
CHAPTER 7 

THE TRANSPORT OF HEAT

In this chapter, we shall take a closer look at the transport of entropy. Simple aspects
will be introduced that go beyond what we already studied in Chapter 4 (Section 4.6).
This extends the treatment of thermal processes into the realm of phenomena which
are missing from the theory of the thermodynamics of ideal fluids (Chapter 5). Many
texts on thermodynamics and on heat transfer sharply distinguish between the two
subjects, which only emphasizes that a unified presentation of all thermal phenomena
is called for. While we will not achieve the stated goal in this chapter, the ground will
be prepared for a theory of continuum thermodynamics of which we will get a first
glimpse in Part III.

The first section of this chapter provides a qualitative description of the three types of
entropy transport: conduction, convection, and radiation. It introduces the formulation
of the law of balance of entropy for a uniform body. Then, simple applications of all

problems. Flow systems, i.e., open systems where fluids transport dissolved substanc-
es, entropy and momentum will be introduced in Chapter 8. There we extend the no-
tion of chemical potential to fluids in flow systems.

Entropy production in heat transfer will be considered as we go along, preparing the
ground for the concept of minimization of irreversibility in thermal design which will
be applied in Chapter 9. 

7.1 TRANSPORT PROCESSES AND THE BALANCE OF ENTROPY

In this section, I will describe qualitatively the basic phenomena underlying the trans-
port of heat. Simple observations tell us that entropy can flow in three different ways:
conduction, convection, and radiation. Consideration of these types of transport will
lead to the formulation of the law of balance of entropy in a more general form than
previously encountered, and will yield a better understanding of the role of hotness in
thermal processes. In the end, the equation of balance of entropy will contain terms
describing the different modes of transport. 

These types of transfer processes are found not only in thermal physics, but in other
fields of the natural sciences as well. Momentum transports have been classified in the
same manner in Chapter 3. For this reason alone, it is important to have a clear under-
standing of the nature of entropy transfer.
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7.1.1 Conductive Transport of Entropy

Heat one end of a metal rod over a flame; in a very short time the other end will feel
hot as well. If you throw a hot stone in cold water, it will cool down while the water
gets warmer. In a heat exchanger, a hot fluid flows through pipes, heating a cooler flu-
id which flows around the pipes. In all of these examples, entropy is removed from
some bodies and added to others. Why else should some objects become colder while
others heat up? The possibility of changing the temperature by compression, i.e., adi-
abatic processes, does not occur in these examples. Therefore we say that entropy has
been transferred. Obviously, entropy flows from hotter to colder bodies. 

How is entropy transported in these examples, and what are possible conditions for
this process to occur? First, we observe that material transport cannot be involved. A
piece of metal heated at one end retains its integrity. A hot stone does not dissolve in
water, thereby spreading the entropy it contains. In the case of the heat exchanger, it
is true that the fluids move; however, entropy must be transferred through the walls of
the pipes. Heat therefore flows through bodies without the help of a body transporting
it, and it flows from one body to another if the two are brought in direct contact. These
are examples of heat conduction (conduction or diffusion of entropy). 

An example that we studied in Chapter 4 tells us something about the role of temper-
ature in the conductive transport of entropy. Two bodies having different temperatures
are brought in thermal contact, and their hotnesses are monitored. It is found that the
temperatures of the bodies change until they have become equal. As long as they are
changing, entropy must be flowing: one of the bodies is cooled, the other is heated. In
the end, however, the exchange stops. We conclude that entropy flows conductively
as long as there is a difference of temperatures between the bodies exchanging heat,
and that by itself, entropy flows only from hotter to colder objects. 

Driving forces. This type of behavior is well known from a number of different phys-
ical phenomena. Connect two containers having different cross sections that are filled
with water up to different levels; let the water flow between them. As a different ex-
ample, connect two electrically charged spheres with a wire and monitor the electrical
potential of each of the spheres. We know what will happen in both cases: the water
levels in the containers will reach the same height, and the electric potentials of the
two spheres will be the same after the process ends (Chapter 1). In each case, some-
thing flows as long as there is a difference of potentials, i.e., a driving force. In analogy
to these well-known phenomena, we shall interpret the conductive transport of entro-
py as follows:

In conductive transport, entropy flows by itself through bodies from
points of higher to points of lower temperature. In other words, entropy
flows as long as there is a difference of temperatures, i.e., a thermal
driving force. 

The balance of entropy. Conductive transport of heat is a prime example of an irre-
versible process (Section 4.6.3). A body conducting entropy produces more entropy at
the same time. This must be so because in a steady-state process, the same amount of
energy which enters the body at high temperature leaves it at a lower thermal level.
Therefore, the current of entropy leaving the body must be larger than the one enter-
ing. Clearly then, the equation of balance of entropy must include the production term
for entropy in addition to the term describing conductive transfer of heat into and out
of the body:
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(7.1)

Here, IS,cond is the net current of entropy transported conductively with respect to the
body in question. We call it the conductive flux of entropy. 

Flow across surfaces. The conductive current is our way of describing a phenomenon
in which we picture entropy to flow across the surfaces of bodies. If we are interested
in the flow through a body we simply introduce imaginary surfaces inside. Again en-
tropy flows across a surface where one part of a body touches another (Fig. 7.1). In
this sense, conduction is a surface phenomenon, and it is rendered formal by a physical
quantity, namely a flux IS whose distribution over a surface is of prime interest (Chap-
ters 11 and 13). We stress this point since a body can pick up or lose entropy in other
ways (i.e., by radiation and sources of heat).

7.1.2 Transport of Entropy with Fluids: Convection

Northern Europe would be a pretty cold place to live were it not for the Gulf Stream,
which transports huge amounts of heat from the Gulf of Mexico to the west coast of
Europe. Our weather would be pretty dull were it not for the currents of hot or cold air
in our atmosphere. These are just two important examples of a different mode of heat
transfer. It is quite clear that in these cases entropy is transferred with the help of a ma-
terial medium, like air or water. You can find examples all around you. Heated air rises
from a radiator in a room; hot water which is pumped through the pipes of a central
heating system delivers entropy to the radiators; water begins to boil at roughly 100°C,
transporting entropy via a material current of steam. If entropy is carried by a material
which is flowing we speak of convective entropy transport.

These examples demonstrate that convection is a very important phenomenon in our
daily lives. We shall deal with some simple aspects of convection in Section 7.3.
(More details will be provided in Chapters 8 and 14.) We are interested in a particular
question at this point, the problem of the driving force of this type of heat transport.

The driving force. A difference of temperatures drives the conduction of entropy. You
can easily see that this cannot be the driving force in the case of convection. The rea-
son why hot water flows through pipes to your shower definitely cannot be found in a
difference of temperatures: a pump drives the flow of water. The fact that the water is
hot is immaterial to this transport phenomenon. We have to conclude that the cause of
convective heat flow has to be sought in the driving force which lets the material sub-
stance (water, air, etc.) move: we know that this is a pressure difference set up by a
pump or through some other device or process:

Entropy can be transported via a flowing substance. In this case, the
flow of entropy is accidental. The driving force of the process is the dif-
ference of pressure which lets the material substance flow.

There are some important examples of convection which might make us believe that
a temperature difference must be the driving force of the process. Think of air rising
above a hot radiator in a room. Also, the water circulating in a central heating system
does so apparently because it is heated at one end (in the boiler). Indeed, the water
does not flow if the heating is stopped.

Still, the immediate driving force for the flow of water (which is responsible for the

˙
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Figure 7.1:  Conductive currents 
of entropy flow across surfaces. 
Such surfaces may be real surfac-
es of bodies or imaginary surfac-
es, such as those which we 
introduce to separate different 
parts of bodies. The flow lines in 
this figure do not reflect the fact 
that entropy is produced in con-
duction.

Surface of body
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transport of entropy in the system) is not a difference of temperatures but a pressure
difference caused by the heating. The hot water in the boiler is slightly less dense than
the surrounding liquid; therefore, it begins to rise as a consequence of buoyancy,
which is a consequence of a pressure difference. The heating is responsible for the
flow only in an indirect way. Another example is presented by our atmosphere: air can
easily flow into a region where the temperature is higher. We call this phenomenon
free or natural convection to distinguish it from convection induced by a pump, which
is called forced convection.

The balance of entropy. Since convection and conduction are obviously different
types of entropy transport, we should distinguish between them. For this reason, we
also introduce convective currents in the equation of continuity of entropy:

(7.2)

This equation tells us that the entropy content of a body can change as a consequence
of two types of flow and the production of entropy (Fig. 7.2). Again, we are confront-
ed with a surface phenomenon. Substance flows into and out of regions of space across
surfaces, real or imagined. Just as in the case of conduction, we introduce fluxes to de-
scribe mathematically what is going on.

There is an important point to note. The transport of substance leads to changes of this
quantity in regions of space influenced by the flow. Therefore, we have to be extreme-
ly careful to state what we are talking about, i.e., to identify the system (or element)
for which we are performing a balance of entropy. So far, we have always used an
identifiable material body as the physical system under consideration (Chapters 4 and
5). Such a body is assumed to retain its material integrity; i.e., it is not allowed to ex-
change matter with its surroundings. We shall continue to use the term body in this
sense—an aggregate of matter which can always be identified and separated from the
rest of the world. For a body such as a stone this identification is quite simple and
clear. It is still simple in the case of air enclosed by rigid walls. In situations where
matter flows, however, this becomes more difficult. Still, we may think of an identifi-
able amount of water moving with the flow of a river. This body of water is thought
to be separated from the rest of the water by an imaginary surface which moves and
deforms with the body (Fig. 7.3). If we have a body in mind, the balancing of quanti-
ties such as entropy always refers to this piece of matter. The time derivative of the
entropy function (or of other functions) in Equ.(7.1) is taken for the entropy of the
body. For this reason it is sometimes called a material derivative.

Control volumes. It is often more convenient to do the accounting with respect to a
region of space rather than an identifiable body (Fig. 7.3). This is particularly true in
cases where matter flows. Imagine a region of space surrounded by an imaginary sur-
face. We often speak of a control volume and a control surface to distinguish it from
bodies. A control surface may easily be penetrated by flows of matter, which leads to
changes of the amount of substance in the control volume. This is the case if we con-
sider convective currents, as we have done above. The time derivative of the entropy
in Equ.(7.2) is not taken with respect to a body, but with respect to some control vol-
ume (which may be stationary or moving). The derivative, therefore, is of the entropy
of the control volume. We will learn later how to distinguish mathematically between
this derivative and a material one. By the way, systems which may exchange matter
are called open, while those which do not are called closed. Bodies are closed systems
by definition.

˙
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Figure 7.2:  Entropy may flow 
across the boundary of a body ei-
ther by conduction or by convec-
tion. In the former case, matter 
does not cross the surface and en-
tropy flows through matter. In 
convection, a substance flows 
across the surface whereby entro-
py it contains is transported into 
or out of the system as well.
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7.1.3 Transport of Entropy with Radiation

It is obvious in some cases that entropy is transported neither by conduction nor by
convection. Take the heat of the Sun, which travels to us through empty space, cover-
ing a distance of 150 million kilometers. It is clear that the Sun must radiate heat since
it produces vast amounts of entropy all the time without changing noticeably. The
transport cannot be via conduction. Also, there is no material substance which can act
as a carrier of entropy in a convective process. 

Heat which is emitted by warm bodies can even be photographed. You can see objects
on infrared films. They look unfamiliar, but the process clearly is similar to photogra-
phy with normal light. This suggests that there is a medium which transports heat in
these cases after all. This medium would be similar to light. Indeed, this is the accepted
picture: electromagnetic radiation (X-rays, ultraviolet, visible, infrared, or radio fre-
quency) carries heat. Hot bodies emit electromagnetic radiation which then transports
heat. 

One group of phenomena is so pervasive that it makes us think that some bodies must
radiate heat (entropy). (On closer inspection, however, you may realize that these phe-
nomena are not the kind of proof we are looking for.) You can sit behind a glass win-
dow and feel the heat of the Sun’s radiation. You can observe the same phenomenon
when you sit by a fire; while all the heated air might go up the chimney, you still get
hot sitting there. Meals can be kept hot by lamps, and again conduction or convection
are not responsible for the flow of heat. The problem with these cases is that the heat
felt by the bodies absorbing radiation may be produced inside them. Indeed, in the case
of solar radiation, almost all the entropy which appears in a body absorbing the Sun’s
rays is created in the body (see Chapter 16 on solar radiation).

Transport through the radiation field. We call this type of transport the radiation of
heat. It is interpreted as the flow of entropy (and other quantities) through a physical
system different from normal bodies, namely the electromagnetic field. The transport
through the field takes place with radiation which can store and transport such quan-
tities as entropy, momentum, and energy, just like ordinary materials. W can write
down an equation of balance of entropy for the electromagnetic field in an otherwise
empty control volume (Fig. 7.4):

(7.3)

Control volume
Body

Now

Later

Figure 7.3:  A body and a control 
volume in a general situation in-
volving the flow of substance. A 
body moves and deforms with 
the flow. A control volume is any 
region of space, itself moving or 
stationary. In general, a control 
volume is penetrated by convec-
tive currents. In this example, the 
body and control volume occupy 
the same region of space initially.

Figure 7.4:  Imagine an empty 
region of space between the Sun 
and the Earth. Entropy is trans-
ported with radiation through 
this control volume. There is no 
difference between temperatures 
across the region.

Region of space
occupied
by the radiation
field

Entropy
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The flow of entropy through the field is a surface phenomenon with currents flowing
across imaginary surfaces drawn around regions of space. The amount of entropy in a
region of space occupied by a radiation field changes as a consequence of the transport
of entropy together with radiation into and out of the region (Fig. 7.4). The flow of
heat through empty space is not dissipative. As a simple example, consider two imag-
inary spheres drawn concentrically around the Sun, the first near its surface, the sec-
ond much further out. Later in this chapter and in Chapter 12 we will learn how to
compute the flux of entropy through surfaces cutting through the radiation field. We
will find that the same amount of entropy flows through both spheres in the same time
span. Therefore the rate of production of entropy for a region of space which contains
only the radiation field is zero.

