
Chapter 5
Image Tile Creation

The previous chapter explained the techniques for manipulating geospatial images.
This chapter will build on those techniques to explain how a system can be con-
structed to create sets of tiled geospatial images. In general terms, there are two
types of tile generation systems: those that pre-render tiled images and those that
render the images in direct response to user queries. Pre-rendering the tiles can
require significant processing time, including processing tiles that may never be
viewed by users. Rendering tiles just-in-time can save setup time but may require
users to wait longer for requested maps. Beyond these differences there are signif-
icant technical reasons that usually force us to choose one type of system over the
other.

Systems that serve tiled geospatial images from rendered vector content almost
always use a form of just-in-time tiling. There are three reasons for this:

• Storage space: Rendered image tiles require a significant amount of storage space
relative to vector map content. A collection of geospatial features might be 100
megabytes in vector form but could grow to several terabytes when rendered over
several different levels.

• Processing time: Pre-rendering image tiles requires a significant amount of time,
and many of those tiles may be in geographic areas of little interest to users. The
most efficient method of deciding what tiles to render is to wait until they are
requested by actual users.

• Overview images: Overview images, i.e., very low zoom level images, can be
rendered directly from geospatial vectors. Unlike raster based tile systems, there
is no need to render the high level views first and then generate scaled down
versions.

Conversely, tiling systems that primarily draw from sets of geospatial imagery typ-
ically pre-render all image tiles. There are two reasons for this:

• Processing time: Reformatting, scaling, and reprojecting of imagery are often
required in the tile creation process. These steps can be too time consuming for
users to wait for in real time.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 81
Principles and Practices, DOI 10.1007/978-1-4419-7631-4 5,
c© Springer Science+Business Media, LLC 2010

82 5 Image Tile Creation

• Overview images: Low level images must be created from higher resolution ver-
sions of the same imagery. This requires the higher levels to be completely ren-
dered before the low resolution levels can be completed.

Since the primary focus of this book is tiling systems based on imagery, this
chapter will examine tiling systems that pre-render image tiles. Chapter 11 will
discuss tiling systems based on vector geospatial data.

5.1 Tile Creation from Random Images

Tiled image sets are created from collections of random source images. We call the
source images random because, unlike our tiled images, the source images may have
sizes and boundaries that follow no specific system. Collections of source images
come in varied forms. For example, we might have high-resolution aerial imagery
of the world’s 50 largest cities. Each city is represented by a small number (5 to
50) of large source images (approximately 10,000 by 10,000 pixels). Each of the
source images can have a different size, cover a different portion of the earth, or
have a different map resolution. Taken together, all of the source images for all of
the cities form a single map layer. Common file formats for source images include
GEOTIFF, MrSID, and GEO-JPEG2000. However, almost any image format can
be used, as long as the geospatial properties of the image are encoded either in the
image file or along side it.

At this point it is useful to define the concept of a map layer. Layers are typically
the atomic unit for requesting map data from web-based geospatial systems. A map
layer is a logical grouping of geospatial information. The term ”layer” is used to
convey the idea of multiple graphical layers stacked in some order in a visual dis-
play. Layers are formed by logical groupings of geospatial data. For example, an
”entertainment” map layer would include locations of movie theaters, parks, zoos,
museums, etc. In the case of imagery, we will formally define a layer as a single
map view for a given geographic area.

Corallary 1 For a single layer, there exists one and only one tile image for a specific
tile address.

For example, consider that we have aerial imagery over Alaska. The snow cover
over Alaska varies from month to month. We might have source image sets for every
month of the year. Each of those image sets covers the same area. For a given tile
address, each image set would have a tiled image with different content. Therefore,
we have to group them into separate layers, one layer for the image set for each
month.

5.2 Tile Creation Preliminaries 83

5.2 Tile Creation Preliminaries

For the purposes of this chapter, we will consider the problem of taking a set of
random source images and converting them into a layer of tiled images. Since a set
of random source images will have images of varying size and resolution, the tile
creation process is simply the process of scaling and shaping image data from the
source images into tile-sized pieces.

