im-
plementations. LIBJPEG, LIBPNG, and LIBTIFF are all open source libraries for
reading JPEG, PNG, and TIFF images, respectively. Both LIBJPEG and LIBPNG
support scanline based reading. LIBTIFF supports scanline and tile-based reading

100 6 Optimization of Tile Creation

depending on how the image was stored. The LizardTech GeoExpress Software
Development Kit (SDK) supports random area reading of MrSID and JPEG2000
images.

Two things are needed to integrate partial reading into our existing tile creation
algorithms. First, we need a method for reading random areas out of our image. This
can be done by directly reading the random areas where supported or by adapting
scanline or tile-based reading to provide random areas. Second, we need to adapt
our tile creation algorithm to account for a partial image instead of the full image.

6.2.1 Reading Random Areas from Source Images

We define a random area as a rectangular region within an image. It is defined by
the coordinates for the origin: x and y, and a width and height (See Figure 6.1).
Before we can extract the image data from the random area we have to determine
the geographic bounds of the intersection between our source image and our tiled
image. We then have to convert the geographic bounds of the intersection area into
source image coordinates.

Source Image

Random Area

Origin (x,y)

Height

Width

Fig. 6.1 Random area from a source image.

6.2 Partial Reading of Source Images 101

Listing 6.2 Compute the intersection of two bounding rectangles.

1 p u b l i c BoundingBox g e t I n t e r s e c t i o n (BoundingBox bb1 , BoundingBox bb2) {
2 i f (! bb1 . i n t e r s e c t s (bb2 . minx , bb2 . miny , bb2 . maxx , bb2 . maxy)) {
3 re turn n u l l ;
4 }
5 double minx = Math . max (bb1 . minx , bb2 . minx) ;
6 double miny = Math . max (bb1 . miny , bb2 . miny) ;
7 double maxx = Math . min (bb1 . maxx , bb2 . maxx) ;
8 double maxy = Math . min (bb1 . maxy , bb2 . maxy) ;
9 BoundingBox o u t = new BoundingBox (minx , miny , maxx , maxy) ;

10 re turn o u t ;
11 }

Listing 6.3 Convert geographic bounds to image bounds.

1 p u b l i c R e c t a n g l e c o n v e r t C o o r d i n a t e s (BoundingBox imageBounds , BoundingBox
subImageBounds , i n t imageWidth , i n t imageHe igh t) {

2
3 i n t x = (i n t) Math . round ((imageBounds . minx − subImageBounds . minx) / (

imageBounds . maxx − imageBounds . minx) ∗ imageWidth) ;
4 i n t y = imageHe igh t − (i n t) Math . round ((imageBounds . miny − subImageBounds .

miny) / (imageBounds . maxy − imageBounds . miny) ∗ imageHe igh t) − 1 ;
5 i n t wid th = (i n t) Math . round ((subImageBounds . maxx − subImageBounds . minx) /

(imageBounds . maxx − imageBounds . minx) ∗ imageWidth) ;
6 i n t h e i g h t = (i n t) Math . round ((subImageBounds . maxy − subImageBounds . miny) /

(imageBounds . maxy − imageBounds . miny) ∗ imageHe igh t) ;
7 R e c t a n g l e r = new R e c t a n g l e (x , y , width , h e i g h t) ;
8 re turn r ;
9 }

10
11 c l a s s R e c t a n g l e {
12 p u b l i c R e c t a n g l e (i n t x , i n t y , i n t width , i n t h e i g h t) {
13 t h i s . x = x ;
14 t h i s . y = y ;
15 t h i s . w id th = wid th ;
16 t h i s . h e i g h t = h e i g h t ;
17 }
18
19 i n t x ;
20 i n t y ;
21 i n t wid th ;
22 i n t h e i g h t ;
23 }

The algorithms shown in Listings 6.2 and 6.3 compute the intersection of two
bounding rectangles and convert that intersection from geographic coordinates to
image coordinates.

The result of Listing 6.3 is a rectangle in image coordinates. These coordinates
can be used to extract a region of pixels from a source image. The algorithms in List-
ings 6.7 and 6.8 demonstrate how to extract a partial image region with either scan-
line or tile-based access to a tiled image. Because we are demonstrating low-level
access to image data, we will not use a memory image object like Java’s Buffered-
Image. To represent in-memory images, we will use a simple array of ”byte” values
that represent RGB pixel values packed in 3 byte triplets and stored in row-major

102 6 Optimization of Tile Creation

order. Also, the reader should note that the algorithms presented in the following
section are written for maximum clarity, not necessarily efficiency. For example, we
use ”for” loops to copy blocks of bytes while many programming languages have
built-in functions that perform this step much faster.

Listing 6.7 presents Java code for reading an image region with scanline based
access. The steps for scanline reading of an image region are as follows:

1. Skip or seek to the first scanline needed.
2. For each scanline needed, do the following:

a. Read the entire scanline into a temporary buffer.
b. Copy the required subsection of the scanline into the final image buffer.

3. Return the final image buffer.

The algorithm uses the class ”ImagePointer” to represent a handle on a file or input
stream with encoded pixel data. The algorithm assumes the following functions are
available:

• ReadScanline: This function decodes a scanline of pixel data and copies it to the
provided buffer. After completion, it positions the image pointer for reading the
next available scanline.

• SkipScanlines: This function skips scanlines in the image and positions the im-
age point for reading at the next available scanline. Some image decoding imple-
mentations allow random access to scanlines, while others will have to decode
the scanlines that are skipped. This difference may affect performance and should
be considered by developers.

Listing 6.8 presents Java code for reading partial image regions with tile-based
image access. The algorithm assumes that our decoding implementation allows ran-
dom access to image tiles; this is modeled after LIBTIFF’s access routines that do
allow random access to image tiles for images that are stored in a certain way.

The steps for tile-based reading of an image region are as follows:

1. Determine the range of tiles that will need to be read.
2. Construct a temporary buffer with sufficient size to hold all of the needed tiles.
3. Iterate over the tiles, in row-major order. For each tile needed, do the following:

a. Position the image pointer to read at the needed tile.
b. Read the tile into the temporary buffer.

