
Chapter 4
Image Processing and Manipulation

To make source image sets suitable for serving as tiled images, significant image
processing is required. This chapter provides a discussion of the image processing
techniques necessary to create a tile-based GIS. It discusses algorithms for manip-
ulating, cutting, and scaling different types of images. Several image interpolation
algorithms are given with examples and discussion of the relative benefits of each.
In addition, this chapter provides guidance for choosing tile image sizes and file
formats.

4.1 Basic Image Concepts

A digital image is a computer representation of a two-dimensional image and can
be raster or vector based. Raster (or bitmap) digital images use a rectangular grid of
picture elements (called pixels) to display the image. Vector images use geometric
primitives like points, lines and polygons to represent an image. For the purposes of
this book, we are dealing almost exclusively with raster images, which are composed
of pixels. Chapter 11 discusses vector data in the context of tiled-mapping.

Each raster image is a grid of pixels, and each pixel represents the color of the
image at that point. Typically, the individual pixels in an image are so small that they
are not seen separately but blend together to form the image as seen by humans.
Consider Figure 4.1; to the left is a picture of a letter A, to the right is that same
picture magnified such that the individual pixels are visible.

Pixel values are expressed in units of the image’s color space. A color space,
or color model, is the abstract model that describes how color components can be
represented. RGB (red, green, blue) is a common color model. It provides that the
color components for red, green and blue be stored as separate values for each pixel.
Combinations of the three values can represent many millions of visible colors.
Suppose that we will use values of 0 to 1 to represent each of the components of
an RGB pixel. Table 4.1 shows which combinations would create certain common
colors.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 35
Principles and Practices, DOI 10.1007/978-1-4419-7631-4 4,
c© Springer Science+Business Media, LLC 2010

36 4 Image Processing and Manipulation

Fig. 4.1 Pixelated image.

Red Green Blue Composite Color
1 0 0 Red
0 1 0 Green
0 0 1 Blue
1 1 0 Yellow

0.5 0.5 0.5 Gray
0 0 0 Black
1 1 1 White

Table 4.1 Common colors and their RGB component combination.

Systems that support transparency by means of alpha compositing add a fourth
component, ranging from 0 to 1, where 0 indicates that the pixel should be fully
transparent, and 1 indicates that the pixel should be fully opaque. This color model
is referred to as RGBA or ARGB.

To view and manipulate digital raster images, the RGB components are most
often stored as single byte values. In this case, each RGB component is an integer
value from 0 to 255 instead of a real value from 0 to 1. The three components will
take up 3 bytes (24 bits) or 4 bytes (32 bits) for images with alpha components. It is
common to use a 4-byte integer value to store either the RGB or RGBA components.

Raster image pixels are addressable using two-dimensional coordinates with an
orthogonal coordinate system over the image. We have used Cartesian coordinates
for our mapping coordinate systems, where the center of the coordinates space is
(0,0) and horizontal or x coordinate increases as you move to the right and the
vertical or y coordinate increases as you move up. Many programming environments

4.2 Geospatial Images 37

reverse the y coordinate such that the origin of an image is at the top-left, and the
y coordinate increases as you move down the image. This convention is taken from
raster scan based image systems, like cathode ray tube monitors and televisions
in which the top-most scanline is the first line displayed for each refresh cycle.
The reversal of the y coordinate is an inconvenience that must be considered in all
practical applications that relate geospatial data to digital imagery.

Raster images are stored in a variety of file formats defined mostly by their com-
pression algorithms or lack thereof. The most commonly used formats employ com-
pression to reduce the required disk space. Consider an example RGB image that
is 1000 by 1000 pixels. To store it uncompressed would require 1000x1000x3 = 3
megabytes. Its not unreasonable for a good image compression algorithm to obtain
a 10 to 1 compression ratio. Thus, the image could be stored in 300 kilobytes.

In general there are two types of compression, lossless and lossy. Lossless algo-
rithms compress the image’s storage space without losing any information. Lossy
algorithms achieve compression in part by discarding a portion of the image’s in-
formation. Lossy algorithms seek to be shrewd about what portions of an image’s
information to discard. Many lossy algorithms can produce a compressed image
which discards significant information and yet be visually identical to the original.

The most common lossy image file format is JPEG . JPEG is named after the
Joint Photographic Experts Group who created the standard. There are two common
lossless file formats: Portable Network Graphic (PNG), and Graphics Interchange
Format (GIF). There are several common formats which do not employ compres-
sion: Bitmap (BMP), Portable Pixel Map (PPM), Portable Graymap (PGM), and
Portable Bitmap (PBM).

4.2 Geospatial Images

Digital images are well suited for storage of geospatial information. This includes
aerial and satellite photography, acoustic imagery, and rendered or scanned map
graphics. All that is needed to make a digital image a geospatial image is to attach
geospatial coordinates to the image in a manner that describes how the image covers
the surface of the earth. There are two ways this is commonly done. First, you can
provide the bounding rectangle for an image, as in Figure 4.2, or you can provide a
single corner coordinate with the resolution of each pixel in each dimension.

Given one or more geospatial images, we can build a tile-based mapping system
to distribute the data in those images.

4.2.1 Specialized File Formats

There are several file formats that have been specially adapted for storing geospatial
images. MrSID (multi-resolution seamless image database) is a proprietary image

38 4 Image Processing and Manipulation

Fig. 4.2 Example geospatial image with bounding rectangle defined.

storage format produced by LizardTech. It is specially designed for storage of large
geospatial images, most commonly ortho-rectified imagery. MrSID uses a wavelet
based compression to store multiple resolutions of the image. This allows for fast
access to overview (or thumbnail) sections of the image. It is not uncommon for
MrSID images to be generated with many millions of pixels.

JPEG2000 is the next generation file format produced by the Joint Photographic
Experts Group. Like MrSID, it is a wavelet based format. JPEG2000 was not spe-
cially designed to store geospatial imagery; however, common extensions have been
made that allow geospatial information to be attached to the images. JPEG2000 is
also well suited to storage of very large images and is a more open format than
MrSID.

One of the oldest and most common geospatial image file format is GEOTIFF.
GEOTIFF is based on the Tagged Image File Format (TIFF) standard. A GEOTIFF
is simply a TIFF file with standard geospatial tags added to it. The TIFF standard
is, perhaps, the broadest of any common image file format. It allows many options
including alternate compression schemes or no compression at all. It also allows
for multi-page images, a variety of color models, and a variety of storage layouts.
Fortunately, there are open source software packages for reading and writing TIFF
(and GEOTIFF) files that simplify the task of dealing with this complicated image
format.

4.3 Image Manipulation 39

It should be noted that in some cases, geospatial imagery will be stored in files
that do not support embedded geospatial coordinates. In those cases, it is customary
to provide an accompanying file with the coordinates in it. This is only a convention,
not a formal standard. Therefore, the technical details will vary from one implemen-
tation to another.

4.3 Image Manipulation

This section will provide background on the image manipulation algorithms needed
for the tile creation process, which will be covered in the next chapter. Recall that
tiled images are stored in fixed resolutions. It is highly unlikely that a collection of
source images will match any single fixed resolution. Since we use multiple reso-
lutions, even if our source images match one resolution, it’s impossible for them to
match all of our resolutions. Therefore, we are going to have to perform some image
scaling.

Image scaling is a type of interpolation. Interpolation is the process of creating
new data values within the range of a discrete set of known data values. We will
first examine the basic algorithm for scaling and subsetting images. Then we will
explain three common interpolation algorithms:

• Nearest Neighbor
• Bilinear
• Bicubic

Each interpolation algorithm has different characteristics with respect to compu-
tational performance and output image quality. For the algorithms provided below,
we assume that our images have a single color channel. This simplifies the explana-
tion of the techniques. To use the algorithms with three channel color images, the
steps are simply repeated for each channel.

The basic component of all of our image scaling algorithms is the same. We will
construct a target image, t, and then iterate over the pixels in t, filling them in with
data computed from the pixels in our source images. Each image is treated as a
two-dimensional array.

The following are some common definitions that will be used in all our image
scaling algorithms (see Listing 4.1 and Figures 4.3 and 4.4). The image scaling
algorithms will reference a generic interpolation function ”interpolate” (Listing 4.2).
The first parameters are the details of the source image. ”tx” and ”ty” are the map
coordinates of a pixel that is to be interpolated from the source data. The image
scaling algorithms also reference a common function ”geolocate” that calculates the
geographical coordinate of the center of a pixel (Listing 4.3). Because images are
stored in scanline order, the y coordinates have to be flipped. The variable adj_j
is created to do this.

In the first scaling algorithm (Listing 4.4 and Figure 4.5), we make a simplifica-
tion assumption that the source image and the target image have the same map coor-

40 4 Image Processing and Manipulation

source_width
so

ur
ce

_h
ei

gh
t

sminx, sminy

smaxx, smaxy

Fig. 4.3 Source image parameters: sminx, sminy, smaxx, smaxy, source_width, and
source_height.

Target Image

target_width

ta
rg

et
_h

ei
gh

t

tminx, tminy

tmaxx, tmaxy

Fig. 4.4 Target image and parameters: tminx, tminy, tmaxx, tmaxy, target_width and
target_height.