5.2.1 Bottom-Up Tile Creation

Each layer of tile images has multiple levels. A tile set starts with a base level; the
base level is the level with the highest number and the highest resolution imagery.
Each subsequent level is a lower version of the level preceding it. Figure 5.1 shows
three levels of the same image layer. In this example, Level 3 is the base level. Levels
2 and 1 are lower resolution versions of the same data. The images in Figure 5.1
show the tile boundaries according to the logical tile scheme presented in Chapter
2.

Definition 1 The base level for a tile layer is the highest resolution level, the level
with the highest number for that tile layer.

In the tile creation process, the base level is almost always completed, at least
partially, before lower resolution levels. Therefore, we can say that tile creation is a
bottom-up process in terms of map scale.

5.2.2 Choosing the Base Level for a Set of Source Images

Before a tile set can be created from a set of random images, the base level must
be chosen. In some cases, a target base level is determined ahead of time. It could
be required to integrate with other tile layers or client software. However, in most
cases the base level is chosen to closely match the resolution of the sources images.
A given set of random source images is unlikely to exactly match one of our prede-
termined level resolutions. So we must select the tile level that most closely matches
our source images. Table 5.1 shows the first 19 levels in our logical tile scheme with
512 by 512 pixel tiles. It gives the number of horizontal and vertical tiles for each
level along with each level’s degrees per pixel (DPP). These are calculated using the
formulas provided in Chapter 2. The DPP values will be used to choose base levels
for sets of source images.

To perform this analysis, we will require some information from each of the
source images in our set: image width and image height in pixels and minimum and
maximum vertical and horizontal coordinates in degrees. As shown in Listing 5.1,
we can compute the DPP value for our set of random images. We compute the DPP

84 5 Image Tile Creation

Fig. 5.1 Multiple zoom levels of the same layer.

value by combining the vertical and horizontal dimensions of the images. This is a
valid procedure for tiled image projections that preserve the same DPP in each di-
mension as our logical tile scheme does. The calculations are performed in degrees.
Source images stored in other projections might use meters with its coordinate sys-
tem. In those cases, conversion to degrees is required. Suppose that for a set of
source images, we have computed a DPP value of 0.03. This falls in between levels
4 and 5. If we choose level 4, we will be scaling DOWN our source images and thus
losing a little bit of data from the source images. If we choose level 5, we will be
scaling UP our source images. We will preserve all the data but take up more storage
space.

For example, if our source image set takes up 10,000,000 bytes uncompressed
with a DPP value of 0.03, when converted to level 4 it will take up 4,660,000 bytes,

5.2 Tile Creation Preliminaries 85

Level Horizontal Tiles Vertical Tiles Degrees Per Pixel
1 2 1 0.3515625
2 4 2 0.17578125
3 8 4 0.087890625
4 16 8 0.0439453125
5 32 16 0.02197265625
6 64 32 0.010986328125
7 128 64 0.0054931640625
8 256 128 0.00274658203125
9 512 256 0.001373291015625

10 1024 512 0.000686645507812
11 2048 1024 0.000343322753906
12 4096 2048 0.000171661376953
13 8192 4096 0.000085830688477
14 16384 8192 0.000042915344238
15 32768 16384 0.000021457672119
16 65536 32768 0.00001072883606
17 131072 65536 0.00000536441803
18 262144 131072 0.000002682209015
19 524288 262144 0.000001341104507

Table 5.1 Number of tiles and degrees per pixel for each level.

Listing 5.1 Computation of degrees per pixel for a set of random source images.

1 ddpX = 0 . 0
2 ddpY = 0 . 0
3 c o u n t = 0
4
5 f o r image in images :
6 c o u n t = c o u n t + 1
7 ddpX = ddpX + (image . maxX − image . minX) / image . wid th
8 ddpY = ddpY + (image . maxY − image . minY) / image . h e i g h t
9

10 d p p T o t a l = (dppX + dppY) / (2∗ c o u n t)

a reduction of 53%. When converted to level 5 it will take up 18,645,000 bytes, an
increase of 86%, or nearly double the original amount.