4. Trim the temporary buffer to match the desired region.

The algorithm also uses the class ”ImagePointer” to represent a handle on a file
or input stream with encoded pixel data. The algorithm assumes that the following
functions are available:

• SeekToTile: This function positions the image pointer to read the indicated tile.
• ReadTile: This function reads pixels from the current tile into the provided buffer.

6.3 Tile Creation with Parallel Computing 103

6.2.2 Tile Creation with Partial Source Image Reading

Listing 6.9 shows our previous algorithm for creating tiles in an adapted form to
handle partial reading of source images. The steps in this algorithm are as follows:

1. Chose the base level for the tile set.
2. Determine the geographic bounds of the tile set. (This can be based on the bounds

of the source images.)
3. Determine the bounds of the tile set in tile coordinates.
4. Initialize the tile storage mechanism.
5. Iterate over the tile set coordinates. For each tile, do the following:

a. Compute the geographic bounds of the specific tile.
b. Iterate over the source images. For each source image do the following:

i. Determine if the specific source image intersects the tile being created.
ii. If the source image and tile intersect,

A. Determine the intersection of tile and source image.
B. Convert the intersection from geographic to image coordinates.
C. Read the partial image data.
D. Convert the partial image data to a BufferedImage.
E. Draw the converted pixels to the tile image.

c. Save the completed tiled image to the tile storage mechanism.

6. Finalize the tile storage mechanism.

Within Listing 6.9, the abstract method ”ReadPartialImage” is meant as a place-
holder for the implementation specific techniques presented in the previous section.
The abstract method ”ConvertBytes” simply moves the pixel data from the byte
array into a Java BufferedImage. Listing 6.9 is a modified form of pull-based tile
creation, which should be used if all image tiles cannot be held in memory at the
same time. Push-based methods are still preferred if all tiles can be held in memory.

6.3 Tile Creation with Parallel Computing

Parallel computing is the use of multiple computing resources at the same time to
execute a given task. This can be realized by a using a group of computer systems
or by using a single computer system with multiple CPUs. In most cases, the tile
creation process must be parallelized to operate efficiently. The next two sections
present techniques for parallelization of the tile creation process from two very dif-
ferent perspectives.

104 6 Optimization of Tile Creation

Listing 6.4 Synchronized drawing.

1 s ynchronized (t i l e I m a g e) {
2 drawImageToImage (bi , cu r ren tBounds , t i l e I m a g e , t i l e B o u n d s) ;
3 }

6.3.1 Multi-Threading of Tile Creation Algorithms

Multi-threading is a programming technique that, if supported by the underlying
operating system and computer hardware, allows multiple tasks to execute at the
same time within the same process. A process is an instance of computer program
that is being executed. The requirement that the multiple threads of execution exist
within the same process is a critical constraint. This allows the multiple threads
to share memory with each other. For a detailed tutorial on threading models and
usage, the reader is encouraged to see [2].

Multi-threading has three common uses. First, multi-threading is used to manage
blocking input/output (I/O). Reading and writing from disk or network is relatively
slow, and multi-threading allows the program to perform other tasks while waiting
for I/O. A second use is to allow systems with multiple CPUs to process multiple
tasks at the same time. The final common use of multi-threading is to make programs
with graphical user interfaces more responsive. Multi-threading is useful for this
because one thread can be dedicated to updating the graphical interface, while others
perform the program’s work. The first two of these uses, managing blocking I/O and
processing multiple tasks, will be very useful in the tile creation process.

Our first algorithm is derived from our previous push-based tile creation algo-
rithms but adds multi-threading to reduce waiting for I/O. In this algorithm, we have
two threads: a reader thread and a tiler thread. The reader thread reads a source im-
age into memory and waits for it to be retrieved by the tiler thread. The tiler thread
retrieves decoded source images from the reader thread and creates tiles from it.
When the tiler thread takes an image from the reader thread, the reader thread de-
codes another image and waits for it to be taken. Java code for this process is pro-
vided by Listing 6.10. This algorithm should result in a performance improvement,
even on systems with just one CPU.

If our processing system has multiple CPUs, and current commodity systems
can have up to 48, we can use more than one thread to perform the tiling. This
requires two adjustments to the previous algorithm. First, we must create and start
more than one tiler thread. Second, we need to make sure that multiple tiling threads
are not accessing and writing to the same tile at the same time. To accomplish this,
we will change how we call the method for drawing from source image to buffered
images. We can wrap the call to the ”drawImageToImage” method in a synchronized
block that is synchronized on the target BufferedImage, see Listing 6.4. We need to
synchronize on only tileImage because that is the only thing getting changed by the
various threads. Listing 6.5 shows the method for starting and controlling multiple
tiling threads.

6.3 Tile Creation with Parallel Computing 105

Listing 6.5 Controlling multiple tile creation threads.

1 p u b l i c vo id c r e a t e T i l e s M u l t i p l e T h r e a d s (T i l eCache cache , SourceImage []
s ou rce Images , i n t bas eL eve l , i n t numberOfThreads) {

2 Reade rT hread r e a d e r = new Reade rT hread (s o u r c e I m a g e s) ;
3 r e a d e r . s t a r t () ;
4 T i l e r T h r e a d [] t i l e r T h r e a d s = new T i l e r T h r e a d [numberOfThreads] ;
5 f o r (i n t i = 0 ; i < t i l e r T h r e a d s . l e n g t h ; i ++) {
6 T i l e r T h r e a d t i l e r = new T i l e r T h r e a d (cache , ba s eL eve l , r e a d e r) ;
7 t i l e r . s t a r t () ;
8 t i l e r T h r e a d s [i] = t i l e r ;
9 }

10 f o r (i n t i = 0 ; i < t i l e r T h r e a d s . l e n g t h ; i ++) {
11 t r y {
12 t i l e r T h r e a d s [i] . j o i n () ;
13 } ca tch (I n t e r r u p t e d E x c e p t i o n e) {
14 e . p r i n t S t a c k T r a c e () ;
15 }
16 }
17 }

It is common to use a number of threads equal to the number of CPUs available.
However, in many cases the optimum number of threads can be larger or smaller.
This depends on the I/O bandwidth, speed of processors, amount of memory, and
other computer specific parameters. Only through trial and error can a developer
determine the optimal number of threads.