4.3 Image Manipulation 41

Listing 4.1 Definitions of variables in code examples.

1 i n t e g e r s [] [] : Source Image , a 2−d a r r a y
2 i n t e g e r s o u r c e w i d t h : wid th of s o u r c e image
3 i n t e g e r s o u r c e h e i g h t : h e i g h t o f s o u r c e image
4 r e a l sminx : minimum h o r i z o n t a l map c o o r d i n a t e o f s o u r c e image
5 r e a l sminy : minimum v e r t i c a l map c o o r d i n a t e o f s o u r c e image
6 r e a l smaxx : maximum h o r i z o n t a l map c o o r d i n a t e o f s o u r c e image
7 r e a l smaxy : maximum v e r t i c a l map c o o r d i n a t e o f s o u r c e image
8
9 i n t e g e r t [] [] : T a r g e t Image , a 2−d a r r a y

10 i n t e g e r t a r g e t w i d t h : wid th of t a r g e t image
11 i n t e g e r t a r g e t h e i g h t : h e i g h t o f t a r g e t image
12 r e a l tminx : minimum h o r i z o n t a l map c o o r d i n a t e o f t a r g e t image
13 r e a l tminy : minimum v e r t i c a l map c o o r d i n a t e o f t a r g e t image
14 r e a l tmaxx : maximum h o r i z o n t a l map c o o r d i n a t e o f t a r g e t image
15 r e a l tmaxy : maximum v e r t i c a l map c o o r d i n a t e o f t a r g e t image

Listing 4.2 Definition of abstract function interpolate that will be implemented by specific algo-
rithms.

1 f u n c t i o n i n t e g e r i n t e r p o l a t e (s , sminx , sminy , smaxx , smaxy , s o u r c e w i d t h ,
s o u r c e h e i g h t , tx , t y)

Listing 4.3 Compute the geographic coordinates of the center of a pixel.

1 f u n c t i o n r e a l , r e a l g e o l o c a t e (r e a l minx , miny , maxx , maxy , i n t e g e r i , j , width , h e i g h t
)

2 comment :
3 minx , miny , maxx , maxy a r e t h e g e o g r a p h i c a l c o o r d i n a t e s o f t h e image
4 wid th and h e i g h t a r e t h e d i m e n s i o n s o f t h e image
5 i and j a r e t h e p i x e l c o o r d i n a t e s t o be c o n v e r t e d t o g e o g r a p h i c

c o o r d i n a t e s
6
7 r e a l p i x e l w i d t h = (maxx−minx) / wid th
8 r e a l p i x e l h e i g h t = (maxy−miny) / h e i g h t
9

10 r e a l x =(i + 0 . 5) ∗ p i x e l w i d t h + minx
11
12 i n t a d j j = h e i g h t − j − 1
13
14 r e a l y =(a d j j + 0 . 5) ∗ p i x e l h e i g h t + miny
15
16 comment : we o f f s e t by 0 . 5 t h e indexes , t o g e t t h e c e n t e r o f t h e p i x e l
17
18 re turn x , y

dinates but different dimensions. So, sminx = tminx, miny = tminy, smaxx
= tmaxx, and smaxy = ymaxy, but source_width �= target_width and
source_height �= target_height.

Care should be taken in determining whether to iterate in row-major or column-
major order. This is a practical consideration that must be made in the context of
specific programming environments. Java, C, and many others store array data in
row-major format . Iterating in this fashion can potentially greatly improve the per-
formance of the algorithm due to the principle of Locality of Reference. In the con-

42 4 Image Processing and Manipulation

Listing 4.4 Simple Image Scaling: source and target images have the same geographic coordinates
but different sizes.

1 f o r j in xrange (t a r g e t h e i g h t) :
2 f o r i in xrange (t a r g e t w i d t h) :
3 (tx , t y) = g e o l o c a t e (tminx , tminy , tmaxx , tmaxy , i , j , t a r g e t w i d t h ,

t a r g e t h e i g h t)
4 v a l = i n t e r p o l a t e (s , sminx , sminy , smaxx , smaxy , s o u r c e w i d t h ,

s o u r c e h e i g h t , tx , t y)
5 t [j] [i] = v a l

Source Image

Target Image

sminx, sminy

smaxx, smaxy

Fig. 4.5 In Scaling Algorithm 1, the source and target images share coordinates.

text of digital image manipulation, it means we should access pixels in roughly the
order they are stored in the computer’s memory. This reduces the number of times
the operating system has to pull new memory pages into the cache [1]. Our second
image scaling algorithm (Listing 4.5 and Figure 4.6) is a more general version of
algorithm 1. In it, t is a scaled subsection of s. This algorithm is suitable as a basis
for almost any rescaling and subsetting task.

Next, we will define our interpolation algorithms. Each of following interpolation
algorithms implements the generic ”interpolate” function defined earlier. In general,
interpolation solves the problem shown in Figure 4.7. That is, we want to get the

4.3 Image Manipulation 43

Listing 4.5 Target image is a scaled subsection of source image.

1 f o r j = 0 t o t a r g e t h e i g h t − 1 ,
2 f o r i = 0 t o t a r g e t w i d t h − 1 ,
3 r e a l t x ;{ t x i s t h e t a r g e t p i x e l ’ s x c o o r d i n a t e }
4 r e a l t y ;{ t y i s t h e t a r g e t p i x e l ’ s y c o o r d i n a t e }
5 tx , t y = g e o l o c a t e (tminx , tminy , tmaxx ,
6 tmaxy , i , j , t a r g e t w i d t h , t a r g e t h e i g h t)
7
8 i n t e g e r p i x e l v a l = i n t e r p o l a t e (s , sminx , sminy , smaxx , smaxy ,

s o u r c e w i d t h , s o u r c e h e i g h t , tx , t y) ;
9

10 t [j] [i] = p i x e l v a l ;
11 end i f
12 end i f

Source Image

Target Image

Fig. 4.6 The target image is a scaled subset of the source image.

44 4 Image Processing and Manipulation

value for a target pixel that does not correlate exactly to a source pixel. In this case,
the target pixel overlaps pixels (2,1) , (3,1), (2,2), and (3,2).

4.3.1 Interpolation 1: Nearest Neighbor

Nearest neighbor is the simplest of all interpolation algorithms. It uses the pixel
value from the source image that is the closest spatially to the target pixel’s loca-
tion. Following the graphic in Figure 4.7, we can visually determine that pixel (3,1)
is the “closest” to the center of the target pixel. In this case, for nearest neighbor
interpolation, the resulting value of the target pixel would simply be the exact value
of pixel (3,1). This method is computationally efficient, but it has some severe draw-
backs, especially when the sizes of the target and source image are very different.

2,3 3,30,3 1,3

2,2 3,20,2 1,1

2,1 3,10,1 1,1

2,00,0 1,0

Source Image

Target Pixel

3,0

Fig. 4.7 Nearest neighbor interpolation uses only the closest pixel (3,1) to determine the target
value.

Listing 4.6 shows the algorithm for nearest neighbor interpolation. The real work
in this function is done by the ”round” function, which simply rounds a real value
to the closest integer.

4.3 Image Manipulation 45

Listing 4.6 Nearest neighbor interpolation.

1 def n e a r e s t n e i g h b o r (s , sminx , sminy , smaxx , smaxy , s o u r c e w i d t h , s o u r c e h e i g h t
, tx , t y) :

2 i = round ((t x − sminx) / (smaxx − sminx) ∗ s o u r c e w i d t h)
3 j = s o u r c e h e i g h t − 1 − round ((t y − sminy) / (smaxy − sminy) ∗

s o u r c e h e i g h t)
4 re turn s [j] [i]

Listing 4.7 Bilinear interpolation.

1 from math import ∗
2
3 def b i l i n e a r (s , sminx , sminy , smaxx , smaxy , s o u r c e w i d t h , s o u r c e h e i g h t , tx , t y) :
4 temp x = (t x − sminx) / (smaxx − sminx) ∗ s o u r c e w i d t h
5 temp y = s o u r c e h e i g h t − 1 − ((t y − sminy) / (smaxy − sminy) ∗

s o u r c e h e i g h t)
6
7 i = f l o o r (temp x)
8 j = f l o o r (temp y)
9 w e i g h t x = temp x − i

10 w e i g h t y = temp y − j
11 v a l 0 0 = s [j] [i]
12 v a l 0 1 = s [j] [i +1]
13 v a l 1 0 = s [j + 1] [i]
14 v a l 1 1 = s [j + 1] [i +1]
15
16 p i x e l v a l = (1 − w e i g h t x) ∗ (1 − w e i g h t y) ∗ v a l 0 0 + w e i g h t x ∗ (1 −

w e i g h t y) ∗ v a l 0 1 + (1 − w e i g h t x) ∗ w e i g h t y ∗ v a l 1 0 + w e i g h t x ∗
w e i g h t y ∗ v a l 1 1

17
18 re turn p i x e l v a l

4.3.2 Interpolation 2: Bilinear

Bilinear interpolation is a little more complicated; it creates a weighted average
of the 4 pixels which surround the center of the target pixel (Listing 4.7). Recall
Figure 4.6; the bilinear interpolation would use pixels (2,1) , (3,1), (2,2), and (3,2).

