
Chapter 3
Tiled Mapping Clients

A tiled mapping client has the responsibility of composing individual map tiles into
a unified map display. The map display may allow the user to move around and load
in more data, or it may be a static map image whose area is pre-determined by the
application. These clients are generally not difficult to create (one of the benefits of
tiled mapping). A tiled map client must be able to perform the following tasks:

• Calculate which tiles are necessary to fill the map.
• Fetch the tiles.
• Stitch tiles together on the map.

These three functions are usually performed in sequence as a response to an event
in the map client (such as the user moving the map).

3.1 Tile Calculation

The first task of a tiled map client is to calculate which tiles are necessary to fill the
map view. The map view is defined by both the geographic area of the map as well
as the pixel size of the map. To perform the tile calculations, a simple function is
necessary that takes the map view as input and returns a list of tiles as output. Each
tile is defined by a tile scale, row, and column.

The actual implementation of such a function is dependent on the way map scale
is handled within the client. For a tile client, the simplest method is to allow only
a discrete set of map scales. The allowed scales are identical to the set of zoom
levels provided natively by the underlying map tiles. Alternatively, the tile client
may allow map scales that are not natively available in the tiled map. Usually, such
a client will support a continuous set of map scales. Continuous map scales are used
in GIS clients because their primary purpose is to create and analyze a wide variety
of geospatial data. To support this extensive functionality, users must be able to
work on data at any map scale. Supporting continuous map scales means that any
combination of geographic area and map size is allowed. As a consequence, the

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 17
Principles and Practices, DOI 10.1007/978-1-4419-7631-4 3,
c© Springer Science+Business Media, LLC 2010

18 3 Tiled Mapping Clients

Listing 3.1 Calculation of tile range for the map view.

1 numMapViewTilesX= mapWid thPixe l s / t i l e W i d t h P i x e l s
2 numMapViewTilesY = m a p H e i g h t P i x e l s / t i l e H e i g h t P i x e l s

function that calculates which tiles are needed is more complex than the function
used for discrete map scales.

3.1.1 Discrete Map Scales

The case where clients support only discrete map scales is the simpler one, so that is
the best place to begin. As discussed in the previous chapter, the map scale of tiled
imagery is specified by zoom level, which is not the traditional distance ratio (e.g.,
1:10000m) common on paper maps. Instead, zoom level is simply used to specify
the sequence of map scales supported by the tiles. Assuming a standard power of
two tile scheme as discussed in the previous chapter, the world will be split into 2level

columns and 2level−1 rows (level ∈ N). As level increases, so too does map scale.
In this case, each increase in level squares the number of pixels used to represent
the entire Earth. A map client that uses discrete scales will allow the user to choose
only the levels made available by the data.

To calculate which tiles to retrieve, the client need only know the current zoom
level, the tile index of the origin of the map view, and the number of tiles required
to fill the map view. Notice that the map client need not know the geographic area
of the map view. When the map client allows only discrete zoom levels, the state of
the map may be stored using only a tile-based coordinate system rather than geo-
graphic one. It is also important to note that the following tile calculations assume
that the map size is an integer multiple of the tile size. This assumption will be ex-
plained further later in the chapter, but it is a result of using common user interface
programming techniques.

The origin of the map view is the index of the minimum tile. The minimum
tile is the lower left tile when using Cartesian tile coordinates or the upper left tile
when using matrix/image (row-major) coordinates. The tile dimensions of the map
view are the width and height represented in tiles, i.e., the map width (height) in
pixels divided by the tile width (height) in pixels. Listing 3.1 demonstrates how to
calculate tile dimensions by dividing the map view size in pixels by the tile size in
pixel for each dimension. Listings 3.2 and 3.3 demonstrate the process of increasing
and decreasing the zoom level of the map. Both a new tile origin and tile range must
be calculated when changing the zoom level.

Full-featured map clients will usually have the functionality to convert a geo-
graphic coordinate into tile coordinates as shown in Equations (3.1) (3.2).

3.1 Tile Calculation 19

Listing 3.2 Calculations for increasing the zoom level. When zoom level is increased we allow
truncation when dividing.

1 # c a l c u l a t e t h e new h o r i z o n t a l t i l e o r i g i n i n d e x
2 t i l e C e n t e r X = numCanvasTilesX / 2 + t i l e O r i g i n X
3 newT i leCen te rX = t i l e C e n t e r X ∗ 2
4 t i l e O r i g i n X = newT i leCen te rX − numCanvasTi lesX / 2
5
6 # c a l c u l a t e t h e new v e r t i c a l t i l e o r i g i n i n d e x
7 t i l e C e n t e r Y = numCanvasTilesY / 2 + t i l e O r i g i n Y
8 newT i leCen te rY = t i l e C e n t e r Y ∗ 2
9 t i l e O r i g i n Y = newT i leCen te rY − numCanvasTi lesY / 2

10
11 # c a l c u l a t e t h e new t i l e d i m e n s i o n s f o r t h e l e v e l
12 t i l e R a n g e X = t i l e R a n g e X ∗ 2
13 t i l e R a n g e Y = t i l e R a n g e Y ∗ 2

Listing 3.3 Calculations for decreasing the zoom level. When the zoom level is reduced we must
round instead of truncating when calculating the tile origin.