It is interesting to ask whether we need a difference of temperatures for entropy to
flow radiatively through the electromagnetic field. In fact, this is not the case. We as-
sociate the same temperature with the radiation which has just left the Sun and with
the radiation that arrives at the Earth. In this sense, radiative transfer of entropy has
much in common with convective transport. The driving force for the transport, if one
is needed at all, is not the thermal driving force responsible for conduction. This is of
profound importance for the determination of the relationship between fluxes of en-
tropy and of energy (see Section 7.4). Put simply, there is a great difference between
entropy flowing by itself in conductive transport, and entropy being carried by some-
thing else, be it water or radiation.

7.1.4 Interaction of Bodies and Fields

Often, we are not interested in the transport of entropy through the radiation field but
rather in the interaction of fields and bodies. The example of the Sun emitting radia-
tion and of the radiation penetrating the Earth’s atmosphere can tell us much about this
interaction. The radiation which is not reflected back into space enters the atmosphere,
where part of it is absorbed along the way to the surface of the Earth. We know from
experience that only part of the radiation is absorbed; the rest reaches the surface. At
the same time, the air must emit entropy since it cannot continually absorb radiation
without getting hotter and hotter. Absorption and emission take place in every part of
the atmosphere. This means that the radiation field pervades the air; it does not stop
where the layer of air surrounding our planet begins. In other words, the radiation field
and the atmosphere occupy the same region of space at the same time (Fig. 7.5).

The balance of entropy for body and field. To motivate the law of balance of entropy
in the case of radiative transfer, we shall proceed in two steps. First, consider the com-
bined system of matter and field occupying some region of space (Fig. 7.5a). In the
case of solar radiation interacting with the Earth’s atmosphere, this system absorbs
some of the radiation flowing through the field. As far as the region of space is con-
cerned, we have only radiative fluxes of entropy with respect to its surface. (Neglect
for the moment that entropy may be conducted through air, and that air may flow
through the system.) The entropy of the system may change only due to such radiative
currents and the production of entropy in case of dissipation:

(7.4)

Indeed, as we shall learn in Section 7.4, the absorption and emission of entropy are
irreversible processes. For this reason, we may not neglect the production term. 

Figure 7.5:  The same region of 
space as in Fig. 7.4 is now filled 
with matter such as air. Field and 
body can occupy the same space 
at the same time. For this reason 
their interaction takes place at 
every point inside the system. If 
we consider the material body 
only, we have to introduce sourc-
es of entropy where the body ab-
sorbs radiation from the field, 
and sinks where it emits entropy 
to the field.

Body

(b)

Sources of entropy
in body

Entropy flowing
through field

Body and
    field

(a)
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However, we are often interested only in the balance of entropy with respect to the
body alone (Fig. 7.5b). In this case, we have to consider the interaction of matter with
the part of the field which occupies the same space. The interaction between the two,
if it takes place at all, takes the form of absorption of radiation from the field by the
body, or emission from the body to the field. Absorption and emission take place at
every point in space occupied by the two systems. The properties of the body and of
the field determine the amount of entropy which is absorbed or emitted.

Sources due to absorption and emission. Absorption and emission of radiation are
not surface phenomena, but rather volumetric processes. In the absorption of radiation
by the Earth’s atmosphere there is no flow of entropy through this material body. En-
tropy enters the material system via the field, which means that there are no currents
through matter associated with this type of transport. It simply appears at every point
depending upon the degree of interaction. If we write an equation of balance of entro-
py for the material body only, we have to represent the interaction using a source term
instead of currents:

(7.5)

Here, ΣS,body is the entropy supply or source strength of entropy which is the net time
rate at which entropy enters or leaves the body as a result of the interaction. The equa-
tion of balance of entropy of the field, on the other hand, must take the form

(7.6)

If we now combine the last two equations, we obtain:

(7.7)

Comparison of this expression with Equ.(7.4) tells us that entropy must have been pro-
duced as a result of emission (or absorption) of radiation by the field and absorption
(or emission) by the body. In other words, more entropy is absorbed by the body than
is emitted by the field. The relation between the two source rates and the rate of pro-
duction of entropy must be given by

(7.8)

with the entropy being produced as a result of the transfer between the field and the
body (Fig. 7.6). Note that we have to distinguish between sources of entropy due to
entropy production and transfer between fields and bodies. Both effects are volumet-
ric, in contrast to flows (conductive and convective).

The general law of balance of entropy. If we now include the source term with the
conductive and convective fluxes and the production of entropy in Equ.(7.2), we final-
ly obtain the most general case of the equation of balance of entropy for a body:

(7.9)

This equation includes all the processes we are going to discuss. It expresses the fact
that the entropy of a body may change as a result of three distinct types of transport:
conductive, convective, and radiative, and the effects of irreversibility.

˙
,Sbody S body= Σ

˙
, ,S Ifield S rad S field= + Σ

˙ ˙
, , ,S S Ibody field S rad S body S field+ = + +Σ Σ

Σ Σ ΠS body S field S, ,+ =

Field Body

Dissipative
component

Π S

Σ S,field Σ S,body

Figure 7.6:  If we model the re-
sult of the transfer of radiation 
from the field to the body as uni-
form heating of the body, we 
have the problem of deciding 
where to include the source of ir-
reversibility. The solution pre-
sented in the equations 
corresponds to introducing a dis-
sipative component between the 
field and the body.
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7.1.5 The Balance of Energy

One of the most important practical problems in the theory of heat transport is the de-
termination of the fluxes and source terms of entropy in the equation of balance (see
Equ.(7.9).) We have to find the constitutive laws which let us calculate these quantities
in concrete situations. At this point, the energy principle will come to our aid. All three
types of entropy transport are accompanied by the flow of energy. For this reason we
should consider the law of balance of energy alongside that of entropy. Since energy
is a conserved quantity, the amount stored in a body can change only by way of trans-
fer to or from another system. The type of transfer of energy depends on the type of
entropy flow. In the cases of conduction and convection, energy flows with entropy
across system boundaries. This means that in these cases it is accounted for in terms
of conductive or convective currents. If entropy is transferred radiatively, however,
the interaction of bodies and fields leads to sinks or sources of energy in the body (or
in the field). As a result of entropy transfer, energy either flows across system bound-
aries, or it pours into bodies via a radiation field. Therefore we distinguish between
two types of currents and a source term of energy for material systems:

(7.10)

For the radiation field alone, the equation of balance of energy must take the form

(7.11)

The last term on the right-hand side of Equ.(7.10) is the source rate or the supply of
energy. Actually, in Equ.(7.10), we have neglected the transport of energy due to other
processes such as mechanical ones. In the case of convective currents we cannot al-
ways do this. However, for the purpose of this chapter we shall regard such contribu-
tions as negligible compared to the other terms.

As we shall see, the relationship between entropy and energy in thermal transport phe-
nomena will help us greatly in resolving the constitutive problem. To be specific, we
are interested in a number of relationships, namely those between:

R Fluxes of entropy and energy in conduction. 

R Fluxes of entropy and energy in convection.

R Fluxes of entropy and energy through the radiation field.

R Sources of entropy and energy.

R Energy and the production of entropy.

The following sections will in turn deal with different modes of transport. The one
type of relationship between entropy and energy in thermal processes that we have
considered so far (remember Equ.(4.21) in Chapter 4) is not of a general nature for
transport. Rather, convection and radiation must lead to different expressions relating
fluxes of entropy and energy.

In the following sections we shall introduce some simple aspects of all three modes of
heat transfer to gain some idea of the breadth of applications. We will encounter a sim-
ple version of heat conduction, a discussion of the radiation of heat from surfaces, and
an introduction to heat transfer from solid bodies to fluids (or vice versa). In later
chapters, conduction, convection, and radiation will be presented in more depth.

˙
, , ,E I Ibody E cond E conv E body= + + Σ

˙
, ,E Ifield E rad E field= + Σ
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1. What is the driving force for a conductive transport of entropy? What is it for a convective
flow of entropy?

2. When (hot) water flows out of a tank, there is a convective entropy current leaving the sys-
tem. Does this mean that the water in the tank gets colder?

3. In the case of flows and sources of entropy, entropy is transported from one system to an-
other. So, what is the (geometric or spatial) difference between a current of entropy and an
entropy source rate?

4. Both source rates of entropy and entropy production rates are volumetric quantities. What
is their difference?

5. If a body of air in the atmosphere absorbs some solar radiation, are the energy source rates
of the radiation field and of the air equal? Are the entropy source rates equal?

EXAMPLE 7.1. Conductive and convective fluxes of entropy.

Consider hot water flowing through a metal pipe as in the figure below. (a) Consider the interior
of a part of the pipe as the system, and assume this control volume not to move or deform. Ac-
count for all fluxes of entropy penetrating the surface of this control volume. (b) Consider the
water in the control volume at a particular instant to be the system. Follow this body of water in
its motion and repeat the problem (a).

SOLUTION: a) We are dealing with a stationary control volume (CV) through which water and
entropy are flowing. (See the upper part of Fig. Ex.1; water is flowing from left to right.) We
have to find the currents flowing through the control surface and determine the fluxes associated
with them.

First of all, entropy must be flowing radially outward through the pipe if the surroundings are
cooler than the water. This means that we have a conductive current of entropy penetrating the
cylindrical surface. Since the flow is outward, its flux will have a negative sign (symbolized by
an arrow in the negative x-direction).

Second, because of the loss of heat through the walls of the pipe, the water entering the control
volume will be warmer than the water leaving. We have a thermal driving force in the direction
parallel to the axis of the pipe. At the control surface, there must be conductive currents of en-
tropy through the water in its direction of flow. Therefore, we have a positive flux associated
with the conductive current at the entrance to the control volume (left), and a negative flux due
to the current leaving the system.

Finally, two convective fluxes are associated with the flow of water into and out of the control
volume. Entropy stored in the water is carried across the surface of the system. Again the flux

QUESTIONS

Figure Ex.1
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is positive at the inlet, and negative at the outlet. The flux at the entrance is larger in magnitude
than the one at the outlet.

(b) If we follow a certain body of water in its motion, the system wall moves with it (lower part
of Fig. Ex.1). Water does not flow across the surface of the body, which is represented by the
shaded area. This means that there are no convective currents of entropy to be considered. The
conductive currents still exist, and they are the same as the ones identified in (a).

7.2 CURRENTS OF ENTROPY IN CONDUCTION

We have considered the generic expressions for laws of balance of entropy and energy
in the previous section. Now we shall turn our attention to the constitutive theories that
will allow us to quantify entropy transfers. Let me begin with conduction.

7.2.1 Fourier’s Law for Entropy

What factors does the current of entropy in conductive transport depend upon? If the
temperature of a body changes from place to place, there must be temperature gradi-
ents. This is one factor upon that we expect the rate of flow of heat, the entropy cur-
rent, to depend. The material through which the entropy flows must also play a role in
the determination of the current. The influence of the material will be described by its
conductivity. If the current of entropy depends upon the temperature gradient and the
conductivity in the simplest possible way, we say that it obeys Fourier’s law.

Fourier’s law for a slab of matter. We can motivate the form of Fourier’s law in a
simple manner. The idea is borrowed from electricity, where we also have encoun-
tered phenomena having to do with conduction, namely the conduction of charge
(Chapters 1). Consider the conduction of entropy through a slab of material as shown
in Fig. 7.7. Assume that entropy flows only in one direction, and that the distribution
of the current of entropy does not vary in a plane perpendicular to the flow. In other
words we will consider only the simplest possible case of a flow field. 

The basic question is this: how does the current density of entropy depend upon the
circumstances? From what we already know, the current of entropy through a body
should depend upon the temperature difference across the body (in the direction of the
flow of entropy) and a conductance that depends upon the geometry and the conduc-
tive properties of the body. The conductance is what we should be concerned with

Figure 7.7:  Entropy flows in one 
direction only through a slab of 
matter. We assume that the distri-
bution of the current does not 
vary in planes perpendicular to 
the x-direction. There is a differ-
ence of temperatures between 
front and back faces which 
serves as the driving force of the 
flow of entropy.
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here. Clearly, for given temperature difference, the current doubles if the cross section
A of the conducting body doubles: we simply have two equal conducting bodies in par-
allel. Secondly, we expect the current to halve if the thickness of the slab is doubled.
Therefore,

(7.12)

The negative sign tells us that entropy flows into the body at x (Fig. 7.7); remember
that the temperature difference is negative. The factor kS quantifies the conducting
property of the material; it is called the entropy conductivity of the substance.

This is Fourier’s law of conduction. Naturally, the entropy conductivity is expected
to depend upon the material the body is made up of, and on temperature (Fig. 7.8).
Some values of entropy conductivities are given in Table 7.1.

