JohnT. Sample
Elias loup

Tile-Based i

Tile-Based Geospatial Information Systems

John T. Sample - Elias Ioup

Tile-Based Geospatial
Information Systems

Principles and Practices

@ Springer

John T. Sample Elias Ioup

Naval Research Laboratory Naval Research Laboratory

1005 Balch Blvd. 1005 Balch Blvd.

Stennis Space Center, MS 39529 Stennis Space Center, MS 39529
USA USA

john.sample @nrlssc.navy.mil elias.ioup @nrlssc.navy.mil
ISBN 978-1-4419-7630-7 e-ISBN 978-1-4419-7631-4

DOI 10.1007/978-1-4419-7631-4
Springer New York Dordrecht Heidelberg London

(© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Nicole and Oliver
- John Sample

To Sarah and Georgette
- Elias loup

Preface

Tile-based mapping systems have grown to become the dominant form of mapping
system with the rise of Web-based mapping tools. The origin of this book is a desire
to collect all our discoveries, techniques, and best practices for creating a tiled-
mapping system into one combined volume. The intent of this text is to provide a
comprehensive guide to the theory behind creating a tiled-map system as well as a
practical guide to create a concrete implementation.

Stennis Space Center, MS John Sample
May 2010 Elias Ioup

vii

Acknowledgements

The authors would like to thank the Naval Research Laboratory’s Base Program,
program element number 0602435N, for sponsoring this research. Additionally,
the following people provided technical assistance without which this book would
not have been possible: Perry Beason, Frank McCreedy, Norm Schoenhardt, Brett
Hode, Bruce Lin, Annie Holladay, Juliette Ioup, and Hillary Mesick.

ix

Contents

1 Introduction......... 1
1.1 Background of Web-Based Mapping Applications 1

1.2 Properties of tile-based mapping systemsco...... 2

1.3 Book Organizationc.cuuuiniiieiniinneeennnnn.. 2

2 Logical Tile Schemes ittt 5
2.1 Introductionoo il 5

2.2 Global Logical Tile Schemeo, 7

2.3 BlueMarble Example i 10

2.4 Mercator-Based Schema......... i 11

2.5 Variable Start Tile Schemes 12

2.6 StandardizedSchema oo ool 15
References 15

3 Tiled Mapping Clientso ittt 17
3.1 TileCalculation i i i i 17
3.1.1 Discrete Map Scales...........ccoiiiiiiiiiinia.. 18

3.1.2 Continuous Map Scales 20

32 TileRetrieval 22
3.2.1 LocalTile Storagecccoiiiiiiiiinnneenn.. 23

3.2.2 Network Tile Retrieval it 23

3.3 Generatingthe Map Viewt ... 25
3.3.1 Discrete ScalesMap View, 25

3.3.2 Continuous ScalesMap View 26

34 Example CHentouuiiiiin i, 28

3.5 SurveyofTile Map Clientscoviiiiiiineiennn... 28

4 Image Processing and Manipulation.............................. 35
4.1 BasicImage Concepts..........oouuuiiiiiiiinneiiiiiaaaann 35

4.2 Geospatial Imagest 37
4.2.1 Specialized File Formats 37

Xi

xii

Contents

4.3 TImage Manipulationttt 39
4.3.1 Interpolation 1: Nearest Neighbor 44
4.3.2 Interpolation2: Bilinear............................... 45
4.3.3 Interpolation 3: Bicubic............. L. 46

4.4 Choosing Image Formats for Tiles 51
4.5 Choosing Tile Sizes.ttt e 57
4.6 Tuning Image Compressionovuuuunneeennnnnnenn. 65
Referenceso 79
Image Tile Creation it 81
5.1 Tile Creation from Random Images 82
5.2 Tile Creation Preliminaries.ouviiiiinao.. &3
5.2.1 Bottom-UpTileCreation............ovveeiiuninneeenn.. 83

5.2.2 Choosing the Base Level for a Set of Source Images 83

5.2.3 Pull-Based Versus Push-Based Tile Creation 87

5.3 Tile Creation Algorithms oot 88
5.3.1 Scaling Process for Lower Resolution Levels 89
Optimization of Tile Creation 97
6.1 Caching Tile Sets in Memory to Improve Performance 97
6.2 Partial Reading of Source Images 99
6.2.1 Reading Random Areas from Source Images 100

6.2.2 Tile Creation with Partial Source Image Reading.......... 103

6.3 Tile Creation with Parallel Computing 103
6.3.1 Multi-Threading of Tile Creation Algorithms............. 104

6.3.2 Tile Creation for Distributed Computing 105

6.4 Partial Updating of Existing Tiled Image Sets 108
References 116
Tile Storage 117
7.1 Introduction to Tile Storage it 117
7.2 Storing Image Tiles as Separate Files 118
7.3 Database-Based Tile Storage ..., 121
7.4 CustomFile Formats........... 121
7.5 Comparative Performanceo . 122
7.5.1 Writing Tests. ooi i 123

7.5.2 Readin@ Testsoueurineiiii it 124

7.6 Storage of Tile Metadataooiiiiiiiiiiinaaan. 126
7.7 Storage of Tiles in Multi-Resolution Image Formats 126
7.8 Memory-Cached Tile Storage oot 127

7.9 Online Tile StOrage oottt e e 127

Contents xiii

8

10

Practical Tile Storage............ it 133
8.1 Introductionto Tile Indexes 133
8.2 Storageby ZoomLevel............ 136
8.3 Introductionto Tile Clusters...............o ... 138
84 TileClusterFiles o o i i i i i, 139
8.5 Multiple Levels of CIustersc..ooveiiiinneiennnn.. 140
8.6 Practical Implementation of Tile Clusters....................... 141
8.7 Application to Memory Cached Tiles 142
8.8 Application to Distributed Computing 142
8.9 Performance Optimizations of Tile Cluster Method 142
Tile Serving 151
9.1 Basicsof HTTP i 151
9.2 Basic Tile Servingttt i 152
9.3 Tile Serving Scheme with Encoded Parameters.................. 153
9.4 Tile Serving Scheme with Encoded Paths 155
9.5 Service Metadata Alternativesooviiiiiiio.. 156
9.6 ConcClUSIONSttt e 157
References 164
Map Projections 165
10.1 Introduction to Datums, Coordinate Systems, and Projections. 165
10.1.1 The Shapeofthe Earth................., 165
10.1.2 Datumsooiiti e 166
10.1.3 Coordinate SyStemsc.cuuuuneieennnnneeennn. 169
10.2 Map Projections.t 169
10.2.1 Different Map Projections 170
10.2.2 Cylindrical Equidistant Projection 171
10.2.3 Cylindrical Equal-Area Projection 172
10.2.4 MErcatorttt e 172
10.2.5 Universal Transverse Mercator 172
10.3 Point Reprojection.ooiiiuiin .. 175
10.4 Map Reprojectionueeiiuiin .. 177
10.4.1 Affine Transforms 177
10.4.2 Interpolation ...ttt 179
10.4.3 Point-wise Reprojection................ 180
10.4.4 Tablular Point-Wise Reprojection....................... 182
10.5 Map Projections for Tiled Imagery 184
10.5.1 Storing Tiles in the Geodetic Projection 184
10.5.2 Storing Tiles in the Mercator Projection 185
10.5.3 Other Projectionsc.ccoiiiiiiiiiinneeenn.. 186
10.5.4 Which Projection for a Tiled-Mapping System?........... 187
10.6 ConcluSion ...ttt e e 188

Xiv

11

12

13

Contents

Tile Creation using Vector Data.................................. 193
T1.1 VectorDataviiuiii i e et 193
11.2 Tile Creationvuuunttu ettt e 194
T1.3 QUETIES . v ottt ettt e e et e et 196
14 SOrage .. oottt 196
11.4.1 Database Storageoveieurnneeeennnneeeennn. 197
11.4.2 File System Storagec.ccouiiiiiiinninneeenn.. 200

Case Study: Tiles from Blue Marble Imagery...................... 205
12.1 Pull-Based Tiling.o e 205
12.2 Push-Based Tiling oo 207
123 Results ... 207
Case Study: Supporting Multiple Tile Clients 221
13,1 KML Serverttt i e 221
13.1.1 Static KML Example oo, 221
13.1.2 Dynamic KML Example oo, 223

13.2 WMS SeIVET .ttt ittt e e 223
13.2.1 WMS Servlet Implementation.......................... 224
Referenceso 233

Chapter 1
Introduction

This book is intended to provide the reader with a thorough understanding of the
purpose and function of tile-based mapping systems. In addition, it is meant to be a
technical guide to the development of tile-based mapping systems. Complex issues
like tile rendering, storage, and indexing are covered along with map projections,
network communication, and client/server applications. Computer code as well as
numerous mathematical formulae are included to provide the reader with usable
forms of the algorithms presented in this book.

1.1 Background of Web-Based Mapping Applications

The first Web-based mapping applications were introduced in the mid to late
1990’s. They included Yahoo! Maps, MapQuest, and Microsoft’s TerraServer. These
providers offered mapping applications through a Web browser. Their map naviga-
tion systems were rudimentary. Some allowed simple map movements by requir-
ing users to click on navigation arrow buttons surrounding the map view. When
users clicked on an arrow, the map moved a predetermined amount in the direction
clicked. There were also buttons for zooming in and out. Others allowed users to
drag and draw boxes on the map to relocate the map view.

All of these systems had several disadvantages, including slow rendering and
downloading of map views because the map view was often represented by a single
large image file. Each time the map was moved to the left or right; the entire image
would be re-rendered and re-sent to the client even though only a portion of the
image was new. However, the interfaces were relatively simple and had several ad-
vantages to developers. Basic interfaces were well suited to early Web browsers. The
map interface could be written entirely in HTML or with very minimal JavaScript.
Second, since all navigations were fixed, map servers could cache rendered maps.
Other map viewers adopted a map view and navigation style more similar to desk-
top GIS systems. These systems were more complicated and used browser plugin
technology and development platforms like Java or Flash.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 1
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__1,
(© Springer Science+Business Media, LLC 2010

2 1 Introduction

Google Maps was introduced in 2005 and dramatically changed the way people
viewed maps. Instead of clunky and slow map navigation methods, Google Maps
provided what has come to be known as a ”Slippy Map” type interface. That inter-
face allowed users to quickly move and zoom the map and yet was written entirely
in HTML and JavaScript. Soon many more Web mapping applications appeared
with a similar style map interface. Eventually slippy map type interfaces appeared
in many places including portable computing devices and cell phones.

A key enabling technology behind this new generation of mapping applications
was the concept of tile-based mapping. Mapping applications were made responsive
by using background maps that had been broken into smaller tiled images. Those
tiles were stored, already rendered, on a central server. Because they were already
rendered, they could be sent to clients quickly. The tiles were discretely addressed
so they could be cached by Internet caching services and by clients’ own browsers.
The map images were broken into smaller pieces, so when users navigated the map
view, only the new parts of the map had to be resent from the server.

1.2 Properties of tile-based mapping systems

Tile-based mapping systems have several core properties which distinguish them
from other types of mapping systems. We have defined what we believe to be those
core properties, and they are as follows:

1. Map views are based on multiple discrete zoom levels, each corresponding to a
fixed map scale.

2. Multiple image tiles are used to virtualize a single map view.

3. Image tiles are accessible using a discrete addressing scheme.

4. Tiled images stored on a server system are sent to the client with minimal pro-
cessing; as much processing is done ahead of time as is possible.

The following are important but optional properties of tile-based mapping systems.

1. Tile addressing follows a single global projection.
2. Tiles are primarily distributed using a client/server system architecture.
3. Tiles are organized into relatively few, fixed layers.

1.3 Book Organization

This book is organized to take the reader through the logical development of a com-
plete tile-based mapping system with small detours into important topics along the
way. Chapter 2 introduces logical tile addressing schemes that any tile system must
implement. It discusses some common schemes used by popular Web mapping sys-
tems and defines the common tile scheme that will be used throughout this book.

1.3 Book Organization 3

Chapter 3 gives an overview of the challenges and the techniques used to overcome
these challenges to develop client software for tile-based mapping systems. An ex-
ample client application is shown with source code. Chapter 4 provides extensive
background into techniques needed to process source data images into tiled images.
Chapters 5 and 6 provide a detailed look at techniques for creating sets of tiled
images. Chapters 7 and 8 explain how to efficiently store, index, and retrieve tiled
images. Several techniques are detailed, implemented, and benchmarked. Chapter
9 shows the reader how to create a Web based server for tiled images. Chapter 10
introduces and explains map projections within the context of tile based mapping.
Chapter 11 explains how vector mapping data can be used in a tile-based environ-
ment. Finally, Chapters 12 and 13 are detailed case studies of real-world usage of
the techniques presented in this book.

Most chapters include computer code listings in Java and Python. Java and
Python are two of the most commonly used programming languages for geospa-
tial programming. Short code segments are interspersed with the chapter text, while
longer code segments are placed at the end of each chapter. The code sections are
intended to provide readers with example implementations of the algorithms ex-
plained in the book.

Chapter 2
Logical Tile Schemes

2.1 Introduction

Tile-based mapping systems use a logical tile scheme that maps positions on the
Earth to a two-dimensional surface and divides that surface into a series of regularly
spaced grids (see Figure 2.1). The logical tile scheme defines the discrete address-
ing of map tiles, the method for generating multiple zoom levels of tiles, and the
translation method between tile addresses and a continuous geospatial coordinate
system.

The logical tile scheme is the foundational element of a tile-based mapping sys-
tem. It is a multi-resolution, regularly spaced grid. Each scheme is typically tied to
a single two-dimensional map projection (for more on map projections see Chapter
9). This addressing scheme allows a tiled image to be accessed directly with discrete
coordinates. For example, instead of requesting a map image with a bounding rect-
angle delineated with continuous real numbers like [-100.0, 30.0] to [-80.0, 40.0], a
tile can be requested from a grid with level, column, and row addresses delineated
with discrete integer values.

The logical tile scheme consists of a mapping between the address of a tile to the
geospatial coordinates for the area covered by the tile. In general, there are several
ways to develop a logical tile scheme. We could make custom schemes that match
the bounds and dimensions of each individual data set, or we could create a single
global tile scheme that can be applied to all data sets.

Each method has its benefits. In developing a logical tile scheme, we have to
choose a series of image pixel resolutions, one for each level. If we can develop a
new scheme for each data set, then we can choose image pixel resolutions that ex-
actly match the resolution of our data set. Using a global common scheme, we have
to use the predefined resolutions. Pre-defined resolutions will force us to rescale our
source images to match. If we level down, we sacrifice some native resolution, and
if we level up, we are using more storage space than is needed. However, if we use
a custom scheme for each different data set, we will have interoperability issues in
combining the data sets. Also, client software systems will have difficultly using

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 5
Principles and Practices, DOI 10.1007/978-1-4419-7631-4_2,
(© Springer Science+Business Media, LLC 2010

6 2 Logical Tile Schemes

E _ﬂ—'_;? = —-.:'-‘—-"Ezh‘ ——
Pad T Fo AR S | Ten =l
il N A Y % > 517
n?ﬂ‘" = o) ,\{:f
~ = {aB| 1 N2 A o
o Nk | T YO
R N) '\ ‘l{:’ WE:_'—_—.\P 1 i
I \ 7Y d o
{r&f’/ ~ 2
L M O B S S S S

Fig. 2.1 Mapping from a spherical Earth to a two-dimensional surface to a gridded surface.

2.2 Global Logical Tile Scheme 7

tiles from different schemes with different resolutions. For our purposes, we choose
to use a common global tile scheme that is the same across all data sets. This choice
sacrifices flexibility but simplifies system development and use.

2.2 Global Logical Tile Scheme

The global logical tile scheme presented in this book has been developed to be easy
to understand and implement. We start with the geodetic projection, which simply
portrays the Earth as a rectangle 360 degrees wide and 180 degrees tall. Our base
projection has a natural 2-to-1 aspect ratio, and so does our logical tile scheme. At
zoom level 1, our tile scheme has 1 row and 2 columns (Figure 2.2).

Level 1

Fig. 2.2 Global tile scheme at zoom level 1.

For each subsequent level, we double the number of rows and columns. Since
we have doubled each dimension, each subsequent level has 4 times the number of
tiles as the previous level. As we increase zoom levels, each tile is divided into four
sub-tiles (Figure 2.3).

We can continue this process and define as many levels as are needed. In prac-
tice, 20 levels are sufficient for almost any mapping data available. To simplify the
mathematics, we start our indexes at 0 instead of 1. Our scheme can be completely
defined mathematically. Equation 2.1 gives the number of columns for a given level
i. Equation 2.2 gives the number of rows for a given level i.

C;i=2 2.1
R =21 2.2)

Equations (2.3) through (2.6) relate a tile’s address back to a geographic bounding
rectangle.

8 2 Logical Tile Schemes

Level 2

Fig. 2.3 Global tile scheme at zoom level 2.

360.0
Amin = € T 180.0 2.3)
360.0
Amax = (c+ 1)T —180.0 2.4)
180.0
¢min = VF —-90.0 (25)
180.0
max = (r+1) T 90.0 (2.6)
where
¢ = column
r =T1ow
A = longitude
¢ = latitude
i = zoom level 2.7)

Chapter 4 discusses choosing the pixel dimensions of tiled images. Once pixel di-
mensions are chosen, we can compute the resolution of our tiled images in terms
of degrees per pixel (DPP). DPP is useful for relating tiled image zoom levels to
continuous zoom levels used by many mapping applications. Equation (2.8) is used
to calculate degrees per pixel.

DPP = 362$p (2.8)

where

2.2 Global Logical Tile Scheme

p = number of pixels per tile

i = zoom level

Zoom Level |Number of Columns [Number of Rows [Number of Tiles|Degrees Per Pixel
1 2 1 2 0.3515625000
2 4 2 8 0.1757812500
3 8 4 32 0.0878906250
4 16 8 128 0.0439453125
5 32 16 512 0.0219726563
6 64 32 2048 0.0109863281
7 128 64 8192 0.0054931641
8 256 128 32768 0.0027465820
9 512 256 131072 0.0013732910
10 1024 512 524288 0.0006866455
11 2048 1024 2097152 0.0003433228
12 4096 2048 8388608 0.0001716614
13 8192 4096 33554432 0.0000858307
14 16384 8192 134217728 0.0000429153
15 32768 16384 536870912 0.0000214577
16 65536 32768 2147483648 0.0000107288
17 131072 65536 8589934592 0.0000053644
18 262144 131072 34359738368 0.0000026822
19 524288 262144 137438953472 | 0.0000013411
20 1048576 524288 549755813888 | 0.0000006706

Table 2.1 The number of rows, columns, and tiles as well as the degrees per pixel for zoom levels
1 through 20 (assuming 512x512 pixel tiles).

Equations (2.9) and (2.10) show the method for locating the tile that contains a
specific geographic coordinate, given a zoom level.

c=[(A+180.0)* 32&]
180.0
r=1[(¢+90.0) 5T]

where

¢ = horizontal tile index

r = vertical tile index

A = longitude
¢ = latitude

i = zoom level of map view

(2.9)

(2.10)

10 2 Logical Tile Schemes

2.3 Blue Marble Example

To better illustrate the concept, let us begin our first example. We want to define a
logical time scheme suited to serving NASA’s Blue Marble! imagery as tiles. It is
satellite derived imagery of the whole earth and provides a good example data set
for this book.

Fig. 2.4 A Blue Marble image.

For our example, we start with a single JPEG image that is 4096 pixels wide
and 2048 pixels high. The image covers the entire earth and thus has a bounding
rectangle of (-180, -90) to (180,90).

For our example, we are going to use 512x512 pixel tile images. (Chapter 4:
Image Processing and Manipulation for GIS will discuss how to choose the proper
tile image size for a given application.) Dividing our image width (4096) by our
tile width (512) gives us an even 8§ tiles across. Likewise, we get an even 4 tiles
vertically. From Table 2.1, this is exactly equivalent to zoom level 3. Therefore, we
can use zoom level 3 as the base level for our example tile scheme.

In the previous example, our source image matched nicely with our global tile
scheme. However, many data sets will not. Suppose we have a single image covering
asmall geographic area, (-91.5,30.2) to (-91.4, 30.3), and the image is 1000 by 1000
pixels in size. The image covers a square 0.1 degrees by 0.1 degrees. The resolution
of Level 1 is 0.35156. At that resolution, our entire image would only take up 0.28
by 0.28 of a pixel or 7.84% of a pixel. In other words, it would hardly be visible at
Level 1. The DPP resolution of the image is 0.1/1000, or 0.0001. This falls between
levels 12 and 13 of our global tile scheme. In this case, it might be better to create a
custom tile scheme. A method for defining custom schemes is presented in Section
2.5.

1 http://earthobservatory.nasa.gov/Features/BlueMarble

http://earthobservatory.nasa.gov/Features/BlueMarble

2.4 Mercator-Based Schema 11

2.4 Mercator-Based Schema

Throughout this book we will focus primarily on tiling systems and data that use the
simple Plate Carrée projection, which is also known as the geographic projection.
This projection is straightforward to work with and gives us a two-dimensional rep-
resentation of the earth with a 2-to-1 horizontal to vertical aspect ratio. However, the
geographic projection has several shortcomings. At high latitudes, shapes and an-
gles become distorted. To avoid this distortion, many tiling systems use a different
base projection for their tiling schemes. The spherical Mercator projection is used
by Google Maps, Microsoft Bing Maps, and Yahoo! Maps. Chapter 9 will discuss
the details of the Mercator projection. For the purposes of defining a tiling scheme,
this projection is significant because it yields a global two-dimensional representa-
tion of the earth with a 1 to 1 aspect ratio (see Figure 2.5).

Fig. 2.5 Mercator projection.

Google, Microsoft, and Yahoo! all use a global image similar to what is shown
in Figure 2.5 as the top level image in their tiling schemes. Higher resolution zoom
levels are generated by dividing each tile into 4 sub-tiles. The only significant differ-
ence between these three schemes is in their respective methods for addressing and
numbering the tiles. Google Maps uses a simple pair of coordinates to address tiles
for a specific zoom level. They set the origin at the top, left of the map. Figure 2.6
shows the addressing for Google Maps at their zoom level 1.

Microsoft’s Bing Maps also uses the top-left for its origin but uses a sequential
numbering scheme, as shown in Figure 2.7. As the zoom level increases, each tile
is divided into 4 sub-tiles. The sub-tiles are sequentially numbered O to 3, and that
number is concatenated to the number of the parent tile to form the address of the

12 2 Logical Tile Schemes

Fig. 2.6 Google Maps tile addressing at zoom level 1.

sub-tiles. Tile 0 is divided into sub-tiles 00, 01, 02, and 03 as shown in Figure 2.8.
So, a tile at the 17th zoom level 17 would have 17 digits, one for each zoom level.
This numbering scheme makes computing the addresses of sub-tiles trivial. How-
ever, relating tile addresses to geographic coordinates, and vice-versa, will require
much more computation than the other methods of addressing tiles.

2.5 Variable Start Tile Schemes

NASA World Wind is a freely available virtual globe software system. It provides
native support for tiled image sets as map backgrounds on the globe. The default
World Wind tile system is very similar to the logical tile scheme we presented in
Section 2.1. Like our scheme, World Wind uses the geographic projection. It also
uses the bottom-left of the earth as its origin for tile addressing. It differs from our
system in that rather than a 2 x 1 tile matrix for its first zoom level, it uses a 10 x 5
matrix as shown in Figure 2.10.

Yahoo! Maps uses a method very similar to Google Maps, except they set their
origin tile at the left, middle of the earth, see Figure 2.9.

The World Wind system also allows tiled data sets that do not start at the global
level. They use a concept called Level Zero Tile Size” (LZTS) to define the dimen-
sions of a tile at the lowest resolution level. Then they define a start scale to set the
custom tile set’s start point. Tiles at the zero level of their default tile scheme are
36.0 degrees by 36.0 degrees, so the LZTS for that scheme is 36.0. The start point

2.5 Variable Start Tile Schemes

Fig. 2.7 Microsoft Bing Maps tile addressing at zoom level 1.

Fig. 2.8 Subtile addressing in Microsoft Bing Maps.

13

14 2 Logical Tile Schemes

Fig. 2.9 Yahoo! Maps tile addressing at zoom level 1.

. Ok

B

¢

35| 4E H@—ilaw
- N -1 ¥
P ; 5 $ = -
30 | 3, 327 33 |34 Q&}% 6 | 3,7 3,9
~ L o - { h %""— — v
20 | 21 | 22 '},3\ 2,4 Wﬁ,s \a‘ 26 27&&1& 529
to) pPrad 4
ek D
1,0 | 1,1 | 1,2 : 1,4 | 1, 16 | 1,7 B 1,9).
0,0 ; 3 —0;5 10,6 07 [08
| 00104 0,4 02 |

Fig. 2.10 NASA World Wind tile scheme at top zoom level.

for that scheme is at level 0. One could define a tile set with a different LZTS that
did not start until a later zoom level, such as 1, 5, or 10. Because of the way World
Wind renders the tiled images, custom LZTS values should be a factor of 180.

References 15

2.6 Standardized Schema

There are several efforts underway to standardize tile schemes and the way they are
communicated. The Web Map Tile Service (WMTS) standard was recently finalized
by the Open Geospatial Consortium [1]. It provides a standard but flexible way
of defining the capabilities of a tile service and how to interface with it. WMTS
does not require the use of one specific tile scheme, resolution set, or projection.
Instead, it provides a standard means of defining these properties so clients and
servers may be connected together. The WMTS standard does address tiles using
matrix coordinates; the top-left tile is addressed as (0,0). However, other properties
of the tile scheme are left to the service creator. Multiple different projections are
allowed, including the Geodetic and Mercator projections. No restriction is made
on which tile scales are made available, only that they be defined using a map scale,
meaning the ratio of a distance on the map to a distance on the ground. The map
scale is intended only as an identifier for a given zoom level, since it is accurate
only near the equator. Tile size may vary over scale, and there may be no relation
between the tile matrix dimensions and the scales. Of course, allowing this level
of flexibility increases the difficulty of writing a generic client to support a generic
WMTS server. To reduce this complexity, the WMTS standard supports a set of well
known scale sets that a server may support. By implementing a well known scale
set, the server becomes compatible with a wider range of clients. The set of scales
in our tile scheme and the set of scales in the Google Maps Mercator tile scheme
are both included WMTS well known scale sets. WMTS supports Key-Value-Pair,
RESTful, and SOAP request formats for accessing tiles.

Another attempt to create a tile service standard is the Tile Map Service (TMS)
specification [2]. The TMS specification is not backed by a standards body but has
achieved some level of common usage with a number of servers and clients. It is
similar to the WMTS standard in that it allows multiple different tile schemes to be
specified. The TMS specification allows the use of arbitrary scales defined by units
per pixel. The origin tile may be specified by the server unlike in WMTS where it
is always the top-left tile. The tile size may be specified as well. As with WMTS,
it supports profiles that specify a map scale and map projection. Both our Geodetic
tile scheme and Google Maps Mercator tile scheme are supported profiles. The TMS
format supports only a RESTful URL request for tiles.

References

1. Joan Mas6, K.P, Julia, N.: OpenGIS Web Map Tile Service Implementation Standard. Open
Geospatial Consortium Specification (2010)

2. Ramsey, P.: Tile map service specification. URL http://wiki.osgeo.org/wiki/
Tile Map Service Specification

http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

Chapter 3
Tiled Mapping Clients

A tiled mapping client has the responsibility of composing individual map tiles into
a unified map display. The map display may allow the user to move around and load
in more data, or it may be a static map image whose area is pre-determined by the
application. These clients are generally not difficult to create (one of the benefits of
tiled mapping). A tiled map client must be able to perform the following tasks:

o Calculate which tiles are necessary to fill the map.
o Fetch the tiles.
e Stitch tiles together on the map.

These three functions are usually performed in sequence as a response to an event
in the map client (such as the user moving the map).

3.1 Tile Calculation

The first task of a tiled map client is to calculate which tiles are necessary to fill the
map view. The map view is defined by both the geographic area of the map as well
as the pixel size of the map. To perform the tile calculations, a simple function is
necessary that takes the map view as input and returns a list of tiles as output. Each
tile is defined by a tile scale, row, and column.

The actual implementation of such a function is dependent on the way map scale
is handled within the client. For a tile client, the simplest method is to allow only
a discrete set of map scales. The allowed scales are identical to the set of zoom
levels provided natively by the underlying map tiles. Alternatively, the tile client
may allow map scales that are not natively available in the tiled map. Usually, such
a client will support a continuous set of map scales. Continuous map scales are used
in GIS clients because their primary purpose is to create and analyze a wide variety
of geospatial data. To support this extensive functionality, users must be able to
work on data at any map scale. Supporting continuous map scales means that any
combination of geographic area and map size is allowed. As a consequence, the

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 17
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__3,
(© Springer Science+Business Media, LLC 2010

18 3 Tiled Mapping Clients

Listing 3.1 Calculation of tile range for the map view.

numMapViewTilesX= mapWidthPixels / tileWidthPixels
numMapViewTilesY = mapHeightPixels / tileHeightPixels

function that calculates which tiles are needed is more complex than the function
used for discrete map scales.

3.1.1 Discrete Map Scales

The case where clients support only discrete map scales is the simpler one, so that is
the best place to begin. As discussed in the previous chapter, the map scale of tiled
imagery is specified by zoom level, which is not the traditional distance ratio (e.g.,
1:10000m) common on paper maps. Instead, zoom level is simply used to specify
the sequence of map scales supported by the tiles. Assuming a standard power of
two tile scheme as discussed in the previous chapter, the world will be split into 2/¢¥¢/
columns and 2/~ rows (level € N). As level increases, so too does map scale.
In this case, each increase in level squares the number of pixels used to represent
the entire Earth. A map client that uses discrete scales will allow the user to choose
only the levels made available by the data.

To calculate which tiles to retrieve, the client need only know the current zoom
level, the tile index of the origin of the map view, and the number of tiles required
to fill the map view. Notice that the map client need not know the geographic area
of the map view. When the map client allows only discrete zoom levels, the state of
the map may be stored using only a tile-based coordinate system rather than geo-
graphic one. It is also important to note that the following tile calculations assume
that the map size is an integer multiple of the tile size. This assumption will be ex-
plained further later in the chapter, but it is a result of using common user interface
programming techniques.

The origin of the map view is the index of the minimum tile. The minimum
tile is the lower left tile when using Cartesian tile coordinates or the upper left tile
when using matrix/image (row-major) coordinates. The tile dimensions of the map
view are the width and height represented in tiles, i.e., the map width (height) in
pixels divided by the tile width (height) in pixels. Listing 3.1 demonstrates how to
calculate tile dimensions by dividing the map view size in pixels by the tile size in
pixel for each dimension. Listings 3.2 and 3.3 demonstrate the process of increasing
and decreasing the zoom level of the map. Both a new tile origin and tile range must
be calculated when changing the zoom level.

Full-featured map clients will usually have the functionality to convert a geo-
graphic coordinate into tile coordinates as shown in Equations (3.1) (3.2).

3.1 Tile Calculation 19

Listing 3.2 Calculations for increasing the zoom level. When zoom level is increased we allow
truncation when dividing.

00NN AW~

=)

10
11

13

calculate the new horizontal tile origin index
tileCenterX = numCanvasTilesX / 2 + tileOriginX
newTileCenterX = tileCenterX = 2
tileOriginX = newTileCenterX — numCanvasTilesX / 2

calculate the new vertical tile origin index
tileCenterY = numCanvasTilesY / 2 + tileOriginY
newTileCenterY = tileCenterY = 2

tileOriginY = newTileCenterY — numCanvasTilesY / 2

calculate the new tile dimensions for the level
tileRangeX tileRangeX * 2
tileRangeY tileRangeY = 2

Listing 3.3 Calculations for decreasing the zoom level. When the zoom level is reduced we must
round instead of truncating when calculating the tile origin.

0NN W~

——
W~ OO

calculate the new tile dimensions for the level

tileRangeX = tileRangeX / 2

tileRangeY = tileRangeY / 2

calculate the new horizontal tile origin

tileCenterX = numCanvasTilesX / 2 + tileOriginX

newTileCenterX = tileCenterX / 2

tileOriginX = int(round ((numCanvasTilesX + tileOriginX) / 2.0)) —
numCanvasTilesX

if (tileOriginX < 0):
tileOriginX = 0

calculate the new vertical tile origin

tileOriginY = int(round ((numCanvasTilesY + tileOriginY) / 2.0)) —
numCanvasTilesY

if (tileOriginY < 0):
tileOriginY = 0

~ 2/(A+180)

‘T 7360 3.1)
2719 +90)
=T 80 ©-2)

where:

¢ = horizontal tile coordinate

r = vertical tile coordinate

A =longitude; —180 < A < 180
¢ = latitude; —90 < ¢ <90

i = discrete map scale

20 3 Tiled Mapping Clients

3.1.2 Continuous Map Scales

Calculating the tile list for a map client with continuous map scales is more difficult.
For a continuous scale client, the map view must be defined by the geographic area
of the view and size of the view in pixels. From this definition of map view, it will
be necessary to determine which zoom level is best used to populate the view and
which specific tiles at that level are in the geographic area.

First, the current map scale must be calculated. The current map scale will still
not be represented as a traditional distance ratio since this distance ratio varies over
the entire world. Instead, the resolution for the map view, in degrees per pixel, will
be used to represent map scale. It should be noted that this works only when the
degrees per pixel is constant over the entire Earth at a particular zoom level; for
certain map projections, this is not true, and the scale should be represented using
the native coordinates of the projection (Chapter 10 has further discussion of map
projections).

The degrees per pixel, DPP, may be calculated using the geographic area and
size of the map view as shown in Equation (3.3).

DPP,+ DPP,
DPP = —"er : (3.3)
where:
A —
DPP, = 1_)‘0
w
ppp,= 1%
H

A1 = maximum longitude of map view
Ao = minimum longitude of map view
¢1 = maximum latitude of map view
¢o = minimum latitude of map view
W = width of map view in pixels

H = height of map view in pixels

Each zoom level also has a fixed resolution associated with it. The degrees per pixel
for each zoom level may be calculated using the tile geographic bounds and tile size
with the above formula.

Once the resolution of the current map view is calculated, the process of deter-
mining the best zoom level for tile data may begin. Determining which zoom level
to use as the source of tiles has important ramifications on image quality and client
performance. If too low a zoom level is chosen, then the image will have an inap-
propriately low resolution and look pixelated. However, if too high a zoom level is
chosen, then the client will be required to fetch too many tiles. For each increase in
zoom level, the client must fetch four times the number of tiles to create any given

3.1 Tile Calculation 21

map image. Thus, finding the optimal zoom level for a particular map view is impor-
tant to the overall performance and quality of the map client. Of course, the optimal
zoom level for a given map view is the zoom level with the same image resolution.

In general, the map view will not share an image resolution with any zoom level.
Normally, the map view resolution will lie between the resolutions of two zoom
levels. Of these two, the zoom level with the higher resolution is the best since it
will reduce artifacts due to image scaling. However, a 10% margin of error is used
when comparing the map view resolution to the resolution of the lower zoom level.
If the map view resolution is within 10% of the lower zoom level resolution then
the lower zoom level is used. A 10% resolution reduction is not significant visually
and will not impact the resulting map image, whereas the four-fold savings in tile
requests will provide significant performance improvements for the map client.

Often, the zoom level identified by the above process may not have the tiles
necessary to compose the map view. In this case, an additional search must be con-
ducted for the optimal zoom level tile source. If the upper bounding zoom level is
not available, then the lower bounding zoom level should be used, even if the res-
olution is not within the 10% margin of error. If neither is available, then the next
closest zoom levels should be checked, starting with the next highest zoom level.
At most, only the next two higher zoom levels should be used. Beyond that the /O
costs of using higher zoom levels are prohibitive and should be avoided. Figure 3.1
shows examples of the processes of calculating the zoom level to use for a map view.

Once the appropriate zoom level is chosen as a tile source, the list of tiles cover-
ing the map view must be generated. The calculations for generating the tile list are
similar to those used in the discrete map scale cases. First, the minimum tile must
be calculated and then the tile range. However, in the continuous map scale case,
the map view parameters are not integer multiples of the tile parameters. The min-
imum tile is calculated using the minimum point on the map view, which may be
the lower-left or upper-left point depending on the tile coordinate system in use (we
assume lower-left). Equations 3.4 and 3.5 are used to calculate the tile containing a
geographic coordinate.

= (A +180.0) # 362& | (3.4)
F = (6 +90.0) % 1;?'10 | (3.5)

where:

¢ = horizontal tile index

r = vertical tile index

A = longitude of map view
¢ = latitude of map view

i = zoom level of map view

22 3 Tiled Mapping Clients
v Requested
Exact match [‘ ‘ A ‘ ‘ ‘ ‘ Rewrned
1 2 3 4 5 6 7 8
(a) The scale of the map view is exactly the same as an available tile zoom
level.

Requested

Next highest v
exthighest T "X T [T
1 2 3 4 5 6 7 8
(b) The map view scale does not match an available zoom level, so we
choose the next highest.

Requested

Choose lower within 10% ——T—T— & T T T o

1 2 3 4 5 6 7 8
(c) The map view scale does not match an available zoom level, but it is less than 10%
different than the next lowest tile zoom level. As a result we choose the lower tile zoom

level.

Requested

Continue Search [I I I v I y'y I I ry—

1 2 3 6 7 8
(d) The map view scale lies in between two zoom levels that have no tiles
available. In this case, we continue the search and choose the next highest
zoom level.

Choose lower to reduce 1/0 A I ‘ ‘ Y ‘ ‘ ‘ { 1:::::1

1 7 8
(e) The map view scale lies in between two zoom levels that have no tiles available.
Further surrounding zoom levels are also not available. In order to reduce the number
of tiles to retrieve, we choose a lower zoom level, even though higher zoom levels are
closer to the map scale.

Fig. 3.1 This figure shows examples of the process for choosing the appropriate zoom level.

The minimum and maximum coordinates of the map view are transformed into
minimum and maximum tiles using these formulas. Once the list of tiles required
to fill the map view is calculated, the client may proceed to the next major step of
retrieving these tiles.

3.2 Tile Retrieval

The tile client must retrieve tiles from where they are stored to use them in the
map view. Generally, the tiles are either stored locally or on a network. Sometimes
tiles are stored using both mechanisms. Generally, it is a good practice to create
an abstract interface for retrieving tiles, so the details of the implementation are
separated from the rest of the map client functionality. That way, if the client must

3.2 Tile Retrieval 23

change or add an additional retrieval mechanism, the effect on the overall system is
minimized.

3.2.1 Local Tile Storage

Local tile storage is the more complicated mechanism for tile retrieval. When tiles
on disk are used, the map client must have internal knowledge of the tile storage
scheme. In certain cases, the storage scheme is fairly simple. The single file-per-
tile scheme is a prime example. Each layer, scale, row, and column combination
identifies a single image file that can be easily referenced and exploited in the tile
software. Also common is the database tile storage scheme. Here, the map client
must be able to connect to the database and properly query for tiles. Database con-
nections from software are trivial to implement these days making this method also
relatively simple. More complicated are storage schemes where multiple tiles are
stored in a single file. This type of storage system for tiles requires the map client
to understand the organization of these files and most likely the indices used to find
the tiles within them. Tile retrieval is more difficult in this case, but the performance
benefits from such a storage scheme may outweigh the complications. Having a
database dependency for a map client is not advisable, given the complexity of in-
stalling and managing databases. As discussed in chapter 7 on Tile Storage there are
speed and space benefits to storing multiple tiles in a single file.

Generally, local storage of tile data should be limited in overall size. As the
amount of tile data increases, so do the demands on the physical system supporting
this data. It is usually not desirable to make a map client with large system require-
ments simply to support the accompanying data. Often, map clients will include one
or two map layers with a limited base resolution. These are used as overview maps
for the system and only provide a limited number of low zoom levels. Better map
layers from external (i.e., network) sources are used for higher resolution data.

3.2.2 Network Tile Retrieval

Retrieval of map tiles from the network is a popular mechanism for map clients
to get their data. For Web-based clients, it is a requirement. For desktop clients,
it reduces the complexity and size of the software install. While network retrieval
of tiles may be accomplished in a number of different ways, most commonly tiles
are made available via Hypertext Transfer Protocol (HTTP; the protocol used for
the Web). Specifically, each tile is retrieved by performing a GET via HTTP (one
of five HTTP functions). By using HTTP GET, each tile is made available by a
single URL. When accessing tiles over the network, the client need know nothing
about the underlying storage mechanism for the tiles on the server. The server may
store tiles in a database, as individual files, or in some custom file scheme, but this

S}

24 3 Tiled Mapping Clients

Listing 3.4 Retrieving data from a URL in Python.

import urllib2
urlConnection = urllib2 .urlopen (" http :// host.com/path/tile.jpg’)
data = urlConnection.read ()

is not reflected in the URL. Additionally, most programming languages provide
libraries, which make retrieving data from a URL using an HTTP GET request a
trivial process. Listing 3.4 contains an example of retrieving data from a URL in
Python.

There are two common URL styles used in tile retrieval systems. The first en-
codes the tile parameters in the URL path. This method mirrors the path structure of-
ten used when storing tiles as individual files on the file system. An example path en-
coded URLishttp://host.com/tiles/bluemarble/3/5/2.jpg.Here
bluemarble is the layer name for the tiles, 3 is the zoom level, 5 is the tile column,
and 2 is the tile row. The order of these parameters may change, especially the
row and the column positions. The second URL style encodes the tile parameters
in the URL parameters (the key-value pairs after the ? in the URL). The same
map request encoded with URL parameters is http://host.com/tiles?
layer=bluemarble\&level=3\&col=5\&row=2. Of course, both meth-
ods of encoding map requests in a URL have countless variations.

Layer management is another consideration for tile-based map clients to access
network stored tiles. The simplest method of layer management is to simply hard-
code the list of available layers inside the client. Hard-coding a layer list has the
benefit of simplicity. No additional code is necessary to determine the list of layers
available. However, hard-coding a layer list can be brittle. Whe the available layers
changes, the map client must be updated to support the new layer list. Otherwise,
the map client will create an error when a user tries to access a non-existent layer.
In many cases the map client may be accessing data maintained by a third party.
Without constant vigilance watching for changes in available layers, it is very likely
that users will experience data problems.

A more robust alternative to hard-coded layers is to auto-detect the capabilities
of each map tile service used by the client. The client may dynamically refresh the
available services and layers so the user is always presented with a valid layer list.
The result is fewer errors because of service changes or failures. Auto-detecting
service capabilities is non-trivial when the tile service has a custom interface. As-
suming the service provides a capabilities listing, the map client must have tailored
code to parse the capabilities for available layers and supported zoom levels. The
Web Mapping Tile Service (WMTS), as discussed in chapter 2, defines a standard
capabilities listing format so clients may parse the capabilities of any compliant
service.

The map client may choose to manage network errors and performance to im-
prove the user experience. A complete loss of network access prevents the proper
operation of a tiled map client, but limited functionality may be maintained by

http://host.com/tiles/bluemarble/3/5/2.jpg
http://host.com/tiles?layer=bluemarble&level=3&col=5&row=2
http://host.com/tiles?layer=bluemarble&level=3&col=5&row=2

3.3 Generating the Map View 25

caching commonly used map tiles. The most commonly used tiled data are asso-
ciated with low scales. Generally, users start with overviews of the entire Earth or
a large area of the earth. These views require only a limited number of tiles since
they use the lower zoom levels. Network performance may be improved by using
tiles from a previous zoom level while a new one is loaded. When a user zooms
the map view, the existing tiles may immediately be resized to fill the view. As new
tiles come in, they may be placed above the zoomed lower level tiles. Once all tiles
for the current zoom level are received, the zoomed tiles may be removed from the
map.

3.3 Generating the Map View

After the map client retrieves tiles, it must use them to fill in the map view. The
process of assembling tiles into a single map image varies depending on the tech-
nologies used to build the map client. However, the underlying process of generating
a unified map view is essentially the same.

3.3.1 Discrete Scales Map View

Composing tiles into a single map view is simplest for discrete map scales. The
process of determining which tiles to use was discussed above. Once the appropriate
tiles are retrieved, they must be combined to form a single map view. The map view
may simply be a static image or, more commonly, a portion of the user interface in
map client software. Regardless, the algorithm to create the composite view is the
same and relatively simple.

For the purpose of this section, we will assume the map client is a program that
allows the user to interact with the map. The client must take the retrieved tiles
and place them inside the map. The map will be the user interface container that
holds the tiles. As stated earlier, the size of the map is an integer multiple of the
tile size. The reasoning behind this assumption will be further discussed below,
but for now we will hold it to be true. The user interface container used to hold
the map varies depending on the programming language used to create the map
client. In Java, the container would be a Panel or JPanel object (AWT and Swing
respectively). In Python with the Tkinter user interface library, a Canvas object is
used to hold images. Other popular programming languages have similar constructs.
The following are a list of properties tht must be met by the container for it to
function as a map:

e Hold multiple images.
e Absolutely position the images.
e Allow resizing of the container.

26 3 Tiled Mapping Clients

Assuming these conditions are met, the container will function appropriately as a
map. It should be noted that an image has the above properties and may function as
a map.

Placing the image tiles in the container is simple. The horizontal position of a tile
is simply the tile index ¢ multiplied by the tile size W. The vertical position must
take into account the fact that the container most likely uses matrix coordinates;
the upper-left corner is the origin. If the tile scheme uses Cartesian coordinates (the
origin is at the lower-left) then a transformation must be made when placing the
tiles in the container (Honrianer 1S the container height, r is the vertical tile index,
and H,; is the tile height):

Hontainer — (r+ 1)I'Itile (3.6)

Once the coordinates for each tile are calculated, it may be placed in the container
using absolute positioning.

The container holding the tile images is not the same as the map client application
window. The application window, which we will call the viewport, will hold the tile
container. The viewport is what the user actually sees. The viewport may be smaller
or larger than the map container. Separating the size of the viewport from the size
of the map container allows the map container to be fixed at an even multiple of
the tile size, while the viewport size may vary arbitrarily. The map container will
change size as the viewport is resized. The container should have width and height
greater than or equal to the width and height of the viewport. At a minimum, round
up the viewport width and height to the nearest multiple of tile size to calculate the
map container dimensions. Often the map container will be sized to allow an unseen
border of tiles one or two tiles deep. The border is used as a tile cache so that when
the user moves the map, the tiles will appear on the map without requiring them to
be fetched from the tile store. By prefetching unseen tiles, the apparent performance
of a network tile store may be significantly improved.

3.3.2 Continuous Scales Map View

When the map client supports continuous scales, the tiled imagery may not be placed
directly on the map. Instead, the tiles must be transformed to fit into the current map
view. This task may be accomplished by performing the following three steps.

1. Stitch the tiles together into one large image.
2. Cut the large image to match the geographic area of the current map view.
3. Resize the cut image to the current pixel size of the map view.

These three steps are always required; however, some programming languages may
provide user interface frameworks that simplify one or more of these steps. For this
section we will assume the most basic of built-in functionality.

Stitching the tiles together may be accomplished by pasting them into one larger
image. Stitching tiles together in an image is basically the same process as placing

O 00N AW~

3.3 Generating the Map View 27

Listing 3.5 Paste tiles into a larger image.

get the tile bounds from the geographic bounds
minTileX , minTileY , maxTileX, maxTileY = getTileBounds(bounds)

retrieve the tile images from the datastore
tiles = fetchTiles (minTileX, minTileY , maxTileX, maxTileY)

make PIL images
tileImages = makelmages(tiles)

get the image mode (e.g. 'RGB’) and size of the tile
mode = tileImage [0][0].mode
tileWidth, tileHeight = tileImage [0][0]. size

calculate the width and height of the large image to paste into
largeWidth = tileWidth % (maxTileX — minTileX + 1)
largeHeight = tileHeight * (maxTileY — minTileY + 1)

make the new image with the correct mode, width, and height
largelmage = Image.new(mode, (largeWidth , largeHeight))

loop through tiles and paste them into the large image
for row in xrange (maxTileY — minTileY + 1):
for col in xrange (maxTileX — minTileX + 1):
calculate the location to paste the image (we use Cartesian
tile coordinates)
X = col % tileWidth
y = largeHeight — ((row+1) * tileHeight)
paste tiles into large image
largelmage . paste (tileImage [row][col], (x,y))

them in the map container for a discrete scale client. First, make an empty image
whose size is the combined width and height of all the retrieved tiles. Each tile
should be pasted into the image according to its tile index. As with the discrete zoom
level client, the tile indexing affects these calculations. If the tiles are Cartesian
indexed (lower-left origin) then the vertical index must be transformed to align with
the matrix indexing of images (upper-left origin). Listing 3.5 shows an example of
stitching together images with Cartesian tile coordinates.

After the large image is created, it must be cut to match the geographic bounds
of the map view. Each corner of the map view has a geographic coordinate. Each
coordinate has a pixel location inside the stitched tile image. Those pixel coordinates
are then used to cut the large image so its geographic bounds match those of the map
view. Listing 3.6 contains code showing the process of cutting the map view.