Equation 5.1 gives an approximate computation of the storage space changes
affected by transforming from the native level to a fixed tile level, where N is the
native resolution in degrees per pixel, B is the base level resolution in degrees per
pixel, S is the size of the source image, and R is the space required for the tiled
image set. The exact storage space changes cannot be calculated analytically. There
are several unknown factors, such as the impact of uneven source image breaks onto
the tile boundaries. Since all images are stored in a compressed format, the exact
storage space requirements can be calculated only by creating and compressing the
images.

R = (
N
B

)∗ 2S (5.1)

86 5 Image Tile Creation

In general, we want to choose the level with the closest DPP value that is lower
than our native DPP as our base level. This will usually result in an increase of
storage space requirements, but it will preserve the image information. Practically
speaking, geospatial image data costs much more to create than to store. Satellites,
aerial platforms, and cartographers are all more expensive than hard drives.

Since the tiled and source images are compressed, the actual increase in stor-
age space requirements is usually smaller than Equation 5.1 would predict. Image
compression algorithms attempt to compress images by storing just the information
needed to reproduce the image. Since our rescaled tiled images are not adding any
real image information, we can expect the compressed results to be similar in size to
the original. Consider an example: the NASA Blue Marble image below is 2000 by
1000 pixels in size (Figure 5.2). Compressed as a JPEG image it is 201,929 bytes. If
we resize the image to 3000 by 1500, we have increased the images number of pix-
els by a ratio of 2.25. However, the new larger image compressed as a JPEG takes
up 360,833 bytes, a growth ratio of 1.79. So, the actual storage space requirements
grew by 79%, not 125% as predicted by simple pixel calculations. Table 5.2 shows
these results. It includes results for another scaled image that further illustrate the
principle.

Once we have chosen and created the tiled images for the base level, the lower
resolution levels can be created.

Fig. 5.2 2000 by 1000 Blue Marble image.

5.2 Tile Creation Preliminaries 87

Width Height Total Pixels Percent Increased Compressed Size Percent Increased
Original Image 2000 1000 2,000,000 201,929
Scaled Image 1 3000 1500 4,500,000 125% 360,833 79%
Scaled Image 2 5000 2500 12,500,000 525% 816,446 304%

Table 5.2 Compression ratios are greater for the same image at different resolutions.

Listing 5.2 Pull-based tile creation.

1 f o r t in t i l e s :
2 f o r s in s o u r c e s :
3 i f s . i n t e r s e c t s (t) :
4 p = e x t r a c t P i x e l s (s)
5 d r a w P i x e l s (p , t)

Listing 5.3 Push-based tile creation.

1 f o r s in s o u r c e s :
2 f o r t in t i l e s :
3 i f t . i n t e r s e c t (s) :
4 p = e x t r a c t P i x e l s (s)
5 d r a w P i x e l s (p , t)

5.2.3 Pull-Based Versus Push-Based Tile Creation

There are two methods for creating the tiles from random source images: pull-based
and push-based. Pull-based tile creation iterates over the desired tiles and pulls im-
age data from the source images. Push-based tile creation iterates over the source
images and pushes image data from them to the tiled images. There is little dif-
ference between these two approaches. The following pseudo code example shows
that only the ordering of the iteration structure changes between the two methods,
as shown in Listings 5.2 and 5.3.

In practice, there are several technical concerns that make the two methods sub-
stantially different. First and foremost is the issue of memory. If our computers had
infinite memory, and all source and tile images could be held completely in memory,
then there would be no effective difference between the two approaches. However,
computers have limited memory, and we must move our source and tile images in
and out of memory as we use them. Reading and decoding compressed source im-
ages from disk can be time consuming, as is compressing and writing tiled images
to disk.

A second concern is that of multi-threading. Modern computers have multiple
processing cores and can execute multiple threads simultaneously. A practical sys-
tem must make use of multiple threads to be efficient, but it must also be careful to
manage image resources in a thread safe fashion. Two threads should probably not
operate on the same image tile at the same time.

