
CHAPTER 2 

ENERGY IN PHYSICAL PROCESSES

So far we have not made use of an important aspect of physical phenomena. Whenever
something happens in the physical world, processes are accompanied by an additional
quantity—energy. We will see that energy plays a unique role, unlike the roles of
quantities which are often mistaken for it such as electricity, motion, or heat.1

First, we will investigate chains of processes which teach us that a description in terms
of amounts of fluids, electricity, or motion alone does not suffice: we need a property
which quantifies the coupling of processes—namely energy. After this qualitative in-
troduction, we will discuss quantitative measures for this new quantity by studying
waterfalls, and hydraulic and electric processes. Then we shall take a closer look at
energy transfer and energy storage. Finally, the description will be extended to rota-
tional and magnetic phenomena. 

2.1 ENERGY AND COUPLING IN CHAINS OF PROCESSES

Processes usually occur in chains. One process drives another, sometimes creating
long chains. This phenomenon teaches us that there must be a physical quantity which
relates one process to the next. We introduce energy to quantify the coupling of pro-
cesses.

2.1.1 Processes Driving Other Processes

Examples of processes driving other processes are easy to find. Even limiting our view
to hydraulic and electric phenomena we can identify coupling. In an electric water
pump, we make use of an electric process to drive a hydraulic one (Fig. 2.1), and a

1. There are good reasons why we mistake other physical quantities for energy—at least in
common sense reasoning. See Section I.2 in the Introduction for a brief discussion of this
issue.
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Figure 2.1:  A process diagram 
of an electric pump shows an 
electric process driving the flow 
of a fluid. The electric process 
runs downhill, while the hydrau-
lic process runs uphill. The pump 
couples the processes.
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combination of turbine and generator couples a hydraulic process to the flow of elec-
tricity. If we extend our view and allow for additional processes such as rotation and
heat, we find even more instances of coupling (Table 2.1): a rotational process drives
the production of heat in the grinding of one mill stone against another; in a turbine,
the flow of water drives a rotational process; and in the flow of a viscous fluid through
a pipe the hydraulic process drives the production of heat (Fig. 2.2).

Coupling of processes. A single process is quantified in terms of the two fundamen-
tal quantities used to conceptualize it: the fluidlike quantity and its associated poten-
tial. In hydraulic and electric processes, these pairs are volume and pressure, and
electric charge and electric potential, respectively. These pairs of quantities are differ-
ent for different processes—they are basically unrelated. Therefore, the question aris-
es how different processes can be coupled. How can one process drive another in a
determined manner? Two processes—such as an electric process driving a hydraulic
one—must always be related or coupled in the same way. It never happens that the
electric process drives the hydraulic process differently at different times. We expect
a well defined relation between the two.

In other words, the same process should always accomplish the same result, assuming
that conditions do not change. Therefore, we need a measure of how much a process
driving another is accomplishing. We may also say that a process is working to accom-
plish a result. The measure introduced for “work” and “accomplishment” has to do
with energy.

Releasing and using (binding) energy. A voluntary process driving another process
consists of water or electricity flowing through a potential difference from higher to
lower levels. The reverse—involuntary—process consists of a fluidlike quantity being
“pumped uphill” through a potential difference (Fig. 2.3, top). 

Now we introduce the measure of how a process is working. We say that the driving
process releases energy in the fall of the fluidlike quantity (Fig. 2.3, top) which is used
to drive the follow up process, i.e., the pumping of another fluidlike quantity. In the
latter case, we speak of the binding of energy to the quantity flowing “uphill.” There-
fore, we can use the amount of energy released as the measure of how much a process
works, and the amount of energy used (bound) for how much has been accomplished.
Releasing and using energy is now introduced as an additional graphical element in
the system diagrams depicting physical processes (Fig. 2.3, bottom). 