The final step in creating an image to fill a continuous scale map view is to resize
the cut image to have the same pixel size as the map view. First, the resolutions of
the map view and the large image are calculated. The scaling factor for the large
image is the ratio of the two resolutions. Usually, the resolution is represented as
degrees per pixel. Listing 3.7 is an example of resizing the cut image to match the
pixel size of the map view.

—_

—_ =

— OO0 00JIWNRA W~

— OV 0TV AL —

28 3 Tiled Mapping Clients

Listing 3.6 Cut the large image to match the geographic bounds of the map view.

assume tileWidth = tileHeight
imageDPP = 360.0 / ((2 #*x scale) * tileWidth)

calculate the pixels for the rectangle to cut

leftPixel = int(round ((mapViewMinX — imageMinX) / imageDPP))

lowerPixel largeHeight — int(round ((mapViewMinY — imageMinY) / imageDPP))
rightPixel int (round ((mapViewMaxX — imageMinX) / imageDPP))

upperPixel largeHeight — int(round ((mapViewMaxY — imageMinY) / imageDPP))

cut out the rectangle
cutlmage = largelmage.crop ((leftPixel , upperPixel, rightPixel, lowerPixel)

Listing 3.7 Resizing the stitched together tiles to match the resolution of the map view.

assume tileWidth = tileHeight
imageDPP = 360.0 / ((2 =% zoomLevel)xtileWidth)

the view degrees per pixel may be calculated using the screen size
and geographic bounds
viewDPP = getViewDPP ()

scalingFactor = viewDPP / imageDPP

newWidth = int(cutWidth % scaling-factor)

newHeight = int(cutHeight % scaling_-factor)
resizedImage = cutlmage.resize ((newWidth, newHeight))

3.4 Example Client

The code in Listing 3.8 contains a working example tile map client. This client
is intended as an example to demonstrate some of the concepts discussed in this
chapter. However, it is extremely simple and should not be considered an example
of a user-ready map client. The example client uses discrete zoom levels and has
limited movement controls. Movement is also limited to one tile at a time. The data
source is a custom tile image server accessible using HTTP over the Internet. This
client should work with a stock Python install along with the Python Image Library
and libjpeg support. A screenshot of the example client is shown in Figure 3.2.

3.5 Survey of Tile Map Clients

A number of popular tile map clients exist and are heavily used by the geospatial
community. Commonly used clients are either Web-based or desktop-based. Most
Web-based clients allow only discrete zoom levels because it simplifies their design.
Performing the image manipulation necessary to support continuous map scales
would be difficult to support in a Web browser as well as overly costly. On the other
hand, Web browsers support discrete zoom levels quite well because of their built-in

3.5 Survey of Tile Map Clients 29

Fig. 3.2 Screenshot of the tile client example.

asynchronous design. When a discrete zoom level map client puts a tile on the map
in a browser, it actually gives the image’s network location to the browser and tells
it to put the image on the map. The browser takes care of fetching the image asyn-
chronously, so that while it is loading, the map client is still functional. Web-based
clients are the most commonly used tile map clients. Commercial clients, such as
Google Maps and Microsoft Bing Maps, are commonly used by a large non-expert
audience to look at maps or get directions. These clients have developer interfaces
so that custom data may be added along with the built-in data. However, as these
clients are proprietary, they may not themselves be modified by a third party devel-
oper. The OpenLayers Web-based map client provides an open source alternative
to the proprietary web clients. OpenLayers is a Javascript library that may be used
with fewer restrictions than commercial clients.

Two popular desktop map clients are Google Earth and NASA World Wind.
Google Earth has significant user penetration and allows developers to add arbitrary
tile layers using KML network links. NASA provides World Wind as an open source
program which supports full developer customization. Two versions of World Wind
exist: a .NET version and a Java version. Both are open source. The .NET version
is a full application, whereas the Java version is an SDK, intended for use in build-
ing custom map clients. Adding support for custom tile schemes is fairly simple in
either.

O 00NN AW~

30

Listing 3.

3 Tiled Mapping Clients

8 Example Python map client which uses discrete zoom levels.

import Tkinter
import Image, ImageTk # requires the Python Imaging Library be installed
import urllib2

import ¢

StringlO

class SimpleNetworkTileSource :

This

def

def

is a simple tile data source class to abstract the tile retrieval
process from the rest of the client. Any class which implements this
interface (i.e. has the same getTile method and member variables) may
replace this source in the client.

__init__(self):
self.layerNames = [’bluemarble’]
self . tileWidth = 512
self.tileHeight = 512
self .minLevel = 1
self .maxLevel = 8
getTile (self , layerName , zoomLevel, collndex, rowlndex):
url = “http ://dmap.nrlssc.navy.mil/tiledb/layerserver 7REQ=getimage = +
&layer=" + layerName + ’&scale=" + \
str (zoomLevel) + ’&row=’ + str(rowlndex) + ’&col=" + str(collndex
)

f = urllib2 .urlopen (url)
imageData = f.read ()
return imageData

B

class MapClient:

P

MapClient is an implementation of a simple discrete zoom level map client.

def

_-init__(self, parent, tileSource):
Starting zoom level
self.level = 2

Starting tile origin
self.tileOriginX = 0
self.tileOriginY = 0

The number of tiles in each dimension for this level.
self.tileRangeX = 2xxself.level
self.tileRangeY = 2x*x(self.level —1)

The size of the map view in tiles. We hardcode the size for this
simple client

self .numCanvasTilesX = 2
self .numCanvasTilesY = 1

The tile source
self.tileSource = tileSource

This dictionary is used to keep a reference to the tiles displayed in
the Ul so that they are not garbage collected.
self.tileImages = {}

set up the user interface

self.frame = Tkinter.Frame(parent, width=self.tileSource.tileWidth =x
self .numCanvasTilesX , height=self.tileSource.tileHeight % self.
numCanvasTilesY)

self . frame . pack ()

self.canvas = Tkinter.Canvas(self.frame, width=self.getFrameSize()[0],
height=self . getFrameSize()[1])

57
58

59

60

61

62

63
64

65

3.5 Survey of Tile Map Clients 31

self .upButton = Tkinter.Button(self.frame, text="UP”, command=self.up)

self .downButton = Tkinter.Button(self.frame, text="DOWN’, command=self .
down)

self .leftButton = Tkinter.Button(self.frame, text="LEFT”, command=self.
left)

self .rightButton = Tkinter.Button(self.frame, text="RIGHT”, command=
self.right)

self .inButton = Tkinter.Button(self.frame, text="IN", command=self .
zoomlIn)

self .outButton = Tkinter.Button(self.frame, text="0OUT”, command=self.
zoomOut)

self.canvas.pack(side=Tkinter .TOP, fill=Tkinter .BOTH, expand=Tkinter.
YES)

self.canvas.create_rectangle (0,0, self.getMapSize () [0], self.getMapSize
(O [11, fill="black”)

self .upButton.pack(side=Tkinter .LEFT)
self .downButton. pack(side=Tkinter .LEFT)
self.leftButton.pack(side=Tkinter .LEFT)
self . rightButton.pack(side=Tkinter .LEFT)
self.inButton .pack(side=Tkinter .LEFT)
self.outButton .pack(side=Tkinter .LEFT)

load all the tiles onto the map for the first time
self.loadTiles ()

def getFrameSize(self):
return (int(self.frame.cget(’width’)),int(self.frame.cget(height’)))

def getMapSize (self):
return (int(self.canvas.cget(’width’)),int(self.canvas.cget(height’)))

Below are the controls for moving the map

up, down, left, right, zoom in, and zoom out
#

After each is called loadTiles() is called to
refresh the map display with new tiles

def up(self):
if ((self.tileOriginY + self.numCanvasTilesY) < self.tileRangeY):
self.tileOriginY += 1
self.loadTiles ()

def down(self):
if (self.tileOriginY > 0):
self.tileOriginY —= 1
self.loadTiles ()

def left(self):
if (self.tileOriginX > 0):
self.tileOriginX —=1
self.loadTiles ()

def right(self):
if ((self.tileOriginX + self.numCanvasTilesX) < self.tileRangeX):
self.tileOriginX += 1
self.loadTiles ()

def zoomlIn(self):
if (self.level < self.tileSource.maxLevel):
self.level += 1

calculate the new horizontal tile origin index

tileCenterX = self.numCanvasTilesX / 2 + self.tileOriginX
newTileCenterX = tileCenterX x 2

self.tileOriginX = newTileCenterX — self.numCanvasTilesX / 2

171
172
173
174

175
176

32

3 Tiled Mapping Clients

calculate the new vertical tile origin index

tileCenterY = self.numCanvasTilesY / 2 + self.tileOriginY
newTileCenterY = tileCenterY x 2

self.tileOriginY = newTileCenterY — self.numCanvasTilesY / 2

calculate the new tile dimensions for the level
self.tileRangeX = self.tileRangeX * 2

self .tileRangeY = self.tileRangeY = 2
self.loadTiles ()

def zoomOut(self):
if (self.level > 2 and self.level > self.tileSource.minLevel):
self.level —= 1

calculate the new tile dimensions for the level
self .tileRangeX = self.tileRangeX / 2
self .tileRangeY = self.tileRangeY / 2

calculate the new horizontal tile origin
tileCenterX = self.numCanvasTilesX / 2 + self.tileOriginX
newTileCenterX = tileCenterX / 2
self.tileOriginX = int(round ((self.numCanvasTilesX + self.
tileOriginX) / 2.0)) — self.numCanvasTilesX
if (self.tileOriginX < 0):
self.tileOriginX = 0

calculate the new vertical tile origin

self.tileOriginY = int(round ((self.numCanvasTilesY + self.
tileOriginY) / 2.0)) — self.numCanvasTilesY

if (self.tileOriginY < 0):
self.tileOriginY = 0

self.loadTiles ()

calculate which tiles to load based on the tile origin and
the size of the map view (in numCanvasTiles)
def calcTiles(self):
tileList = []
for y in xrange(self.tileOriginY , self.tileOriginY + self.
numCanvasTilesY) :
for x in xrange (self.tileOriginX , self.tileOriginX + self.
numCanvasTilesX) :
tileList.append ((x,y))
return tileList

Get the tiles from the tile source and add them to the map view.
This is method is inefficient. We should really only fetch tiles
not already on the map. Instead we just refetch everything .
def loadTiles (self):

tileList = self.calcTiles ()

self.tileImages.clear ()

for tileIndex im tileList:

This is where the tiles are actually fetched.

A better client would make this asynchronous or place it in

another thread

so that the Ul doesn’t freeze whenever new tiles are loaded .

data = cStringlO . StringIO (self.tileSource. getTile(self.tileSource.

layerNames [0], self.level, tileIndex[0], tileIndex[1]))

im = Image.open(data)

tkimage = ImageTk.Photolmage (im)

X (tileIndex [0]—self.tileOriginX) * self.tileSource.tileWidth
self.getMapSize () [1] — ((tileIndex[1]—self.tileOriginY+1) x*
self.tileSource .tileHeight)
self.tilelmages[tileIndex] = tkimage
self.canvas.create_-image (x, y, anchor=Tkinter .NW, image=tkimage)

177
178
179
180
181

3.5 Survey of Tile Map Clients

if

_-name__ == ’__main__":
root = Tkinter.Tk()
map = MapClient(root,
root.mainloop ()

SimpleNetworkTileSource ())

33

Chapter 4
Image Processing and Manipulation

To make source image sets suitable for serving as tiled images, significant image
processing is required. This chapter provides a discussion of the image processing
techniques necessary to create a tile-based GIS. It discusses algorithms for manip-
ulating, cutting, and scaling different types of images. Several image interpolation
algorithms are given with examples and discussion of the relative benefits of each.
In addition, this chapter provides guidance for choosing tile image sizes and file
formats.

4.1 Basic Image Concepts

A digital image is a computer representation of a two-dimensional image and can
be raster or vector based. Raster (or bitmap) digital images use a rectangular grid of
picture elements (called pixels) to display the image. Vector images use geometric
primitives like points, lines and polygons to represent an image. For the purposes of
this book, we are dealing almost exclusively with raster images, which are composed
of pixels. Chapter 11 discusses vector data in the context of tiled-mapping.

Each raster image is a grid of pixels, and each pixel represents the color of the
image at that point. Typically, the individual pixels in an image are so small that they
are not seen separately but blend together to form the image as seen by humans.
Consider Figure 4.1; to the left is a picture of a letter A, to the right is that same
picture magnified such that the individual pixels are visible.

Pixel values are expressed in units of the image’s color space. A color space,
or color model, is the abstract model that describes how color components can be
represented. RGB (red, green, blue) is a common color model. It provides that the
color components for red, green and blue be stored as separate values for each pixel.
Combinations of the three values can represent many millions of visible colors.
Suppose that we will use values of O to 1 to represent each of the components of
an RGB pixel. Table 4.1 shows which combinations would create certain common
colors.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 35
Principles and Practices, DOI 10.1007/978-1-4419-7631-4_4,
(© Springer Science+Business Media, LLC 2010

36 4 Image Processing and Manipulation

Fig. 4.1 Pixelated image.

Red|Green |[Blue|Composite Color
1 0 0 Red
0 1 0 Green
0 0 1 Blue
1 1 0 Yellow
05| 05 |05 Gray
0 0 0 Black
1 1 1 White

Table 4.1 Common colors and their RGB component combination.

Systems that support transparency by means of alpha compositing add a fourth
component, ranging from 0 to 1, where O indicates that the pixel should be fully
transparent, and 1 indicates that the pixel should be fully opaque. This color model
is referred to as RGBA or ARGB.

To view and manipulate digital raster images, the RGB components are most
often stored as single byte values. In this case, each RGB component is an integer
value from 0 to 255 instead of a real value from O to 1. The three components will
take up 3 bytes (24 bits) or 4 bytes (32 bits) for images with alpha components. It is
common to use a 4-byte integer value to store either the RGB or RGBA components.

Raster image pixels are addressable using two-dimensional coordinates with an
orthogonal coordinate system over the image. We have used Cartesian coordinates
for our mapping coordinate systems, where the center of the coordinates space is
(0,0) and horizontal or x coordinate increases as you move to the right and the
vertical or y coordinate increases as you move up. Many programming environments

4.2 Geospatial Images 37

reverse the y coordinate such that the origin of an image is at the top-left, and the
y coordinate increases as you move down the image. This convention is taken from
raster scan based image systems, like cathode ray tube monitors and televisions
in which the top-most scanline is the first line displayed for each refresh cycle.
The reversal of the y coordinate is an inconvenience that must be considered in all
practical applications that relate geospatial data to digital imagery.

Raster images are stored in a variety of file formats defined mostly by their com-
pression algorithms or lack thereof. The most commonly used formats employ com-
pression to reduce the required disk space. Consider an example RGB image that
is 1000 by 1000 pixels. To store it uncompressed would require 1000x1000x3 = 3
megabytes. Its not unreasonable for a good image compression algorithm to obtain
a 10 to 1 compression ratio. Thus, the image could be stored in 300 kilobytes.

In general there are two types of compression, lossless and lossy. Lossless algo-
rithms compress the image’s storage space without losing any information. Lossy
algorithms achieve compression in part by discarding a portion of the image’s in-
formation. Lossy algorithms seek to be shrewd about what portions of an image’s
information to discard. Many lossy algorithms can produce a compressed image
which discards significant information and yet be visually identical to the original.

The most common lossy image file format is JPEG . JPEG is named after the
Joint Photographic Experts Group who created the standard. There are two common
lossless file formats: Portable Network Graphic (PNG), and Graphics Interchange
Format (GIF). There are several common formats which do not employ compres-
sion: Bitmap (BMP), Portable Pixel Map (PPM), Portable Graymap (PGM), and
Portable Bitmap (PBM).

4.2 Geospatial Images

Digital images are well suited for storage of geospatial information. This includes
aerial and satellite photography, acoustic imagery, and rendered or scanned map
graphics. All that is needed to make a digital image a geospatial image is to attach
geospatial coordinates to the image in a manner that describes how the image covers
the surface of the earth. There are two ways this is commonly done. First, you can
provide the bounding rectangle for an image, as in Figure 4.2, or you can provide a
single corner coordinate with the resolution of each pixel in each dimension.

Given one or more geospatial images, we can build a tile-based mapping system
to distribute the data in those images.

4.2.1 Specialized File Formats

There are several file formats that have been specially adapted for storing geospatial
images. MrSID (multi-resolution seamless image database) is a proprietary image

38 4 Image Processing and Manipulation

-59.0,0.0

®
-99.0,-59.0

Fig. 4.2 Example geospatial image with bounding rectangle defined.

storage format produced by LizardTech. It is specially designed for storage of large
geospatial images, most commonly ortho-rectified imagery. MrSID uses a wavelet
based compression to store multiple resolutions of the image. This allows for fast
access to overview (or thumbnail) sections of the image. It is not uncommon for
MrSID images to be generated with many millions of pixels.

JPEG2000 is the next generation file format produced by the Joint Photographic
Experts Group. Like MrSID, it is a wavelet based format. JPEG2000 was not spe-
cially designed to store geospatial imagery; however, common extensions have been
made that allow geospatial information to be attached to the images. JPEG2000 is
also well suited to storage of very large images and is a more open format than
MrSID.

One of the oldest and most common geospatial image file format is GEOTIFFE.
GEOTIFF is based on the Tagged Image File Format (TIFF) standard. A GEOTIFF
is simply a TIFF file with standard geospatial tags added to it. The TIFF standard
is, perhaps, the broadest of any common image file format. It allows many options
including alternate compression schemes or no compression at all. It also allows
for multi-page images, a variety of color models, and a variety of storage layouts.
Fortunately, there are open source software packages for reading and writing TIFF
(and GEOTIFF) files that simplify the task of dealing with this complicated image
format.

4.3 Image Manipulation 39

It should be noted that in some cases, geospatial imagery will be stored in files
that do not support embedded geospatial coordinates. In those cases, it is customary
to provide an accompanying file with the coordinates in it. This is only a convention,
not a formal standard. Therefore, the technical details will vary from one implemen-
tation to another.

4.3 Image Manipulation

This section will provide background on the image manipulation algorithms needed
for the tile creation process, which will be covered in the next chapter. Recall that
tiled images are stored in fixed resolutions. It is highly unlikely that a collection of
source images will match any single fixed resolution. Since we use multiple reso-
lutions, even if our source images match one resolution, it’s impossible for them to
match all of our resolutions. Therefore, we are going to have to perform some image
scaling.

Image scaling is a type of interpolation. Interpolation is the process of creating
new data values within the range of a discrete set of known data values. We will
first examine the basic algorithm for scaling and subsetting images. Then we will
explain three common interpolation algorithms:

e Nearest Neighbor
e Bilinear
e Bicubic

Each interpolation algorithm has different characteristics with respect to compu-
tational performance and output image quality. For the algorithms provided below,
we assume that our images have a single color channel. This simplifies the explana-
tion of the techniques. To use the algorithms with three channel color images, the
steps are simply repeated for each channel.

The basic component of all of our image scaling algorithms is the same. We will
construct a target image, t, and then iterate over the pixels in t, filling them in with
data computed from the pixels in our source images. Each image is treated as a
two-dimensional array.

The following are some common definitions that will be used in all our image
scaling algorithms (see Listing 4.1 and Figures 4.3 and 4.4). The image scaling
algorithms will reference a generic interpolation function “’interpolate” (Listing 4.2).
The first parameters are the details of the source image. ”’tx”” and ’ty” are the map
coordinates of a pixel that is to be interpolated from the source data. The image
scaling algorithms also reference a common function ”geolocate” that calculates the
geographical coordinate of the center of a pixel (Listing 4.3). Because images are
stored in scanline order, the y coordinates have to be flipped. The variable adj j
is created to do this.

In the first scaling algorithm (Listing 4.4 and Figure 4.5), we make a simplifica-
tion assumption that the source image and the target image have the same map coor-

40

4 Image Processing and Manipulation

source_width

AN

Smaxx, smaxy

ight

source_hei

sminx, sminy

Fig. 4.3 Source image parameters: sminx, sminy, smaxx, smaxy, source width, and

source_height.

Target Image

target_width

N

~

tmaxx, tmaxy

target_height

N

tminx, tminy

Fig. 4.4 Target image and parameters: tminx, tminy, tmaxx, tmaxy, target width and

target height.

—
N WD~ OO0V W —

DB W

e e el e
NN R W= OO IDN

4.3 Image Manipulation 41

Listing 4.1 Definitions of variables in code examples.

integer s[][]: Source Image, a 2—d array

integer source_-width: width of source image

integer source_height: height of source image

real sminx: minimum horizontal map coordinate of source image
real sminy: minimum vertical map coordinate of source image
real smaxx: maximum horizontal map coordinate of source image
real smaxy: maximum vertical map coordinate of source image

integer t[][]: Target Image, a 2—d array

integer target_-width: width of target image

integer target_-height: height of target image

real tminx: minimum horizontal map coordinate of target image
real tminy: minimum vertical map coordinate of target image
real tmaxx: maximum horizontal map coordinate of target image
real tmaxy: maximum vertical map coordinate of target image

Listing 4.2 Definition of abstract function interpolate that will be implemented by specific algo-
rithms.

function integer interpolate(s, sminx, sminy, smaxx, smaxy, source-width,
source-height, tx, ty)

Listing 4.3 Compute the geographic coordinates of the center of a pixel.

function real ,real geolocate(real minx,miny,maxx,maxy, integer i,j,width, height
)
comment :
minx , miny ,maxx,maxy are the geographical coordinates of the image
width and height are the dimensions of the image
i and j are the pixel coordinates to be converted to geographic
coordinates

real pixel-width= (maxx—minx) / width
real pixel_-height= (maxy—miny) / height

real x =(i + 0.5) * pixel-width + minx

int adj-j = height — j — 1

real y =(adj-j + 0.5) * pixel_-height + miny

comment: we offset by 0.5 the indexes, to get the center of the pixel

return x,y

dinates but different dimensions. So, sminx = tminx, miny = tminy, smaxx
= tmaxx, and smaxy = ymaxy, but source width # target width and
source height # target height.

Care should be taken in determining whether to iterate in row-major or column-
major order. This is a practical consideration that must be made in the context of
specific programming environments. Java, C, and many others store array data in
row-major format . Iterating in this fashion can potentially greatly improve the per-
formance of the algorithm due to the principle of Locality of Reference. In the con-

N -

b3

4 Image Processing and Manipulation

Listing 4.4 Simple Image Scaling: source and target images have the same geographic coordinates

but different sizes.

for j in xrange (target_height):
for i in xrange(target_-width):
(tx, ty) = geolocate (tminx,
target_height)
interpolate (s,
source_height ,
t[i10i] = val

tminy , tmaxx

sminx ,
tx, ty)

val sminy, smaxx

, tmaxy, i, j, target_width ,

, smaxy, source_width ,

Source Image

sminx, sminy

Smaxx, smaxy

Target Image

Fig. 4.5 In Scaling Algorithm 1, the source and target images share coordinates.

text of digital image manipulation, it means we should access pixels in roughly the
order they are stored in the computer’s memory. This reduces the number of times

the operating system has to pull new memory pag

es into the cache [1]. Our second

image scaling algorithm (Listing 4.5 and Figure 4.6) is a more general version of

algorithm 1. In it, t is a scaled subsection of s. Th
for almost any rescaling and subsetting task.

is algorithm is suitable as a basis

Next, we will define our interpolation algorithms. Each of following interpolation
algorithms implements the generic ”interpolate” function defined earlier. In general,
interpolation solves the problem shown in Figure 4.7. That is, we want to get the

oI e Y N S

—_
[=3=)

11
12

4.3 Image Manipulation

Listing 4.5 Target image is a scaled subsection of source image.

43

for j = 0 to target_-height — 1,
for i = 0 to target_-width — 1,
real tx;{tx is the target pixel’s x coordinate}
real ty;{ty is the target pixel’s y coordinate}
tx ,ty = geolocate (tminx ,tminy ,tmaxx,
tmaxy ,i,j,target_width ,target_height)
integer pixel_val= interpolate (s, sminx, sminy, smaxx, smaxy,
source_width , source_height, tx, ty);
t[jlli] = pixel_val;
end if
end if

Source Image

Target Image

Fig. 4.6 The target image is a scaled subset of the source image.

44 4 Image Processing and Manipulation

value for a target pixel that does not correlate exactly to a source pixel. In this case,
the target pixel overlaps pixels (2,1) , (3,1), (2,2), and (3,2).

4.3.1 Interpolation 1: Nearest Neighbor

Nearest neighbor is the simplest of all interpolation algorithms. It uses the pixel
value from the source image that is the closest spatially to the target pixel’s loca-
tion. Following the graphic in Figure 4.7, we can visually determine that pixel (3,1)
is the “closest” to the center of the target pixel. In this case, for nearest neighbor
interpolation, the resulting value of the target pixel would simply be the exact value
of pixel (3,1). This method is computationally efficient, but it has some severe draw-
backs, especially when the sizes of the target and source image are very different.

Source Image

0,0 1,0 2,0 3,0
0,1 1,1 21 3,1
Target Pixel
0,2 1,1 272 3,2
0,3 1,3 2,3 3,3

Fig. 4.7 Nearest neighbor interpolation uses only the closest pixel (3,1) to determine the target
value.

Listing 4.6 shows the algorithm for nearest neighbor interpolation. The real work
in this function is done by the “round” function, which simply rounds a real value
to the closest integer.

4.3 Image Manipulation 45

Listing 4.6 Nearest neighbor interpolation.

def nearest_neighbor(s, sminx, sminy, smaxx, smaxy, source-width, source_-height

, X, ty):
i = round ((tx — sminx) / (smaxx — sminx) % source_-width)
j = source_height — 1 — round ((ty — sminy) / (smaxy — sminy)

source_height)
return s[j][i]

Listing 4.7 Bilinear interpolation.

from math import =x

def bilinear(s,sminx,sminy,smaxx,smaxy,source-width ,source_height ,tx ,ty):
temp-x = (tx — sminx) / (smaxx — sminx) x source-width
temp-y = source-height — 1 — ((ty — sminy) / (smaxy — sminy)
source_height)

i = floor(temp-x)

j = floor(temp.y)
weight.x = temp-x — i
weight_y = temp.y — j
val_00 s[jllil
val_01 s[jlli+1]
val_10 s[j+1][1i]
val_11 s[j+11[i+1]

pixel_val = (1 — weight_-x) * (1 — weight_y) * val_.00 + weight_.x * (1 —
weight.y) % val_.0l + (1 — weight_.x) %= weight.y % val_10 + weight_x =
weight.y = val_l1

return pixel_val

4.3.2 Interpolation 2: Bilinear

Bilinear interpolation is a little more complicated; it creates a weighted average
of the 4 pixels which surround the center of the target pixel (Listing 4.7). Recall
Figure 4.6; the bilinear interpolation would use pixels (2,1) , (3,1), (2,2), and (3,2).

Figure 4.8 illustrates the computations in the bilinear algorithm. The arrowed
lines go from the center of the source pixels to the center of the target pixel. The
length of each line, in ratio to the sum of the lengths, forms the complement of the
weight given to the data from the pixel in which the line originates. It forms the
complement because we want pixels with greater length to have less impact on the
final result. They are “further away” from the target pixel.

Let’s consider a variation on our bilinear algorithm. Suppose that our target pixel
covers a large area in our source image, as in Figure 4.9. In this case, the bilin-
ear algorithm would only use pixel data from pixels (1,1), (2,1), (1,2), and (2,2).
Data from the other pixels would be disregarded. There are several solutions to this
problem. The easiest is to perform multiple interpolation steps. Divide the target
pixel into four (or more) sub-pixels and then perform a bilinear interpolation for
each sub-pixel. When that is complete, compute the final target pixel value by bi-

46 4 Image Processing and Manipulation

O/

Source Image

. Target Pixel Center

O Source Pixel Center

Fig. 4.8 Bilinear interpolation uses the four surrounding pixels to compute the target value.

linear interpolation over the four sub-pixels. This type of multi-step (also called
multi-resolution) interpolation is the best way to handle image scaling that shrinks
an image by a significant amount (Figure 4.10).

4.3.3 Interpolation 3: Bicubic

Bicubic interpolation is the most complicated of our interpolation algorithms.
Where the bilinear interpolation considered the linear relationship of the 4 pixels
surrounding our target point, the bicubic algorithm computes a weighted average of
the 16 surrounding pixels. Figure 4.11 shows the target pixel with 16 surrounding
pixels. Even though the outer 12 pixels do not overlap the target pixel, they are used
for computing the surrounding gradients (or derivatives) of the pixels that do over-
lap the target pixel. This does not necessarily produce a more accurate interpolation,
but it does guarantee smoothness in the output image.

The one-dimensional cubic equation is as follows:

flx)= apx + a1 + apx + as

4.3 Image Manipulation 47

Source Image

0,0 1.0 2.0 3.0
0,1
Target Pixel
0,2
0,3 1,3 2,3 3,3

Fig. 4.9 Bilinear interpolation where the target pixel covers a large pixel area of the source image.

There are four coefficients: ag, a, az, and az. The two-dimensional cubic equa-
tion, f(x,y) has 16 coefficients, ago through az3. There are several ways to compute
the 16 coefficients using the 16 pixel values surrounding the target pixel. Most in-
volve approximating the derivatives and partial derivatives to develop a set of linear
equations and then solving the linear equations. The full explanation of that process
is beyond the scope of this chapter. We suggest the references Numerical Recipes
in C and ”Cubic convolution interpolation for digital image processing” for more
information [3, 2].

Since each interpolation algorithm has different performance characteristics, we
will examine the results with real images. Figure 4.12 is an image of a fish.! If we
scale a small section of the fish’s scales to 400% (or 4 times magnification) in each
dimension, we get the images shown in Figure 4.13, Figure 4.14, and Figure 4.15 for
nearsest neighbor, bilinear, and bicubic interpolations, respectively. In this example,
only the bicubic interpolation yields a satisfactory result.

We will also consider an example using a rendered map graphic. Figure 4.16 is
a map of a portion of the city of New Orleans from OpenStreetMap.” We will use

! Fish images courtesy of Robert Owens, Slidell, Louisiana.
2 OpenStreetMap images used from www.openstreetmap.org.

48 4 Image Processing and Manipulation

Source Image

0,0 1.0 2.0 3.0
0,1
Target Pixel
0,2
0,3 1,3 2,3 3,3

Fig. 4.10 Bilinear interpolation can be performed in multiple steps to compute target pixels that
cover many source pixels.

our interpolation algorithms to scale a sub-section of that image. We have chosen a
subsection with lots of lines and text. These are typical features in map images. If
we scale a small section of the image to 400% (or 4 times magnification) in each
dimension, we get the images shown in Figure 4.17, Figure 4.18, and Figure 4.19
for nearsest neighbor, bilinear, and bicubic interpolations respectively. Once again,
only the bicubic provides a satisfactory result. Figure 4.20 shows a section of the
image with text highly magnified by bicubic interpolation. Figure 4.21 shows a sec-
tion of the image with text highly magnified by bilinear interpolation. The bicubic
interpolation performs much better with text features.

Text features are especially sensitive to interpolation. Even though the bicubic
interpolation imposes a significant performance penalty, it is probably worth the
cost in most cases.

Listing 4.9 shows implementations of the nearest neighbor and bilinear interpola-
tion algorithms for RGB images. The classes BoundingBox and Point2DDouble are
simply wrapper classes for multiple coordinates. BufferedImage is the Java built-in
class for manipulating image data. Many programming environments provide built-
in tools for scaling and subsetting images. This changes our algorithms slightly.
Instead of performing pixel-by-pixel calculations, we compute a single set of trans-

4.3 Image Manipulation 49

Source Image

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1
Target Pikel

0,2 1,1 2,2 32

0,3 1,3 2,3 3,3

Fig. 4.11 Bicubic interpolation uses the 16 surrounding pixels to compute the target pixel value.

formation parameters and pass those to the built-in image manipulation routines.
Listings 4.10 and 4.11 show how to use those built-in routines in Java and Python.

Practical experience has shown that bilinear interpolation takes approximately
150% the time as nearest neighbor, and bicubic interpolation takes approximately
200% the time as nearest neighbor.

The astute reader will notice that we have used bilinear interpolation throughout
our discussion as the means of calculating the geographical coordinates. The sup-
plied algorithm geolocate” uses bilinear interpolation to map between geographic
and pixel coordinates. So why is it good enough to use bilinear for calculating geo-
graphic coordinates but not good enough for calculating the actual pixel values? The
mapping from geographical coordinates to pixel space and back is, by definition, a

50 4 Image Processing and Manipulation

Fig. 4.13 Fish Scale image magnified with nearest neighbor interpolation.

4.4 Choosing Image Formats for Tiles 51

Fig. 4.14 Fish Scale Image magnified with bilinear interpolation.

linear function. We can compute the exact transformation from geographic coor-
dinates to pixel coordinates. However, the contents of the image, the actual color
values of pixels, are highly non-linear. Whether the image contains aerial imagery
or a rendered map graphic, there is very little linearity, either locally or globally,
between the actual values of the pixels.

4.4 Choosing Image Formats for Tiles

Any tile-based mapping system must use image file formats for storage and trans-
mission of image tiles. There are hundreds of file formats that can be used. Some
offer very sophisticated compression schemes, and others focus on simplicity and
compatibility. We want to choose image formats that can be encoded and decoded
quickly, offer good compression performance, and, most importantly, are supported
natively by common web browsers.

It is possible that we will use one format to store images and another to transmit
them. In general, we want to reduce image processing and manipulation tasks that

52 4 Image Processing and Manipulation

Fig. 4.15 Fish Scale Image magnified with bicubic interpolation.

are required for each client access. Our goal is to use the same format for storage
and retrieval.

Table 4.2 lists several popular browsers and their supported image formats. Na-
tive browser support is critical. Browser-based (HTML/JavaScript) map clients, like
OpenLayers and Google Maps, achieve their quick performance and appealing look
by using the native capabilities of the browser to display and manipulate images. If
we adopt formats that are not well supported by the majority of Web browsers, we
have needlessly crippled our system’s performance. From the table, we can see that
JPEG, GIF, BMP, and PNG are commonly supported. Table 4.3 shows the features
of each format.

Browser JPEG|JPEG2000 |GIF|TIFF|BMP|PNG
Internet Explorer| Yes No Yes| No | Yes | Yes
Firefox Yes No Yes| No | Yes | Yes
Google Chrome | Yes No Yes| No | Yes | Yes
Safari Yes Yes Yes| Yes | Yes | Yes
Opera Yes No Yes| No | Yes | Yes

Table 4.2 Browser support for different image compression types.

4.4 Choosing Image Formats for Tiles 53

Fig. 4.16 Rendered map of New Orleans.

Format| Compression |Colors Supported | Transparency Supported
JPEG Lossy 24 bit RGB No

GIF Lossless 8 bit Indexed Yes

BMP |Uncompressed| 24 bit RGB Yes

PNG Lossless 48 bit RGB Yes

Table 4.3 Details of different compression types.

We can eliminate BMP from consideration since it is not compressed. Also, we
can eliminate GIF because it does not lend itself to full 24 bit color. This leaves
us with PNG and JPEG. PNG provides lossless compression and support for trans-
parency while JPEG provides lossy compression.

PNG uses the DEFLATE lossless compression algorithm. PNG can achieve su-
perior compression with images that have few unique colors, repeated pixel patterns,
and long sequences of the same pixel value. As such, it is quite suitable for storing
rendered figures and maps that typically have limited color palettes.

54 4 Image Processing and Manipulation

New Orleans

Fig. 4.17 New Orleans map subsection with nearest neighbor interpolation.

JPEG uses a Discrete Cosine Transform based compression algorithm. It per-
forms well with images that have lots of colors, some noise, and softer transitions
typically found in photography.

As the basis for a comparison of PNG and JPEG performance characteristic,
recall our fish image, Figure 4.12. The color version of this image has 315,559
colors and 2088 by 1128 pixels. Stored as a JPEG, the file is 147kb. Stored as a
PNG, the file is 2.67mb. That is a ratio of around 18 to 1. That means if we use
PNG storage for our tiles we will need 18 times the storage space, and our users
will have to wait 18 times longer for the images to download. The color version of
our rendered map graphic of New Orleans, Figure 4.16, has 2372 colors and 780
by 714 pixels. The PNG version is 321kb, and the JPEG version is 113kb. This is a
much more reasonable 3 to 1 ratio.

While not visible at the default scales, compression artifacts are visible where
there are sharp color boundaries in the image. Figure 4.22 is a test image with some
text saved as a JPEG with the default quality settings. Compression artifacts are
visible at the text boundaries.

Based on these considerations, we provide the following guidance.

e Use JPEG images when dealing with aerial or satellite photography, images with
lots of colors, or when storage space is a critical issue.

4.4 Choosing Image Formats for Tiles 55

New Orleans

- | |

Fig. 4.18 New Orleans map subsection with bilinear interpolation.

e Use PNG images when transparency is required or when quality of reproduction
for rendered map graphics is critical.

Both PNG and JPEG include, within the first few bytes of the file format, a unique
identifier that allows image reading software to know the format of the file. This self
identification property simplifies tile storage, since the tile storage system does not
need to store the file type that was used to store a tile.

It is perfectly reasonable to use both formats together in the same tile system.
For example, a tiled map layer that has data for only a small portion of the earth
would use a transparency enabled format for the low-resolution scales so that map
users could see the covered areas in the conjunction with other background layers.
It would then switch to JPEG for the high-resolution images that have larger storage
requirements.

The reader may ask why we have not chosen to use one the common geospatial
image formats for storing our tiles. The answer is simple. First, tiles have their
geospatial coordinates embedded in their tile address. Recall from the discussion in
Chapter 2 on logical tile schemes that a tile scheme provides for conversion from
a tile’s address to its map coordinates and back. Secondly, and most importantly,
geospatial image formats are not commonly supported by Web browsers.

56 4 Image Processing and Manipulation

-

te s nnmn®

New Orleans

©
&

3 N
N

- N

Fig. 4.19 New Orleans map subsection with bicubic interpolation.

[] |
New Orleans

Fig. 4.20 Close up text with bicubic interpolation.

4.5 Choosing Tile Sizes 57

[
New Orleans

Fig. 4.21 Close up text with bilinear interpolation.

\el

Fig. 4.22 JPEG compressed text with artifacts.

Compression
.~ Artifacts

4.5 Choosing Tile Sizes

The choice of tile image dimensions is one of the most important decisions to be
made in the design of a tile-based mapping system. Tile images can be any size, and
they can vary from scale to scale. They can also vary across the same scale, or they
can be random in size. However, there are efficiencies with making tiles uniform in
size across each and every scale. Also, there are efficiencies from choosing tiles that
have the same horizontal and vertical dimensions. Furthermore, tile sizes that are
powers of two yield simpler mathematics throughout the process.

58 4 Image Processing and Manipulation

There are several approaches to determining the optimal tile size. First we should
consider the impact of using multiple images to virtualize a single map view. Each
image comes with a certain amount of overhead. There are several types of overhead
involved that include the overhead of multiple seeks and reads from the computer’s
file system, uneven utilization of the file system’s native block size, and the header
and other overhead storage space within each image file.

Let us consider the constraints of current image formats. We have limited our-
selves to image formats that are readily usable by most Web browsers: JPEG and
PNG. Any encoded image is going to use space for overhead, i.e. space not directly
used to store pixels. This is header information and image metadata. Some example
images will allow us to inspect the overhead of the JPEG and PNG formats. We
generate images with scaled content of sizes 1 by 1, 64 by 64, 128 by 128, 256 by
256, 512 by 512, 10214 by 1024, 2048 by 2048, 4096 by 4096, and 8192 by 8192
pixels. We are using a segment of NASA’s Blue Marble Next Generation as our
source content and our 1x1 pixel image as the baseline.

Image Size |JPEG Bytes|PNG Bytes|JPEG Overhead Percentage|PNG Overhead Percentage
Ix1 632 69 100.0% 100.0%
64 x 64 2019 8532 31.30% 0.81%
128 x 128 4912 30724 12.87% 0.22%
256 x 256 14267 111642 4.43% 0.06%
512 x 512 43424 410782 1.46% 0.017%
1024 x 1024| 135570 1515218 0.47% 0.0046%
2048 x 2048 423298 5528685 0.15% 0.0012%
4096 x 4096| 1309545 | 19513354 0.048% 0.00035%
8192 x 8192| 4549578 | 62798290 0.014% 0.00011%

Table 4.4 Comparison of JPEG vs PNG compression performance.

Clearly, we can reduce overhead by using very large images. But very large im-
ages introduce a new problem. It is unlikely that our users will be very satisfied
waiting for a 8192 by 8192 image to download and display, especially when their
monitors can show only 1024 by 768. They are able to view only 1.17% of the pixels
in the image at one time. Also, very large images consume a lot of system memory
and may not be usable at all on smaller or older devices.

There is another consideration to be made that is specific to JPEG images. The
JPEG compression algorithm is block based. It commonly uses 16 by 16 blocks of
pixels as minimum compression units. If an image’s pixels are not evenly divisible
by 16 in each dimension, it will pad the image with empty values. We can prove this
by creating a series of JPEG images sized 1 to 500 pixels. Each image consists of
all black pixels.

The distinct stair-step pattern in Figure 4.23 shows that the images increase in
compressed size by 16 pixel increments. Therefore, we should choose tile sizes that
are powers of 16, like 16, 32, 64, etc. This partially explains why our overhead
calculations for JPEG and PNG images showed that overhead as a percentage from

4.5 Choosing Tile Sizes 59

5000 T T T T T T T

4500

3500

Compressed Image Size (Bytes)
(]
(%]
8

1500 -

1000

500 !

1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Image Dimension (Pixels)

Fig. 4.23 Graph shows the step-pattern for size of a JPEG-compressed image.

JPEG images is much larger than PNG images. The 1 by 1 JPEG image would be the
same size as a 16 by 16 JPEG image. This would not be the case for PNG images.

To determine the actual appropriate tile size, we can create an optimization func-
tion. We want to minimize both the number of individual images required to virtual-
ize the map view and the number of wasted pixels. Wasted pixels are pixels that are
transmitted and decoded but not part of the virtualized map view (See Figure 4.24).

The best way to minimize wasted pixels would be to make all of our tiles 1
by 1, and then we would never have to decode any pixels that are not part of the
final image. However, the overhead of having to retrieve and decode thousands and
thousands of image files per map view would make our system unusable.

We can experimentally determine the proper tile size for our system. First we
need to guess the typical size of a virtualized map view. For this example, we will
use 1024 by 768 pixels. Given this size, we can generate a large number of random
map views for a given scale. For each of those random map views, we will calculate
the number of tiles needed to fill that that view and the number of wasted pixels.
We will perform this calculation for all the tile dimensions that we are considerating
using. For this example, we will use tile dimensions 16, 32, 64, 128, 256, 512, 1024,
and 2048.

60 4 Image Processing and Manipulation

Wasted Pixels

Virtualized Map View

Fig. 4.24 Wasted pixels are decoded but not used as part of the virtualized map view.

For an example map scale, we will use scale 10 from the logical tile scheme that
we developed in Chapter 2. Recall, that scale 10 is simply defined as having 2!°
(1024) columns by 29 (512) rows. Each tile is % (2.84) degrees wide and long.

Generating random map views is fairly easy. Since all map views have the same
aspect ratio, we need to generate a large number of random center locations. The
center locations would be in the range of -180 to 180 for the longitude coordinate
and -90 to 90 for the latitude coordinate. Then, for each tile size, we can extrapolate
the map view bounds from the center location.

When generating our random map views, we have to consider that cases in which
some portion of our map view will go beyond the normal bounds of the Earth. For
example, the longitudes might be greater than 180.0 or less than -180.0. There are
two ways to deal with this. First we can constrain our randomization function to a
range of coordinates that is guaranteed to never generate map view bounds outside

4.5 Choosing Tile Sizes 61

our given range, or, secondly, we could simply perform those calculations without
caring if the boxes overlap our acceptable coordinates. We will choose the latter
method. If a randomly computed map box strays beyond the -180 to 180 and -90 to
90 bounds, we will compute wasted pixels and tiles that were accessed as if there
were tiles and pixels in those areas. This is a practical decision because many map
clients perform wrapping in boundary areas. They pull images and pixels from the
other side of the map to fill in the boundary overlaps.

The algorithm in Listing 4.12 generates 10,000 randomized map center locations
for scale 10 and tile dimensions of 16, 32, 64, 128, 256, 512, 1024, and 2048. It
computes the total number of tiles accessed and the wasted pixels for each access.
Those results are shown in Table 4.5.

Tile Size|Number of Tiles Accessed | Wasted Pixels
16 3185.0 28928.0
32 825.0 58368.0
64 221.0 118784.0
128 63.0 245760.0
256 20.0 524288.0
512 7.5021 1180198.5024
1024 3.4938 2877082.8288
2048 2.0677 7886130.3808

Table 4.5 Tiles accessed and wasted pixels for 1024 by 768 map view. 10,000 random map views
averaged.

When the results are plotted, it is easy to see the optimal point, as shown in
Figure 4.25. We have normalized the tiles accessed and pixels wasted values. The
two lines cross very near to when the tiles are sized 128 by 128. This statistic might
lead us to select tiles sized 128 by 128. However, these calculations are performed in
pixel counts. We are disregarding the important computations performed earlier to
determine overhead percentages for each tile size. Re-computing the optimization
and substituting pixels wasted with total bytes accessed yields a different result.
Furthermore, the result can be plotted with just one line to see the bytes used as a
function of tile size; see Figure 4.26. Table 4.6 shows our results using the listed tile
image sizes in bytes.

Tile Size|Standardized Image Size in Bytes [Number of Tiles Accessed | Total Bytes Accessed
16 759 3185.0 2417415.0
32 1062 825.0 876150.0
64 2019 221.0 446199.0
128 4912 63.0 309456.0
256 14267 20.0 285340.0
512 43424 7.5 326070.816
1024 135570 35 474305.202
2048 423298 2.06 873687.072

Table 4.6 Bytes accessed for different sized tiles.

62 4 Image Processing and Manipulation

0.8}

0.6+ .

0.4 1

0.2

Normalized Tiles Accessed or Pixels Wasted

0 ' '
16 32 64 128 256 512 1024 2048

Tile Size

Fig. 4.25 Graph of the normalized number of tiles accessed and of pixels wasted.

Clearly the 16 by 16 tiles are very inefficient. They require the most bytes to be
read, even though our earlier computations showed that they generated the fewest
wasted pixels. The effect of the wasted pixels is seen as the tile sizes get larger.
According to this graphic, tiles sizes 128, 256 or 512 are all close to optimal.

What if we consider more than one map view resolutions? Up to now, we have
considered only 1024 by 768 map view resolutions. Figure 4.27 shows the results
for map resolutions 640 by 480, 800 by 600, 1024 by 768, 1280 by 960, 1400 by
1050, and 1600 by 1200.

The results are similar: we still see the bottom (or optimum area) of our plots
around the 128, 256, and 512 area. Figure 4.28 shows the results for PNG image’s
sizes instead of JPEG sizes. We can see the effect of reduced overhead in PNG
images, but otherwise the plots are similar.

Figure 4.29 shows the JPEG bytes accessed plotted as differences from one tile
size to the other. In this figure we can see that the line is almost flat from 256 to
512. This indicates that there is very little difference between these two tile sizes in
terms of total bytes accessed.

Since we have moved from considering pixels to compressed image bytes, we
should also consider computation time required to decompress the compressed tile
images. Table 4.7 shows the average decode times for tiles of varied sizes in both

4.5 Choosing Tile Sizes 63

—
w

Total Bytes Accessed

0.5

0 . L L 1 L L
16 32 64 128 256 512 1024 2048

Tile Size
Fig. 4.26 Graph of bytes accessed vs. tile size.

JPEG and PNG formats. If we put these numbers into our previous optimization
plots we get Figure 4.30 and Figure 4.31. In both of these experiments, we see that
our plot has a minimum around the 512 tile size.

Tile Size|Decode Time JPEG (Milliseconds) |Decode Time PNG (Milliseconds)

16 2.5 2.34
32 2.5 2.5
64 2.66 3.12

128 391 4.22

256 5.0 7.97

512 10.94 21.1

1024 31.56 69.22

2048 113.75 258.44

Table 4.7 Decode times for JPEG and PNG tiles.

Further enhancements to this approach are possible. We have considered only
random map views that exactly match our pre-determined map scales. In practice
this will occur only for map clients that adhere to those fixed map scales. In addition,
we have fixed the map scale by number of tiles and varied the tile size. In practical

64 4 Image Processing and Manipulation

——— 640 by 480
— & 800 by 600
5+ ——— 1024 by 768
————————— 1280 by 960
—— 1400 by 1050
4r —#— 1600 by 1200

Total Bytes Accessed
w

O | 1]
16 32 64 128 256 512 1024 2048

Tile Size
Fig. 4.27 Graph of bytes accessed using JPEG tiles for multiple map display resolutions.

terms this means that while each tile covers that same portion of the earth, the real
map resolution of each tile varies with its size. Both of these shortcomings can be
addressed by replacing our fixed map scale of 10 with a randomly selected map
scale. The randomly selected map scale should be chosen from a continuous range
instead of fixed discrete scales. In these cases, we will have to scale the pixels from
the covered tiled region to match the scale of the map view with the randomly chosen
scale.