88 5 Image Tile Creation

For our first prototype tile creation system, we will use a pull-based method.
Many of the tiles will contain data from multiple source images. If we iterate over
source images first, as in a push-based method, then we will be swapping tiled im-
ages in and out of memory often. So those tiles will have to be swapped between
memory and disk multiple times in the process of creating them. This poses several
problems when it comes to tile storage, as many writes of small files or data blocks
tends to cause fragmentation of a file system or database pages. In the next chapter
we will discuss in more detail why it is important to write an image tile once and
only once.

Unlike tiled images, our source images are used in a read-only fashion. We can
safely swap them in and out of memory many times without having to perform
any writes. This leads us to use a pull-based method. We will iterate over the tiles
first and swap the large source images in and out of memory. This result may seem
counterintuitive. Typically our source images are much larger than our tiled images.
Sources images commonly range from 1,000 by 1,000 to 10,000 by 10,000. Our tile
images are either 256 by 256 or 512 by 512. The large source images will take a
significant amount of time to read and re-read from disk.

To mitigate this result, we will use a memory cache of source images. We will
construct a Least Recently Used (LRU) cache of decoded source images in memory.
LRU caches have a fixed size. If an element is added to an already full cache, the
LRU cache will discard the least recently used element. Each time we access a
source image, we will check if it is in the memory cache. If it is, then we do not
have to read and decode the image. If the image is not in the memory cache, we will
read and decode the image and place it in the cache.

The LRU cache works very well in this case. We will iterate over tiles in geo-
graphic order. Source images affect groups of tiles that border each other geograph-
ically. We can expect to have a high rate of ”hits” on our memory image cache.
The first tile that requests data from a source image will cause it to be loaded in
the cache. The tiles immediately following the first tile will probably also use data
from that source image which was just placed in the cache. This high cache hit rate
provides a more efficient algorithm.

5.3 Tile Creation Algorithms

The following are the steps in the tile creation process:

1. Choose the base level for the tile set.
2. Determine the geographic bounds of the tile set. (This can be based on the bounds

of the source images.)
3. Determine the bounds of the tile set in tile coordinates.
4. Initialize the tile storage mechanism.
5. Iterate over the tile set coordinates. For each tile, do the following:

a. Compute the geographic bounds of the specific tile.

5.3 Tile Creation Algorithms 89

b. Iterate over the source images. For each source image do the following:
i. Determine if the specific source image intersects the tile being created.

ii. If the source image and tile intersect,
A. Check the cache for the source image. If it is not in the cache, load it

from disk and save in the cache.
B. Extract the required image data from the source image, and store it in

the tiled image.
c. Save the completed tiled image to the tile storage mechanism.

6. Clear the source image cache.
7. Finalize the tile storage mechanism.

Before presenting the computer code for executing these steps, we will define the
following data types in Listing 5.5:

BoundingBox: Wrapper for bounding rectangle in degrees.
SourceImage: Wrapper for image dimensions and geographic bounds.
TileAddress: Wrapper for a tile’s row, column, and level coordinates.
BufferedImage: Built-in Java class for memory images.
TileOutputStream: Abstract class for output of tiled images.
MemoryImageCache: Abstract class for a LRU cache of source images.

There are several key methods embedded in these data types. TileAddress.
getBoundingBox() provides the bounding coordinates in degrees for an image
tile address. BoundingBox.intersects() tests if two bounding boxes inter-
sect each other. BoundingBox.union() is used to combine multiple bounding
boxes into a single one. The abstract method writeTile() is used to provide a
generic means for storing tiles. Concrete implementations of this will be discussed
in the next chapter. Additional abstract methods, getSourceImageData() and
putSourceImageData(), are used to provide access to the LRU source image
cache. Implementation of this is left to the reader. We will also use the function
drawImageToImage, which was defined in the previous chapter. Formulae for
computing tile and geographic coordinates are derived in Chapter 2. We will use the
constant TILE_SIZE to represent the width and height of our tiled images. This
value is the same for the horizontal and vertical dimensions. See the previous chap-
ter for a thorough discussion of how to choose the best tile size. Listing 5.6 is Java
code for a basic, single threaded method for creating the base level of a tile set.