Table 2.1: Examples of coupling of processes

Hydraulics Electricity Rotation Heat

Hydraulics Hydraulic ram Turbine plus 
generator

Turbine Resistive flow

Electricity Electric pump Transformer Electric motor Electric heater
Peltier device

Rotation Hand pump Generator Gearbox Friction

Heat Solar water 
pump

Thermoelec-
tric generator

Heat engine Absorption 
refrigerator
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Figure 2.2:  In viscous flow, the 
fluid flows from higher to lower 
pressure, driving the production 
of heat (notice the symbol of a 
source of heat).
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Figure 2.3:  An electric pump 
couples electric and hydraulic 
processes. The driving process 
releases energy which is used 
(bound) in the follow-up process. 
The amount of energy released or 
used (bound) is the measure of 
how much processes “work” or 
“accomplish.” Release and bind-
ing of energy are depicted by fat 
vertical arrows.
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2.1.2 Chains of Processes: Transferring Energy

Consider a chain of processes as in Fig. 2.4. Processes coupled in a device are like sin-
gle links which can be connected to form long chains. Consider a turbine driven by a
current of water, which drives a generator, which in turn can be used to drive the pro-
duction of heat in an immersion heater (Fig. 2.4). Energy is not only the measure re-
lating two otherwise unrelated processes in a device. The coupling of processes must
work through long chains. While the coupling of two consecutive processes inside a
device is the result of releasing and binding of energy when the first processes drives
the second, two devices are coupled by the flow of quantities such as water or charge
from one device to another (Fig. 2.4). Consider the coupling of the generator and the
immersion heater in Fig. 2.4. In the generator, energy is bound to the current of charge
flowing from lower to higher electric potential. In the immersion heater, energy is re-
leased in the fall of charge from higher to lower potential.

 

It seems to be reasonable to assume that the same amount of energy that was bound to
the current of charge in the generator is released in the immersion heater. The second
process perfectly reverses the first; electric current and voltage (potential difference)
are the same. Therefore, we assume that the energy bound in the first process is trans-
ferred from the generator to the system following it (Fig. 2.5). In fact, whenever de-
vices are coupled in processes, energy is transferred.

2.1.3 Interrupting and Resuming Processes: The Storage of Energy

Chains of processes need not work continuously. It is possible to interrupt them, and
resume them later or at some other place. Therefore, it should be possible to store the
energy transferred through a chain so it can be used again for other processes.

Consider a pressure vessel which is being filled with a fluid with the help of a pump
(Fig. 2.6). We need energy to operate the pump, i.e., we deliver it to the pump. It is
released and used there and then transferred with the fluid to the pressure vessel. The
vessel, therefore, is not only a storage device for fluids, but it also stores energy. We
can use a pressure vessel filled with a fluid—and therefore with energy—to drive the
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Figure 2.4:  Processes can be 
joined in a chain. Flow processes 
provide for the coupling between 
devices or systems. (L is the sym-
bol for angular momentum, the 
fluidlike quantity transferred in 
rotation; see Section 2.5.)
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from system to system together 
with the quantities exchanged in 
processes—such as fluids and 
electric charge. The transfer is 
depicted by fat arrows pointing 
from one system to the next.
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operation of a turbine and generator, thus emitting the energy which was absorbed be-
fore by the vessel.

2.1.4 Conservation of Energy: Can Energy Be Lost or Created?

Consider different electric pumps. If we drive them in an identical manner all the time,
we expect the same result, which may be measured in terms of amount of water
pumped to a given height. It is found that different pumps operate differently; some
will pump less water than others.

Most processes in nature seem not to run at perfect efficiency—where the efficiency
is measured in terms of the energy used in the desired process compared to the energy
released by the driving process. Perfect efficiency would correspond to the case when
the energy bound is 100% of the energy released. This is what we have assumed for
all the processes depicted in the diagrams of Figs.2.3 to 2.6.

Does this mean that the lower quality pumps lose energy compared to the better ones?
Actually, this is not the case. It is found that the engine drives two processes at once—
the desired one, and an undesired production of heat—where each process uses part of
the energy released. Together they use 100% of the energy available. What we have
found to be true for pumps also holds for other processes. The apparent “loss” of en-
ergy is associated with an undesired production of heat which accompanies the pro-
cess the engine was designed for (Fig. 2.7).

There appears to be another reason for loss of energy. Energy storage devices usually
lose some of their energy in the course of time. Again, we can explain this not as an
actual loss but as the result of “leaking away” of energy. The energy which is not avail-
able any longer can always be detected in nature—at least in principle.

In summary, there is no reason to believe that energy can simply disappear. Neither
can it be created. If we wish to set in motion a chain of processes, we always need an
energy storage device which has to supply the energy running through the chain. To-
day we take this as one of the fundamental principles of nature: energy cannot be cre-
ated, nor can it be destroyed: energy is a conserved quantity. 