In conclusion, from consideration of the results given above we are going to
use 512 x 512 for the tile sizes in this book. Our analyses indicate the 256 x 256
would also be a good choice. However, we should consider a final point. It takes
four 256 x 256 tiles to cover the area of one 512 x 512 tile. Thus when we create a
large number of tiles, if we use 256 x 256 tiles, we will have four times the database
entries or four times the tile image files, and either way our indexes will be four
times the size. As we cover techniques for producing and storing tiles, we will see
that these are significant costs.

4.6 Tuning Image Compression

65

x10°
16 - 7?
—+— 640 by 480
14| —&— 800 by 600
——— 1024 by 768
T 1280 by 960
—— 1400 by 1050
3 —*— 1600 by 1200
% -
[0
Q
(8]
<
o
[0]
S
[v3)
s
(o]
'_
0 L L | L L 1]
16 32 64 128 256 512 1024 2048
Tile Size

Fig. 4.28 Graph of bytes accessed using PNG tiles for multiple map display resolutions

4.6 Tuning Image Compression

In dealing with very large tiled image sets, it may be important to try to reduce the
amount of storage space required. The compression quality of JPEG compressed
images can be adjusted to produce smaller or larger compressed files. As the com-
pression rate is increased the file size decreases. Many software platforms support
setting the JPEG quality ratio to values in a pre-defined range; these can be either 0
to 1, or 0 to 100. Higher quality values mean less compression. If we apply varied
quality settings to a 512 by 512 JPEG image taken from the Blue Marble data set,
we get the file size differences shown in Table 4.8.

Quality Setting

JPEG File Size in Bytes

90
80
70
60
40
10

62128
45475
42141
38746
21967
9952

Table 4.8 File sizes for different JPEG quality settings.

66 4 Image Processing and Manipulation

5 —— 640 by 480
35/ — o 800 by 600
——— 1024 by 768
--------- 1280 by 960
4 —— 1400 by 1050
—— 1600 by 1200

25

-
[é)}

-

Total Bytes Accessed Differences
N

=== S | |
32 64 128 256 512 1024 2048

Tile Size

Fig. 4.29 Change in the number of bytes accessed as tile size increases (JPEG tiles).

Figure 4.32 is a tiled image from the Blue Marble set. Figures 4.33(a), 4.33(b),
4.33(c), 4.33(d), 4.33(e), and 4.33(f) show the results of applying the various com-
pression quality settings.

The 80 and 90 quality settings are visually hard to distinguish, but lower values
show compression artifacts. For example, the 10 quality image is quite blurry. There
is a significant drop in storage space required from quality setting 90 to 80. After
that, the drops are less pronounced. Anyone producing large tile sets should take
time to manually set the quality setting appropriate to their application. Tile produc-
ers might consider using a lower quality setting for lower resolution tiles and using a
higher setting for higher resolution tiles. This would provide tile system users with
lower quality overview images, but the option to zoom in for higher quality map
views.

Even though the PNG format is technically lossless, we can apply some lossy
techniques to reduce the file sizes of PNG images. Recall that the PNG format is
sensitive to the number of colors used in an image. If we can reduce the number of
colors in an image, a process called “color quantization,” we can reduce the size of
the compressed PNG file.

There are many algorithms for color quantization. A very simple algorithm
would simply reduce the byte space available for colors. So instead of an RGB im-
age with 8 bits for each color channel, we could only allow 7 bits for each channel.
Listing 4.8 shows this algorithm applied to an example map image.

O 00NN AW —

4.6 Tuning Image Compression

x104
2_

——+— 640 by 480
—©— 800 by 600
——— 1024 by 768
————————— 1280 by 960
—— 1400 by 1050
—— 1600 by 1200

1.8

1.6

1.4

1.2

Total Decode Time Required

0.8
0.6
0.4
0.2]
0 E— % S
16 32 64 128 256 512 1024 2048
Tile Size

Fig. 4.30 Decode time for JPEG images as tile size increases.

Listing 4.8 Simple algorithm for reducing the color space of an image.

67

byte[] squeezeColors (Bufferedlmage bi, int bitsPerColor) throws IOException {
int bitsToShift = 8 — bitsPerColor;
for (int i = 0; i < bi.getWidth(); i++) {
for (int j = 0; j < bi.getHeight(); j++) {

Color ¢ = new Color(bi.getRGB(i, j));
int b = c.getBlue();
int g = c.getGreen () ;
int r = c.getRed ()
b (b >> bitsToShift) << bitsToShift;
g (g >> bitsToShift) << bitsToShift;
r = (r >> bitsToShift) << bitsToShift;
Color ¢2 = new Color(r, g, b);
bi.setRGB(i, j, c2.getRGB());

}

ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
ImagelO. write (bi, ”png”, baos);

byte[] data = baos.toByteArray():

return data;

68 4 Image Processing and Manipulation

18000
—+— 640 by 480
16000 |- —&— 800 by 600
—=— 1024 by 768

140004 \ e 1280 by 960
kS —— 1400 by 1050
'g_ 12000 - —+— 1600 by 1200
& "
(0]
£ 10000
'_
3
g 8000
(6]
[
a
S 6000
o
|_

4000
2000
0 e 5 i
16 32 64 128 25 512 1024 2048
Tile Size

Fig. 4.31 Decode time for PNG images as tile size increases.

b = (b >> bitsToShift) << bitsToShift;
g = (g >> bitsToShift) << bitsToShift;
r = (r >> bitsToShift) << bitsToShift;

The key part of the code is the following section:

We shift each color component to the right and then back to the left. This has the
effect of rounding off or zeroing out the right most or least significant bits for each
component.

Table 4.9 shows the effect of this simple algorithm on the number of colors and
the resulting file sizes on the image shown in Figure 4.16.

Reducing the color palette from 24 bits to 21 bits reduces the number of colors
from 2,372 to 2,094, and it delivers a significant reduction in file size, nearly 45%.
Figures 4.34(a), 4.34(b), 4.34(c), 4.34(d), 4.35(a), 4.35(b), and 4.35(c) show the
effect of reducing the color palette. Only the most severe reductions provide a visible
decrease in the image’s quality.

There are more sophisticated algorithms. The ”Quantize” algorithm in the Im-
ageMagick software package > uses a tree structure to classify and reduce the num-
ber of colors in an image. Rather than simply reducing the bit depth as we did in

3http://www.imagemagick.org/script/quantize.php

http://www.imagemagick.org/script/quantize.php

4.6 Tuning Image Compression

69

Fig. 4.32 Blue Marble tile image.

RGB Bits| Image Colors |File Size (Bytes)

24 2,372 (Original) 329,662
21 2,094 182,413
18 1,728 176,675
15 1,217 163,290
12 624 148,144
9 191 102,665
6 43 48,660

3 8 26,249

Table 4.9 Results of Simple Color Reduction Algorithm.

70 4 Image Processing and Manipulation

(e) 40 quality (f) 10 quality

Fig. 4.33 Different quality levels for the same JPEG compressed tile.

4.6 Tuning Image Compression 71

(a) 21 RGB bits (b) 18 RGB bits

Y Y

(c) 15 RGB Bits (d) 12 RGB Bits

Fig. 4.34 Comparison between PNG compressed images with differening numbers of bits to rep-
resent color. (Part 1)

tour example, this algorithm attempts to intelligently discard colors. It functions
by minimizing the color reduction error by calculating the error resulting from the
elimination of any single color and then eliminating the colors that have the least
impact on the overall error.

Image Colors [File Size (Bytes)

2,372 (Original) 329,662
1659 349,132

798 298,533

400 286,660

100 209,952

50 202,308

16 165,902

8 104,230

Table 4.10 Color reductions using the Quantize algorithm

72 4 Image Processing and Manipulation

AN
AW

(a) 9RGB Bits (b) 6 RGB Bits

(c) 3 RGB Bits

Fig. 4.35 Comparison between PNG compressed images with different numbers of bits to repre-
sent color. (Part 2)

Table 4.10 shows the color reduction to file size reduction numbers. Figures 4.36(a),
4.36(b), 4.36(c), and 4.36(d) show the images reduced to 100, 50, 16, and 8 colors
respectively. The images are still usable with as few as 100 colors, but the compres-
sion improvements are less significant. Reducing from 2,372 to 100 colors yields
only a 36% reduction. We also note the peculiar result that reducing from 2,372
colors to 1,659 actually yields an increase in the file size.

Those producing tiled images will need to conduct their own trials to determine if
color reduction is a useful step in their tile production process. We should note that
we are reducing the colors of rendered map graphics after they have been rendered.
It would be more efficient and more sensible to simply render them with fewer colors
from the beginning, if possible.

There are other techniques to reduce the sizes of compressed images. For exam-
ple, we could apply smoothing filters to the images. However, this type of technique
is only effective because it reduces the amount of information stored in the image.
This also reduces the usefulness of the image.

4.6 Tuning Image Compression 73

= o :
(a) 100 colors (b) 50 colors

(c) 16 colors (d) 8 colors

Fig. 4.36 Comparison between PNG compressed images with differening numbers of total colors
in the image.

FNGEVI SR

O 00 3O

74 4 Image Processing and Manipulation

Listing 4.9 Java implementations of nearest neighbor and bilinear interpolation.

public class ImageScaling {

public static void scale(Bufferedlmage s, Bufferedlmage t, BoundingBox sbb,

BoundingBox tbb) {
int target_height = t.getHeight();
int target_-width = t.getWidth();
for (int j = 0; j < target_height; j++) {
for (int i = 0; i < target_width; i++) {

Point2DDouble point = geolocate (tbb, i, j, target_height,

target_width);

if (!((point.x > sbb.maxX) || (point.y > sbb.maxY)
< sbb.minX) || (point.y < sbb.minY))) {
int pixelval = interpolate(s, sbb, point);
t.setRGB(i, j, pixelval);

public static Point2DDouble geolocate (BoundingBox coords, int
width, int height) {

double pixel_width = (coords.maxX — coords.minX) / width;
double pixel_height = (coords.maxY — coords.minY) / height
double x = (i + 0.5) * pixel_-width + coords.minX;
int adj.j = height — j — 1;
double y = (adj-j + 0.5) % pixel-height + coords.minY;
return new Point2DDouble (x, y);

}

|| (point.x

i, int j, int

5

private static int interpolate_nn (Bufferedlmage s, BoundingBox sbb,

Point2DDouble point) {
double tx = point.x;
double ty = point.y;

int i = (int) Math.round ((tx — sbb.minX) / (sbb.maxX — sbb.minX) * (

double) s.getWidth());

int j = s.getHeight() — 1 — ((int) Math.round ((ty — sbb.minY) / (sbb.

maxY — sbb.minY) * (double) s.getHeight()));
return s.getRGB(i, j);
}

private static int interpolate_bl (Bufferedlmage s, BoundingBox sbb,

Point2DDouble point) {

double tx = point.x;

double ty = point.y;

int source_height = s.getHeight ();

int source_width = s.getWidth();

double temp-x = (tx — sbb.minX) / (sbb.maxX — sbb.minX) =*

source_-width;

double temp.y = source_height — I — ((ty — sbb.minY) / (sbb.maxY — sbb.

minY) * source-height);
int i = (int) Math. floor (temp-x);
int j = (int) Math. floor (temp.y);

double weight_x = temp_-x — i;
double weight.y = temp.y — j;
if (j == source_height) {
=i L
if (i == source_width) {
i=1i-1;
if (j <0){
j=0;

if (i<o0) {

107

108
109
110

4.6 Tuning Image Compression 75

i = 0;
¥
int val_-0_.0 = s.getRGB(i, j);
int val_0_.1 = s.getRGB(i, j);
int val_1.0 = s.getRGB(i, j);
int val_1_1 = s.getRGB(i, j);
int pixel_-val_-r = getPixelValue(rmask(val_-0_-0), rmask(val_-0-1), rmask(
val_1_0), rmask(val_1_.1), weight_x, weight_y);
int pixel_-val_.g = getPixelValue (gmask(val-0-0), gmask(val_-0_-1), gmask(
val_1_0), gmask(val_-1_-1), weight_x, weight_y);
int pixel_-val_.b = getPixelValue (bmask(val_-0_-0), bmask(val_-0_-1), bmask(
val_1_0), bmask(val_1_.1), weight_x, weight_y);
int pixel_-val = pixel_val_-r << 16 | pixel_-val_g << 8 | pixel_val_b | 0
xff000000 ;
return pixel_val;
}
private static int bmask(int val) {
int b = val & 0x000000ff;
return b;
}
private static int gmask(int val) {
int b = (val >> 8) & 0x000000ff ;
return b;
}
private static int rmask(int val) {
int r = (val >> 16) & 0x000000ff;
return r;
}
private static int getPixelValue(int val_-0.0, int val_0_-1, int val_-1_.0, int
val_1_.1, double weight_-x, double weight_y) {
int pixel_-val = (int) ((1 — weight_-x) * (1 — weight_.y) % val_.0_0 +
weight_-x * (1 — weight_.y) * val_.0_1 + (1 — weight_x) * (weight.y)
* val_-1.0 + weight_x % weight_.y % val_1_1);
return pixel_val;
}

Many programming environments provide built—in tools for scaling and subsetting
images. This changes our algorithms slightly. Instead of performing
pixel by pixel calculations , we compute a single set of transformation
parameters and pass those to the built in image manipulation routines. The
following code sections show how to use those built in routines in Java
and Python.

Java Image Scaling and Subsetting

public static void drawImageTolmage (Bufferedlmage source, BoundingBox
source-bb, Bufferedlmage target, BoundingBox target_-bb) {

double xd = target_-bb.maxX — target_-bb.minX;
double yd = target_bb.maxY — target_bb.minY;
double wd = (double) target.getWidth();

double hd = (double) target.getHeight();

double targdpx = xd / wd;

double targdpy = yd / hd;

double srcdpx (source_bb.maxX — source_bb.minX) / source.getWidth();

double srcdpy (source_bb.maxY — source_bb.minY) / source.getHeight ()

int tx = (int) Math.round (((source_-bb.minX — target_bb.minX) / targdpx)
)s

int ty = target.getHeight () — (int) Math.round (((source-bb.maxY —
target_bb .minY) / yd) x hd) — 1;

int tw = (int) Math.ceil (((srcdpx / targdpx) * source.getWidth()));

int th = (int) Math.ceil (((srcdpy / targdpy) = source.getHeight()));

Graphics2D target_graphics = (Graphics2D) target.getGraphics();

111
112

113

114

115

116

118

O 00NN RN~

—_

76 4 Image Processing and Manipulation

//use one of these three statements to set the interpolation method to
be used

target_graphics.setRenderingHint(RenderingHints . KEY_INTERPOLATION,
RenderingHints . VALUE_INTERPOLATION_NEAREST_NEIGHBOR) ;

target_graphics.setRenderingHint(RenderingHints . KEY_JINTERPOLATION,
RenderingHints . VALUEINTERPOLATION_BILINEAR) ;

target_graphics.setRenderingHint(RenderingHints . KEY_JINTERPOLATION,
RenderingHints . VALUE_INTERPOLATION_BICUBIC) ;

target_graphics.drawlmage (source, tx, ty, tw, th, null);

Listing 4.10 Java image scaling and subsetting.

public static void drawlmageTolmage (Bufferedlmage source,
BoundingBox source_bb, Bufferedlmage target,
BoundingBox target_bb) {
double xd = target_bb .maxX — target_bb .minX;
double yd = target_-bb.maxY — target_-bb .minY;
double wd = (double) target.getWidth();
double hd = (double) target.getHeight();

double targdpx = xd / wd;

double targdpy = yd / hd;

double srcdpx (source_-bb.maxX — source_-bb.minX) / source.getWidth();

double srcdpy (source-bb.maxY — source_-bb.minY) / source.getHeight () ;

int tx = (int) Math.round (((source_bb.minX — target_bb.minX) / targdpx));

int ty = target.getHeight() — (int) Math.round (((source_-bb.maxY — target_bb
.minY) / yd) % hd) — 1;

int tw = (int) Math.ceil (((srcdpx / targdpx) % source.getWidth()));

int th = (int) Math.ceil (((srcdpy / targdpy) * source.getHeight()));

Graphics2D target_graphics = (Graphics2D) target.getGraphics();

//use one of these three statements to set the interpolation method to be
used

target_graphics.setRenderingHint(RenderingHints . KEYINTERPOLATION,
RenderingHints . VALUEINTERPOLATION_NEAREST_NEIGHBOR) ;

target_graphics.setRenderingHint(RenderingHints . KEYINTERPOLATION,
RenderingHints . VALUEINTERPOLATION_BILINEAR) ;

target_-graphics.setRenderingHint(RenderingHints . KEYINTERPOLATION,
RenderingHints . VALUE_INTERPOLATION_BICUBIC) ;

target_graphics .drawlmage (source , tx, ty, tw, th, null);

Listing 4.11 Python image scaling and subsetting.

import Image, ImageDraw # requires the Python Imaging Library (PIL) addon to
python

def drawlmageTolmage (source , sourceBoundingBox, target, targetBoundingBox):
calculations to determine the degrees per pixel for each dimension of the
target image
targetXDelta = targetBoundingBox .maxX — targetBoundingBox .minX
targetYDelta = targetBoundingBox .maxY — targetBoundingBox .minY
targetWidth = target.size[0]
targetHeight = target.size[]]
targetDegPerPixelX = targetXDelta / float(targetWidth)
targetDegPerPixelY = targetYDelta / float(targetHeight)

calculations to determine the degrees per pixel for each dimension of the
source image

(we collapse the equations into two lines)

sourceXDelta = sourceBoundingBox .maxX — sourceBoundingBox .minX

sourceYDelta = sourceBoundingBox .maxY — sourceBoundingBox .minY

16
18
19
20
21
22
23

24

4.6 Tuning Image Compression 77

sourceWidth = source.size[0]
sourceHeight = source.size[]]
sourceDegPerPixelX = sourceXDelta / float(sourceWidth)
sourceDegPerPixelY = sourceYDelta / float(sourceHeight)

targetX = int(round ((sourceBoundingBox .minX — targetBoundingBox .minX) /
targetDegressPerPixelX))

targetY = targetHeight — int(round (((sourceBoundingBox .maxY —
targetBoundingBox .minY) / targetYDelta) = targetHeight)) — 1

tw = int(math.ceil (((sourceDegPerPixelX / targetDegPerPixelX) % sourceWidth
)))

th = int(math.ceil (((sourceDegPerPixelY / targetDegPerPixelY) =
sourceHeight)))

use one of these to set the interpolation method when resizing the target
image

interpolation = Image.NEAREST

interpolation Image . BILINEAR

interpolation Image . BICUBIC

resizedSource = s.resize ((tw,th), interpolation)

im. paste (resizedSource , (targetX , targetY , tw, th))

Listing 4.12 Generating randomized map view locations.

public static void tileSizeOptimizationl () {
int numlocations = 10000;
int[] tilesizes = mew int[] {16, 32, 64, 128, 256, 512, 1024, 2048};
int scale = 10;
int viewWidth = 1024;
int viewHeight = 768;
int numpoints = numlocations;
Point2DDouble [] randomPoints = getRandomPoints(numpoints);

int[] totalTilesAccessed = new int[tilesizes.length];
long[] totalPixelsWasted = new long[tilesizes.length];
for (int i = 0; i < tilesizes.length; i++) {
BoundingBox[] bb = getRandomMapViews(randomPoints, scale, tilesizes
[i], viewWidth, viewHeight);
int[] tilesAccessed = getTilesAccessed(bb, scale);
long[] pixelsWasted = getWastedPixels (tilesAccessed , scale ,
viewWidth , viewHeight , tilesizes[i]);
totalTilesAccessed[i] = O;
for (int j = 0; j < numlocations; j++) {
totalTilesAccessed[i] += tilesAccessed[]];
totalPixelsWasted[i] += pixelsWasted[]];

for (int i = 0; i < totalTilesAccessed.length; i++) {
System.out. println (totalTilesAccessed[i] / 10000.0);

for (int i = 0; i < totalTilesAccessed.length; i++) {
System.out. println (totalPixelsWasted[i] / 10000.0);

}

//this method determines the number of pixels that are decoded from the number
of tiles //accessed and subtracts the number of pixels in the current map
view

private static long[] getWastedPixels (int[] tiles , int scale, int viewWidth,
int viewHeight, int tilesize) {

long[] pixels = new long[tiles.length];

78

4 Image Processing and Manipulation

int pixelsPerTile tilesize = tilesize;
int pixelsPerView viewWidth * viewHeight;
for (int j = 0; j < pixels.length; j++) {
pixels[j] = (tiles[j] * pixelsPerTile) — pixelsPerView;
if (pixels[j]l < 0) {
System.out. println (pixelsPerView +
pixelsPerTile);

” L » .

+ tiles[j] + +

}
}
return pixels;

}

//this calculates the number of tiles that are needed to cover each
bounding box
public static int[] getTilesAccessed(BoundingBox[] boxes, int scale) {
int[] tiles = new int[boxes.length];
for (int i = 0; i < tiles.length; i++) {
long mincol = (long) Math. floor(getColForCoord (boxes[i].minX, scale

long)m)iijrow = (long) Math. floor (getRowForCoord (boxes[i].minY, scale
long)n:afxcol = (long) Math. floor (getColForCoord (boxes[i].maxX, scale
long in)a;xrow = (long) Math. floor (getRowForCoord (boxes[i].maxY, scale
tiles)[)i;] = (int) ((maxcol — mincol + 1) % (maxrow — minrow + 1));

}

return tiles ;

»o

//this returns the tile column coordinate that contains the longitude "x
for scale "scale”
static double getColForCoord (double x, int scale) {
double coord = x + 180.0;
coord = coord / (360.0 / Math.pow(2.0, (double) scale));
return (coord);
//this returns the tile column coordinate that contains the latitude "y~
for scale "scale”
static double getRowForCoord (double y, int scale) {
double coord =y + 90.0;
coord = coord / (360.0 / Math.pow(2.0, (double) scale));
return (coord);
}
//this computes "numpoints” random x and y locations within our map
coordinate system
private static Point2DDouble [] getRandomPoints(int numpoints) {
Point2DDouble [] points = new Point2DDouble [numpoints];
for (int i = 0; i < numpoints; i++) {
double centerX = Math.random() * 360.0 — 180.0;
double centerY = Math.random() * 180.0 — 90.0;
Point2DDouble point = new Point2DDouble (centerX, centerY);
points[i] = point;
¥
return points;
¥
//the extrapolates our random x and y locations into map view boxes
public static BoundingBox[] getRandomMapViews(Point2DDouble [] centerPoints ,
int scale, int tilesize , int viewWidth, int viewHeight) {
//these two are always the same
double tileWidthDegrees = 360.0 / Math.pow(2, scale);
double tileHeightDegrees = 180.0 / Math.pow(2, scale — 1);

double degreesPerPixel = tileWidthDegrees / tilesize;
double viewWidthDegrees = viewWidth * degreesPerPixel ;
double viewHeightDegrees = viewHeight % degreesPerPixel ;

References

BoundingBox[] boxes

79

= new BoundingBox[centerPoints.length];

for (int i = 0; i < boxes.length; i++) {
double centerX centerPoints[i].x;
double centerY = centerPoints[i].y;
double minx = centerX — viewWidthDegrees / 2.0;
double maxx = centerX + viewWidthDegrees / 2.0;
double miny = centerY — viewHeightDegrees / 2.0;
double maxy = centerY + viewHeightDegrees / 2.0;
BoundingBox b new BoundingBox(minx, miny, maxx, maxy);
boxes[i] = bb;

}

return boxes ;

References

1. Denning, P., Schwartz, S.: Properties of the working-set model. Communications of the ACM

15(3), 198 (1972)

2. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Transactions on
Acoustics, Speech and Signal Processing 29(6), 1153-1160 (1981)

3. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in C. Cambridge
university press Cambridge (1992)

Chapter 5
Image Tile Creation

The previous chapter explained the techniques for manipulating geospatial images.
This chapter will build on those techniques to explain how a system can be con-
structed to create sets of tiled geospatial images. In general terms, there are two
types of tile generation systems: those that pre-render tiled images and those that
render the images in direct response to user queries. Pre-rendering the tiles can
require significant processing time, including processing tiles that may never be
viewed by users. Rendering tiles just-in-time can save setup time but may require
users to wait longer for requested maps. Beyond these differences there are signif-
icant technical reasons that usually force us to choose one type of system over the
other.

Systems that serve tiled geospatial images from rendered vector content almost
always use a form of just-in-time tiling. There are three reasons for this:

e Storage space: Rendered image tiles require a significant amount of storage space
relative to vector map content. A collection of geospatial features might be 100
megabytes in vector form but could grow to several terabytes when rendered over
several different levels.

e Processing time: Pre-rendering image tiles requires a significant amount of time,
and many of those tiles may be in geographic areas of little interest to users. The
most efficient method of deciding what tiles to render is to wait until they are
requested by actual users.

e Overview images: Overview images, i.e., very low zoom level images, can be
rendered directly from geospatial vectors. Unlike raster based tile systems, there
is no need to render the high level views first and then generate scaled down
versions.

Conversely, tiling systems that primarily draw from sets of geospatial imagery typ-
ically pre-render all image tiles. There are two reasons for this:

e Processing time: Reformatting, scaling, and reprojecting of imagery are often
required in the tile creation process. These steps can be too time consuming for
users to wait for in real time.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 81
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__5,
(© Springer Science+Business Media, LLC 2010

82 5 Image Tile Creation

e Overview images: Low level images must be created from higher resolution ver-
sions of the same imagery. This requires the higher levels to be completely ren-
dered before the low resolution levels can be completed.

Since the primary focus of this book is tiling systems based on imagery, this
chapter will examine tiling systems that pre-render image tiles. Chapter 11 will
discuss tiling systems based on vector geospatial data.

5.1 Tile Creation from Random Images

Tiled image sets are created from collections of random source images. We call the
source images random because, unlike our tiled images, the source images may have
sizes and boundaries that follow no specific system. Collections of source images
come in varied forms. For example, we might have high-resolution aerial imagery
of the world’s 50 largest cities. Each city is represented by a small number (5 to
50) of large source images (approximately 10,000 by 10,000 pixels). Each of the
source images can have a different size, cover a different portion of the earth, or
have a different map resolution. Taken together, all of the source images for all of
the cities form a single map layer. Common file formats for source images include
GEOTIFF, MrSID, and GEO-JPEG2000. However, almost any image format can
be used, as long as the geospatial properties of the image are encoded either in the
image file or along side it.

At this point it is useful to define the concept of a map layer. Layers are typically
the atomic unit for requesting map data from web-based geospatial systems. A map
layer is a logical grouping of geospatial information. The term “layer” is used to
convey the idea of multiple graphical layers stacked in some order in a visual dis-
play. Layers are formed by logical groupings of geospatial data. For example, an
“entertainment” map layer would include locations of movie theaters, parks, zoos,
museums, etc. In the case of imagery, we will formally define a layer as a single
map view for a given geographic area.

Corallary 1 Fora single layer, there exists one and only one tile image for a specific
tile address.

For example, consider that we have aerial imagery over Alaska. The snow cover
over Alaska varies from month to month. We might have source image sets for every
month of the year. Each of those image sets covers the same area. For a given tile
address, each image set would have a tiled image with different content. Therefore,
we have to group them into separate layers, one layer for the image set for each
month.

5.2 Tile Creation Preliminaries 83

5.2 Tile Creation Preliminaries

For the purposes of this chapter, we will consider the problem of taking a set of
random source images and converting them into a layer of tiled images. Since a set
of random source images will have images of varying size and resolution, the tile
creation process is simply the process of scaling and shaping image data from the
source images into tile-sized pieces.

5.2.1 Bottom-Up Tile Creation

Each layer of tile images has multiple levels. A tile set starts with a base level; the
base level is the level with the highest number and the highest resolution imagery.
Each subsequent level is a lower version of the level preceding it. Figure 5.1 shows
three levels of the same image layer. In this example, Level 3 is the base level. Levels
2 and 1 are lower resolution versions of the same data. The images in Figure 5.1
show the tile boundaries according to the logical tile scheme presented in Chapter
2.

Definition 1 The base level for a tile layer is the highest resolution level, the level
with the highest number for that tile layer.

In the tile creation process, the base level is almost always completed, at least
partially, before lower resolution levels. Therefore, we can say that tile creation is a
bottom-up process in terms of map scale.

5.2.2 Choosing the Base Level for a Set of Source Images

Before a tile set can be created from a set of random images, the base level must
be chosen. In some cases, a target base level is determined ahead of time. It could
be required to integrate with other tile layers or client software. However, in most
cases the base level is chosen to closely match the resolution of the sources images.
A given set of random source images is unlikely to exactly match one of our prede-
termined level resolutions. So we must select the tile level that most closely matches
our source images. Table 5.1 shows the first 19 levels in our logical tile scheme with
512 by 512 pixel tiles. It gives the number of horizontal and vertical tiles for each
level along with each level’s degrees per pixel (DPP). These are calculated using the
formulas provided in Chapter 2. The DPP values will be used to choose base levels
for sets of source images.

To perform this analysis, we will require some information from each of the
source images in our set: image width and image height in pixels and minimum and
maximum vertical and horizontal coordinates in degrees. As shown in Listing 5.1,
we can compute the DPP value for our set of random images. We compute the DPP

84 5 Image Tile Creation

Level 3

Fig. 5.1 Multiple zoom levels of the same layer.

value by combining the vertical and horizontal dimensions of the images. This is a
valid procedure for tiled image projections that preserve the same DPP in each di-
mension as our logical tile scheme does. The calculations are performed in degrees.
Source images stored in other projections might use meters with its coordinate sys-
tem. In those cases, conversion to degrees is required. Suppose that for a set of
source images, we have computed a DPP value of 0.03. This falls in between levels
4 and 5. If we choose level 4, we will be scaling DOWN our source images and thus
losing a little bit of data from the source images. If we choose level 5, we will be
scaling UP our source images. We will preserve all the data but take up more storage
space.

For example, if our source image set takes up 10,000,000 bytes uncompressed
with a DPP value of 0.03, when converted to level 4 it will take up 4,660,000 bytes,

SO0 IR =

—_

5.2 Tile Creation Preliminaries 85

Level |Horizontal Tiles| Vertical Tiles| Degrees Per Pixel
1 2 1 0.3515625
2 4 2 0.17578125
3 8 4 0.087890625
4 16 8 0.0439453125
5 32 16 0.02197265625
6 64 32 0.010986328125
7 128 64 0.0054931640625
8 256 128 0.00274658203125
9 512 256 0.001373291015625
10 1024 512 0.000686645507812
11 2048 1024 0.000343322753906
12 4096 2048 0.000171661376953
13 8192 4096 0.000085830688477
14 16384 8192 0.000042915344238
15 32768 16384 10.000021457672119
16 65536 32768 0.00001072883606
17 131072 65536 0.00000536441803
18 262144 131072 |0.000002682209015
19 524288 262144 10.000001341104507

Table 5.1 Number of tiles and degrees per pixel for each level.

Listing 5.1 Computation of degrees per pixel for a set of random source images.

ddpX = 0.0
ddpY = 0.0
count = 0

for image in images:
count = count + 1

ddpX = ddpX + (image.maxX — image.minX)/image.width
ddpY = ddpY + (image.maxY — image.minY)/image.height
dppTotal = (dppX + dppY)/(2*count)

a reduction of 53%. When converted to level 5 it will take up 18,645,000 bytes, an
increase of 86%, or nearly double the original amount.

Equation 5.1 gives an approximate computation of the storage space changes
affected by transforming from the native level to a fixed tile level, where N is the
native resolution in degrees per pixel, B is the base level resolution in degrees per
pixel, S is the size of the source image, and R is the space required for the tiled
image set. The exact storage space changes cannot be calculated analytically. There
are several unknown factors, such as the impact of uneven source image breaks onto
the tile boundaries. Since all images are stored in a compressed format, the exact
storage space requirements can be calculated only by creating and compressing the
images.

R= (%)*25 (5.1)

86 5 Image Tile Creation

In general, we want to choose the level with the closest DPP value that is lower
than our native DPP as our base level. This will usually result in an increase of
storage space requirements, but it will preserve the image information. Practically
speaking, geospatial image data costs much more to create than to store. Satellites,
aerial platforms, and cartographers are all more expensive than hard drives.

Since the tiled and source images are compressed, the actual increase in stor-
age space requirements is usually smaller than Equation 5.1 would predict. Image
compression algorithms attempt to compress images by storing just the information
needed to reproduce the image. Since our rescaled tiled images are not adding any
real image information, we can expect the compressed results to be similar in size to
the original. Consider an example: the NASA Blue Marble image below is 2000 by
1000 pixels in size (Figure 5.2). Compressed as a JPEG image it is 201,929 bytes. If
we resize the image to 3000 by 1500, we have increased the images number of pix-
els by a ratio of 2.25. However, the new larger image compressed as a JPEG takes
up 360,833 bytes, a growth ratio of 1.79. So, the actual storage space requirements
grew by 79%, not 125% as predicted by simple pixel calculations. Table 5.2 shows
these results. It includes results for another scaled image that further illustrate the
principle.

Once we have chosen and created the tiled images for the base level, the lower
resolution levels can be created.

Fig. 5.2 2000 by 1000 Blue Marble image.

DB W -

O N S

5.2 Tile Creation Preliminaries 87

Width|Height|Total Pixels|Percent Increased |Compressed Size|Percent Increased
Original Image | 2000 | 1000 | 2,000,000 201,929
Scaled Image 1| 3000 | 1500 | 4,500,000 125% 360,833 79%
Scaled Image 2| 5000 | 2500 |12,500,000 525% 816,446 304%

Table 5.2 Compression ratios are greater for the same image at different resolutions.

Listing 5.2 Pull-based tile creation.

for t in tiles:
for s in sources:
if s.intersects(t):
p = extractPixels(s)
drawPixels (p,t)

Listing 5.3 Push-based tile creation.

for s in sources:
for t in tiles:
if t.intersect(s):
p = extractPixels(s)
drawPixels (p,t)

5.2.3 Pull-Based Versus Push-Based Tile Creation

There are two methods for creating the tiles from random source images: pull-based
and push-based. Pull-based tile creation iterates over the desired tiles and pulls im-
age data from the source images. Push-based tile creation iterates over the source
images and pushes image data from them to the tiled images. There is little dif-
ference between these two approaches. The following pseudo code example shows
that only the ordering of the iteration structure changes between the two methods,
as shown in Listings 5.2 and 5.3.

In practice, there are several technical concerns that make the two methods sub-
stantially different. First and foremost is the issue of memory. If our computers had
infinite memory, and all source and tile images could be held completely in memory,
then there would be no effective difference between the two approaches. However,
computers have limited memory, and we must move our source and tile images in
and out of memory as we use them. Reading and decoding compressed source im-
ages from disk can be time consuming, as is compressing and writing tiled images
to disk.

A second concern is that of multi-threading. Modern computers have multiple
processing cores and can execute multiple threads simultaneously. A practical sys-
tem must make use of multiple threads to be efficient, but it must also be careful to
manage image resources in a thread safe fashion. Two threads should probably not
operate on the same image tile at the same time.

88 5 Image Tile Creation

For our first prototype tile creation system, we will use a pull-based method.
Many of the tiles will contain data from multiple source images. If we iterate over
source images first, as in a push-based method, then we will be swapping tiled im-
ages in and out of memory often. So those tiles will have to be swapped between
memory and disk multiple times in the process of creating them. This poses several
problems when it comes to tile storage, as many writes of small files or data blocks
tends to cause fragmentation of a file system or database pages. In the next chapter
we will discuss in more detail why it is important to write an image tile once and
only once.

Unlike tiled images, our source images are used in a read-only fashion. We can
safely swap them in and out of memory many times without having to perform
any writes. This leads us to use a pull-based method. We will iterate over the tiles
first and swap the large source images in and out of memory. This result may seem
counterintuitive. Typically our source images are much larger than our tiled images.
Sources images commonly range from 1,000 by 1,000 to 10,000 by 10,000. Our tile
images are either 256 by 256 or 512 by 512. The large source images will take a
significant amount of time to read and re-read from disk.

To mitigate this result, we will use a memory cache of source images. We will
construct a Least Recently Used (LRU) cache of decoded source images in memory.
LRU caches have a fixed size. If an element is added to an already full cache, the
LRU cache will discard the least recently used element. Each time we access a
source image, we will check if it is in the memory cache. If it is, then we do not
have to read and decode the image. If the image is not in the memory cache, we will
read and decode the image and place it in the cache.

The LRU cache works very well in this case. We will iterate over tiles in geo-
graphic order. Source images affect groups of tiles that border each other geograph-
ically. We can expect to have a high rate of “hits” on our memory image cache.
The first tile that requests data from a source image will cause it to be loaded in
the cache. The tiles immediately following the first tile will probably also use data
from that source image which was just placed in the cache. This high cache hit rate
provides a more efficient algorithm.

5.3 Tile Creation Algorithms

The following are the steps in the tile creation process:

1. Choose the base level for the tile set.

2. Determine the geographic bounds of the tile set. (This can be based on the bounds
of the source images.)

Determine the bounds of the tile set in tile coordinates.

Initialize the tile storage mechanism.

5. Iterate over the tile set coordinates. For each tile, do the following:

B

a. Compute the geographic bounds of the specific tile.

5.3 Tile Creation Algorithms 89

b. Iterate over the source images. For each source image do the following:
i. Determine if the specific source image intersects the tile being created.
ii. If the source image and tile intersect,
A. Check the cache for the source image. If it is not in the cache, load it
from disk and save in the cache.
B. Extract the required image data from the source image, and store it in
the tiled image.
c. Save the completed tiled image to the tile storage mechanism.

6. Clear the source image cache.
7. Finalize the tile storage mechanism.

Before presenting the computer code for executing these steps, we will define the
following data types in Listing 5.5:

BoundingBox: Wrapper for bounding rectangle in degrees.
Sourcelmage: Wrapper for image dimensions and geographic bounds.
TileAddress: Wrapper for a tile’s row, column, and level coordinates.
BufferedImage: Built-in Java class for memory images.

TileOutputStream: Abstract class for output of tiled images.
MemoryImageCache: Abstract class for a LRU cache of source images.

There are several key methods embedded in these data types. TileAddress.
getBoundingBox () provides the bounding coordinates in degrees for an image
tile address. BoundingBox.intersects () tests if two bounding boxes inter-
sect each other. BoundingBox.union () is used to combine multiple bounding
boxes into a single one. The abstract method writeTile () is used to provide a
generic means for storing tiles. Concrete implementations of this will be discussed
in the next chapter. Additional abstract methods, get SourceImageData () and
putSourceImageData (), are used to provide access to the LRU source image
cache. Implementation of this is left to the reader. We will also use the function
drawImageToImage, which was defined in the previous chapter. Formulae for
computing tile and geographic coordinates are derived in Chapter 2. We will use the
constant TILE SIZE to represent the width and height of our tiled images. This
value is the same for the horizontal and vertical dimensions. See the previous chap-
ter for a thorough discussion of how to choose the best tile size. Listing 5.6 is Java
code for a basic, single threaded method for creating the base level of a tile set.

5.3.1 Scaling Process for Lower Resolution Levels

The previous algorithm created the base level. Next we create the lower resolution
levels. Each lower level is based on the previous level. Because of the structured
nature of our logical tile scheme, this process is much simpler than creation of the
base level. Figure 5.3 shows that our lower resolution tiles are constructed directly
and from exactly fours tiles from the previous level.

90 5 Image Tile Creation

(R*2+1, C*2,5+1) [(R*2+1, C*2+1,S+1)

(R, C,S)

(R*2,C*2,5+1) | (R*2, C*2+1,S+1)

Target Tile Source Tiles

Fig. 5.3 Relationship of target tile for source tiles from previously computed level.

The basic algorithm is as follows:
1. For each level from (base_level - 1) to 1, do the following.

a. Determine the bounds of the current tile level in tile coordinates.
b. Initialize the tile storage mechanism.
c. Iterate over the tile set coordinates. For each tile, do the following:
i. Determine the four tiles from the higher level that contribute to the current
tile.

ii. Retrieve the four tile images or as many as exist.

iii. Combine the four tile images into a single, scaled-down image.

iv. Save the completed tiled image to the tile storage mechanism.
d. Finalize the tile storage mechanism.

This algorithm uses the types defined in the previous section plus one additional
type as defined in Listing 5.6. This type allows us to read the tiles from the previous
levels. Additionally, an assumption is made that the TileInputStream and TileOut-
putStream in the algorithm are linked in some fashion. This allows us to write tiles
in one stage and then read them out in the next stage. For example, when creating
level 7, we will write level 7 tiles to the TileOutputStream. In the next stage, when
we create level 6, we will have to read the level 7 tiles that we created in the previ-
ous step. Listing 5.7 shows the complete algorithm for creating the lower resolution
layers from the base layer.

The process of creating tiled image sets from collections of random source im-
ages can be approached in a straightforward manner. In this chapter, we have de-
tailed the basic process and algorithms for achieving this goal. We have built upon

—

5.3 Tile Creation Algorithms 91

Listing 5.4 Abstract class definition for the TiledInputStream.

abstract class TilelnputStream {
abstract BufferedIlmage getTile(TileAddress address);
}

the image manipulation algorithms from previous sections. In the next chapter, we
will present techniques for optimizing the creation of tiled image sets.

92 5 Image Tile Creation

Listing 5.5 Java data types.

class BoundingBox {
double minx, miny, maxx, maxy;

public BoundingBox(double minx, double miny, double maxx, double maxy) {
this .maxx = maxx;

this .maxy = maxy;
this . minx = minx;
this . miny = miny;
}
boolean intersects (double minx, double miny, double maxx, double maxy) {
return !(minx > this.maxx || maxx < this.minx || miny > this.maxy ||
maxy < this.miny);
}

static BoundingBox union(BoundingBox[] bb) {
BoundingBox u = bb[0];
for (int i = I; i < bb.length; i++) {
if (bb[i].maxx > u.maxx) {
u.maxx = bb[i].maxx;
}

if (bb[i].maxy > u.maxy) {
u.maxy = bb[i].maxy;
¥

if (bb[i].minx < u.minx) {
u.minx = bb[i].minx;
}

if (bb[i].miny < u.miny) {
u.miny = bb[i].miny;

¥
¥
return u;
}
}
class Sourcelmage {
int width;
int height;

BoundingBox bb;
Bufferedlmage image;
String name;

}

class TileAddress {
long row;
long column;
int scale;

BoundingBox getBoundingBox () {
double dp = 360.0 / (Math.pow(2, scale) % TILE_SIZE);
double miny (row * TILE_SIZE * dp) — 90.0;
double maxy ((row + 1) = TILE_SIZE % dp) — 90.0;
double minx (column * TILE_SIZE % dp) — 180.0;
double maxx = ((column + 1) * TILE_SIZE % dp) — 180.0;
BoundingBox bb = new BoundingBox(minx, miny, maxx, maxy);
return bb;

}

abstract class TileOutputStream {

abstract void writeTile(TileAddress address, Bufferedlmage image);

—

— O 0 00J N W

U

5.3 Tile Creation Algorithms 93

}

abstract class MemorylmageCache {

abstract BufferedIlmage getSourcelmageData (String name);

abstract void putSourceImageData (String name, BufferedImage data);

Listing 5.6 Simple tile creation.

public void createTiles (Sourcelmage [] sourcelmages, TileOutputStream

tileOutputStream , int baseLevel, MemorylmageCache cache) {

//Determine the geographic bounds of the tile set.

//This can be based on the bounds of the source images.

BoundingBox[] sourcelmageBounds = new BoundingBox|[sourcelmages.length];

for (int i = 0; i < sourcelmageBounds.length; i++) {
sourceIlmageBounds[i] = sourcelmages[i].bb;

BoundingBox tileSetBounds = BoundingBox.union(sourcelmageBounds);

//Determine the bounds of the tile set in tile coordinates.

long mincol = (long) Math. floor ((tileSetBounds .minx + 180.0) / (360.0 /
Math.pow (2.0, (double) baseLevel)));

long maxcol = (long) Math. floor ((tileSetBounds .maxx + 180.0) / (360.0 /
Math.pow (2.0, (double) baseLevel)));

long minrow = (long) Math. floor ((tileSetBounds .miny + 90.0) / (180.0 / Math
.pow (2.0, (double) baseLevel — 1)));

long maxrow = (long) Math. floor ((tileSetBounds .maxy + 90.0) / (180.0 / Math
.pow (2.0, (double) baseLevel — 1)));

//Iterate over the tile set coordinates.
for (long ¢ = mincol; ¢ <= maxcol; c++) {
for (long r = minrow; r <= maxrow; r++) {
TileAddress address = new TileAddress(r, c, baseLevel);
// Compute the geographic bounds of the specific tile.
BoundingBox tileBounds = address.getBoundingBox () ;
//Iterate over the source images.
BufferedIlmage tilelmage = new Bufferedlmage (TILE_SIZE, TILE_SIZE,
BufferedImage . TYPEINT_ARGB) ;
for (int i = 0; i < sourcelmages.length; i++) {
//Determine if the specific source image intersects the tile
being created.
if (sourcelmages[i].bb.intersects (tileBounds.minx, tileBounds.
miny, tileBounds.maxx, tileBounds.maxy)) {
// Check the cache for the source image.
BufferedImage bi = cache.getSourcelmageData (sourcelmages|[i
].name) ;
if (bi == null) {
//If it is not in the cache load it from disk and save
in the cache.
bi = readlmage(sourcelmages[i].name);
cache.putSourcelmageData (sourcelmages[i].name, bi);

// Extract the required image data from the source image and
store it in the tiled image.

drawlmageTolmage (bi, sourcelmages[i].bb, tileIlmage,
tileBounds) ;

}

//Save the completed tiled image to the tile storage mechanism.
tileOutputStream . writeTile (address, tileImage);

94

Listing 5.7 Scaled tile creation.

5 Image Tile Creation

public void createScaledTile (TilelnputStream tileInputStream , TileOutputStream

tileOutputStream ,

int baseLevel,

long minRow, long maxRow) {

int ratio = (int) Math.pow (2,

long curMinCol
long curMaxCol
long curMinRow
long curMaxRow
//Iterate over

long minCol ,

the original

long maxCol,

//For each level from base level — 1 to 1, do the following .
for (int level = baseLevel — 1; level <= 1; level ——) {
//Determine the bounds of the current tile
//ratio will be used to reduce
coordinates to

level in tile coordinates.

tile set bounding

those applicable for each successive level.

= (long) Math. floor (minCol
= (long) Math. floor (maxCol
= (long) Math. floor (minRow
= (long) Math. floor (maxRow

the

tile set coordinates.

/

/
/
/

baselLevel — level);

ratio);
ratio);
ratio);
ratio);

for (long ¢ = curMinCol; ¢ <= curMaxCol; c++) {
for (long r = curMinRow; r <= curMaxRow; r++) {

//For each tile , do the following:

TileAddress address = new TileAddress(r, c, level);

//Determine the FOUR tiles from the higher level that
contribute to the current tile.

TileAddress tile00 = new TileAddress(r * 2, ¢ x 2, level + 1);
TileAddress tile01 = new TileAddress(r * 2, ¢ x 2, level + 1);
TileAddress tilelO0 = new TileAddress(r x 2, ¢ * 2, level + 1);
TileAddress tilell = new TileAddress(r x 2, ¢ * 2, level + 1);

//Retrieve the four tile images, or as many as exist.
BufferedImage image00 tileInputStream . getTile (tile00);
BufferedImage imageOl tileInputStream . getTile (tile01);
Bufferedlmage imagelO tileInputStream . getTile (tilel0);
BufferedImage imagell tileInputStream . getTile (tilel1);

// Combine the four tile images into a single, scaled—down image

BufferedImage tilelmage = new BufferedImage (TILE_SIZE,
TILE_SIZE, Bufferedlmage . TYPE.INT_-ARGB) ;
Graphics2D g = (Graphics2D) tilelmage .getGraphics() ;
g.setRenderingHint(RenderingHints . KEY_INTERPOLATION,
RenderingHints . VALUE_INTERPOLATION_BILINEAR) ;
boolean hadlmage = false;
if ((image00 != null)) {
g.drawlmage (image00, 0, Constants.TILE_SIZE_.HALF, Constants
.TILE_SIZE_HALF, Constants.TILE_SIZE, 0, 0, Constants .
TILE_SIZE ,
Constants . TILE_SIZE, null);
hadlmage = true;

}
if ((imagel0 != null)) {
g.drawlmage (imagel0, Constants . TILE.SIZE_HALF, Constants .
TILE_SIZE_HALF, Constants . TILE_.SIZE, Constants .
TILE_SIZE, 0, O,
Constants . TILE_SIZE, Constants . TILE_SIZE, null);
hadlmage = true;

}
if ((image0l != null)) {
g.drawlmage (image0l, 0, 0, Constants .TILE_.SIZE_HALF,
Constants . TILE_SIZE_HALF, 0, 0, Constants.TILE_SIZE,
Constants . TILE_SIZE, null);
hadlmage = true;

}
if ((imagell != null)) {
g.drawlmage (imagell, Constants . TILE.SIZE_HALF, 0, Constants
.TILE_SIZE, Constants .TILE_.SIZE_HALF, 0, 0, Constants .
TILE_SIZE ,
Constants . TILE_SIZE, null);
hadlmage = true;

//save the completed tiled image to the tile storage mechanism.
if (hadlmage) {

5.3 Tile Creation Algorithms

54 tileOutputStream . writeTile (address ,

tileImage) ;

95

Chapter 6
Optimization of Tile Creation

The algorithms for creating tile sets presented in the previous chapter represent ba-
sic approaches. There are many possible optimizations to make the process more
efficient. Some geospatial image sets are small enough that these optimizations are
not needed. However, very large image sets will almost always require optimiza-
tion to make their computation a tractable problem. In this chapter we will present
algorithms for the following tiling optimizations:

Caching tile sets in memory to improve performance
Partial reading of source images to conserve memory
Multi-threading of tile creation algorithms

Tile creation algorithms for distributed computing
Partial updating of existing tiled image sets

Each of these techniques should be thoroughly considered by those developing a
tile creation system. They have been reduced to practice and are essential improve-
ments in an otherwise resource-inefficient process.