1 # c a l c u l a t e t h e new t i l e d i m e n s i o n s f o r t h e l e v e l
2 t i l e R a n g e X = t i l e R a n g e X / 2
3 t i l e R a n g e Y = t i l e R a n g e Y / 2
4
5 # c a l c u l a t e t h e new h o r i z o n t a l t i l e o r i g i n
6 t i l e C e n t e r X = numCanvasTilesX / 2 + t i l e O r i g i n X
7 newT i leCen te rX = t i l e C e n t e r X / 2
8 t i l e O r i g i n X = i n t (round ((numCanvasTi lesX + t i l e O r i g i n X) / 2 . 0)) −

numCanvasTi lesX
9 i f (t i l e O r i g i n X < 0) :

10 t i l e O r i g i n X = 0
11
12 # c a l c u l a t e t h e new v e r t i c a l t i l e o r i g i n
13 t i l e O r i g i n Y = i n t (round ((numCanvasTi lesY + t i l e O r i g i n Y) / 2 . 0)) −

numCanvasTi lesY
14 i f (t i l e O r i g i n Y < 0) :
15 t i l e O r i g i n Y = 0

c =
2i(λ +180)

360
(3.1)

r =
2i−1(φ +90)

180
(3.2)

where:

c ≡ horizontal tile coordinate

r ≡ vertical tile coordinate

λ ≡ longitude; −180 ≤ λ ≤ 180

φ ≡ latitude; −90 ≤ φ ≤ 90

i ≡ discrete map scale

20 3 Tiled Mapping Clients

3.1.2 Continuous Map Scales

Calculating the tile list for a map client with continuous map scales is more difficult.
For a continuous scale client, the map view must be defined by the geographic area
of the view and size of the view in pixels. From this definition of map view, it will
be necessary to determine which zoom level is best used to populate the view and
which specific tiles at that level are in the geographic area.

First, the current map scale must be calculated. The current map scale will still
not be represented as a traditional distance ratio since this distance ratio varies over
the entire world. Instead, the resolution for the map view, in degrees per pixel, will
be used to represent map scale. It should be noted that this works only when the
degrees per pixel is constant over the entire Earth at a particular zoom level; for
certain map projections, this is not true, and the scale should be represented using
the native coordinates of the projection (Chapter 10 has further discussion of map
projections).

The degrees per pixel, DPP, may be calculated using the geographic area and
size of the map view as shown in Equation (3.3).

DPP =
DPPx + DPPy

2
(3.3)

where:

DPPx =
λ1 −λ0

W

DPPy =
φ1 −λ0

H
λ1 ≡ maximum longitude of map view

λ0 ≡ minimum longitude of map view

φ1 ≡ maximum latitude of map view

φ0 ≡ minimum latitude of map view

W ≡ width of map view in pixels

H ≡ height of map view in pixels

Each zoom level also has a fixed resolution associated with it. The degrees per pixel
for each zoom level may be calculated using the tile geographic bounds and tile size
with the above formula.

Once the resolution of the current map view is calculated, the process of deter-
mining the best zoom level for tile data may begin. Determining which zoom level
to use as the source of tiles has important ramifications on image quality and client
performance. If too low a zoom level is chosen, then the image will have an inap-
propriately low resolution and look pixelated. However, if too high a zoom level is
chosen, then the client will be required to fetch too many tiles. For each increase in
zoom level, the client must fetch four times the number of tiles to create any given

3.1 Tile Calculation 21

map image. Thus, finding the optimal zoom level for a particular map view is impor-
tant to the overall performance and quality of the map client. Of course, the optimal
zoom level for a given map view is the zoom level with the same image resolution.

In general, the map view will not share an image resolution with any zoom level.
Normally, the map view resolution will lie between the resolutions of two zoom
levels. Of these two, the zoom level with the higher resolution is the best since it
will reduce artifacts due to image scaling. However, a 10% margin of error is used
when comparing the map view resolution to the resolution of the lower zoom level.
If the map view resolution is within 10% of the lower zoom level resolution then
the lower zoom level is used. A 10% resolution reduction is not significant visually
and will not impact the resulting map image, whereas the four-fold savings in tile
requests will provide significant performance improvements for the map client.

Often, the zoom level identified by the above process may not have the tiles
necessary to compose the map view. In this case, an additional search must be con-
ducted for the optimal zoom level tile source. If the upper bounding zoom level is
not available, then the lower bounding zoom level should be used, even if the res-
olution is not within the 10% margin of error. If neither is available, then the next
closest zoom levels should be checked, starting with the next highest zoom level.
At most, only the next two higher zoom levels should be used. Beyond that the I/O
costs of using higher zoom levels are prohibitive and should be avoided. Figure 3.1
shows examples of the processes of calculating the zoom level to use for a map view.

Once the appropriate zoom level is chosen as a tile source, the list of tiles cover-
ing the map view must be generated. The calculations for generating the tile list are
similar to those used in the discrete map scale cases. First, the minimum tile must
be calculated and then the tile range. However, in the continuous map scale case,
the map view parameters are not integer multiples of the tile parameters. The min-
imum tile is calculated using the minimum point on the map view, which may be
the lower-left or upper-left point depending on the tile coordinate system in use (we
assume lower-left). Equations 3.4 and 3.5 are used to calculate the tile containing a
geographic coordinate.

c = �(λ + 180.0)∗ 360.0
2i � (3.4)

r = �(φ + 90.0)∗ 180.0
2i−1 � (3.5)

where:

c ≡ horizontal tile index

r ≡ vertical tile index

λ ≡ longitude of map view

φ ≡ latitude of map view

i ≡ zoom level of map view

22 3 Tiled Mapping Clients

1 2 3 4 5 6 7 8

Requested

ReturnedExact match

(a) The scale of the map view is exactly the same as an available tile zoom
level.