2.1.5 The Properties of Energy

Energy is a buzz word for much of what we read about in science and technology. Our
usage of the term is often fuzzy which leads to imprecise images of what energy is all
about. We usually speak of generating and losing energy, even though energy is con-
served. We talk about converting energy, and we give it myriad names, even though
there is only one type of energy: we speak of electrical, hydraulic, and mechanical en-
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Figure 2.6:  Chains of processes 
can be interrupted and then re-
sumed later. This can be ex-
plained in terms of energy 
storage. The symbolic containers 
with letters V or E represent the 
storage of volume and energy, re-
spectively. 

IV

P2P1

IQ

1ϕ
2ϕ

PUMP

Heat

Figure 2.7:  Energy is not “lost” 
in a process which does not run 
perfectly. Rather, the amount of 
energy which seems to be miss-
ing is driving an unwanted pro-
cess—the production of heat.



2.2  POWER: THE RATE AT WHICH ENERGY IS RELEASED IN A PROCESS

PART I 55

ergy, kinetic and potential energy, work and heat, and so forth. Most disturbingly, we
mix up energy with the fundamental quantities flowing in physical processes, namely,
electricity, heat, and motion.

Actually we have to learn very little about energy and what we learn repeats itself
again and again in every field of physics. From what we have discussed so far, we rec-
ognize that there is just a single quantity called energy which accompanies all process-
es. This quantity has the following properties:

R Energy is released and used in processes. 

R Energy can be transported from system to system.

R Energy can be stored in systems.

R Energy is conserved; it can neither be created nor destroyed.

The second and third items in the list make energy a quantity to which the laws of ac-
counting can be applied; in other words, energy satisfies a law of balance (Section
2.4). The properties of energy will now be investigated more carefully and with quan-
titative means.

2.2 POWER: THE RATE AT WHICH ENERGY IS RELEASED IN A PROCESS

Nature presents us with a perfectly simple process which can serve as the archetype of
physical processes—a waterfall. Other processes are interpreted analogously: a pro-
cess consists of the flow a fluidlike quantity from a higher to a lower level (Fig. 2.3).
We introduce energy as the measure of how much the fluidlike quantity is working,
i.e., how much it can achieve, when it falls down a gradient of its potential. Power is
the rate at which the fluidlike quantity is working. We will say that energy is released
in a process, and power—the rate of working—is the rate at which energy is released.
Common sense reasoning indicates that the power of a process will depend on the flow
of the fluidlike quantity and the height of its fall.2

2.2.1 Power of an Electric Process

A simple experiment which can be used to quantify the measure of power is the elec-
tric heating of water. The rate of heating of water may be measured in terms of the rate
of change of its temperature. If we always take the same amount of water at the same
temperature, and observe the same rate of change of temperature, we can be sure that
the electric process is “working at the same rate.” In terms of energy we may say that
this quantity has been released at the same rate in the immersion heater every time we
repeat the experiment. On the other hand, if twice as much water can be heated at this
rate, the electric processes must run at twice the rate.

Different runs of this experiment show that the rate of change of temperature is the
same for identical bodies of water whenever the product of electric current through the

2. This is how Sadi Carnot expressed his idea of the power of heat. See the Introduction for
a short discussion of his idea and the roots of common sense conceptualizations of phe-
nomena and processes.
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immersion heater and the electric potential difference across the device is the same. In
other words, the rate of working of the electric process can be measured in terms of
the product of electric current and voltage:

(2.1)

The symbol P is used for the rate at which energy is released; from now on we will call
this quantity power. Therefore, we speak of the electric power of a flow of electric
charge. The SI unit of power is the Watt (W). The minus sign in the first form of the
equation is arbitrary. It means that the power of a voluntary process is counted as a
positive number, while the power of an involuntary process is taken to be negative.

The equation can be interpreted graphically using the waterfall image of a process
(Fig. 2.8). In an electric process that drives another process, electric charge flows
“downhill” through a potential difference and in turn releases energy at a rate that de-
pends upon the flow of charge and the potential difference in the simple manner indi-
cated by Equ.(2.1).