Table 7.1: Conductivity of some materials

Substance Conditions
Conductivity 

(entropy)
Conductivity 

(energy)

300 K kS / W · K–2m–1 kE / W · K–1m–1

Gases at atmospheric 
pressure

Air 200 K 9.05 · 10–5 0.0181

300 K 8.73 · 10–5 0.0262

400 K 8.41 · 10–5 0.0337

Helium 200 K 5.89 · 10–4 0.1177

CO2 250 K 5.16 · 10–5 0.0129

300 K 5.53 · 10–5 0.0166

H2O vapor 400 K 6.52 · 10–5 0.0261

500 K 6.76 · 10–5 0.0339

600 K 7.03 · 10–5 0.0422

Saturated liquids

Mercury 293 K 2.97 · 10–2 8.69

Water 273 K 2.02 · 10–3 0.552

293 K 2.04 · 10–3 0.597

313 K 2.01 · 10–3 0.628

333 K 1.96 · 10–3 0.651

353 K 1.89 · 10–3 0.668

373 K 1.82 · 10–3 0.680

Liquid metals

Sodium 366 K 0.232 84.96

I x k
A

x
TS S( ) = −

∆
∆

Figure 7.8:  Some entropy con-
ductivities kS as functions of tem-
perature. The values of the 
conductivities with respect to en-
ergy, i.e., those commonly listed 
in tables, are equal to kS multi-
plied by the temperature of the 
material (Fig. 7.9).
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The differential form of Fourier’s law. To prepare the ground for treating the contin-
uous case (Part III), let me transform the expression for a conductive current of entro-
py. Experience tells us that the conductive transport of heat violates our assumption of
spatial uniformity: temperatures must change from point to point inside the materials
conducting entropy. Therefore, Equ.(7.12) is not the best possible expression for a
conductive current of entropy. Also, if you remember the treatment of heat transfer in
Chapter 4, you will notice that Equ.(7.12) cannot hold for every point inside the slab

Solids at 20°C

Aluminum 0.80 240

Brick (building brick) 0.0024 0.7

Bronze (75% Cu, 25% Sn) 0.089 26

Clay 0.0043 1.3

Concrete (cinder) 0.0026 0.76

Copper 300 K 1.32 400

500 K 0.772 386

800 K 0.458 366

Fiber (insulating board) 1.6 · 10–4 0.048

Glass (window) 0.0027 0.8

Glass fiber 1.3 · 10–4 0.038

Granite 0.0058–0.014 1.7–4.0

Iron 300 K 0.27 80

500 K 0.12 61

Lead 300 K 0.12 35

Limestone 100–300°C 1.3

Paper 3.6 · 10–5 0.011

Pyrex 0.0046 1.4

Rubber (vulcanized, hard) 4.3 · 10–5 0.013

Sand 8.9 · 10–5 0.027

Sandstone 0.0061 1.83

Steel 1.0% C 0.15 43

20% Ni 0.065 19

Tissue Fat layer 0.00066 0.20

Muscle 0.0014 0.41

Tungsten 0.556 163

Wood Oak 0.00057 0.166

White pine 0.00038 0.112

Table 7.1: Conductivity of some materials

Substance Conditions
Conductivity 

(entropy)
Conductivity 

(energy)

300 K kS / W · K–2m–1 kE / W · K–1m–1
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through which heat is conducted. Conduction is dissipative, meaning that entropy is
produced as it flows through the body. In other words, the entropy current increases
in magnitude in the direction of flow and we have to specify where we want to apply
Equ.(7.12).

All these difficulties disappear in a continuum description of the phenomenon (Chap-
ters 11 and 13). At this point, all we should do is take a first look at Fourier’s law in
the continuous form. In a first step, we introduce a measure of the distribution of the
current over the surface through which it flows, namely the current density jS. In our
case, it is related to the magnitude of the flux IS as follows:

(7.13)

The meaning of the density of a current of entropy will be explained in more detail in
Chapters 11 and 13. The unit of the current density of entropy is W/(K · m2).

Equ.(7.12) indicates how we can proceed. The term ∆T/∆x in Fourier’s law is changed
to the temperature gradient dT/dx. The conductivity keeps its meaning, so we arrive at

(7.14)

It is clear that the current of entropy must vanish if the temperature gradient is zero.
In the simplest case, the current density will depend linearly upon the gradient. Also,
entropy is not conducted if we deal with a perfect insulator whose conductivity is zero.
For these reasons, Equ.(7.14) makes sense. It is perfectly analogous to what we have
seen in the case of the conduction of momentum or electric charge (Chapter 3). Note
that we have not yet solved the constitutive problem of the conductive transport of
heat. While we now have a relation for the current of entropy appearing in the equation
of balance, we still do not have an expression for the rate of generation of entropy. 

7.2.2 The flow of entropy and energy in conduction

A current of energy is always associated with a current of entropy in conductive trans-
port. According to Equ.(4.21), the former is equal to the latter multiplied by the tem-
perature of the material at the point where the two flow together. This relation carries
over to the continuous case:

(7.15)

Just as there is a current density of entropy, there also must be a current density of en-
ergy. Equ.(7.15) holds for every point in a body through which entropy flows conduc-
tively. The validity of the generalization of IE = TIS can be proved more rigorously
(Chapter 12). For now, let us accept it as intuitively clear. If we introduce the defini-
tion of the conductivity with respect to energy (thermal conductivity, Fig. 7.9),

(7.16)

Fourier’s law can be expressed in terms of the thermal energy current:

(7.17)

I A jS S=

j k
dT

dxS S= −

j T jE th S, =

Figure 7.9:  Some thermal con-
ductivities kE as functions of 
temperature. See Fig. 7.8 for the 
equivalent entropy conductances.
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Since we consider pure conduction of heat, only the thermal energy current appears in
a process. Therefore, the expression for the balance of energy will take a particularly
simple form. 

7.2.3 Entropy Production in Conduction

The conductance of a fluidlike quantity is a prime example of an entropy producing
process. Here are two ways to determine the entropy production rate in conduction of
entropy.
Dissipation. If entropy enters the hot end of a slab of material and exits at the cold end,
as shown in Fig. 7.7, entropy is produced inside. This is so because the entropy falls
from a high to a low level thereby releasing energy which is dissipated. From what we
have studied in Chapter 4 (Section 4.6.3) we know that 

or

(7.18)

The volume density of the production rate is introduced in the continuous case. It is
obtained by dividing the expression in Equ.(7.18) by the volume of the slab:

(7.19)

The term TπS is the density of the dissipation rate inside the material as a consequence
of conduction.

Simultaneous balances of entropy and energy. Here is a type of derivation which
will prove very useful in many applications. The first approach just outlined requires
us to have direct knowledge of the amount of energy dissipated, and the temperature
at which dissipation takes place. If we do not have this (or are unsure about the values),
there is an indirect method that uses the balance of energy to determine the missing
constitutive relation, i.e., the production rate of entropy.

Consider a resistive element similar to the slab of matter in Fig. 7.7. The laws of bal-
ance of entropy and of energy for this body take the forms

Since we assume that the resistive element does not store entropy or energy, rates of
change of entropy and energy must equal zero. Together with the relations between
current of entropy and energy,
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we arrive at

which is equivalent to what we have derived before. Here we did not assume knowl-
edge of the dissipation rate; the rate of dissipation is part of the combined laws regard-
ing entropy and energy in a specific situation.

7.2.4 Calculation of Conductances or Resistances

In Section 4.6.1, the conductance (or its inverse, the resistance) for overall heat trans-
fer through a series of transfer layers has been introduced. The definition carries over
to a single (conductive) layer. Hence,

(7.20)

The resistance of such a layer is therefore equal to

(7.21)

The entropy transfer coefficient hS (Equ.(4.45)) can be calculated from this, and all of
this can be converted to energy related quantities (Equ.(4.47)). According to Section
4.6.4, conductances or resistances can be calculated for composite layers. It is custom-
ary to do this for the energy flow resistances or conductances (by assuming them to be
independent of temperature). For a series of layers we get

(7.22)

and for parallel layers

(7.23)

Remember that these rules have to be taken with a grain of salt. Thermal properties
such as conductances typically vary with temperature (Table 7.1 and Fig. 7.8). If we
wish to do the calculations directly for the entropy conductances we have to take into
account entropy production which, for series connections, leads to Equ.(4.55). If tem-
perature differences are relatively small, and if property values are relatively uncer-
tain, we can use Equ.(7.22) directly for the total entropy resistance as well.

7.2.5 A Dynamical Model of Conduction in a Copper Bar

To demonstrate the utility of the assumptions behind Fourier’s law, let us work on a
dynamical model of conduction in a long copper bar. An example of experimental data
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was presented in Chapter 4 (Section 4.1, Fig. 4.5) where a copper bar was stuck in ice
water at one end and heated electrically at the other. First, before the electric heater
was turned on, temperatures went down, those close to the end in ice water reacted
first, then those farther away. With the heating on, temperatures went up, first those
close to the heater, then those further down the line.

Even though we do not have the tools yet to treat the continuous case found in nature,
we can still produce a useful model based on uniform bodies by dividing the copper
bar into several elements. We view each element as a store for entropy having its tem-
perature (which we associate with the center of the element; Fig. 7.10, top). The ma-
terial between two center points is taken as the conductive piece (or resistive element)
between two storage units.

Length and cross section of an element define the geometry needed to calculate entro-
py capacitances (Chapter 4) of elements and conductances of resistors (Equ.(7.20)).
The model can be simulated with proper initial and boundary conditions (see the graph
in Fig. 7.10).

6. How large is the entropy current through a 10 m by 10 m sandstone wall which is 0.5 m
thick if the temperature difference is 20°C?

7. Assume constant (temperature independent) entropy resistances of a couple of layers
placed in series. Why can’t we simply add them to get the total resistance?

8. Consider two conducting bars like the one in Fig. 7.10 made of two different materials.
They are geometrically equivalent and have equal conductivities and specific entropy ca-
pacitances. The second material has a higher density. How would the behavior of the sec-
ond material differ from that shown in Fig. 7.10?

9. Temperatures have been measured at 8 points along the copper bar in Fig. 7.10. Does this
mean the dynamical model should be made of 8 elements?

Figure 7.10:  A long conducting 
bar is divided into elements (top 
left). An element is a storage unit 
for entropy. The material be-
tween (the centers of) two ele-
ments is modeled as a resistive 
element. Bottom: Section of a di-
agram of a dynamical model for 
this system. Note the entropy 
stores and the nodes (used to ex-
press the balance of entropy for 
the resistors). Top right: Simula-
tion results for a particular case 
(compare to Fig. 4.5).
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EXAMPLE 7.2. Melting a block of ice insulated in glass fiber.

A cube of ice having a volume of 1.0 m3 is in a box insulated by 10 cm thick glass fiber. It is
left in an environment at 30°C. Estimate how long will it take for the cube to melt.

SOLUTION: Treat the layer of glass fiber as a flat blanket having a surface area of 6 m2 (this is
the surface area of the cube of ice). According to Table 7.1, the entropy conductance of glass
fiber is 1.3 · 10–4 W/(K2 · m). Therefore, the entropy current from the environment to the ice is

The 1.0 m3 of ice corresponds to 910 kg. The specific latent entropy of ice is lf = 22/0.018 J/
(K · kg) (Chapter 5, Table 5.1). Therefore, the latent entropy of the block is 1.1 · 106 J/K. The
time taken to supply this much entropy to the volume of ice is

This corresponds to close to 60 days. Naturally, the model assumes that the melt water stays at
a temperature of 0°C and transmits entropy easily (i.e., it is assumed the melt water does not
blanket the ice in addition to the sheets of glass fiber).

EXAMPLE 7.3. Heating of an integrated circuit.1

A silicon chip is attached to an isothermal surface called a header. The top of the chip is covered
uniformly by a power device which dissipates energy at a rate of 50 W. Thirty thin gold wires
connect the top with the header. Assume the entropy to be conducted down through the chip in
one direction only. What will the steady-state temperature be at the top of the chip, if the header
is kept at a temperature of 25°C?

The chip has a surface area of 0.51 cm by 0.51 cm. It is composed of three layers. The first is
made out of silicon with a thickness of 0.051 cm. The chip carries a thin layer of gold at the
bottom; its thickness is 0.010 cm. Between these two a thin layer of silicon dioxide forms, which
has a thickness of 0.00013 cm. The thermal conductivities with respect to energy are 88 W/
(K · m), 312 W/(K · m), and 0.157 W/(K · m), respectively. The gold wires are 0.130 cm long and
have a diameter of 0.0254 cm.

SOLUTION: The device represents a thermal circuit with elements in parallel and in series (see
figure). A constant thermal driving force is maintained over the circuit. We must figure out the
total thermal resistance offered by the circuit to the flow of entropy and energy. The chip has a
resistance of

This device is connected in parallel with thirty identical wires. Therefore, the total resistance is
calculated to be

1. P. Ridgely (1987).
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This corresponds to a resistance of 0.461 K/W. With the energy flux given, we can calculate the
thermal driving force, i.e., the difference of temperatures between the top and the bottom of the
chip:

The temperature at the top of the chip is 48°C. Without the gold wires it would be 53°C.

EXAMPLE 7.4. A model of two uniform bodies in thermal contact

The faces of two identical cylinders, one heated to a high temperature T1i and the other to a low
temperature T2i , are brought in direct thermal contact. (a) Calculate their temperatures as func-
tions of time by treating them as spatially uniform bodies. (b) Compare the result to a finite el-
ement computation of the temperatures of their centers. (c) Calculate the entropy produced.

SOLUTION: (a) The model can be constructed along the lines of the model presented in
Fig. 7.10. We have two bodies touching directly (see Fig. Ex.4.1). They are treated as spatially
uniform stores of entropy. We can imagine the entropy to travel on average from the center of
the warmer to the center of the colder body, so we use the matter between the two centers as the
conductive transfer layer.

The model can be constructed using the entropy or the energy balances for the bodies; remem-
ber that the conductor is treated as an element that does not store entropy. Let us use the balance
of energy:

C is the temperature coefficient of energy of a body, and CdT/dt is equal to dE/dt of a body. The
bodies are taken to be identical, with different initial temperatures. The energy current flowing
from the hotter to the cooler body is expressed by

A is the cross section of the bodies (the surface area where they are touching), kE is the thermal
conductivity, and ∆x is a distance which we take to be the distance of the centers of the two bod-
ies. We now divide the differential equations by the temperature coefficients of energy, and then
subtract the second from the first. This leads to a differential equation for the difference of tem-
peratures ∆T = T1 – T2:

whose solution turns out to be
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where ∆Ti is the initial temperature difference of the bodies (see Fig. Ex.4.1).