6.3.2 Tile Creation for Distributed Computing

In the previous section, our multiple lines of execution had the advantage of shared
memory to communicate and exchange data. This is not the case for distributed
computing since we are spreading our processing across multiple systems called
compute nodes. Groups of compute nodes are often called clusters. With distributed
computing, communication between nodes is done via a network. In some cases,
clusters are connected with dedicated high speed networks like InfiniBand or 10
Gigabit Ethernet. In other cases, compute nodes may be spread out geographically
and connected via the Internet. Clusters vary greatly in composition and use. Some
clusters fill the traditional role of supercomputers, while others are used to provide
services to the public. Some clusters are specially configured groups of identical
computer systems while others are ad hoc groupings. Others are made of virtual-
ized systems, dynamically allocated to meet on-demand needs. For the purposes
of tile creation, the issues to be considered are nearly the same irrespective of the
composition of the cluster.

The two primary tasks related to tile creation using computational clusters are
creating a system for breaking the tile creation process into smaller, independent
tasks and choosing a software framework for developing the solution. The exact
physical configuration of a cluster is less important than these two issues.

106 6 Optimization of Tile Creation

The problem of dividing the tile creation process into smaller, independent tasks
has already been introduced in Section 6.1. In that section we discussed the require-
ment for smaller tile creating tasks so that all the tiles could be held in memory. In
the context of distributed computing, we have to subdivide our tasks so that we can
distribute the source images in smaller collections to individual compute nodes and
then collect the created tiles from each node. In the next chapter, we will present
a tile storage solution that ties all of these requirements together and presents a
general solution for sub-dividing tile creation tasks.

Tile creation is typically an I/O bound problem. As discussed, reading and writ-
ing to disk or network is far slower than computing the content of tiles. Tiled image
calculations are relatively simple, linear pixel transformations. Given this property,
we must minimize data movement to make distributed tile creation a beneficial tech-
nique.

In the next sections, we will discuss several software frameworks for distributed
computing. In the context of distributed computing, the framework is a software ap-
plication programming interface (API) that facilitates sharing of data and managing
control flow of parallel programs. The chosen software framework usually drives
the logical configuration of the computational process. We will introduce the basic
concept of each framework and discuss how its properties relate to the tile creation
process.

6.3.2.1 MPI

A very common cluster framework is called MPI (Message Passing Interface). MPI
is a language independent communications protocol for parallel computing. MPI is
just a specification. To be used, a developer must select a concrete implementation
of the specification. Fortunately there are several implementations, both open source
and commercial. It is most commonly used with the C and FORTRAN languages,
although bindings exist for other languages like Java, Python, and the Matlab envi-
ronment.

MPI provides low-level mechanisms for moving data between nodes, control of
execution, and synchronization between independent processes. MPI implementa-
tions are very efficient and are a good choice for parallel applications that require
a lot of interaction between nodes, as is common for some types of scientific su-
percomputing. It is also a good candidate for parallel applications that are primarily
CPU bound. That is, those that require extensive computations with little I/O. In
contrast, tile creation is often I/O bound, especially when it utilizes multi-threading
techniques discussed in the previous section.

A fully functional tile creation system could be created utilizing MPI for node-to-
node communication and control. However, the relatively low-level nature of MPI
commands provides unneeded functionality and would make development a very
tedious process. For this reason, we recommend a higher level framework.

6.3 Tile Creation with Parallel Computing 107

6.3.2.2 MapReduce

MapReduce is a distributed computing model created by Google and designed to
allow computing problems to be easily solved in a multi-processing environment,
from a single shared-memory machine up to a large cluster of heterogeneous net-
worked computers [1]. Users provide map and reduce functions specific to their
problem. The MapReduce framework implementation coordinates the distributed
computing environment using these functions. The original Google MapReduce im-
plementation is not available to the public. Hadoop1 is an open source implementa-
tion which is commonly used outside of Google.

The MapReduce model is derived from common functional programming tech-
niques. The map function takes an input record in the form of a key/value pair. The
map function then processes that input and creates a new intermediate key/value
pair. The reduce function takes one of these intermediate keys as input as well as
its associated values. The function then merges these values, usually into a single
value. The MapReduce framework distributes input records to the map function and
receives its output. It then distributes those intermediate values to the reduce func-
tion and receives the merged results. Communication and errors are also managed
by the MapReduce framework.

MapReduce is most effectively used when the target problem is computationally
bound, the input has a large number of records, or the distributed computing plat-
form is large and complex. The MapReduce framework handles most of the manage-
ment while a user only need implement the details for a specific task process. The
benefits of MapReduce are dependent on the implementation being used. Different
MapReduce implementations may provide different I/O capabilities, management
capabilities, and error handling capabilities. For example, the Hadoop implementa-
tion does not allow random writes within files in its filesystem.

MapReduce may be used as a framework for tiling in a cluster, however, its capa-
bilities are not necessarily well aligned to the task because the tiling process is I/O
bound. The source data, large image files, and the output data, large tile files, must
be moved to and from the processing systems. The computational cost of processing
the imagery is much smaller than the I/O cost. The distributed file system used by
the MapReduce framework (HDFS for Hadoop) will incur as much or more I/O cost
by positioning files throughout the network. Retrieving data for use elsewhere will
incur the same penalties. Additionally, large clusters are not necessary to tile map
imagery. Fewer than 20 (potentially fewer than 10) processing nodes need be used
to process even the largest imagery datasets in a reasonable amount of time (a few
days). Given that the tile creation process is perfectly parallelizable, the complex-
ity of the overall tile processing system is not large enough to support the use of a
MapReduce framework.

The MapReduce model works well for a user such as Google because they have
a large number of diverse distributed computing problems that may be solved using
one framework. They also have a large and geographically diverse computing clus-

1 http://hadoop.apache.org/

http://hadoop.apache.org/

108 6 Optimization of Tile Creation

ter, which would be difficult to manage without a model such as MapReduce. Tiling
is not computationally bound, has a relatively limited number of image inputs, and
may be run on smaller cluster systems. Unless a MapReduce framework is useful to
other applications in the enterprise, it is not necessary to use for tiling. The cost of
installing the MapReduce framework combined with the cost of implementing the
tile processing in using the MapReduce framework will not be significantly lower
than simply creating an ad hoc clustering system.