6.1 Caching Tile Sets in Memory to Improve Performance

Because reading from and writing to disk are often the most time consuming steps
in the tile creation process, we will present an optimized algorithm that minimizes
both of these. In the previous chapter we presented two approaches to tile creation:
pull-based and push-based. Push-based had the advantage of having to read source
images only one time. Pull-based allowed us to write tiled images only one time.
We decided to use the pull-based system because, with the addition of a source
image cache, we could reduce some of the re-reading of source images. We are still
left with the problem of having to re-read the tiled images as we create the lower
resolution zoom levels.

However, if our computer system has enough memory to hold all (or a significant
subset) or our tiled images, we can use a very efficient push-based approach. We

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 97
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__6,
(© Springer Science+Business Media, LLC 2010

98 6 Optimization of Tile Creation

can loop through the source images, read each one once and only once, and apply
the data from the source images to our cached tiled images. Only when we have
completed looping through the source images will we write our tiled images to
memory. Furthermore, since our tiled images remain in memory, there is no need to
re-read them when creating the lower resolution levels.

In practice, few systems will have enough RAM to hold a complete tile set, un-
compressed, in memory. Therefore, we will need some logical scheme to sub-divide
our tile sets into manageable pieces. Recall an earlier example of a high-resolution
aerial imagery collection of the world’s 50 largest cities. This dataset has a logical
separation of tiles built into its structure. We could separately process, in memory,
the tiles for each city and merge the results later. For source image sets without
logical groupings, we would have to develop some method for geographically par-
titioning the tile sets. In the next chapter, we will discuss in some detail a general
method for solving this problem. For the purposes of the current section assume that
such a system is in place.

The algorithm for push-based tile creation with in memory tile cache is as fol-
lows:

1. Choose the base level for the tile set.

2. Determine the geographic bounds of the tile set. (This can be based on the bounds
of the source images.)

Determine the bounds of the tile set in tile coordinates.

Initialize the tile cache.

5. Iterate over the source images. For each source image, do the following:

B

a. Compute the bounds of the source image in tile coordinates.
b. Read the source image into memory.
c. Iterate over the tile set coordinates. For each tile do the following:
i. Compute the geographic bounds of the tile.
ii. Check the cache for the tile image. If it is not in the cache, create an empty
image and put it in the cache.
iii. Extract the required image data from the source image and store it in the
tiled image.

6. For each level from (base_level - 1) to 1, do the following.

a. Determine the bounds of the current tile level in tile coordinates.
b. Iterate over the tile set coordinates. For each tile, do the following:
i. Determine the four tiles from the higher level that contribute to the current
tile.
ii. Retrieve the four tile images from the cache or as many as exist.
iii. Combine the four tile images into a single, scaled-down image.
iv. Save the completed tiled image to the tile cache

7. Finalize the tile cache and store the images on disk

Before presenting the computer code for executing these steps, we will define
the data types in Listing 6.1. TileCache represents the mechanism for holding tiled

NN R W -

6.2 Partial Reading of Source Images 99

Listing 6.1 TileCache class.

abstract class TileCache {
public abstract BufferedImage getTile(TileAddress ta);

public abstract void putTile(TileAddress ta, Bufferedlmage image);

images in memory. Additionally, we will make use of the data types defined in the
previous chapter. Listing 6.6 shows the algorithm for creating tiles with a memory
cache.

6.2 Partial Reading of Source Images

Each of the previously defined algorithms for tile creation assumed that source im-
ages can be read and held completely in memory. In some cases this is either not
possible or not practical. Some image formats, like MrSID or JPEG2000, support
very large images. It is not unusual to encounter images that are several gigabytes
compressed.

Uncompressed versions could be 10 times the original size. Even if sufficient
memory exists to hold the entire image, we may want to only process a part of the
image. Therefore, we need to examine techniques for partial reading of images. Five
logical methods for reading images are as follows:

Whole Image: Only allows users to read entire images in one step.
Scanlines: Allows users to read one or more scanlines in one step. This is the
most common method for low-level access to image pixels.

o Tiles: Allows users to read tiled subsections of images. This is usually only avail-
able with image formats that natively store images in subdivided tiles. The reader
should note that the concept of tile” in this context is slightly different from how
we have used it throughout the book. In this context, tiles represent rectangular
blocks of an image. They are not full images by themselves.

e Random Areas: Allows users to read user-defined rectangular areas of images.

The ability to read only a part of an image is dependent on both the file format
used to store the image and the software library used to decode the image. The pro-
cess is straightforward for uncompressed images. However, it may be impossible
with compressed image formats. Java and Python support reading a variety of im-
age formats. However, they do not allow partial reading of images. In general, the
most flexible methods for reading images can be found in their C/C++ reference im-
plementations. LIBJPEG, LIBPNG, and LIBTIFF are all open source libraries for
reading JPEG, PNG, and TIFF images, respectively. Both LIBJPEG and LIBPNG
support scanline based reading. LIBTIFF supports scanline and tile-based reading

100 6 Optimization of Tile Creation

depending on how the image was stored. The LizardTech GeoExpress Software
Development Kit (SDK) supports random area reading of MrSID and JPEG2000
images.

Two things are needed to integrate partial reading into our existing tile creation
algorithms. First, we need a method for reading random areas out of our image. This
can be done by directly reading the random areas where supported or by adapting
scanline or tile-based reading to provide random areas. Second, we need to adapt
our tile creation algorithm to account for a partial image instead of the full image.

6.2.1 Reading Random Areas from Source Images

We define a random area as a rectangular region within an image. It is defined by
the coordinates for the origin: x and y, and a width and height (See Figure 6.1).
Before we can extract the image data from the random area we have to determine
the geographic bounds of the intersection between our source image and our tiled
image. We then have to convert the geographic bounds of the intersection area into
source image coordinates.

Source Image

Random Area

Height <

Origin (x,y)
D 7

Fig. 6.1 Random area from a source image.

— OO0 00JIWNRA W~

—_

—_

6.2 Partial Reading of Source Images 101

Listing 6.2 Compute the intersection of two bounding rectangles.

public BoundingBox getlntersection (BoundingBox bbl, BoundingBox bb2) {
if (!bbl.intersects (bb2.minx, bb2.miny, bb2.maxx, bb2.maxy)) {
return null;

Math . max (bbl . minx, bb2.minx);

Math . max (bbl . miny , bb2.miny);

double maxx Math . min(bbl . maxx, bb2.maxx);

double maxy Math . min(bbl . maxy, bb2.maxy);

BoundingBox out = new BoundingBox(minx, miny, maxx, maxy);
return out;

double minx
double miny

Listing 6.3 Convert geographic bounds to image bounds.

public Rectangle convertCoordinates (BoundingBox imageBounds, BoundingBox
subImageBounds , int imageWidth, int imageHeight) {

int x = (int) Math.round ((imageBounds .minx — subIlmageBounds.minx) / (
imageBounds . maxx — imageBounds.minx) % imageWidth);

int y = imageHeight — (int) Math.round ((imageBounds.miny — subImageBounds.
miny) / (imageBounds.maxy — imageBounds.miny) * imageHeight) — 1;

int width = (int) Math.round ((subIlmageBounds.maxx — sublmageBounds.minx) /
(imageBounds . maxx — imageBounds.minx) % imageWidth);

int height = (int) Math.round ((subImageBounds.maxy — subImageBounds.miny) /
(imageBounds .maxy — imageBounds.miny) * imageHeight);

Rectangle r = new Rectangle(x, y, width, height);

return r;

}

class Rectangle {
public Rectangle(int x, int y, int width, int height) {
this . x = x;
this.y = y;
this . width = width;
this . height = height;
}

int x;
int y;
int width;
int height;

The algorithms shown in Listings 6.2 and 6.3 compute the intersection of two
bounding rectangles and convert that intersection from geographic coordinates to
image coordinates.

The result of Listing 6.3 is a rectangle in image coordinates. These coordinates
can be used to extract a region of pixels from a source image. The algorithms in List-
ings 6.7 and 6.8 demonstrate how to extract a partial image region with either scan-
line or tile-based access to a tiled image. Because we are demonstrating low-level
access to image data, we will not use a memory image object like Java’s Buffered-
Image. To represent in-memory images, we will use a simple array of "byte” values
that represent RGB pixel values packed in 3 byte triplets and stored in row-major

102 6 Optimization of Tile Creation

order. Also, the reader should note that the algorithms presented in the following
section are written for maximum clarity, not necessarily efficiency. For example, we
use “for” loops to copy blocks of bytes while many programming languages have
built-in functions that perform this step much faster.

Listing 6.7 presents Java code for reading an image region with scanline based
access. The steps for scanline reading of an image region are as follows:

1. Skip or seek to the first scanline needed.
2. For each scanline needed, do the following:

a. Read the entire scanline into a temporary buffer.
b. Copy the required subsection of the scanline into the final image buffer.

3. Return the final image buffer.

The algorithm uses the class “ImagePointer” to represent a handle on a file or input
stream with encoded pixel data. The algorithm assumes the following functions are
available:

e ReadScanline: This function decodes a scanline of pixel data and copies it to the
provided buffer. After completion, it positions the image pointer for reading the
next available scanline.

e SkipScanlines: This function skips scanlines in the image and positions the im-
age point for reading at the next available scanline. Some image decoding imple-
mentations allow random access to scanlines, while others will have to decode
the scanlines that are skipped. This difference may affect performance and should
be considered by developers.

Listing 6.8 presents Java code for reading partial image regions with tile-based
image access. The algorithm assumes that our decoding implementation allows ran-
dom access to image tiles; this is modeled after LIBTIFF’s access routines that do
allow random access to image tiles for images that are stored in a certain way.

The steps for tile-based reading of an image region are as follows:

Determine the range of tiles that will need to be read.
. Construct a temporary buffer with sufficient size to hold all of the needed tiles.
3. Tterate over the tiles, in row-major order. For each tile needed, do the following:

N =

a. Position the image pointer to read at the needed tile.
b. Read the tile into the temporary buffer.

4. Trim the temporary buffer to match the desired region.

The algorithm also uses the class “ImagePointer” to represent a handle on a file
or input stream with encoded pixel data. The algorithm assumes that the following
functions are available:

e SeekToTile: This function positions the image pointer to read the indicated tile.
e ReadTile: This function reads pixels from the current tile into the provided buffer.

6.3 Tile Creation with Parallel Computing 103

6.2.2 Tile Creation with Partial Source Image Reading

Listing 6.9 shows our previous algorithm for creating tiles in an adapted form to
handle partial reading of source images. The steps in this algorithm are as follows:

1. Chose the base level for the tile set.

2. Determine the geographic bounds of the tile set. (This can be based on the bounds
of the source images.)

3. Determine the bounds of the tile set in tile coordinates.

4. Initialize the tile storage mechanism.

5. Iterate over the tile set coordinates. For each tile, do the following:

a. Compute the geographic bounds of the specific tile.
b. Iterate over the source images. For each source image do the following:
i. Determine if the specific source image intersects the tile being created.
ii. If the source image and tile intersect,
A. Determine the intersection of tile and source image.
B. Convert the intersection from geographic to image coordinates.
C. Read the partial image data.
D. Convert the partial image data to a BufferedImage.
E. Draw the converted pixels to the tile image.
c. Save the completed tiled image to the tile storage mechanism.

6. Finalize the tile storage mechanism.

Within Listing 6.9, the abstract method “ReadPartiallmage” is meant as a place-
holder for the implementation specific techniques presented in the previous section.
The abstract method ”ConvertBytes” simply moves the pixel data from the byte
array into a Java BufferedImage. Listing 6.9 is a modified form of pull-based tile
creation, which should be used if all image tiles cannot be held in memory at the
same time. Push-based methods are still preferred if all tiles can be held in memory.

6.3 Tile Creation with Parallel Computing

Parallel computing is the use of multiple computing resources at the same time to
execute a given task. This can be realized by a using a group of computer systems
or by using a single computer system with multiple CPUs. In most cases, the tile
creation process must be parallelized to operate efficiently. The next two sections
present techniques for parallelization of the tile creation process from two very dif-
ferent perspectives.

S}

104 6 Optimization of Tile Creation

Listing 6.4 Synchronized drawing.

synchronized (tileImage) {
drawlmageTolmage (bi, currentBounds , tileImage, tileBounds);
}

6.3.1 Multi-Threading of Tile Creation Algorithms

Multi-threading is a programming technique that, if supported by the underlying
operating system and computer hardware, allows multiple tasks to execute at the
same time within the same process. A process is an instance of computer program
that is being executed. The requirement that the multiple threads of execution exist
within the same process is a critical constraint. This allows the multiple threads
to share memory with each other. For a detailed tutorial on threading models and
usage, the reader is encouraged to see [2].

Multi-threading has three common uses. First, multi-threading is used to manage
blocking input/output (I/0). Reading and writing from disk or network is relatively
slow, and multi-threading allows the program to perform other tasks while waiting
for I/0. A second use is to allow systems with multiple CPUs to process multiple
tasks at the same time. The final common use of multi-threading is to make programs
with graphical user interfaces more responsive. Multi-threading is useful for this
because one thread can be dedicated to updating the graphical interface, while others
perform the program’s work. The first two of these uses, managing blocking I/O and
processing multiple tasks, will be very useful in the tile creation process.

Our first algorithm is derived from our previous push-based tile creation algo-
rithms but adds multi-threading to reduce waiting for I/O. In this algorithm, we have
two threads: a reader thread and a tiler thread. The reader thread reads a source im-
age into memory and waits for it to be retrieved by the tiler thread. The tiler thread
retrieves decoded source images from the reader thread and creates tiles from it.
When the tiler thread takes an image from the reader thread, the reader thread de-
codes another image and waits for it to be taken. Java code for this process is pro-
vided by Listing 6.10. This algorithm should result in a performance improvement,
even on systems with just one CPU.

If our processing system has multiple CPUs, and current commodity systems
can have up to 48, we can use more than one thread to perform the tiling. This
requires two adjustments to the previous algorithm. First, we must create and start
more than one tiler thread. Second, we need to make sure that multiple tiling threads
are not accessing and writing to the same tile at the same time. To accomplish this,
we will change how we call the method for drawing from source image to buffered
images. We can wrap the call to the ”drawImageTolmage” method in a synchronized
block that is synchronized on the target BufferedImage, see Listing 6.4. We need to
synchronize on only tileImage because that is the only thing getting changed by the
various threads. Listing 6.5 shows the method for starting and controlling multiple
tiling threads.

6.3 Tile Creation with Parallel Computing 105

Listing 6.5 Controlling multiple tile creation threads.

public void createTilesMultipleThreads (TileCache cache, Sourcelmage []
sourcelmages , int baseLevel, int numberOfThreads) {
ReaderThread reader = new ReaderThread(sourcelmages);
reader.start () ;
TilerThread[] tilerThreads = new TilerThread[numberOfThreads];
for (int i = 0; i < tilerThreads.length; i++) {
TilerThread tiler = new TilerThread(cache, baselLevel, reader);
tiler.start ();
tilerThreads[i] = tiler;

}
for (int i = 0; i < tilerThreads.length; i++) {
try {
tilerThreads[i].join ();
} catch (InterruptedException e) {
e.printStackTrace ();
}
}

It is common to use a number of threads equal to the number of CPUs available.
However, in many cases the optimum number of threads can be larger or smaller.
This depends on the I/O bandwidth, speed of processors, amount of memory, and
other computer specific parameters. Only through trial and error can a developer
determine the optimal number of threads.

6.3.2 Tile Creation for Distributed Computing

In the previous section, our multiple lines of execution had the advantage of shared
memory to communicate and exchange data. This is not the case for distributed
computing since we are spreading our processing across multiple systems called
compute nodes. Groups of compute nodes are often called clusters. With distributed
computing, communication between nodes is done via a network. In some cases,
clusters are connected with dedicated high speed networks like InfiniBand or 10
Gigabit Ethernet. In other cases, compute nodes may be spread out geographically
and connected via the Internet. Clusters vary greatly in composition and use. Some
clusters fill the traditional role of supercomputers, while others are used to provide
services to the public. Some clusters are specially configured groups of identical
computer systems while others are ad hoc groupings. Others are made of virtual-
ized systems, dynamically allocated to meet on-demand needs. For the purposes
of tile creation, the issues to be considered are nearly the same irrespective of the
composition of the cluster.

The two primary tasks related to tile creation using computational clusters are
creating a system for breaking the tile creation process into smaller, independent
tasks and choosing a software framework for developing the solution. The exact
physical configuration of a cluster is less important than these two issues.

106 6 Optimization of Tile Creation

The problem of dividing the tile creation process into smaller, independent tasks
has already been introduced in Section 6.1. In that section we discussed the require-
ment for smaller tile creating tasks so that all the tiles could be held in memory. In
the context of distributed computing, we have to subdivide our tasks so that we can
distribute the source images in smaller collections to individual compute nodes and
then collect the created tiles from each node. In the next chapter, we will present
a tile storage solution that ties all of these requirements together and presents a
general solution for sub-dividing tile creation tasks.

Tile creation is typically an I/O bound problem. As discussed, reading and writ-
ing to disk or network is far slower than computing the content of tiles. Tiled image
calculations are relatively simple, linear pixel transformations. Given this property,
we must minimize data movement to make distributed tile creation a beneficial tech-
nique.

In the next sections, we will discuss several software frameworks for distributed
computing. In the context of distributed computing, the framework is a software ap-
plication programming interface (API) that facilitates sharing of data and managing
control flow of parallel programs. The chosen software framework usually drives
the logical configuration of the computational process. We will introduce the basic
concept of each framework and discuss how its properties relate to the tile creation
process.

6.3.2.1 MPI

A very common cluster framework is called MPI (Message Passing Interface). MPI
is a language independent communications protocol for parallel computing. MPI is
just a specification. To be used, a developer must select a concrete implementation
of the specification. Fortunately there are several implementations, both open source
and commercial. It is most commonly used with the C and FORTRAN languages,
although bindings exist for other languages like Java, Python, and the Matlab envi-
ronment.

MPI provides low-level mechanisms for moving data between nodes, control of
execution, and synchronization between independent processes. MPI implementa-
tions are very efficient and are a good choice for parallel applications that require
a lot of interaction between nodes, as is common for some types of scientific su-
percomputing. It is also a good candidate for parallel applications that are primarily
CPU bound. That is, those that require extensive computations with little I/O. In
contrast, tile creation is often I/O bound, especially when it utilizes multi-threading
techniques discussed in the previous section.

A fully functional tile creation system could be created utilizing MPI for node-to-
node communication and control. However, the relatively low-level nature of MPI
commands provides unneeded functionality and would make development a very
tedious process. For this reason, we recommend a higher level framework.

6.3 Tile Creation with Parallel Computing 107

6.3.2.2 MapReduce

MapReduce is a distributed computing model created by Google and designed to
allow computing problems to be easily solved in a multi-processing environment,
from a single shared-memory machine up to a large cluster of heterogeneous net-
worked computers [1]. Users provide map and reduce functions specific to their
problem. The MapReduce framework implementation coordinates the distributed
computing environment using these functions. The original Google MapReduce im-
plementation is not available to the public. Hadoop' is an open source implementa-
tion which is commonly used outside of Google.

The MapReduce model is derived from common functional programming tech-
niques. The map function takes an input record in the form of a key/value pair. The
map function then processes that input and creates a new intermediate key/value
pair. The reduce function takes one of these intermediate keys as input as well as
its associated values. The function then merges these values, usually into a single
value. The MapReduce framework distributes input records to the map function and
receives its output. It then distributes those intermediate values to the reduce func-
tion and receives the merged results. Communication and errors are also managed
by the MapReduce framework.

MapReduce is most effectively used when the target problem is computationally
bound, the input has a large number of records, or the distributed computing plat-
form is large and complex. The MapReduce framework handles most of the manage-
ment while a user only need implement the details for a specific task process. The
benefits of MapReduce are dependent on the implementation being used. Different
MapReduce implementations may provide different I/O capabilities, management
capabilities, and error handling capabilities. For example, the Hadoop implementa-
tion does not allow random writes within files in its filesystem.

MapReduce may be used as a framework for tiling in a cluster, however, its capa-
bilities are not necessarily well aligned to the task because the tiling process is I/O
bound. The source data, large image files, and the output data, large tile files, must
be moved to and from the processing systems. The computational cost of processing
the imagery is much smaller than the I/O cost. The distributed file system used by
the MapReduce framework (HDFS for Hadoop) will incur as much or more I/O cost
by positioning files throughout the network. Retrieving data for use elsewhere will
incur the same penalties. Additionally, large clusters are not necessary to tile map
imagery. Fewer than 20 (potentially fewer than 10) processing nodes need be used
to process even the largest imagery datasets in a reasonable amount of time (a few
days). Given that the tile creation process is perfectly parallelizable, the complex-
ity of the overall tile processing system is not large enough to support the use of a
MapReduce framework.

The MapReduce model works well for a user such as Google because they have
a large number of diverse distributed computing problems that may be solved using
one framework. They also have a large and geographically diverse computing clus-

'http://hadoop.apache.org/

http://hadoop.apache.org/

108 6 Optimization of Tile Creation

ter, which would be difficult to manage without a model such as MapReduce. Tiling
is not computationally bound, has a relatively limited number of image inputs, and
may be run on smaller cluster systems. Unless a MapReduce framework is useful to
other applications in the enterprise, it is not necessary to use for tiling. The cost of
installing the MapReduce framework combined with the cost of implementing the
tile processing in using the MapReduce framework will not be significantly lower
than simply creating an ad hoc clustering system.

6.3.2.3 Ad Hoc Clustering

Ad hoc clustering refers to distributed computing with no specific software frame-
work. Software frameworks often provide useful tools, but they also introduce over-
head either at execution time or development time. There are many ways to control
program execution and data sharing between networked computers. REXEC or Se-
cure Shell (SSH) can be used to remotely start and control processes on networked
systems. Server Message Block (SMB) and Network File System (NFS) can be used
to share data across a network through remotely mounted file systems.

Given the data intensive nature of tile creation processes, developers should cre-
ate distributed systems with very minimal interactions between systems. With this
constraint, sophisticated communication and control frameworks should be needed
only in cases where truly large numbers of CPUs are being controlled. We typi-
cally create multi-terabyte tile sets on a cluster with 64 CPUs in just a few hours of
compute time. Those CPUs are controlled with SSH commands and share data via
NFS.

6.4 Partial Updating of Existing Tiled Image Sets

In the previous sections on tile creation, we have assumed all tile sets are created
from source images in one single and final step. How, then, should we handle cases
in which new source images need to be added to an existing tile set? This is a
common problem for tile sets based on satellite or aerial imagery. These sensing
platforms can image only a small portion of the earth’s surface. A complete picture
of a sizable area will include source images taken over an extended time period.
The most basic approach to handling updated images is to simply discard the
previous tile set and create a new one each time new source images are available.
In some cases, this is the best approach. If a majority of the source images have
been updated or if the tile set is rather small, it may be just as efficient to start over.
However, if the existing tile set is large and the updates are relatively small, starting
over would be expensive or even impossible. Consider a very large example tile set
that takes two weeks to create. If some source images are updated every week, we
would have to start processing a new tile set as soon as the previous one finished.
To keep up-to-date, we would always be processing the large tile set, and most of

6.4 Partial Updating of Existing Tiled Image Sets 109

our processing would be redundant. This would be expensive both in our time and
computational resources.

A better approach is to integrate updated source images into existing tile sets by
altering the contents of only the tiles that are affected by the new source images.
Logically, the change in our tile algorithm is very simple. Instead of creating a new
empty image for a tile, we simply retrieve the existing tile from storage, update
its contents, and store the new image. The main difficulty lies in developing a tile
storage system capable of handling updated image files. Another challenge is that
we must maintain sufficient source image and tile metadata so we can detect which
source images should be added to the tile set. Both of these problems relate directly
to tile storage and will be discussed in the next chapter.

—

[=>EN=JN-REN o NIV RE NS I S

—_

110 6 Optimization of Tile Creation

Listing 6.6 Push-based tile creation with a memory tile cache.

public void createCachedTiles (TileCache cache, Sourcelmage [] sourcelmages, int
baseScale) {
//Determine the geographic bounds of the tile set.
//This can be based on the bounds of the source images.
BoundingBox[] sourcelmageBounds = new BoundingBox|[sourcelmages.length];

for (int i = 0; i < sourcelmageBounds.length; i++) {
sourcelmageBounds[i] = sourcelmages[i].bb;
BoundingBox tileSetBounds = BoundingBox.union(sourcelmageBounds);

//Determine the bounds of the tile set in tile coordinates.

long tilesetMincol = (long) Math. floor ((tileSetBounds .minx + 180.0) /
(360.0 / Math.pow (2.0, (double) baseScale)));

long tilesetMaxcol = (long) Math. floor ((tileSetBounds .maxx + 180.0) /
(360.0 / Math.pow (2.0, (double) baseScale)));

long tilesetMinrow = (long) Math. floor ((tileSetBounds .miny + 90.0) / (180.0
/ Math.pow (2.0, (double) baseScale — 1)));

long tilesetMaxrow = (long) Math. floor ((tileSetBounds .maxy + 90.0) / (180.0
/ Math.pow (2.0, (double) baseScale — 1)));

//Iterate over the source images
for (int i = 0; i < sourcelmages.length; i++) {
BoundingBox currentBounds = sourcelmages[i].bb;
// Compute the bounds of the source image in tile coordinates
long mincol = (long) Math. floor ((currentBounds.minx + 180.0) / (360.0 / Math.
pow (2.0, (double) baseScale)));
long maxcol = (long) Math. floor ((currentBounds.maxx + 180.0) / (360.0 / Math.
pow (2.0, (double) baseScale)));
long minrow = (long) Math. floor ((currentBounds.miny + 90.0) / (180.0 / Math.
pow (2.0, (double) baseScale — 1)));
long maxrow = (long) Math. floor ((currentBounds.maxy + 90.0) / (180.0 / Math.
pow (2.0, (double) baseScale — 1)));
//Read the source image into memory
BufferedImage bi = readlmage(sourcelmages[i].name);
for (long ¢ = mincol; ¢ <= maxcol; c++) {
for (long r = minrow; r <= maxrow; r++) {
TileAddress address = nmew TileAddress(r, c, baseScale);
//Compute the geographic bounds of the specific tile.
BoundingBox tileBounds = address.getBoundingBox () ;
//Check the TileCache for the tiled image
BufferedImage tileImage = cache.getTile(address);

if (tilelmage == null) {
tilelmage = new Bufferedlmage (TILE_.SIZE, TILE_SIZE, Bufferedlmage .
TYPE_INT_-ARGB) ;

cache.putTile(address, tilelmage);

// Extract the required image data from the source image and store it in
the tiled image.

drawlmageTolmage (bi, sourcelmages[i].bb, tileImage, tileBounds);

//Note that since tilelmage is a pointer to the bufferedimage already
in the cache,

//we don’t have to put it back in after each use.

for (int scale = baseScale — 1; scale <= 1; scale ——) {
//Determine the bounds of the current tile scale in tile coordinates.
//ratio will be used to reduce the original tile set bounding coordinates to
those applicable for each successive scale.
int ratio = (int) Math.pow(2, baseScale — scale);

long curMinCol = (long) Math. floor(tilesetMincol / ratio);
long curMaxCol = (long) Math. floor(tilesetMaxcol / ratio);
long curMinRow = (long) Math. floor (tilesetMinrow / ratio);
long curMaxRow = (long) Math. floor (tilesetMaxrow / ratio);

//1terate over the tile set coordinates.
for (long ¢ = curMinCol; ¢ <= curMaxCol; c++) {
for (long r = curMinRow; r <= curMaxRow; r++) {

6.4 Partial Updating of Existing Tiled Image Sets 111

//For each tile , do the following:

TileAddress address = nmew TileAddress(r, c, scale);

//Determine the FOUR tiles from the higher scale that contribute to the
current tile.

TileAddress tile00 = new TileAddress(r x 2, ¢ * 2, scale + 1);
TileAddress tile01 = new TileAddress(r * 2, ¢ % 2, scale + 1);
TileAddress tilel0 = new TileAddress(r * 2, ¢ % 2, scale + 1);
TileAddress tilell = new TileAddress(r * 2, ¢ % 2, scale + 1);
//Retrieve the four tile images, or as many as exist.

BufferedImage image00 = cache.getTile(tile00);

BufferedImage imageOl = cache.getTile(tileO1l);

BufferedImage imagelO = cache.getTile(tilel0);

BufferedImage imagell = cache.getTile(tilell);

//Combine the four tile images into a single, scaled—down image.

BufferedImage tilelmage = new Bufferedlmage (TILE_SIZE, TILE_SIZE,
BufferedImage . TYPEINT_ARGB) ;

Graphics2D g = (Graphics2D) tileImage . getGraphics();

g.setRenderingHint(RenderingHints . KEY_INTERPOLATION, RenderingHints .
VALUE_INTERPOLATION_BILINEAR) ;

boolean hadlmage = false;

if ((image00 != null)) {
g.drawlmage (image00, 0, Constants .TILE_SIZE_.HALF, Constants.

TILE_SIZE_HALF, Constants .TILE.SIZE, 0, 0, Constants .TILE_SIZE,

Constants . TILE_.SIZE, null);
hadlmage = true;

}
if ((imagel0 != null)) {
g.drawlmage (imagel0, Constants.TILE.SIZE_.HALF, Constants .TILE_.SIZE_HALF
, Constants .TILE_.SIZE, Constants .TILE_.SIZE, 0, O,
Constants . TILE_SIZE, Constants . TILE_SIZE, null);
hadlmage = true;

}
if ((image0l != null)) {
g.drawlmage (image0l, 0, 0, Constants.TILE.SSIZE_HALF, Constants .
TILE_SIZE_HALF, 0, 0, Constants.TILE_SIZE,
Constants . TILE_SIZE, null);
hadlmage = true;

}
if ((imagell != null)) {
g.drawlmage (imagell, Constants.TILE.SIZE_.HALF, 0, Constants.TILE_SIZE,
Constants . TILE_SIZE_.HALF, 0, 0, Constants . TILE_SIZE,
Constants . TILE_.SIZE, null);
hadlmage = true;
}
//save the completed tiled image to the tile storage mechanism.
if (hadImage) {
cache.putTile(address, tilelmage);

O e o S S g g S
SOOI W~ OOV [SIRESNROVE S EE

DB W -

[=))

oo

112 6 Optimization of Tile Creation

Listing 6.7 Read an image region with scanline based access.

abstract void skipScanlines(ImagePointer im, int num);
abstract void readScanline (ImagePointer im, byte[] scanlineBuffer);

byte[] readScanlines (ImagePointer im, int imageWidth, int imageHeight, int x,
int y, int height, int width) {
byte[] outputlmage = new byte[imageWidth x* imageHeight % 3];
int startScanline =y — 1;
skipScanlines(im, startScanline);
byte[] tempBuffer = new byte[imageWidth % 3];
int imageCounter = 0;
int scanlineOffset = x * 3;
for (int i = 0; i < height; i++) {
readScanline (im, tempBuffer);
for (int j = 0; j < (width * 3); j++) {
outputlmage [imageCounter] = tempBuffer[j + scanlineOffset];
imageCounter++;
}
}

return outputlmage ;

Listing 6.8 Read a partial image region with tile-based image access.

abstract void seekToTile(ImagePointer im, int i, int j);
abstract void readTile (ImagePointer im, byte[] tileBuffer);

byte[] readTiles (ImagePointer im, int imageWidth, int imageHeight, int
tileWidth, int tileHeight, int x, int y, int height, int width) {

//Determine the range of tiles that will need to be read.
double numtiles = (Math.ceil ((double) imageWidth / tileWidth)) * (Math.
ceil ((double) imageHeight / tileHeight));

int startXTile = (int) Math.floor ((double) x / tileWidth);
int startYTile = (int) Math.floor ((double) y / tileHeight);

int endx = x + width — 1;
if (endx > imageWidth) {
endx = imageWidth;
int endy = y + height — 1;
if (endy > imageHeight) {
endy = imageHeight;

¥

int endXTile = (int) Math. floor ((double) endx / tileWidth);
int endYTile = (int) Math. floor ((double) endy / tileHeight);

int tileSizeBytes = tileWidth * tileHeight x 3;

int numtilesToDecode = (endXTile — startXTile + 1) x (endYTile —
startYTile + 1);

// Construct a temporary buffer with sufficient size to hold all of the
needed tiles .
byte[] templmage = new byte[numtilesToDecode * tileSizeBytes];

int templmageRowWidth = (endXTile — startXTile + 1) %= 3 % tileWidth;
byte[] tileBuffer = new byte[tileSizeBytes];

int startYTileCoord
int startXTileCoord

int bufferOffset = 0;
//Iterate over the tiles , in row—major order.

startYTile = tileHeight;
startXTile * tileWidth ;

—

(S RSNV)

19
20
21
22

6.4 Partial Updating of Existing Tiled Image Sets 113

for (int ty = startYTile; y <= endYTile; y++) {
for (int tx = startXTile; x <= endXTile; x++) {
// Position the image pointer to read at the needed tile.
seekToTile(im, tx, ty);
//Read the tile into the temporary buffer.
readTile (im, tileBuffer);
int bufferStartYTile = (ty — startYTile);
int bufferStartXTile = (tx — startXTile);
int bufferStartYPixel = bufferStartYTile % tileHeight;
for (int m = 0; m< tileHeight; m++) {
int startRow = (bufferStartYPixel + m) * tempImageRowWidth ;
int startColumn = bufferStartXTile * 3 % tileWidth;
for (int n = 0; n < tileWidth * 3; n++) {
tempIlmage [startRow + startColumn + n] = tileBuffer[m =x
tileWidth %= 3 + n];

}

//Trim the temporary buffer to match the desired region.
int xOffset = x — startXTile * tileWidth;
int yOffset = y — startYTile x tileHeight;
byte[] outputlmage = new byte[imageWidth % imageHeight * 3];
int imageCounter = 0;
for (int i = 0; i < imageHeight; i++) {
int rowOffset = (yOffset + i) * tileWidth;
for (int j = 0; j < imageWidth; j++) {
int columnOffset = j + yOffset;
outputlmage [imageCounter] = templmage [rowOffset + columnOffset
1
imageCounter++;
¥
¥

return outputlmage ;

Listing 6.9 Tile creation with partial source image reading.

abstract byte[] readPartiallmage (String name, int x, int y,
height);

abstract BufferedIlmage convertBytes(byte[] pixels);

int width, int

public void createTilesWithPartialReading (Sourcelmage [] sourcelmages,

TileOutputStream tileOutputStream, int baseLevel) {

//Determine the geographic bounds of the tile set.
//This can be based on the bounds of the source images.

BoundingBox[] sourcelmageBounds = new BoundingBox[sourcelmages.length];

for (int i = 0; i < sourcelmageBounds.length; i++) {
sourcelmageBounds[i] = sourcelmages[i].bb;

BoundingBox tileSetBounds = BoundingBox.union(sourcelmageBounds);
//Determine the bounds of the tile set in tile coordinates.
long mincol = (long) Math. floor ((tileSetBounds.minx + 180.0) / (360.0 /

Math.pow (2.0, (double) baseLevel)));

long maxcol = (long) Math. floor ((tileSetBounds .maxx + 180.0) / (360.0 /

Math.pow (2.0, (double) baseLevel)));

long minrow = (long) Math. floor ((tileSetBounds.miny + 90.0) / (180.0 /

Math .pow (2.0, (double) baseLevel — 1)));

long maxrow = (long) Math. floor ((tileSetBounds .maxy + 90.0) / (180.0 /

Math .pow (2.0, (double) baseLevel — 1)));

//Iterate over the tile set coordinates.
for (long ¢ = mincol; ¢ <= maxcol; c++) {
for (long r = minrow; r <= maxrow; r++) {

30

31
32

33
34

35
36

114 6 Optimization of Tile Creation

TileAddress address = new TileAddress(r, c, baseLevel);
// Compute the geographic bounds of the specific tile.
BoundingBox tileBounds = address.getBoundingBox () ;
//Iterate over the source images.
BufferedImage tilelmage = new Bufferedlmage (TILE_SIZE,
TILE_SIZE, BufferedImage .TYPE_INT_ARGB) ;
for (int i = 0; i < sourcelmages.length; i++) {
// Determine if the specific source image intersects the
tile being created.
if (sourcelmages[i].bb.intersects (tileBounds.minx,
tileBounds.miny, tileBounds.maxx, tileBounds.maxy)) {
//Determine intersection of tile and source image
BoundingBox partialBB = getlntersection(sourcelmages|[i
].bb, tileBounds);
// Convert geographic coordinates to image coordinates
Rectangle rectangle = convertCoordinates (sourcelmages|[i
].bb, partialBB, sourcelmages[i].width,
sourcelmages[i]. height);
//Read partial image data
byte[] data = readPartiallmage (sourcelmages[i].name,
rectangle .x, rectangle.y, rectangle.width,
rectangle . height);
//convert the pixel bytes to a Bufferedlmage
BufferedIlmage bi = convertBytes(data);
//Draw the converted pixels to the tile image
drawlmageTolmage (bi, partialBB , tileImage , tileBounds);

}

//Save the completed tiled image to the tile storage mechanism.
tileOutputStream . writeTile (address, tileImage);

Listing 6.10 Tile creation with a reader and tiler threads.

public void createTilesTwoThreads (TileCache cache, Sourcelmage[] sourcelmages,
int baseLevel) {
ReaderThread reader = new ReaderThread(sourcelmages);
reader.start ();
TilerThread tiler = new TilerThread(cache, baselLevel, reader);
tiler.start () ;
tiler.join () ;

}

class TilerThread extends Thread {

private TileCache cache;
private int baseLevel;
private ReaderThread reader;

public TilerThread(TileCache tileCache, int baseLevel, ReaderThread
reader) {
this.cache = tileCache ;
this .baseLevel = baseLevel;
this.reader = reader;

public void run() {

ImageWrapper image = reader.getlmage();
while (image != null) {
BoundingBox currentBounds = image.si.bb;

long mincol = (long) Math. floor ((currentBounds.minx + 180.0) /
(360.0 / Math.pow (2.0, (double) baseLevel)));

6.4 Partial Updating of Existing Tiled Image Sets 115

long maxcol = (long) Math. floor ((currentBounds.maxx + 180.0) /
(360.0 / Math.pow (2.0, (double) baseLevel)));
long minrow = (long) Math. floor ((currentBounds.miny + 90.0) /
(180.0 / Math.pow (2.0, (double) baseLevel — 1)));
long maxrow = (long) Math. floor ((currentBounds.maxy + 90.0) /
(180.0 / Math.pow (2.0, (double) baseLevel — 1)));
BufferedImage bi = image.bi;
for (long ¢ = mincol; ¢ <= maxcol; c++) {
for (long r = minrow; r <= maxrow; r++) {
TileAddress address = new TileAddress(r, c, baselLevel);
BoundingBox tileBounds = address.getBoundingBox () ;
BufferedImage tileIlmage = cache.getTile(address);
if (tilelmage == null) {
tilelmage = new Bufferedlmage (TILE_SIZE, TILE_SIZE,
BufferedIlmage . TYPEINT_-ARGB) ;
cache.putTile(address, tileImage);

drawlmageTolmage (bi, currentBounds , tileImage,
tileBounds);

image = reader.getlmage();

}

class ReaderThread extends Thread {

List<Sourcelmage> images = Collections.synchronizedList (new ArrayList<
Sourcelmage >()) ;

ImageWrapper currentlmage = null;
public ReaderThread(Sourcelmage [] images) {
for (int i = 0; i < images.length; i++) {
this.images.add (images[i]);
}
}
public void run() {

while (images.size() > 0) {

if (currentlmage == null) {
Sourcelmage si = images.remove(0);
BufferedImage bi = readlmage(si.name);
ImageWrapper iw = new ImageWrapper(si, bi);
currentlmage = iw;

}

try {

Thread . sleep (200) ;
} catch (InterruptedException e) {
e.printStackTrace () ;

}
¥
¥
public synchronized ImageWrapper getImage () {
ImageWrapper returnVal = null;
while (currentIlmage == null) {

if (images.size () == 0) {
return null;
}

try {
Thread . sleep (400) ;
} catch (InterruptedException e) {

116 6 Optimization of Tile Creation

e.printStackTrace () ;

returnVal = currentlmage ;
currentlmage = null;

return returnVal;
}
class ImageWrapper {

BufferedImage bi;
Sourcelmage si;

public ImageWrapper (Sourcelmage si, BufferedImage bi) {

super () :
this.si = si;
this.bi = bi;
}
}
References

1. Dean, J., Ghemawat, S.: Map Reduce: Simplified data processing on large clusters. Communi-
cations of the ACM-Association for Computing Machinery-CACM 51(1), 107-114 (2008)
2. Oaks, S.: Java Threads. O’Reilly (2004)

Chapter 7
Tile Storage

The two previous chapters presented several algorithms for creation of tiled images.
Each of those algorithms assumed that some mechanism was in place to support
storage and retrieval of tiled images. In this chapter, we will discuss such mecha-
nisms and provide technical guidance on choosing a tile storage system. We will
also discuss some advanced topics in tile storage, such as storage of tile metadata
and distributed storage of tiles.

7.1 Introduction to Tile Storage

Tiled image layers are divided into levels. Each level is divided into rows and
columns. Figure 7.1 shows a tiled layer divided into levels, then columns, and then
tiles. The general problem of tile storage is linking a tile’s address (Layer, Level,
Row, and Column) to a binary block of data. That linking should be quickly gener-
ated, retrieved, or altered. The practical problem of tile storage is how to organize
the blocks of data into levels, rows, and columns so that the tiled images can be
efficiently written to and read from disk.

All tiled images are stored in computer files on disk. Tiles can be stored in a
separate file for each image, bundled together into larger files, or in database tables.
(Database systems use files like any other computer program, so storing tiles in a
database indirectly stores them to file.)

The next three sections provide detailed explanations of alternative methods for
storing tiles in files. A fourth section provides performance comparisons between
the three methods.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 117
Principles and Practices, DOI 10.1007/978-1-4419-7631-4_17,
(© Springer Science+Business Media, LLC 2010

118 7 Tile Storage

Layer
‘ Level 1 ‘ Level 2 Level 3 Level 4 Level 5
Column 0 Column 1 Column 2 Column 3

Tile 1,0,0 || Tile 1,0,1

Fig. 7.1 Tiled image layer divided into components.

7.2 Storing Image Tiles as Separate Files

A simple and common method for storing tiled images is to simply store each image
in a separate computer file on the computer’s file system. Recall from Chapter 5, our
tiled images are formatted in standard image formats, like JPEG or PNG. Each of
these formats was designed to store an image as a single computer file. Folders (or
directories) on the file system can be used to provide structure and organization to
the tiled images. For example, we can use a top level folder for the layer, sub-folders
within the layer folder for each level, and then subfolders within the level folders
for each column. Within the column folders are the individual tiled images for each
row in that column. Figure 7.2 shows such an organization.

This type of organization is attractive to developers for several reasons. First, tiles
can be addressed directly by simply forming the filename and opening the file. For
example, if I want to create a tile, for layer "BlueMarble” at level 7, column 5, and
row 4 I can simply create the string "BlueMarble/7/5/4.jpg” and I have the filename
for the desired tile. With this method, there is no need for a separate index of tiles.
A second benefit is that tiled images can be replaced by newer versions with little
impact on the rest of the system.

Finally, and most importantly, building a Web server to host the tiled images in
this structure is trivial. Most HTTP servers, including Apache, can, by default, host

7.2 Storing Image Tiles as Separate Files 119
files directly on the file system accessible by the sub-path. So, to access a tile over
the web, I can construct a URL like the following:
http://www.sometileserver.com/BlueMarble/7/5/4.3pg

The HTTP server will simply retrieve the image directly from the file system with
minimal configuration.

Layer

Level 1

Level 2

Column 0

Column 1

Column 2

Column
3
Tile 2,3,0

Tile 2,3,1

Fig. 7.2 Folder based organization of tiled images.

However, there are several disadvantages of storing tiles in this method. From the
perspective of a software developer, file systems can appear to function by magic.
A developer simply names the file he wants, and it appears. He can add to it, delete
it, or move it. The system magically knows the size and location of the file, the date
it was modified, and which users have what permissions on the file.

In reality, file systems are among the most complicated parts of an operating
system. Even though a file can be created with a single line of computer code, there
are many things going on behind the scenes that enable that file to magically appear.
Space on the hard drive has to be located and allocated for the file. Lists of blocks
used to store the file have to be written along with the file’s metadata. To store this
information, file systems have their own meta-storage allocated. The file system’s
meta-storage has to be accessed for every file that is created or accessed. In everyday
use these operations often seem instant because modern operating systems can cache
the file system’s meta-storage in memory. However, when writing and reading many

http://www.sometileserver.com/BlueMarble/7/5/4.jpg

120 7 Tile Storage

millions of files the memory cache will fail to hold all the needed information, and
the file accesses will take much longer. When the small price of a single file access
is added to the creation of each and every tile, this method becomes very inefficient
and unsuitable for very large tile sets.

Additionally, many file systems do not index files by name. File lookups involve
a linear search within a given directory. This is especially problematic given our
structure in which a single column folder could hold thousands of image files.

Files are somewhat wasteful with regards to storage space because files are stored
in fixed size blocks. A common block size is 4096 bytes, so a file will be broken up
into pieces of this size. Files almost always consume an uneven number of blocks.
For example, a 10000 byte file will consume three blocks, and a total of 12288
bytes. The average wasted data per file is one half the block size. If the average
size of a tiled image file is 50,000 bytes, then the average wasted space is 2048
bytes. Therefore we are wasting around 4% of our storage space with this approach.
Four% would be a small price to pay in storage space if this approach yielded sig-
nificant performance improvements. However, since this approach will likely yield
significant performance degradations, the wasted space adds insult to injury.

In many cases tile sets must be copied from one location to another. Perhaps the
system that created the tiles is not the same one that will serve them to users over a
network, or perhaps multiple systems will be used to serve the same set of tiles. In
these cases copies of the entire tile set must be created. To create a copy of the tile
set with this storage method requires a separate file access and file write for each
tile. This process can take as long as the original tile creation step.

In general, storing tiles as separate image files is a horribly inefficient use of
the computer’s resources. However, there are a few scenarios in which this is a
good approach. First, when dealing with very small tile sets, those with only a few
thousand tiled images, this approach is perfectly valid. A more complicated solution
would be a waste of time. Second, when the inherent properties of the file system
are actually needed, this approach might be useful. For example, a developer might
need full use of permissions on each and every tiled image. If the tiles are updated
very frequently, and the older tiles can be discarded, this approach might be valid.
File systems have sophisticated methods of recapturing used storage space that is
no longer needed. Frequent changes to tiles would necessitate this capability.

There is one final scenario in which storing tiles as separate image files makes
sense. The File System in Userspace (FUSE) API' allows developers to create
custom file systems that mimic the properties of a file system on the front end, but
store the actual file data with a custom method defined by the developer. A FUSE
file system implementation could be created that would allow tiles to be written by
software as separate files. On the back end, the tiled images would be stored in an
efficient manner that eliminates much of the overhead associated with full featured
file systems. This FUSE implementation would also integrate with the HTTP server
used to distribute the tiled images. This approach would allow tile system developers

1http://fuse.sourceforge.net/

http://fuse.sourceforge.net/

7.4 Custom File Formats 121

to use a variety of existing, open-source tile creation and distribution tools on very
large tile sets.

7.3 Database-Based Tile Storage

A second approach to storing tiled images is to store the images within a relational
database management system (DBMS) as binary large objects (BLOB). Most mod-
ern database systems allow arbitrary size binary arrays to be stored along side struc-
tured columns. Using this approach, we can build a tiles” table with a column for
the image data and other columns for the address components of the tile: level, row,
and column. This approach is slightly more complicated than simply storing the data
in files. However, since modern database systems use sophisticated techniques for
paging of storage this approach might be more efficient. Additionally, we can create
indices on the address columns, which could reduce search time.