(b) A long bar has an initial temperature distribution with its left half at 400 K and its right half
at 200 K. The first of the diagrams (Fig. Ex.4.2, left) depicts the temperatures at evenly spaced
points throughout the bar as a function of time (result of an FE computation). The second graph
shows the average temperature of the two halves of the bar (circles) and the solution computed
according to the result in (a) with ∆x equal to half of the length of the bar. (Values are: kE = 1,
C = 5, ∆x = 5, A = 1.) A judicious choice of ∆x can make the solutions quite similar, and the
rough model can serve as an estimate of what is happening in the bar. 

(c) The irreversibility is measured in terms of the production of entropy. The rate of generation
of entropy is expressed by

If we introduce the solution into this formula, we obtain

Integration of this expression over time (from zero to infinity) leads to2

The last form is equivalent to the one obtained from thermostatic considerations alone, i.e., by
applying balances of entropy and energy to the total process of equilibration of two identical
bodies (Chapter 4).
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EXAMPLE 7.5. The flow of heat through the mantle of the Earth.

The total flux of energy from the interior of the Earth through its surface can be estimated from
the values of the temperature gradient in the crust and the conductivity with respect to energy.
Their values are 0.06 K/m and 1 W/ (K · m), respectively. Assume that the entire flux is conduct-
ed from the core at a depth of 3400 km through the solid mantle (the radius of the Earth is 6400
km). Take as an average thermal conductivity the one found for the upper crust. According to
these assumptions, how large would the temperature of the core of the Earth be?

SOLUTION: First we have to calculate the energy flux at the surface of the Earth. According to
Equ.(7.17) it must be

R is the radius of the Earth. The energy flux out of the Earth is about 5000 times smaller than
the one we receive from the Sun. We have applied Fourier’s law, which was motivated for flat
geometry. This is certainly allowed in the case of purely radial flow. We need only replace the
normal temperature gradient by its radial counterpart. The following development, however,
changes because of the differences in geometry.

If we knew the thermal resistance RE of the Earth’s mantle we could easily calculate the tem-
perature difference necessary to conduct this current from the bottom of the mantle up to the
surface. Since the conducting body is not flat, the surface area through which conduction is tak-
ing place varies constantly. Therefore, let us write Fourier’s law in the form

with

This means that we have to calculate the thermal resistance by integration. For a spherical shell
with inner and outer radii ri and r0 , respectively, and with constant kE we get:

Note that the thermal resistance is of the form given in Equ.(7.20), with ∆x = r0 – ri and A =
4πrir0 . According to Equ.(4.46), the difference of temperatures between the core-mantle
boundary and the surface must be

This value is rather far off from the estimated temperature difference of some 3000 K. From
seismic measurements we know that the mantle is solid, which limits the temperature below the
melting point of rocks. A good number of reasons can be given to explain this huge discrepancy.
The value of the conductivity might be wrong. (However, it will not be all that far off.) The en-
tropy flowing out through the surface of the Earth might not come from the core; it might be
produced in the mantel and the crust by radioactive decay; this is indeed the case (see Chapter
13). The flow of entropy varies with time; in our case, however, this does not change the result
much because of the long time scale. Finally, the entropy might be transported not by conduc-
tion but by radiation and convection. This is true as well; it is mostly convection which trans-
ports entropy through the mantle, even though the mantle is solid! Over very long time scales,
the material of the mantle is deformable and it moves; this process apparently is responsible for
continental drift.
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7.3 THE NATURE OF HEAT TRANSFER AT A SOLID–FLUID BOUNDARY

Now we will introduce some aspects of heat transfer across interfaces separating dif-
ferent types of bodies. Consider a hot solid body submersed in some fluid. Entropy is
conducted through the body to its surface from where it enters the fluid and is carried
away convectively. The transport of entropy from the solid to the fluid, or vice-versa,
is of interest in the design of heat exchangers, in the loss of heat from a building, in
thermal solar collectors, in household appliances, and in many other applications. An-
other important case is heat transfer between liquids and gases. Just think of the inter-
action between the Earth’s atmosphere and the oceans, which has received much
attention recently. Questions concerning the balance of energy and entropy, and of
carbon dioxide and other trace gases, are of vital interest in environmental, atmospher-
ic, and oceanographic sciences. 

7.3.1 Boundary Layers

For now, let us limit our attention to the flow of entropy from solids to fluids. The
transport mechanism is usually a mixture of conduction, convection, and radiation.
(The last will be treated in Section 7.4.) Entropy flows through a hot body to its surface
from where it somehow enters the fluid. For example, consider a viscous fluid flowing
along a flat plate as in Fig. 7.11. The hydrodynamic phenomenon is described by the
velocity of the fluid in the vicinity of the plate. The conditions in the undisturbed fluid
are given by the free stream values of velocity and temperature far from the plate. Due
to viscosity, the speed of flow is reduced to zero at the surface of the body. It is found
that the velocity changes in a direction perpendicular to the surface from the value of
zero to the free stream velocity further away in the undisturbed flow. The velocity gra-
dient is confined to a thin hydrodynamic or velocity boundary layer in which all the
interesting action takes place (Fig. 7.12a). The thickness of the boundary layer is zero
at the leading edge of the plate and it increases with increasing distance along the sur-
face. The boundary layer is defined to extend to points where the velocity has reached
99% of the free stream value. Typically, in the situation described, it has a thickness
of the order of only a few millimeters.

Now consider the temperature of the fluid. At the surface of the solid, the fluid is at
rest and its temperature is that of the solid surface, which in general, is different from
the free stream value. Therefore temperature gradients must develop perpendicularly
to the surface; i.e., the temperature changes from the surface value to the free stream
value, this time in a thin thermal boundary layer (Fig. 7.12b).

Again the thickness of this boundary layer increases along the plate from a value of
zero at the leading edge. We can understand the importance of the conditions in the
boundary layer for the transport of entropy. At the surface of the solid, entropy is
transferred into the fluid in the conductive mode only. This allows us to write the en-
tropy flux density in terms of the conductivity of the fluid and the temperature gradient
in the fluid at the surface:

(7.24)

(see Equ.(7.14)). The index f refers to the fluid. Naturally, conditions in the fluid layer
change right away, so Equ.(7.24) holds only for the surface (y = 0).

Figure 7.11:  A fluid flows past a 
long flat plate. The fluid has free 
stream values of velocity and 
temperature far from the plate. 
The surface temperature of the 
solid body is assumed to be con-
stant and different from the free 
stream value of the fluid. As a re-
sult, entropy and energy will be 
carried across the interface by the 
combined action of conduction 
and convection.
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7.3.2 Convective Heat Transfer Coefficient

Entropy and energy which enter the fluid conductively will be carried away with the
flow of matter. The entropy and energy currents crossing the interface must depend in
some way upon the physical state of the fluid and the temperatures at the surface of
the body as well as far away from it. The process is a rather complex phenomenon.
That is why it is commonly described in a strongly simplified manner. The entropy
flux density is expressed in terms of the difference of temperatures between the sur-
face of the solid body and the fluid far from the surface, and a coefficient which sum-
marizes the complexity of the physical state of the fluid:

(7.25)

hS is called the (local) convective entropy transfer coefficient, while Ts and T∞ repre-
sent the temperature of the surface and of the undisturbed fluid, respectively. The co-
efficient depends upon the details of the fluid flow. It has to be either calculated on the
basis of a complete hydrodynamic theory, or measured in experiments. The expression
in Equ.(7.25) is equal to the entropy flux at the interface, which allows us to equate
the flux densities in Equations (7.24) and (7.25). This leads to an expression for the
entropy transfer coefficient:

(7.26)

Both the conductivity of the fluid and the temperature difference can be taken to be
constant. Therefore, the convective transfer coefficient depends upon the temperature
gradient of the fluid at the surface of the solid, which is determined by the conditions
in the boundary layer. Experience tells us that a hot body submersed in a flowing me-
dium cools much faster than in a still fluid. Therefore, the rate of transfer of entropy
from a solid into a liquid or gas crucially depends upon the state of motion of the fluid.
The type of flow plays an important role as well. We have to distinguish between lam-
inar and turbulent flows on the one hand, and forced and free convection on the other.
The rate of entropy transfer is very different in these cases. It is clear that we have not

(b)

x

y

(a)T∞ v∞
v∞

v(y)

T(y)

T∞ v∞ T∞

Figure 7.12:  Velocity (a) and 
temperature (b) boundary layers 
develop at the surface of the solid 
body. The velocity is zero right at 
the surface, from where its value 
increases to the free stream ve-
locity. The distance over which 
the quantity changes marks the 
extent of the boundary layer 
which increases along the plate. 
The temperature is equal to the 
surface temperature for y = 0. It 
decreases (or increases) from the 
surface to obtain the free stream 
value. The thicknesses of the ve-
locity and temperature boundary 
layers are not the same.
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really solved the problem of convective heat transfer; we have simply shifted it to the
task of determining the transfer coefficient from a theory combining motion and heat
transfer.

The temperature gradient at the surface of the solid obviously diminishes with increas-
ing thickness of the layer, which leads us to conclude that the local value of the transfer
coefficient decreases along the plate. The coefficient is often replaced by an average
value. In this case we can relate the entire entropy flux to the change of temperature
and the average transfer coefficient hSa:

(7.27)

A is the total surface of the body. In this simplified form the constitutive law of con-
vective entropy transfer commonly serves as a boundary condition for the conductive
transport of entropy through the solid body. 

Naturally, the entropy flux varies across the boundary layer. Entropy will be produced
in the fluid due to both conduction and viscous friction. These are two of the possible
dissipative processes taking place in the general type of fluid considered here.

The exchange of energy with entropy at the interface. The entropy current which
is expressed by Equ.(7.27) is carried across the surface of the solid body by conduction
alone, so it is possible to give a simple form of the energy flux entering or leaving the
solid. In conduction, the entropy and energy currents are related by the local temper-
ature. Therefore the energy flux at the surface is equal to

(7.28)

where

(7.29)

is called heat transfer coefficient. We need to know the average transfer coefficient for
concrete applications. Such values are listed in Table 7.2 for a few situations.

Table 7.2: Heat transfer coefficients with respect to energy a

a. Order of magnitude, including the effect of radiation 
at the boundary.

Substance Transport mode ha / W · K–1m–2

Air Free convection 6–30

Air in rooms Inside wall 8

Window 8

Floors and ceilings 6–8

Superheated steam or air Forced convection 30–300

Oil Forced convection 60–1800

Water Forced convection 300–6000

Boiling 3000–60000

Steam Condensing 6000–120000

I h A T TS y Sa s= ∞= −( )0

I h A T TE th y a s, = ∞= −( )0

h T ha s Sa=
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From the foregoing we can define conductances or resistances. The expression for an
energy flow conductance of a convective layer is

(7.30)

The inverse of this quantity is the (energy) resistance. Corresponding entropy conduc-
tances are calculated by dividing GE by the appropriate temperatures. Once we know
how to calculate conductances or resistances of single layers, we can find the overall
conductance or resistance for compound layers just as in the case of conduction alone
(Equ.(7.22) and Equ.(7.23)).

7.3.3 Overall (Total) Heat Transfer Coefficient

How large is the flux of entropy or energy through the wall of a building or through
the insulation of a pipe? Obviously we are dealing with multilayer situations in which
both conduction through solids and convection at solid–fluid boundaries occur. This
situation was discussed in Chapter 4 (Section 4.6.4 and Fig. 4.44). 

Consider heat transfer through a wall of a building. The transfer of energy is described
in terms of the total difference of temperatures between the inside and the outside of
the building, the surface area A, and an overall heat transfer coefficient htot:

(7.31)

htot A is the overall conductance which can be calculated exactly as for compound con-
ductive layers (Equ.(7.22) and Equ.(7.23)). Hence, for a series of layers (as in
Fig. 4.44), the total heat transfer coefficient is

(7.32)

where the ∆xi are the thicknesses of each of the conducting layers which have conduc-
tivities kEi. There are N transition layers and M conductive ones. 

10. If air is heated inside a room, would you expect heat to reach the walls by conduction
through the air or rather by convective mixing of the air in the room?

11. Consider air flowing along a (heated) plate. Why should we expect the convective transfer
coefficient to change along the plate (in flow direction?)

12. Consider hot air flowing along a cool plate. What will the temperature layer in the direction
of flow look like?

13. If a box is insulated by 10 cm or more of glass fiber, do we still have to take into consid-
eration convective transfer on the outside?

14. Consider hot water inside a thin-walled aluminum can cooling in the environment. Why is
the convective transfer coefficient from the outside surface of the can to the air nearly equal
to the total transfer coefficient from water to air?

15. What is the (entropy or energy) transfer coefficient for a conductive layer? How does it
differ from the transfer coefficient for convection?
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EXAMPLE 7.6. Surface temperature of a central heating radiator.

To heat a 100 m2 apartment in an older not very well insulated building we need 1600 liters of
heating oil per year. One liter of oil yields about 36 MJ when burned. Assume that the entire
floor of the apartment is used for floor heating, and that the heating is on for one third of the
year. (a) What is the average entropy current from the floor to the air? (b) How much warmer
than the air will the surface of the floor have to be? Use a floor temperature of 300 K.

SOLUTION: (a) The entropy current is calculated from the energy current which is obtained
from the energy delivered by the oil during about 107 s. For one square meter, we have

(b) The entropy current calculated in (a) must be transferred from the floor to the air. According
to Table 7.2, the entropy transfer coefficient from a floor to air is about 8/300 W/(K2 · m2). With
Equ.(7.25), we have:

EXAMPLE 7.7. Surface temperatures of a single pane window in winter.

Consider a window having a metal frame. The window measures 1.20 m by 2.00 m. The glass
has a thickness of 3.0 mm, and a conductivity with respect to energy of 1.0 W/(K · m). Take the
convective transfer coefficients inside and outside to be 8.0 W/(K · m2) and 12.0 W/(K · m2), re-
spectively. The metal frame is 3.0 cm wide around the window, and 5.0 mm thick. The conduc-
tivity is 220 W/(K · m) (aluminum), and the transfer coefficients inside and outside are taken to
be 30 W/(K · m2) and 50 W/(K · m2), respectively. The temperature on the inside is 20°C; on the
outside it is – 10°C. (a) What are the temperatures of a single pane window inside and outside
in winter? (b) Calculate the flux of energy through the window if it has a metal frame. (c) How
large is the total transfer coefficient of the window?