Figure 4.8 illustrates the computations in the bilinear algorithm. The arrowed
lines go from the center of the source pixels to the center of the target pixel. The
length of each line, in ratio to the sum of the lengths, forms the complement of the
weight given to the data from the pixel in which the line originates. It forms the
complement because we want pixels with greater length to have less impact on the
final result. They are ”further away” from the target pixel.

Let’s consider a variation on our bilinear algorithm. Suppose that our target pixel
covers a large area in our source image, as in Figure 4.9. In this case, the bilin-
ear algorithm would only use pixel data from pixels (1,1), (2,1), (1,2), and (2,2).
Data from the other pixels would be disregarded. There are several solutions to this
problem. The easiest is to perform multiple interpolation steps. Divide the target
pixel into four (or more) sub-pixels and then perform a bilinear interpolation for
each sub-pixel. When that is complete, compute the final target pixel value by bi-

46 4 Image Processing and Manipulation

Source Image

Target Pixel Center

Source Pixel Center

Fig. 4.8 Bilinear interpolation uses the four surrounding pixels to compute the target value.

linear interpolation over the four sub-pixels. This type of multi-step (also called
multi-resolution) interpolation is the best way to handle image scaling that shrinks
an image by a significant amount (Figure 4.10).

4.3.3 Interpolation 3: Bicubic

Bicubic interpolation is the most complicated of our interpolation algorithms.
Where the bilinear interpolation considered the linear relationship of the 4 pixels
surrounding our target point, the bicubic algorithm computes a weighted average of
the 16 surrounding pixels. Figure 4.11 shows the target pixel with 16 surrounding
pixels. Even though the outer 12 pixels do not overlap the target pixel, they are used
for computing the surrounding gradients (or derivatives) of the pixels that do over-
lap the target pixel. This does not necessarily produce a more accurate interpolation,
but it does guarantee smoothness in the output image.

The one-dimensional cubic equation is as follows:

f (x) = a0x3 + a1x2 + a2x + a3

4.3 Image Manipulation 47

2,3 3,30,3 1,3

��� ���0,2 ���

��� ���0,1 ���

2,0 3,00,0 1,0

��� ������

��� ������

Source Image

Target Pixel

Fig. 4.9 Bilinear interpolation where the target pixel covers a large pixel area of the source image.

There are four coefficients: a0, a1, a2, and a3. The two-dimensional cubic equa-
tion, f (x,y) has 16 coefficients, a00 through a33. There are several ways to compute
the 16 coefficients using the 16 pixel values surrounding the target pixel. Most in-
volve approximating the derivatives and partial derivatives to develop a set of linear
equations and then solving the linear equations. The full explanation of that process
is beyond the scope of this chapter. We suggest the references Numerical Recipes
in C and ”Cubic convolution interpolation for digital image processing” for more
information [3, 2].

Since each interpolation algorithm has different performance characteristics, we
will examine the results with real images. Figure 4.12 is an image of a fish.1 If we
scale a small section of the fish’s scales to 400% (or 4 times magnification) in each
dimension, we get the images shown in Figure 4.13, Figure 4.14, and Figure 4.15 for
nearsest neighbor, bilinear, and bicubic interpolations, respectively. In this example,
only the bicubic interpolation yields a satisfactory result.

We will also consider an example using a rendered map graphic. Figure 4.16 is
a map of a portion of the city of New Orleans from OpenStreetMap.2 We will use

1 Fish images courtesy of Robert Owens, Slidell, Louisiana.
2 OpenStreetMap images used from www.openstreetmap.org.

48 4 Image Processing and Manipulation

2,3 3,30,3 1,3

??? ???0,2 ???

??? ???0,1 ???

2,0 3,00,0 1,0

??? ??????

??? ??????

Source Image

Target Pixel

Fig. 4.10 Bilinear interpolation can be performed in multiple steps to compute target pixels that
cover many source pixels.

our interpolation algorithms to scale a sub-section of that image. We have chosen a
subsection with lots of lines and text. These are typical features in map images. If
we scale a small section of the image to 400% (or 4 times magnification) in each
dimension, we get the images shown in Figure 4.17, Figure 4.18, and Figure 4.19
for nearsest neighbor, bilinear, and bicubic interpolations respectively. Once again,
only the bicubic provides a satisfactory result. Figure 4.20 shows a section of the
image with text highly magnified by bicubic interpolation. Figure 4.21 shows a sec-
tion of the image with text highly magnified by bilinear interpolation. The bicubic
interpolation performs much better with text features.

Text features are especially sensitive to interpolation. Even though the bicubic
interpolation imposes a significant performance penalty, it is probably worth the
cost in most cases.

Listing 4.9 shows implementations of the nearest neighbor and bilinear interpola-
tion algorithms for RGB images. The classes BoundingBox and Point2DDouble are
simply wrapper classes for multiple coordinates. BufferedImage is the Java built-in
class for manipulating image data. Many programming environments provide built-
in tools for scaling and subsetting images. This changes our algorithms slightly.
Instead of performing pixel-by-pixel calculations, we compute a single set of trans-

4.3 Image Manipulation 49

2,3 3,30,3 1,3

2,2 3,20,2 1,1

2,1 3,10,1 1,1

2,0 3,00,0 1,0

Source Image

Target Pixel

Fig. 4.11 Bicubic interpolation uses the 16 surrounding pixels to compute the target pixel value.

formation parameters and pass those to the built-in image manipulation routines.
Listings 4.10 and 4.11 show how to use those built-in routines in Java and Python.

Practical experience has shown that bilinear interpolation takes approximately
150% the time as nearest neighbor, and bicubic interpolation takes approximately
200% the time as nearest neighbor.

The astute reader will notice that we have used bilinear interpolation throughout
our discussion as the means of calculating the geographical coordinates. The sup-
plied algorithm ”geolocate” uses bilinear interpolation to map between geographic
and pixel coordinates. So why is it good enough to use bilinear for calculating geo-
graphic coordinates but not good enough for calculating the actual pixel values? The
mapping from geographical coordinates to pixel space and back is, by definition, a

50 4 Image Processing and Manipulation

Fig. 4.12 Fish Image

Fig. 4.13 Fish Scale image magnified with nearest neighbor interpolation.

4.4 Choosing Image Formats for Tiles 51

Fig. 4.14 Fish Scale Image magnified with bilinear interpolation.

linear function. We can compute the exact transformation from geographic coor-
dinates to pixel coordinates. However, the contents of the image, the actual color
values of pixels, are highly non-linear. Whether the image contains aerial imagery
or a rendered map graphic, there is very little linearity, either locally or globally,
between the actual values of the pixels.

4.4 Choosing Image Formats for Tiles

Any tile-based mapping system must use image file formats for storage and trans-
mission of image tiles. There are hundreds of file formats that can be used. Some
offer very sophisticated compression schemes, and others focus on simplicity and
compatibility. We want to choose image formats that can be encoded and decoded
quickly, offer good compression performance, and, most importantly, are supported
natively by common web browsers.

It is possible that we will use one format to store images and another to transmit
them. In general, we want to reduce image processing and manipulation tasks that

52 4 Image Processing and Manipulation

Fig. 4.15 Fish Scale Image magnified with bicubic interpolation.

are required for each client access. Our goal is to use the same format for storage
and retrieval.

Table 4.2 lists several popular browsers and their supported image formats. Na-
tive browser support is critical. Browser-based (HTML/JavaScript) map clients, like
OpenLayers and Google Maps, achieve their quick performance and appealing look
by using the native capabilities of the browser to display and manipulate images. If
we adopt formats that are not well supported by the majority of Web browsers, we
have needlessly crippled our system’s performance. From the table, we can see that
JPEG, GIF, BMP, and PNG are commonly supported. Table 4.3 shows the features
of each format.

Browser JPEG JPEG2000 GIF TIFF BMP PNG
Internet Explorer Yes No Yes No Yes Yes

Firefox Yes No Yes No Yes Yes
Google Chrome Yes No Yes No Yes Yes

Safari Yes Yes Yes Yes Yes Yes
Opera Yes No Yes No Yes Yes

Table 4.2 Browser support for different image compression types.

4.4 Choosing Image Formats for Tiles 53

Fig. 4.16 Rendered map of New Orleans.

Format Compression Colors Supported Transparency Supported
JPEG Lossy 24 bit RGB No
GIF Lossless 8 bit Indexed Yes

BMP Uncompressed 24 bit RGB Yes
PNG Lossless 48 bit RGB Yes

Table 4.3 Details of different compression types.

We can eliminate BMP from consideration since it is not compressed. Also, we
can eliminate GIF because it does not lend itself to full 24 bit color. This leaves
us with PNG and JPEG. PNG provides lossless compression and support for trans-
parency while JPEG provides lossy compression.

PNG uses the DEFLATE lossless compression algorithm. PNG can achieve su-
perior compression with images that have few unique colors, repeated pixel patterns,
and long sequences of the same pixel value. As such, it is quite suitable for storing
rendered figures and maps that typically have limited color palettes.

54 4 Image Processing and Manipulation

Fig. 4.17 New Orleans map subsection with nearest neighbor interpolation.