1 2 3 4 5 6 7 8

Requested

Returned
Next highest

(b) The map view scale does not match an available zoom level, so we
choose the next highest.

1 2 3 4 5 6 7 8

Requested

ReturnedChoose lower within 10%

(c) The map view scale does not match an available zoom level, but it is less than 10%
different than the next lowest tile zoom level. As a result we choose the lower tile zoom
level.

1 2 3 6 7 8

Requested

ReturnedContinue Search

(d) The map view scale lies in between two zoom levels that have no tiles
available. In this case, we continue the search and choose the next highest
zoom level.

1 7 8

Requested

ReturnedChoose lower to reduce I/O

(e) The map view scale lies in between two zoom levels that have no tiles available.
Further surrounding zoom levels are also not available. In order to reduce the number
of tiles to retrieve, we choose a lower zoom level, even though higher zoom levels are
closer to the map scale.

Fig. 3.1 This figure shows examples of the process for choosing the appropriate zoom level.

The minimum and maximum coordinates of the map view are transformed into
minimum and maximum tiles using these formulas. Once the list of tiles required
to fill the map view is calculated, the client may proceed to the next major step of
retrieving these tiles.

3.2 Tile Retrieval

The tile client must retrieve tiles from where they are stored to use them in the
map view. Generally, the tiles are either stored locally or on a network. Sometimes
tiles are stored using both mechanisms. Generally, it is a good practice to create
an abstract interface for retrieving tiles, so the details of the implementation are
separated from the rest of the map client functionality. That way, if the client must

3.2 Tile Retrieval 23

change or add an additional retrieval mechanism, the effect on the overall system is
minimized.

3.2.1 Local Tile Storage

Local tile storage is the more complicated mechanism for tile retrieval. When tiles
on disk are used, the map client must have internal knowledge of the tile storage
scheme. In certain cases, the storage scheme is fairly simple. The single file-per-
tile scheme is a prime example. Each layer, scale, row, and column combination
identifies a single image file that can be easily referenced and exploited in the tile
software. Also common is the database tile storage scheme. Here, the map client
must be able to connect to the database and properly query for tiles. Database con-
nections from software are trivial to implement these days making this method also
relatively simple. More complicated are storage schemes where multiple tiles are
stored in a single file. This type of storage system for tiles requires the map client
to understand the organization of these files and most likely the indices used to find
the tiles within them. Tile retrieval is more difficult in this case, but the performance
benefits from such a storage scheme may outweigh the complications. Having a
database dependency for a map client is not advisable, given the complexity of in-
stalling and managing databases. As discussed in chapter 7 on Tile Storage there are
speed and space benefits to storing multiple tiles in a single file.

Generally, local storage of tile data should be limited in overall size. As the
amount of tile data increases, so do the demands on the physical system supporting
this data. It is usually not desirable to make a map client with large system require-
ments simply to support the accompanying data. Often, map clients will include one
or two map layers with a limited base resolution. These are used as overview maps
for the system and only provide a limited number of low zoom levels. Better map
layers from external (i.e., network) sources are used for higher resolution data.

3.2.2 Network Tile Retrieval

Retrieval of map tiles from the network is a popular mechanism for map clients
to get their data. For Web-based clients, it is a requirement. For desktop clients,
it reduces the complexity and size of the software install. While network retrieval
of tiles may be accomplished in a number of different ways, most commonly tiles
are made available via Hypertext Transfer Protocol (HTTP; the protocol used for
the Web). Specifically, each tile is retrieved by performing a GET via HTTP (one
of five HTTP functions). By using HTTP GET, each tile is made available by a
single URL. When accessing tiles over the network, the client need know nothing
about the underlying storage mechanism for the tiles on the server. The server may
store tiles in a database, as individual files, or in some custom file scheme, but this

24 3 Tiled Mapping Clients

Listing 3.4 Retrieving data from a URL in Python.

1 import u r l l i b 2
2 u r l C o n n e c t i o n = u r l l i b 2 . u r l o p e n (’ h t t p : / / h o s t . com / p a t h / t i l e . j p g ’)
3 d a t a = u r l C o n n e c t i o n . r e a d ()

is not reflected in the URL. Additionally, most programming languages provide
libraries, which make retrieving data from a URL using an HTTP GET request a
trivial process. Listing 3.4 contains an example of retrieving data from a URL in
Python.

There are two common URL styles used in tile retrieval systems. The first en-
codes the tile parameters in the URL path. This method mirrors the path structure of-
ten used when storing tiles as individual files on the file system. An example path en-
coded URL is http://host.com/tiles/bluemarble/3/5/2.jpg. Here
bluemarble is the layer name for the tiles, 3 is the zoom level, 5 is the tile column,
and 2 is the tile row. The order of these parameters may change, especially the
row and the column positions. The second URL style encodes the tile parameters
in the URL parameters (the key-value pairs after the ? in the URL). The same
map request encoded with URL parameters is http://host.com/tiles?
layer=bluemarble\&level=3\&col=5\&row=2. Of course, both meth-
ods of encoding map requests in a URL have countless variations.