SOLUTION: (a) The energy flux through the glass is given by Equations (7.31) and (7.32):

We use this value to calculate the temperature drop from the inside to the surface of the window:

which makes the temperature on the inside of the window 2°C. The same consideration for the
thermal boundary layer outside delivers a temperature drop of 11.8 K. This means that the
change of temperature through the glass is very small, and the outside surface has approximate-
ly the same temperature as the surface on the inside.

(b) The metal frame adds to the energy current. (It is in parallel with the window pane.) The
surface area of the frame is roughly 0.19 m2. Just as above, we calculate the energy current:
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The total energy current turns out to be 450 W which is very large. Note that the metal frame
has a strong influence despite its small surface area.

(c) The total transfer coefficient is given by Equ.(7.32):

Good windows achieve a much smaller value of this coefficient (by as much as a factor of 10).

EXAMPLE 7.8. A surprising effect of insulation.

A metal pipe is to be insulated. It is found that, at least in principle, the insulation can have the
opposite effect of what we would expect: the current of heat through the walls and the insulation
of the pipe increases! How is this possible? Determine the conditions for the maximum heat
flow.

SOLUTION: The thermal resistance of the insulation is made up of the resistance of the layer
of insulation itself, and of the effect of convection at its surface. While the resistance of the in-
sulating cylindrical shell grows with increasing thickness, the resistance due to the thermal
boundary layer decreases because of the increase of surface area. There will be a minimum val-
ue of the total resistance at a certain outer radius of the insulation, depending on the material
properties.

First we need an expression for the thermal resistance of a cylindrical shell (Fig. Ex.8). We pro-
ceed as in the case of a spherical shell (Example 7.5):

The total resistance of insulation and boundary layer is

Its minimum is found by setting its derivative with respect to the radial variable equal to zero.
We obtain

The value of r for which the thermal energy current becomes largest does not depend upon the
radius of the pipe. However, r0 certainly must be smaller than the quantity just calculated. For
normal values of the constitutive quantities, the pipe (and the insulation) must be rather thin.
One might imagine the effect to play a role, for example, when ice starts to build up around thin
branches or fibres in plants. An interesting suggestion has been made concerning the improve-
ment of heat transfer through the air–water or air–air heat exchanger of a heat pump. At the cold
end of the device, ice tends to build up at the surface, normally reducing the effectiveness of the
pump. The geometry of the device could possibly be such that frost building up at its surface
would lead to an increase of the rate of heat transfer.

EXAMPLE 7.9. Formation of ice on the surface of a lake.

Ice forms on the surface of a lake while the temperature of the air is – 10°C. How long does it
take from the time ice begins to form for the sheet to reach a thickness of 20 cm? Take the tem-
perature of the air to be constant. The convective transfer coefficient from ice to the air is 10 W/
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(K · m2). The conductivity with respect to energy of ice is 2.2 W/(K · m). Neglect the transfer
from the water to the ice.

SOLUTION: For ice to form at the surface of the lake, the water must have reached a tempera-
ture of 0°C. Heat flows from the water into the air, first directly, and later through the ice; there-
fore water will freeze. If we can calculate the rate of formation of ice, we can determine the rate
at which the thickness of the sheet grows.

The equation for the current of entropy leaving the water as it turns into ice is Equ.(5.2) written
for the mass of the water:

lf,ice is the specific latent entropy of fusion of ice (Table 5.1). The rate of production (destruc-
tion) of mass of water equals the negative of the rate of production of mass of ice which is equal
to the rate of change of mass of ice:

Combining these rules leads to

The current is determined by the rules discussed in this section:

x is the instantaneous thickness of the ice sheet. If ice has not formed yet, the total transfer co-
efficient is the convective transfer coefficient alone. Furthermore, we can express the rate of
change of the mass of the ice in terms of the rate of change of its thickness:

In summary we get the following differential equation for the thickness of the sheet of ice:

Separating the variables and integrating, we obtain

For the sheet of ice to grow to a thickness of 0.20 m, we have to wait for a time

This corresponds to about 10 days, which seems to be a pretty reasonable time span. It decreases
noticeably if ha increases because of stronger winds.
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EXAMPLE 7.10. Cooling hot water in cold thick-walled container.

Hot water is poured into a thick walled cylindrical PVC container (Fig. Ex.10, left) that is well
sealed at the top and at the bottom. The water is stirred continuously by a magnetic stirrer. As
the water cools, temperatures of the water, the outside surface of the container, and the air are
measured as functions of time (Fig. Ex.10.1, center; right: enlargement of the initial phase). The
temperature of the air is almost constant. 

Experimental data: Power of the mixer: 1.0 W; mass of water: 0.30 kg; height of PVC cylinder:
0.105 m; inner radius: 3.00 cm; outer radius: 4.65 cm; density of PVC: 1400 kg/m3; convective
transfer coefficient PVC to air: 12 W/(K · m2); the convective transfer coefficient from water to
PVC is much higher.

(a) Explain the temperature-time diagram in words (note: the temperature of the water initially
drops faster than would be expected from a simple exponential decay; the temperature of the
outside surface of the container rises with a delay, etc.). (b) Think of the simplest possible model
that might explain these observations. Sketch an electric circuit that represents your model.
Sketch the corresponding diagram of a dynamical model. (Use the energy representation for
your model.) (c) Formulate all equations for your model (without calculating conductances in
detail). (d) Use experimental data to estimate the thermal properties of PVC (conductivity and
specific heat). 

SOLUTION: (a) Tw decreases since water loses entropy to the container. Tc increases first be-
cause of high gain of entropy. Then the container loses more and more entropy to the environ-
ment: Tc goes down. Tw decreases faster at the beginning than later because the container gets
warmer. Tc(outside surface) has a second order delay since entropy takes time to flow through
the wall. Tw and Tc stay above Ta because of entropy production by mixer.

(b) The simplest possible model has a capacitor each for water and for the container (Fig.
Ex.10.2, left; with only a capacitor for water, there is no independent temperature for the con-
tainer wall to compute). Voltages represent temperatures of uniform bodies; so Tw is the tem-
perature of the water, Tc is the temperature at the center of the container wall.

The resistor between the capacitors represents the transitional layers from the water to the center
of the PVC wall. R2 symbolizes the conductive resistance from the center of the wall to its outer
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surface, whereas R3 is used for the convective transition from the surface to the air. From what
we know of simple electric or hydraulic RC models (Chapter 1), the expected behavior of the
temperatures is as in Fig. Ex.10.2, right. Gross features of the real behavior are there, but the
delay in the temperature of the outside surface of the wall is absent. We need a better model with
the wall divided into two or morel (radial) elements (Fig. Ex.10.3, top). The bottom part of Fig.
Ex.10.3 shows a diagram of a dynamical model representing the circuit. In this model, TC2 and
TC,outside show the expected delay.

(c) The simpler two-node model suffices for demonstrating the physical and mathematical
structure. Its equations of balance (of energy) are:

With capacitive relations

and flow laws

the model is complete (except for initial conditions). The surface temperature of the container
can be calculated from the results of this model:

(d) It is possible to formulate conditions for the missing material properties of PVC, i.e., its con-
ductivity and its specific heat. The conditions are obtained from considerations of special cir-
cumstances. Let us start with the steady state which obtains after a long time (data in Fig.
Ex.10.1, center):
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The energy current through the wall can be expressed as follows:

Let us assume that the wall is flat. Since we know this current from steady-state conditions (it
is equal to the power of the mixer), we can calculate the conductivity of PVC:

The capacitance (specific heat) of the container is found as follows. Consider the balance of en-
ergy for container for a period of time from 0 s to 200 s:

In the first 2000 s, the temperature of the water (0.30 kg) drops by about 21 K. The energy loss
of the wall is calculated from its average surface temperature relative to the ambient, its surface
area and the convective transfer coefficient. The specific heat is related to the change of energy
of the body:

∆Tc is estimated as follows. Initially, Tc is equal to ambient temperature (25°C). At t = 2000 s,
the outside of the container is 41°C, on the inside it is nearly as warm as the water (69°C). This
gives the container an average temperature of 55°C at t = 2000 s. These results agree rather well
with values from tables.

7.4 BLACKBODY RADIATION FROM OPAQUE SURFACES

Next let us consider how a body radiates heat into its surroundings. Even though radi-
ation is a rather complex phenomenon, one case can be treated fairly simply—the
emission (and absorption) of radiation by an opaque body. Emission and absorption
are volumetric processes as discussed in Section 7.1; still the emission from an opaque
body looks like the flow of radiation from a surface. Let me describe briefly how this
happens.

A warm body emits radiation to the field occupying the same region, leading to a sink
of radiation with respect to the body (and a source with respect to the field). Radiative
transport through the field inside the system boundary in Fig. 7.13 is rather complicat-
ed. Radiation is emitted and reabsorbed constantly at such rates that the net effect is a
flow of heat from hotter to cooler points. Since the body is assumed to be (just about)
opaque to the radiation, what we see outside the system must originate from a relative-
ly thin layer at the surface of the body. Outside the space occupied by matter, however,
we have a simpler situation. There, radiation is traveling away from the region where
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it was emitted. If we surround the system by a surface, radiation effectively flows
through the field through this boundary.

7.4.1 Hemispherical emission by blackbody surfaces

We are interested in an expression for the fluxes of entropy and energy from the sur-
face of a body which is emitting radiation to its surroundings. In this section, we will
discuss only the simplest cases, starting with radiation from the surfaces of black bod-
ies. A black body is defined as one which absorbs all the radiation falling upon it. In
Section 5.4, we studied blackbody radiation inside a cavity. On the basis of what is
known about such radiation, we can motivate the form of the law for radiative transfer
from the surface of a body such as the one in Fig. 7.14. If the surface layers of an
opaque body have properties which lead to blackbody radiation, the radiation will be
the same as if it had originated from a cavity deep inside the system. Since entropy and
energy are carried away by radiation, their flux densities must be related to their (vol-
ume) densities inside the radiation field. From Section 5.4, Equations (5.83) and
(5.86), we know that the density of entropy of blackbody radiation is proportional to
the third power of its temperature, while the energy density depends upon the fourth
power of the temperature. For this reason the rates at which these quantities flow with
radiation from the surface of a body have the same dependence on temperature. It is
customary to introduce the hemispherical rate of emission of energy of a black body
or the hemispherical emissive power of a black body Eb, which is defined as the
amount of energy emitted by the surface of a black body per unit time and per unit
surface area. We expect a law of the form:

(7.33)

The index b denotes black body radiation. Its counterpart, the rate of emission of en-
tropy, ESb , is expressed by

(7.34)

This is, again, valid for blackbody radiation only. These expressions will be derived
in Chapter 12. The constant σ introduced in these relations is called the Stefan-Boltz-
mann constant, and has the value 5.67 · 10–8 W/(m2 · K4). Eb has units W/m2 and the
units of ESb are W/K/m2.

The rates of emission introduced here look very much like current densities that are
used to describe the distribution of flows over a surface (see Equ.(7.13)). However,
they are not real current densities since the type of transport is rather different from
what we know from conduction (i.e., diffusion). In diffusion of charge, substances, or
entropy through a material, the fluidlike quantity is transported at one point only in a
single direction. Radiation, however, travels in all direction from a point (Fig. 7.14,
bottom). Radiation can penetrate itself, meaning it can and will cross through a point
in a field in and from all directions. Still, we can integrate the contributions of the
transport of, say, entropy or energy over all directions and so obtain the total transfer
of the quantity (per unit time and per unit area). This is what the rates of emission in
Equ.(7.33) and Equ.(7.34) represent. When this does not cause a confusion, I will call
these quantities current densities (fluxes per unit area).

E b T= σ 4
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Net flow of
Radiation

Net flow of
RadiationActual
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Figure 7.14:  Blackbody radia-
tion from the surface layers of an 
opaque blackbody is the same as 
that originating from the inside of 
a cavity in a body (Section 5.4).
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If the rates of emission (the current densities) are constant over a surface, the currents
of entropy and energy from the entire surface of a body are obtained simply by multi-
plying the emission rates by the surface area A:

(7.35)

(7.36)

You should notice an important point: the relation between currents (fluxes) of entro-
py and of energy, which applies to the heating or cooling of a body (Equ.(4.21)), does
not hold in the case of radiative fluxes through the radiation field. Heating and cooling
of the material body, however, take the form of sources and sinks of entropy and en-
ergy for which the simple and direct relation between source rates of entropy and en-
ergy holds; see Equ.(7.41).

Net radiative energy flux for a black body radiator. In general, the expressions in
Equations (7.35) and (7.36) are not the net fluxes, since the body might absorb heat
from another piece of matter radiating towards it. It is instructive to derive the net en-
ergy flux for a black body totally surrounded by another black body at a different tem-
perature Tw (such as the small piece of matter in the cavity in Fig. 7.15). Remember
that the radiation field set up by the walls of the cavity is isotropic and the same at ev-
ery point inside. This means that a point at the surface of the small body surrounded
by the walls sees blackbody radiation coming at it at the same rate from all directions.
Therefore the amount of energy per second and per unit surface area radiated toward,
i.e., incident upon the body is

(7.37)

G is called the irradiance of the surface. Since a black body absorbs all the radiation
falling upon its surface, the net flux of energy with respect to the chunk of matter in-
side the cavity is given by

(7.38)

which is the difference between the rates of emission and absorption, i.e., the differ-
ence between (7.33) and (7.37). This result will be extended to bodies other than black
bodies in Section 7.4.4.