JPEG uses a Discrete Cosine Transform based compression algorithm. It per-
forms well with images that have lots of colors, some noise, and softer transitions
typically found in photography.

As the basis for a comparison of PNG and JPEG performance characteristic,
recall our fish image, Figure 4.12. The color version of this image has 315,559
colors and 2088 by 1128 pixels. Stored as a JPEG, the file is 147kb. Stored as a
PNG, the file is 2.67mb. That is a ratio of around 18 to 1. That means if we use
PNG storage for our tiles we will need 18 times the storage space, and our users
will have to wait 18 times longer for the images to download. The color version of
our rendered map graphic of New Orleans, Figure 4.16, has 2372 colors and 780
by 714 pixels. The PNG version is 321kb, and the JPEG version is 113kb. This is a
much more reasonable 3 to 1 ratio.

While not visible at the default scales, compression artifacts are visible where
there are sharp color boundaries in the image. Figure 4.22 is a test image with some
text saved as a JPEG with the default quality settings. Compression artifacts are
visible at the text boundaries.

Based on these considerations, we provide the following guidance.

• Use JPEG images when dealing with aerial or satellite photography, images with
lots of colors, or when storage space is a critical issue.

4.4 Choosing Image Formats for Tiles 55

Fig. 4.18 New Orleans map subsection with bilinear interpolation.

• Use PNG images when transparency is required or when quality of reproduction
for rendered map graphics is critical.

Both PNG and JPEG include, within the first few bytes of the file format, a unique
identifier that allows image reading software to know the format of the file. This self
identification property simplifies tile storage, since the tile storage system does not
need to store the file type that was used to store a tile.

It is perfectly reasonable to use both formats together in the same tile system.
For example, a tiled map layer that has data for only a small portion of the earth
would use a transparency enabled format for the low-resolution scales so that map
users could see the covered areas in the conjunction with other background layers.
It would then switch to JPEG for the high-resolution images that have larger storage
requirements.

The reader may ask why we have not chosen to use one the common geospatial
image formats for storing our tiles. The answer is simple. First, tiles have their
geospatial coordinates embedded in their tile address. Recall from the discussion in
Chapter 2 on logical tile schemes that a tile scheme provides for conversion from
a tile’s address to its map coordinates and back. Secondly, and most importantly,
geospatial image formats are not commonly supported by Web browsers.

56 4 Image Processing and Manipulation

Fig. 4.19 New Orleans map subsection with bicubic interpolation.

Fig. 4.20 Close up text with bicubic interpolation.

4.5 Choosing Tile Sizes 57

Fig. 4.21 Close up text with bilinear interpolation.

Fig. 4.22 JPEG compressed text with artifacts.

4.5 Choosing Tile Sizes

The choice of tile image dimensions is one of the most important decisions to be
made in the design of a tile-based mapping system. Tile images can be any size, and
they can vary from scale to scale. They can also vary across the same scale, or they
can be random in size. However, there are efficiencies with making tiles uniform in
size across each and every scale. Also, there are efficiencies from choosing tiles that
have the same horizontal and vertical dimensions. Furthermore, tile sizes that are
powers of two yield simpler mathematics throughout the process.

58 4 Image Processing and Manipulation

There are several approaches to determining the optimal tile size. First we should
consider the impact of using multiple images to virtualize a single map view. Each
image comes with a certain amount of overhead. There are several types of overhead
involved that include the overhead of multiple seeks and reads from the computer’s
file system, uneven utilization of the file system’s native block size, and the header
and other overhead storage space within each image file.

Let us consider the constraints of current image formats. We have limited our-
selves to image formats that are readily usable by most Web browsers: JPEG and
PNG. Any encoded image is going to use space for overhead, i.e. space not directly
used to store pixels. This is header information and image metadata. Some example
images will allow us to inspect the overhead of the JPEG and PNG formats. We
generate images with scaled content of sizes 1 by 1, 64 by 64, 128 by 128, 256 by
256, 512 by 512, 10214 by 1024, 2048 by 2048, 4096 by 4096, and 8192 by 8192
pixels. We are using a segment of NASA’s Blue Marble Next Generation as our
source content and our 1x1 pixel image as the baseline.

Image Size JPEG Bytes PNG Bytes JPEG Overhead Percentage PNG Overhead Percentage
1 x 1 632 69 100.0% 100.0%

64 x 64 2019 8532 31.30% 0.81%
128 x 128 4912 30724 12.87% 0.22%
256 x 256 14267 111642 4.43% 0.06%
512 x 512 43424 410782 1.46% 0.017%

1024 x 1024 135570 1515218 0.47% 0.0046%
2048 x 2048 423298 5528685 0.15% 0.0012%
4096 x 4096 1309545 19513354 0.048% 0.00035%
8192 x 8192 4549578 62798290 0.014% 0.00011%

Table 4.4 Comparison of JPEG vs PNG compression performance.

Clearly, we can reduce overhead by using very large images. But very large im-
ages introduce a new problem. It is unlikely that our users will be very satisfied
waiting for a 8192 by 8192 image to download and display, especially when their
monitors can show only 1024 by 768. They are able to view only 1.17% of the pixels
in the image at one time. Also, very large images consume a lot of system memory
and may not be usable at all on smaller or older devices.

There is another consideration to be made that is specific to JPEG images. The
JPEG compression algorithm is block based. It commonly uses 16 by 16 blocks of
pixels as minimum compression units. If an image’s pixels are not evenly divisible
by 16 in each dimension, it will pad the image with empty values. We can prove this
by creating a series of JPEG images sized 1 to 500 pixels. Each image consists of
all black pixels.

The distinct stair-step pattern in Figure 4.23 shows that the images increase in
compressed size by 16 pixel increments. Therefore, we should choose tile sizes that
are powers of 16, like 16, 32, 64, etc. This partially explains why our overhead
calculations for JPEG and PNG images showed that overhead as a percentage from

4.5 Choosing Tile Sizes 59

Fig. 4.23 Graph shows the step-pattern for size of a JPEG-compressed image.

JPEG images is much larger than PNG images. The 1 by 1 JPEG image would be the
same size as a 16 by 16 JPEG image. This would not be the case for PNG images.

To determine the actual appropriate tile size, we can create an optimization func-
tion. We want to minimize both the number of individual images required to virtual-
ize the map view and the number of wasted pixels. Wasted pixels are pixels that are
transmitted and decoded but not part of the virtualized map view (See Figure 4.24).

The best way to minimize wasted pixels would be to make all of our tiles 1
by 1, and then we would never have to decode any pixels that are not part of the
final image. However, the overhead of having to retrieve and decode thousands and
thousands of image files per map view would make our system unusable.

We can experimentally determine the proper tile size for our system. First we
need to guess the typical size of a virtualized map view. For this example, we will
use 1024 by 768 pixels. Given this size, we can generate a large number of random
map views for a given scale. For each of those random map views, we will calculate
the number of tiles needed to fill that that view and the number of wasted pixels.
We will perform this calculation for all the tile dimensions that we are considerating
using. For this example, we will use tile dimensions 16, 32, 64, 128, 256, 512, 1024,
and 2048.

60 4 Image Processing and Manipulation

Wasted Pixels

Virtualized Map View

Fig. 4.24 Wasted pixels are decoded but not used as part of the virtualized map view.

For an example map scale, we will use scale 10 from the logical tile scheme that
we developed in Chapter 2. Recall, that scale 10 is simply defined as having 210

(1024) columns by 29 (512) rows. Each tile is 1024
360.0 (2.84) degrees wide and long.

Generating random map views is fairly easy. Since all map views have the same
aspect ratio, we need to generate a large number of random center locations. The
center locations would be in the range of -180 to 180 for the longitude coordinate
and -90 to 90 for the latitude coordinate. Then, for each tile size, we can extrapolate
the map view bounds from the center location.

When generating our random map views, we have to consider that cases in which
some portion of our map view will go beyond the normal bounds of the Earth. For
example, the longitudes might be greater than 180.0 or less than -180.0. There are
two ways to deal with this. First we can constrain our randomization function to a
range of coordinates that is guaranteed to never generate map view bounds outside

4.5 Choosing Tile Sizes 61

our given range, or, secondly, we could simply perform those calculations without
caring if the boxes overlap our acceptable coordinates. We will choose the latter
method. If a randomly computed map box strays beyond the -180 to 180 and -90 to
90 bounds, we will compute wasted pixels and tiles that were accessed as if there
were tiles and pixels in those areas. This is a practical decision because many map
clients perform wrapping in boundary areas. They pull images and pixels from the
other side of the map to fill in the boundary overlaps.

The algorithm in Listing 4.12 generates 10,000 randomized map center locations
for scale 10 and tile dimensions of 16, 32, 64, 128, 256, 512, 1024, and 2048. It
computes the total number of tiles accessed and the wasted pixels for each access.
Those results are shown in Table 4.5.

Tile Size Number of Tiles Accessed Wasted Pixels
16 3185.0 28928.0
32 825.0 58368.0
64 221.0 118784.0

128 63.0 245760.0
256 20.0 524288.0
512 7.5021 1180198.5024

1024 3.4938 2877082.8288
2048 2.0677 7886130.3808

Table 4.5 Tiles accessed and wasted pixels for 1024 by 768 map view. 10,000 random map views
averaged.