5.3.1 Scaling Process for Lower Resolution Levels

The previous algorithm created the base level. Next we create the lower resolution
levels. Each lower level is based on the previous level. Because of the structured
nature of our logical tile scheme, this process is much simpler than creation of the
base level. Figure 5.3 shows that our lower resolution tiles are constructed directly
and from exactly fours tiles from the previous level.

90 5 Image Tile Creation

(R, C, S)

(R*2, C*2+1,S+1)(R*2, C*2,S+1)

(R*2+1, C*2+1,S+1)(R*2+1, C*2,S+1)

Target Tile Source Tiles
Fig. 5.3 Relationship of target tile for source tiles from previously computed level.

The basic algorithm is as follows:

1. For each level from (base_level - 1) to 1, do the following.

a. Determine the bounds of the current tile level in tile coordinates.
b. Initialize the tile storage mechanism.
c. Iterate over the tile set coordinates. For each tile, do the following:

i. Determine the four tiles from the higher level that contribute to the current
tile.

ii. Retrieve the four tile images or as many as exist.
iii. Combine the four tile images into a single, scaled-down image.
iv. Save the completed tiled image to the tile storage mechanism.

d. Finalize the tile storage mechanism.

This algorithm uses the types defined in the previous section plus one additional
type as defined in Listing 5.6. This type allows us to read the tiles from the previous
levels. Additionally, an assumption is made that the TileInputStream and TileOut-
putStream in the algorithm are linked in some fashion. This allows us to write tiles
in one stage and then read them out in the next stage. For example, when creating
level 7, we will write level 7 tiles to the TileOutputStream. In the next stage, when
we create level 6, we will have to read the level 7 tiles that we created in the previ-
ous step. Listing 5.7 shows the complete algorithm for creating the lower resolution
layers from the base layer.

The process of creating tiled image sets from collections of random source im-
ages can be approached in a straightforward manner. In this chapter, we have de-
tailed the basic process and algorithms for achieving this goal. We have built upon

5.3 Tile Creation Algorithms 91

Listing 5.4 Abstract class definition for the TiledInputStream.

1 a b s t r a c t c l a s s T i l e I n p u t S t r e a m {
2 a b s t r a c t Buffe red Image g e t T i l e (T i l e A d d r e s s a d d r e s s) ;
3 }

the image manipulation algorithms from previous sections. In the next chapter, we
will present techniques for optimizing the creation of tiled image sets.

92 5 Image Tile Creation

Listing 5.5 Java data types.

1 c l a s s BoundingBox {
2
3 double minx , miny , maxx , maxy ;
4
5 p u b l i c BoundingBox (double minx , double miny , double maxx , double maxy) {
6 t h i s . maxx = maxx ;
7 t h i s . maxy = maxy ;
8 t h i s . minx = minx ;
9 t h i s . miny = miny ;

10 }
11
12 boolean i n t e r s e c t s (double minx , double miny , double maxx , double maxy) {
13 re turn ! (minx > t h i s . maxx | | maxx < t h i s . minx | | miny > t h i s . maxy | |