6.3.2.3 Ad Hoc Clustering

Ad hoc clustering refers to distributed computing with no specific software frame-
work. Software frameworks often provide useful tools, but they also introduce over-
head either at execution time or development time. There are many ways to control
program execution and data sharing between networked computers. REXEC or Se-
cure Shell (SSH) can be used to remotely start and control processes on networked
systems. Server Message Block (SMB) and Network File System (NFS) can be used
to share data across a network through remotely mounted file systems.

Given the data intensive nature of tile creation processes, developers should cre-
ate distributed systems with very minimal interactions between systems. With this
constraint, sophisticated communication and control frameworks should be needed
only in cases where truly large numbers of CPUs are being controlled. We typi-
cally create multi-terabyte tile sets on a cluster with 64 CPUs in just a few hours of
compute time. Those CPUs are controlled with SSH commands and share data via
NFS.

6.4 Partial Updating of Existing Tiled Image Sets

In the previous sections on tile creation, we have assumed all tile sets are created
from source images in one single and final step. How, then, should we handle cases
in which new source images need to be added to an existing tile set? This is a
common problem for tile sets based on satellite or aerial imagery. These sensing
platforms can image only a small portion of the earth’s surface. A complete picture
of a sizable area will include source images taken over an extended time period.

The most basic approach to handling updated images is to simply discard the
previous tile set and create a new one each time new source images are available.
In some cases, this is the best approach. If a majority of the source images have
been updated or if the tile set is rather small, it may be just as efficient to start over.
However, if the existing tile set is large and the updates are relatively small, starting
over would be expensive or even impossible. Consider a very large example tile set
that takes two weeks to create. If some source images are updated every week, we
would have to start processing a new tile set as soon as the previous one finished.
To keep up-to-date, we would always be processing the large tile set, and most of

6.4 Partial Updating of Existing Tiled Image Sets 109

our processing would be redundant. This would be expensive both in our time and
computational resources.

A better approach is to integrate updated source images into existing tile sets by
altering the contents of only the tiles that are affected by the new source images.
Logically, the change in our tile algorithm is very simple. Instead of creating a new
empty image for a tile, we simply retrieve the existing tile from storage, update
its contents, and store the new image. The main difficulty lies in developing a tile
storage system capable of handling updated image files. Another challenge is that
we must maintain sufficient source image and tile metadata so we can detect which
source images should be added to the tile set. Both of these problems relate directly
to tile storage and will be discussed in the next chapter.

110 6 Optimization of Tile Creation

Listing 6.6 Push-based tile creation with a memory tile cache.

1 p u b l i c vo id c r e a t e C a c h e d T i l e s (T i l eCache cache , SourceImage [] s ource Images , i n t
b a s e S c a l e) {

2 / / De te r mine t h e g e o g r a p h i c bounds o f t h e t i l e s e t .
3 / / T h i s can be based on t h e bounds o f t h e s o u r c e images .
4 BoundingBox [] s ource ImageB ounds = new BoundingBox [s o u r c e I m a g e s . l e n g t h] ;
5 f o r (i n t i = 0 ; i < s ou rce ImageBounds . l e n g t h ; i ++) {
6 s ource ImageBounds [i] = s o u r c e I m a g e s [i] . bb ;
7 }
8 BoundingBox t i l e S e t B o u n d s = BoundingBox . un ion (s ource ImageBounds) ;
9 / / De te r mine t h e bounds o f t h e t i l e s e t i n t i l e c o o r d i n a t e s .

10 l ong t i l e s e t M i n c o l = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . minx + 1 8 0 . 0) /
(3 6 0 . 0 / Math . pow (2 . 0 , (double) b a s e S c a l e))) ;

11 l ong t i l e s e t M a x c o l = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . maxx + 1 8 0 . 0) /
(3 6 0 . 0 / Math . pow (2 . 0 , (double) b a s e S c a l e))) ;

12 l ong t i l e s e t M i n r o w = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . miny + 9 0 . 0) / (1 8 0 . 0
/ Math . pow (2 . 0 , (double) b a s e S c a l e − 1))) ;

13 l ong t i l e s e t M a x r o w = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . maxy + 9 0 . 0) / (1 8 0 . 0
/ Math . pow (2 . 0 , (double) b a s e S c a l e − 1))) ;

14
15 / / I t e r a t e over t h e s o u r c e images
16 f o r (i n t i = 0 ; i < s o u r c e I m a g e s . l e n g t h ; i ++) {
17 BoundingBox c u r r e n t B o u n d s = s o u r c e I m a g e s [i] . bb ;
18 / / Compute t h e bounds o f t h e s o u r c e image i n t i l e c o o r d i n a t e s
19 l ong minco l = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . minx + 1 8 0 . 0) / (3 6 0 . 0 / Math .

pow (2 . 0 , (double) b a s e S c a l e))) ;
20 l ong maxcol = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . maxx + 1 8 0 . 0) / (3 6 0 . 0 / Math .

pow (2 . 0 , (double) b a s e S c a l e))) ;
21 l ong minrow = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . miny + 9 0 . 0) / (1 8 0 . 0 / Math .

pow (2 . 0 , (double) b a s e S c a l e − 1))) ;
22 l ong maxrow = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . maxy + 9 0 . 0) / (1 8 0 . 0 / Math .

pow (2 . 0 , (double) b a s e S c a l e − 1))) ;
23 / / Read t h e s o u r c e image i n t o memory
24 Buffe red Image b i = readImage (s o u r c e I m a g e s [i] . name) ;
25 f o r (l ong c = minco l ; c <= maxcol ; c ++) {
26 f o r (l ong r = minrow ; r <= maxrow ; r ++) {
27 T i l e A d d r e s s a d d r e s s = new T i l e A d d r e s s (r , c , b a s e S c a l e) ;
28 / / Compute t h e g e o g r a p h i c bounds o f t h e s p e c i f i c t i l e .
29 BoundingBox t i l e B o u n d s = a d d r e s s . ge tBoundingBox () ;
30 / / Check t h e Ti l eCache f o r t h e t i l e d image
31 Buffe red Image t i l e I m a g e = cache . g e t T i l e (a d d r e s s) ;
32 i f (t i l e I m a g e == n u l l) {
33 t i l e I m a g e = new Buffe red Image (TILE SIZE , TILE SIZE , Buf fe red Image .