When the results are plotted, it is easy to see the optimal point, as shown in
Figure 4.25. We have normalized the tiles accessed and pixels wasted values. The
two lines cross very near to when the tiles are sized 128 by 128. This statistic might
lead us to select tiles sized 128 by 128. However, these calculations are performed in
pixel counts. We are disregarding the important computations performed earlier to
determine overhead percentages for each tile size. Re-computing the optimization
and substituting pixels wasted with total bytes accessed yields a different result.
Furthermore, the result can be plotted with just one line to see the bytes used as a
function of tile size; see Figure 4.26. Table 4.6 shows our results using the listed tile
image sizes in bytes.

Tile Size Standardized Image Size in Bytes Number of Tiles Accessed Total Bytes Accessed
16 759 3185.0 2417415.0
32 1062 825.0 876150.0
64 2019 221.0 446199.0

128 4912 63.0 309456.0
256 14267 20.0 285340.0
512 43424 7.5 326070.816

1024 135570 3.5 474305.202
2048 423298 2.06 873687.072

Table 4.6 Bytes accessed for different sized tiles.

62 4 Image Processing and Manipulation

Fig. 4.25 Graph of the normalized number of tiles accessed and of pixels wasted.

Clearly the 16 by 16 tiles are very inefficient. They require the most bytes to be
read, even though our earlier computations showed that they generated the fewest
wasted pixels. The effect of the wasted pixels is seen as the tile sizes get larger.
According to this graphic, tiles sizes 128, 256 or 512 are all close to optimal.

What if we consider more than one map view resolutions? Up to now, we have
considered only 1024 by 768 map view resolutions. Figure 4.27 shows the results
for map resolutions 640 by 480, 800 by 600, 1024 by 768, 1280 by 960, 1400 by
1050, and 1600 by 1200.

The results are similar: we still see the bottom (or optimum area) of our plots
around the 128, 256, and 512 area. Figure 4.28 shows the results for PNG image’s
sizes instead of JPEG sizes. We can see the effect of reduced overhead in PNG
images, but otherwise the plots are similar.

Figure 4.29 shows the JPEG bytes accessed plotted as differences from one tile
size to the other. In this figure we can see that the line is almost flat from 256 to
512. This indicates that there is very little difference between these two tile sizes in
terms of total bytes accessed.

Since we have moved from considering pixels to compressed image bytes, we
should also consider computation time required to decompress the compressed tile
images. Table 4.7 shows the average decode times for tiles of varied sizes in both

4.5 Choosing Tile Sizes 63

Fig. 4.26 Graph of bytes accessed vs. tile size.

JPEG and PNG formats. If we put these numbers into our previous optimization
plots we get Figure 4.30 and Figure 4.31. In both of these experiments, we see that
our plot has a minimum around the 512 tile size.

Tile Size Decode Time JPEG (Milliseconds) Decode Time PNG (Milliseconds)
16 2.5 2.34
32 2.5 2.5
64 2.66 3.12

128 3.91 4.22
256 5.0 7.97
512 10.94 21.1
1024 31.56 69.22
2048 113.75 258.44

Table 4.7 Decode times for JPEG and PNG tiles.

Further enhancements to this approach are possible. We have considered only
random map views that exactly match our pre-determined map scales. In practice
this will occur only for map clients that adhere to those fixed map scales. In addition,
we have fixed the map scale by number of tiles and varied the tile size. In practical

64 4 Image Processing and Manipulation

Fig. 4.27 Graph of bytes accessed using JPEG tiles for multiple map display resolutions.

terms this means that while each tile covers that same portion of the earth, the real
map resolution of each tile varies with its size. Both of these shortcomings can be
addressed by replacing our fixed map scale of 10 with a randomly selected map
scale. The randomly selected map scale should be chosen from a continuous range
instead of fixed discrete scales. In these cases, we will have to scale the pixels from
the covered tiled region to match the scale of the map view with the randomly chosen
scale.

In conclusion, from consideration of the results given above we are going to
use 512× 512 for the tile sizes in this book. Our analyses indicate the 256× 256
would also be a good choice. However, we should consider a final point. It takes
four 256×256 tiles to cover the area of one 512×512 tile. Thus when we create a
large number of tiles, if we use 256×256 tiles, we will have four times the database
entries or four times the tile image files, and either way our indexes will be four
times the size. As we cover techniques for producing and storing tiles, we will see
that these are significant costs.

4.6 Tuning Image Compression 65

Fig. 4.28 Graph of bytes accessed using PNG tiles for multiple map display resolutions

4.6 Tuning Image Compression

In dealing with very large tiled image sets, it may be important to try to reduce the
amount of storage space required. The compression quality of JPEG compressed
images can be adjusted to produce smaller or larger compressed files. As the com-
pression rate is increased the file size decreases. Many software platforms support
setting the JPEG quality ratio to values in a pre-defined range; these can be either 0
to 1, or 0 to 100. Higher quality values mean less compression. If we apply varied
quality settings to a 512 by 512 JPEG image taken from the Blue Marble data set,
we get the file size differences shown in Table 4.8.

Quality Setting JPEG File Size in Bytes
90 62128
80 45475
70 42141
60 38746
40 21967
10 9952

Table 4.8 File sizes for different JPEG quality settings.

66 4 Image Processing and Manipulation

Fig. 4.29 Change in the number of bytes accessed as tile size increases (JPEG tiles).

Figure 4.32 is a tiled image from the Blue Marble set. Figures 4.33(a), 4.33(b),
4.33(c), 4.33(d), 4.33(e), and 4.33(f) show the results of applying the various com-
pression quality settings.

The 80 and 90 quality settings are visually hard to distinguish, but lower values
show compression artifacts. For example, the 10 quality image is quite blurry. There
is a significant drop in storage space required from quality setting 90 to 80. After
that, the drops are less pronounced. Anyone producing large tile sets should take
time to manually set the quality setting appropriate to their application. Tile produc-
ers might consider using a lower quality setting for lower resolution tiles and using a
higher setting for higher resolution tiles. This would provide tile system users with
lower quality overview images, but the option to zoom in for higher quality map
views.

Even though the PNG format is technically lossless, we can apply some lossy
techniques to reduce the file sizes of PNG images. Recall that the PNG format is
sensitive to the number of colors used in an image. If we can reduce the number of
colors in an image, a process called “color quantization,” we can reduce the size of
the compressed PNG file.

There are many algorithms for color quantization. A very simple algorithm
would simply reduce the byte space available for colors. So instead of an RGB im-
age with 8 bits for each color channel, we could only allow 7 bits for each channel.
Listing 4.8 shows this algorithm applied to an example map image.

4.6 Tuning Image Compression 67

Fig. 4.30 Decode time for JPEG images as tile size increases.

Listing 4.8 Simple algorithm for reducing the color space of an image.

1
2 byte [] s q u e e z e C o l o r s (Buf fe red Image bi , i n t b i t s P e r C o l o r) throws IOE xcep t ion {
3 i n t b i t s T o S h i f t = 8 − b i t s P e r C o l o r ;
4 f o r (i n t i = 0 ; i < b i . ge tWid th () ; i ++) {
5 f o r (i n t j = 0 ; j < b i . g e t H e i g h t () ; j ++) {
6 Colo r c = new Color (b i . getRGB (i , j)) ;
7 i n t b = c . g e t B l u e () ;
8 i n t g = c . ge tGreen () ;
9 i n t r = c . getRed () ;

10 b = (b >> b i t s T o S h i f t) << b i t s T o S h i f t ;
11 g = (g >> b i t s T o S h i f t) << b i t s T o S h i f t ;
12 r = (r >> b i t s T o S h i f t) << b i t s T o S h i f t ;
13 Colo r c2 = new Color (r , g , b) ;
14 b i . setRGB (i , j , c2 . getRGB ()) ;
15 }
16 }
17 ByteArrayOutpu tS t ream baos = new ByteArrayOutpu tS t r eam () ;
18 ImageIO . w r i t e (bi , ” png ” , baos) ;
19 byte [] d a t a = baos . t o B y t e A r r a y () ;
20 re turn d a t a ;
21 }

68 4 Image Processing and Manipulation

Fig. 4.31 Decode time for PNG images as tile size increases.

b = (b >> bitsToShift) << bitsToShift;
g = (g >> bitsToShift) << bitsToShift;
r = (r >> bitsToShift) << bitsToShift;

The key part of the code is the following section:
We shift each color component to the right and then back to the left. This has the

effect of rounding off or zeroing out the right most or least significant bits for each
component.

Table 4.9 shows the effect of this simple algorithm on the number of colors and
the resulting file sizes on the image shown in Figure 4.16.

Reducing the color palette from 24 bits to 21 bits reduces the number of colors
from 2,372 to 2,094, and it delivers a significant reduction in file size, nearly 45%.
Figures 4.34(a), 4.34(b), 4.34(c), 4.34(d), 4.35(a), 4.35(b), and 4.35(c) show the
effect of reducing the color palette. Only the most severe reductions provide a visible
decrease in the image’s quality.