A disadvantage of this approach is that database systems can be costly in terms
of expense, setup, configuration, and maintenance. Like the file system approach,
this approach brings a lot of unneeded features that may introduce overhead into the
system. Database systems are designed to operate on highly structured data, such as
small numeric and character fields. A tile storage system has little need for queries
on structured data. Databases also excel at revision control which is unlikely to be
needed for a tile system.

As will become apparent in the Comparative Performance section, databases are
unlikely to be widely used for storage of tiles. However, there are a couple of scenar-
ios in which they may apply. First, some commercial Web hosting systems provide
users with read/write access to a database but not to the file system. If we were
forced to use this type of system, we would have to store our tiles in a database.
Secondly, if our tile application required sophisticated query functionality we might
need a database. For example, if our tiled images also came with extensive metadata
like dates, places, names, and keywords that need to be queried for tile retrieval, a
database would be useful. A database/file hybrid approach is also a possibility. In
this case, the tiles metadata and addresses would be stored in a database, and the
image data stored in large flat files.

7.4 Custom File Formats

Another approach to storing tiled images is to use a custom designed file format. In
this case many tiled images are packed together in a single file instead of in multiple
files. This approach necessitates development of an organizational system to keep
up with the locations of the tiled images in the single file. It also requires a custom
index that allows lookup of tile positions within the large files. This method can
offer vastly improved performance, since the inefficiencies of the underlying file

122 7 Tile Storage

system are mitigated. Another benefit is that the large custom files can more easily
be copied from one location to another than many millions of smaller files.

A disadvantage of this system is that, if tiled images change frequently, the cus-
tom files may become fragmented. That is, they are littered with out-of-date tiled
images that need to be cleaned up. Another disadvantage is that the tiled images
cannot be directly accessed by an HTTP server. The server will need a custom mod-
ule to read the custom formatted files.

In the next chapter we will present two methods for storing images in custom file
formats. We will explain the tiled image organization system as well as some high
performance indexing schemes.

7.5 Comparative Performance

The three previous sections have explained three alternative methods for storing
tiled images. In each of those sections we presented some conceptual and practical
advantages and disadvantages of each method. In this section we will use some test
programs to show the differences in performance.

Benchmarking file writing and reading is very challenging. Modern operating
systems perform a lot of caching that can interfere with the results. The best way
to measure performance is to create benchmarks that are very close to real-world
tasks and run those many times. In this fashion, you can replicate a realistic user
environment and average out anomalous results. Before each test we will clear the
file system’s cache by executing the following Linux command as superuser:

echo 3 > /proc/sys/vm/drop caches
This will help ensure each test is performed in a similar environment. The hardware
and software configuration for these tests is the same for all tests and is listed in
Table 7.1.

Operating System Debian 5

Java Virtual Machine 1.6.0-15 (64 bit)

DBMS Postgres 8.4, default configuration
Processors 2 2.0Ghz AMD Opteron

RAM Size 16GB DDR2 776Mhz

Hard Drive Specification |Dell MD1000 with 15 1TB SAS drives
File System XFS

Table 7.1 Test configuration.

7.5 Comparative Performance 123

7.5.1 Writing Tests

This first set of tests will examine writing tiled images. We will write a large num-
ber of tile-sized pieces of memory to disk in three different ways and compare the
results. In each of the writing tests, we will write tile-sized pieces for each tile
in zoom levels 5 through 11. Zoom levels 5 though 11 have 512; 2,048; 8,192;
32,768; 131,072; 524,288; and 2,097,152 tiles, respectively. Each piece of data will
be 50,000 bytes in length. The data we write will be simple arrays of random or
zero data. We are concerned only with testing the different types of 1/O, so the ac-
tual contents of the files are not important. We will run each test 30 times to get
average performance numbers.

To represent the three methods, we have written three simple implementations.
The first implementation writes each tile to a separate file. The second implementa-
tion writes all the tiles into a single file for each zoom level and includes an index
of tile locations. The third implementation writes all the tiles into a single database
table for each zoom level. Each test writes the data to new files and not over existing
files.

Listing 7.1 shows the three implementations. In the section “WriteTilesSin-
gleFile” we reference the classes IndexedTileOutputStream and IndexedTileInput-
Stream. These classes are part of the first tile storage implementation discussed in
the next chapter and their code is presented there. Table 7.2 shows the results from
running the write tests 30 times each. The mean times are in seconds. ;From this

Level |Number of Tiles|Single File per Tile|Single File per Level | Database Table per Level

Mean | StdDev | Mean StdDev Mean StdDev

5 512 0.1049 | 0.027 | 0.086 0.022 0.683 0.033

6 2,048 0.8477 | 0.075 | 0.257 0.029 2.654 0.198

7 8,192 3.5807 | 1.623 | 1.090 0.115 10.540 0.509

8 32,768 14.2025 | 1.857 | 3.795 0.187 42.145 1.140

9 131,072 56.7045 | 2.567 |21.532 0.265 167.979 3.964

10 524,288 244.9717| 3.862 |91.684 0.695 673.950 12.783

11 2,097,152 1999.9249| 27.582 (383.365| 2.762 |2767.647 67.018

Table 7.2 Mean times in seconds and standard deviations from 30 trials of write tests.

table we can see that writing multiple tiles to a single large file yields the best per-
formance. Writing each tile to a separate file takes 2 to 3 times the amount of time.
Writing tiles to a DBMS takes 5 to 10 times the amount of time. Figure 7.3 plots
the results in terms of average write per tile. The write times for each level are fairly
consistent.

Many DBMS systems support bulk imports of data. It would be possible to write
tiles out using the fast single file method and then import the data into the database.
We have not benchmarked this procedure. Though it would offer some improvement
in write performance, it would still be slower than simply writing to the single file.
We will see in the next section that reading from the database is also significantly
slower.

124 7 Tile Storage

x 10°
1.4~
I a : : e
1.2+
1k
—+— Single File per Tile
—=&&— Single File per Level
w 0.8 —+— Database Table per Level
2
3]
® 06}

*

0.4} A

o

Fig. 7.3 Plot of average write times per tile.

7.5.2 Reading Tests

For the reading tests, we will use the tiles written in the previous step. The first test
will mimic random access of tiles stored on disk, and the second test will mimic
random access of tiles cached in memory by the operating system.

7.5.2.1 Random Tile Access Tests

For this test we will generate a single random list of tiles of levels 5 through 11. The
list will contain 10,000 tile addresses. For each of the three file storage methods, we
will iterate over the list of tiles and read each tile from disk. The code for the test is
shown in Listing 7.2, and the results are shown in Table 7.3. In this test the single
file per level method is fastest, but the database method is a close second. The single
file per tile method is slowest.

Single File per Tile|Single File per Level [Database Table per Level

Total Read Time (10,000 tiles)| 379.455 seconds 112.357 seconds 146.926 seconds
Read Time per Tile 37.9 milliseconds | 11.2 milliseconds 14.7 milliseconds

Table 7.3 Read times for random tile access.

7.5 Comparative Performance 125

7.5.2.2 Effect of Cached Tile Data

As stated earlier, modern operating systems cache disk file data in memory to speed
up access. This test will demonstrate and measure the effect of such caching. In the
previous test we read 10,000 random tiles from disk. In this test, we will read 1000
tiles 20 times. The first read will read from disk, and subsequent reads should pull
from system memory.

Trial|Single File per Tile|Single File per Level [Database Table per Level
1 40.994 15.952 23.838
2 0.881 0.190 2.328
3 0.828 0.183 2.357
4 0.162 0.211 2.339
5 0.162 0.137 2.284
6 0.159 0.129 2.269
7 0.117 0.121 2.280
8 0.116 0.121 2.298
9 0.117 0.197 2.273
10 0.117 0.121 2.285
11 0.127 0.116 2.200
12 0.101 0.112 2.174
13 0.101 0.110 2.195
14 0.099 0.105 2.171
15 0.098 0.121 2.178
16 0.100 0.105 2.249
17 0.098 0.112 2.226
18 0.100 0.105 2.200
19 0.098 0.106 2.242
20 0.100 0.111 2.228

Table 7.4 Cached tile read times in seconds.

In Table 7.4, we can see that the first read of the 1000 tiles took by far the longest.
Table 7.5 shows the results averaged with and without the first trial. We can see that
the average times decreased significantly without the first trial.

Single File per Tile|Single File per Level | Database Table per Level
Including first trial 2.2337 0.9232 3.3307
Excluding first trial 0.1937 0.1323 2.2514

Table 7.5 Average read times in seconds with and without first trial.

Table 7.6 compares the cached and non-cached tile read times. The single file
per zoom level sees over an 8 to 1 improvement. The database table per zoom level
sees over a 6 to 1 improvement. Finally, the single file per tile sees nearly a 20 to 1
improvement. In all cases, the single file per zoom level performs the best overall.

Consideration of memory cached tile files is important. In most cases the tiles
from the top zoom levels will be the most commonly accessed, though they are the

126 7 Tile Storage

Single File per Tile|Single File per Level [Database Table per Level
No Caching 37.9 11.2 14.7
With Caching 1.9 1.3 22

Table 7.6 Cached versus non-cached tile read times in milliseconds.

lowest resolution. Tiled map clients will often start with a default view at the world
or national level. Users will then zoom in to the specific areas they wish to view.
Following this process will cause the top level tiles to be seen by almost all users.
A very significant performance improvement can be realized by holding the most
commonly accessed tiles in memory, either implicitly by the operating system or
explicitly by the tile serving system.

7.6 Storage of Tile Metadata

So far we have not considered the need to store metadata about our source im-
ages and tiled images. Metadata includes all of the non-imagery data that might be
needed. Important pieces of metadata that should be stored along side the tiled im-
ages include the date and version number of each tile and the source image(s) used
to create each tile. Technical details like the resolution of source imagery used to
make the tile or the original map level of the source data should also be included.

A system for maintaining tiled image sets should know which source images
have been used to create which tiles so it can perform proper updates to those tiles
when the source imagery changes. Large tiled image sets are often created from
heterogeneous collections of imagery. Users of a tile-based system will want to
know specifically what data was used to create the tiles.

This data is typically smaller than the image data. It can be stored in manners
similar to storage of tiled images. In the case where we used a separate file for a
tiled image, we could make a separate file for the metadata. We could also put the
tile metadata in a database table or packed together in large files with tiled images.
The specific means of storing of metadata is not as important as understanding and
fulfilling the need to keep up with the data.

7.7 Storage of Tiles in Multi-Resolution Image Formats

The two key benefits of a tile-based system are that:

e Tiles are stored pre-rendered, exactly as needed for user consumption.
e Lower resolution views are pre-generated and quickly available.

The primary drawback of tile-based systems is the source imagery must undergo
extensive reformatting. Multi-resolution image formats like JPEG2000 and MrSID

7.9 Online Tile Storage 127

are a possible alternative to this reformatting. As is, they meet one of the two key
requirements for a tile based system. They use image transforms (typically wavelet
based) to generate a multi-resolution encoding of an image. The multi-resolution
views can be used to provide the lower resolution zoom level imagery for a tile-
based system.

However, these formats do not meet the first requirement. To get a useable sub-
image from a wavelet encoded image, several steps must be performed. Because the
data is stored in multiple resolutions in multiple places in the file, several file seeks
and reads are required. Use of these formats is a tradeoff. They eliminate the need
for pre-processing and require less storage space, but they will always require more
processing and I/O for tiled image retrieval.

7.8 Memory-Cached Tile Storage

In some cases tile retrieval performance must be as fast as possible. This can be a
requirement to support real-time applications or to support many millions of users.
In these cases, developers may want to create a method for caching entire tile sets
in memory. Tile sets will still be archived to file but will be held in memory at
run-time. Sizable tile sets will have to be spanned over several computers for this
approach to work. Software systems like Memcached? are designed for exactly this
type of problem. Memcached is used to cache large data sets in the memory of many
separate computers.

7.9 Online Tile Storage

So far we have considered storing tiles in files on a computer’s file system or mem-
ory. There are online file storage alternatives. Several services exist which allow
Web accessible storage space to be rented. These services provide the storage space
hosting with a high degree of reliability, often with multiple backups. One such
service is Amazon’s Simple Storage Service (S3)3. S3 is accessible through a web
services interface that allows users to write and read data over HTTP. S3 uses a
simple key-value storage system. Data objects (similar to BLOBs) are stored and
accessible with a key. The key is used in the formation of an HTTP URL for access
to the resource. For example, the following URL could be used to retrieve the binary
resource.

http://www.somestorageservice.com/mykey

Since tiled images are discretely addressable and designed for use over HTTP,
approaches like this are promising for tile-based systems. The primary disadvan-

2 http://memcached.org/
3 http://aws.amazon.com/s3/

http://www.somestorageservice.com/mykey
http://memcached.org/
http://aws.amazon.com/s3/

128 7 Tile Storage
tages of this type of storage will be cost and efficiency. However, for very large
tile sets with many users, this type of system might be more cost-effective than the
required hardware and bandwidth of a self-hosted solution.

7.9 Online Tile Storage 129

Listing 7.1 Write test implementations.

public static void writeTileMultipleFiles (String outputFolder , int cols,
int rows) {
File f = new File(outputFolder);
f.mkdirs () ;
byte[] data = new byte[byteSize];
for (int i = 0; i < cols; i++) {
String folderName = outputFolder + ”/” + i;
File folder = new File (folderName);
folder . mkdirs () ;
for (int j = 0; j < rows; j++) {
File tileFile = new File(folderName + ”/” + j + ”.bin");
FileOutputStream fos;
try {
fos = new FileOutputStream (tileFile);
BufferedOutputStream bos = new BufferedOutputStream(fos);
bos. write (data) ;
bos.close () ;
} catch (Exception e) {
e.printStackTrace () ;
}

}

public static void writeTilesSingleFile(String outputFolder , int cols, int
rows , int level) {
File f = new File(outputFolder);
f.mkdirs () ;
byte[] data = new byte[byteSize];
IndexedTileOutputStream ptos = new IndexedTileOutputStream (f.
getAbsolutePath(), "testing”, new TileRange(0, cols — 1, 0, rows —
1, level));
for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {
ptos. writeTile (i, j, data);

ptos.close ()

String s = ptos.getBinFile ()

IndexedTileInputStream iii = new IndexedTilelnputStream(s);
iii.close();

}

public static void writeTileDatabase (String tableName, int cols, int rows,
int level) {
try {
Connection ¢ = DriverManager. getConnection (”jdbc: postgresql://” +
localhost/” + “tiledb”, "user”, "password”);
Statement stmt;
stmt = c.createStatement () ;
byte[] data = new byte[byteSize];
try {
stmt.execute ("DROP TABLE ” + tableName);
} catch (Exception e) {
¥

try {
stmt.execute ("CREATE TABLE ” + tableName + ”(id bigserial

PRIMARY KEY ,” + "row bigint , ” + “col bigint,” + “image
bytea)”);
} catch (Exception e) {
e.printStackTrace ();
return;

s

PreparedStatement ps = c.prepareStatement (”INSERT INTO ” +
tableName + ”(row,col,image) VALUES (?,?,?)”);

130

for (int i = 0; i < cols; i++) {
for (int j = 0; j < rows; j++) {
ps.setLong(l, j);
ps.setLong (2, i);
ps.setBytes (3, data);
ps.execute () ;
}
}
try {
stmt.execute ("CREATE index ” + tableName + ”_index
tableName + ” (col,row)”);
} catch (Exception e) {
e.printStackTrace ()
return;

}

} catch (SQLException el) {
el.printStackTrace () ;

}

7 Tile Storage

”

on +

Listing 7.2 Random read tests.

private static void readTilesMultipleFiles (String dataLocation ,
String > lines , int trial , int numreads) {

int count = 0;
for (String s : lines) {
if (count == numreads) {
break;
count++;

s

String [] data = s.split(”:”);

String level = data[0];

String column = data[l];

String row = data[2];

String filename = dataLocation + ”/” + trial +
column + ”/” 4+ row + ”.bin”;

File f = new File(filename);

byte[] bytes = new byte[(int) f.length()];

try {
FileInputStream fis = new FilelnputStream (f);

» e

ArrayList<

+ level + /7 +

BufferedInputStream bis = new BufferedInputStream (fis);

DatalnputStream dis = new DatalnputStream(bis);

dis .readFully (bytes);

dis.close ();

if (count % 1000 == 0) {
System.out. println (count +

” .

+ bytes.length);

} catch (Exception e) {
e.printStackTrace ();
}

}

private static void readTilesSingleFile (String dataLocation, ArrayList<

String > lines , int trial , int numreads) {

IndexedTileInputStream[] streams = new IndexedTilelnputStream[12];

int count = 0;
for (String s : lines) {
if (count == numreads) {
break;
}

count++;
String [] data = s.split(”:”);

int level = Integer.parselnt(data[0]);
long column = Long.parseLong(data[l]);

7.9 Online Tile Storage 131

long row = Long.parseLong(data[2]);
if (streams[level] == null) {

long maxCol = TileStandards .zoomColumns[level] — 1;

long maxRow = TileStandards .zoomRows[level] — 1;

streams [level] = new IndexedTilelnputStream(dataLocation + ”/”

+ trial + 7.7 + level, "testing”, level);

IndexedTilelnputStream itis = streams|[level];

byte[] bytes = itis.getTile(column, row);

¥
for (int i = 0; i < streams.length; i++) {
if (streams[i] != null) {
streams [i].close () ;
}
}
}
private static void readTilesDatabase (ArrayList<String> lines , int numreads
)
try {
Connection ¢ = DriverManager. getConnection (”jdbc: postgresql ://” + 7

localhost/” + “tiledb”, “username”, “password”);
Statement stmt;
stmt = c.createStatement () ;

int count = 0;
for (String s : lines) {
if (count == numreads) {
break
count++;

2,

String[] data = s.split(”:”);

int level = Integer.parselnt(data[0]);

long column = Long.parseLong(data[l]);

long row = Long.parseLong(data[2]);

String tableName = "tiles-” + level;

ResultSet rs = stmt.executeQuery ("SELECT image from
tableName + ” and row=

rs.next();

byte[] bytes = rs.getBytes(1);

»

where col=" + column +

”»

stmt.close () ;

} catch (SQLException el) {
el.printStackTrace () ;

}

s

+
+ TOwW) ;

”»

Chapter 8
Practical Tile Storage

The previous chapter gave overviews for several different methods for storing tiled
images. In this chapter we will present two fully-implemented techniques for stor-
ing tiled images together in large files. This type of method proved to be the best
performing for writing, random reading, cached reading, and bulk copying. Further-
more, it is rather simple to implement. The first implementation shown is a fully
functional method for writing and reading tile files and takes only about 200 lines
of Java code for the reading, writing, and indexing methods.

Additionally, we will present the techniques with accompanying methods for
creating tile indexes. These storage methods are designed to handle large and small
sets of tiled images and are portable and updateable.

8.1 Introduction to Tile Indexes

Our goal is to store many hundreds or thousands of tiled images in a single file.
This could be done by simply writing each image sequentially to a file. However,
there would be no way to retrieve the images individually. There would be no way
to know which tile address corresponded to which image. We could store the tile
address before each image in our file, as shown in Figure 8.1. The problem with this
method should be obvious. In order to access a specific tiled image, we have to scan
the whole file. For tiled images sets of any significant size this method would be
prohibitively inefficient. Instead we need to create a separate index into the file that
will allow us to quickly look up the location of a specific tile in the file.
There are two principal ways we can construct the index:

e Sequential list of tile address to file position pairs
e Direct lookup table of file positions.

The simplest method is just to store the tile address, the position in the file and
the size of the tiled image in a sequential list. This method is shown in Figure 8.2.
The sequential list must still be searched for each tile query. However, the index

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 133
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__8,
(© Springer Science+Business Media, LLC 2010

134 8 Practical Tile Storage

Retori Tile Address Tile Image

(Row, Column, Level) (N bytes)
Recand2 (Rov\‘rl:“go‘?:ri:sl_sevel) 1;“':1:3:2;
Racong 3 (Row‘l:“go?t?riﬁsl_sevel) -I;iflfl:a:g;
Record 4 (RovligoT:r?\r:sfevel) T(ill\ftl;:g)e

Fig. 8.1 Tile file with embedded addresses.

Index File

Basord Tile Address File Address
(Row, Column, Level) (Position, Size)
Record 2 Tile Address File Address
(Row, Column, Level) (Position, Size)
Record 3 Tile Address File Address
(Row, Column, Level) (Position, Size)
Becaida Tile Address File Address
(Row, Column, Level) (Position, Size)
Tile File
Tile Image P
(N bytes) ki
Tile Image o
(N bytes) -
Tile Image _
(N bytes) -
Tile Image =
(N bytes) -

Fig. 8.2 Tile index stored as sequential list of addresses.

8.1 Introduction to Tile Indexes 135

information is several orders of magnitude smaller than the actual tiles, thus scan-
ning a separate index file for each query, while still inefficient, is must faster than
scanning the whole file. An optimized variant of this method is to sort the data in
the tile index. In this fashion a linear search could be used to speed up searching the
index list.

The second method is to create a direct lookup table of file positions. For ex-
ample, as shown in Figure 8.3, tile zoom level 3 has 8 columns and 4 rows, so the
lookup table only requires 32 records. The table could be stored in a file in row-
major or column-major format. The position of any given record can be directly
computed, and only a single seek and read is required to retrieve the file position
for a specific tile. We can store a null value in the lookup table to indicate that a
tile does not exist for that specific address. If the table is stored in row-major order,

Lookup Table: Zoom Level 3

Column0 | Column1 | Column2 | Column3 | Column4 | Column$S | Column& | Column 7
Row 0 File File File File File File File File
Address Address Address Address Address. Address Address Address
(Fosition, (Position, (Position, (Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)
Row 1 File File File File File File File File
Address Address Address Address Address Address Address Address
(Position, (Position, {Position, (Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)
Row 2 File File File File File File File File
Address Address Address Address Address Address Address Address
(Position, (Position, {Position, {Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)
Row 3 File File File File File File File File
Address Address Address Address Address Address Address Address
(Position, (Position, {Position, (Position, (Position, {Position, (Position, (Position,
Size) Size) Size) Size) Size) Size) Size) Size)

Fig. 8.3 Lookup table for zoom level 3.

Equation 8.1 is used to compute the position in the array of addresses.
p=j*Cti @.1)
where

i = column index
j =row index
C = number of columns
p = position of tile record

The disadvantage of this approach is that the size of our lookup table file grows
by 4 times for each successive level. If the file address is stored as an 8 byte integer

136 8 Practical Tile Storage

and the size is stored as a 4 byte integer, we need 12 bytes for each record. Zoom
level 17 contains 131,072 columns and 65,536 rows for a total of 8,589,934,592
tiles. This would require over 100 gigabytes just for the index file. If we had a
tile set with a complete (or nearly complete) coverage of the earth’s surface at that
resolution, this approach would be appropriate.

However, this is unlikely. Most of the earth’s surface is covered with water (liquid
and ice) that is rarely imaged at high resolution. Few tile sets will cover even a
fraction of the earth’s surface. In these cases, we should develop an indexing method
that provides direct lookup of tile locations, but also allows us to have lookup tables
that cover only a subset of the entire level. This can be easily accomplished by
providing for offsets attached to the index table. Rather than having all index tables
start at (0,0) and covering the full range of tile addresses, we can provide external
start and end addresses for index tables.

The next two sections will each present an algorithm for storing large amounts of
tiled images. Each algorithm comes with its own unique method for indexing tiles.
Those methods are modified versions of the direct lookup algorithm.

8.2 Storage by Zoom Level

Our first technique for storing tiles is to store all the tiles for a specific zoom level
in a single file. This is the same technique that was tested and benchmarked in the
previous chapter. This technique uses three files for each zoom level, one file for the
tiled images and two files for the index.

The file containing the tiled images is simply a sequential list of tiled images.
It first stores a magic number to serve as a sentinel value. Then it stores the tile’s
address and size. Finally it stores the tiled image data. The sentinel values and tile
addresses are stored to make the tile images recoverable in the case that the tile file
or index files become corrupted. Figure 8.4 shows the record structure for the tiled
image file. Since the tiles do not have to be stored in any particular order, tiles can
be written over a period of time. New tiles can be added to the file by simply writing
them at the end of the file.

The index storage is slightly more complicated. Recall from the previous sec-
tion that our lookup table based method can require a very large lookup table for
the higher resolution zoom levels. To reduce the required size we have designed a
two-step lookup table. We use the same approach to writing the lookup table from
Figure 8.3, except that we only store rows in the index file that actually have tiles
in them. So if our tile set only has 100 rows, then our tile index will only have 100
rows worth of tile addresses.

To accomplish this we have to create an additional index file, a row index file.
This file contains a single value for each row in our set. If the row has any tiles, we
store the location of that row’s index records from the tile index file. If the row does
not have any tiles, we store a null value in the file.

8.2 Storage by Zoom Level 137

Magic Tile Address Tile Size Tile Image
Number (Row, Column) (N bytes)
Number | (Row Gl | TeSEe Novien
Number | (Row Gl | T SEe Novieny
Number | (RowColm) | TWeSEe oy

Fig. 8.4 Structure of tiled image file.

An example of this method is shown in Figure 8.5. We have used the same table
from Figure 8.3, but we have assumed that rows 0 and 2 contain zero tiles. In this
case, neither of those rows is stored in the index table, and the subsequent table is
only half the size. Thus, the advantage of this technique is reduced space require-
ments for the index file. The disadvantage is that we have to do two seeks and reads
to get the tile address. However, as shown in the previous chapter’s benchmarks, the
performance is still very good.

Row Index File

Row 0
NULL

Row 1
M

Row 2
NULL

Row 3

Tile Index File

Column 0 | Column 1 | Column2 | Column 3 | Column 4 | Column5 | Column6& | Column 7
Row 1 File File File File File
L Address Address NULL NULL NULL Address Address Address
(Position, (Position, (Position, (Position, (Position,
Size) Size) Size) Size) Size)
Row 3 File File File File File
Address Address NULL NULL NULL Address Address Address
(Position, (Position, (Position, (Position, (Position,
Size) Size) Size) Size) Size)

Fig. 8.5 Two-step tile index method.

138 8 Practical Tile Storage

To get the address for a specific tile, seek to the position of the row pointer in the
row index file and read the value. If the value is non-null, use that value to position
the tile index file. Then seek additional positions for the column index and read
the tile address. Listings 8.1 and 8.2 present example code for writing and reading
indexed tiles.

8.3 Introduction to Tile Clusters

The previous method works well and could be modified such that all levels can be
contained in a single file. This would require addition of a third index file, a level
index file similar to the row index file. Each tile address lookup would require 3
seeks and reads.

However, this method would not address two of the problems discussed in the
tile creation chapter. Recall both the performance improvements made possible by
caching tiles in memory (Section 6.1) and the requirement to have logically defined
sub-groupings of tiles for distributed tile creation (Section 6.3.2). To address both
of these requirements we propose a method for grouping tiled images in clusters.

Tiled image layers follow a pyramid type structure, see Figure 8.6. Each level
has 4 times the number of tiles as its predecessor. Also, each lower resolution level
is based on the image data from the next higher resolution level.

Tile Set with 5 Levels

Level 1 (2 Tiles) 00 |01
Level 2 (8 Tiles) |U.O |n.1 Io.z ‘0.3 |1.n ‘1.1 ‘1,2]l,:}]
Level 3 (32 Tiles) 0% 19 | 192 92 L 1] rafras e

) 00 |01 [o2 [o3 1528 [15,29 | 1530 | 1531
Level 4 (128 Tiles)

00 |01 Joz o3 at, | a1 | a1 | 3,
Level 5 (512 Tiles) € | &1 | &2 | &3

Fig. 8.6 Pyramid structure of tile images.

Our cluster-based grouping method starts by dividing the world into two clusters,
(0,0) and (0,1). Figure 8.7 shows that division, and Figure 8.8 shows the structure
of a cluster with 5 levels. The tiles that fall into the area marked by address (0,0) are
stored in cluster (0,0), and all the tiles that fall into the area marked by address (0,1)
are stored in cluster (0,1). By choosing this division we ensure that there are no tiles
that overlap both clusters.

The number of tiles for a tile set with 1 levels is computed with Equation 8.2:

8.4 Tile Cluster Files

139

Level 1

Fig. 8.7 World divided into two clusters.

Tile Cluster with 5 Levels

Level 1 (1 Tile) 00
Level 2 (4 Tiles) 00 |01 [10 |11
Level 3 (16 Tiles) oo jo foz. 103 30 [31] 32|33
Lsvel 4:(64 Tiles) 00 [o1 [o2 [o3 15,12 | 15,13 | 15,14 | 15,15
eve iles

00 (o1 [oz [o3 3, | a1, [31, | 3,
Level 5 (256 Tiles) 28 | 29 | 30 | 3
Fig. 8.8 Structure of a cluster with 5 levels.

L . .
N=3 22" (8.2)

i=1

The number of tiles for a cluster with 1 levels is the value from Equation 8.2 divided

by two, or as shown in Equation 8.3:

! 2 2i—2
N =) 277
2

8.4 Tile Cluster Files

(8.3)

To store tiles in cluster files, we must first set the number of levels to be stored. For
a tile set with a base level of 7, we will need two cluster files, each with 7 levels of
tiles and 5,461 tiles. Because the possible number of tiles is fixed for each cluster,

140 8 Practical Tile Storage

we can build a single fixed length lookup index and store it at the beginning of the
cluster file. The index size will be the number of possible tiles times the size of the
tile address record. After the index, we can store the tiled images sequentially in the
file. Since we have an index, we do not need to store the tiles in any particular order.
Figure 8.9 shows the file structure for a cluster file.

Tile Cluster File

7| File Address File Address File Address File Address File Address
(Position, Size) (Position, Size) (Position, Size) {Position, Size) (Position, Size)
File Address File Address File Address File Address File Address
Index (Position, Size) (Position, Size) (Position, Size) (Position, Size) (Position, Size)
SectiOn File Address File Address File Address File Address File Address
(Position, Size) (Position, Size) (Position, Size) {Position, Size) {Position, Size)
File Address File Address File Address File Address File Address
(Pasition, Size) (Position, Size) (Position, Size) (Position, Size) (Position, Size)
>- Magic Tile Address Tile Image
Mumber {Level, Row, Column) Tile Stz (N bytes)
Magic Tile Address Tile Siz Tile Image
Tile 1mage Number (Level, Row, Column) S (M bytes)
Section Magic Tile Address Tile Size Tile Image
Mumber {Level, Row, Column) (N bytes)
Magic Tile Address Tile Image
_ | Nomber | evel.Row Colurmn 1ieStze (N bytes)

Fig. 8.9 Structure of a tile cluster file.

8.5 Multiple Levels of Clusters

When applying this method to tile sets with several more than 7 levels, we will
experience the same problem discussed in Section 8.1. Our index will be too large.
Imagine a tile set with only 100 tiles at level 15. Scaled versions of those 100 tiles
will give us about 50 additional tiles with levels 14 to 1. That is a total of 150 tiles. If
each tile is 50,000 bytes then the size of the tiles in total is 7.5 megabytes. However,
a cluster file with 15 levels can have up to 357,913,941 tiles. If each index record
takes up 12 bytes, the size of the index table would be 4,294 megabytes, or almost
600 times the size of the actual image data. This is a highly impractical consequence.

To alleviate this problem we allow multiple levels of clusters, with each level
covering a continuous sub-range of levels. For example, if we have a tile set with 15
levels, we will have two levels of clusters, one level with contain tile levels 1-7, and
the other level of clusters will contain levels 8-15. The first level contains 7 levels,

8.6 Practical Implementation of Tile Clusters 141

and the second level contains 8 levels. The indexes for multi-level cluster groups
will never grow unmanageably large.

Continuing the example of a multi-level set of clusters, the first set, those with
levels 1-7, can only have up to two clusters. While the second set, representing
levels 8-15 can contain as many clusters as there are tiles in level 8. This number is
32,768. However, in practice we will only create clusters files when there are tiles
that belong in the cluster. Few tile sets will have complete coverage of the whole
world at a high resolution, and thus the full 32,768 would never actually be needed.
The actual required number would fluctuate based on the size of the tile set.

Multi-Level Cluster Structure

Levels 1-7
(2 Clusters)

Cluster (0,0)
Levels 1-7

Cluster (0,1)
Levels 1-7

Levels 8-15
(32,768 Clusters)

Cluster
(0,0)
Levels 8-15

Cluster
(255,511)
Levels 8-15

Fig. 8.10 Organization of multiple levels of tile clusters.

8.6 Practical Implementation of Tile Clusters

Listing 8.3 implements a cluster-based tile storage method. Since the internal file
structure of our cluster files is relatively simple the implementation is relatively
straightforward. The most difficult component of the practical implementation of
our cluster-based storage system is the algorithm to determine in which cluster a
given tile should be placed. That algorithm can be seen in the methods ~getIndex-
Position” and “getClusterFileTileAddress”.

142 8 Practical Tile Storage

8.7 Application to Memory Cached Tiles

In Chapter 5, we saw potential performance improvements from holding tiles in
memory while they were being created. The cluster-based storage technique works
very well with this concept. To implement this with the cluster technique, we first en-
sure that our clusters are divided small enough to be held uncompressed completely
in memory. If that is the case, then we alter our tile creation method to create tiles
for one cluster at a time. We modify our clustered tile storage algorithm by simply
adding a cache that holds all the tiles in memory as they are written. It writes them to
file at the end of the tile creation process. This offers an additional performance im-
provement. If we write all the tiles at one time, we can write them sequentially and
avoid using random file seeks, reads and writes. Random file accesses are generally
slower than sequential accesses.

8.8 Application to Distributed Computing

The application of the tile clusters technique to distributed computing should be
obvious. Multiple computer systems can be tasked with creating the tiles locally for
specific cluster files. The individual cluster files can exist separately and function
with minimal interaction, so they are a natural fit for highly distributed computing.
After a cluster is completed, the single file can be copied back to a centralized
location.

8.9 Performance Optimizations of Tile Cluster Method

There are several other potential performance optimizations available with the clus-
tered storage technique. First, in our example code we opened and closed the various
cluster files for each read and write. This is generally slower than maintaining con-
stantly open files and reading and writing from them. Therefore, we might alter our
algorithm to keep all the cluster files open throughout the process. However, many
systems enforce a limit on the number of open files at any one time. Therefore, to
get some performance benefit we can maintain a cache of recently opened files. The
cache needs to be of sufficient size to ensure that open files are reused, but it must
not be larger than the allowed maximum number of open files.

Since new tiles are written at the end of the file, this technique supports adding
tiles over a period of time. When an existing tile is overwritten, the index is updated
to point to the new tile. Old tiles remain in the file and take up space. Some devel-
opers may want to implement a system to try to re-use that space, either by trying to
fit other tile images in the old space or by periodically rebuilding the entire cluster.

Finally, when tiles are served to users from clusters the performance can be quite
good. Users typically view tiles for a specific area, and with our system those tiles

8.9 Performance Optimizations of Tile Cluster Method 143

would be clustered in the same file. However, there is one case where the perfor-
mance can be rather poor. Recall our example in which we had tiles in levels 1-15,
and separated the clusters into groups of 1-7 and 8-15 levels. If a user is viewing
level 8, and requesting several tiles from level 8, the system will have to access a
different file for each tile. The benchmarks in the previous chapter showed that us-
ing a separate file per tile can be somewhat slow. A workaround to this problem is
to build in some overlap in our cluster structure. Instead of a 1-7 and 8-15 break, we
will use a 1-8 and 8-15 break. The tiles from level § are stored in two places. This
does introduce some inefficiency; level 8 can have up to 32,768 tiles. But the read
performance improvements may be worth the cost.

O 00NN AW~

144 8 Practical Tile Storage

Listing 8.1 Output of indexed tiles by zoom level.

public class IndexedTileOutputStream {
static final long magicNumber = 0x772211ee;

String imagefilename;
String rowindexname;
String tileindexname;

RandomAccessFile imagefile ;
RandomAccessFile rowindex;
RandomAccessFile tileindex ;

long numrows, numcolumns ;
int rowRecordSize = 8;

int tileRecordSize = 8 + 4;

public IndexedTileOutputStream (String folder, String setname, int level

) {
imagefilename = folder + ”/” + setname + "—” + level + ”.tiles”;
rowindexname = folder + ”/” + setname + "—” + level + ”.rowindex”;
tileindexname = folder + ”/” + setname + "—” + level + ”.tileindex”
numrows = TileStandards .zoomRows[level];
numcolumns = TileStandards .zoomColumns[level];
try {

imagefile = new RandomAccessFile (imagefilename , "rw”);

//if the row file is empty, fill it with —1 to indicate empty

values
rowindex = new RandomAccessFile (rowindexname , “rw”);
if (rowindex.length() == 0) {
rowindex.seek (0) ;
for (int i = 0; i < numrows; i++) {
rowindex . writeLong(—1L);
tileindex = new RandomAccessFile (tileindexname , “rw”);

} catch (Exception e) {
e.printStackTrace () ;

¥
¥
public void writeTile (long col, long row, byte[] data) {
try {
//position tile file to write at end of file
long writepos = imagefile .length ();

imagefile . seek (writepos);

//write tile address and imagedata to file

//write two magic numbers so that tile records can be recovered
in case of corrupted file

imagefile . writeLong (magicNumber) ;

imagefile . writeLong (magicNumber) ;

imagefile . writeLong (col);

imagefile . writeLong (row) ;

imagefile . writeInt(data.length);

imagefile . write (data);

//update index
updatelndex (col, row, writepos, data.length);

} catch (IOException e) {
e.printStackTrace ();

O 00NN AW —

8.9 Performance Optimizations of Tile Cluster Method

145

}
¥
private void updatelndex (long col, long row, long writepos, int length)
{
try {
//check if row is in the row index
long rowposition = rowRecordSize x row;

rowindex .seek (rowposition);
long rowpointer = rowindex.readLong();

if (rowpointer == —IL) {
//this means the row data is new and not already in the
index
rowpointer = tileindex .length ()

tileindex .seek(rowpointer);

//write an array of empty values

for (int i = 0; i < numcolumns; i++) {
tileindex . writeLong(—1L);
tileindex . writelnt(—1);

//write the position back to the original row index
rowindex.seek (rowposition);

rowindex . writeLong (rowpointer);

//compute offset into row for specific col

long offset = rowpointer + col * tileRecordSize;
//position tile index for writing the file address of the
image

tileindex .seek(offset);
tileindex . writeLong (writepos);
tileindex . writeInt(length);

} catch (IOException e) {
e.printStackTrace ();

}
}
public void close () {
try {
imagefile . close () ;
rowindex.close () ;
tileindex .close () ;
} catch (Exception e) {
}
}

tile

Listing 8.2 Reading indexed tiles.

public class IndexedTileInputStream {

String imagefilename;
String rowindexname;
String tileindexname;

RandomAccessFile imagefile ;
RandomAccessFile rowindex;
RandomAccessFile tileindex ;

long numrows, numcolumns ;
int rowRecordSize = 8;
int tileRecordSize = 8 + 4;

0NN W —

146 8 Practical Tile Storage
public IndexedTileInputStream(String folder, String setname, int level)
imagefilename = folder + ”/” + setname + "—” + level + ”.tiles”;
rowindexname = folder + ”/” + setname + "—" + level + ”.rowindex”;

tileindexname = folder + ”/” + setname + "—” + level + ”.tileindex”
numrows = TileStandards .zoomRows|[level |;
numcolumns = TileStandards .zoomColumns|[level];
try {
imagefile = new RandomAccessFile (imagefilename , "rw”);
rowindex = new RandomAccessFile (rowindexname , “rw”);
tileindex = new RandomAccessFile (tileindexname , “rw”);
} catch (Exception e) {
e.printStackTrace ();
¥
¥
public byte[] getTile(long col, long row) {
try {
//check if row is in the row index
long rowposition = rowRecordSize * row;
rowindex .seek (rowposition);
long rowpointer = rowindex.readLong();
if (rowpointer == —IL) {
//this means the row data is not in the index, and so the
tile doesn’t exist
return null;
}
//compute offset into row for specific col
long offset = rowpointer + col * tileRecordSize;
//position tile index for reading the position and size of the
tile image
tileindex .seek (offset);
long tileposition = tileindex .readLong();
int size = tileindex .readInt();
if (tileposition == —1L)
// this means that the tile isn’t there
return null;
//adjust the tile position to skip the magic numbers and
address information
long adjustedTilePosition = tileposition + 8 + 8 + 8 + 8 + 4;
byte[] data = new byte[size];
//position the image file and read the image data
imagefile . seek(adjustedTilePosition);
imagefile .readFully (data);
return data;
} catch (IOException e) {
e.printStackTrace () ;
return null;
¥
}

Listing 8.3 Tile clusters implementation.

public class ClusteredTileStream {

static final long magicNumber = 0x772211ee;
private String location;

private String setname;

private int numlevels;

private int breakpoint;

8.9 Performance Optimizations of Tile Cluster Method

147

public ClusteredTileStream (String location , String setname, int

numlevels, int breakpoint) {

this.location = location;
this .setname = setname;
this.numlevels = numlevels ;

this . breakpoint = breakpoint;

}

public void writeTile (long row, long column, int level, byte[]
imagedata) {

// first determine the cluster that will hold the data

ClusterAddress ca = getClusterForTileAddress (row, column,
String clusterFile = getClusterFileForAddress (ca);
if (clusterFile == null) {

return;

File f = new File(clusterFile);

//if the file doesn’t exist, set up an empty cluster file
if (!f.exists()) {

createNewClusterFile (f, ca.endlevel — ca.startlevel +
¥

try {
RandomAccessFile raf = new RandomAccessFile (f,

7w’
//write the tile and info at the end of the tile file
long tilePosition = raf.length();

raf .seek(tilePosition);

raf . writeLong (magicNumber) ;

raf . writeLong (magicNumber) ;

raf . writeLong (column) ;

raf . writeLong (row) ;

raf . writeInt(imagedata.length);

raf . write (imagedata) ;

level);

1)

//determine the position in the index of the tile address
long indexPosition = getIndexPosition(row, column, level);

raf.seek(indexPosition);

//write the tile position and size in the index
raf . writeLong (tilePosition);
raf . writeInt(imagedata.length);
raf.close () ;
} catch (Exception e) {
e.printStackTrace ();
¥

}

public byte[] readTile (long row, long column, int level) {
// first determine the cluster that will hold the data

ClusterAddress ca = getClusterForTileAddress (row, column,
String clusterFile = getClusterFileForAddress (ca);
if (clusterFile == null) {

return null;

File f = new File(clusterFile);

try {
RandomAccessFile raf = new RandomAccessFile (f, "r”);

level);

//determine the position in the index of the tile address
long indexPosition = getIndexPosition(row, column, level);

raf .seek(indexPosition);
long tilePosition = raf.readLong();
int tileSize = raf.readInt();

124
125

126
127
128
129

131

148

}

8 Practical Tile Storage

if (tilePosition == —1L) {
//tile is not in the cluster
raf.close();
return null;

byte[] imageData = new byte[tileSize];
//offset tile position for header information
long tilePositionOffset = tilePosition + 8 + 8 + 8 + 8 + 4;
raf.seek(tilePositionOffset);
raf .readFully (imageData);
raf.close ();
return imageData;
} catch (Exception e) {
e.printStackTrace ()
¥

return null;

private long getlndexPosition(long row, long column, int level) {

}

ClusterAddress ca = this. getClusterForTileAddress (row, column,
level);

//compute the local address, that’s the relative address of the
tile in the cluster

int locallevel = level — ca.startlevel;

long localRow = (long) (row — (Math.pow(2, locallevel) * ca.row));

long localColumn = (long) (column — (Math.pow(2, locallevel) * ca.
column)) ;

int numColumnsAtLocallevel = (int) Math.pow(2, locallevel);

long indexPosition = this.getCumulativeNumTiles (locallevel — 1) +

localRow * numColumnsAtLocallevel + localColumn;
// multiply index position times byte size of a tile address
indexPosition = indexPosition x (8 + 4);
return indexPosition;

public ClusterAddress getClusterForTileAddress (long row, long column,

int level) {

if (level > this.numlevels) {
//error, level is outside of ok range
return null;

¥

int targetLevel = 0;

int endLevel = 0;

if (level < breakpoint) {
//tile goes in one of top two clusters
targetLevel = 1;
endLevel = breakpoint — 1;

} else {
//tile goes in bottom cluster
targetLevel = this.breakpoint;
endLevel = this.numlevels ;

//compute the difference between the target cluster level and the
tile level

int powerDiff = level — targetLevel;

//level factor is the number of tiles at level "level” for a
cluster that starts at "target level”

double levelFactor = Math.pow(2, powerDiff);

// divide the row and column by the level factor to get the row and
column address of the cluster we are using

long clusterRow = (int) Math. floor (row / levelFactor);
long clusterColumn = (int) Math. floor(column / levelFactor);
ClusterAddress ca = new ClusterAddress(clusterRow , clusterColumn ,

targetLevel , endLevel);
return ca;

8.9 Performance Optimizations of Tile Cluster Method

String getClusterFileForAddress (ClusterAddress ca) {
String filename = this.location + ”/” + this.setname + "—” + ca.

startlevel + =7 + ca.row + =" 4+ ca.column + ”.cluster”;
return filename ;
//this methods create an empty file and fills the index with null

values
void createNewClusterFile (File f, int numlevels) {
RandomAccessFile raf;
try {
raf = new RandomAccessFile (f,
raf.seek(0);
long tiles = this.getCumulativeNumTiles (numlevels);
for (long i = 0; i < tiles; i++) {
raf . writeLong(—1L); //NULL position of tile
raf . writeLong(—1L); //NULL size of tile

i

™w”’);

raf.close ();
} catch (Exception e) {
e.printStackTrace () ;

}

public int getCumulativeNumTiles (int finallevel) {
int count = 0;
for (int i = I; i <= finallevel; i++) {
count += (int) (Math.pow(2, 2 % i — 2));
}

return count;

}
public class ClusterAddress {

long row;

long column;
int startlevel;
int endlevel;

public ClusterAddress(long row, long column, int startlevel , int
endlevel) {
this .row = row;
this.column = column;
this.startlevel = startlevel;
this.endlevel = endlevel;

149

Chapter 9
Tile Serving

The previous four chapters explained techniques for creating and storing tiled im-
ages. In this chapter we will examine methods for sharing those tiled images with
other users over a network.

9.1 Basics of HTTP

The Hypertext Transfer Protocol (HTTP) is one of the core standards of the Inter-
net. It was originally designed for sharing interlinked documents but is now used
for many other types of applications. Since HTTP is the basic application protocol
of the Internet, there are considerable existing tools in place to support it. HTTP
clients and/or servers are built into many applications and programming environ-
ments. Commercial and residential firewalls and proxies are designed to handle
HTTP traffic. HTTP has a sophisticated security model with extensive infrastruc-
ture. What is most important to our designed of a tiled image server is that HTTP
can be used to efficiently and securely share tiled images to both Web browsers and
other applications.

The HTTP standard defines eight operations, but only two will be relevant to our
work: GET and POST. The GET operation’s intended use is to retrieve web content
without causing side effects on the server. Consider a simple service to retrieve the
current time from a time server. This would be best modeled with a GET operation,
because there is no need to change any information on the time server. The POST
operation is used to ”’post” data back to the server. For example, a web service that
processed book orders would be modeled with the POST operation. This operation
does cause side effects on the server because repeated executions of the post oper-
ation will result in multiple book orders. Since we are concerned with serving tiled
images to users, not collecting data from users, we should use the "GET” operation
to create our tiled image service. HTTP GET encodes query parameters by con-
catenating them on the end of the resource’s Uniform Resource Locator (URL). For
example, a URL to a time service might be:

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 151
Principles and Practices, DOI 10.1007/978-1-4419-7631-4_9,
(© Springer Science+Business Media, LLC 2010

152 9 Tile Serving

http://www.sometimeservice.com/getthetime

Entering this URL into a web browser would return the current time encoded as
an HTML document. Suppose that you want to retrieve the time for a different time
zone. You could add a parameter called ”zone” to send the server a time zone you
want. The resulting URL would look like this:

http://www.sometimeservice.com/getthetime?zone=UTC-6

An additional parameter could be added to specify the encoding for the response
like this:

http://www.sometimeservice.com/getthetime?zone=UTC-6&
encoding=XML

9.2 Basic Tile Serving

In general, serving tiles requires a multi-step process. In the first step, users query
a tile server of a list of available layers. They may also query the server for the
availability of specific tiles from each layer and the image format of the specific
tiles. In the final step, users request the actual tiled images.

In practice the interaction may be much simpler. Clients will usually not ask for
the format of a tile. We have mandated that our tiled images be stored in browser
compatible formats, either JPEG or PNG, so web browsers will be able to read them
without querying first to see what format they use. Also, rather than use two queries
to check if a tile is there and then to request it, clients will just request the tile,
and accept the response that comes back. Many servers will provide a default tile to
stand in for missing ones. This can be an empty, completely transparent tile, or a tile
with a message that says the tile is not available.

The next two sections will present two slightly different schema for serving tiled
images. They differ in the manner in which tiles are queried. The reader should
not infer that the two different schema are incompatible or must be implemented on
different systems. Each scheme is merely an interface to the same backing data store.
Both schemes can be implemented on the same server. In practice, many different
interfaces are implemented on tile stores to support as many clients as possible.
Modern HTTP servers and Web service frameworks allow multiple interfaces to be
implemented with very minimal overhead. In the final chapter, we will look at other
methods for serving tiles to accommodate multiple client software packages and
standardized protocols.