2.2.2 Hydroelectric Power Plants and the Power of a 
Gravitational Process

We need a measure of the power of a fall of water, i.e., the rate at which energy is re-
leased in a gravitational process. By allowing water to accomplish a measurable result
at a certain rate, we can define the power of a fall of water. Data on hydroelectric pow-
er plants yields the information we need (Table 2.2). If we take the product of electric
current and voltage at the terminal of the generator as the measure of the rate of work-
ing of the water rushing down from the artificial lake to the turbine, we can see which
factors determine the rate at which a waterfall releases energy.

The results in Table 2.2 demonstrate that—except for an almost constant factor—the
current of mass of water (measured in cubic meters per second) and the vertical drop
of the water from the artificial lake to the turbine and generator station (measured in

Table 2.2: Examples of hydraulic power plants a

a. Hydraulic power plants with artificial lakes in Switzerland.

Hydraulic power 
plant

Current of 
Mass

Im / kg/s

Vertical fall of 
water

∆h / m

Voltage and 
current b

UIQ / V · A

b. Product of voltage and electric current measured for the generator.

UIQ / 
Im∆h

Bavona 18,000 890 137·106 8.6

Nendaz 45,000 1014 384·106 8.4

Handeck III 12,500 445 48·106 8.6

Chatelard 16,000 814 107·106 8.2

Tiefencastel 16,700 374 50·106 8.0
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Figure 2.8:  Energy released in 
an electric process. The rate at 
which energy is released (the 
power of the electric process) de-
pends upon the flow of charge 
and the potential difference.
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meters) determine the rate at which energy is released by the falling water. In fact, this
quantity depends linearly on both factors. Doubling the current of water, or doubling
the drop, will each lead to a doubling of the rate of release of energy.

Power of a waterfall. Specifying a waterfall first of all means quantifying the flow of
water falling down. This is done with the help of the current of (gravitational) mass
Im (measured in kilograms per second). The second obvious quantity determining the
properties of a waterfall is the vertical drop ∆h (measured in meters). 

The power of a waterfall, i.e., gravitational power, depends upon another parameter
which is suggested by the fact that the strength of the gravitational field g must play a
role. We expect the drop of water through a certain height to accomplish much less on
the surface of the Moon than on the surface of our planet. Now we are ready to calcu-
late the rate at which energy is released:

(2.2)

Potential. There is a simple graphical interpretation of the formula for the power of a
waterfall (Fig. 2.9). We combine the first two factors on the right side of Equ.(2.2) into
a new quantity which we call the level or potential of gravitational processes:

(2.3)

According to the results in Table 2.2, g should be somewhat larger than 8 N/kg. We
know from independent measurements that it is closer to 9.8 N/kg (Section 1.4.4). The
discrepancy is a result of the imperfection of the processes in power plants.

We may now write the power of the process as the product of the difference of the
gravitational potential and the current of mass falling through this difference of levels:

(2.4)

Note the analogy between this result and the one for electricity (Equ.(2.1)). The ex-
pression introduced for the gravitational potential is analogous to the one found in
Chapter 1 (see Fig. 1.26).

2.2.3 The Efficiency of Processes

Note that the experimental determination of the factor in the last column of Table 2.2
leads to values that are a little bit smaller than g. This is due to the fact that the pro-
cesses leading from the waterfall to the generator are not ideal: some of the energy re-
leased by the water is used for other purposes—mostly for the production of heat as a
result of friction.

Ideally, all the energy released in a process would be used for the desired follow up
process. Realistically, this does not happen, since parallel processes such as friction
bind part of the energy released (Fig. 2.10). To measure the efficiency of the transfer
of energy to the desired process, the ratio of the powers involved is used:

(2.5)
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The power of an electric process is measured as the product of voltage and electric cur-
rent (Equ.(2.1)). Applying this rule to the values presented in Table 2.2 we see that the
overall efficiencies of modern hydroelectric power plants are quite high, of the order
of 80% to 90%.

2.2.4 Power of a Hydraulic Process

Analogical reasoning suggests, and experiments confirm, that the type of relation
found for the power of electric and gravitational potentials also holds for hydraulic
processes:

(2.6)

Just consider a turbine driving an electric generator. The electric process is found to
be identical as long as the product of the pressure difference and the flux of volume is
kept constant. In summary, all types of processes investigated demonstrate the same
basic structure (see Section 2.2.6 and Table 2.3): knowing one field of nature helps us
to understand other subjects.