There are more sophisticated algorithms. The ”Quantize” algorithm in the Im-
ageMagick software package 3 uses a tree structure to classify and reduce the num-
ber of colors in an image. Rather than simply reducing the bit depth as we did in

3 http://www.imagemagick.org/script/quantize.php

http://www.imagemagick.org/script/quantize.php

4.6 Tuning Image Compression 69

Fig. 4.32 Blue Marble tile image.

RGB Bits Image Colors File Size (Bytes)
24 2,372 (Original) 329,662
21 2,094 182,413
18 1,728 176,675
15 1,217 163,290
12 624 148,144
9 191 102,665
6 43 48,660
3 8 26,249

Table 4.9 Results of Simple Color Reduction Algorithm.

70 4 Image Processing and Manipulation

(a) 90 quality (b) 80 quality

(c) 70 quality (d) 60 quality

(e) 40 quality (f) 10 quality

Fig. 4.33 Different quality levels for the same JPEG compressed tile.

4.6 Tuning Image Compression 71

(a) 21 RGB bits (b) 18 RGB bits

(c) 15 RGB Bits (d) 12 RGB Bits

Fig. 4.34 Comparison between PNG compressed images with differening numbers of bits to rep-
resent color. (Part 1)

tour example, this algorithm attempts to intelligently discard colors. It functions
by minimizing the color reduction error by calculating the error resulting from the
elimination of any single color and then eliminating the colors that have the least
impact on the overall error.

Image Colors File Size (Bytes)
2,372 (Original) 329,662

1659 349,132
798 298,533
400 286,660
100 209,952
50 202,308
16 165,902
8 104,230

Table 4.10 Color reductions using the Quantize algorithm

72 4 Image Processing and Manipulation

(a) 9 RGB Bits (b) 6 RGB Bits

(c) 3 RGB Bits

Fig. 4.35 Comparison between PNG compressed images with different numbers of bits to repre-
sent color. (Part 2)

Table 4.10 shows the color reduction to file size reduction numbers. Figures 4.36(a),
4.36(b), 4.36(c), and 4.36(d) show the images reduced to 100, 50, 16, and 8 colors
respectively. The images are still usable with as few as 100 colors, but the compres-
sion improvements are less significant. Reducing from 2,372 to 100 colors yields
only a 36% reduction. We also note the peculiar result that reducing from 2,372
colors to 1,659 actually yields an increase in the file size.

Those producing tiled images will need to conduct their own trials to determine if
color reduction is a useful step in their tile production process. We should note that
we are reducing the colors of rendered map graphics after they have been rendered.
It would be more efficient and more sensible to simply render them with fewer colors
from the beginning, if possible.

There are other techniques to reduce the sizes of compressed images. For exam-
ple, we could apply smoothing filters to the images. However, this type of technique
is only effective because it reduces the amount of information stored in the image.
This also reduces the usefulness of the image.

4.6 Tuning Image Compression 73

(a) 100 colors (b) 50 colors

(c) 16 colors (d) 8 colors

Fig. 4.36 Comparison between PNG compressed images with differening numbers of total colors
in the image.

74 4 Image Processing and Manipulation

Listing 4.9 Java implementations of nearest neighbor and bilinear interpolation.

1
2 p u b l i c c l a s s I m a g e S c a l i n g {
3
4 p u b l i c s t a t i c vo id s c a l e (Buf fe red Image s , Buf fe red Image t , BoundingBox sbb ,

BoundingBox t b b) {
5 i n t t a r g e t h e i g h t = t . g e t H e i g h t () ;
6 i n t t a r g e t w i d t h = t . ge tWid th () ;
7 f o r (i n t j = 0 ; j < t a r g e t h e i g h t ; j ++) {
8 f o r (i n t i = 0 ; i < t a r g e t w i d t h ; i ++) {
9 Point2DDouble p o i n t = g e o l o c a t e (tbb , i , j , t a r g e t h e i g h t ,

t a r g e t w i d t h) ;
10 i f (! ((p o i n t . x > sbb . maxX) | | (p o i n t . y > sbb . maxY) | | (p o i n t . x

< sbb . minX) | | (p o i n t . y < sbb . minY))) {
11 i n t p i x e l v a l = i n t e r p o l a t e (s , sbb , p o i n t) ;
12 t . setRGB (i , j , p i x e l v a l) ;
13 }
14 }
15 }
16 }
17
18
19
20 p u b l i c s t a t i c Point2DDouble g e o l o c a t e (BoundingBox coords , i n t i , i n t j , i n t

width , i n t h e i g h t) {
21 double p i x e l w i d t h = (c o o r d s . maxX − c o o r d s . minX) / wid th ;
22 double p i x e l h e i g h t = (c o o r d s . maxY − c o o r d s . minY) / h e i g h t ;
23 double x = (i + 0 . 5) ∗ p i x e l w i d t h + c o o r d s . minX ;
24 i n t a d j j = h e i g h t − j − 1 ;
25 double y = (a d j j + 0 . 5) ∗ p i x e l h e i g h t + c o o r d s . minY ;
26 re turn new Point2DDouble (x , y) ;
27 }
28
29 p r i v a t e s t a t i c i n t i n t e r p o l a t e n n (Buf fe red Image s , BoundingBox sbb ,

Point2DDouble p o i n t) {
30 double t x = p o i n t . x ;
31 double t y = p o i n t . y ;
32 i n t i = (i n t) Math . round ((t x − sbb . minX) / (sbb . maxX − sbb . minX) ∗ (

double) s . ge tWid th ()) ;
33 i n t j = s . g e t H e i g h t () − 1 − ((i n t) Math . round ((t y − sbb . minY) / (sbb .

maxY − sbb . minY) ∗ (double) s . g e t H e i g h t ())) ;
34 re turn s . getRGB (i , j) ;
35 }
36
37 p r i v a t e s t a t i c i n t i n t e r p o l a t e b l (Buf fe red Image s , BoundingBox sbb ,

Point2DDouble p o i n t) {
38 double t x = p o i n t . x ;
39 double t y = p o i n t . y ;
40 i n t s o u r c e h e i g h t = s . g e t H e i g h t () ;
41 i n t s o u r c e w i d t h = s . ge tWid th () ;
42 double temp x = (t x − sbb . minX) / (sbb . maxX − sbb . minX) ∗ s o u r c e w i d t h ;
43 double temp y = s o u r c e h e i g h t − 1 − ((t y − sbb . minY) / (sbb . maxY − sbb .

minY) ∗ s o u r c e h e i g h t) ;
44 i n t i = (i n t) Math . f l o o r (temp x) ;
45 i n t j = (i n t) Math . f l o o r (temp y) ;
46 double w e i g h t x = temp x − i ;
47 double w e i g h t y = temp y − j ;
48 i f (j == s o u r c e h e i g h t) {
49 j = j − 1 ;
50 }
51 i f (i == s o u r c e w i d t h) {
52 i = i − 1 ;
53 }
54 i f (j < 0) {
55 j = 0 ;
56 }
57 i f (i < 0) {

4.6 Tuning Image Compression 75

58 i = 0 ;
59 }
60 i n t v a l 0 0 = s . getRGB (i , j) ;
61 i n t v a l 0 1 = s . getRGB (i , j) ;
62 i n t v a l 1 0 = s . getRGB (i , j) ;
63 i n t v a l 1 1 = s . getRGB (i , j) ;
64 i n t p i x e l v a l r = g e t P i x e l V a l u e (rmask (v a l 0 0) , rmask (v a l 0 1) , rmask (

v a l 1 0) , rmask (v a l 1 1) , we igh t x , w e i g h t y) ;
65 i n t p i x e l v a l g = g e t P i x e l V a l u e (gmask (v a l 0 0) , gmask (v a l 0 1) , gmask (

v a l 1 0) , gmask (v a l 1 1) , we igh t x , w e i g h t y) ;
66 i n t p i x e l v a l b = g e t P i x e l V a l u e (bmask (v a l 0 0) , bmask (v a l 0 1) , bmask (

v a l 1 0) , bmask (v a l 1 1) , we igh t x , w e i g h t y) ;
67 i n t p i x e l v a l = p i x e l v a l r << 16 | p i x e l v a l g << 8 | p i x e l v a l b | 0

xf f000000 ;
68 re turn p i x e l v a l ;
69 }
70
71 p r i v a t e s t a t i c i n t bmask (i n t v a l) {
72 i n t b = v a l & 0 x000000f f ;
73 re turn b ;
74 }
75
76 p r i v a t e s t a t i c i n t gmask (i n t v a l) {
77 i n t b = (v a l >> 8) & 0 x000000f f ;
78 re turn b ;
79 }
80
81 p r i v a t e s t a t i c i n t rmask (i n t v a l) {
82 i n t r = (v a l >> 16) & 0 x000000f f ;
83 re turn r ;
84 }
85
86 p r i v a t e s t a t i c i n t g e t P i x e l V a l u e (i n t v a l 0 0 , i n t v a l 0 1 , i n t v a l 1 0 , i n t

v a l 1 1 , double weigh t x , double w e i g h t y) {
87 i n t p i x e l v a l = (i n t) ((1 − w e i g h t x) ∗ (1 − w e i g h t y) ∗ v a l 0 0 +

w e i g h t x ∗ (1 − w e i g h t y) ∗ v a l 0 1 + (1 − w e i g h t x) ∗ (w e i g h t y)
88 ∗ v a l 1 0 + w e i g h t x ∗ w e i g h t y ∗ v a l 1 1) ;
89 re turn p i x e l v a l ;
90 }
91
92 Many programming e n v i r o n m e n t s p r o v i d e b u i l t −i n t o o l s f o r s c a l i n g and s u b s e t t i n g

images . T h i s changes our a l g o r i t h m s s l i g h t l y . I n s t e a d of p e r f o r m i n g
p i x e l by p i x e l c a l c u l a t i o n s , we compute a s i n g l e s e t o f t r a n s f o r m a t i o n
p a r a m e t e r s and p a s s t h o s e t o t h e b u i l t i n image m a n i p u l a t i o n r o u t i n e s . The

f o l l o w i n g code s e c t i o n s show how t o us e t h o s e b u i l t i n r o u t i n e s i n J ava
and Python .