Layer management is another consideration for tile-based map clients to access
network stored tiles. The simplest method of layer management is to simply hard-
code the list of available layers inside the client. Hard-coding a layer list has the
benefit of simplicity. No additional code is necessary to determine the list of layers
available. However, hard-coding a layer list can be brittle. Whe the available layers
changes, the map client must be updated to support the new layer list. Otherwise,
the map client will create an error when a user tries to access a non-existent layer.
In many cases the map client may be accessing data maintained by a third party.
Without constant vigilance watching for changes in available layers, it is very likely
that users will experience data problems.

A more robust alternative to hard-coded layers is to auto-detect the capabilities
of each map tile service used by the client. The client may dynamically refresh the
available services and layers so the user is always presented with a valid layer list.
The result is fewer errors because of service changes or failures. Auto-detecting
service capabilities is non-trivial when the tile service has a custom interface. As-
suming the service provides a capabilities listing, the map client must have tailored
code to parse the capabilities for available layers and supported zoom levels. The
Web Mapping Tile Service (WMTS), as discussed in chapter 2, defines a standard
capabilities listing format so clients may parse the capabilities of any compliant
service.

The map client may choose to manage network errors and performance to im-
prove the user experience. A complete loss of network access prevents the proper
operation of a tiled map client, but limited functionality may be maintained by

http://host.com/tiles/bluemarble/3/5/2.jpg
http://host.com/tiles?layer=bluemarble&level=3&col=5&row=2
http://host.com/tiles?layer=bluemarble&level=3&col=5&row=2

3.3 Generating the Map View 25

caching commonly used map tiles. The most commonly used tiled data are asso-
ciated with low scales. Generally, users start with overviews of the entire Earth or
a large area of the earth. These views require only a limited number of tiles since
they use the lower zoom levels. Network performance may be improved by using
tiles from a previous zoom level while a new one is loaded. When a user zooms
the map view, the existing tiles may immediately be resized to fill the view. As new
tiles come in, they may be placed above the zoomed lower level tiles. Once all tiles
for the current zoom level are received, the zoomed tiles may be removed from the
map.

3.3 Generating the Map View

After the map client retrieves tiles, it must use them to fill in the map view. The
process of assembling tiles into a single map image varies depending on the tech-
nologies used to build the map client. However, the underlying process of generating
a unified map view is essentially the same.

3.3.1 Discrete Scales Map View

Composing tiles into a single map view is simplest for discrete map scales. The
process of determining which tiles to use was discussed above. Once the appropriate
tiles are retrieved, they must be combined to form a single map view. The map view
may simply be a static image or, more commonly, a portion of the user interface in
map client software. Regardless, the algorithm to create the composite view is the
same and relatively simple.

For the purpose of this section, we will assume the map client is a program that
allows the user to interact with the map. The client must take the retrieved tiles
and place them inside the map. The map will be the user interface container that
holds the tiles. As stated earlier, the size of the map is an integer multiple of the
tile size. The reasoning behind this assumption will be further discussed below,
but for now we will hold it to be true. The user interface container used to hold
the map varies depending on the programming language used to create the map
client. In Java, the container would be a Panel or JPanel object (AWT and Swing
respectively). In Python with the Tkinter user interface library, a Canvas object is
used to hold images. Other popular programming languages have similar constructs.
The following are a list of properties tht must be met by the container for it to
function as a map:

• Hold multiple images.
• Absolutely position the images.
• Allow resizing of the container.

26 3 Tiled Mapping Clients

Assuming these conditions are met, the container will function appropriately as a
map. It should be noted that an image has the above properties and may function as
a map.

Placing the image tiles in the container is simple. The horizontal position of a tile
is simply the tile index c multiplied by the tile size W . The vertical position must
take into account the fact that the container most likely uses matrix coordinates;
the upper-left corner is the origin. If the tile scheme uses Cartesian coordinates (the
origin is at the lower-left) then a transformation must be made when placing the
tiles in the container (Hcontianer is the container height, r is the vertical tile index,
and Htile is the tile height):

Hcontainer − (r + 1)Htile (3.6)

Once the coordinates for each tile are calculated, it may be placed in the container
using absolute positioning.

The container holding the tile images is not the same as the map client application
window. The application window, which we will call the viewport, will hold the tile
container. The viewport is what the user actually sees. The viewport may be smaller
or larger than the map container. Separating the size of the viewport from the size
of the map container allows the map container to be fixed at an even multiple of
the tile size, while the viewport size may vary arbitrarily. The map container will
change size as the viewport is resized. The container should have width and height
greater than or equal to the width and height of the viewport. At a minimum, round
up the viewport width and height to the nearest multiple of tile size to calculate the
map container dimensions. Often the map container will be sized to allow an unseen
border of tiles one or two tiles deep. The border is used as a tile cache so that when
the user moves the map, the tiles will appear on the map without requiring them to
be fetched from the tile store. By prefetching unseen tiles, the apparent performance
of a network tile store may be significantly improved.

3.3.2 Continuous Scales Map View

When the map client supports continuous scales, the tiled imagery may not be placed
directly on the map. Instead, the tiles must be transformed to fit into the current map
view. This task may be accomplished by performing the following three steps.

1. Stitch the tiles together into one large image.
2. Cut the large image to match the geographic area of the current map view.
3. Resize the cut image to the current pixel size of the map view.

These three steps are always required; however, some programming languages may
provide user interface frameworks that simplify one or more of these steps. For this
section we will assume the most basic of built-in functionality.

Stitching the tiles together may be accomplished by pasting them into one larger
image. Stitching tiles together in an image is basically the same process as placing

3.3 Generating the Map View 27

Listing 3.5 Paste tiles into a larger image.