TYPE INT ARGB) ;
34 cache . p u t T i l e (a d d r e s s , t i l e I m a g e) ;
35 / / E x t r a c t t h e r e q u i r e d image da ta from t h e s o u r c e image and s t o r e i t i n

t h e t i l e d image .
36 drawImageToImage (bi , s o u r c e I m a g e s [i] . bb , t i l e I m a g e , t i l e B o u n d s) ;
37 / / Note t h a t s i n c e t i l e I m a g e i s a p o i n t e r t o t h e b u f f e r e d i m a g e a l r e a d y

i n t h e cache ,
38 / / we don ’ t have t o p u t i t back i n a f t e r each us e .
39 }
40 }
41 }
42 }
43 f o r (i n t s c a l e = b a s e S c a l e − 1 ; s c a l e <= 1 ; s c a l e −−) {
44 / / De te r mine t h e bounds o f t h e c u r r e n t t i l e s c a l e i n t i l e c o o r d i n a t e s .
45 / / r a t i o w i l l be us ed t o r educe t h e o r i g i n a l t i l e s e t bound ing c o o r d i n a t e s t o

t h o s e a p p l i c a b l e f o r each s u c c e s s i v e s c a l e .
46 i n t r a t i o = (i n t) Math . pow (2 , b a s e S c a l e − s c a l e) ;
47 l ong curMinCol = (l ong) Math . f l o o r (t i l e s e t M i n c o l / r a t i o) ;
48 l ong curMaxCol = (l ong) Math . f l o o r (t i l e s e t M a x c o l / r a t i o) ;
49 l ong curMinRow = (l ong) Math . f l o o r (t i l e s e t M i n r o w / r a t i o) ;
50 l ong curMaxRow = (l ong) Math . f l o o r (t i l e s e t M a x r o w / r a t i o) ;
51 / / I t e r a t e over t h e t i l e s e t c o o r d i n a t e s .
52 f o r (l ong c = curMinCol ; c <= curMaxCol ; c ++) {
53 f o r (l ong r = curMinRow ; r <= curMaxRow ; r ++) {

6.4 Partial Updating of Existing Tiled Image Sets 111

54 / / For each t i l e , do t h e f o l l o w i n g :
55 T i l e A d d r e s s a d d r e s s = new T i l e A d d r e s s (r , c , s c a l e) ;
56 / / De te r mine t h e FOUR t i l e s from t h e h i g h e r s c a l e t h a t c o n t r i b u t e t o t h e

c u r r e n t t i l e .
57 T i l e A d d r e s s t i l e 0 0 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , s c a l e + 1) ;
58 T i l e A d d r e s s t i l e 0 1 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , s c a l e + 1) ;
59 T i l e A d d r e s s t i l e 1 0 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , s c a l e + 1) ;
60 T i l e A d d r e s s t i l e 1 1 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , s c a l e + 1) ;
61 / / R e t r i e v e t h e f o u r t i l e images , or as many as e x i s t .
62 Buffe red Image image00 = cache . g e t T i l e (t i l e 0 0) ;
63 Buffe red Image image01 = cache . g e t T i l e (t i l e 0 1) ;
64 Buffe red Image image10 = cache . g e t T i l e (t i l e 1 0) ;
65 Buffe red Image image11 = cache . g e t T i l e (t i l e 1 1) ;
66 / / Combine t h e f o u r t i l e images i n t o a s i n g l e , s c a l e d−down image .
67 Buffe red Image t i l e I m a g e = new Buffe red Image (TILE SIZE , TILE SIZE ,

Buf fe red Image . TYPE INT ARGB) ;
68 Graphics2D g = (Graphics2D) t i l e I m a g e . g e t G r a p h i c s () ;
69 g . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION, R e n d e r i n g H i n t s .

VALUE INTERPOLATION BILINEAR) ;
70 boolean hadImage = f a l s e ;
71 i f ((image00 != n u l l)) {
72 g . drawImage (image00 , 0 , C o n s t a n t s . TILE SIZE HALF , C o n s t a n t s .

TILE SIZE HALF , C o n s t a n t s . TILE SIZE , 0 , 0 , C o n s t a n t s . TILE SIZE ,
73 C o n s t a n t s . TILE SIZE , n u l l) ;
74 hadImage = true ;
75 }
76 i f ((image10 != n u l l)) {
77 g . drawImage (image10 , C o n s t a n t s . TILE SIZE HALF , C o n s t a n t s . TILE SIZE HALF

, C o n s t a n t s . TILE SIZE , C o n s t a n t s . TILE SIZE , 0 , 0 ,
78 C o n s t a n t s . TILE SIZE , C o n s t a n t s . TILE SIZE , n u l l) ;
79 hadImage = true ;
80 }
81 i f ((image01 != n u l l)) {
82 g . drawImage (image01 , 0 , 0 , C o n s t a n t s . TILE SIZE HALF , C o n s t a n t s .

TILE SIZE HALF , 0 , 0 , C o n s t a n t s . TILE SIZE ,
83 C o n s t a n t s . TILE SIZE , n u l l) ;
84 hadImage = true ;
85 }
86 i f ((image11 != n u l l)) {
87 g . drawImage (image11 , C o n s t a n t s . TILE SIZE HALF , 0 , C o n s t a n t s . TILE SIZE ,

C o n s t a n t s . TILE SIZE HALF , 0 , 0 , C o n s t a n t s . TILE SIZE ,
88 C o n s t a n t s . TILE SIZE , n u l l) ;
89 hadImage = true ;
90 }
91 / / s ave t h e comple ted t i l e d image t o t h e t i l e s t o r a g e mechanism .
92 i f (hadImage) {
93 cache . p u t T i l e (a d d r e s s , t i l e I m a g e) ;
94 }
95 }
96 }
97 }
98 }

112 6 Optimization of Tile Creation

Listing 6.7 Read an image region with scanline based access.