Each of the following algorithms will make use of the data store concept. The
data store provides tiled images organized into layers. Individual tiles are queried by

http://www.sometimeservice.com/getthetime
http://www.sometimeservice.com/getthetime?zone=UTC-6
http://www.sometimeservice.com/getthetime?zone=UTC-6&encoding=XML
http://www.sometimeservice.com/getthetime?zone=UTC-6&encoding=XML

9.3 Tile Serving Scheme with Encoded Parameters 153

Listing 9.1 Java DataStore abstract class.

public abstract class DataStore {
//returns a list of layers availible from this DataStore
public abstract String[] getLayersAvailible();
//returns a list of TileRanges for the zoom levels availible from the named
layer
//null values in the array indicate a missing zoom level
public abstract TileRange[] getTileRanges (String layerName);
public abstract boolean tileExists(String layerName, int level, long row,
long column);
public abstract String getTileFormat(String layerName, int level, long row,
long column);
public abstract byte[] getTileImage (String layerName, int level, long row,
long column);
}
class TileRange {

int level;

long mincol;
long maxcol;
long minrow ;
long maxrow;

layer, zoom level, row and column. The data store also provides information about
the layers, such as what zoom levels and tile ranges are available for each layer, and
whether or not a tile exists for a given address. Java and Python abstractions for the
data store concept are shown in Listings 9.1 and 9.2

9.3 Tile Serving Scheme with Encoded Parameters

This section presents a tile scheme in which all parameters needed to query the tile
server are encoded as HTTP GET parameters concatenated to the tile server’s URL.
A URL similar to the following will serve as the base URL for all tile requests:

http://www.sometileserver.com/tiles

If left without any parameters it will return a simple text-encoded list of available
layers, the zoom levels and ranges of tiles available for each layer. The layer list
response will appear as in Tables 9.1 and 9.2. This list can easily be parsed by client
applications. Tile request parameters are given in Table 9.3.

http://www.sometileserver.com/tiles

154

Listing 9.2 Python DataStore abstract class

9 Tile Serving

class DataStore:

def

def

def

def

def

getLayersAvailable (self):
return []

getTileRanges (self):
return []

tileExists (self):
return False

getTileFormat(self):
return ’’

getTileImage (self):
return ’’

class TileRange:

def

_-init__(self):
self.level = 0
self . mincol
self.maxcol
self . minrow
self .maxrow

o nn
(=)

LAYER:
LEVEL:

layername
level_number, min_column, min_row, max_column, max_row

Table 9.1 Layer response list template.

LAYER:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LAYER:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:
LEVEL:

roads

1,0,0,1,0

2,0,0,3,1

3,0,0,7,3

4,0,0,15,7

5,0,0,31,15

6,0,0,63,31

7,0,0,127,63
8,0,0,255,127

imagery

1,1,0,1,0

22,121

34,343

4,8,6,8,6

5,17,12,17,12
6,34,24,34,24
7,69,48,69,48
8,139,96,139,97
9,278,193,278,194
10,556,387,556,388
11,1112,775,1113,776
12,2225,1551,2227,1553
13,4451,3103,4455,3107
14,8902,6207,8911,6214

Table 9.2 Example response list with two layers.

9.4 Tile Serving Scheme with Encoded Paths 155

Parameter Name |Purpose Possible Values
REQUEST Specifies the type of request to be exe- [GETTILE
cuted. TILEEXISTS
GETFORMAT
LAYER Specifies the name of the layer that will|Any of the layer names listed in the
be used. layer list.
LEVEL Specifies the zoom level number to be|Any level number listed in the layer
queried. list.
ROW Specifies the row of the tile be queried. |Any row value within the range list in
the layer list.
COLUMN Specifies the column of the tile be|Any column value within the range list
queried. in the layer list.

Table 9.3 Tile request parameters.

Request types GETTILE, TILEEXISTS, and GETFORMAT are used to retrieve
a tile image, check if the tile exists, and retrieve the format of the tiled image, re-
spectively. An example query to retrieve a tiled image looks like the following:

http://www.sometileserver.com/tiles?REQUEST=GETTILE&
LAYER= imagery&LEVEL: 6 &ROW=24 &COLUMN=34

Our first implementation of this scheme is in Java and uses the Java Servlet API, see
Listing 9.3. The Java Servlet API provides a simple framework for creating HTTP
based web services. Alternatively, our Python version of the same program uses the
Web Server Gateway Interface (WSGI), see Listing 9.4. WSGI is a cross-platform
interface used to support web applications in Python. WSGI provides similar func-
tionality to the Java Servlet API.

9.4 Tile Serving Scheme with Encoded Paths

This scheme differs from the previous one in that the tile parameters are encoded
in the URL path directly and not as query parameters. The template for the query
method is as follows:

http://www.sometileserver.com/tiles/LAYERNAME/LEVEL/
ROW/COLUMN/REQUEST

For example, the previous tile query URL:

http://www.sometileserver.com/tiles?REQUEST=GETTILE&LAYER=imagery& LEVEL=6&ROW=24&COLUMN=34
http://www.sometileserver.com/tiles?REQUEST=GETTILE&LAYER=imagery& LEVEL=6&ROW=24&COLUMN=34
http://www.sometileserver.com/tiles/LAYERNAME/LEVEL/ROW/COLUMN/REQUEST
http://www.sometileserver.com/tiles/LAYERNAME/LEVEL/ROW/COLUMN/REQUEST

156 9 Tile Serving

http://www.sometileserver.com/tiles?REQUEST=GETTILE&
LAYER=imagery&LEVEL=6&ROW=24 &COLUMN=34

will now be:

http://www.sometileserver.com/tiles/imagery/6/24/34/
GETTILE

The method provides shorter query URLSs, and mimics the paths of a computer’s file
system. If only the base path is entered, it will return a list of available layers and
their tile ranges, exactly as with the previous scheme.

Listings 9.5 and 9.6 show implementations of this scheme. The method
getPathInfo () is built into the Java Servlet API. It provides the path infor-
mation after the address of the servlet. This is precisely the information we need to
parse to get the path query values. The Python equivalent code uses the environ

[PATH_INFO’] value to obtain the URL path.

As seen from the example code these two schemes are very similar. The second
scheme might be needed to provide compatibility with certain tiled image clients or
with Internet caching systems that use URL patterns to determine what content to
cache.

9.5 Service Metadata Alternatives

Each of the previous schemes returned text-formatted metadata about the layers
available from its data store. Some users may prefer more formally defined formats.
Two examples are XML and JSON. XML (Extensible Markup Language) and JSON
(JavaScript Object Notation) both support structured, hierarchical storage of text
information. Recall the layer list from previous section:

LAYER: roads

LEVEL: 1,0,0,1,0

LEVEL: 2,0,0,3,1

LEVEL: 3,0,0,7,3

LEVEL: 4,0,0,15,7

LEVEL: 5,0,0,31,15

LEVEL: 6,0,0,63,31

LEVEL: 7,0,0,127,63

LEVEL: 8,0,0,255,127

http://www.sometileserver.com/tiles?REQUEST=GETTILE&LAYER=imagery& LEVEL=6&ROW=24&COLUMN=34
http://www.sometileserver.com/tiles?REQUEST=GETTILE&LAYER=imagery& LEVEL=6&ROW=24&COLUMN=34
http://www.sometileserver.com/tiles/imagery/6/24/34/GETTILE
http://www.sometileserver.com/tiles/imagery/6/24/34/GETTILE

O 00NN AW —

9.6 Conclusions 157

In XML, this might look like the following:

<Layer name="roads”>
<Level number="1" mincol="0" minrow="0" maxcol="1" maxrow="0" />
<Level number="2" mincol="0" minrow="0" maxcol="3" maxrow="1" />
<Level number="3"” mincol="0" minrow="0" maxcol="7" maxrow="3" />
<Level number="4" mincol="0" minrow="0" maxcol="15" maxrow="7" />
<Level number="5" mincol="0" minrow="0" maxcol="31" maxrow="15" />
<Level number="6" mincol="0" minrow="0" maxcol="63" maxrow="31" />
<Level number="7" mincol="0" minrow="0" maxcol="127" maxrow="63" />
<Level number="8" mincol="0" minrow="0" maxcol="255" maxrow="127" />

</Layer>

In JSON, it could be encoded as:

{
“layer”: “roads”,
“levels” : [
{"1” : [0,0,1,0] },
{”2” : [0,0,3,1] },
{”3” : [0,0,7.,3] },
{"4” : [0,0,15,7] },
{”5” : [0,0,31,15] },
{”6” : [0,0,63,31] },
{”7” : [0,0,127,63] },
{"8” : [0,0,255,127] }
]
}

The benefit of these two formats is that they are well supported by many applications
and programming environments. Most web browsers can automatically convert the
JSON text into in-memory objects. Optional encodings can easily be added to our
tile server schemes. We can simply add a parameter called "FORMAT"” with the
possible values “plaintext”, ”XML”, ”JSON.” The tile server can then use this pa-
rameter to determine which format to output as a response.

9.6 Conclusions

In this chapter, we have covered how to serve tiled images via HTTP. Chapter 13
provides a discussion and examples of advanced tile serving to support a variety of
client software systems. We have not covered the important topic of securing our tile
server or its services. For more information on this topic we suggest [1] for further
reading.

DB W=

~N o

158 9 Tile Serving

Listing 9.3 Java servlet code for tile serving with encoded parameters.

public class TileServlet extends HttpServlet {
DataStore dataStore ;

public void doGet(HttpServletRequest request , HttpServletResponse response)
{

String requestType = request.getParameter(”REQUEST”) ;

if (requestType.equalsIgnoreCase(”GETTILE”) ||requestType.
equalsIgnoreCase(”TILEEXISTS”) || requestType.equalslgnoreCase(”
GETFORMAT”))
String layerName = request.getParameter(”LAYER”);
int level = Integer.parselnt(request.getParameter(”LEVEL”));
long row = Long.parseLong(request. getParameter(”ROW”));
long column = Long.parseLong(request.getParameter(”COLUMN")) ;

if (requestType.equalsIgnoreCase(”GETTILE”)) {
byte[] data = dataStore.getTileImage (layerName , level, row,
column) ;
if (data != null) {
response . setContentType (dataStore . getTileFormat(layerName ,
level , row, column));
OutputStream os;
try {
os = response.getOutputStream () ;
os.write (data);
os.close();
} catch (IOException e) {
e.printStackTrace () ;

}
}
if (requestType.equalsIgnoreCase(”TILEEXISTS”)) {
boolean val = dataStore . tileExists (layerName, level, row,
column) ;

response . setContentType (" text/plain™);
PrintWriter pw;
try {
pw = response.getWriter () ;
pw. println(val);
pw.close ();
} catch (IOException e) {
e.printStackTrace () ;

}

return;

if (requestType.equalsIgnoreCase(”GETFORMAT”)) {
String format = dataStore.getTileFormat(layerName , level, row,
column) ;
response . setContentType (" text/plain™);
PrintWriter pw;
try {
pw = response.getWriter () ;
pw. println (format);
pw.close ();
} catch (IOException e) {
e.printStackTrace () ;
}

return;

}

//valid request type not found, send back layer list response
printLayerList(request , response);

}

private void printLayerList(HttpServletRequest request, HttpServletResponse
response) {
PrintWriter pw;
try {
pw = response.getWriter () ;
String [] layers = dataStore.getLayersAvailible();

9.6 Conclusions 159

for (int i = 0; i < layers.length; i++) {
pw.println ("LAYER:” + layers[i]);
TileRange [] ranges = dataStore.getTileRanges (layers[i]);
for (int j = 0; j < ranges.length; j++) {
if (ranges[j] !'= null) {
pw.println ("LEVEL:” + ranges[j].level +
+ ranges[j].mincol + ”,” + ranges[j].minrow
+ 7,” + ranges[j].maxcol + 7,7
+ ranges|[j].maxrow);

s e
s

}
}
pw.close () ;
} catch (IOException e) {
e.printStackTrace ()

160

Listing 9.4 Python code for tile service with encoded parameters.

9 Tile Serving

import cgi # the cgi module

class TileWSGIApp:
def datastore):
datastore

_-init__(self,
self. _datastore =

is only used for some query

string parsing

def doGet(self , environ, start_-response):
status = 200 OK’
headers = [(’Content—type’, ’text/plain’)]
queryParams = cgi.FieldStorage (environ[’wsgi.input’], environ=environ)
requestType = queryParams. getfirst (’REQUEST’, *’).lower ()
if (requestType in [’gettile’, ’tileexists’, ’getformat’]):
layerName = queryParams. getfirst ('LAYER’,)
level = int(queryParams. getfirst (’LEVEL’, —1))
row = int(queryParams. getfirst(’ROW’, —1))
column = int(queryParams. getfirst ('COLUMN’, —1))
if (requestType == ’gettile’):
data = self._datastore.getTileImage (layerName , level , row,
column)
if (data != None):
headers = [(’Content—type’,
self. _datastore.getTileFormat(layerName, level,
row, column))]
elif (requestType == ’tileexists’):
exists = self._datastore.tileExists (layerName, level, row,
column)
if (exists):
data = ’True’
else:
data = ’False’
elif (requestType == ’getformat’):
data = "%s’ % self._datastore.getTileFormat(layerName , level,
row, column)
else:
data = self._getLayerList()
else:
data = self._getLayerList()

start_response (status , headers)

return [data]
def _getLayerList(self):
strbuf = c¢StringlO . StringlIO ()
layers = self._datastore.getLayersAvailable
for layer in layers:
strbuf . write ('LAYER: %s\n’ % layer)
tileRanges =
for tileRange in tileRanges:
if (tileRange != None):

)

self. _datastore . getTileRanges (layer)

strbuf . write ('LEVEL: %s,%s,%s,%s,%s\n" %

(tileRange . level ,
tileRange . minrow,
tileRange . maxrow)

return strbuf.getvalue ()

tileRange . mincol ,
tileRange . maxcol,

)

(o)W BN ROV S

9.6 Conclusions 161

Listing 9.5 Java code for tile serving with path encoded parameters.

public class TileServlet2 extends HttpServlet {
DataStore dataStore ;

public void doGet(HttpServletRequest request, HttpServletResponse response) {
//get any parts of the request path, after the servlet address, but not
including query parameters
String path = request. getPathInfo ();
if (path == null) {
printLayerList(request , response);
return;

}
if (path.startsWith(7/7)) {
path = path.substring (1);

String [] queryVals = path.split(”/”);

if (queryVals.length != 5) {
printLayerList(request , response);
return;

}

String layerName = queryVals [0];

int level = Integer.parselnt(queryVals[1]);
long row = Long.parseLong(queryVals[2]);
long column = Long.parseLong(queryVals[3]);
String requestType = queryVals [4];

if (requestType.equalsIgnoreCase(”GETTILE”)) {
byte[] data = dataStore .getTilelmage (layerName , level, row, column);
if (data != null) {
response . setContentType (dataStore . getTileFormat(layerName ,
level , row,

column));
OutputStream os;
try {
os = response.getOutputStream () ;

os.write (data);
os.close ();

} catch (IOException e) {
e.printStackTrace ();

¥
¥
if (requestType.equalsIgnoreCase(”TILEEXISTS”)) {
boolean val = dataStore .tileExists (layerName, level, row, column);

response . setContentType (" text/plain”);
PrintWriter pw;
try {
pw = response .getWriter () ;
pw. println (val);
pw.close ();
} catch (IOException e) {
e.printStackTrace ();

}

return;

if (requestType.equalslgnoreCase(”GETFORMAT’)) {
String format = dataStore .getTileFormat(layerName, level, row,
column) ;

response . setContentType (" text/plain”);
PrintWriter pw;
try {

pw = response .getWriter () ;

pw. println (format);

pw.close ();

162 9 Tile Serving

} catch (IOException e) {
e.printStackTrace ();
}

return;

}

//valid request type not found, send back layer list response
printLayerList(request, response);

private void printLayerList(HttpServletRequest request, HttpServletResponse
response) {
PrintWriter pw;
try {
pw = response . getWriter () ;
String [] layers = dataStore.getLayersAvailible();
for (int i = 0; i < layers.length; i++) {
pw. println ("LAYER:” + layers[i]);
TileRange [] ranges = dataStore.getTileRanges (layers[i]);
for (int j = 0; j < ranges.length; j++) {
if (ranges[j] != null) {
pw. println ("LEVEL:” + ranges[j].level +
+ ranges|[j].mincol + ”,” + ranges|[j].minrow
+ ”,” + ranges|[j].maxcol + 7"
+ ranges|[j].maxrow) ;

s e
s

}

pw.close ();
} catch (IOException e) {
e.printStackTrace () ;

9.6 Conclusions 163

Listing 9.6 Python code for tile serving with path encoded parameters.

class TileWSGIApp2:

def __init__(self, datastore):
self._datastore = datastore

def doGet(self , environ, start_-response):
status = '200 OK’
headers = [(’Content—type’, ’text/plain’)]

path = environ ['PATH.INFO’]

if (path == None):
data = self._getLayerList()
else:
if (path[0] == "/’):
path = path[1:]

queryVals = path.split(”/”)

if (len(queryVals) != 5):
data = self._getLayerList()
else:
layerName = queryVals [0]
level = int(queryVals[1])
row = int(queryVals|[2])
column = int(queryVals[3])
requestType = queryVals [4].lower ()

if (requestType == ’gettile’):
data = self._datastore.getTileImage (layerName , level , row,
column)

if (data != None):
headers = [(’Content—type’,
self. _datastore. getTileFormat(layerName ,

level ,
row, column))
]
elif (requestType == ’tileexists ’):
exists = self._datastore.tileExists (layerName, level, row,
column)
if (exists):
data = 'True’
else:
data = ’False’
elif (requestType == ’getformat’):
data = "%s’ % self._datastore.getTileFormat(layerName ,
level ,

row, column)

else:
data = self._getLayerList()

start_response (status , headers)
return [data]

def _getLayerList(self):
strbuf = c¢StringlO . StringlIO ()
layers = self._datastore.getLayersAvailable ()
for layer in layers:
strbuf . write ('LAYER: %s\n’ % layer)
tileRanges = self._datastore.getTileRanges (layer)
for tileRange in tileRanges:
if (tileRange != None):
strbuf . write ('LEVEL: %s,%s,%s,%s,%s\n" %

164 9 Tile Serving

62 (tileRange .level , tileRange.mincol,
63 tileRange . minrow, tileRange .maxcol,
64 tileRange . maxrow))
65 return strbuf.getvalue ()

References

1. Wells, C.: Securing AJAX applications. O’Reilly (2007)

Chapter 10
Map Projections

10.1 Introduction to Datums, Coordinate Systems, and
Projections

Any system that uses maps must take into account three properties: datums, coor-
dinate systems, and projections. These properties specify our model of the Earth
and the way in which we specify locations upon it. In the world of geodesy there
are a number of different options for each of these properties with no one “best fit”
choice for all applications. While it is often not necessary to use more than one da-
tum or coordinate system, it is important to understand them in case there is a need
for interoperability with another system or data source which uses a different datum
or coordinate system. As such, we will provide a general introduction to these two
properties.

This chapter will focus primarily on map projections, the means by which the
three-dimensional Earth is represented in two-dimensional map images. While we
will provide a basic introduction to map projections, the focus of this chapter will
be on converting between different map projections and how projections are used in
a tile-based mapping system.

10.1.1 The Shape of the Earth

Before we can discuss referencing locations on the surface of the Earth or projecting
the surface onto a flat plane, we must define the shape of the Earth. The technical
term for the true shape of the Earth is the geoid. Formally, the geoid is a surface
where gravity’s strength is equal at mean sea level. For our purposes it is only impor-
tant to note that a geoid is not a flat surface but has variations over the surface of the

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 165
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__10,
(© Springer Science+Business Media, LLC 2010

166 10 Map Projections

Earth. Figure 10.1' shows gravity variations over the Earth’s surface. Figure 10.22
shows the variations between the geoid and the most common approximation of the
shape of the Earth. The earliest approximations of the geoid used a sphere as the
shape of the Earth. In fact, a sphere is often used today to approximate the shape
of the Earth. The errors of a spherical approximation are not visible at whole Earth
scales.

! Earth's Gravity Field Anomalies [milligals)

-50-40 30 -20 -10 O 10 20 30 40 50

Fig. 10.1 Gravity variations over the surface of the Earth.

A sphere is not the best approximation of the Earth because of flattening at the
poles. Instead, the best approximation is the elliptical analog to a sphere, called
either an ellipsoid or spheroid (see Figure 10.3). A number of different ellipsoid
approximations are currently in use. Different ellipsoids may provide better approx-
imations for specific areas of the Earth. There are also a number of ellispoids which
have been superceded but still can be found in older maps or measurements.

10.1.2 Datums

Individual ellipsoids are often referred to in the context of a datum. A datum is
an ellipsoid along with an origin point from which locations are referenced (see
Figure 10.4). Datums may be global and cover the entire Earth, or they may be local
and designed for mapping over a very small area. We are most interested in global
datums for the purpose of tile-based mapping; however, it is possible that a local
datum will be encountered in source data. Converting between datums is possible,

1 Courtesy of NASA. http://earthobservatory.nasa.gov/Features/GRACE/
page3.php
2http://commons.wikimedia.org/wiki/File: Geoid height red blue.png

http://earthobservatory.nasa.gov/Features/GRACE/page3.php
http://earthobservatory.nasa.gov/Features/GRACE/page3.php
http://commons.wikimedia.org/wiki/File:Geoid_height_red_blue.png

10.1 Introduction to Datums, Coordinate Systems, and Projections 167

Deviation of the Geoid from the idealized figure of the Earth
(difference between the EGM96 geoid and the WGS84 reference ellipsoid)

Red areas are above the idealized ellipsoid; blue areas are below.

-107.0m Om +85.4m

Fig. 10.2 Deviation of the geoid from the shape of the most commonly used ellipsoid approxima-
tion.

(a) Sphere (b) Ellipsoid

Fig. 10.3 The sphere and ellipsoid are commonly used as approximations for the shape of the
Earth. The above ellipsoid has an exaggerated flattening to highlight its shape. Earth approximating
ellipsoids visually resemble a sphere because they have only a small amount of flattening.

and the references at the end of the chapter are a good starting point if information
on how to perform the conversions is necessary.

The most commonly used datum is the World Geodetic System 1984, commonly
abbreviated WGS84. The WGS84 datum has a corresponding ellipsoid that provides
a good approximation for the entire Earth. While locally oriented ellipsoids will
provide better approximations for small areas, the WGS84 ellipsoid was designed
to be a “best fit” for the entire Earth. The origin for the WGS84 datum is the center
of the Earth, rather than a point on the surface as is common for many local datums.
This geocentric origin is necessary for satellite systems to use the datum.

168 10 Map Projections

Fig. 10.4 A datum is both an approximation for the Earth’s shape as well as an origin.

As stated above, WGS84 is by far the most commonly used datum for geospatial
data. Most source data used in a tile-based mapping system will use the WGS84
datum. Some exceptions are the NAD27 or WGS72 datums, both obsolete datums
once in use in the United States. The only reason to use a local datum is when a
mapping application requires greater local geoid accuracy than the WGS84 ellipsoid
can provide. This level of accuracy is rarely needed in a tile-based mapping system.
On the other hand, the WGS84 datum provides the most compatibility with other
software applications and data sources. Interoperability is an increasingly important
component of mapping systems. Thus, in most cases, a tile-based mapping system
should always use the WGS84 datum for native backend-data. The added benefit of
using WGS84 is that it is so common that most data will already be in this datum
with no additional work [2].

10.2 Map Projections 169

10.1.3 Coordinate Systems

Once a datum is selected to represent the shape the Earth, a coordinate system must
be defined to specify locations on its surface. There are two coordinate system types
in use today. The first is the commonly used geographic coordinate system which
uses latitude and longitude to specify a location. Geographic coordinates are a basic
angular coordinate system, either over a sphere or ellipsoid depending on which
approximation is used. The latitude is the angle north or south from the equator in
the range -90 to 90 degrees. The longitude is the angle east or west from the Central
(Greenwich) meridian in the range -180 to 180 degrees.

An alternate way of specifying locations on the surface of the Earth is with rect-
angular coordinates. Rectangular coordinates are a Cartesian coordinate system with
X and Y coordinates to represent horizontal and vertical position, respectively. Be-
cause a Cartesian coordinate system is used for a two-dimensional grid, rectangular
coordinates are only used on flat maps. Usually, the coordinates are specified using
meters. As a result, they are useful for performing calculations, such as distance
measurements, where the angular geographic coordinates would be cumbersome.
Rectangular coordinates are rarely used for maps of small scale, i.e. covering a wide
area of the Earth. The distortions associated with the flattening of the Earth become
so large that calculations with rectangular coordinates would be of no use. Thus,
rectangular coordinates are limited to maps of smaller areas such as topographic
maps or high-resolution aerial imagery [6].

10.2 Map Projections

As discussed earlier, the Earth is a geoid which is either approximated as a sphere
or ellipsoid. Using two-dimensional maps of the Earth, such as a paper map or
satellite image, requires transforming the surface of the Earth to a plane, called a
projection. Unfortunately, transforming the surface of a sphere onto a plane causes
distortion. It is mathematically impossible to design a projection which does not
cause some type of distortion. As a result, there are a number of different types of
projections in common usage which limit one type of distortion in exchange for
increasing others. The discussion of specific map projections in this chapter will be
limited to common projections most likely to be encountered by the implementor of
a tile-based mapping system.

Whenever the surface of the Earth is projected onto a plane there is distortion.
A number of different types of distortion can occur depending on which map pro-
jection is used, including distortions of area, shape, distance, direction, and angle.
Individual map projections often reduce or eliminate one of these distortion types.
For example, Albers’ equal-area projection removes distortion of area on the map at
the cost of increasing distortion in other areas [7].

For tile-based mapping there are three important types of maps which are im-
portant to recognize. The first type is the equidistant map which most commonly

170 10 Map Projections

preserves the length of the meridians. Each line of longitude is of the same length in
an equidistant map, so that distances measured on a line of longitude are the same
as on the globe. The second type of map is equal-area which preserves the area
occupied by a feature. The third map type is conformal which preserves the shape
of features. An additional property of conformal projections is that any straight line
on the map forms an angle of constant bearing with each line of longitude. This lat-
ter property is useful for navigation and led to the historic popularity of conformal
projections, such as the Mercator projection.

A projection may be created by directly mapping the globe to a planar surface.
However, it is also possible to perform the trasformation by first projecting the globe
to an intermediate shape. The two most common intermediate shapes are a cylinder
and a cone. Both the cylinder and the cone may be transformed into a plane with
no distortion. While not all projections are formed in this manner, many of the most
commonly used projections are either cylindrical, conic, or planar, as shown in Fig-
ure 10.5. Distortion is always minimal at the location where the shape touches the
globe, such as the equator for many cylindrical projections [6].

3

(a) Planar (b) Cylindrical (¢) Conical

|

Fig. 10.5 Projections are created by projecting Earth’s surface onto a surface that may be trans-
formed into a plane.

10.2.1 Different Map Projections

Theoretically, there are an infinite number of different map projections. In practice,
there are merely dozens in common usage on paper maps. For the purpose of tile-
based mapping, there are only a few map projections which are important to discuss.
Tile-based mapping systems, or any computer mapping system, must focus heavily
on interoperability. Thus, the projections used in these systems tend to be limited to

10.2 Map Projections 171

a few standard projections. In contrast, paper maps do not need to interoperate with
any other data or system and may select the projection with the best utility for the
map’s specific view of the Earth.

10.2.2 Cylindrical Equidistant Projection

The first important projection for tile-based mapping is the cylindrical equidis-
tant projection. This projection is sometimes called the Cylindrical Equirectangular,
Plate Carrée, Simple Cylindrical, WGS84 Geodetic, or WGS84 Lat/Lon projection
[7]. The cylindrical equidistant projection does not scale the meridians of the orig-
inal globe. Thus, distances are not distorted north-to-south. However, each line of
latitude is stretched to the same length as the equator, providing significant stretch-
ing east-to-west. The distortion in this projection ranges from 0 at the equator to
infinity at the poles. Additionally, neither area, shape, nor bearing is preserved on
the map. Figure 10.6 is an example of a geodetic map of the world.

180" | 3 | 3 | 3 90CE 1200E 150°E 180

2
75
60"
45"

30°

30" S
45"
60"

75 S

90°S

Fig. 10.6 Geodetic projected map of the world.

The benefit of this map projection is the ease of construction, especially for com-
puter mapping systems. One degree of latitude and one degree of longitude are the
same length in any area of the map. The same is not true of other projections (see
Mercator projection below). As a result, the resulting map forms a simple Cartesian
coordinate system of the world, centered at longitude and latitude (0,0). Another
useful consequence is that each pixel in a map image represents the same distance

172 10 Map Projections

in both the east-west and north-south directions, simplifying calculations performed
on map images.

10.2.3 Cylindrical Equal-Area Projection

The cylindrical equidistant projection is simple and easy to use; however, it offers
little beneficial map properties other than simplicity. The parallels are stretched by
a value of secA, where A is the latitude. By scaling the projection by a factor of
cosA, we can create the cylindrical equal-area projection. The cylindrical equal-
area projection preserves the area of features but not the distances between them or
angles on the map.

The cylindrical equal-area projection is a rarely used projection, in both printed
maps and computer map images. However, it is useful when used with data in the
cylindrical equidistant projection. Maps at large scale can be reprojected to equal-
area by multiplying by the cosine of the average latitude of the map. Reprojecting
to equal-area projection at display time can reduce visible distortions of features.

10.2.4 Mercator

The Mercator projection is a cylindrical conformal projection where the cylinder
touches the globe at the equator. A conformal projection preserves the angles and
shapes of features on the map. This property makes conformal projections popular
in traditional mapping and cartography. Historically, conformal maps were useful
for navigation because straight lines on the map have constant bearing. Ships would
not have to change bearing in order to follow a straight route on a conformal map.
Land surveyors find a conformal projection useful because angles measured on the
ground can be transfered directly to the map for use in computation.

The Mercator projection is one of the oldest known map projections, dating from
the 16™ century [7]. Similar to the previous two cylindrical map projections, the
Mercator projection has equally spaced and equal length lines of longitude. Lines of
latitude are also of equal length but are not equally spaced. Distance between lines
of latitude increases away from the equator. The result is a distinct increase in size
of features towards the poles. The features themselves are the same shape as on the
globe. Figure 10.7 is an example of a Mercator map of the world.

10.2.5 Universal Transverse Mercator

The Transverse Mercator projection is a cylindrical projection similar to the stan-
dard Mercator projection. However, rather than deriving the projection from a cylin-

10.2 Map Projections 173

180°W 150 W 1200W 90W 60 W _30W 0 30 E 60 E 90 E 120 E 150 E 180 E

75 N

60" N| Yy
45N
30'N
15'N
158
30S
455

60S

755

Fig. 10.7 Mercator projected map of the world.

der oriented vertically pole to pole, the Transverse Mercator projection is based on
a cylinder oriented horizontally parallel to the equator, as shown in Figure 10.8.
Lines of latitude and longitude are no longer straight in the Transverse Mercator
projection. Whereas the Mercator projection distorts features farther north or south,
the Transverse Mercator projection distorts features lying farther east or west from
the central meridian. The projection can be made using any line of longitude as the
central meridian and provides little distortion to areas within a short range. As a re-
sult, the Transverse Mercator projection is often used for maps of small scale for use
in land surveying. Transverse Mercator maps primarily use rectangular coordinates
(meters) to simplify ground calculations over small areas.

Universal Transverse Mercator (UTM) is a standard coordinate and projection
system commonly used for imagery, topographic maps, and other low scale geospa-
tial data. The UTM system covers the entire world from 80°S to 84°N. Each hemi-
sphere is split into 60 zones 6° wide. Zones are number 1 to 60 from west to east
starting at 180°W. Zones are identified by their zone number and hemisphere (North
or South).

Each UTM zone has its own specific projection and coordinate system. The cen-
tral longitude of each zone is used as the central meridian for a Transverse Mercator
projection. UTM uses a rectangular coordinate system with the origin at the inter-
section of the central meridian and the equator. Locations are identified by their

174 10 Map Projections

~

(a) Mercator (b) Transverse Mercator

Fig. 10.8 Mercator and Transverse Mercator both project the Earth’s surface onto a cylinder. The
difference between the two is the orientation of the cylinder.

easting and northing values , the distance east and north in meters from the zone
origin. However, in order to prevent negative easting and northing values a constant
is added to all easting and northing values. This constant is called a false easting or
false northing. UTM specifies a false easting of 500,000m in both hemispheres and
a false northing of Om in the Northern Hemisphere and 10,000,000m in the Southern
Hemisphere. For example, in Zone 1 South, the intersection of the central meridian
(174°W) and the equator is given the coordinate S00000E, 10000000N. Figure 10.9
shows the coordinates of two points before and after the conversion to false northing
and easting.

| |
| |
| |
Zone 2N : Zone 2N :

(50,000m, 100J000m) (550,000m, 100,000m)

L] L]
| |
| |
0°N ; 0°N ;
| |
| |
.(-SO%OOOm, -100,000m) .(45Q,000m, 9900,000m)
Zone 2S : Zone 2S :
| |
| |
| |
174°W 171°W 168°W 174°W 171°W 168°W
(a) No False Easting/Northing (b) With False Easting/Northing

Fig. 10.9 False northing and easting values are simply an artificial translation of the coordinates
to ensure they are non-negative.

10.3 Point Reprojection 175

Since UTM zones are only 6° wide, the amount of spatial distortion on any UTM
map is small. As a result, UTM is used frequently in satellite and aerial imagery.
Source data used in tiled map systems will often be projected using UTM. For ex-
ample, USGS produced Digital Orthophoto Quadrangle (DOQQ) aerial imagery is
distributed using UTM.

10.3 Point Reprojection

Often, it is necessary to convert between projections in the process of creating a
tiled-mapping system. Source data will often be distributed using a projection such
as UTM while data in the tiled-mapping system will be stored natively in a global
projection such as Lat/Lon or Mercator. We will present some basic reprojection
formulae and techniques and demonstrate the process of converting from UTM to
Lat/Lon.

Before covering techniques for reprojecting images, we must explain how to re-
project individual points. We will present the forumlas here along with some exam-
ple code. The formulae and a more thorough explanation can be found in Snyder’s
”Map Projections: A Working Manual” [7].

Below are the formulae for converting a Geodetic coordinate into a UTM coor-
dinate:

x=Xo+koN [A+ (1=T +C) & + (5~ 18T + T2 +72C - 58¢2) {i] (10.1)

y=Yotko {M—+Nwno [4 + (5-T+9C+4C%) & + (61 - ST + T +600C - 330¢%) 45|} (102)

where

e=\/1-5 10.3)

2

n_ e
=05 (10.4)

a

N= | ———nr 10.5
1—e?sin® ¢ (105
T = tan® ¢ (10.6)
C=e?cos’ ¢ 10.7)
A= (A—A)coso (10.8)

M =a[(1 —e?/4—3e* /64 —5¢°/256 —...)p — (3¢ /84 3¢ /32 +45¢° /1024 + ...) sin? ¢

(10.9)
4 (15¢* /256 +-45¢° /1024 +- ...) sin* ¢ — (35¢° /3072 +...)sin® ¢ +...]

and

176 10 Map Projections

¢ = latitude (radians)

A = longitude (radians)

Ao = central longitude of the UTM zone (radians)
a=6,378,137

b=6,356,752.3

ko = 0.9996

Xo = 500,000

v o >0
710,000,000 ¢ <0

Code for transforming a point from Geodetic to UTM is given in Listing 10.2.

The inverse formulae for converting from UTM to Geodetic coordinates are be-
low. Variable definitions are equivalent to the forward conversion formulae unless

otherwise noted.

o =¢~ (1"‘"“") {Dz (54371 +10C; —4C —9¢2) 24
+ (61+90T; +298Cy +45T7 —252¢* — 3C}) %]

A

M+[D (1427 +C) 2+ (5- 2C1+28T1—%C2+8e'2+24T1)120} L

cosfy

+

2763 . 212 s5ch .
:/J+<3%7 321 +...>sm2y+< 121 - 321 +.,.>sm4y

3
1591(:17 >51n6y+<1097tl ...>sin8/,1+...

where

y—X
M
ko
6/2: ‘32
(1-¢)
CI:e/zcoszm
letanszl
a
N =,/ ———
T 1= ersin? gy
1—¢e?
po A=)
(1—e2sine2¢y)2
_X7X()
Niko

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)
(10.19)

(10.20)

(10.21)

(10.22)

Both the forward and inverse conversion formulae are based on series expansion
approximations. The expansions converge quickly and are accurate to about a cen-
timeter given the 6° width of a UTM zone. It is important to note the extensive
floating point math in these formulae. Using double-precision floating point math

10.4 Map Reprojection 177

with these formulae is quite expensive. Performing a single Geodetic to UTM con-
version will appear instantaneous on modern day computers. However, when scaled
to thousands, or even millions, of conversions, the costs become noticeable.

10.4 Map Reprojection

The previous section dealt only with converting single locations from one projec-
tion to another. While important, individual point reprojection is not the end goal
for tiled-mapping. What we really must accomplish is reprojection of entire map
images. Reprojecting an entire map image is not a simple matter of applying formu-
lae. We must weigh a number of considerations when determining what techniques
to use for image reprojection.

Map images are often large and reprojecting them can be computationally costly.
Combined with the large numbers of images in many map image datasets, the issue
of algorithm efficiency becomes important. On the other hand, we have the prob-
lem of geospatial accuracy. First, we must ensure that a feature in the map image
has coordinates representing where it actually is on the globe. The UTM/Geode-
tic point reprojection formulae presented above do have high accuracy given the
6° width of UTM zones . However, there are a number of different method of do-
ing image reprojection, some of which sacrifice accuracy in exchange for improved
performance. In many cases, it is acceptable to sacrifice accuracy in a tiled mapping
system. Centimeter accuracy is not necessary in an online mapping system for the
layperson. There is another type of distortion which can be highly damaging in a
tiled-mapping system: border distortion, the discontinuities between images, is un-
acceptable in a tiled-mapping system. No level of user will accept discontinuities
between tiles. As such, it is imperative that our reprojection technique eliminate
visible discontinuities at the edges of images.

10.4.1 Affine Transforms

Affine transforms provide one possible means of reprojecting map images [2]. An
affine transform is a linear transformation plus a translation.

u=agp+ayx—+azy
v=>bo+bi1x+byy

The linear transform in an affine transform may be a combination of rotation, scal-
ing, or shear. Affine transforms preserve collinearity of points. Straight lines before
the transform are also straight after the transform. Affine transforms may be rep-
resented as a matrix and are computationally simple to apply to an entire image
because the transform is linear. Many image libraries provide the functionality of

178 10 Map Projections

applying an arbitrary affine transform to an image (e.g., Java, Python Imaging Li-
brary).

To reproject an image from UTM to Geodetic using an affine transform, we must
determine the parameters of the transform and then apply the transform to the image.
Determining the parameters requires solving a simple matrix equation:

Ow—1w-—1 abc X1 X2 X3
0 0 h—1]=(|def]||yiyy
1 1 1 111 111

The variables w and 4 are the width and height of the reprojected image. The (x,y1),
(x2,y2), and (x3,y3) are the north-west, north-east, and south-east corner pixel co-
ordinates of the Lat/Lon quad inside the UTM image. These are the pixel locations
of the corner points of the Lat/Lon image individually reprojected into the UTM
image (using the point reprojection formular using Equations 10.1 and 10.2). The
affine transform is the solution defined by the variables a, b, c, d, e, and f. When
applied to the UTM image, the three image corner points used to solve the equation
will map perfectly to the Lat/Lon image. The final corner will be slightly displaced
from the corner in the final image, but the difference will be small in a high resolu-
tion image.

The computational efficiency of the affine transform, combined with its ease of
use in most programming environments, makes it a good candidate as a reprojection
algorithm. For individual map images it is a good method of reprojection, especially
if processing power is minimal and measurement distortion is not an issue.

The performance of affine transform reprojection makes it appear to be a great
technique for tiled-mapping where large datasets demand efficient algorithms. How-
ever, approximating the reprojection with a linear transform causes significant
border distortion. As seen in the point reprojection formulae (Equations 10.10
and 10.11), the UTM to Geodetic reprojection is non-linear. Visually, this means
that the UTM grid lines and image will become curved. However, the affine trans-
form’s collinearity property ensures that they remain straight. Thus, the resulting
image is not on a Geodetic grid but slightly distorted. Additionally, each reprojected
image uses a unique affine transform best approximating the specific reprojection
of that image. The different transforms will cause each image to be reprojected dif-
ferently. These combined error sources result in significant discontinuities between
reprojected images. At high resolution discontinuities in features such as roads in
a tiled-mapping system are unacceptable for users and must be avoided. Thus, the
affine transform does not provide an acceptable reprojection solution [3].

10.4 Map Reprojection 179

10.4.2 Interpolation

The alternatives to affine transform reprojection of images are techniques that com-
bine point reprojection with interpolation. The interpolation algorithms can be con-
fusing, so we will explain them below.

Interpolation is a technique to approximate data values that lie within some set
of known data values. Linear interpolation is a commonly used and simple interpo-
lation method. It is based on the assumption that the underlying function modeling
the data values is linear. As a simple example, if we have known data values (2, 10)
and (3,20), then using linear interpolation, we can approximate values (2.5,15),
(2.7,17), (2.1,11), etc.

But how do we interpolate values of image pixels? Here, we have pixel location
represented by a two-dimensional coordinate and color value. Rather than interpo-
late between two pixels lying on a straight line, we interpolate between four pixels
forming a square. Bilinear interpolation provides a means of determining the value
(e.g., color) of any pixel lying within any four pixels with known values.

f6y) = £(0,0)(1 =x)(1 =)+ f(1,0)x(1 = y) + £(0,) (1 —x)y + f(1, 1)xy

The four known pixels are normalized to coordinates (0,0), (0,1), (1,0), and (1,1).
The value of a pixel is represented by the function f(x,y). As seen in the formula, the
value of the internal pixel is weighted more heavily towards the pixels it is closest
to. For RGB color pixels, the bilinear interpolation must be performed three times,
one for each color component. A visualization of bilinear interpolation is shown in
Figure 10.10.

Fig. 10.10 Bilinear interpolation between four points to calculate the value of the interior point.

180 10 Map Projections

10.4.3 Point-wise Reprojection

The point reprojection formulae presented earlier imply a simple method for repro-
jecting an entire map image: take every point in the UTM image and reproject it to a
Geodetic image. Such an algorithm would work, except that a pixel in the UTM im-
age is highly unlikely to be reprojected exactly onto a pixel in the Geodetic image.
Instead, it will map to a point between pixels. One could devise a method of repro-
jecting UTM points and then performing interpolation to determine values of the
Geodetic pixels. However, this would become needlessly complicated and probably
lead to a loss of accuracy.

There is a better way of performing point-wise reprojection diagrammed in Fig-
ure 10.11. First, start by creating an empty Geodetic image covering the same geo-
graphic area as the UTM image. Use the UTM to Geodetic formulae to determine
the Geodetic coordinates of the corners of the UTM image. The Geodetic image is
the bounding rectangle around those four corners. Then for each pixel in the Geode-
tic image, reproject the coordinates back into UTM. In general, the UTM coordi-
nates will not correspond to one pixel in the UTM image. Instead, it will lie inside
a square bounded by four pixels. The color value for this UTM point can be cal-
culated using bilinear interpolation using the surrounding four pixels’ color values.
This color value is also the color value for the pixel in the Geodetic image. Fill in
the color and proceed to the next pixel.

Point-wise reprojection has the benefit of being accurate, both geospatially and
with border alignment. The reprojection accuracy is the same as with the point re-
projection formulae with the additional small error caused by the bilinear interpo-
lation for pixel colors. We can assume color interpolation error is minimal because
images usually do not have a lot of high frequencies in the color components. The
color variation between individual pixels is so small that the underlying function
is essentially linear and thus well approximated using bilinear interpolation. Addi-
tionally, the distribution mechanism of a tiled-mapping system will often be a lossy
compression algorithm such as JPEG, which performs smoothing on the color. Bor-
der alignment has no visible error because adjacent images are reprojected using the
same transformation, unlike the affine transformation reprojection.

The flip side of the increased accuracy of point-wise reprojection is increased
computational cost. The non-linear reprojection formulae are reasonably fast when
run once on a modern computer. However, the technique scales poorly. A 10,000
by 10,000 pixel image would require 100,000,000 point reprojections. When that is
scaled to the number of images in a global map dataset, the time required to repro-
ject the data becomes untenable. The example code for point reprojection given
above takes approximately 20 minutes for 100,000,000 reprojections. Compiled
code would be faster but not fast enough. What we really need is an improved
algorithm [3].

10.4 Map Reprojection 181

UTM

Geodeti
Source _> oSN
Image Image

Destination

(a) Calculate the geographic area quadrilateral of the Geodetic image from the
UTM source image. Create the Geodetic destination image using the bounding box
of the Geodetic area quadrilateral.

UTM Geodetic

—_

(b) Convert the coordinates of a pixel in the Geodetic image to UTM coordinates.
The new UTM point will lie between four pixels in the UTM image.

UTM Geodetic

—_

% N

(c) Perform bilinear interpolation using the four UTM pixels to determine the color
of the original Geodetic pixel.

Fig. 10.11 Point-wise reprojection of a map. The steps in figure (b) and (c) will be performed for
each pixel in the Geodetic image.

182 10 Map Projections

10.4.4 Tablular Point-Wise Reprojection

Point-wise reprojection creates excellent alignment of tiled imagery but with a cost
of computational complexity. The computation cost is derived from the repeated cal-
culations for each pixel in an image. Reprojecting each pixel provides high geospa-
tial accuracy. However, in general, the accuracy of point reprojection is too high for
the images under consideration. The point reprojection algorithms have, at worst,
centimeter accuracy, whereas much of the imagery being reprojected has a resolu-
tion of 1m per pixel. Thus, centimeter accuracy is unneeded, especially when the
computation cost is so high.

Our solution is to reproject only a subset of the points in the image. A table
is generated by subsampling the pixels in the Geodetic image. Thus, instead of a
10,000 by 10,000 Geodetic image, we may have a 100 by 100 table covering the
same geographic area. Each pixel in the table is projected from Geodetic to UTM.
(Remember, in order to convert an image from UTM to Geodetic, the coordinates
of each target pixel in the Geodetic image are converted to UTM coordinates so
that the target pixel’s color may be calculated from the surrounding UTM pixels).
The size of the table should be a divisor of the size of the desired Geodetic image
and also contain the four corners of the Geodetic image to simplify the algorithms
using the table. Once the table is created, it is used in the reprojection of the entire
image. To reproject a Geodetic pixel we find the nearest pixels in the table and
perform a bilinear interpolation to calculate each UTM component. Reprojecting the
entire image requires only linear operations rather than the non-linear reprojection
formulae. Figure 10.12 demonstrates the process of table-based reprojection.

Of course, there is the important question of how tabular reprojection will affect
the accuracy of the reprojected image. First, there is no effect on the quality of image
tile alignment. The borders of two adjacent images will still be projected using the
same method, providing visually perfect alignment. Border alignment is important
because discontinuities in a tiled-map system are unacceptable to users.

Geospatial accuracy is also important. The tabular point-wise reprojection will
reduce accuracy. The reprojection formulae are non-linear, meaning the linear ap-
proximation inherent in the table interpolation will not be exact. The benefit of this
method is that the error caused by the linear approximation can be limited by mod-
ifying the size of the table. The highest error will occur with a 2x2 table containing
true reprojections of only the four corners of the image. A 2x2 table is used by sys-
tems to obtain the maximum increase in reprojection speed. Geospatial error will
be higher, but border alignment will not be an issue as with any point-wise projec-
tion method. The open-source project GDAL (Geospatial Data Abstraction Library)
takes this approach. At the low end of the error spectrum is full point-wise reprojec-
tion.

An important fact ignored by either the 2x2 table or full point-wise reprojection
methods is the required amount of accuracy needed for the application using the
imagery. Imagery with internal Im accuracy does not require sub 1cm reprojection
accuracy. It is a waste of resources to reproject an image with more accuracy than is
internal to the image. A better method would be to tailor the table resolution to the

10.4 Map Reprojection 183

Geodetic

(a) Create the table by performing a
UTM reprojection on a subset of the
points in the Geodetic image. For other
Geodetic points that must be converted,
locate their positions in the table.

Geodetic = (-90.101, 30.201) Geodetic = (-90.100, 30.201)
UTM = (779095.90, 3344611 iil UTM = (779192.21, 3344614.27)
Geodetic = (-90.1003, 30.2004)
UTM= (2, ?)
Geodetic = (-90.101, 30.200) Geodetic = (-90.100, 30.200)
UTM = (779098.72, 3344500.94) UTM = (779195.04. 3344503.39)
(b) Perform two bilinear interpolations to calculate the UTM x and y coordinates
of the target point.
Geodetic = (-90.101, 30.201) Geodetic = (-90.100, 30.201)
UTM = (779095.90, 3344611 .82i UTM = (779192.21, 3344614.27)
Geodetic = (-90.1003, 30.2004)
UTM = (779165.02, 3344547.01)
Geodetic = (-90.101, 30.200) Geodetic = (-90.100, 30.200)
UTM = (779098.72, 3344500.94) UTM = (779195.04, 3344503.39)
(c¢) Use the UTM x and y coordinates in the point-wise image reprojection
algorithm.