2.2.5 Power in Inductive Processes

So far, we have studied devices such as pumps, turbines and generators, artificial lakes
and pipes, resistors, electric engines, etc. They all demonstrate that the release of en-
ergy is followed by its use when processes are coupled.

Inductive elements (Section 1.6) seem to confront us with a somewhat different case.
First, the other devices work strictly in one way—in resistors, volume or charge al-
ways flow “downhill”—while processes in inductors run both ways. Second, most of
the systems mentioned before can run in steady state without involving the storage of
energy; inductive devices, however, work dynamically only, and they also serve as en-
ergy storage devices. 

Third and most important, it is not readily apparent if there are two processes coupled
in such devices, one running “downhill”, driving the second one “uphill.” Closer in-
spection shows, however, that there are processes coupled to the obviously visible
electric or hydraulic ones. Let us see what they are in the case of electromagnetic in-
duction.

The phenomenon of electromagnetic induction is coupled to the growth or decay of
magnetic fields due to electric currents. The magnetic field acts as the storage system
for the energy (Section 2.4.5) which is released or bound by the electric current—de-
pending on whether the current is increasing in time, or decreasing. If the electric cur-
rent through an inductive device is increasing with time, i.e. if dIQ /dt > 0, it runs
“downhill” through the inductive potential difference ∆ϕL (Section 1.6). We have just
learned that this process is associated with the release of energy at the rate

(2.7)

There should be a process running “uphill” on the energy made available. This process
exists: it is the building up of a magnetic field which at the same time acts as the stor-
age device for the energy released in the electric process (Fig. 2.12a).
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Figure 2.11:  Energy released in 
a fluid process (hydraulic pro-
cess). The rate at which energy is 
released (the power of the fluid 
process) depends upon the flow 
of volume of fluid and the pres-
sure difference.
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Figure 2.12:  In an inductive 
electric process, energy is re-
leased or bound. The process is 
coupled to the creation or de-
struction of a magnetic field 
which acts as the storage device 
for energy in the inductive ele-
ment.
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If the electric current through the inductive element decreases with time, i.e. if dIQ /dt
< 0, the magnetic field decreases as well, releasing energy which is picked up by the
electric current. As a result, this current is driven “uphill” through the induced poten-
tial difference ∆ϕL (Fig. 2.12b).

The case of hydraulic induction is quite analogous. However, here we do not have a
magnetic field associated with the current. Rather it is the quantity of motion of the
flowing fluid which is built up or reduced in the device which acts similarly to the
magnetic field. 

2.2.6 Processes and Power in General

If a fluidlike quantity falls “downhill” it releases energy at a certain rate. This rate we
call the power of the process. The energy that is released drives a follow-up process
“uphill”, and it is said to be used by or bound to the flowing quantity (Fig. 2.13). The
law for the energy released or used is this:

The power of a process always depends on two factors—the potential differ-
ence and the current flowing through this potential difference:

(2.8)

The letter X stands for the flowing fluidlike quantity which determines the type of pro-
cess: mass, volume, and electric charge for gravitational, hydraulic, and electric pro-
cesses, respectively (Table 2.3). For a given process, we have to use the proper
fluidlike quantity and its associated potential. Thus, for a hydraulic process, X corre-
sponds to V, and ∆ϕX corresponds to ∆P.

Amounts of energy released or used in a process. Sometimes, we want to be able
to say “how much has happened” in a process. In other words, we want to know how
much energy has been released or bound as the result of a process lasting for a certain
period. The amount of energy released in a process—which is sometimes called
work3—can be obtained by integrating the power over time (Fig. 2.14). In general, this
quantity can also be calculated as the product of the amount Xe of the fluidlike quantity
flowing through a potential difference, and the potential difference ∆ϕ:

Table 2.3: Comparison of different processes

Flowing 
quantity

Current Potential
Potential 

difference
Power

Gravity Gravita-
tional mass 

Current of 
gravita-

tional mass 

Gravita-
tional 

potential 

∆ϕG – ∆ϕG Im

Hydraulics Volume of 
fluid 

Current of 
volume

Pressure ∆P – ∆P IV

Electricity Electric 
charge 

Current of 
electric 
charge 

Electric 
potential 

∆ϕel = – U – ∆ϕel IQ

= UIQ

IX

X1ϕ

X2ϕ

PX

IX
PX

X1ϕ
X2ϕ

Voluntary
process

Involuntary
process

Figure 2.13:  Processes and the 
power of processes. The same 
fundamental structure is discov-
ered in all physical processes. 
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Figure 2.14:  The integral over 
time of the power of a process 
yields the energy released or used 
in that process.
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(2.9)

This expression is correct only if the potential difference stays constant during the pro-
cess. The relation is particularly simple to prove for a process running at a constant
rate. The unit of energy (released) is the Joule (1 J = 1 W·s).