1 a b s t r a c t vo id s k i p S c a n l i n e s (I m a g e P o i n t e r im , i n t num) ;
2
3 a b s t r a c t vo id r e a d S c a n l i n e (I m a g e P o i n t e r im , byte [] s c a n l i n e B u f f e r) ;
4
5 byte [] r e a d S c a n l i n e s (I m a g e P o i n t e r im , i n t imageWidth , i n t imageHeight , i n t x ,

i n t y , i n t h e i g h t , i n t wid th) {
6 byte [] ou tpu t Image = new byte [imageWidth ∗ imageHe igh t ∗ 3] ;
7 i n t s t a r t S c a n l i n e = y − 1 ;
8 s k i p S c a n l i n e s (im , s t a r t S c a n l i n e) ;
9 byte [] t empBuffe r = new byte [imageWidth ∗ 3] ;

10 i n t imageCoun te r = 0 ;
11 i n t s c a n l i n e O f f s e t = x ∗ 3 ;
12 f o r (i n t i = 0 ; i < h e i g h t ; i ++) {
13 r e a d S c a n l i n e (im , t empBuffe r) ;
14 f o r (i n t j = 0 ; j < (w id th ∗ 3) ; j ++) {
15 ou tpu t Image [imageCoun te r] = tempBuffe r [j + s c a n l i n e O f f s e t] ;
16 imageCoun te r ++;
17 }
18 }
19 re turn ou tpu t Image ;
20 }

Listing 6.8 Read a partial image region with tile-based image access.

1 a b s t r a c t vo id s e e k T o T i l e (I m a g e P o i n t e r im , i n t i , i n t j) ;
2
3 a b s t r a c t vo id r e a d T i l e (I m a g e P o i n t e r im , byte [] t i l e B u f f e r) ;
4
5 byte [] r e a d T i l e s (I m a g e P o i n t e r im , i n t imageWidth , i n t imageHeight , i n t

t i l e W i d t h , i n t t i l e H e i g h t , i n t x , i n t y , i n t h e i g h t , i n t wid th) {
6
7 / / De te r mine t h e range o f t i l e s t h a t w i l l need t o be r ead .
8 double n u m t i l e s = (Math . c e i l ((double) imageWidth / t i l e W i d t h)) ∗ (Math .

c e i l ((double) imageHe igh t / t i l e H e i g h t)) ;
9

10 i n t s t a r t X T i l e = (i n t) Math . f l o o r ((double) x / t i l e W i d t h) ;
11 i n t s t a r t Y T i l e = (i n t) Math . f l o o r ((double) y / t i l e H e i g h t) ;
12 i n t endx = x + wid th − 1 ;
13 i f (endx > imageWidth) {
14 endx = imageWidth ;
15 }
16 i n t endy = y + h e i g h t − 1 ;
17 i f (endy > imageHe igh t) {
18 endy = imageHe igh t ;
19 }
20 i n t endXT i le = (i n t) Math . f l o o r ((double) endx / t i l e W i d t h) ;
21 i n t endYT i le = (i n t) Math . f l o o r ((double) endy / t i l e H e i g h t) ;
22
23 i n t t i l e S i z e B y t e s = t i l e W i d t h ∗ t i l e H e i g h t ∗ 3 ;
24
25 i n t numt i l e s T oDecode = (endXT i le − s t a r t X T i l e + 1) ∗ (endYT i le −

s t a r t Y T i l e + 1) ;
26
27 / / C o n s t r u c t a tempor ar y b u f f e r w i t h s u f f i c i e n t s i z e t o ho ld a l l o f t h e

needed t i l e s .
28 byte [] tempImage = new byte [numt i l e s T oDecode ∗ t i l e S i z e B y t e s] ;
29
30 i n t tempImageRowWidth = (endXT i le − s t a r t X T i l e + 1) ∗ 3 ∗ t i l e W i d t h ;
31
32 byte [] t i l e B u f f e r = new byte [t i l e S i z e B y t e s] ;
33
34 i n t s t a r t Y T i l e C o o r d = s t a r t Y T i l e ∗ t i l e H e i g h t ;
35 i n t s t a r t X T i l e C o o r d = s t a r t X T i l e ∗ t i l e W i d t h ;
36 i n t b u f f e r O f f s e t = 0 ;
37 / / I t e r a t e over t h e t i l e s , i n row−major o r d e r .

6.4 Partial Updating of Existing Tiled Image Sets 113

38 f o r (i n t t y = s t a r t Y T i l e ; y <= endYT i le ; y ++) {
39 f o r (i n t t x = s t a r t X T i l e ; x <= endXT i le ; x ++) {
40 / / P o s i t i o n t h e image p o i n t e r t o r ead a t t h e needed t i l e .
41 s e e k T o T i l e (im , tx , t y) ;
42 / / Read t h e t i l e i n t o t h e tempor ar y b u f f e r .
43 r e a d T i l e (im , t i l e B u f f e r) ;
44 i n t b u f f e r S t a r t Y T i l e = (t y − s t a r t Y T i l e) ;
45 i n t b u f f e r S t a r t X T i l e = (t x − s t a r t X T i l e) ;
46 i n t b u f f e r S t a r t Y P i x e l = b u f f e r S t a r t Y T i l e ∗ t i l e H e i g h t ;
47 f o r (i n t m = 0 ; m < t i l e H e i g h t ; m++) {
48 i n t s t a r t R o w = (b u f f e r S t a r t Y P i x e l + m) ∗ tempImageRowWidth ;
49 i n t s t a r t C o l u m n = b u f f e r S t a r t X T i l e ∗ 3 ∗ t i l e W i d t h ;
50 f o r (i n t n = 0 ; n < t i l e W i d t h ∗ 3 ; n ++) {
51 tempImage [s t a r t R o w + s t a r t C o l u m n + n] = t i l e B u f f e r [m ∗

t i l e W i d t h ∗ 3 + n] ;
52 }
53 }
54 }
55 }
56 / / Trim t h e tempor ar y b u f f e r t o match t h e d e s i r e d r e g i o n .
57 i n t x O f f s e t = x − s t a r t X T i l e ∗ t i l e W i d t h ;
58 i n t y O f f s e t = y − s t a r t Y T i l e ∗ t i l e H e i g h t ;
59 byte [] ou tpu t Image = new byte [imageWidth ∗ imageHe igh t ∗ 3] ;
60 i n t imageCoun te r = 0 ;
61 f o r (i n t i = 0 ; i < imageHe igh t ; i ++) {
62 i n t r o w O f f s e t = (y O f f s e t + i) ∗ t i l e W i d t h ;
63 f o r (i n t j = 0 ; j < imageWidth ; j ++) {
64 i n t c o l u m n O f f s e t = j + y O f f s e t ;
65 ou tpu t Image [imageCoun te r] = tempImage [r o w O f f s e t + c o l u m n O f f s e t

] ;
66 imageCoun te r ++;
67 }
68 }
69 re turn ou tpu t Image ;
70 }

Listing 6.9 Tile creation with partial source image reading.