7.4.2 Cooling and Heating of Bodies by Emission and Absorption

As discussed in Section 7.1.4, bodies can emit and absorb radiation. These processes
are the result of the interaction of bodies and fields which occupy the same region of
space. Therefore, emission and absorption are volumetric phenomena calling for
source rates for their formal description. (This discussion could be extended to surfac-
es if we consider a thin layer around a body absorbing and emitting radiation. We can
also extend the formalism by introducing absorption and emission rates per unit sur-
face area.) Here, I will motivate the relationship between the source rates and the rates
of production of entropy on the one hand, and the source rates of energy accompany-
ing the processes on the other.

I ATS rad, = −
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 G = σTw
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Figure 7.15:  A cavity serves as a 
container of blackbody radiation. 
The walls are at a temperature Tw, 
while the small body inside the 
cavity has a temperature T. I A T TE rad net w, , = − −[ ]σ 4 4
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Take the model of a uniform body at temperature T. For the sake of argument, let the
body emit entropy and energy to the field occupying the same region of space. (The
reasoning also applies to the case of absorption of radiation.) The rates of emission of
these two quantities are equal to the rates of change of the entropy and energy of the
body if there are no other modes of transfer present:

(7.39)

(7.40)

Remember that processes are reversible in the model of uniform processes. Since the
rates of change are related by the Gibbs Fundamental Form for a simple body (see, for
example, Equ.(4.35)), the rates of emission satisfy the equation

(7.41)

which means that the rate of emission of entropy to the field inside the system is equal
to the rate of energy emitted divided by the temperature of the body. This result holds
for the chunk of matter occupying the region of space in Fig. 7.16. It neglects the fact
that entropy is produced as a result of the emission (and absorption) of radiation. How-
ever, as far as the body is concerned, this point is immaterial; it does not affect the bal-
ance of entropy for the chunk of matter, since our model associates the irreversibility
with an additional element between the body and the field (see Fig. 7.6). For the body,
emission of heat to a field has the same effect as cooling by conduction as a result of
direct contact of a uniform body with its surroundings.

We should be interested in the rate of production of entropy as a result of the emission
or the absorption of radiation. If the processes of emission and absorption are irrevers-
ible, the source rates of entropy for the body and the field are not the same. We have
expressed this point in Equ.(7.8):

(7.42)

Together with Equ.(7.41), we can express this in the form valid for the source rate of
energy:

(7.43)

Consider the case of no entropy being supplied by radiation which is absorbed by a
body. Under these circumstances, all the entropy leading to the heating of the body
must have been produced, the process being completely irreversible. Put differently,
all the energy supplied to the body via the field has been dissipated, and Equ.(7.43) is
formally equivalent to the expression for the relationship between the rate at which en-
ergy is dissipated and entropy is generated (see Equ.(4.23) of Chapter 4).

In summary, we may interpret the results of emission and absorption of entropy in
terms of the cooling or heating of bodies. The only difference from the case treated so
far, i.e., heating by conductive surface currents, is that we have to deal with source
rates of entropy and energy, Equ.(7.41), instead of fluxes (Equ.(4.21) of Chapter 4).
In this model, irreversibility is associated with an extra element placed between the
field and the body (Fig. 7.6).
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Figure 7.16:  A material body 
and a radiation field occupy the 
same region of space (only the 
body is shown). Emission of radi-
ation means that the body loses 
entropy and energy (and other 
quantities) at every point inside 
the field. In this view, the body 
and field are two separate physi-
cal systems.
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7.4.3 Emission, Absorption, and the Production of Entropy

Irreversibility of emission. Next, we should discuss the rate of production of entropy
in the emission and absorption of radiation. Consider the case of emission: the rate at
which entropy is emitted by the body to the field is smaller than the rate at which it
flows away from the surface of the body (Fig. 7.13). This can be shown quite easily.
Consider the model of a uniform body at temperature T for which

(7.44)

On the other hand, the flux of entropy through the field at the surface of the body is
four-thirds this quantity; see Equations (7.35) and (7.36):

or

(7.45)

We have to conclude that more entropy leaves the space occupied by the body than
has been emitted by the body to the field. Therefore, entropy must have been produced
in the volume occupied by radiating matter. In the same manner, we can prove that it
is impossible for a body to just absorb entropy from a source at the same temperature.
Entropy would have to be destroyed, which we know to be impossible. Therefore, it
is impossible for a body to absorb entropy at the same temperature without emitting
entropy at the same time.

Irreversibility of emission and absorption of two interacting bodies. Consider now
the example of combined emission and absorption in a quantitative manner. Take two
bodies having geometries such as in Fig. 7.15: the walls of a cavity completely sur-
round a smaller body. Assume both surfaces to be black bodies. Let the smaller body
be the hotter one, with temperature T1 and surface area A. Then the net flux of energy
from the smaller to the larger surface is given by Equ.(7.38) where T2 is the tempera-
ture of the enclosure. Now we can compute the rate of production of entropy in the
two radiative interfaces between bodies and field (as in Fig. 7.6) combined. With the
help of Equ.(7.43) we find that

The entropy emitted by one body to the field travels through the field and disappears
from the field at the location of the second body, so the source rates for the field can-
cel, so we have

(7.46)

ΣE1 corresponds to the flux of energy with respect to body 1. This expression is larger
than zero since, if T1 > T2 (ΣE1 is negative). The flux of energy will be calculated ac-
cording to Equ.(7.38) which transforms the production rate of entropy into
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(7.47)

This expression is larger than zero as long as one of the bodies is hotter than the other
and it vanishes if they have the same hotness. Therefore, it does not matter which of
the bodies we assume to possess the higher temperature. Emission and absorption of
entropy by bodies at different temperatures is necessarily dissipative. We could have
performed the computation of the balance of entropy for each of the bodies separately.
Using the result for one of them, you can convince yourself that the particular state-
ments made above regarding the irreversibility of emission and the impossibility of
absorption without simultaneous emission are correct. 

The irreversibility of radiative processes is not limited to the absorption and emission
of (blackbody) radiation. Conversion of monochromatic radiation into blackbody ra-
diation and the scattering of radiation have to be added to the list of irreversible pro-
cesses. The fact that irreversibility necessarily accompanies radiative transfer is of
importance for power engineering (see Chapters 9, 15, and 16).

A surface in the light of the Sun. Now consider a particularly relevant case, that of
(the surface of) a black body at temperature T in the light of the Sun (Fig. 7.17). En-
tropy flows with solar radiation toward this surface and, since the body is a black ra-
diator, is completely absorbed. Because of this process of absorption, there is an
entropy production rate of ΠS1. Let G be the irradiance of the surface. Solar radiation
is nearly black body radiation, so the entropy current incident upon the body of surface
area A is

(7.48)

This results from Equations (7.35) and (7.36). Tsun is the temperature of the surface of
the Sun that emits the radiation which we receive; at the same time this is the temper-
ature of the radiation (see Chapters 12 and 16). If the body only absorbed light, the
balance of entropy would be

so the entropy production rate due to absorption equals

The last step is a consequence of Equ.(7.48). We arrive at

(7.49)
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for the production rate of entropy due to absorption of sunlight. Note that this expres-
sion becomes negative if T approaches Tsun . This tells us that we are not allowed to
just consider absorption of radiation by a body; we always have to add entropy pro-
duction due to emission. (For the case of Sun and Earth, there is no problem since the
surface temperature of our planet is so much lower than that of the Sun.)

Since the body is warm at temperature T, it emits an entropy current equal to

(7.50)

Equ.(7.45) tells us that a quarter of this current comes from entropy produced (and not
from entropy emitted):

(7.51)

The total entropy production rate allows us to make an interesting observation. Sum-
ming up the contributions from absorption and emission and setting T = Tsun, yields

which is equal to zero since there is no net exchange of radiation between the Sun and
the Earth (with both at Tsun). If we accept this, we see that G must be equal to σTsun

4,
meaning we can bring a body to Tsun if the incoming radiation has the intensity of sun-
light at the surface of the Sun (which we can get by concentrating the Sun’s light).

7.4.4 Radiative Properties of Gray Surfaces

So far we have limited ourselves to the case of blackbody radiation. We should now
take a closer look at the emission and absorption of heat from surfaces not having
blackbody properties. Since a black surface was defined as one which absorbs all in-
cident radiation, we will now be concerned with gray surfaces, which absorb only a
fraction thereof.

The absorptivity of gray surfaces. To describe the absorptive properties of a surface
we need two quantities. The first was introduced above—the irradiance G which mea-
sures the total flow of energy incident on a surface per unit area. We need the rate of
absorption of energy per unit area abbreviated by A . If A  equals G, the surface is a per-
fect absorber; if it is smaller than G, the surface is said to be gray. We introduce the
absorptivity a , the ratio of rate of absorption and irradiance, so

(7.52)

For a black body a  = 1. Sometimes, the reflectivity ρ of an opaque surface is intro-
duced in place of the absorptivity. The energy not absorbed is reflected (Fig. 7.18),
which means that the reflectivity and the absorptivity are related by

(7.53)

Kirchhoff’s Law. The interesting question now concerns the emissivity of nonblack
surfaces. How does it compare to blackbody radiation? Let us once more consider the
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radiation inside a cavity. Since the field in the cavity is that of blackbody radiation, the
irradiance in this enclosed space is the emissive power of a black body having the tem-
perature of the walls:

(7.54)

In other words, the irradiance is the hemispherical power in a blackbody field,
Equ.(7.33). Whether the walls are black surfaces does not matter. If they are not, the
combination of emittance and reflectance still leads to radiation with blackbody prop-
erties. This is the reason why the radiation in a cavity is called blackbody radiation.
Since the material of which the walls of the cavity are made does not play a role, the
only factor determining the radiation in the cavity is the temperature of the walls.

An arbitrary body with absorptivity a is now introduced into the cavity (Fig. 7.19). Af-
ter some time, stationary conditions will have been reached, the temperature of the
small body will be the temperature of radiation in the cavity, and the emissive power
of the body will be the fraction of the irradiance absorbed by the body. Since the radi-
ation in the cavity is that of a black body, the emissive power of the body inside the
cavity must equal the product of absorptivity and blackbody emissive power:

(7.55)

This is a form of Kirchhoff’s law. It states that the emissive power of a body is a frac-
tion of the emissive power of a black body at the same temperature, where the fraction
is the absorptivity. 

If we introduce the emissivity e  of the body as the fraction of the emissive power of a
black body at the same temperature,

(7.56)

we can state Kirchhoff’s law by saying that the emissivity is equal to the absorptivity.
(This statement has to be qualified: they are equal at the same frequency of light; see
Section 7.4.6.) Values of the absorptivity (or emissivity) of some materials are listed
in Table 7.3. In general, they depend upon the temperature of the surface (Fig. 7.20).

The net radiant flux for a gray body surrounded by blackbody radiation. If the
small body in the cavity has a different temperature, then the rate at which energy is
absorbed by the body is not equal to the rate at which it is emitted. The net source rate
of radiant energy is calculated to be

(7.57)

A is the surface area of the body in the cavity. Since the emissive power is given by
Kirchhoff’s law, and since the irradiance in the cavity is equal to the emittance of the
walls, we ultimately obtain the following expression for the flux of radiant energy
from the surface of the body at temperature T irradiated from a distant surface at tem-
perature Tw which completely surrounds it:

(7.58)

The rate is the difference between the emission and absorption rates as calculated for
a blackbody surface, multiplied by the absorptivity of the surface. The blackbody
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Figure 7.19:  A body in a black 
body radiation field of the cavity. 
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emissive power is the same as that given by Equ.(7.55). In summary, the laws stated
here allow us to calculate the flux from a surface area A which has a temperature T,
and which is subject to radiation from surroundings at a temperature Tw:

(7.59)

(the absorptivity has been replaced by the emissivity). Remember that this equation
holds only for the particular geometry used in the example: the body is completely sur-
rounded by the walls of the cavity (actually, a large space serves the same purpose; the
condition is simply that the radiation of the body is not reflected back). As a result, all
the radiation emitted by the walls will be incident upon the body and vice versa. For
different geometries, where only part of the radiation emitted by either of the bodies
strikes the other surface, the result is much more complicated. In such cases, it is cus-
tomary to write the result in just about the same form with an additional factor (called
the shape factor) taking care of the difference (Chapter 12).

Table 7.3: Emissivities and solar absorptivities

Substance Emissivitya

a. For a temperature of roughly 300 K.

Absorptivity 
for solar 
radiation

e a

Aluminum Polished 0.03 0.09

Anodized 0.84 0.14

Foil 0.05 0.15

Brick Red (Purdue) 0.93 0.63

Concrete 0.88 0.60

Earth Plowed field 0.75

Galvanized sheet metal Clean, new 0.13 0.65

Oxidized, weathered 0.28 0.80

Glass, window 0.92

Ice Smooth 0.97

Paints Black (Parsons) 0.98 0.98

White, acrylic 0.90 0.26

White, zinc oxide 0.93 0.16

Paper White 0.95 0.28

Sandstone 0.85

Snow Fine particles, fresh 0.82 0.13

Ice granules 0.89 0.33

Soot, coal 0.95

Water Deep 0.96

Wood Sawdust 0.75

Oak, planed 0.90

  
I A T TE rad w, = − −( )e σ 4 4
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Radiant exchange between extended parallel plates. Here, we will derive the re-
lation for the case of two extended gray surfaces facing each other in such a way that
all the radiation originating from one of the bodies is intercepted by the other
(Fig. 7.21). This geometry is found, for example, in flat-plate solar collectors. The two
plates will be distinguished by indices 1 and 2. Their radiative properties will be ex-
pressed using the emissivities (absorptivities), and the reflectivities. The derivation is
of use not only for its result but for the concepts and procedures as well.