2.2.7 Electric and Hydraulic Circuits: The Balance of Power

An indication of the balance of energy comes from the consideration of energy re-
leased or bound in closed electric and hydraulic circuits: the sum of all terms of elec-
tric or hydraulic power add up to zero.

This is a consequence of Kirchhoff’s second rule which we encountered in hydraulics
and electricity (Chapter 1). Consider a simple electric circuit containing a battery, a
resistor, and an electric motor (Fig. 2.15). The current of charge flowing through all
three elements is the same, and the voltages across them add up to zero:

(2.10)

The current is flowing through each of the elements leading to the release or binding
of energy. If we multiply Equ.(2.10) by the current IQ, we obtain UBIQ + URIQ + UMIQ
= 0. Since the terms represent the electric power in the elements, this is equivalent to

(2.11)

This means that the energy bound in the electric process in the battery is equal to the
energy released in the resistor and the motor combined as the consequence of the fall
of the electric charge. In everyday language we say that the energy delivered by the
battery is used by the resistor and the motor.

2.3 ENERGY TRANSFER AND ENERGY CARRIERS

Energy released in a process does not come out of the blue, and energy that is bound
does not disappear. Either it is transferred into or out of the system or it comes from
storage or will be stored (Section 2.4). Here we shall investigate the transfer of energy.
There is a simple form of coupling of the flow of the fluidlike quantities with the flow
of energy into and out of systems. It is as if mass, volume, and charge acted as carriers
of energy in the processes they are responsible for.

2.3.1 Energy Carriers, Potentials, and Energy Currents

A simple example demonstrates how nature works. Consider the steady-state flow of
a viscous fluid through a straight pipe as in Fig. 2.2. So far we have introduced the
concept of energy in the following manner: since the fluid flows from a point of high

3. The words power and work are used inconsistently in different fields of physics. In me-
chanics, for example, work means a quantity of energy transferred, not released.

W XX X e= −∆ϕ
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Figure 2.15:  The sum of the po-
tential differences in a closed 
circuit is always zero. Therefore, 
the sum of the electric power 
terms of all the elements com-
bined must be zero as well.
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pressure to a point of lower pressure, energy is released in the hydraulic process at a
certain rate (Fig. 2.16). The energy released is bound in the following thermal process.
Remember that the production of heat due to friction is all that happens in the pipe;
therefore, we assume that 100% of the energy released is bound in the follow up pro-
cess.

To be specific, let us introduce concrete numbers. Assume there is a fluid current of
0.10 m3/s, and a pressure drop of 0.50 bar. According to Equ.(2.6), energy must be re-
leased at a rate of 5.0 kW. In other words, 5000 J energy are released each second and
made available for the production of heat. We believe that the energy must be supplied
to the system. Since the only possibility for this to happen is through the flow of fluid
into—and out of—the pipe, we say that the fluid flowing under pressure carries with
it some energy: we associate an energy current with the fluid (Fig. 2.16). In this sense
we can call the fluid the energy carrier with respect to the system.

Naturally, we should expect the energy current to depend upon two factors. First, it
must be proportional to the current of fluid; two equal currents under identical condi-
tions will have twice the effect of a single one. Second, the pressure of the fluid must
play a role. Let us see how energy and carrier currents are related.

If a fluid flowing into the system at a certain level (pressure) carries energy, so must
the fluid flowing out of the system. Therefore, we assume that the rate at which energy
is released is the difference between the currents of energy into and out of the pipe due
to fluid flow. Since this makes the difference of the energy flows equal to the product
of the pressure difference and the volume current, i.e., 

the simplest expression for a single current of energy IE is the product of the flux of
volume and the pressure of the fluid as it enters—or leaves—the system:

(2.12)

There is a simple image which can be used to remember this relation. We may look
upon the pressure as the “load factor” of the “carrier current.” The current of volume
is “loaded” with energy according to the value of the pressure. The flux of energy
therefore is the product of a carrier current and its load factor.