1 # g e t t h e t i l e bounds from t h e g e o g r a p h i c bounds
2 minTileX , minTileY , maxTileX , maxTileY = g e t T i l e B o u n d s (bounds)
3
4 # r e t r i e v e t h e t i l e images from t h e d a t a s t o r e
5 t i l e s = f e t c h T i l e s (minTileX , minTileY , maxTileX , maxTileY)
6
7 # make PIL images
8 t i l e I m a g e s = makeImages (t i l e s)
9

10 # g e t t h e image mode (e . g . ’RGB ’) and s i z e o f t h e t i l e
11 mode = t i l e I m a g e [0] [0] . mode
12 t i l e W i d t h , t i l e H e i g h t = t i l e I m a g e [0] [0] . s i z e
13
14 # c a l c u l a t e t h e w i d t h and h e i g h t o f t h e l a r g e image t o p a s t e i n t o
15 l a r g e W i d t h = t i l e W i d t h ∗ (maxTileX − minTileX + 1)
16 l a r g e H e i g h t = t i l e H e i g h t ∗ (maxTileY − minTileY + 1)
17
18 # make t h e new image w i t h t h e c o r r e c t mode , width , and h e i g h t
19 l a r g e I m a g e = Image . new (mode , (l a rgeWid th , l a r g e H e i g h t))
20
21 # loop t h r o u g h t i l e s and p a s t e them i n t o t h e l a r g e image
22 f o r row in xrange (maxTileY − minTileY + 1) :
23 f o r c o l in xrange (maxTileX − minTileX + 1) :
24 # c a l c u l a t e t h e l o c a t i o n t o p a s t e t h e image (we us e C a r t e s i a n
25 # t i l e c o o r d i n a t e s)
26 x = c o l ∗ t i l e W i d t h
27 y = l a r g e H e i g h t − ((row +1) ∗ t i l e H e i g h t)
28 # p a s t e t i l e s i n t o l a r g e image
29 l a r g e I m a g e . p a s t e (t i l e I m a g e [row] [c o l] , (x , y))

them in the map container for a discrete scale client. First, make an empty image
whose size is the combined width and height of all the retrieved tiles. Each tile
should be pasted into the image according to its tile index. As with the discrete zoom
level client, the tile indexing affects these calculations. If the tiles are Cartesian
indexed (lower-left origin) then the vertical index must be transformed to align with
the matrix indexing of images (upper-left origin). Listing 3.5 shows an example of
stitching together images with Cartesian tile coordinates.

After the large image is created, it must be cut to match the geographic bounds
of the map view. Each corner of the map view has a geographic coordinate. Each
coordinate has a pixel location inside the stitched tile image. Those pixel coordinates
are then used to cut the large image so its geographic bounds match those of the map
view. Listing 3.6 contains code showing the process of cutting the map view.

The final step in creating an image to fill a continuous scale map view is to resize
the cut image to have the same pixel size as the map view. First, the resolutions of
the map view and the large image are calculated. The scaling factor for the large
image is the ratio of the two resolutions. Usually, the resolution is represented as
degrees per pixel. Listing 3.7 is an example of resizing the cut image to match the
pixel size of the map view.

28 3 Tiled Mapping Clients

Listing 3.6 Cut the large image to match the geographic bounds of the map view.

1 # assume t i l e W i d t h = t i l e H e i g h t
2 imageDPP = 360 . 0 / ((2 ∗∗ s c a l e) ∗ t i l e W i d t h)
3
4 # c a l c u l a t e t h e p i x e l s f o r t h e r e c t a n g l e t o c u t
5 l e f t P i x e l = i n t (round ((mapViewMinX − imageMinX) / imageDPP))
6 l o w e r P i x e l = l a r g e H e i g h t − i n t (round ((mapViewMinY − imageMinY) / imageDPP))
7 r i g h t P i x e l = i n t (round ((mapViewMaxX − imageMinX) / imageDPP))
8 u p p e r P i x e l = l a r g e H e i g h t − i n t (round ((mapViewMaxY − imageMinY) / imageDPP))
9

10 # c u t o u t t h e r e c t a n g l e
11 cu t Image = l a r g e I m a g e . c rop ((l e f t P i x e l , u p p e r P i x e l , r i g h t P i x e l , l o w e r P i x e l)

Listing 3.7 Resizing the stitched together tiles to match the resolution of the map view.

1 # assume t i l e W i d t h = t i l e H e i g h t
2 imageDPP = 360 . 0 / ((2 ∗∗ zoomLevel)∗ t i l e W i d t h)
3
4 # t h e v iew d e g r e e s per p i x e l may be c a l c u l a t e d u s i n g t h e s c r e e n s i z e
5 # and g e o g r a p h i c bounds
6 viewDPP = getViewDPP ()
7
8 s c a l i n g F a c t o r = viewDPP / imageDPP
9 newWidth = i n t (cu tWid th ∗ s c a l i n g f a c t o r)

10 newHeight = i n t (c u t H e i g h t ∗ s c a l i n g f a c t o r)
11 r e s i z e d I m a g e = cu t Image . r e s i z e ((newWidth , newHeight))

3.4 Example Client

The code in Listing 3.8 contains a working example tile map client. This client
is intended as an example to demonstrate some of the concepts discussed in this
chapter. However, it is extremely simple and should not be considered an example
of a user-ready map client. The example client uses discrete zoom levels and has
limited movement controls. Movement is also limited to one tile at a time. The data
source is a custom tile image server accessible using HTTP over the Internet. This
client should work with a stock Python install along with the Python Image Library
and libjpeg support. A screenshot of the example client is shown in Figure 3.2.