93
94 J ava Image S c a l i n g and S u b s e t t i n g
95
96
97 p u b l i c s t a t i c vo id drawImageToImage (Buf fe red Image s ource , BoundingBox

s o u r c e b b , Buf fe red Image t a r g e t , BoundingBox t a r g e t b b) {
98 double xd = t a r g e t b b . maxX − t a r g e t b b . minX ;
99 double yd = t a r g e t b b . maxY − t a r g e t b b . minY ;

100 double wd = (double) t a r g e t . ge tWid th () ;
101 double hd = (double) t a r g e t . g e t H e i g h t () ;
102 double t a r g d p x = xd / wd ;
103 double t a r g d p y = yd / hd ;
104 double s r c d p x = (s o u r c e b b . maxX − s o u r c e b b . minX) / s o u r c e . ge tWid th () ;
105 double s r c d p y = (s o u r c e b b . maxY − s o u r c e b b . minY) / s o u r c e . g e t H e i g h t () ;
106 i n t t x = (i n t) Math . round (((s o u r c e b b . minX − t a r g e t b b . minX) / t a r g d p x)

) ;
107 i n t t y = t a r g e t . g e t H e i g h t () − (i n t) Math . round (((s o u r c e b b . maxY −

t a r g e t b b . minY) / yd) ∗ hd) − 1 ;
108 i n t tw = (i n t) Math . c e i l (((s r c d p x / t a r g d p x) ∗ s o u r c e . ge tWid th ())) ;
109 i n t t h = (i n t) Math . c e i l (((s r c d p y / t a r g d p y) ∗ s o u r c e . g e t H e i g h t ())) ;
110 Graphics2D t a r g e t g r a p h i c s = (Graphics2D) t a r g e t . g e t G r a p h i c s () ;

76 4 Image Processing and Manipulation

111
112 / / u s e one o f t h e s e t h r e e s t a t e m e n t s t o s e t t h e i n t e r p o l a t i o n method t o

be us ed
113 t a r g e t g r a p h i c s . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION NEAREST NEIGHBOR) ;
114 t a r g e t g r a p h i c s . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION BILINEAR) ;
115 t a r g e t g r a p h i c s . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION BICUBIC) ;
116
117 t a r g e t g r a p h i c s . drawImage (s ource , tx , ty , tw , th , n u l l) ;
118 }

Listing 4.10 Java image scaling and subsetting.

1 p u b l i c s t a t i c vo id drawImageToImage (Buf fe red Image s ource ,
2 BoundingBox s o u r c e b b , Buf fe red Image t a r g e t ,
3 BoundingBox t a r g e t b b) {
4 double xd = t a r g e t b b . maxX − t a r g e t b b . minX ;
5 double yd = t a r g e t b b . maxY − t a r g e t b b . minY ;
6 double wd = (double) t a r g e t . ge tWid th () ;
7 double hd = (double) t a r g e t . g e t H e i g h t () ;
8 double t a r g d p x = xd / wd ;
9 double t a r g d p y = yd / hd ;

10 double s r c d p x = (s o u r c e b b . maxX − s o u r c e b b . minX) / s o u r c e . ge tWid th () ;
11 double s r c d p y = (s o u r c e b b . maxY − s o u r c e b b . minY) / s o u r c e . g e t H e i g h t () ;
12 i n t t x = (i n t) Math . round (((s o u r c e b b . minX − t a r g e t b b . minX) / t a r g d p x)) ;
13 i n t t y = t a r g e t . g e t H e i g h t () − (i n t) Math . round (((s o u r c e b b . maxY − t a r g e t b b

. minY) / yd) ∗ hd) − 1 ;
14 i n t tw = (i n t) Math . c e i l (((s r c d p x / t a r g d p x) ∗ s o u r c e . ge tWid th ())) ;
15 i n t t h = (i n t) Math . c e i l (((s r c d p y / t a r g d p y) ∗ s o u r c e . g e t H e i g h t ())) ;
16 Graphics2D t a r g e t g r a p h i c s = (Graphics2D) t a r g e t . g e t G r a p h i c s () ;
17
18 / / u s e one o f t h e s e t h r e e s t a t e m e n t s t o s e t t h e i n t e r p o l a t i o n method t o be

us ed
19 t a r g e t g r a p h i c s . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION NEAREST NEIGHBOR) ;
20 t a r g e t g r a p h i c s . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION BILINEAR) ;
21 t a r g e t g r a p h i c s . s e t R e n d e r i n g H i n t (R e n d e r i n g H i n t s . KEY INTERPOLATION,

R e n d e r i n g H i n t s . VALUE INTERPOLATION BICUBIC) ;
22
23 t a r g e t g r a p h i c s . drawImage (s ource , tx , ty , tw , th , n u l l) ;
24 }

Listing 4.11 Python image scaling and subsetting.

1 import Image , ImageDraw # r e q u i r e s t h e Python Imaging L i b r a r y (PIL) addon t o
py thon

2
3 def drawImageToImage (s ource , sourceBoundingBox , t a r g e t , t a rge tB ound in gBo x) :
4 # c a l c u l a t i o n s t o d e t e r m i n e t h e d e g r e e s per p i x e l f o r each d imens ion o f t h e

t a r g e t image
5 t a r g e t X D e l t a = ta rge tBound ing Bo x . maxX − t a rge tBound ing Box . minX
6 t a r g e t Y D e l t a = ta rge tBound ing Bo x . maxY − t a rge tBound ing Box . minY
7 t a r g e t W i d t h = t a r g e t . s i z e [0]
8 t a r g e t H e i g h t = t a r g e t . s i z e [1]
9 t a r g e t D e g P e r P i x e l X = t a r g e t X D e l t a / f l o a t (t a r g e t W i d t h)

10 t a r g e t D e g P e r P i x e l Y = t a r g e t Y D e l t a / f l o a t (t a r g e t H e i g h t)
11
12 # c a l c u l a t i o n s t o d e t e r m i n e t h e d e g r e e s per p i x e l f o r each d imens ion o f t h e

s o u r c e image
13 # (we c o l l a p s e t h e e q u a t i o n s i n t o two l i n e s)
14 s o u r c e X D e l t a = sourceBoundingBox . maxX − sourceBoundingBox . minX
15 s o u r c e Y D e l t a = sourceBoundingBox . maxY − sourceBoundingBox . minY

4.6 Tuning Image Compression 77

16 s ourceWid th = s o u r c e . s i z e [0]
17 s o u r c e H e i g h t = s o u r c e . s i z e [1]
18 sourceDegPe rP ixe l X = s o u r c e X D e l t a / f l o a t (s ou rceWid th)
19 s ourceDegPe rP ixe l Y = s o u r c e Y D e l t a / f l o a t (s o u r c e H e i g h t)
20
21 t a r g e t X = i n t (round ((sourceBoundingBox . minX − t a rge tBound ing Bo x . minX) /

t a r g e t D e g r e s s P e r P i x e l X))
22 t a r g e t Y = t a r g e t H e i g h t − i n t (round (((sourceBoundingBox . maxY −

t a rge tBound ing Bo x . minY) / t a r g e t Y D e l t a) ∗ t a r g e t H e i g h t)) − 1
23 tw = i n t (math . c e i l (((sou rceDegPe rP ixe l X / t a r g e t D e g P e r P i x e l X) ∗ s ourceWid th

)))
24 t h = i n t (math . c e i l (((sou rceDegPe rP ixe l Y / t a r g e t D e g P e r P i x e l Y) ∗

s o u r c e H e i g h t)))
25
26 # us e one o f t h e s e t o s e t t h e i n t e r p o l a t i o n method when r e s i z i n g t h e t a r g e t

image
27 i n t e r p o l a t i o n = Image . NEAREST
28 i n t e r p o l a t i o n = Image . BILINEAR
29 i n t e r p o l a t i o n = Image . BICUBIC
30
31 r e s i z e d S o u r c e = s . r e s i z e ((tw , t h) , i n t e r p o l a t i o n)
32
33 im . p a s t e (r e s i z e d S o u r c e , (t a r g e t X , t a r g e t Y , tw , t h))

Listing 4.12 Generating randomized map view locations.