maxy < t h i s . miny) ;
14 }
15
16 s t a t i c BoundingBox un ion (BoundingBox [] bb) {
17 BoundingBox u = bb [0] ;
18 f o r (i n t i = 1 ; i < bb . l e n g t h ; i ++) {
19 i f (bb [i] . maxx > u . maxx) {
20 u . maxx = bb [i] . maxx ;
21 }
22 i f (bb [i] . maxy > u . maxy) {
23 u . maxy = bb [i] . maxy ;
24 }
25 i f (bb [i] . minx < u . minx) {
26 u . minx = bb [i] . minx ;
27 }
28 i f (bb [i] . miny < u . miny) {
29 u . miny = bb [i] . miny ;
30 }
31 }
32 re turn u ;
33 }
34 }
35
36 c l a s s SourceImage {
37
38 i n t wid th ;
39 i n t h e i g h t ;
40 BoundingBox bb ;
41 Buf fe red Image image ;
42 S t r i n g name ;
43 }
44
45 c l a s s T i l e A d d r e s s {
46
47 l ong row ;
48 l ong column ;
49 i n t s c a l e ;
50
51 BoundingBox getBoundingBox () {
52 double dp = 360 . 0 / (Math . pow (2 , s c a l e) ∗ TILE SIZE) ;
53 double miny = (row ∗ TILE SIZE ∗ dp) − 9 0 . 0 ;
54 double maxy = ((row + 1) ∗ TILE SIZE ∗ dp) − 9 0 . 0 ;
55 double minx = (column ∗ TILE SIZE ∗ dp) − 1 8 0 . 0 ;
56 double maxx = ((column + 1) ∗ TILE SIZE ∗ dp) − 1 8 0 . 0 ;
57 BoundingBox bb = new BoundingBox (minx , miny , maxx , maxy) ;
58 re turn bb ;
59 }
60 }
61
62 a b s t r a c t c l a s s T i l e O u t p u t S t r e a m {
63
64 a b s t r a c t vo id w r i t e T i l e (T i l e A d d r e s s a d d r e s s , Buf fe red Image image) ;
65

5.3 Tile Creation Algorithms 93

66 }
67
68 a b s t r a c t c l a s s MemoryImageCache {
69
70 a b s t r a c t Buffe red Image ge tSource ImageDa t a (S t r i n g name) ;
71
72 a b s t r a c t vo id pu tSource ImageDa ta (S t r i n g name , Buf fe red Image d a t a) ;
73 }

Listing 5.6 Simple tile creation.

1 p u b l i c vo id c r e a t e T i l e s (SourceImage [] s ource Images , T i l e O u t p u t S t r e a m
t i l e O u t p u t S t r e a m , i n t baseL eve l , MemoryImageCache cache) {

2
3 / / De te r mine t h e g e o g r a p h i c bounds o f t h e t i l e s e t .
4 / / T h i s can be based on t h e bounds o f t h e s o u r c e images .
5 BoundingBox [] s ource ImageB ounds = new BoundingBox [s o u r c e I m a g e s . l e n g t h] ;
6 f o r (i n t i = 0 ; i < s ou rce ImageBounds . l e n g t h ; i ++) {
7 s ource ImageBounds [i] = s o u r c e I m a g e s [i] . bb ;
8 }
9 BoundingBox t i l e S e t B o u n d s = BoundingBox . un ion (s ource ImageBounds) ;

10 / / De te r mine t h e bounds o f t h e t i l e s e t i n t i l e c o o r d i n a t e s .
11 l ong minco l = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . minx + 1 8 0 . 0) / (3 6 0 . 0 /

Math . pow (2 . 0 , (double) b a s e L e v e l))) ;
12 l ong maxcol = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . maxx + 1 8 0 . 0) / (3 6 0 . 0 /

Math . pow (2 . 0 , (double) b a s e L e v e l))) ;
13 l ong minrow = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . miny + 9 0 . 0) / (1 8 0 . 0 / Math

. pow (2 . 0 , (double) b a s e L e v e l − 1))) ;
14 l ong maxrow = (l ong) Math . f l o o r ((t i l e S e t B o u n d s . maxy + 9 0 . 0) / (1 8 0 . 0 / Math

. pow (2 . 0 , (double) b a s e L e v e l − 1))) ;
15
16 / / I t e r a t e over t h e t i l e s e t c o o r d i n a t e s .
17 f o r (l ong c = minco l ; c <= maxcol ; c ++) {
18 f o r (l ong r = minrow ; r <= maxrow ; r ++) {
19 T i l e A d d r e s s a d d r e s s = new T i l e A d d r e s s (r , c , b a s e L e v e l) ;
20 / / Compute t h e g e o g r a p h i c bounds o f t h e s p e c i f i c t i l e .
21 BoundingBox t i l e B o u n d s = a d d r e s s . ge tBoundingBox () ;
22 / / I t e r a t e over t h e s o u r c e images .
23 Buffe red Image t i l e I m a g e = new Buffe red Image (TILE SIZE , TILE SIZE ,