Fig. 10.12 Table-based reprojection of points in an image.

184 10 Map Projections

level of accuracy required for a particular application or dataset. A simple binary
search can be used to calculate the necessary resolution. There is no need to create
the entire table in the search process, just a representative set of points to test the
accuracy. A comparison of values from the true reprojection formulae and the linear
interpolation will provide the interpolation error for the given table resolution. In
most cases the size of an accuracy-tuned table will not be large. It will be rare that
a table larger than 100x100 will be necessary. In our applications, a 16x16 table is
adequate to provide our desired geospatial accuracy.

The computational cost of using the table-based approach is much smaller than
full point-wise reprojection. Of course, as the size of the table increases, so does the
computation cost. However, even a 100x100 table has far fewer non-linear compu-
tations in comparison to full point-wise reprojection of a 10000x10000 pixel image.
The 2x2 table is highly attractive from a computational cost perspective, but it is
important to ensure that the loss of geospatial accuracy is acceptable in the final ap-
plication. The reduction in computational cost obtained by using a 2x2 table instead
of a 16x16 table is limited in comparison to the significant reduction in accuracy

[4].

10.5 Map Projections for Tiled Imagery

Once we are able to move between projections, we must decide which Coordinate
Reference System (CRS) to use when storing the tiled map imagery. The best datum
to use will usually be WGS84. A global tiled-map system will rarely be useful if it is
in another datum. WGS84 is the most interoperable datum and the best fit for global
datasets.

Choosing a map projection is not so simple. The different projections offer differ-
ent useful properties. In certain cases, the system will require a particular property,
equal area for example, and this will guide the selection of projection. However,
we will assume the tiled-map system is primarily used for map browsing and not
advanced geospatial applications such as cartography, navigation, etc. In this case,
no single projection provides the best solution.

10.5.1 Storing Tiles in the Geodetic Projection

There are two map projections which are most commonly used by tiled-mapping
systems . The first is the equidistant cylindrical projection, usually called the Geode-
tic projection, Lat/Lon projection, or Plate Carrée projection because a latitude and
longitude grid is the coordinate system of the projection. In combination with the
WGS84 datum, the Geodetic projection is the most used projection for map data
provided by Geospatial Web services on the Internet. It is also referred to by its

10.5 Map Projections for Tiled Imagery 185

EPSG code, 4326. The European Petroleum Survey Group has codes for most CRS
which has become a standard means of identifying them.

The Geodetic projection is used for Web mapping application so often because it
is simple. The coordinate system is latitude and longitude, and the projection forms
a perfect grid with those coordinates. Images in geodetic projection are easily over-
laid on a globe, such as in 3D map clients such as Google Earth or NASA World
Wind. Also, mathematical operations using coordinates, common in map image ma-
nipulation, become much simpler with the Geodetic projection. Each pixel in a map
image with Geodetic projection has the same dimensions in degrees.

The downside of the Geodetic projection is the distortion. Area, shape, and lat-
itude distances are distorted in the Geodetic projection. These distortions are espe-
cially apparent close to the poles. Example distortions are circular domes which be-
come ovals and streets which no longer intersect at right angles. While any map pro-
jection creates distortion, these types of distortions are readily apparent to users, es-
pecially on a tiled-mapping system designed to display maps at large scale (zoomed
in).

As mentioned above, 3D map clients such as Google Earth and NASA World
Wind use the Geodetic projection, as well as the online map tool Mapquest. GIS
clients understand the Geodetic map projection. WMS clients primarily function
using the Geodetic projection.

10.5.2 Storing Tiles in the Mercator Projection

A common alternative to storing tiles in the Geodetic projection is to store them
using the Mercator projection . The Mercator is a cylindrical conformal projection,
meaning that it preserves angles and shapes on the map. It is also a good projection
for global data; most of the globe is clearly visible on a small scale map. While
most interoperable geospatial Web services do not use the Mercator projection for
their data, it is used in some common tiled-mapping systems on the Web. Google
Maps, Yahoo Maps, Microsoft Bing Maps, and Open Street Map all store their tiled
imagery in the Mercator projection.

These Web mapping sites use the Mercator projection primarily because of its an-
gle preservation properties. The primary use of these systems is to view map images
at a large scale. Users zoom into the map to retrieve street directions or search for
locations. The Mercator projection prevents visible distortions in these large scale
maps. Road intersections retain the same angles as on the globe. In the Geodetic
projection this is not the case. Roads in areas nearer to the poles, such as Finland,
intersect at non-right angles. Shapes are also preserved in the Mercator projection.
Circular buildings do not become stretched. The primary distortion caused by the
Mercator projection, size distortion, is not visible in these large scale maps. At the
local level, sizes are uniformly increased in size around the poles, so that the distor-
tions are not visible.

186 10 Map Projections

The Mercator projection has downsides for use as a projection for native tile
storage. The primary problem for the Mercator projection is the issue of interoper-
ability. Clients which access map services, especially WMS clients, usually support
the Geodetic projection. Support for the Mercator projection in non-tile clients is
limited. Thus, if the tiled-map system will be a backend to a WMS, using the Mer-
cator projection will limit its use by many clients. Often tiled map data will be used
as an overlay or background to other map data. Most of this map data is in the
Geodetic projection, and combining with Mercator projected data will be difficult.
A good example of this problem is Google Earth. It expects data to be in Geodetic
projection. Using Mercator projected data as an overlay in Google Earth will cause
problems. Web mapping systems such as Google Maps are not concerned with in-
teroperability. These public Web sites do not support WMS access to their maps,
and they discourage the use of their map tiles in other clients. Choosing a projection
which increases interoperability at the cost of visible distortion at large map scales
is not to their benefit.

10.5.3 Other Projections

There are a number of other possible projections that tiles may be stored in other
than Geodetic and Mercator. Each have their beneficial properties. However, any
other projection will also reduce the interoperability of the system. While the Mer-
cator projection does reduce interoperability, it does have better tile client support
because it is used by the major Web mapping sites. A single tiled-mapping system
using a different projection will probably not have as much support from common
geospatial data clients. A non-Geodetic projection will also be more difficult to work
with, a problem mentioned with the Mercator projection.

If these problems are not an issue for a tiled-mapping system, there are a num-
ber of possible projection which can be used. Primary focus should be on global
projections. Most conic projections are not designed to view the entire world so
they are less useful for a tiled-mapping system. An equal-area projection, such as
the Peter’s projection, will create a global map without the area distortions of the
Mercator projection or Geodetic projection [2]. The Winkel Tripel projection is the
global projection used by the National Geographic Society for their world maps
since 1998 [1]. It is neither equal-area nor conformal. Instead, its aim is to reduce,
but not eliminate, all map distortions: area, angles, and distance. The Robinson pro-
jection is similar to the Winkel Tripel and aims to reduce all distortion rather than
eliminate one in particular [5].

It should be noted that UTM is not suitable for a tiled-mapping system. While
UTM is a global CRS, it is not a global projection. The different projections de-
fined by UTM for the different sections of the globe will cause serious difficulties
for a tiled-mapping system. Tiles will most likely cross UTM boundaries causing
great projection distortions, especially at small map scale. Even at large map scales,
tiles in different projections will be adjacent and cause discontinuities between tiles.

10.5 Map Projections for Tiled Imagery 187

Only tiled-mapping systems with imagery covering an area completely within a
UTM zone should consider using UTM for imagery.

It is also possible to use multiple projections for different tile map scales. For
small map scales, use a projection such as Winkel Tripel that does not cause sig-
nificant size distortion, and for large map scale, use a conformal projection such as
Mercator which maintains angles. While possible, this would destroy any interop-
erability because the tiled-map coordinate system would change depending on map
scale. For situations where interoperability is not an issue, this method is viable
though it would create significant implementation difficulties.

10.5.4 Which Projection for a Tiled-Mapping System?

Given the importance of interoperability in a tiled-mapping system, we recommend
the Geodetic projection as the native projection for image tiles. Clients such as
Google Earth and World Wind require input data in the Geodetic projection. Most
WMS clients expect map data to be in the Geodetic projection. Other geospatial
data, which may be used as image overlays, is often in the Geodetic projection. The
simplicity of the Geodetic projection provides additional impetus to prefer it over
other projections. The latitude/longitude Cartesian coordinate system makes image
manipulation simple, which is important for implementing a WMS front end to the
system.

While we recommend the Geodetic projection as the native projection for tiles, it
is still possible to provide support for Mercator tiles. The transformation between the
Geodetic projection and the Mercator projection is much less complex than Geodet-
ic/UTM reprojections. Rather than store the tiles natively in the Mercator projection,
the Mercator tiles may be created as they are requested by the map client. On-the-fly
reprojection of Mercator tiles is fast and accurate when using the table-based repro-
jection method discussed above. An efficient tile cache for the Mercator tiles will
ensure that the most commonly requested tiles are available with no additional delay
over native Geodetic tiles. If the distortion of the Geodetic projection is a problem,
and the primary clients are tile-based, then server-side Mercator reprojection is use-
ful.

On the other hand, if distortion is a problem, but the map client uses continuous
scales or a WMS interface, client-side reprojection may be a better option. A client
that performs its own reprojection will be able to use any dataset in the Geodetic
projection, preserving interoperability. After all the data is retrieved and combined,
the new aggregate image may be reprojected once.

If the client performs reprojection, it may choose the target projection best suited
for its users. For example, the appropriate UTM projection may be used when the
map scale warrants it. Having a client project back to UTM when necessary re-
moves problems of tiles not aligning if stored natively in UTM. Of course, the UTM
reprojection is computationally costly and may overwhelm the client system.

188 10 Map Projections

An alternative solution would be to use a simpler reprojection method, which
reduces distortion with a simple linear transformation. This simple reprojection
method works by scaling a map image to ensure the ground distance for the width
and height of a pixel is equal. The scaled image is both equal-area and conformal,
though neither is accurate enough for cartographic applications. Code for perform-
ing the bounding box modification is shown in Listing 10.1.

This simple reprojection method can be encoded in the request where the client
modifies the geographic bounds to match the latitude and longitude range given by
the above formulae. The benefit of encoding the scaling in the request is that it of-
floads the image manipulation to the server. If the client displays maps using tiles
natively, rather than a single composite image created by the server, using this re-
projection method becomes more complicated. Using the above formulae on each
image tile individually will cause tile alignment issues, much like with the affine
transform reprojection. Instead, the formulae should be calculated for a single aver-
age latitude for all tiles. Using the same central latitude will ensure the same scaling
is performed on each tile. However, further complications arrise as the map view
moves north or south and the average latitude for the screen changes. Refreshes of
all tiles on the screen will need to occur on a regular basis to ensure the scaling
performs adequately.

10.6 Conclusion

Dealing with map projections, datums, and coordinate systems is complicated. This
chapter has tried to explain those portions of these topics necessary to properly build
a tiled-map system. Our primary focus has been on techniques that provide proper
balance to the tiled-mapping system. Tabular point-wise reprojection provides a
good balance between accuracy and computations cost. The Geodetic projection
provides simplicity and interoperability while allowing client-side adjustments to
reduce its distortion.

Interoperability is a primary concern for most tiled-mapping systems. In general,
they are not going to be large systems like Google Maps, Yahoo Maps, or Bing Maps
which have no interest in providing data outside of their clients. These systems have
the core mission to provide street level mapping and, therefore, an impetus to use
the Mercator projection. For tile-mapping systems designed to be used in generic
clients using Web services, using a non-Geodetic projection would be a significant
impediment to general acceptance. Additionally, with the tabular point-wise repro-
jection algorithm discussed in this chapter, on-the-fly reprojection from Geodetic
tiles to Mercator tiles is certainly feasible. There really is no best projection for all
purposes, but the simplicity of the Geodetic projection for computer-based mapping
makes it the best choice from an interoperability perspective.

10.6 Conclusion 189

Listing 10.1 Modify a bounding box so that the ground distance for the width and height of a pixel
is equal.

// this method adjust the input bounding box so it will have the same aspect
ratio as width to height of map display

// this is done by adding (never subtracting) area to the bounding box

public static BoundingBox adjustBoundingBoxToDimension(BoundingBox bb, int
width, int height) {
BoundingBox adjustedBoundingBox = new BoundingBox (0.0, 0.0, 0.0, 0.0);

// determine how many longitudinal degrees must be covered for the given
latitudinal range

double averageLatitude = (((bb.maxY + bb.minY) / 2.0) / 360.0) = (2 * Math.
PI);

//WGS84

double kmInALatitudeDegree = Math.abs(111.13292 — 0.55982 x Math.cos(2.0 =*
averageLatitude) + 0.001175 % Math.cos(4.0 * averageLatitude) —
0.0000023 % Math.cos (6.0 * averageLatitude));

double kmInALongitudeDegree = Math.abs(111.41284 % Math.cos(averageLatitude
) — 0.0935 % Math.cos(3.0 * averageLatitude) + 0.000118 x Math.cos(5.0
* averagelLatitude));

// how many degrees of longitude must be covered so that an equal distance
is covered as is covered by the latitude range
double mapAspectRatio = ((double) (width)) / ((double) (height));

double kmCoveredInLatitude = Math.abs(kmInALatitudeDegree % (bb.maxY — bb.
minY)) ;

double kmCoveredInLongitude = Math.abs(kmInALongitudeDegree * (bb.maxX — bb
.minX)) ;

double groundDistanceAspectRatio = kmCoveredInLongitude /
kmCoveredInLatitude ;

if (groundDistanceAspectRatio > mapAspectRatio) { // latitude range must be
expanded
double adjustedLatitudeRange = ((1 / mapAspectRatio) =
kmCoveredInLongitude) / kmInALatitudeDegree;
adjustedBoundingBox . minX bb.minX;
adjustedBoundingBox . maxX bb . maxX ;
adjustedBoundingBox . minY (float) (bb.minY — Math.abs ((
adjustedLatitudeRange — Math.abs(bb.maxY — bb.minY)) / 2.0));
adjustedBoundingBox .maxY = (float)(bb.maxY + Math.abs ((
adjustedLatitudeRange — Math.abs(bb.maxY — bb.minY)) / 2.0));

else { // longitude range must be expanded
double adjustedLongitudeRange = (mapAspectRatio * kmCoveredInLatitude)
/ kmInALongitudeDegree;
adjustedBoundingBox .minY = bb.minY;
adjustedBoundingBox .maxY = bb.maxY;
adjustedBoundingBox .minX = (float)(bb.minX — Math.abs ((
adjustedLongitudeRange — Math.abs(bb.maxX — bb.minX)) / 2.0));
adjustedBoundingBox .maxX = (float)(bb.maxX + Math.abs ((
adjustedLongitudeRange — Math.abs(bb.maxX — bb.minX)) / 2.0));
}

return adjustedBoundingBox ;

O 00NN AW~

54
55

56

190 10 Map Projections

Listing 10.2 Python code to convert a geodetic point to UTM.

from math import =

longitude and latitude should be in degrees
we will convert to radians in the code

longitude should be between [—180, 180)

latitude should be between [—80, 84)

def GeodeticToUTM(lon, lat):

a and b are WGS84 ellipsoid constants
a = 6378137.0
b = 6356752.3

kO is a scaling factor used to reduce average distortion
kO = 0.9996

the next section of statements calculates the zone

there are some special exceptions

if (lat >= 56 and lat < 64 and lon >= 3 and lon < 12):
zone = 32

this is special zones for Svalbard
elif (lat >= 72 and lat < 84):
if (lon >= 0 and lon < 9):

zone = 31

elif (lon >= 9 and lon < 21):
zone = 33

elif (lon >= 21 and lon < 33):
zone = 35

elif (lon >= 33 and lon < 42):
zone = 37

default formula for calculating zone
else:
zone = int((lon + 180) / 6) + 1

lonRad = radians(lon)
latRad = radians(lat)

calculate the central longitude and convert to radians
centralLon = (zone — 1) = 6 — 180 + 3
centralLonRad = radians(centralLon)

do calculations to convert to UIM
e = sqrt(l— (bxb)/(axa))

e2 = exe

ePrime2 = (e2) / (1— (e2))

a / sqrt(l — e2 % pow(sin(latRad), 2))
pow(tan (latRad), 2)

ePrime2 * pow(cos(latRad), 2)
cos(latRad) * (lonRad — centralLonRad)

2 »0A2Z

a *x ((1—e2 / 4 — 3 % pow(e2,2) / 64 — 5 % pow(e2, 3) / 256) * latRad —
(3 = e2 / 8 + 3 x pow(e2, 2) / 32 + 45 x pow(e2, 3) / 1024) x sin(2*
latRad) + (15 * pow(e2, 2) / 256 + 45 % pow(e2, 3)/1024) x sin(4x
latRad) — (35xpow(e2, 3) / 3072) % sin(6xlatRad))

easting = kO * N * (A + (1-T+C)*pow(A,3)/6+(5—18xpow(T,3)+72xC—58*«ePrime?2)
* pow(A,5)/120) + 500000.0

northing = kO * (M +N % tan(latRad) * (pow(A,2) / 2+ (5—T+9%C+4xpow(C,2)) x*
pow(A,4) / 24 + (61 — 58 * T + pow(T,2) + 600 * C — 330 % ePrime2) =
pow (A,6)/720))

hemisphere = 'N’
if southern hemisphere then add the false northing
if (lat < 0):

References 191

northing = northing + 10000000
hemisphere = S’

return (easting, northing , zone, hemisphere)

for i in xrange (100000000):
GeodeticToUTM(—90, 30)

References

1. Goldberg, D., Gott, J.: Flexion and skewness in map projections of the Earth. Cartographica:
The International Journal for Geographic Information and Geovisualization 42(4), 297-318
(2007)

2. lliffe, J.: Datums and Map Projections for remote sensing, GIS, and surveying. Whittles Pub-
lishing (2000)

3. Jain, S., Barclay, T.: Adding the EPSG: 4326 Geographic Longitude-Latitude Projection to
TerraServer (2003)

4. Mesick, H., Ioup, E., Sample, J.: A Faster Technique for the Transformation of Universal Trans-
verse Mercator Projected. Tech. rep., Naval Research Laboratory (2004)

5. Robinson, A.: A new map projection: Its development and characteristics. International Year-
book of Cartography 14(1974), 145-155 (1974)

6. Robinson, A., Morrison, J., Muehrcke, P., Kimerling, A., Guptill, S.: Elements of Cartography,
6th edn. John Willey & Sons (1995)

7. Snyder, J.: Map projections: a working manual. USGPO (1987)

Chapter 11
Tile Creation using Vector Data

In previous chapters we were primarily concerned with taking an imagery dataset
and converting it into tiles. In this chapter we will focus on vector data as the source
for creating tiles. Vector data is made up of geometric primitives, such as points,
lines, and polygons. As a result, the process of taking vectors and turning them into
image tiles brings up a completely different set of issues from the process using an
imagery source.

11.1 Vector Data

As stated above, vector data is geospatial data defined by geometric primitives. A
vector dataset will be made up of a number of individual vector features. Each vector
feature will have a geometry which defines its geometric shape as well as its location
geographically. Often, a vector feature will have a simple geometry made up of a
single point, polyline, or polygon (see Figure 11.1). More complex geometries are
possible as well. A vector feature may be defined by a curve, a conic, having inner
rings, or being multi-dimensional. Additionaly, a vector feature may have a complex
geometry that is a combination of other geometries. Examples of complex vector
features are shown in Figure 11.2.

In general, there is no guarantee that a vector feature may be drawn into an image
or on a computer screen. A curve or a circle must be approximated by a polyline or
polygon when drawn by a computer. High-dimensional vector features may not even
be approximated for rendering by a computer. Of course, in order to be useful as a
source for tiled images, a vector feature must be renderable. As a result we will
limit our discussion to features which may be rendered into an image. This chapter
will not discuss the process of rendering vector data into an image, which is well
described in other texts. Instead, we will limit discussion to the effect the tiling
process has on the act of rendering vector features, and vice versa.

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 193
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__11,
(© Springer Science+Business Media, LLC 2010

194 11 Tile Creation using Vector Data

(a) (b) Polyline
Point

(c) Polygon

Fig. 11.1 Simple vector features.

11.2 Tile Creation

The overall process for creating tiles from vector source data is not significantly
different from the process using imagery source data. The primary difference is that
instead of cutting image tiles from source data, the vector data is drawn into tiled
images. The tile creation process may be outlined in a few simple steps.

Dok w D =

Choose a tile to create.

Determine the bounding box of the tile.

Query the vector data source for all features in the bounding box.
Render the vector data to an image with the appropriate tile size.
Store/disseminate the tile image.

Most of these steps have already been discussed in reference to tiles created from

imagery. However, tiling from vector data does have some unique elements which
distinguish it from tiling imagery. To recap, the three primary differences are:

Storage space: Rendered image tiles require a significant amount of storage space
relative to vector map content. A collection of geospatial features might be 100
megabytes in vector form but could grow to several terabytes when rendered over
several different scales.

Processing time: Pre-rendering image tiles requires a significant amount of time,
and many of those tiles may be in geographic areas of little interest to users. The

11.2 Tile Creation 195

(a) Curve (b) Polygon with an Inner Ring

(c) Complex Vector Feature

Fig. 11.2 More complicated vector features.

most efficient way to decide what tiles to render is to wait until they are requested
by actual users.

e Overview images: Overview images, i.e., very low scale images, can be rendered
directly from geospatial vectors. Unlike raster-based tile systems, there is no need
to render the high scale views first and then generate scaled down versions.

These differences allow a modification of how the resulting tiles created from vec-
tors are used. For imagery, all the tiles are created ahead of time and stored per-
manently for distribution. However, because of the above three differences in tiled
imagery, it does not make sense to pre-render all tiles ahead of time. Instead, the tiles
may be rendered as they are requested by users. By rendering tiles just-in-time, only
the tiles which users request are ever generated. On-the-fly rendering reduces stor-
age requirements significantly but will reduce performance of the system. Speed
is improved if the rendered tiles are cached on disk after they are first requested.
Each tile is only rendered once (or until the underlying data changes). The most
commonly viewed tiles will be cached so performance will be good.

196 11 Tile Creation using Vector Data

11.3 Queries

Querying, and ultimately the storage system for vector data, will be the primary
focus of this chapter. Only one query is important to the process of tiling vector
features. Each time a tile must be created, the tiling system will request all vector
features that lie within the tile bounds. Only requiring one basic query is useful
because the queries used in tile creation are completely deterministic. A complete
list of queries used in tile creation may be created ahead of time, and the list will
not change over repeated tile creation runs. Since the tile scheme is known ahead of
time, the geographic bounds used in the query will be known ahead of time as well.
Therefore, improving query performance is actually only important for the subset of
queries which request data lying within tile bounds. While this may seem obvious,
most techniques for improving geospatial query performance tend to be generalized
to support any geospatial query. Since the variations in our queries are so small, we
can improve upon the standard techniques.

Feature selection based on map scale is a possible variation to the geospatial
queries which is important. Consider the case where roads are the vector data used
for tiling. For tiles that cover a large area, such as the entire United States, it would
be unreasonable to try and draw every road feature that lies within the tile. The re-
sults of such a query may be all or a large percentage of the roads in the overall
dataset. Performing the query would be slow, if not impossible, and the rendered
tile cluttered and unreadable. Rather than draw every feature lying in the tile, only
a subset of the features should be drawn. For the roads example, it would make
sense to draw only interstates and major highways at the map scale where the entire
United States is visible. In general, in cases where the vector data source is quite
large, consideration should be given to selecting features to draw based on the map
scale of the destination tile. For roads, we may choose to have interstates and ma-
jor highways drawn at all zoom levels, minor highways drawn at zoom level 5 and
above, and all roads drawn at zoom level 8 and above. Using map scale, or zoom
level, to select features does add complexity the queries used to generate tiles. How-
ever, it will generally improve performance because lower zoom level tiles will have
fewer features to retrieve. Filtering features based on scale also does not change the
fact that the tiling queries are completely deterministic. The determinism makes it
possible to design a highly targeted storage methodology for tiling vector data.

11.4 Storage

There are two primary methods of storing vector data for tiling: database storage
and file system storage. Database storage of vector data is more common than file
storage when the data is to be retrieved using geospatial queries. File storage is more
commonly used for archival and distribution of vector data as fixed data sets. We
will describe a file storage system which is designed to support high performance
tile creation from vector data.

11.4 Storage 197

11.4.1 Database Storage

Most modern database systems provide support for geospatial data, including stor-
ing geometries as first class data types, supporting complex geospatial queries, and
providing geospatial indexes. Common examples include Oracle with the Spatial
extension, PostgreSQL/PostGIS, and MySQL. Normally, vector data is stored in a
database with each attribute of the feature appearing as a field in a database table,
including the geometry. Because database tables have a fixed schema, features must
have the same attributes to be stored in the same table. As a result, there is usually
a direct mapping between geospatial layers and database tables. Many tools exist to
import data from geospatial file formats directly into tables (such as shp2pgsql for
PostgeSQL).

Querying for geospatial data is supported by these databases without any extra
development. The query for all features in the geospatial bounds of a tile is shown
in Listing 11.1.

Listing 11.1 Geospatial query for vector features within a tile’s bounding box. Based on Post-
greSQL/PostGIS.

1| SELECT * FROM FeaturesTable WHERE feature_geometry && ST-MakeBox2D (ST _-Point
(=90, 0),ST_Point(0, 90));

The operator && determines whether the bounding boxes of two geometries overlap.
In this example, the query is comparing the feature geometry with the tile (1, 1)
at zoom level 2.

Indices should be created to provide adequate performance of these queries.
The two most commonly used geospatial indices are the R-Tree index (usually the
R*-Tree variant) and the Quadtree. The R-Tree index tends to be preferred over
the Quadtree because it provides better query performance over a wider variety of
geospatial queries. The database controls the creation of indices, though some level
of tuning is allowed by the user. Regardless of what type of geospatial index is used,
the database tables should be clustered. Clustered data is ordered on disk according
to its location in the index. As a result, the database must access only a localized
area of the disk when solving a query using the index. Index clustering is essential to
query performance when the query is expected to return multiple results. An exam-
ple of creating a clustered index in PostgreSQL/PostGIS is shown in Listing 11.2.

Listing 11.2 Example SQL for creating a clustered PostGIS R-Tree index in PostgreSQL.

1| CREATE INDEX spatial_-index ON FeaturesTable USING GIST (feature_geometry);

Creating the database tables from vector data layers and using clustered indices are
sufficient to create a functioning database environment for vector tiling. No changes
to the geospatial query are necessary. A database will automatically determine if an
index should to be used in the evaluation of a query.

Additional modifications to the geospatial database may be implemented to in-
crease performance. Given the foreknowledge of the query patterns to the database,
we can customize the way the features are stored to simplify evaluation for the

198 11 Tile Creation using Vector Data

known queries. The first case to examine is the one where only a subset of fea-
tures are used in tiles with low zoom level. A simple modification to the query in
Listing 11.2 will add support for this functionality, as seen in Listing 11.3.

Listing 11.3 Geospatial query with filter on zoom level.

SELECT x FROM FeaturesTable WHERE feature_geometry && ST-MakeBox2D (ST_-Point
(=90, 0),ST_Point(0, 90)) AND feature_min_zoom_level <= 2;

This query will accomplish the goal of retrieving only a subset of the features inside
a tile, depending on the scale. However, there is a problem. The query on bounds
and scale requires different optimizations depending on the query parameters. When
the query zoom level is high and the query bounds are small, a clustered geospatial
index will provide the best performance. On the other hand, when the query zoom
level is small and the query bounds are large, a clustered zoom level index will
provide the best performance. Given that only one index on a table may be clustered,
it is inevitable that one of these two sets of queries will not perform as efficiently as
possible.

The solution is simple: create multiple tables to hold data for different scales. The
key zoom levels where the subset of tiles being rendered changes are known ahead of
time. A separate table may be created to hold the features whose minimum display
zoom level is less than a particular key zoom levels. For example, if the key zoom
levels are zero, eight, and fourteen then our roads layer will have tables Roads_ 0,
Roads_8,and Roads_14. Each of these tables holds all features whose minimum
zoom level is less than or equal to the table zoom level. The tiler need only query
the table which matches the zoom level of the tile being rendered at the moment.
No additional filtering on zoom level need be done in the query because the filtering
has been performed ahead of time.

The only drawback to creating multiple tables for each layer is that features will
be duplicated between tables. For example, interstates should be represented in all
three roads tables. However, additional performance is possible by reducing the res-
olution (i.e. the number of points in the geometry) of features in the tables with
lower zoom level. The reduced resolution will decrease the size of the table and in-
crease the speed of rendering a tile. Creating multiple tables increases the required
space to hold the vector data, but disk is cheap, and vector data is relatively small,
especially in comparison to imagery. The performance benefits of creating a table
for each key zoom level far outweigh the storage costs. Figure 11.3 shows different
key zoom levels used by OpenStreetMap.

One of the benefits of a database is that it automatically organizes and searches
a wide variety of data types. A developer can store data in a database with little
or no custom development. The flip side of the automatic and general nature of a
database is the limited amount of customization that is possible. The R-Tree index
included in a database is a good example of this tradeoff. The R-Tree index is a
good geospatial index which increases performance of a wide variety of geospatial
queries. However, the database completely manages the organization of data in the
R-Tree index. The application developer has no way of guiding the organization of
data in the R-Tree. We know ahead of time which vector features lie within which

11.4 Storage 199

(@ ®
|
G o i)
| =
e S N
v .;'3%,5
G A~
/
(© @

Fig. 11.3 Key zoom levels used by OpenStreetMap when rendering their vector data.

tiles. It would provide a performance benefit if the application developer could en-
sure that the R-Tree page splits matched tile splits, but this is not possible. Such
customization would be difficult even in a Quadtree, which organizes data into tiles
by default.

The loss of customization inherent in using a database would be acceptable if
the database provided significant advantages for a vector tiling system. However,
a tiling system does not require much of the functionality provided by a database.
Core database features like advanced locking of data and rollback availability are
unnecessary for a vector datastore which is primarily read-only. These database fea-
tures are not free; they are a core part of the database which are included at a cost to
performance. For example, a banking system which requires accuracy in monetary
transactions definitely requires atomic transactions in its datastore.

200 11 Tile Creation using Vector Data

11.4.2 File System Storage

In contrast to a database, file system storage offers little in the way of automatic
functionality but provides the developer with the ability to fully customize the stor-
age implementation in the overall system. A tiling system is a good example of an
application which can benefit from using a file system for storage. The deterministic
nature of the queries performed when tiling features provides an environment which
can benefit from the customization allowed by a file system. Using our knowledge
of the vector tiling system, we can develop a custom file storage implementation
which is optimized for our system.

The first departure in our file storage implementation from the database design
is in how vector layers are managed. In the database, each layer is mapped to a sep-
arate table. This design is necessary because database tables have a fixed schema
which requires all records to share the same columns. In general, different vector
layers will not have the same feature attributes (which map to table columns) and,
as a result, must be stored in different tables. A custom file format does not have
this restriction. The file store may be designed to hold features from many different
layers. There is a good reason to store features from multiple layers in the same file.
The tile system uses features from multiple layers when drawing tiles. The design of
a custom storage system should partition data only when it benefits the overall effi-
ciency of the system. Usually, the performance benefit comes from the query access
patterns. Since the queries in the tiling system do not require features partitioned by
layers, there is no reason to do so. The simplest way to store features from multiple
layers in the same file is to store a variable size list of the attribute names and val-
ues for each feature. This method obviously requires more storage space than fixed
schema systems. As a means to reduce storage requirements, the attribute names for
the different feature layers may be stored once in the file header and linked to each
feature. However, storage is generally cheap so the added complexity may not be
worth the effort.

In contrast, the geospatial area is a property of the vector features that affects
query access patterns. Therefore, partitioning data according to location is impor-
tant for an efficient file storage system. Databases improve the performance of the
geospatial queries by using a geospatial index. We already mentioned that by auto-
matically creating these indices, the database would never provide a geospatial index
optimized for our tiling application. With a custom file storage implementation, we
can optimize storage for our tiling application. We can take advantage of the fact
that geospatial queries used by the tiling system always match tile boundaries. As a
result, we index and cluster the vector data using tile boundaries.

The simplest index partitions the data into multiple files whose bounds align with
the tile bounds at one chosen zoom level. However, as we have seen with image tiles,
at high zoom levels the number of files becomes unwieldy. Instead, we partition the
data according to tile location but store each partition in one file. The start byte and
length of every tile partition is stored separately so that each tile may be accessed
independently. A feature is placed into a tile partition if its geospatial bounds overlap
the bounds of the file’s corresponding tile (see Figure 11.4). It is likely that a few of

11.4 Storage 201

the features will overlap multiple tiles. In this case, the features are placed into each
overlapping tile partition. The result is a file storage scheme which is by default
also a clustered index. Using features stored on the file system is easy. An entire
tile partition may be loaded into memory, and the tile it represents is rendered. All
subtiles at higher zoom levels may be rendered as well. Alternatively, features may
be rendered as they are read from the file system without caching them in memory,
allowing lower resource systems to use the same scheme.

To support memory caching, the tile partitions must be sized to fit into memory.
Thus, the zoom level which defines the boundaries of the tile partitions should be the
lowest zoom level whose tile partitions fit into the memory of the rendering system.
Determining the appropriate target zoom level will require some experimentation,
but if performance is a concern, the results will be worth it.

(0,00

et |

Fig. 11.4 A map made up of polyline vector features. Each polyline is partitioned according to
which zoom level 2 tile it lies within. For example, Antarctica would be placed in tiles (0,0), (1,0),
(2,0), and (3,0).

Minimum rendering zoom level is another vector feature property which may be
managed by partitioning data. For database storage, a table was made for each key
zoom level in the tiling system. The same technique may be used for file storage.
Each zoom level which uses a different subset of features for rendering has a sep-
arate file to store features. That directory stores the feature file and its index. The
files for a key zoom level are used when rendering tiles at that zoom level or higher
(until the next higher key zoom level).

As with the database version of this optimization, overall storage cost is increased
by redundantly storing features. Conversely, the average amount of data accessed
when performing a query is reduced because there are fewer features in each file.
The result of this custom vector data store is that all queries are essentially precom-
puted so that the disk accesses are all predetermined. Each file will only be read off
disk once, and all tiles may be rendered by looking at only one file. Once data is in

202 11 Tile Creation using Vector Data

memory, the cost of filtering features to render tiles with smaller geographic areas
is small. Disk access is much more costly than in-memory computation.

Experimentation shows that the performance of a file-based feature store out per-
forms a standard database. The feature data used for the testing is the road network
of the United States. The data comes from the NAVTEQ corporation and is the
same dataset used by the commercial Web-mapping systems. We created a basic
file-based storage system with features partitioned at zoom level 11 and stored in
a file. We also created a PostgreSQL/PostGIS datasbase to store the same features.
The database table was clustered using an R-Tree index on the data. The experiment
query requests all the features in a tile. The tests were performed using a random
list of tiles from zoom level 11 located in the continental United States. The time to
execute each query and the number of features in the queried tile was recorded. The
results, as seen in Figure 11.5, show that the queries to the file store are approxi-
mately twice as fast as those to the database.

The experimental results make sense because the file-based tile storage scheme
is designed specifically for rendering tiles from vector data. Similar optimizations
are possible for database stored vector data; splitting tables by key zoom level
was already discussed, but data could also be indexed according to precomputed
tile location at a specific zoom level. However, with these changes, managing the
database storage becomes significantly more complicated, even more than the file-
based storage (querying multiple layer tables for data, handling features which cross
tile boundaries, etc.). A file store can provide better performance with lower devel-
opment cost, lower administrative overhead, and better portability than databases.

11.4 Storage

203

300 T T T T T
Ao File Query «
=< DB Query
250 b
m
E
[L i
£ 200
= x
s x
§ 150f]
2 <
)
s x A
3 100 X X b
Q x % a A
F « >&x
>2< A
50 % a AA i
WA TN
0 5000 10000 15000 20000 25000 30000 35000
Number of Features in Query Result
(a) Results for all tile queries.
18 T T T T
A File Query 4
16| x DB Query 1
~ 141 A g
%]
£ x x =
X
(] L 4
g12 A)
'; X x 2KYX
S 10r % PO ST
El X X ks T
§ sl X X ><><>§&< X?)f(X&X%xxxf%;
w X xx x xX &% §g>§<><
) XX %X sl X X <y
g 61 X ><><>< & X X gg %X(X % X]
o X &X x x X X
< X X A
Foa 1
2 A A A

200 400
Number of Features in Query Result

(b) Results for tile queries with fewer than 1000 featuers.

600

800

1000

Fig. 11.5 Comparison of geospatial query execution times between a database and a file-based
feature store. Each geospatial query requests all features in a tile from zoom level 11. The file
query outperforms the database, most significantly when the number of features in the query tile

Srows.

Chapter 12
Case Study: Tiles from Blue Marble Imagery

In this chapter we will present a complete end-to-end system for creating and storing
tiled images from a freely available worldwide set of imagery. The system will read
source imagery, cut it into tiled images, and store the tiled images to cluster files.
NASA'’s Blue Marble Next Generation Imagery (BMNG) is a composite image
of the Earth at 500 meters resolution taken by the MODIS satellite mounted sensor.
The BMNG imagery and information about it are freely available for download from

http://earthobservatory.nasa.gov/Features/BlueMarble/

The imagery comes in two formats: as a single raw image file 86,400 pixels wide
by 43,200 pixels high and as 8 smaller sub-images, 21,600 pixels by 21,600 pixels.
In this chapter we will present a pull-based tiling approach using the single large
image and a push-based tiling approach using the 8 sub-images.

Before we can begin tiling, we must determine the base zoom level that we will
use for our tile set. Both the single large image and the set of 8 sub-images have
the same geospatial and image resolution, so we will use the same base zoom level
for both image sets. Using the following equation, we can compute the degrees per
pixel for our Blue Marble imagery.

(360.0/84600 + 180.0/42300) /2 = 0.00425.

Since 0.00425 falls between level 7 (0.00549) and level 8 (0.00274), as shown in
Table 2.1, we will choose level 8 as our base level.

12.1 Pull-Based Tiling

The algorithm presented in this section will bring together six concepts already
presented in the book:

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 205
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__12,
(© Springer Science+Business Media, LLC 2010

206 12 Case Study: Tiles from Blue Marble Imagery

e Section 5.2.3: Pull-based tile creation that iterates over the tiles first. For each
tile, it extracts the required data from the source images, creates the tile, and
stores the tile.

Section 5.3.1: Scaling process for lower resolution tiles.

Section 6.1: An optimized version of tile creation that holds tiles in memory
while they are being used and write them to disk in memory.

Section 6.2.1: Methods for partial reading of source images.

Section 6.3.1: Multi-threading tile creation.

Section 8.5: Storage of tiled images in clusters of tiles from different zoom levels.

Because our source image is too large to hold in memory all at once, we will
implement an algorithm for partial reading of the image. The image, like many
images, is stored in row-major order, also known as scanline order. The Java class
in Listing 12.1 provides a method for reading pixel delineated sub-sections of the
large Blue Marble image. The example code is designed for clarity and ease of
understanding. There are more efficient ways to read sub-images. These include
setting pixels in blocks of data versus setting one pixel at a time and reading blocks
of bytes instead of one byte at a time. For simplicity’s sake, we will multi-thread
the creation of only the base level. The higher levels take a much shorter amount of
time to create and do not require multi-threading.

The next piece of supporting code we will need is a modified version of the tile
cluster storage algorithm. The version in Listing 12.2 takes the code presented in
Section 8.5 and adds in-memory caching of tiled images during the creation process
and a cache of open RandomAccessFiles. Since this section is primarily concerned
with creating tiles, the code only manages a write cache. Reading of tiles stored to
disk in an earlier session is always done directly from disk. Reading of tiles that
have just been written to the cache is done from the cache. Also, the write cache
uses a hashmap with Java String objects as keys. A more efficient approach would
use numerical tile addresses as keys, but the String based approach is simpler to
implement. The final piece of supporting code, Listing 12.3, allows multiple threads
to iterate over a range of tile addresses.

Given the supporting code, now we can create the completed system. The steps
in the algorithm are as follows:

1. Iterate over all the tiles in the base zoom level. For each tile:

a. Pull the imagery needed from the source image.
b. Scale the tile to the proper resolution.
c. Store the tile in the cache.

2. Iterate over each successive zoom level up to level 1.

a. For each zoom level, iterate over each tile at that level. For each tile:
i. Pull the four images from the higher level that make up the current tile.
ii. Merge the four images together into one image.
iii. Store that image into cache.

3. After all tiles have been created, write the tiles to disk.

12.3 Results 207

The Java classes in Listing 12.4 demonstrate this algorithm. The first class, PullTile-
Creation, initializes the input and output, creates and starts the pull tiler threads, and
creates the lower resolution levels. The class PullTilerThread is a Java thread imple-
mentation that does the work of creating the base level tiled images.

12.2 Push-Based Tiling

In this example, we will use as source imagery the Blue Marble data that has been
divided into 8 sub-images. Each image is 21,600 by 21,600 pixels and covers a 90
degree by 90 degree area of the earth’s surface. Since each sub-image can be held
completely in memory, we can use a push-based tiling approach. Our algorithm will
iterate over the source images in memory and extract data from each source image
needed to make the tiled images.

The algorithm presented in this section will bring together four concepts already
presented in the book:

e Section 5.2.3: Push-based tile creation that iterates over the source images first.

e Section 5.3.1: Scaling process for lower resolution tiles.

e Section 6.1: An optimized version of tile creation that held tiles in memory while
they were being used and wrote them to disk in memory.

e Section 8.5: Storage of tiled images in clusters of tiles from different zoom levels.

It should be noted that the two techniques differ only in the method of creating the
base level tiles. The section of code for creating the lower resolution levels is exactly
the same as in the previous section. Listing 12.5 shows the push-based method for
creating the Blue Marble tiles.

12.3 Results

Each technique creates the required tile clusters, and both methods gave practi-
cally identical results. The multi-threaded pull-based method took 1,284.05 seconds,
while the single threaded push-based method took 1,553.90 seconds. The top two
tiles from the completed sets are presented in Figures 12.1 and 12.2.

208 12 Case Study: Tiles from Blue Marble Imagery

Fig. 12.1 Tile (0,0) from Blue Marble.

Fig. 12.2 Tile (0,1) from Blue Marble.

SO 0N RN~

—_

12.3 Results 209

Listing 12.1 Example code for reading raw Blue Marble imagery.

public class RawlmageReader {

private String filename ;

int imageWidth;

int imageHeight;

private RandomAccessFile raf;
private long bytesPerRow;
public BoundingBox imageBounds ;

public RawlmageReader(String filename, int width, int height, BoundingBox
imageBounds) {
this . filename = filename ;
try {
this.raf = new RandomAccessFile (filename, "r”);
} catch (FileNotFoundException e) {
e.printStackTrace () ;
¥

this .imageWidth = width;

this .imageHeight = height;
this .imageBounds = imageBounds;
this .bytesPerRow = width * 3;

}

public synchronized Bufferedlmage getSubImage (int startx , int starty , int
width, int height) {
try {
//create an empty image
Bufferedlmage bi = new Bufferedlmage (width, height, BufferedImage .
TYPE_INTRGB) ;
//image is stored in row—major order
for (int j = 0; j < height; j++) {
//determine start position of the row to be read
long startPosition = (starty + j) % bytesPerRow + startx * 3;
//seek to the portion of the row that we need
this.raf.seek(startPosition);

for (int i = 0; i < width; i++) {

int r = this.raf.read();
int g = this.raf.read();
int b = this.raf.read();

//combine the rgb byte values into a single int value
int rgb = 0xff000000 | r << 16 | g << 8 | b;
//set the image pixel to the combined rgb value
bi.setRGB(i, j, rgb);

}

return bi;
} catch (IOException e) {
e.printStackTrace ();

return null;

public void close () {
try {
this.raf.close();
} catch (IOException e) {
e.printStackTrace () ;
}

210 12 Case Study: Tiles from Blue Marble Imagery

Listing 12.2 Cached clustered tile I/O.

public class CachedClusteredTileStream {

static final long magicNumber = 0x772211lee;
private String location;

private String setname;

private int numlevels;

private int breakpoint;

HashMap < String ,

BufferedImage > writeCache = new HashMap < String ,
BufferedIlmage > ();

HashMap < String ,

RandomAccessFile > openFileCache = new HashMap < String ,
RandomAccessFile > () ;

public CachedClusteredTileStream (String location, String setname, int
numlevels, int breakpoint) {
this.location = location;
this .setname = setname;
this .numlevels = numlevels ;
this . breakpoint = breakpoint;

}

public void writeTile(long row, long column, int level, Bufferedlmage image

)

String key = row + + column +
writeCache. put(key, image);

L0 30

+ level;

}

public Bufferedlmage readTile (long row, long column, int level) {
String key = row + 7:” + column + + level;
if (writeCache.containsKey(key)) {
return writeCache. get(key);
} else {
ByteArraylnputStream bais = new ByteArraylnputStream (
readTileFromDisk(row, column, level));
BufferedIlmage bi = null;
try {
bi = ImagelO.read(bais);
} catch (IOException e) {
e.printStackTrace () ;
¥

return bi;

” .

}

public void writeTileFromCache(long row, long column, int level, byte[]
imagedata) {

//first determine the cluster that will hold the data

ClusterAddress ca = getClusterForTileAddress (row, column, level);
String clusterFile = getClusterFileForAddress (ca);
if (clusterFile == null) {

return;

File f = new File(clusterFile);
//if the file doesn’t exist, set up an empty cluster file

if (!f.exists()) {
createNewClusterFile (f, ca.endLevel — ca.startLevel + 1);

try {
RandomAccessFile raf = getOpenFileFromCache(f);

//write the tile and info at the end of the tile file

12.3 Results

}

long tilePosition = raf.length();
raf.seek(tilePosition);

raf . writeLong (magicNumber) ;

raf . writeLong (magicNumber) ;

raf . writeLong (column) ;

raf . writeLong (row);

raf . writeInt (imagedata .length);
raf . write (imagedata);

211

//determine the position in the index of the tile address

long indexPosition = getIndexPosition(row,
raf.seek(indexPosition);

column, level);

//write the tile position and size in the index

raf . writeLong (tilePosition);
raf . writeInt (imagedata .length);

} catch (Exception e) {
e.printStackTrace () ;
}

public byte[] readTileFromDisk(long row, long column, int level) {
// first determine the cluster that will hold the data
ClusterAddress ca = getClusterForTileAddress (row, column, level);
String clusterFile = getClusterFileForAddress (ca);

}

if (clusterFile == null) {
return null;
}

File f = new File(clusterFile);

try {

RandomAccessFile raf = getOpenFileFromCache(f);

//determine the position in the index of the tile address

long indexPosition = getIndexPosition(row,
raf.seek(indexPosition);
long tilePosition = raf.readLong();
int tileSize = raf.readInt();
if (tilePosition == —IL) {
//tile is not in the cluster
raf.close ();
return null;

}

byte[] imageData = new byte[tileSize];

column, level);

// offset tile position for header information
long tilePositionOffset = tilePosition + 8 + 8 + 8 + 8 + 4;

raf.seek(tilePositionOffset);
raf.readFully (imageData) ;

return imageData;
} catch (Exception e) {
e.printStackTrace () ;
¥

return null;

private long getIndexPosition(long row, long column, int level) {
ClusterAddress ca = this.getClusterForTileAddress (row, column, level);
//compute the local address, that’s the relative address of the tile in

the cluster
int localLevel = level — ca.startLevel;

long localRow = (long)(row — (Math.pow(2, localLevel) * ca.row));

long localColumn = (long)(column — (Math.pow(2,
)
int numColumnsAtLocalLevel = (int) Math.pow (2,

localLevel) % ca.column

localLevel);

153
154

155
156
157

158

212

12 Case Study: Tiles from Blue Marble Imagery

long indexPosition = this.getCumulativeNumTiles (localLevel — 1) +
localRow * numColumnsAtLocalLevel + localColumn;

// multiply index position times byte size of a tile address

indexPosition = indexPosition x (8 + 4);

return indexPosition;

}

public ClusterAddress getClusterForTileAddress (long row, long column, int
level) {
if (level > this.numlevels) {
//error, level is outside of ok range
return null;
¥
int targetLevel = 0;
int endLevel = 0;
if (level < breakpoint) {
//tile goes in one of top two clusters

targetLevel = 1;
endLevel = breakpoint — 1;
} else {

//tile goes in bottom cluster
targetLevel = this.breakpoint;

endLevel = this.numlevels ;

ks

//compute the difference between the target cluster level and the tile
level

int powerDiff = level — targetLevel;

//level factor is the number of tiles at level "level” for a cluster
that starts at "target level”

double levelFactor = Math.pow(2, powerDiff);

// divide the row and column by the level factor to get the row and
column address of the cluster we are using

long clusterRow = (int) Math. floor(row / levelFactor);

long clusterColumn = (int) Math. floor (column / levelFactor);

ClusterAddress ca = new ClusterAddress(clusterRow , clusterColumn ,
targetLevel , endLevel);

return ca;

String getClusterFileForAddress (ClusterAddress ca) {
String filename = this.location + ”/” + this.setname + + ca.
startLevel + + ca.row + + ca.column + ”.cluster”;
return filename ;

9

s s

}

//this methods create an empty file and fills the index with null values
void createNewClusterFile (File f, int numlevels) {
RandomAccessFile raf;
try {
raf = getOpenFileFromCache(f);
raf.seek (0);
long tiles = this.getCumulativeNumTiles (numlevels);
for (long i = 0; i < tiles; i++) {
raf . writeLong(—1L); //NULL position of tile
raf . writeLong(—1L); //NULL size of tile

} catch (Exception e) {
e.printStackTrace ()

}
}
public int getCumulativeNumTiles (int finallevel) {
int count = 0;
for (int i = I; i <= finallevel; i++) {
count += (int)(Math.pow(2, 2 % i — 2));
}

return count;

12.3 Results

}

public RandomAccessFile getOpenFileFromCache(File f) {
String key = f.getAbsolutePath();
if (openFileCache .containsKey(key)) {
return openFileCache . get(key);
} else {

try {
RandomAccessFile raf = new RandomAccessFile (f,

openFileCache . put(key, raf);
return raf;
} catch (FileNotFoundException e) {
e.printStackTrace ();
}
}

return null;

”»

™w”);

}

public void close () {
//iterate over tiles in the cache and write them to disk
Set < String > keys = writeCache.keySet();
for (String s: keys) {
String [] data = s.split(”:”);
long row = Long.parseLong(data[0]);
long column = Long.parseLong(data[l]);
int level = Integer.parselnt(data[2]);

BufferedImage image = writeCache.get(s);
ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
try {

ImagelO. write (image, ”jpg”, baos);
} catch (IOException e) {
e.printStackTrace ();

byte[] imagedata = baos.toByteArray();
writeTileFromCache(row, column, level, imagedata);
¥
Set < String > openFiles = openFileCache . keySet () ;
for (String f: openFiles) {
RandomAccessFile raf = openFileCache . get(f);
try {
raf.close () ;
} catch (IOException e) {
e.printStackTrace ();
¥

213

Listing 12.3 Thread Safe Tile Range Iterator.

public class TileRangelterator {

long curcol,
currow ,
maxrow ,
maxcol ,
mincol ,
minrow ;

int level;

public TileRangelterator (long minrow, long maxrow, long mincol, long maxcol

, int level) {

this . minrow = minrow ;
this . maxrow = maxrow;
this . mincol = mincol;
this . maxcol = maxcol;

214 12 Case Study: Tiles from Blue Marble Imagery

this.curcol = mincol;
this .currow = minrow;
this .level = level;

}

public boolean hasMoreTiles() {
if ((this.currow <= this.maxrow)) {
return true;

return false;

}

public synchronized TileAddress getNextTileID () {
TileAddress address = new TileAddress (this.currow, this.curcol,
level);
this . curcol ++;
if (this.curcol > this.maxcol) {
this . currow ++;
this.curcol = this.mincol;

return address;

this .