1 a b s t r a c t byte [] r e a d P a r t i a l I m a g e (S t r i n g name , i n t x , i n t y , i n t width , i n t
h e i g h t) ;

2
3 a b s t r a c t Buffe red Image c o n v e r t B y t e s (byte [] p i x e l s) ;
4
5 p u b l i c vo id c r e a t e T i l e s W i t h P a r t i a l R e a d i n g (SourceImage [] s ource Images ,

T i l e O u t p u t S t r e a m t i l e O u t p u t S t r e a m , i n t b a s e L e v e l) {
6
7 / / De te r mine t h e g e o g r a p h i c bounds o f t h e t i l e s e t .
8 / / T h i s can be based on t h e bounds o f t h e s o u r c e images .
9 BoundingBox [] s ource ImageBounds = new BoundingBox [s o u r c e I m a g e s . l e n g t h] ;

10 f o r (i n t i = 0 ; i < s ou rce ImageBounds . l e n g t h ; i ++) {
11 s ource ImageBounds [i] = s o u r c e I m a g e s [i] . bb ;
12 }
13 BoundingBox t i l e S e t B o u n d s = BoundingBox . un ion (s ource ImageBounds) ;
14 / / De te r mine t h e bounds o f t h e t i l e s e t i n t i l e c o o r d i n a t e s .
15 l ong minco l = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . minx + 1 8 0 . 0) / (3 6 0 . 0 /

Math . pow (2 . 0 , (double) b a s e L e v e l))) ;
16 l ong maxcol = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . maxx + 1 8 0 . 0) / (3 6 0 . 0 /

Math . pow (2 . 0 , (double) b a s e L e v e l))) ;
17 l ong minrow = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . miny + 9 0 . 0) / (1 8 0 . 0 /

Math . pow (2 . 0 , (double) b a s e L e v e l − 1))) ;
18 l ong maxrow = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . maxy + 9 0 . 0) / (1 8 0 . 0 /

Math . pow (2 . 0 , (double) b a s e L e v e l − 1))) ;
19
20 / / I t e r a t e over t h e t i l e s e t c o o r d i n a t e s .
21 f o r (l ong c = minco l ; c <= maxcol ; c ++) {
22 f o r (l ong r = minrow ; r <= maxrow ; r ++) {

114 6 Optimization of Tile Creation

23 T i l e A d d r e s s a d d r e s s = new T i l e A d d r e s s (r , c , b a s e L e v e l) ;
24 / / Compute t h e g e o g r a p h i c bounds o f t h e s p e c i f i c t i l e .
25 BoundingBox t i l e B o u n d s = a d d r e s s . ge tBoundingBox () ;
26 / / I t e r a t e over t h e s o u r c e images .
27 Buffe red Image t i l e I m a g e = new Buffe red Image (TILE SIZE ,

TILE SIZE , Buf fe red Image . TYPE INT ARGB) ;
28 f o r (i n t i = 0 ; i < s o u r c e I m a g e s . l e n g t h ; i ++) {
29 / / De te r mine i f t h e s p e c i f i c s o u r c e image i n t e r s e c t s t h e

t i l e b e i n g c r e a t e d .
30 i f (s o u r c e I m a g e s [i] . bb . i n t e r s e c t s (t i l e B o u n d s . minx ,

t i l e B o u n d s . miny , t i l e B o u n d s . maxx , t i l e B o u n d s . maxy)) {
31 / / De te r mine i n t e r s e c t i o n o f t i l e and s o u r c e image
32 BoundingBox p a r t i a l B B = g e t I n t e r s e c t i o n (s o u r c e I m a g e s [i

] . bb , t i l e B o u n d s) ;
33 / / Conver t g e o g r a p h i c c o o r d i n a t e s t o image c o o r d i n a t e s
34 R e c t a n g l e r e c t a n g l e = c o n v e r t C o o r d i n a t e s (s o u r c e I m a g e s [i

] . bb , p a r t i a l B B , s o u r c e I m a g e s [i] . width ,
s o u r c e I m a g e s [i] . h e i g h t) ;

35 / / Read p a r t i a l image da ta
36 byte [] d a t a = r e a d P a r t i a l I m a g e (s o u r c e I m a g e s [i] . name ,

r e c t a n g l e . x , r e c t a n g l e . y , r e c t a n g l e . width ,
r e c t a n g l e . h e i g h t) ;

37 / / c o n v e r t t h e p i x e l b y t e s t o a B u f f e r e d I m a g e
38 Buffe red Image b i = c o n v e r t B y t e s (d a t a) ;
39 / / Draw t h e c o n v e r t e d p i x e l s t o t h e t i l e image
40 drawImageToImage (bi , p a r t i a l B B , t i l e I m a g e , t i l e B o u n d s) ;
41 }
42 }
43 / / Save t h e comple ted t i l e d image t o t h e t i l e s t o r a g e mechanism .
44 t i l e O u t p u t S t r e a m . w r i t e T i l e (a d d r e s s , t i l e I m a g e) ;
45 }
46 }
47 }

Listing 6.10 Tile creation with a reader and tiler threads.