3.5 Survey of Tile Map Clients

A number of popular tile map clients exist and are heavily used by the geospatial
community. Commonly used clients are either Web-based or desktop-based. Most
Web-based clients allow only discrete zoom levels because it simplifies their design.
Performing the image manipulation necessary to support continuous map scales
would be difficult to support in a Web browser as well as overly costly. On the other
hand, Web browsers support discrete zoom levels quite well because of their built-in

3.5 Survey of Tile Map Clients 29

Fig. 3.2 Screenshot of the tile client example.

asynchronous design. When a discrete zoom level map client puts a tile on the map
in a browser, it actually gives the image’s network location to the browser and tells
it to put the image on the map. The browser takes care of fetching the image asyn-
chronously, so that while it is loading, the map client is still functional. Web-based
clients are the most commonly used tile map clients. Commercial clients, such as
Google Maps and Microsoft Bing Maps, are commonly used by a large non-expert
audience to look at maps or get directions. These clients have developer interfaces
so that custom data may be added along with the built-in data. However, as these
clients are proprietary, they may not themselves be modified by a third party devel-
oper. The OpenLayers Web-based map client provides an open source alternative
to the proprietary web clients. OpenLayers is a Javascript library that may be used
with fewer restrictions than commercial clients.

Two popular desktop map clients are Google Earth and NASA World Wind.
Google Earth has significant user penetration and allows developers to add arbitrary
tile layers using KML network links. NASA provides World Wind as an open source
program which supports full developer customization. Two versions of World Wind
exist: a .NET version and a Java version. Both are open source. The .NET version
is a full application, whereas the Java version is an SDK, intended for use in build-
ing custom map clients. Adding support for custom tile schemes is fairly simple in
either.

30 3 Tiled Mapping Clients

Listing 3.8 Example Python map client which uses discrete zoom levels.

1 import T k i n t e r
2 import Image , ImageTk # r e q u i r e s t h e Python Imaging L i b r a r y be i n s t a l l e d
3 import u r l l i b 2
4 import c S t r i n g I O
5
6
7 c l a s s SimpleNe twork T i l eS ou r ce :
8 ’ ’ ’
9 T h i s i s a s i m p l e t i l e da ta s o u r c e c l a s s t o a b s t r a c t t h e t i l e r e t r i e v a l

p r o c e s s from t h e r e s t o f t h e c l i e n t . Any c l a s s which i m p l e m e n t s t h i s
i n t e r f a c e (i . e . has t h e same g e t T i l e method and member v a r i a b l e s) may
r e p l a c e t h i s s o u r c e i n t h e c l i e n t .

10 ’ ’ ’
11 def i n i t (s e l f) :
12 s e l f . layerNames = [’ b l u e m a r b l e ’]
13 s e l f . t i l e W i d t h = 512
14 s e l f . t i l e H e i g h t = 512
15 s e l f . minLevel = 1
16 s e l f . maxLevel = 8
17
18 def g e t T i l e (s e l f , layerName , zoomLevel , c o l I n d e x , rowIndex) :
19 u r l = ’ h t t p : / / dmap . n r l s s c . navy . mi l / t i l e d b / l a y e r s e r v e r ?REQ= ge t image ’ + ’

&l a y e r = ’ + layerName + ’&s c a l e = ’ + \
20 s t r (zoomLevel) + ’&row= ’ + s t r (rowIndex) + ’&c o l = ’ + s t r (c o l I n d e x

)
21 f = u r l l i b 2 . u r l o p e n (u r l)
22 imageData = f . r e a d ()
23 re turn imageData
24
25
26 c l a s s M apCl ien t :
27 ’ ’ ’
28 MapCl ien t i s an i m p l e m e n t a t i o n o f a s i m p l e d i s c r e t e zoom l e v e l map c l i e n t .
29 ’ ’ ’
30 def i n i t (s e l f , p a r e n t , t i l e S o u r c e) :
31 # S t a r t i n g zoom l e v e l
32 s e l f . l e v e l = 2
33
34 # S t a r t i n g t i l e o r i g i n
35 s e l f . t i l e O r i g i n X = 0
36 s e l f . t i l e O r i g i n Y = 0
37
38 # The number o f t i l e s i n each d imens ion f o r t h i s l e v e l .
39 s e l f . t i l e R a n g e X = 2∗∗ s e l f . l e v e l
40 s e l f . t i l e R a n g e Y = 2∗∗(s e l f . l e v e l −1)
41
42 # The s i z e o f t h e map v iew i n t i l e s . We har dcode t h e s i z e f o r t h i s

s i m p l e c l i e n t
43 s e l f . numCanvasTi lesX = 2
44 s e l f . numCanvasTi lesY = 1
45
46 # The t i l e s o u r c e
47 s e l f . t i l e S o u r c e = t i l e S o u r c e
48
49 # T h i s d i c t i o n a r y i s us ed t o keep a r e f e r e n c e t o t h e t i l e s d i s p l a y e d i n

t h e UI so t h a t t h e y ar e n o t garbage c o l l e c t e d .
50 s e l f . t i l e I m a g e s = {}
51
52 # s e t up t h e u s e r i n t e r f a c e
53 s e l f . frame = T k i n t e r . Frame (p a r e n t , w id th = s e l f . t i l e S o u r c e . t i l e W i d t h ∗

s e l f . numCanvasTilesX , h e i g h t = s e l f . t i l e S o u r c e . t i l e H e i g h t ∗ s e l f .
numCanvasTi lesY)