Buf fe red Image . TYPE INT ARGB) ;
24 f o r (i n t i = 0 ; i < s o u r c e I m a g e s . l e n g t h ; i ++) {
25 / / De te r mine i f t h e s p e c i f i c s o u r c e image i n t e r s e c t s t h e t i l e

b e i n g c r e a t e d .
26 i f (s o u r c e I m a g e s [i] . bb . i n t e r s e c t s (t i l e B o u n d s . minx , t i l e B o u n d s .

miny , t i l e B o u n d s . maxx , t i l e B o u n d s . maxy)) {
27 / / Check t h e cache f o r t h e s o u r c e image .
28 Buffe red Image b i = cache . ge tSource ImageD a t a (s o u r c e I m a g e s [i

] . name) ;
29 i f (b i == n u l l) {
30 / / I f i t i s n o t i n t h e cache load i t from d i s k and s ave

i n t h e cache .
31 b i = readImage (s o u r c e I m a g e s [i] . name) ;
32 cache . pu tSource ImageDa ta (s o u r c e I m a g e s [i] . name , b i) ;
33 }
34 / / E x t r a c t t h e r e q u i r e d image da ta from t h e s o u r c e image and

s t o r e i t i n t h e t i l e d image .
35 drawImageToImage (bi , s o u r c e I m a g e s [i] . bb , t i l e I m a g e ,

t i l e B o u n d s) ;
36 }
37 }
38 / / Save t h e comple ted t i l e d image t o t h e t i l e s t o r a g e mechanism .
39 t i l e O u t p u t S t r e a m . w r i t e T i l e (a d d r e s s , t i l e I m a g e) ;
40 }
41 }
42 }

94 5 Image Tile Creation

Listing 5.7 Scaled tile creation.

1 p u b l i c vo id c r e a t e S c a l e d T i l e (T i l e I n p u t S t r e a m t i l e I n p u t S t r e a m , T i l e O u t p u t S t r e a m
t i l e O u t p u t S t r e a m , i n t bas eL eve l , l ong minCol , l ong maxCol ,

2 l ong minRow , l ong maxRow) {
3 / / For each l e v e l from bas e l e v e l − 1 t o 1 , do t h e f o l l o w i n g .
4 f o r (i n t l e v e l = b a s e L e v e l − 1 ; l e v e l <= 1 ; l e v e l −−) {
5 / / De te r mine t h e bounds o f t h e c u r r e n t t i l e l e v e l i n t i l e c o o r d i n a t e s .
6 / / r a t i o w i l l be us ed t o r educe t h e o r i g i n a l t i l e s e t bound ing

c o o r d i n a t e s t o t h o s e a p p l i c a b l e f o r each s u c c e s s i v e l e v e l .
7 i n t r a t i o = (i n t) Math . pow (2 , b a s e L e v e l − l e v e l) ;
8 l ong curMinCol = (l ong) Math . f l o o r (minCol / r a t i o) ;
9 l ong curMaxCol = (l ong) Math . f l o o r (maxCol / r a t i o) ;

10 l ong curMinRow = (l ong) Math . f l o o r (minRow / r a t i o) ;
11 l ong curMaxRow = (l ong) Math . f l o o r (maxRow / r a t i o) ;
12 / / I t e r a t e over t h e t i l e s e t c o o r d i n a t e s .
13 f o r (l ong c = curMinCol ; c <= curMaxCol ; c ++) {
14 f o r (l ong r = curMinRow ; r <= curMaxRow ; r ++) {
15 / / For each t i l e , do t h e f o l l o w i n g :
16 T i l e A d d r e s s a d d r e s s = new T i l e A d d r e s s (r , c , l e v e l) ;
17 / / De te r mine t h e FOUR t i l e s from t h e h i g h e r l e v e l t h a t