1 p u b l i c vo id c r e a t e T i l e s T w o T h r e a d s (T i l eCache cache , SourceImage [] s ource Images ,
i n t b a s e L e v e l) {

2 Reade rT hread r e a d e r = new Reade rT hread (s o u r c e I m a g e s) ;
3 r e a d e r . s t a r t () ;
4 T i l e r T h r e a d t i l e r = new T i l e r T h r e a d (cache , ba s eL eve l , r e a d e r) ;
5 t i l e r . s t a r t () ;
6 t i l e r . j o i n () ;
7 }
8
9 c l a s s T i l e r T h r e a d extends Thread {

10
11 p r i v a t e T i leCache cache ;
12 p r i v a t e i n t b a s e L e v e l ;
13 p r i v a t e Reade rT hread r e a d e r ;
14
15 p u b l i c T i l e r T h r e a d (T i l eCache t i l e C a c h e , i n t baseL eve l , Reade rT hread

r e a d e r) {
16 t h i s . c ache = t i l e C a c h e ;
17 t h i s . b a s e L e v e l = b a s e L e v e l ;
18 t h i s . r e a d e r = r e a d e r ;
19 }
20
21 p u b l i c vo id run () {
22
23 ImageWrapper image = r e a d e r . ge t Image () ;
24 whi le (image != n u l l) {
25 BoundingBox c u r r e n t B o u n d s = image . s i . bb ;
26 l ong minco l = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . minx + 1 8 0 . 0) /

(3 6 0 . 0 / Math . pow (2 . 0 , (double) b a s e L e v e l))) ;

6.4 Partial Updating of Existing Tiled Image Sets 115

27 l ong maxcol = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . maxx + 1 8 0 . 0) /
(3 6 0 . 0 / Math . pow (2 . 0 , (double) b a s e L e v e l))) ;

28 l ong minrow = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . miny + 9 0 . 0) /
(1 8 0 . 0 / Math . pow (2 . 0 , (double) b a s e L e v e l − 1))) ;

29 l ong maxrow = (l ong) Math . f l o o r ((c u r r e n t B o u n d s . maxy + 9 0 . 0) /
(1 8 0 . 0 / Math . pow (2 . 0 , (double) b a s e L e v e l − 1))) ;

30 Buf fe red Image b i = image . b i ;
31 f o r (l ong c = minco l ; c <= maxcol ; c ++) {
32 f o r (l ong r = minrow ; r <= maxrow ; r ++) {
33 T i l e A d d r e s s a d d r e s s = new T i l e A d d r e s s (r , c , b a s e L e v e l) ;
34 BoundingBox t i l e B o u n d s = a d d r e s s . ge tBoundingBox () ;
35 Buffe red Image t i l e I m a g e = cache . g e t T i l e (a d d r e s s) ;
36 i f (t i l e I m a g e == n u l l) {
37 t i l e I m a g e = new Buffe red Image (TILE SIZE , TILE SIZE ,

Buf fe red Image . TYPE INT ARGB) ;
38 cache . p u t T i l e (a d d r e s s , t i l e I m a g e) ;
39
40 }
41 drawImageToImage (bi , cu r ren tBounds , t i l e I m a g e ,

t i l e B o u n d s) ;
42 }
43 }
44 image = r e a d e r . ge t Image () ;
45 }
46 }
47 }
48
49 c l a s s Reade rT hread extends Thread {
50
51 L i s t<SourceImage> images = C o l l e c t i o n s . s y n c h r o n i z e d L i s t (new A r r a y L i s t<

SourceImage >()) ;
52
53 ImageWrapper c u r r e n t I m a g e = n u l l ;
54
55 p u b l i c Reade rT hread (SourceImage [] images) {
56 f o r (i n t i = 0 ; i < images . l e n g t h ; i ++) {
57 t h i s . images . add (images [i]) ;
58 }
59 }
60
61 p u b l i c vo id run () {
62
63 whi le (images . s i z e () > 0) {
64 i f (c u r r e n t I m a g e == n u l l) {
65 SourceImage s i = images . remove (0) ;
66 Buf fe red Image b i = readImage (s i . name) ;
67 ImageWrapper iw = new ImageWrapper (s i , b i) ;
68 c u r r e n t I m a g e = iw ;
69 }
70 t r y {
71 Thread . s l e e p (2 0 0) ;
72 } ca tch (I n t e r r u p t e d E x c e p t i o n e) {
73 e . p r i n t S t a c k T r a c e () ;
74 }
75 }
76
77 }
78
79 p u b l i c s ynchronized ImageWrapper ge t Image () {
80 ImageWrapper r e t u r n V a l = n u l l ;
81 whi le (c u r r e n t I m a g e == n u l l) {
82 i f (images . s i z e () == 0) {
83 re turn n u l l ;
84 }
85 t r y {
86 Thread . s l e e p (4 0 0) ;
87 } ca tch (I n t e r r u p t e d E x c e p t i o n e) {

116 6 Optimization of Tile Creation

88 e . p r i n t S t a c k T r a c e () ;
89 }
90 }
91 r e t u r n V a l = c u r r e n t I m a g e ;
92 c u r r e n t I m a g e = n u l l ;
93
94 re turn r e t u r n V a l ;
95 }
96 }
97
98 c l a s s ImageWrapper {
99

100 Buffe red Image b i ;
101 SourceImage s i ;
102
103 p u b l i c ImageWrapper (SourceImage s i , Buf fe red Image b i) {
104 super () ;
105 t h i s . s i = s i ;
106 t h i s . b i = b i ;
107 }
108
109 }

References

1. Dean, J., Ghemawat, S.: Map Reduce: Simplified data processing on large clusters. Communi-
cations of the ACM-Association for Computing Machinery-CACM 51(1), 107–114 (2008)

2. Oaks, S.: Java Threads. O’Reilly (2004)

	6 Optimization of Tile Creation
	6.1 Caching Tile Sets in Memory to Improve Performance
	6.2 Partial Reading of Source Images
	6.2.1 Reading Random Areas from Source Images
	6.2.2 Tile Creation with Partial Source Image Reading

	6.3 Tile Creation with Parallel Computing
	6.3.1 Multi-Threading of Tile Creation Algorithms
	6.3.2 Tile Creation for Distributed Computing
	6.3.2.1 MPI
	6.3.2.2 MapReduce
	6.3.2.3 Ad Hoc Clustering

	6.4 Partial Updating of Existing Tiled Image Sets
	References