In the course of the derivation, we will need an expression for the total flux of energy
per unit area emanating from each of the plates. Since the plates have gray surfaces,
they will not absorb all the radiation falling upon them; rather, part of the radiation will
be reflected. It is common to call the total flux per unit area, i.e., the sum of what is
emitted and what is reflected, the radiosity B of the surface. For the plates, the radios-
ities are

(7.60)

The reflectivities are related to the absorptivities (emissivities) of a surface, and the
irradiance of one of the plates is the radiosity of the other. Therefore,

If we insert the radiosities expressed by Equ.(7.60) into this result, we obtain the fol-
lowing relations for the radiosities of the parallel plates:

Now, the net flux density of energy radiated from plate 1 to plate 2 is the difference of
the radiosities:

Since B1 – B2 = G2 – G1, this is equivalent to

A little algebra finally yields the expression for the net energy flux flowing from the
hotter to the cooler of the two parallel plates:

(7.61)

For blackbody surfaces, the emissivities are equal to 1 and we regain the simpler ex-
pression already derived in Equ.(7.38).

T1

T2

Figure 7.21:  Radiant heat ex-
change between two extended 
parallel plates. If their tempera-
tures are different, there will be a 
net flux of energy and entropy 
from the hotter to the cooler of 
the plates. (Energy flows are 
shown here.)
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7.4.5 The Heat Loss Coefficient for Flat–Plate Solar Collectors

Solar collectors provide a very nice application of the kind of heat transfer we have
discussed so far. Basically, all three modes of transport take place in the process,
which leads to loss of heat from a collector to the surroundings, with radiation and
convection at interfaces being the most important.

Solar collectors receive radiation from the Sun; they lose heat to the surroundings
when heated above the level of ambient temperature; and they remove heat via fluid
flow through the device (Fig. 7.22). Here, we will consider the problem of calculating
heat loss. Removal of heat will be dealt with in Chapter 8, while details of the absorp-
tion of radiation will be the subject of Chapter 16.

To define the problem of the exchange of entropy and energy with the surroundings,
take a closer look at Fig. 7.22. A typical collector consists of an absorber for solar ra-
diation, a duct for the fluid below the absorber which is insulated at the back, and pos-
sibly one or two glass covers to reduce top heat loss. The latter process will be the
subject of interest in this section. Naturally, heat may also be lost to the back and to
the sides, but these effects will not be considered here.

Assume a collector having a single cover made of a sheet of glass. Heat loss from the
absorber plate to the environment is the result of the combined effects of radiation and
convection from the plate to the cover and from the cover to the air surrounding the
collector. Radiation and convection act as parallel modes of transfer from one body to
the next, while the transports from the absorber to the cover, and from the cover to the
surroundings are in series. Therefore, the combined effect of all modes of transfer can
be described by the simple equivalent circuit also shown in Fig. 7.22.

If we use heat transfer coefficients h instead of resistances R to calculate the total en-
ergy flux due to loss, we can write

(7.62)

where

(7.63)

Ac is the net surface area of the collector (essentially the surface area of the absorber),
and Ut symbolizes the total heat transfer coefficient for top loss. Note that conductive
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be transferred to the surround-
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symbolizes the combined effect 
of radiation and convection from 
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(here it is a single sheet of glass), 
and from the cover to the sur-
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transport through the thin glass cover has been neglected in this analysis. If we wish
to compute the heat loss coefficient, we have to be able to quantify the heat transfer
coefficients for convection and for radiation. While the former pose a problem which
we cannot solve at this point,3 the latter can be expressed in terms of what we have
learned so far.

The radiative heat transfer coefficient from the absorber to the cover can be written in
the form which will be derived in Example 7.13. If we apply the result derived for ra-
diation between two parallel plates, Equ.(7.61), we obtain

(7.64)

Obviously, in order to calculate this heat transfer coefficient, we need to know the
temperatures of both the absorber and the cover. While the former has to be specified,
the latter must be obtained as part of the solution of the problem. Now we still need
the radiative transfer coefficient for transport from the cover to the surroundings. Ra-
diation occurs between the cover, which has a particular emittance, and the sky for
which we use an equivalent blackbody temperature4 Tsky . Therefore, the coefficient
turns out to be

(7.65)

See Equ.(7.59). The temperatures strongly depend upon operating conditions, while
the convective heat transfer coefficient from the cover to the ambient air is a function
of wind speed. Typical values for heat loss coefficients of collectors of the type de-
scribed are around 5 W/(K · m2).

7.4.6 Selective Absorbers and Emitters

According to Kirchhoff’s law, the emissivity of a surface equals its absorptivity (Sec-
tion 7.4.4). So why are there two numbers in Table 7.3 for a material, one for its emis-
sivity and one for its absorptivity for solar radiation?

At first sight, Kirchhoff’s law seems to pose a riddle. If emissivities equal absorptivi-
ties, an application of the laws of radiative heat transfer seem to indicate that bodies
should have the same steady-state temperature irrespective of their emissivity/absorp-
tivity. If they are better absorbers of solar radiation, they are better emitters of their
own radiation which leads to the same result in balance. However, we know that this
is not the case. Different bodies attain different temperatures in Sunlight, the most fa-
mous case being our planet whose radiative properties seem to be changing as a result
of human activity which is assumed to change the Earth’s temperature. Simpler and
clearer cases are known from everyday life. Black surfaces get hot faster than shiny
white ones when exposed to the Sun.

3. We simply have to assume reasonable convective heat transfer coefficients for both transfer
from the cover to the surrounding air, and from the absorber to the cover. See Duffie and
Beckman (1991; p. 160–176) for a detailed discussion of the problem.

4. See Duffie and Beckman (1991), p. 158.
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The reason is simple: Kirchhoff’s law applies, but it applies separately for different
types of radiation (see Chapter 14; a and e are equal, but their values change with the
wavelength or frequency of the light).

At this point, we shall consider a simple case and apply a steady-state energy balance
to find the temperature of a body exposed to sunlight. Take a body completely sur-
rounded by air. The air acts as a black body environment which means that the radia-
tive interaction of body and air lead to a flux of energy of the form of Equ.(7.59).
There is an additional interaction because of sunlight. If As is the surface area effec-
tively exposed to the Sun, and if Gs and as are the irradiance of solar light and the ab-
sorptivity of the surface with respect to sunlight, the rate of absorption will be

(7.66)

If we also allow for convection between the body and the air, the balance of energy in
steady-state takes the form

(7.67)

Disregard convection for the moment. It is clear that since as and e are not equal in
general, the steady-state temperature T of the body will depend upon the ratio of emis-
sivity to solar absorptivity. Take a perfect black body (a = e = 1 for all wavelengths)
or bodies where as = e as reference. A body with as /e > 1 should be warmer than the
reference whereas it should be cooler if as /e < 1.

7.4.7 The Dynamics of an Incandescent Bulb

Here is a nice little application of a dynamical system involving radiation. A small
light bulb is connected to a power supply whose voltage is quickly increases from zero
and then reduced back to zero equally fast. Voltage across and electric current through
the bulb are measured as functions of time (Fig. 7.23, left). If the data is plotted in a
current-voltage diagram, we obtain an interesting dynamical characteristic of the bulb
(mostly of its tungsten filament; Fig. 7.23, right) which is rather different from the typ-
ical steady-state characteristic curves of incandescent bulbs.

Actually, the last leg of the odd shaped characteristic line (part (2) in Fig. 7.23, right)
is close to the steady-state characteristic curve; it is the first part that deviates from ex-
pectations. The reason for this is simply the drastic changes of temperature of the fil-
ament (and other parts of the bulb) as a result of increasing and decreasing dissipation
of the energy released in the electric process and the radiating away of the entropy of
the hot wire. For the first part of the process, the wire is still cold which leaves the re-
sistivity of the material at a low value. Therefore, the electric current increases faster
than in standard experiments where the voltage is raised very slowly step by step. Af-
ter the peak of dissipation, the wire is hot and the characteristic follows more closely
what we know from simple steady-state experiments.

A strongly simplified model of the phenomenon is shown in Fig. 7.24 (left). At its cen-
ter, it uses the balance of entropy of the tungsten wire in the bulb. There are two main
processes taking place: entropy is produced in the wire and is radiated away. The en-
tropy of the body defines its temperature which, in turn, is used to express the consti-
tutive laws for the production rate and the source rate of entropy. Details of the model

Σ E abs s s sA, = a G

  
a G es s s air airA A T T Ah T T= −( ) + −( )σ 4 4
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concern the resistivity and the emissivity of tungsten which are functions of tempera-
ture (the temperature dependence of the entropy capacitance has not been included).

The law of balance of entropy for the tungsten wire includes the production rate due
to dissipation of energy and a source rate as a result of radiation:

(7.68)

We need three constitutive laws to complete the model: one for the temperature-entro-
py relation of a body made of tungsten (Section 4.5), one for the production rate of
entropy (Section 4.4.2), and the last for the radiation of entropy by the hot wire. Fun-
damentally, each of the relations includes a temperature dependent material property,
namely, specific entropy capacitance in the first case, electric resistivity in the second,
and emissivity in the third.

Figure 7.24:  Diagram of a simple dynamical model of the tungsten wire (left) and data 
(squares) and simulation results for the electric current through the wire and the temperature of 
the wire (right).

In the present model, I have chosen not to include the temperature dependence of the
entropy capacitance. Rather, an average value of κ has been estimated as follows. The
specific heat of tungsten varies between 130 J/(K · kg) and 180 J/(K · kg) in the expect-
ed range of temperatures (300 K to 3000 K). We can divide an average value of the
specific heat by an average value of the temperature to obtain a first approximation to

Figure 7.23:  Data of voltage and 
electric current for a small incan-
descent bulb that is quickly 
turned on and off, as functions of 
time (left) and in the form of the 
current-voltage characteristic 
(right).
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the entropy capacitance:

(7.69)

The mass m of the wire is obtained from the density and the volume where the latter
is calculated from the length and radius of a cylindrical body (the radius will turn out
to be a critical unknown parameter of the model). With a constant entropy capacitance,
the entropy temperature relation is simply

(7.70)

Now we need an expression for the entropy production rate in the tungsten wire. The
first step is simple: the production rate equals the electric dissipation rate divided by
the temperature of the wire. The latter is obtained from the entropy, Equ.(7.70), and
the former equals the voltage times the electric current. The voltage across the wire is
a part of the measured voltage Um that will be used as an input to the model (see the
model diagram in Fig. 7.24). It represents only a part of Um since there are connecting
elements (copper connectors) to the tungsten filament inside the bulb. They will be
given a constant (unknown) resistance R0, another simplification in our model:

where R and UT are the resistance of and the voltage across the filament, respectively.
The electric current through the bulb will be

so the entropy production rate turns out to be equal to

(7.71)

The second important material property of the filament concerns its resistance or rath-
er, its resistivity. It can be introduced as an interpolation function of data in Fig. 7.25.
The resistance of the wire is

(7.72)

Finally, the rate of emission of entropy from the tungsten wire must be found. The
source rate of entropy equals the source rate of energy divided by the temperature
(Equ.(7.44)). The energy source rate equals the energy flow which can be obtained
from Equ.(7.59):

(7.73)

The absorptivity a equals the emissivity which is obtained from data as in Fig. 7.20.
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This pretty much concludes the dynamical model. It can be used to predict the electric
current through the bulb which can be compared to measurements (see the diagram on
the right in Fig. 7.24). In addition, the model yields results on the temperature of the
filament. This confirms the initial idea about why the bulb behaves in the manner ob-
served. The temperature of the wire rises slowly at first and then stays high beyond the
point in time where the lamp is turned off again.

The good agreement between simulation and measurements should not be taken as a
sign of the model’s perfection. It suffers from several shortcomings, but clearly it
gives an understanding of the most basic phenomena. Structurally, we have left out at
least a couple of important elements. For one, the thermal and electric dynamics of the
connecting (copper) elements should be included in the model similarly to how this
was done for the filament. Secondly, the entropy radiated from the filament is inter-
cepted at least partly by the glass of the bulb; we might want to include the glass as an
additional element in our model. Then, as mentioned before, the entropy capacitance
should not be taken as constant—the range of temperatures is too great. Moreover, to
get a halfway reliable model we should measure the geometric properties of the fila-
ment and connecting wires as carefully as possible.

16. Why is the measure of the flow of entropy through the radiation field not a standard cur-
rent? Why is the measure of the rate of emission from a body to a field (or vice-versa) a
source rate and not a current?

17. Why does the basic relation IE = TIS not apply to radiation flowing through the radiation
field? Does the analogous relation hold for sources and sinks of energy and entropy in ra-
diative interaction between bodies and fields?

18. What simple argument shows that emission of radiation is dissipative?

19. Sunlight, i.e., the light flowing through the radiation field from Sun to Earth, has a temper-
ature of nearly 6000 K. The light radiated by our planet has a temperature close to 300 K.
What is the ratio of the entropy per unit energy for these two types of radiation? 

20. If, on balance, the Earth radiates away as much energy as it receives from the Sun, how
much entropy is produced by the planet?

21. Consider an imaginary sphere having a large radius (such as the distance from Sun to
Earth) drawn around the Sun and consider one square meter of this surface through which
the Sun’s light is flowing. Are the values of E and ES the same as at the surface of the Sun?

22. Consider the opaque surface of a warm body surrounded by air. There is radiation along-
side convective entropy transfer. Are the processes in parallel or in series?

23. Imagine a spherical rock in space (a planet without atmosphere) exposed to the light of the
Sun. In steady-state it will attain a certain temperature. Does this temperature depend upon
the emissivity of its surface?

24. Does galvanized sheet metal get hotter in sunlight than a surface painted black?

EXAMPLE 7.11. Surface temperature of the Sun.

The radiation originating in the thin surface layer of the Sun has properties almost like those of
a black body. (a) Using the solar constant (1370 W/m2), the distance from the Earth to the Sun
(1.5 · 108 km), and the Sun’s radius (700,000 km), derive the temperature of its surface. (b) Cal-
culate the rate at which entropy is emitted by the total surface.