54 s e l f . f rame . pack ()
55
56 s e l f . c anvas = T k i n t e r . Canvas (s e l f . f rame , wid th = s e l f . g e t F r a m e S i z e () [0] ,

h e i g h t = s e l f . g e t F r a m e S i z e () [1])

3.5 Survey of Tile Map Clients 31

57 s e l f . upBut ton = T k i n t e r . Bu t ton (s e l f . f rame , t e x t =”UP” , command= s e l f . up)
58 s e l f . downButton = T k i n t e r . Bu t ton (s e l f . f rame , t e x t =”DOWN” , command= s e l f .

down)
59 s e l f . l e f t B u t t o n = T k i n t e r . Bu t ton (s e l f . f rame , t e x t =”LEFT” , command= s e l f .

l e f t)
60 s e l f . r i g h t B u t t o n = T k i n t e r . Bu t ton (s e l f . f rame , t e x t =”RIGHT” , command=

s e l f . r i g h t)
61 s e l f . i n B u t t o n = T k i n t e r . Bu t ton (s e l f . f rame , t e x t =” IN ” , command= s e l f .

zoomIn)
62 s e l f . o u t B u t t o n = T k i n t e r . Bu t ton (s e l f . f rame , t e x t =”OUT” , command= s e l f .

zoomOut)
63
64 s e l f . c anvas . pack (s i d e = T k i n t e r . TOP , f i l l = T k i n t e r .BOTH, expand= T k i n t e r .

YES)
65 s e l f . c anvas . c r e a t e r e c t a n g l e (0 , 0 , s e l f . ge tMapSize () [0] , s e l f . ge tMapSize

() [1] , f i l l = ’ b l a c k ’)
66
67 s e l f . upBut ton . pack (s i d e = T k i n t e r . LEFT)
68 s e l f . downButton . pack (s i d e = T k i n t e r . LEFT)
69 s e l f . l e f t B u t t o n . pack (s i d e = T k i n t e r . LEFT)
70 s e l f . r i g h t B u t t o n . pack (s i d e = T k i n t e r . LEFT)
71 s e l f . i n B u t t o n . pack (s i d e = T k i n t e r . LEFT)
72 s e l f . o u t B u t t o n . pack (s i d e = T k i n t e r . LEFT)
73
74 # load a l l t h e t i l e s on to t h e map f o r t h e f i r s t t i m e
75 s e l f . l o a d T i l e s ()
76
77 def g e t F r a m e S i z e (s e l f) :
78 re turn (i n t (s e l f . f rame . c g e t (’ wid th ’)) , i n t (s e l f . f rame . c g e t (’ h e i g h t ’)))
79
80 def getMapSize (s e l f) :
81 re turn (i n t (s e l f . canvas . c g e t (’ wid th ’)) , i n t (s e l f . canvas . c g e t (’ h e i g h t ’)))
82
83 # Below ar e t h e c o n t r o l s f o r moving t h e map
84 # up , down , l e f t , r i g h t , zoom in , and zoom o u t
85 #
86 # A f t e r each i s c a l l e d l o a d T i l e s () i s c a l l e d t o
87 # r e f r e s h t h e map d i s p l a y w i t h new t i l e s
88
89 def up (s e l f) :
90 i f ((s e l f . t i l e O r i g i n Y + s e l f . numCanvasTilesY) < s e l f . t i l e R a n g e Y) :
91 s e l f . t i l e O r i g i n Y += 1
92 s e l f . l o a d T i l e s ()
93
94 def down (s e l f) :
95 i f (s e l f . t i l e O r i g i n Y > 0) :
96 s e l f . t i l e O r i g i n Y −= 1
97 s e l f . l o a d T i l e s ()
98
99 def l e f t (s e l f) :

100 i f (s e l f . t i l e O r i g i n X > 0) :
101 s e l f . t i l e O r i g i n X −=1
102 s e l f . l o a d T i l e s ()
103
104 def r i g h t (s e l f) :
105 i f ((s e l f . t i l e O r i g i n X + s e l f . numCanvasTilesX) < s e l f . t i l e R a n g e X) :
106 s e l f . t i l e O r i g i n X += 1
107 s e l f . l o a d T i l e s ()
108
109 def zoomIn (s e l f) :
110 i f (s e l f . l e v e l < s e l f . t i l e S o u r c e . maxLevel) :
111 s e l f . l e v e l += 1
112
113 # c a l c u l a t e t h e new h o r i z o n t a l t i l e o r i g i n i n d e x
114 t i l e C e n t e r X = s e l f . numCanvasTilesX / 2 + s e l f . t i l e O r i g i n X
115 newT i leCen te rX = t i l e C e n t e r X ∗ 2
116 s e l f . t i l e O r i g i n X = newT i leCen te rX − s e l f . numCanvasTi lesX / 2