Listing 12.4 Pull-based tile creation for Blue Marble.

public class PullTileCreation {
static int TILE_SIZE = 512;
public static void main(String[] args) {
BoundingBox imageBounds = new BoundingBox(—180, —90, 180, 90);
int imageWidth = 86400;
int imageHeight = 43200;

int baselevel = 8;
int numthreads = 8;

CachedClusteredTileStream cts = new CachedClusteredTileStream (”folder”,

”bluemarble” ,baselevel , baselevel + 1);

RawlmageReader imageReader = new RawlmageReader(”world.topo.bathy
.200407.3x86400x43200 . bin” ,imageWidth , imageHeight ,imageBounds);

//initilize values for base level

long startRow = 0;

long startColumn = O0;
long endRow = TileStandards .zoomRows[baselevel] — 1;
long endColumn = TileStandards .zoomColumns[baselevel] — 1;

//build tiles for base level

//initilize the tile range iterator
TileRangelterator tri = new TileRangelterator (startRow, endRow,
startColumn , endColumn, baselevel);

//create and start the tiling threads

Thread [] threads = new Thread[numthreads];

for (int i = 0; i < threads.length; i++) {
threads[i] = new PullTilerThread (tri, cts, imageReader);
threads[i]. start();

67
68

69
70

12.3 Results 215

//wait for the threads to finish
for (int i = 0; i < threads.length; i++) {
try {
threads[i].join();
} catch (InterruptedException e) {
e.printStackTrace () ;

¥
//iterate over the remaining levels
for (int level = baselevel — 1; level >= 1; level ——) {

int ratio = (int) Math.pow(2, baselevel — level);
long curMinCol = (long) Math. floor (startColumn / ratio);
long curMaxCol (long) Math. floor (endColumn / ratio);
long curMinRow (long) Math. floor (startRow / ratio);
long curMaxRow (long) Math. floor (endRow / ratio);
//Iterate over the tile set coordinates.
for (long ¢ = curMinCol; ¢ <= curMaxCol; c++) {
for (long r = curMinRow; r <= curMaxRow; r++) {
//For each tile, do the following:
TileAddress address = nmew TileAddress(r, c, level);
// Determine the FOUR tiles from the higher level that
contribute to the current tile.
TileAddress tile00 = new TileAddress(r * 2, ¢ * 2, level +

1);

TileAddress tile01 = new TileAddress(r * 2, ¢ * 2 + 1,
level + 1);

TileAddress tilelO0 = new TileAddress(r x 2 + 1, ¢ * 2,
level + 1);

TileAddress tilell = new TileAddress(r * 2 + 1, ¢ x 2 + 1,

level + 1);
// Retrieve the four tile images, or as many as exist.

BufferedImage image00 = cts.readTile (tile0O0.row, tile0O.
column ,
tile00 .level);
BufferedImage image0Ol = cts.readTile (tile0O1 .row, tileO1.
column ,
tileO1 .level);;
BufferedImage imagel0 = cts.readTile (tilel0.row, tilelO.

column ,
tilel0.level);
BufferedImage imagell = cts.readTile (tilell .row, tilell.
column ,

tilell .level);
// Combine the four tile images into a single, scaled—down

image .
BufferedImage tileImage = new BufferedImage (
TILE_SIZE ,
TILE_SIZE ,
BufferedImage .
TYPE_INT_RG
)

Graphics2D g = (Graphics2D) tileImage . getGraphics();
g.setRenderingHint(RenderingHints . KEY_INTERPOLATION,
RenderingHints .

VALUE_INTERPOLATION_BILINEAR) ;
boolean hadlmage = false;
if ((image00 != null)) {
g.drawlmage (image00, 0, Constants .TILE_SIZE_HALF,
Constants . TILE_.SIZE_.HALF, Constants .

TILE_SIZE ,

0, 0, Constants .TILE_.SIZE, Constants .
TILE_SIZE ,

null) ;

hadlmage = true;

216

12 Case Study: Tiles from Blue Marble Imagery

if ((image0Ol != null)) {
g.drawlmage (imageOl, Constants.TILE_.SIZE_HALF,
Constants . TILE_SIZE_HALF, Constants .
TILE_SIZE ,
Constants . TILE_SIZE, 0, 0, Constants .
TILE_SIZE ,
Constants . TILE_SIZE, null);
hadlmage = true;

if ((imagel0 != null)) {
g.drawlmage (imagel0, 0, 0, Constants.TILE_.SIZE_HALF,
Constants . TILE_SIZE_HALF, 0, 0,
Constants . TILE_.SIZE, Constants . TILE_SIZE ,
null);
hadlmage = true;

}
if ((imagell != null)) {
g.drawlmage (imagell, Constants.TILE.SIZE_HALF, 0,
Constants . TILE_SIZE, Constants .
TILE_SIZE_HALF,
0, 0, Constants . TILE_SIZE, Constants .
TILE_SIZE ,
null);
hadlmage = true;

//save the completed tiled image to the tile storage
mechanism .
if (hadlmage) {
cts.writeTile(address.row, address.column, address.
level ,
tileImage) ;

}

cts.close();

}

public static Rectangle convertCoordinates (BoundingBox imageBounds,
BoundingBox subImageBounds ,int imageWidth, int imageHeight) {

int x = (int) Math.round ((sublmageBounds.minx — imageBounds.minx) / (
imageBounds .maxx — imageBounds.minx) * imageWidth);

int y = imageHeight — (int) Math.round ((subImageBounds.maxy —
imageBounds .miny) / (imageBounds.maxy — imageBounds.miny) =*
imageHeight) ;

int width = (int) Math.round ((subIlmageBounds. maxx — subImageBounds. minx
) / (imageBounds.maxx — imageBounds.minx) * imageWidth);

int height = (int) Math.round ((subImageBounds.maxy — subImageBounds.
miny) / (imageBounds.maxy — imageBounds.miny) % imageHeight);

Rectangle r = new Rectangle(x, y, width, height);

return r;

}

public static void drawlmageTolmage (Bufferedlmage source, BoundingBox
source_bb ,
BufferedIlmage target, BoundingBox
target_bb) {

double xd = target_bb.maxx — target_bb.minx;
double yd = target_-bb.maxy — target_-bb.miny;
double wd = (double) target.getWidth();

double hd = (double) target.getHeight();

double targdpx = xd / wd;

double targdpy = yd / hd;

double srcdpx (source_bb.maxx — source_-bb.minx) / source.getWidth();
double srcdpy (source-bb.maxy — source_-bb.miny) / source.getHeight();

177
178

179

180

181

183

184

186

187
188

12.3 Results 217

int tx = (int) Math.round (((source_bb.minx — target_bb.minx) / targdpx)
)s

int ty = target.getHeight () — (int) Math.round (((source_-bb.maxy —
target_bb .miny) / yd) % hd);

int tw (int) Math.ceil (((srcdpx / targdpx) * source.getWidth())
int th (int) Math.ceil (((srcdpy / targdpy) * source.getHeight ()
Graphics2D target_graphics = (Graphics2D) target.getGraphics();

)
)

//use one of these three statements to set the interpolation method to
be used

target_graphics.setRenderingHint(RenderingHints . KEY_AINTERPOLATION,
RenderingHints . VALUEINTERPOLATION_BILINEAR) ;

target_-graphics.drawlmage (source, tx, ty, tw, th, null);

public class PullTilerThread extends Thread {

private TileRangelterator tri;
private CachedClusteredTileStream cts;
private RawlmageReader imageReader;

public PullTilerThread (TileRangelterator tri, CachedClusteredTileStream cts
, RawImageReader imageReader) {

this . tri = tri;
this.cts = cts;
this .imageReader = imageReader;

}

public void run() {
while (this. tri.hasMoreTiles()) {

TileAddress address = this. tri.getNextTileID () ;

// Compute the geographic bounds of the specific tile.

BoundingBox tileBounds = address.getBoundingBox () ;

//get the bounds of the sub—image

Rectangle rect = PullTileCreation.convertCoordinates (

imageReader .imageBounds, tileBounds , imageReader.imageWidth ,
imageReader .imageHeight) ;

//extract the image data from the source image

Bufferedlmage sublmage = imageReader.getSublmage (rect.x, rect.y,
rect.width, rect.height);

//create a new empty image

BufferedImage tileIlmage = new Bufferedlmage (PullTileCreation.
TILE_SIZE, PullTileCreation.TILE_SIZE, Bufferedlmage.
TYPE_INTRGB) ;

//scale the source image to the new image
PullTileCreation .drawlmageTolmage (subImage , tileBounds , tileImage,
tileBounds) ;
if (tilelmage != null) {
//write the image to the cache
cts.writeTile (address.row, address.column, address.level,
tileImage) ;

— OV IR WN —

—_ =

40

41

42
43

218

12 Case Study: Tiles from Blue Marble Imagery

Listing 12.5 Push-based tile creation for Blue Marble.

public class PushTileCreation {

static int TILE_SIZE = 512;

public static void main(String[] args) {

8-

int baseLevel ;
“folder”;

String folder

//create source image records

Sourcelmage al = new Sourcelmage ("Al.jpg”, new BoundingBox(—180, 0,
-90, 90), 21600, 21600);

Sourcelmage bl = new Sourcelmage (”Bl.jpg”, new BoundingBox(—-90, 0, O,
90), 21600, 21600);

Sourcelmage cl = new Sourcelmage (”Cl.jpg”, new BoundingBox(0, 0, 90,
90), 21600, 21600);

Sourcelmage dl = new Sourcelmage (”Dl.jpg”, new BoundingBox(90, 0, 180,
90), 21600, 21600);

Sourcelmage a2 = new Sourcelmage (”"A2.jpg”, new BoundingBox(—180, —90,
—-90, 0), 21600, 21600);

Sourcelmage b2 = new Sourcelmage (”B2.jpg”, new BoundingBox(—-90, —90, 0,
0), 21600, 21600);

Sourcelmage c¢2 = new Sourcelmage (”C2.jpg”, new BoundingBox(0, —90, 90,
0), 21600, 21600);

Sourcelmage d2 = new Sourcelmage (”D2.jpg”, new BoundingBox(90, —90,
180, 0), 21600, 21600);

Sourcelmage [] images = new Sourcelmage [] {
al,
bl,
cl,
dl,
a2,
b2,
c2,
d2

}:

//create output stream to store tiles
CachedClusteredTileStream cts = new CachedClusteredTileStream (”folder2”
, ”"bluemarble”, baseLevel, baseLevel + 1);

//build base level
for (int i = 0; i < images.length; i++) {
Sourcelmage currentlmage = images[i];
BoundingBox currentBounds = currentImage .bb;
//determine the tile bounds specific to each source image
long mincol (long) Math. floor ((currentBounds .minx + 180.0) /

(360.0 / Math.pow (2.0, (double) baseLevel)));
long maxcol = (long) Math. floor ((currentBounds.maxx + 180.0) /
(360.0 / Math.pow (2.0, (double) baseLevel)));

long minrow (long) Math. floor ((currentBounds .miny + 90.0) /
(180.0 / Math.pow(

2.0, (double) baseLevel — 1)));

long maxrow = (long) Math. floor ((currentBounds.maxy + 90.0) /
(180.0 / Math.pow(

2.0, (double) baselLevel — 1)));

//if the image bounds go beyond the allowed tile bounds, set them
to the proper range

if (maxrow >= TileStandards .zoomRows[baseLevel]) {
maxrow = TileStandards .zoomRows[baseLevel] — 1;

if (maxcol >= TileStandards .zoomColumns[baseLevel]) {
maxcol = TileStandards .zoomColumns|[baseLevel] — 1;

92

93

94

95

97
98
99
100
101
102
103
104

105

12.3 Results

)

219

//read the source image from disk
BufferedIlmage bi = null;
try {
bi = ImagelO.read(new File(folder + ”/” + currentlmage .name));
} catch (IOException e) {
e.printStackTrace () ;

//iterate over the current tile bounds and create the tiled images
for (long ¢ = mincol; ¢ <= maxcol; c++) {
for (long r = minrow; r <= maxrow; r++) {
TileAddress address = nmew TileAddress(r, c, baselLevel);
BoundingBox tileBounds = address.getBoundingBox () ;
//check the cache for a pre—existing tiled image,

BufferedImage tileImage = cts.readTile (address.row, address
.column, address.level);
if (tilelmage == null) {

//the image wasn’t in the cache, so create a new one

tilelmage = new Bufferedlmage (TILE_SIZE, TILE_SIZE,
BufferedImage . TYPEINT-ARGB) ;

cts.writeTile (address.row, address.column, address.
level , tileImage);

}

drawlmageTolmage (bi, currentBounds , tileImage, tileBounds);

}

//iterate over the remaining levels
for (int level = baseLevel — 1; level >= 1; level ——) {

long curMinCol = 0;

long curMaxCol = TileStandards .zoomColumns[level] — 1;
long curMinRow = 0;
long curMaxRow = TileStandards .zoomRows[level] — 1;

//Iterate over the tile set coordinates.
for (long ¢ = curMinCol; ¢ <= curMaxCol; c++) {
for (long r = curMinRow; r <= curMaxRow; r++) {

//For each tile, do the following :

TileAddress address = mew TileAddress(r, c, level);

// Determine the FOUR tiles from the higher level that
contribute to the current tile.

TileAddress tile00 = new TileAddress(r * 2, ¢ * 2, level +
1D

TileAddress tile01 = new TileAddress(r * 2, ¢ * 2 + 1,
level + 1);

TileAddress tilel0 = new TileAddress(r x 2 + 1, ¢ * 2,
level + 1);

TileAddress tilell = new TileAddress(r * 2 + 1, ¢ x 2 + 1,
level + 1);

// Retrieve the four tile images, or as many as exist.

BufferedImage image00 = cts.readTile (tile0O0.row, tile0O.
column, tile0O.level);

BufferedImage imageOl = cts.readTile (tileO1 .row, tileO1.
column, tileO1 .level);;

BufferedImage imagel0 = cts.readTile (tilel0.row, tilelO.
column, tilelO.level);

BufferedImage imagell = cts.readTile (tilell .row, tilell.
column, tilell .level);

// Combine the four tile images into a single, leveld—down
image .

BufferedImage tileImage = new BufferedImage (

TILE_SIZE, TILE_SIZE, BufferedIlmage .TYPE_INT_RGB);

Graphics2D g = (Graphics2D) tileImage . getGraphics();

g.setRenderingHint(RenderingHints . KEY_INTERPOLATION,
RenderingHints . VALUE_INTERPOLATION_BILINEAR) ;

boolean hadlmage = false;

106
107

112

114
115

116
117
118
119

120

122

123
124

125
126
127

129
130

220

}

cts.close();

12 Case Study: Tiles from Blue Marble Imagery

f ((image00 != null)) {
g.drawlmage (image00, 0, Constants .TILE_SIZE_HALF,
Constants . TILE_.SIZE_.HALF, Constants . TILE_SIZE, O,
0, Constants.TILE_SIZE, Constants.TILE_SIZE, null)

hadlmage = true;

if ((image0Ol != null)) {
g.drawlmage (imageOl, Constants.TILE_.SIZE_HALF,
Constants . TILE_.SIZE_HALF, Constants .TILE_SIZE ,
Constants . TILE_SIZE, 0, 0, Constants.TILE_SIZE,
Constants . TILE_SIZE, null);
hadlmage = true;
}
if ((imagel0 != null)) {

g.drawlmage (imagel0, 0O, 0, Constants.TILE_.SIZE_HALF,
Constants . TILE_SIZE_.HALF, 0, 0, Constants .
TILE_SIZE, Constants.TILE_SIZE, null);
hadlmage = true;

if ((imagell != null)) {
g.drawlmage (imagell, Constants.TILE.SIZE_HALF, 0,
Constants . TILE_SIZE, Constants . TILE.SIZE_HALF, 0,
0, Constants.TILE_SIZE, Constants.TILE_SIZE, null)
hadlmage = true;
}

//save the completed tiled image to the tile storage
mechanism .
if (hadImage) {
cts.writeTile (address.row, address.column, address.
level , tileImage);

Chapter 13
Case Study: Supporting Multiple Tile Clients

Chapter 9 presented techniques for serving tiled images according to our simple tile
protocol and scheme. However, most mapping tools do not support this protocol
by default. The purpose of this chapter is to present specialized techniques for tile
serving that will support a wide variety of mapping tools. We will build an interface
for Google Earth using the Keyhole Markup Language (KML). We will also build
an Open Geospatial Consortium (OGC) Web Map Service (WMS) server.

13.1 KML Server

The KML language is a fairly expressive display control language for 3-D globe-
oriented mapping tools like Google Earth. It allows for both dynamic positioning of
the globe view and dynamic placement of mapping objects on the globe. Mapping
objects can include vector features or image overlays. We will be using its image
overlay capability to display tiled images on Google Earth.

13.1.1 Static KML Example

Our first example will be a statically generated KML file that links to tiled images
from the local computer. The KML file is generated ahead of time and its contents
do not change. The KML file in Listing 13.1 creates GroundOverlay objects corre-
sponding to tiles from our Blue Marble tile set, zoom level 2.

Because we have provided the bounding boxes for each tiled image, Google Earth
can draw the images on the globe in the correct position. Figure 13.1 shows a screen-
shot of the static KML file loaded into Google Earth. The KML file requires the
image files be stored with it in the same folder. By replacing the file names in the
above KML document with URLs we can force Google Earth to retrieve the im-
ages not from local disk but directly from a server. We can form URLs using the

J.T. Sample and E. Ioup, Tile-Based Geospatial Information Systems: 221
Principles and Practices, DOI 10.1007/978-1-4419-7631-4__13,
(© Springer Science+Business Media, LLC 2010

S}

222 13 Case Study: Supporting Multiple Tile Clients

method presented Section 9.2. Because KML is written in XML, we have to write
the ampersand character & as & ; in our URL. Instead of:

<Icon>
<href>2-0-2.jpg</href>
</Icon>

we would put:

<Icon>
<href>http: //www. sometileserver .com/ tiles ?REQUEST=GETTILE& ; LAYER=
BlueMarble& ; LEVEL=2& ;ROW=0& ; COLUMN=2</ hre >
</Icon>

File Edit View Tools Add Help

¥ Search

FiyTo | FindBusinesses | Directions |

Fly to e.q., Tokyo, Japan

[= Q

¥ Places
P& My Places
= M Temporary Places
= MI& static Tiles 1.kml
[F)
B&
Bg

"

> Layers 33°25'08.84"S 63"15'30.17"W elev OftEye alt 3442/

Fig. 13.1 Static KML loaded into Google Earth

This example is effective for loading images into Google Earth, but as the user
zooms in or moves the globe around, the tiled images will not change. It would be
better to create a method that could dynamically load and position tiled images as
the user moves the globe.

00NN B WD

———
N = OO

———
(U)

13.2 WMS Server 223

13.1.2 Dynamic KML Example

Fortunately, Google Earth allows dynamic content generation based on communi-
cation between the client and the server. Using the <NetworkLink> KML tag,
we can tell Google Earth to load tiled images based on the current globe position,
and we can also tell Google Earth to refresh the content each time the globe moves.
The following KML snippet creates a NetworkLink object named ’bluemarble” and
points it to the URL: http://www.sometileserver.com/tiles/kml. It
tells Google Earth to refresh the network link each time the globe is moved and
stops moving.

<?xml version="1.0" encoding="UTF-8"7>
<kml xmlns="http://earth.google.com/kml/2.1">
<NetworkLink>
<name>bluemarble</name>
<Link id="ID">
<href>http: //www. sometileserver.com/ tiles /kml</href>
<refreshMode>onChange</refreshMode>
<refreshlnterval>0</refreshInterval>
<viewRefreshMode>onStop</viewRefreshMode>
<viewRefreshTime>0</viewRefreshTime>
<viewBoundScale>1</viewBoundScale>
<viewFormat>BBOX=[bboxWest],[bboxSouth],[bboxEast],[bboxNorth]&
HEIGHT=[horizPixels]& ;WIDTH=[vertPixels |]</viewFormat>
</Link>
</NetworkLink>
</kml>

The values bboxWest, bboxSouth, bboxEast, bboxNorth,
horizPixels, and vertPixels are built-in Google Earth parameters.
The <viewFormat> tag tells Google Earth to append these values to the base
URL for the NetworkLink. When activated, it will take the base URL http://
www . sometileserver.com/tiles/kml and add parameters in the follow-
ing manner:

http://www.sometileserver.com/tiles/kml?BBOX=-176.5,
27.57,-42.23,49.73&HEIGHT=1315&WIDTH=1154

We can then use these parameters to generate a dynamic version of the KML
file presented in the previous section. The code in Listing 13.2 is a simple Java
servlet that will dynamically generate a KML document based on the view
parameters provided.

13.2 WMS Server

While KML is very effective for integrating mapping content with Google Earth,
we want a more general solution to provide tile content to a larger set of mapping
clients. The Open Geospatial Consortium (OGC) publishes a set of specifications
for standardized communication between clients and servers. The Web Map Service

http://www.sometileserver.com/tiles/kml
http://www.sometileserver.com/tiles/kml
http://www.sometileserver.com/tiles/kml
http://www.sometileserver.com/tiles/kml?BBOX=-176.5,27.57,-42.23,49.73&HEIGHT=1315&WIDTH=1154
http://www.sometileserver.com/tiles/kml?BBOX=-176.5,27.57,-42.23,49.73&HEIGHT=1315&WIDTH=1154

224 13 Case Study: Supporting Multiple Tile Clients

(WMS) standard provides for simple HTTP based access to imagery and rendered
map images [1].

WMS is a simple protocol but is exceptionally powerful. It is supported by many
mapping applications include Gaia by The Carbon Project, Google Earth, uDig, and
OpenLayers. In general, WMS sessions are a two step process. The first step issues
a ”GetCapabilities” request to get a list of available layers from a WMS server. The
second (and subsequent steps) issues a “GetMap” request to retrieve a map image.
GetCapabilities requests are executed by forming a URL in the following manner:

http://www.sometileserver.com/wms?
REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=WMS

This request will return an XML document as shown in Listing 13.3. This
document provides information about the service provider, methods of access and a
list of available layers. Each available map layer is given with information about its
map bounds and geospatial projection. Client applications can request map images
by forming URLs in the following manner:

http://www.sometileserver.com/wms?REQUEST=CGetMap&
SERVICE=WMS&VERSION=1.1.1&LAYERS=bluemarble&
FORMAT=1image/png&SRS=EPSG:4326&BB0OX=-130.04,-9.20, -52.
16,54 .75&WIDTH=1225&HEIGHT=1006

For our Blue Marble imagery, the URL above should return the image in
Figure 13.2.

13.2.1 WMS Servlet Implementation

To create a basic WMS implementation, we need to support only the GetCapabilites
and GetMap requests. For our example, we can return a simple XML document for
the GetCapabilities request. Implementing the GetMap request will require a little
more effort. From the GetMap request URL, we can see the following parameters:

BBOX=-130.04,-9.20,-52.16,54.75

WIDTH=1225

HEIGHT=1006

These parameters illustrate how WMS differs from our previous tiled mapping ex-
amples. Our tiled images are created to match a sequence of fixed, discrete scales.

In contrast, WMS requests allow users to select maps of varied sizes and resolutions
that allow viewing of continuous scales.

http://www.sometileserver.com/wms? REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=WMS
http://www.sometileserver.com/wms? REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=WMS
http://www.sometileserver.com/wms?REQUEST=GetMap&SERVICE=WMS&VERSION=1.1.1&LAYERS=bluemarble&FORMAT=image/png&SRS=EPSG:4326&BBOX=-130.04,-9.20,-52.16,54.75&WIDTH=1225&HEIGHT=1006
http://www.sometileserver.com/wms?REQUEST=GetMap&SERVICE=WMS&VERSION=1.1.1&LAYERS=bluemarble&FORMAT=image/png&SRS=EPSG:4326&BBOX=-130.04,-9.20,-52.16,54.75&WIDTH=1225&HEIGHT=1006
http://www.sometileserver.com/wms?REQUEST=GetMap&SERVICE=WMS&VERSION=1.1.1&LAYERS=bluemarble&FORMAT=image/png&SRS=EPSG:4326&BBOX=-130.04,-9.20,-52.16,54.75&WIDTH=1225&HEIGHT=1006
http://www.sometileserver.com/wms?REQUEST=GetMap&SERVICE=WMS&VERSION=1.1.1&LAYERS=bluemarble&FORMAT=image/png&SRS=EPSG:4326&BBOX=-130.04,-9.20,-52.16,54.75&WIDTH=1225&HEIGHT=1006

13.2 WMS Server 225

Fig. 13.2 Bluemarbe image resulting from a WMS request.

To use our tile-based data sets to provide a proper GetMap response to this query,
we must do two things. First, we need to take the provided bounding box and image
dimensions and determine which tiles should be used to create the output image.
Second, we have to merge the tiled images into a single composite image. This
process is very similar to the one described in Section 3.1.2.

First, we select the scale that we will use. This is done by computing the degrees
per pixel for the requested image and finding the closest tile zoom level (Equa-
tion (3.3)). Recall that for our tile scheme, each zoom level has its own uniform
DPP value. Next, we compute the tiles needed to generate the map (Equation (2.8)).
Given the list of tiled images, we can retrieve those images and draw them together
in the same image. Equation (2.3) shows how to compute the geographic bounds for
each, and Listing 4.10 shows how to draw the tiled images into a single image.

The code in Listing 13.4 shows a simple Java Servlet implementation of a Web
Map Service that draws its imagery from a store of tiled images. The example code
is intended to support version 1.1.1 of the WMS specification. A production WMS
server should implement all versions of the WMS specification. Our example does
not validate the query parameters or provide error handling. It also uses a completely
static ’Capabilities” document; a production version would dynamically generate

226 13 Case Study: Supporting Multiple Tile Clients

the Capabilities document to reflect the names and bounds of available layers, which
might change.

Another feature of the WMS specification is the “GetFeatureInfo” operation.
This allows WMS clients to query map layers for information at a point on the map.
GetFeatureInfo requests pass the original coordinates and size of the requested map
to the server and the x and y coordinates representing a mouse click. Responses to
the GetFeaturelnfo query can come in many forms, but will usually provide some
text information on map content at the location queried. Developers of tile-based
systems might use the GetFeatureInfo operation to provide users with the names of
the source files used to make the tile at the location queried.

O 00NN AW~

13.2 WMS Server 227

Listing 13.1 KML file for static inclusion of tiled images.

<?xml version="1.0" encoding="UTF-8"7>
<kml xmlns="http://earth.google.com/kml/2.1">
<Document>
<GroundOverlay>
<drawOrder>21</drawOrder>
<Icon>
<href>2-0-0.jpg</href>
</Icon>
<LatLonBox>
<north>0.0</north>
<south>-90.0</south>
<east>—90.0</east>
<west>—180.0</ west>
</LatLonBox>
</GroundOverlay>
<GroundOverlay>
<drawOrder>21</drawOrder>
<Icon>
<href>2—-0—1.jpg</href>
</Icon>
<LatLonBox>
<north>0.0</north>
<south>-90.0</south>
<east>0.0</east>
<west>—90.0</ west>
</LatLonBox>
</GroundOverlay>
<GroundOverlay>
<drawOrder>21</drawOrder>
<Icon>
<href>2-0-2.jpg</href>
</Icon>
<LatLonBox>
<north>0.0</north>
<south>-90.0</south>
<east>90.0</east>
<west>0.0</west>
</LatLonBox>
</GroundOverlay>

</Document>
</kml>

DB W=

228 13 Case Study: Supporting Multiple Tile Clients

Listing 13.2 Servlet for dynamic XML content.

public class KMLServlet extends HttpServlet {
DataStore dataStore ;
public void doGet(HttpServletRequest request , HttpServletResponse response)

String layer = “bluemarble”;
//set the content type for KML
response . setContentType ("application/keyhole”);

// get the view format parameters from the query

int width = Integer.parselnt(request. getParameter(”WIDTH”)) ;
int height = Integer.parselnt(request.getParameter(”HEIGHT”));
String bbox = request.getParameter(”BBOX”);

String [] bboxdata = bbox.split(”,”);

double minx Double . parseDouble (bboxdata [0]) ;

double maxx Double . parseDouble (bboxdata [2]) ;

double miny Double . parseDouble (bboxdata[1]);

double maxy Double . parseDouble (bboxdata [3]) ;

//this section determines which zoom level to use

double currentDPP = 0.8 % (maxx — minx) / width;
double[] zoomLevels = TileStandards .zoomLevels;
int scale = 18;

for (int i = 2; i < zoomLevels.length; i++) {
if (zoomLevels[i] < currentDPP) {

scale = i;
break ;
¥
¥
int minscale = dataStore .getMinScale (layer);
int maxscale = dataStore .getMaxScale(layer);

if (scale > maxscale) {
scale = maxscale;

if (scale < minscale) {
scale = minscale;

//determine the range of tiles to use in the response

long startRow = (long) Math. floor(TileStandards .getRowForCoord (miny ,

long 25311123«);: (long) Math. floor (TileStandards . getRowForCoord (maxy,

long Ssctzlrfé)ol = (long) Math. floor(TileStandards . getColForCoord (minx ,

long Z(I;ZICSO)I);: (long) Math. floor (TileStandards . getColForCoord (maxx,
scale));

// get the output writer
PrintWriter pw=null;
try
pw = response . getWriter () ;
} catch (IOException e) {
e.printStackTrace () ;
¥

//print document header

pw.println ("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
+ "<kml xmlns=\"http :// earth.google.com/kml/2.1\”>"
+ "<Document>") ;

double degsPerTile = getDegreesPerTile(scale);
for (long i = startRow; i <= endRow; i++) {
for (long j = startCol; j <= endCol; j++) {

13.2 WMS Server 229

double tminx = j * degsPerTile — 180.0;
double tmaxx = (1 + j) * degsPerTile — 180.0;
double tminy = i * degsPerTile — 90.0;
double tmaxy = (1 + i) * degsPerTile — 90.0;
pw
.println ("<GroundOverlay>”
+ "<drawOrder>21</drawOrder>"
+ "<Icon>"
+ 7 <href>http ://www. sometileserver.com/tiles&
REQUEST=GETTILE& ; ”
+ "layer=bluemarble&” + "row=" + i + "&col="
+]
+ "&level=" + scale + ”</href>”
+ "</Icon>"
+ "<LatLonBox>"
+ 7 <north>"+ tmaxy + ”</north>”
+ "<south>” + tminy + ”</south>”
+ "<east>" + tmaxx + "</east>"
+ "<west>" 4+ tminx + "</west>"
+ ”</LatLonBox>"
+ 7</GroundOverlay>");
¥
//print document footer
pw. println (”</Document></kml>") ;
}
private double getDegreesPerTile(int scale) {
double degs = 360.0 / (Math.pow(2, scale));
return degs;
}
}

Listing 13.3 Example WMS Capabilities document.

<WMT_MS_Capabilities version="1.1.1" updateSequence="0">
<Service>
<Name>WMS</ Name>
<Title>Tile_Server</Title>
<Abstract>
</ Abstract>
<KeywordList>
<Keyword>Some Keywords</Keyword>
</KeywordList>
<OnlineResource xmlns:xlink="http://www.w3.0rg/1999/xlink” xlink:type=
simple” xlink:href="http://www.sometileserver.com/” />
<ContactInformation>
<ContactPersonPrimary>
<ContactPerson>John Q. Developer</ContactPerson>
<ContactOrganization>Some Company</ContactOrganization>
</ContactPersonPrimary>
<ContactPosition />
<ContactAddress>
<AddressType>postal</AddressType>
<Address>123 Easy Street</Address>
<City>Sometown</ City>
<StateOrProvince>BG</StateOrProvince>
<PostCode>31111</PostCode>
<Country>USA</Country>
</ContactAddress>
<ContactVoiceTelephone>+1 321 456—-4200</ContactVoiceTelephone>
<ContactFacsimileTelephone>+1 321 456-—4443</
ContactFacsimileTelephone>
<ContactElectronicMailAddress>developer@somecompany .com</
ContactElectronicMailAddress>
</ContactInformation>

5

67

68
69
70
71

230

13 Case Study: Supporting Multiple Tile Clients

<Fees>none</Fees>
<AccessConstraints>none</ AccessConstraints>
</Service>
<Capability>
<Request>
<GetCapabilities>
<Format>application/vnd.ogc.wms_xml</Format>
<DCPType>
<HTTP>
<Get>
<OnlineResource xmlns:xlink="http: //www.w3.org
/1999/xlink” xlink:type="simple” xlink:href="
http: //www. sometileserver.com/wms?” />
</ Get>
</HTTP>
</DCPType>
</GetCapabilities>
<GetMap>
<Format>image /png</Format>
<Format>image/jpeg</Format>

<DCPType>
<HTTP>
<Get>
<OnlineResource xmlns:xlink="http://www.w3.org
/1999/xlink” xlink:type="simple” xlink:href="
http: //www. sometileserver.com/wms?” />
</Get>
</HTTP>
</DCPType>
</GetMap>
</Request>
<Exception>
<Format>application/vnd.ogc.se-xml</Format>
</Exception>
<VendorSpecificCapabilities />

<Layer>
<Title>Tile_Server</Title>
<Layer queryable="1">
<Name>bluemarble</Name>
<Title>bluemarble</ Title>
<SRS>EPSG:4326</SRS>
<LatLonBoundingBox SRS="EPSG:4326” minx="-180.0" miny="-90.0"
maxx="180.0" maxy="90.0" />
<BoundingBox SRS="EPSG:4326” minx="—-180.0" miny="-90.0" maxx="
180.0” maxy="90.0" />
</Layer>
</Layer>
</Capability>

</WMT_MS_Capabilities>

DB W=

13.2 WMS Server 231

Listing 13.4 Java Servlet implementation of simple WMS server.

public class WMSTileServlet extends HttpServlet {
DataStore tileStorage;
public void doGet(HttpServletRequest request , HttpServletResponse response)

//collect the parameters from the URL

String service = request.getParameter(”SERVICE”) ;
//service should equal WMS

String version = request.getParameter(”VERSION”);
//version should equal 1.1.1

String requestType = request.getParameter(”REQUEST”) ;

if (requestType.equalslgnoreCase(” GetCapabilities”)) {
printCapabilities (request , response);

¥

if (requestType.equalslgnoreCase(”GETMAP”))
String layers = request.getParameter(”LAYERS”);
//layers should equal blue marble
String srs = request.getParameter(”SRS”);
//should be equal to EPSG:4326

String widthStr = request. getParameter(”WIDTH”) ;

String heightStr = request. getParameter(”HEIGHT”) ;

int width = Integer.parselnt(widthStr);

int height = Integer.parselnt(heightStr);

String format = request.getParameter(”FORMAT”) ;

//get bounding box from request

String bbox = request.getParameter(”BBOX”);

String bbdata[] = bbox.split(”,”);

double minx = Double.parseDouble (bbdata[0]) ;

double miny Double . parseDouble (bbdata[1]) ;

double maxx Double . parseDouble (bbdata[2]) ;

double maxy Double . parseDouble (bbdata[3]) ;

BoundingBox imageBounds = new BoundingBox(minx, miny, maxx, maxy);
//compute scale to use

double dpp = ((maxx — minx) / width + (maxy — miny) / height) /

2.0;
double[] standardScales = TileStandards .zoomLevels;
int maxscale = tileStorage.getMaxScale(”bluemarble”);
int scaleToUse = maxscale;

for (int i = 0; i < maxscale; i++) {
if (standardScales[i] &It; dpp) {
scaleToUse = i;
break ;

}

¥

double tileSize = 360.0 / (Math.pow(2, scaleToUse));

//calculate bounds of image in tile coordinates

long mincol = (long) Math.max(0, Math. floor ((minx + 180.0) /
tileSize));

long maxcol = (long) Math. floor ((maxx + 180.0) / tileSize);

long minrow = (long) Math.max(0, Math. floor ((miny + 90.0) /
tileSize));

long maxrow = (long) Math. floor ((maxy + 90.0) / tileSize);

//iterate over tile range, retrieve each tile and draw to new image
BufferedImage bi = new Bufferedlmage (width, height,
BufferedIlmage . TYPEIINT_RGB) ;
for (long r = minrow; r <= maxrow; r++) {
for (long ¢ = mincol; ¢ <= maxcol; c++) {
//have to check to see if the cluster actually has any data

TileAddress tileAddress = new TileAddress(r, ¢, scaleToUse)

5

BoundingBox tileBounds = tileAddress.getBoundingBox ();
byte[] imageData = tileStorage.getTileImage (”"bluemarble”,
scaleToUse, r, c);

232

13 Case Study: Supporting Multiple Tile Clients

if (imageData != null) {
try {

BufferedImage tileImage = ImagelO.read (new
ByteArraylnputStream(imageData));

drawlmageTolmage (tileImage , tileBounds, bi,
imageBounds) ;

} catch (IOException e) {

e.printStackTrace ()

¥
}
}
¥
//encode image and write to client
try {
ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
if (format.matches(”.xpng.x”)) {
ImagelO. write (bi, “png”, baos);
response . setContentType (”image /png”) ;
} else {
ImagelO. write (bi, ”jpg”, baos);
response . setContentType (”image/jpg”);
ServletOutputStream os = response.getOutputStream() ;
os.write (baos.toByteArray());
os.close();
} catch (IOException e) {
e.printStackTrace ()
¥

}

public static void drawlmageTolmage (Bufferedlmage source ,BoundingBox
source-bb, Bufferedlmage target, BoundingBox target_-bb) {

double xd = target_bb.maxx — target_bb.minx;
double yd = target_bb.maxy — target_bb .miny;
double wd = (double) target.getWidth();
double hd = (double) target.getHeight();

double targdpx = xd / wd;

double targdpy = yd / hd;

double srcdpx = (source_bb.maxx — source_bb.minx) / source.getWidth();

double srcdpy = (source-bb.maxy — source_bb.miny) / source.getHeight();

int tx = (int) Math.round (((source_-bb.minx — target_bb.minx) / targdpx)
)s

int ty = target.getHeight ()

— (int) Math.round (((source_bb.maxy — target_-bb.miny) / yd) % hd)

- 1;
int tw = (int) Math.ceil (((srcdpx / targdpx) = source.getWidth()));
int th = (int) Math.ceil (((srcdpy / targdpy) * source.getHeight()));

Graphics2D target_graphics = (Graphics2D) target.getGraphics();

target_graphics
.setRenderingHint(RenderingHints . KEY_INTERPOLATION,
RenderingHints . VALUEINTERPOLATION_BILINEAR) ;

target_-graphics.drawlmage (source, tx, ty, tw, th, null);

}

private void printCapabilities (HttpServletRequest request ,
HttpServletResponse response) {
try {
response . setContentType (“text/xml”);
PrintWriter pw = response.getWriter () ;
pw. print(capabilitiesContents);
pw.close ();
} catch (IOException e) {
e.printStackTrace () ;

References 233
}
}
public static String capabilitiesFile = "capabilities.xml”;
public static String capabilitiesContents;
//read the capabilities file into memory and hold it
static
StringBuffer sb = new StringBuffer();
try {
RandomAccessFile raf = new RandomAccessFile(capabilitiesFile , "r”);
byte[] data;
data = new byte[(int) raf.length()];
raf . readFully (data);
raf.close ();
capabilitiesContents = new String(data);
} catch (IOException e) {
e.printStackTrace () ;
}
}
}
References

1. de La Beaujardiere, J.: Web Map Service Implementation Specification. Open Geospatial Con-

sortium Specification pp. 06-042 (2006)

Index

affine transform reprojection, 177 data store, 152
Amazon Simple Storage Service (S3), 127 database, 23, 121, 123, 197-199
Apache, 118 paging, 121
application programming interface, 106 tile storage, 123
artifacts, 66 datum, 165, 166

degrees per pixel, 8, 20, 83, 86
base level, 83 distributed computing, 105, 142
benchmarking, 122 dynamic KML, 222
bicubic interpolation, 46 .
bilinear interpolation, 45, 179 easting, 174
binary large object, 121 'false., 174
blocking input/output, 104 ellipsoid, 166, 168
Blue Marble, 10, 205 equal-area projection, 170, 172
bottom-up tile creation, 83 equidistant projection, 169

equirectangular projection, 171

caching tile sets, 97
Cartesian, 18

Central meridian, 169
choosing base zoom level, 83

cluster, 105 overhead, 120

cluster storage, 206 fixed map scales, 63
cluster-based tile storage, 141 FORTRAN, 106

clustered index, 197, 200

feature attribute, 200
file based tile storage, 118
file formats, 82, 152
file system, 119, 120, 200

FUSE, 120
color model, 35
color palette, 68 Geodetic projection, 171, 175, 177, 184
color quantization, 66 geographic intersection, 101
color reduction, 66, 71 geographic projection, 11
color space, 35 geoid, 165
compression, 53 geospatial database, 197
artifacts, 54, 66 geospatial index, 197, 198
quality, 65 GEOTIFF, 38
conformal projection, 170, 172 GET, 151
conic, 193 Google Earth, 29, 221
continuous map scales, 64 Google Maps, 2, 11, 29, 52
coordinate system, 165, 169 Greenwich meridian, 169
curve, 193
custom file format, 121 Hadoop, 107

235

236

hit rate, 88

Hypertext Transfer Protocol (HTTP), 23, 151

1/0 bound, 106

image
compression, 58, 65, 86
formats, 37, 51, 53, 82, 152
overview, 195
processing, 35
resolution, 55, 83
scaling, 39, 48
sizes, 62
subsettting, 48
transparency, 55

index
clustered, 197, 200
custom file, 200
geospatial, 197, 198
QuadTree, 197, 198
R-Tree, 197, 198

Infiniband, 105

inner ring, 193

Internet, 151

interpolation, 39, 179
bicubic, 46
bilinear, 45, 179
nearest neighbor, 44

intersection, 101

JPEG, 37
JPEG2000, 38
JSON, 156
just-in-time tiling, 81

key-value storage system, 127

Keyhole Markup Language (KML), 221
dynamic, 222
static, 221

Lat/Lon projection, 171
layer, 82
client management, 24
vector, 200
Least Recently Used cache, 88
LIBTIFF, 100, 102
logical tile scheme, 7
lookup table, 136
lossless compression, 37, 66
lossy compression, 37, 66

map layer, 82
map scale, 17, 196
continuous, 20

discrete, 18

map view, 17, 18, 20, 25-27
MapReduce, 107

Matlab, 106

memory cache, 125, 127, 206
memory page, 42

memory tile cache, 98, 142

Mercator projection, 11, 170, 172, 185
Message Passing Interface (MPI), 106
metadata, 58, 109, 126, 156
Microsoft Bing Maps, 11, 29

MrSID, 37

multi-resolution image formats, 126
multi-threading, 87, 104, 206
MySQL, 197

NASA World Wind, 12, 29
nearest neighbor interpolation, 44
Network File System (NFS), 108
northing, 174

false, 174

OpenLayers, 29, 52, 224
OpenStreetMap, 48, 198
optimization, 97

Oracle, 197

palette, 68

parallel computing, 103

partial image reading, 99

partial reading, 206

partial tile updates, 109

pixel, 35

Plate Carrée projection, 171

PNG, 37

point, 193

polygon, 193

polyline, 193

POST, 151

PostGIS, 197

PostgreSQL, 197

processing, 194

projection, 165, 169-175
conformal, 170, 172
equal-area, 170, 172
equidistant, 169
equirectangular, 171
Geodetic, 171, 175, 177, 184
Lat/Lon, 171
Mercator, 11, 170, 172, 185
Plate Carrée, 171
simple cylindrical, 171
Transverse Mercator, 172

pull-based tiling, 87

push-based tiling, 87

Index

Index

pyramid structure, 138

QuadTree, 197, 198
quantization, 66
query, 196, 197, 200

R-Tree, 197, 198
random file accesses, 142
random image region, 100
raster image, 35
raw image, 205
reprojection, 175-184
affine transform, 177
map, 177, 180, 182
point, 175
point-wise, 180
table-based, 182
row-major, 18, 41

scale
continuous, 26
discrete, 25
scanline, 37, 100, 101, 206
image reading, 102
servlet, 155
shp2pgsql, 197

simple cylindrical projection, 171

slippy map, 2

software framework, 106

SQL, 197

static KML, 221

storage, 194, 196-202
database, 197-199
file system, 200, 202
space, 85

synchronized, 104

TerraServer, 1
thread, 87, 206
threaded tiling, 104
tile
address, 133
calculation, 17
cluster, 138, 140
coordinates, 89
dimensions, 57
index, 133, 135
metadata, 126

rendering, 195
retrieval, 22
scheme, 156
serving, 152
size, 57, 59, 89
storage, 117
updates, 109
Tile Map Service, 15
tile storage
database, 23
local, 23
network, 23

tile-based image reading, 100

tile-based mapping systems
core properties, 2
logical tile schemes, 5
transparency, 55

Transverse Mercator projection, 172

two-step tile index, 136

237

Universal Transverse Mercator (UTM), 173,

175, 177, 186
URL, 151

vector
data, 193
image, 35
point, 193
polygon, 193
polyline, 193

wavelet, 127

Web Map Service (WMS), 221, 224
GetCapabilities request, 224
GetFeaturelnfo request, 226

GetMap request, 224

Web Map Tile Service (WMTS), 15, 24

Web server, 118
WGS84, 167, 171, 184

XML, 156

Yahoo Maps, 12

zoom level, 7, 18, 20, 83, 136, 196, 198, 200,

205, 225

zoom level based storage, 136

	Tile-Based Geospatial
Information Systems

	Preface

	Acknowledgements

	Contents

	1 Introduction
	2 Logical Tile Schemes
	3 Tiled Mapping Clients
	4 Image Processing and Manipulation
	5 Image Tile Creation
	6 Optimization of Tile Creation
	7 Tile Storage
	8 Practical Tile Storage
	9 Tile Serving
	10 Map Projections
	11 Tile Creation using Vector Data
	12 Case Study: Tiles from Blue Marble Imagery
	13 Case Study: Supporting Multiple Tile Clients
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