QUESTIONS
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SOLUTION: (a) The solar constant Gsc is the value of the energy flux per unit normal area at
the distance of the Earth. Using this value we calculate the emissive power of the Sun (called
the luminosity L):

The Sun approximates a black body which does not receive radiation from the surrounding
space. Therefore, Equ.(7.36) applies to the relation between emissive power and temperature,
leading to a value of

for the surface temperature of the Sun. 

(b) The entropy flux flowing away from the Sun through the field is given by

EXAMPLE 7.12. Surface temperature of the Earth.

Model the Earth as (a) a black body of uniform temperature, absorbing radiation from the Sun
and emitting radiation to outer space. How large is the value of the temperature attained by the
surface of this body in steady state? (b) Repeat this for a gray surface and again (c) for a black
radiator that absorbs 70% of sunlight (because of reflection by snow and clouds).

SOLUTION: (a) We can use Equ.(7.67) without convection and T = 0 K for the environment.
This yields

As is the projected surface of a the sphere (a circle) and A is the surface of the planet. Inserting
and solving for T leads to 

(b) For non-black bodies we have

Since as = e for gray surfaces, the new condition leads to the same result for the temperature of
the planet, T = 279 K.

(c) If the Earth radiates like a black body, e = 1. However, if it reflects 30% of incoming radia-
tion, we may set as = 0.7 (it is as if the planet were a selective absorber/radiator). Now we have

All three results are too low. The mean surface temperature of our planet is more like 288 K,
leaving us with the problem of how to explain this difference (see Chapter 9, Section 9.6).
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EXAMPLE 7.13. The radiative heat transfer coefficient.

Write the equation for the exchange of energy between a black body and its surroundings,
Equ.(7.38), in a form which resembles the equation of convective heat transfer at a solid–fluid
boundary. How would you write the overall heat transfer coefficient, including convection?

SOLUTION: It is possible to transform the term involving the difference of the fourth powers
of the temperatures in such a way that the difference of temperatures occurs in the equation:

Comparison with the desired form, Equ.(7.27), shows that

Obviously, the radiative heat transfer coefficient strongly depends upon the temperatures in-
volved. 

If convection is present as well, we are dealing with a case of parallel flow of heat. The flux of
energy is equal to the sum of the radiative and the convective fluxes. Therefore, the overall heat
transfer coefficient must be equal to the sum of the radiative and convective transfer coeffi-
cients.

EXAMPLE 7.14. Absorption of solar radiation: the balance of entropy.

A body absorbs a fraction f of the energy current associated with solar radiation IE intercepted
by it. Represent the losses to the environment in terms of a total heat transfer coefficient h
(which includes radiation). Assume that solar radiation does not carry any entropy. (Because of
the high temperature associated with solar radiation, this assumption is quite applicable here.)
(a) Calculate the sum of the rates of entropy generation due to absorption of radiation and losses.
(b) Show that you obtain the same result using the balance of entropy for the body if you take
the system boundary to coincide with the environment at temperature Ta. (c) Compare the mag-
nitude of the effects for a body with a surface area of 1.0 m2 at a temperature of 50°C absorbing
80% of an energy flux of 1000 W/m2 in an environment of 20°C. The heat transfer coefficient
has a value of 10 W/(K · m2).

SOLUTION: For the solution of the problem we will need the equation of balance of energy for
the body:

(a) Entropy production is due to two distinct irreversible processes, the absorption of radiation
and heat transfer to a colder body (the environment). Since the energy of solar radiation ab-
sorbed is dissipated, the rate of production due to absorption of radiation is

The rate of production of entropy as a result of heat transfer, on the other hand, is given by
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(b) If we consider the body as our system and draw the system boundary at the location of the
environment at temperature Ta , we include the part responsible for heat transfer in the system.
In this case, the equation of balance of entropy takes the form

Remember that the radiation is assumed not to deliver any entropy, so there is no source term.
Now we have

This result is equivalent to what we obtained by calculating the rates of production independent-
ly.

(c) Inserting the numbers into the expression obtained in (a) gives values of 2.5 W/K and 0.095
W/K, respectively. This tells us something about the relative irreversibilities of the processes
(absorption and heat loss): the former is much larger. If we wanted to optimize a system by min-
imizing entropy production, we have to be able to quantify different contributions to irrevers-
ibility (see Chapter 9 for a discussion of this approach).

EXERCISES AND PROBLEMS

1. Sunlight passes in one direction through a gas inside a long cylinder. The flux of entropy
at the surface where the light is entering has a magnitude of 5.0 W/K. At the opposite end,
the flux of the current of entropy leaving the body is 4.0 W/K. (a) Determine the net flux
of entropy with respect to the region of space occupied by the body. (b) At what (minimal)
rate is the entropy of the body changing? (c) What is the value of the source rate of entropy
for the field? How large is the flux of entropy with respect to the material body?

2. A copper bar of length 0.50 m and cross section 10.0 cm2 has a temperature of 500 K at
one end and 300 K at the other. As heat flows through the bar in steady state, measurements
indicate that the temperature varies linearly along the bar. (a) Determine the temperature
gradient. Take the direction of entropy flow to be positive. (b) Estimate the current densities
of entropy and of energy for the center of the bar using the values read from Fig. 7.8. How
large is the conductivity with respect to energy? (c) Divide the bar into two equal parts.
With this current of entropy flowing, what is the flux of entropy at the surface where the
parts touch with respect to the part from where the entropy is flowing?

3. An immersion heater in a water kettle is hooked up to 220 V. Its electrical resistance is 160
Ω at a temperature of 20°C; the temperature coefficient of the resistance is 4 · 100–3 K–1. If
the heat transfer coefficient between heater and water is 100 W/(K · m2) and the surface
area of the heater is 0.020 m2, how large will the energy current from the heater to the water
be? How does the situation change if a layer of mineral deposit builds up around the heater?

4. Show that the energy current transmitted through a cylindrical shell of length L having in-
ner and outer radii r1 and r2 is 

where h1 and h2 are the inner and the outer convective heat transfer coefficients. The tem-
peratures of the fluids on the inside and the outside are T1 and T2.

5. A cylindrical volume of rock below ground has been heated uniformly to 50°C while the
rest of the rock has a temperature of 10°C. (This might be done in solar seasonal heat stor-
age applications.) Use the average values for granite for the properties of the rock. (a) Make
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the following model for heat loss from the cylindrical area to the surroundings. While the
temperatures of the storage area and the surroundings remain uniform, heat flows through
a cylindrical mantle with inner and outer radii equal to half and to twice the radius of the
storage cylinder, respectively. Estimate the energy current due to heat loss for a radius of
5.0 m and a length of the cylindrical space of 40 m. (b) How large should the radius be
made for heat loss over a period of half a year not to exceed one quarter of the energy stored
in the cylinder?

6. A sheet of metal with a selective surface of 2.0 m2 lies horizontally on the ground. The bot-
tom of the sheet is well insulated. In the visible part of the spectrum the emission coeffi-
cient of the metal is 0.90, while in the infrared it is 0.30. Take the ambient temperature to
be 20°C. The Sun stands 50° above the horizon, and 70% of the radiation outside the at-
mosphere penetrates the air. (Assume all the radiation from the sky to be direct and not dif-
fuse.) (a) Neglecting convection, how large should the temperature of the metal sheet be in
the light of the Sun? (b) Now take into consideration convective heat transfer at the upper
surface of the sheet. The convective heat transfer coefficient is assumed to be 14 W/
(K · m2). Calculate the temperature attained by the sheet under these conditions. 

7. Hot water is left to cool in a thin-walled aluminum can. In a first experiment, the aluminum
is highly polished (curve number 1 in Fig. P.7). In the second experiment (curve 2), the can
is painted black. Assume the convective transfer from the water to the can to be highly ef-
ficient. Data: Mass of water: 0.476 kg; surface area of the can: 0.0325 m2; Ambient tem-
perature: 21.6°C. (a) Determine the rate of change of entropy of the water in Experiment 1
at t = 500 s? (b) Assume radiation to be negligible in Experiment 1. What are the convective
entropy and energy transfer coefficients for the surface of the can (can to air). (c) Use the
data of Experiment 2 to determine the emissivity of the black surface.

8. Normally, the surface temperatures of stars are derived from their colors or their spectra.
However, it is also possible to calculate this quantity from the intensity of their light (i.e.,
from the irradiance at the surface of the Earth), and from their angular diameter as seen
from the Earth. Angular diameters of some nearby stars can be determined with the aid of
interferometric methods. In the case of the star Sirius in the constellation of Canis Majoris,
these values are 8.6 · 10–8 W/m2, and 6.12 · 10–3 arc seconds, respectively.

9. Consider the Earth as a uniform body. (a) How large is the rate at which entropy appears
in the atmosphere, biosphere, and the oceans of the Earth if we take their temperature to be
300 K? The solar constant outside the atmosphere is 1.36 kW/m2. 30% of the radiation is
directly reflected back into space. (b) How large is the flux of entropy through the radiation
field just before radiation is absorbed? (c) How large is the rate of production of entropy
on the planet as a result of absorption? (d) How large is the rate of entropy generation over-
all?

10. A photovoltaic panel with an area of 1.0 m2 is exposed to constant solar radiation having
an energy current of 800 W/m2. Initially, panel and cells are at ambient temperature (300
K). The panel has a heat capacity (energy capacity) of 1000 J/K. The absorption coefficient
of the panel for sunlight is 0.85. The emission coefficient of the panel for thermal radiation
is 1. Energy goes directly to the air as well (the heat transfer coefficient is 12 W/(K · m2)).
The electric efficiency of the panel decreases with temperature according to 

The efficiency is defined as the ratio of electric power and energy current of sunlight (not
the absorption rate!). (a) What is the electric power right at the beginning? (b) Formulate
the law of balance of energy of the panel in general (instantaneous) form. (c) What is the
rate of change of temperature of the panel right at the beginning? (d) Determine the steady-
state temperature of the panel resulting after a period of time. (e) Sketch as precisely as
possible, the temperature and the electric power of the panel as functions of time. 

11. A spherical satellite with a radius of 0.50 m moves in a low orbit around the Earth (Fig.
P.11.1). Approximately half the time it is exposed to the Sun’s light (the solar constant is

Figure P.7
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1370 W/m2). In the Earth’s shadow it is irradiated by the earth itself. The satellite is a thin
aluminum shell. (a) The Earth absorbs approximately 70% of the energy of the incident
light of the Sun. The energy is then uniformly reradiated over the entire surface. What is
the energy flow of the earth’s radiation per square meter? (b) Calculate the highest and the
lowest steady-state temperatures reached by the satellite. This temperature is uniform over
the entire surface. Assume that the satellite is a black body radiator. When it is in sunlight,
ignore the Earth’s radiation. (c) Determine the mass of the satellite with the help of the tem-
perature as a function of time (see Fig. P.11.2). 

12. In solar energy applications, parabolic troughs are used to focus light upon absorbers of
cylindrical shape. Calculate the heat loss coefficient of such an absorber. Consider it to be
made of a metal pipe having a diameter of 5.5 cm, surrounded by a thin glass cover with
an outer diameter of 8.5 cm. The annulus between the pipe and the cover is evacuated. Take
the convective heat transfer coefficient at the surface of the cover to be 35 W/(K · m2). The
emissivities of glass and the metal pipe are 0.88 and 0.92, respectively. Present the result
as a function of absorber temperature for an ambient temperature of 20°C.

13. A bottle of white wine is placed in a refrigerator whose inner temperature we take to be
constant at 0°C. How long will it take for the temperature of the wine to decrease from an
initial value of 20°C to the desired 8°C? Treat the wine as a uniform system of mass 0.75
kg and use the constitutive quantities of water. The bottle is made out of glass with a thick-
ness of 5.0 mm. The height and the diameter of the main body of the bottle are 25 cm and
8 cm, respectively; neglect its bottom and its neck and treat the mantle as a flat layer. The
convective transfer coefficients inside and outside are 200 W/(K · m2) and 10 W/(K · m2),
respectively.

14. A spherical thin-walled water tank has a volume of 1.0 m3. The water inside is kept at a
constant temperature of 60°C by heating it with an energy current equal to 1.0 kW. The am-
bient temperature is 15°C. How long will it take for the water to reach a temperature of
40°C after the heater has been turned off?

15. A body of water having a volume of 1.0 m3 loses heat to its surroundings. The temperatures
are 80°C and 20°C for the water (initially) and the environment, respectively. The product
of total heat transfer coefficient and surface area is 60 W/K. (a) How long does it take for
the temperature difference between the water and the surroundings to decrease to half its
initial value? (b) How large is the rate of production of entropy right at the beginning? (c)
How much entropy is produced in total from the beginning until the water has cooled down
completely? (d) How much energy could have been released by an ideal Carnot engine op-
erating between the water and the environment as the water cools to ambient temperature?

16. To maintain an inner temperature of 20°C in a building situated in a 0°C environment, the
required heating load is 5 kW. Without heating, the house is found to cool down as follows:
every day, its temperature decreases by 1/5 of the temperature difference to the environ-
ment. (a) Determine the product of surface area and total heat transfer coefficient. (b) Mod-
el the building as a single node system. Calculate its temperature coefficient of energy. (c)
Assume the temperature inside the building to be 12°C. Calculate the heating power nec-
essary if you wish the temperature to rise by 1°C per hour.

17. A tall, well insulated cylinder of radius 0.75 m contains 10,000 kg of water. The lower 3500
kg has a temperature of 20°C, while the temperature of the rest of the water is 80°C. Such
stratification may be approximately attained while charging a hot water storage tank in so-
lar applications. (a) Estimate how long it will take for the difference of the temperatures of
the two segments of water to decrease to 30°C. (Hint: Model the segments as uniform bod-
ies; for the thermal resistance take a distance from the center of the hotter to the center of
the cooler part.) (b) Calculate the initial rate of production of entropy. (c) How large is the
initial rate of loss of available power?
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