32 3 Tiled Mapping Clients

117
118 # c a l c u l a t e t h e new v e r t i c a l t i l e o r i g i n i n d e x
119 t i l e C e n t e r Y = s e l f . numCanvasTilesY / 2 + s e l f . t i l e O r i g i n Y
120 newT i leCen te rY = t i l e C e n t e r Y ∗ 2
121 s e l f . t i l e O r i g i n Y = newT i leCen te rY − s e l f . numCanvasTi lesY / 2
122
123 # c a l c u l a t e t h e new t i l e d i m e n s i o n s f o r t h e l e v e l
124 s e l f . t i l e R a n g e X = s e l f . t i l e R a n g e X ∗ 2
125 s e l f . t i l e R a n g e Y = s e l f . t i l e R a n g e Y ∗ 2
126 s e l f . l o a d T i l e s ()
127
128 def zoomOut (s e l f) :
129 i f (s e l f . l e v e l > 2 and s e l f . l e v e l > s e l f . t i l e S o u r c e . minLevel) :
130 s e l f . l e v e l −= 1
131
132 # c a l c u l a t e t h e new t i l e d i m e n s i o n s f o r t h e l e v e l
133 s e l f . t i l e R a n g e X = s e l f . t i l e R a n g e X / 2
134 s e l f . t i l e R a n g e Y = s e l f . t i l e R a n g e Y / 2
135
136 # c a l c u l a t e t h e new h o r i z o n t a l t i l e o r i g i n
137 t i l e C e n t e r X = s e l f . numCanvasTilesX / 2 + s e l f . t i l e O r i g i n X
138 newT i leCen te rX = t i l e C e n t e r X / 2
139 s e l f . t i l e O r i g i n X = i n t (round ((s e l f . numCanvasTi lesX + s e l f .

t i l e O r i g i n X) / 2 . 0)) − s e l f . numCanvasTi lesX
140 i f (s e l f . t i l e O r i g i n X < 0) :
141 s e l f . t i l e O r i g i n X = 0
142
143 # c a l c u l a t e t h e new v e r t i c a l t i l e o r i g i n
144 s e l f . t i l e O r i g i n Y = i n t (round ((s e l f . numCanvasTi lesY + s e l f .

t i l e O r i g i n Y) / 2 . 0)) − s e l f . numCanvasTi lesY
145 i f (s e l f . t i l e O r i g i n Y < 0) :
146 s e l f . t i l e O r i g i n Y = 0
147
148 s e l f . l o a d T i l e s ()
149
150
151 # c a l c u l a t e which t i l e s t o load based on t h e t i l e o r i g i n and
152 # t h e s i z e o f t h e map v iew (i n numCanvas T i l e s)
153 def c a l c T i l e s (s e l f) :
154 t i l e L i s t = []
155 f o r y in xrange (s e l f . t i l e O r i g i n Y , s e l f . t i l e O r i g i n Y + s e l f .

numCanvasTi lesY) :
156 f o r x in xrange (s e l f . t i l e O r i g i n X , s e l f . t i l e O r i g i n X + s e l f .

numCanvasTi lesX) :
157 t i l e L i s t . append ((x , y))
158 re turn t i l e L i s t
159
160 # Get t h e t i l e s from t h e t i l e s o u r c e and add them t o t h e map v iew .
161 # T h i s i s method i s i n e f f i c i e n t . We s h o u l d r e a l l y o n l y f e t c h t i l e s
162 # n o t a l r e a d y on t h e map . I n s t e a d we j u s t r e f e t c h e v e r y t h i n g .
163 def l o a d T i l e s (s e l f) :
164 t i l e L i s t = s e l f . c a l c T i l e s ()
165 s e l f . t i l e I m a g e s . c l e a r ()
166 f o r t i l e I n d e x in t i l e L i s t :
167 # T h i s i s where t h e t i l e s ar e a c t u a l l y f e t c h e d .
168 # A b e t t e r c l i e n t would make t h i s as ynchr onous or p l a c e i t i n

a n o t h e r t h r e a d
169 # so t h a t t h e UI doesn ’ t f r e e z e whenever new t i l e s ar e loaded .
170 d a t a = c S t r i n g I O . S t r i n g I O (s e l f . t i l e S o u r c e . g e t T i l e (s e l f . t i l e S o u r c e .

layerNames [0] , s e l f . l e v e l , t i l e I n d e x [0] , t i l e I n d e x [1]))
171 im = Image . open (d a t a)
172 tk image = ImageTk . PhotoImage (im)
173 x = (t i l e I n d e x [0]− s e l f . t i l e O r i g i n X) ∗ s e l f . t i l e S o u r c e . t i l e W i d t h
174 y = s e l f . ge tMapSize () [1] − ((t i l e I n d e x [1]− s e l f . t i l e O r i g i n Y +1) ∗

s e l f . t i l e S o u r c e . t i l e H e i g h t)
175 s e l f . t i l e I m a g e s [t i l e I n d e x] = tk image
176 s e l f . c anvas . c r e a t e i m a g e (x , y , anchor = T k i n t e r .NW, image = tk image)

3.5 Survey of Tile Map Clients 33

177
178 i f n a m e == ’ m a i n ’ :
179 r o o t = T k i n t e r . Tk ()
180 map = M apCl ien t (r o o t , S impleNe twork T i l eS o ur ce ())
181 r o o t . ma in loop ()

	3 Tiled Mapping Clients
	3.1 Tile Calculation
	3.1.1 Discrete Map Scales
	3.1.2 Continuous Map Scales

	3.2 Tile Retrieval
	3.2.1 Local Tile Storage
	3.2.2 Network Tile Retrieval

	3.3 Generating the Map View
	3.3.1 Discrete Scales Map View
	3.3.2 Continuous Scales Map View

	3.4 Example Client
	3.5 Survey of Tile Map Clients