1 p u b l i c s t a t i c vo id t i l e S i z e O p t i m i z a t i o n 1 () {
2 i n t n u m l o c a t i o n s = 10000 ;
3 i n t [] t i l e s i z e s = new i n t [] {16 , 32 , 64 , 128 , 256 , 512 , 1024 , 2048} ;
4
5 i n t s c a l e = 1 0 ;
6 i n t viewWidth = 1024 ;
7 i n t v iewHeigh t = 768 ;
8
9 i n t numpoin t s = n u m l o c a t i o n s ;

10 Point2DDouble [] randomPoin t s = ge tRandomPoin t s (numpoin t s) ;
11 i n t [] t o t a l T i l e s A c c e s s e d = new i n t [t i l e s i z e s . l e n g t h] ;
12 l ong [] t o t a l P i x e l s W a s t e d = new long [t i l e s i z e s . l e n g t h] ;
13 f o r (i n t i = 0 ; i < t i l e s i z e s . l e n g t h ; i ++) {
14 BoundingBox [] bb = getRandomMapViews (randomPoin t s , s c a l e , t i l e s i z e s

[i] , viewWidth , v i ewHeigh t) ;
15 i n t [] t i l e s A c c e s s e d = g e t T i l e s A c c e s s e d (bb , s c a l e) ;
16 l ong [] p i x e l s W a s t e d = g e t W a s t e d P i x e l s (t i l e s A c c e s s e d , s c a l e ,

viewWidth , viewHeight , t i l e s i z e s [i]) ;
17 t o t a l T i l e s A c c e s s e d [i] = 0 ;
18 f o r (i n t j = 0 ; j < n u m l o c a t i o n s ; j ++) {
19 t o t a l T i l e s A c c e s s e d [i] += t i l e s A c c e s s e d [j] ;
20 t o t a l P i x e l s W a s t e d [i] += p i x e l s W a s t e d [j] ;
21 }
22 }
23
24 f o r (i n t i = 0 ; i < t o t a l T i l e s A c c e s s e d . l e n g t h ; i ++) {
25 System . o u t . p r i n t l n (t o t a l T i l e s A c c e s s e d [i] / 1 0 0 0 0 . 0) ;
26 }
27 f o r (i n t i = 0 ; i < t o t a l T i l e s A c c e s s e d . l e n g t h ; i ++) {
28 System . o u t . p r i n t l n (t o t a l P i x e l s W a s t e d [i] / 1 0 0 0 0 . 0) ;
29 }
30
31 }
32
33 / / t h i s method d e t e r m i n e s t h e number o f p i x e l s t h a t ar e decoded from t h e number

o f t i l e s / / a c c e s s e d and s u b t r a c t s t h e number o f p i x e l s i n t h e c u r r e n t map
v iew

34 p r i v a t e s t a t i c long [] g e t W a s t e d P i x e l s (i n t [] t i l e s , i n t s c a l e , i n t viewWidth ,
i n t viewHeight , i n t t i l e s i z e) {

35 l ong [] p i x e l s = new long [t i l e s . l e n g t h] ;

78 4 Image Processing and Manipulation

36 i n t p i x e l s P e r T i l e = t i l e s i z e ∗ t i l e s i z e ;
37 i n t p i x e l s P e r V i e w = viewWidth ∗ v iewHeigh t ;
38 f o r (i n t j = 0 ; j < p i x e l s . l e n g t h ; j ++) {
39 p i x e l s [j] = (t i l e s [j] ∗ p i x e l s P e r T i l e) − p i x e l s P e r V i e w ;
40 i f (p i x e l s [j] < 0) {
41 System . o u t . p r i n t l n (p i x e l s P e r V i e w + ” : ” + t i l e s [j] + ” : ” +

p i x e l s P e r T i l e) ;
42 }
43 }
44 re turn p i x e l s ;
45 }
46
47 / / t h i s c a l c u l a t e s t h e number o f t i l e s t h a t ar e needed t o c o v e r each

bound ing box
48 p u b l i c s t a t i c i n t [] g e t T i l e s A c c e s s e d (BoundingBox [] boxes , i n t s c a l e) {
49 i n t [] t i l e s = new i n t [boxes . l e n g t h] ;
50 f o r (i n t i = 0 ; i < t i l e s . l e n g t h ; i ++) {
51 l ong minco l = (l ong) Math . f l o o r (ge tCo lForCoord (boxes [i] . minX , s c a l e

)) ;
52 l ong minrow = (l ong) Math . f l o o r (getRowForCoord (boxes [i] . minY , s c a l e

)) ;
53 l ong maxcol = (l ong) Math . f l o o r (ge tCo lForCoord (boxes [i] . maxX , s c a l e

)) ;
54 l ong maxrow = (l ong) Math . f l o o r (getRowForCoord (boxes [i] . maxY , s c a l e

)) ;
55 t i l e s [i] = (i n t) ((maxcol − minco l + 1) ∗ (maxrow − minrow + 1)) ;
56 }
57 re turn t i l e s ;
58
59 }
60 / / t h i s r e t u r n s t h e t i l e column c o o r d i n a t e t h a t c o n t a i n s t h e l o n g i t u d e ”x”

f o r s c a l e ” s c a l e ”
61 s t a t i c double ge tCo lForCoord (double x , i n t s c a l e) {
62 double coord = x + 1 8 0 . 0 ;
63 coord = coord / (3 6 0 . 0 / Math . pow (2 . 0 , (double) s c a l e)) ;
64 re turn (coord) ;
65 }
66 / / t h i s r e t u r n s t h e t i l e column c o o r d i n a t e t h a t c o n t a i n s t h e l a t i t u d e ”y”

f o r s c a l e ” s c a l e ”
67 s t a t i c double getRowForCoord (double y , i n t s c a l e) {
68 double coord = y + 9 0 . 0 ;
69 coord = coord / (3 6 0 . 0 / Math . pow (2 . 0 , (double) s c a l e)) ;
70 re turn (coord) ;
71 }
72 / / t h i s compu tes ” numpoin t s ” random x and y l o c a t i o n s w i t h i n our map

c o o r d i n a t e s y s t e m
73 p r i v a t e s t a t i c Point2DDouble [] ge tRandomPoin t s (i n t numpoin t s) {
74 Point2DDouble [] p o i n t s = new Point2DDouble [numpoin t s] ;
75 f o r (i n t i = 0 ; i < numpoin t s ; i ++) {
76 double c e n t e r X = Math . random () ∗ 360 . 0 − 1 8 0 . 0 ;
77 double c e n t e r Y = Math . random () ∗ 180 . 0 − 9 0 . 0 ;
78 Point2DDouble p o i n t = new Point2DDouble (cen te rX , c e n t e r Y) ;
79 p o i n t s [i] = p o i n t ;
80 }
81 re turn p o i n t s ;
82 }
83 / / t h e e x t r a p o l a t e s our random x and y l o c a t i o n s i n t o map v iew boxes
84 p u b l i c s t a t i c BoundingBox [] getRandomMapViews (Point2DDouble [] c e n t e r P o i n t s ,

i n t s c a l e , i n t t i l e s i z e , i n t viewWidth , i n t v iewHeigh t) {
85 / / t h e s e two ar e a lways t h e same
86 double t i l e W i d t h D e g r e e s = 360 . 0 / Math . pow (2 , s c a l e) ;
87 double t i l e H e i g h t D e g r e e s = 180 . 0 / Math . pow (2 , s c a l e − 1) ;
88
89 double d e g r e e s P e r P i x e l = t i l e W i d t h D e g r e e s / t i l e s i z e ;
90 double viewWidthDegrees = viewWidth ∗ d e g r e e s P e r P i x e l ;
91 double v iewHeigh tDegrees = v iewHeigh t ∗ d e g r e e s P e r P i x e l ;
92

References 79

93 BoundingBox [] boxes = new BoundingBox [c e n t e r P o i n t s . l e n g t h] ;
94 f o r (i n t i = 0 ; i < boxes . l e n g t h ; i ++) {
95 double c e n t e r X = c e n t e r P o i n t s [i] . x ;
96 double c e n t e r Y = c e n t e r P o i n t s [i] . y ;
97 double minx = c e n t e r X − viewWidthDegrees / 2 . 0 ;
98 double maxx = c e n t e r X + viewWidthDegrees / 2 . 0 ;
99 double miny = c e n t e r Y − v iewHeigh tDegrees / 2 . 0 ;

100 double maxy = c e n t e r Y + viewHeigh tDegrees / 2 . 0 ;
101 BoundingBox bb = new BoundingBox (minx , miny , maxx , maxy) ;
102 boxes [i] = bb ;
103 }
104 re turn boxes ;
105 }

References

1. Denning, P., Schwartz, S.: Properties of the working-set model. Communications of the ACM
15(3), 198 (1972)

2. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Transactions on
Acoustics, Speech and Signal Processing 29(6), 1153–1160 (1981)

3. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in C. Cambridge
university press Cambridge (1992)

	4 Image Processing and Manipulation
	4.1 Basic Image Concepts
	4.2 Geospatial Images
	4.2.1 Specialized File Formats

	4.3 Image Manipulation
	4.3.1 Interpolation 1: Nearest Neighbor
	4.3.2 Interpolation 2: Bilinear
	4.3.3 Interpolation 3: Bicubic

	4.4 Choosing Image Formats for Tiles
	4.5 Choosing Tile Sizes
	4.6 Tuning Image Compression
	References