c o n t r i b u t e t o t h e c u r r e n t t i l e .
18 T i l e A d d r e s s t i l e 0 0 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , l e v e l + 1) ;
19 T i l e A d d r e s s t i l e 0 1 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , l e v e l + 1) ;
20 T i l e A d d r e s s t i l e 1 0 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , l e v e l + 1) ;
21 T i l e A d d r e s s t i l e 1 1 = new T i l e A d d r e s s (r ∗ 2 , c ∗ 2 , l e v e l + 1) ;
22 / / R e t r i e v e t h e f o u r t i l e images , or as many as e x i s t .
23 Buffe red Image image00 = t i l e I n p u t S t r e a m . g e t T i l e (t i l e 0 0) ;
24 Buffe red Image image01 = t i l e I n p u t S t r e a m . g e t T i l e (t i l e 0 1) ;
25 Buffe red Image image10 = t i l e I n p u t S t r e a m . g e t T i l e (t i l e 1 0) ;
26 Buffe red Image image11 = t i l e I n p u t S t r e a m . g e t T i l e (t i l e 1 1) ;
27 / / Combine t h e f o u r t i l e images i n t o a s i n g l e , s c a l e d−down image

.
28 Buffe red Image t i l e I m a g e = new Buffe red Image (TILE SIZE ,

TILE SIZE , Buf fe red Image . TYPE INT ARGB) ;
29 Graphics2D g = (Graphics2D) t i l e I m a g e . g e t G r a p h i c s () ;
30 g . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION BILINEAR) ;
31 boolean hadImage = f a l s e ;
32 i f ((image00 != n u l l)) {
33 g . drawImage (image00 , 0 , C o n s t a n t s . TILE SIZE HALF , C o n s t a n t s

. TILE SIZE HALF , C o n s t a n t s . TILE SIZE , 0 , 0 , C o n s t a n t s .
TILE SIZE ,

34 C o n s t a n t s . TILE SIZE , n u l l) ;
35 hadImage = true ;
36 }
37 i f ((image10 != n u l l)) {
38 g . drawImage (image10 , C o n s t a n t s . TILE SIZE HALF , C o n s t a n t s .

TILE SIZE HALF , C o n s t a n t s . TILE SIZE , C o n s t a n t s .
TILE SIZE , 0 , 0 ,

39 C o n s t a n t s . TILE SIZE , C o n s t a n t s . TILE SIZE , n u l l) ;
40 hadImage = true ;
41 }
42 i f ((image01 != n u l l)) {
43 g . drawImage (image01 , 0 , 0 , C o n s t a n t s . TILE SIZE HALF ,

C o n s t a n t s . TILE SIZE HALF , 0 , 0 , C o n s t a n t s . TILE SIZE ,
44 C o n s t a n t s . TILE SIZE , n u l l) ;
45 hadImage = true ;
46 }
47 i f ((image11 != n u l l)) {
48 g . drawImage (image11 , C o n s t a n t s . TILE SIZE HALF , 0 , C o n s t a n t s

. TILE SIZE , C o n s t a n t s . TILE SIZE HALF , 0 , 0 , C o n s t a n t s .
TILE SIZE ,

49 C o n s t a n t s . TILE SIZE , n u l l) ;
50 hadImage = true ;
51 }
52 / / s ave t h e comple ted t i l e d image t o t h e t i l e s t o r a g e mechanism .
53 i f (hadImage) {

5.3 Tile Creation Algorithms 95

54 t i l e O u t p u t S t r e a m . w r i t e T i l e (a d d r e s s , t i l e I m a g e) ;
55 }
56 }
57 }
58 }
59 }

	5 Image Tile Creation
	5.1 Tile Creation from Random Images
	5.2 Tile Creation Preliminaries
	5.2.1 Bottom-Up Tile Creation
	5.2.2 Choosing the Base Level for a Set of Source Images
	5.2.3 Pull-Based Versus Push-Based Tile Creation

	5.3 Tile Creation Algorithms
	5.3.1 Scaling Process for Lower Resolution Levels