Again, this is the structure of energy flow in all fields of physics. Consider the differ-
ent devices and processes studied so far—gravitational and electric ones in addition to
hydraulic: we always arrive at exactly the same relation for the expected energy cur-
rents.

The flux of a current of energy entering—or leaving—a system is the
product of the flux of the carrier current and its associated potential
(Fig. 2.17):

(2.13)

As we have seen in Chapter 1, the electric potential is not an absolute quantity. Values
of electric potentials must always be measured with respect to a chosen level, i.e., the
“ground.” The same is true for the gravitational potential; here on our planet we com-
monly measure levels or heights relative to sea level. Of the levels we know so far,
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Figure 2.16:  The energy re-
leased in the “fall” of fluid from 
high to low pressure must be sup-
plied to the system. Energy is 
flowing into—and out of—the 
device with the fluid under pres-
sure. The amount released and 
used flows out together with heat.
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Figure 2.17:  The relation of flux 
of energy, “carrier” flux, and the 
“load factor,” represented in a 
process diagram. 
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only the hydraulic one is absolute. Fluxes of energy in electric and gravitational pro-
cesses therefore do not have quite the same independent meaning as in fluid flow.
Only the difference of two energy currents flowing into and out of a system together
with a single current of a fluidlike quantity is independent of arbitrarily chosen levels.
This difference is equal to the power of the associated process (Fig. 2.16).

This already tells us that the notion of energy being “carried” by the current of a flu-
idlike quantity should not bee taken too literally. In particular, as we shall see below,
“carried” does not mean that the carrier current “contains” the energy being supplied.
We should look upon Equ.(2.13) as meaning that energy always flows at the same time
as the fluidlike quantity—rather than together with or directly bound to the carrier. It
is certainly correct to state that energy never flows alone: at the same time, there must
always be one or more flows of other physical quantities.4

2.3.2 Energy Transfer in Compression

There is an example of energy transfer that will play a particularly important role in
our study of thermodynamics: energy flows associated with compression or expansion
of a (compressible) fluid.

Imagine an imaginary wall separating a gas inside a container from a liquid that flows
in or out so the gas is either compressed or expanded (Fig. 2.18). At the liquid-gas
boundary we have a flux of volume of liquid at pressure P (which is the pressure of
the gas enclosed by the liquid and the walls of the vessel). The current of volume of
the liquid is IV, so there is an energy flux IE = PIV entering the gas. At the same time,
the gas is compressed at a rate that equals the flow of volume of liquid. Since the vol-
ume of the gas is decreasing—we might say, volume of gas is “disappearing”—we de-
scribe the effect by a (negative) production rate of volume ΠV. In summary, a gas at
pressure P being compressed at rate ΠV receives energy at the rate equal to

(2.14)

2.4 ENERGY STORAGE AND THE BALANCE OF ENERGY

In some sense energy is like amounts of water: we can account for it. We have seen
this principle applied in the steady state processes investigated in the previous sec-
tions. Energy flows through chains of processes, and since we believe that it is a con-
served quantity, we know that the flow does not change in magnitude.

4. There is another point that needs to be taken into consideration. When we get into details
of transport processes in later chapters, we shall see that there are three fundamentally dif-
ferent types of flows: conductive (flow through matter, caused by a potential gradient), con-
vective (transport of a quantity stored in a fluid, as a consequence of fluid flow), and
radiative (transport of a physical quantity with radiation). The relation between energy
fluxes and fluxes of fluidlike quantities only holds for conductive transports. Conductive
currents are those that are associated with their (own) potentials, so Equ.(2.13) (or
Equ.(2.8), for that matter) make sense in this respect. A conductive current IX is a current
associated with or driven by the potential difference ϕX. As we shall see in Chapters 7 and
8, energy transfers in convection and radiation take different forms.

Liquid

Gas

Liquid-gas
boundary

IV

IE P

Figure 2.18:  A gas in a vessel is 
compressed by a liquid flowing 
in. The gas has a pressure P.
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Changes in the flows in the course of time are possible, however, if energy is stored
in systems. Only if we take into account storage of this quantity do we arrive at a gen-
eral law of balance.

2.4.1 The General Law of Balance of Energy

Unless we believe that energy is either generated or disappears if chains of processes
are interrupted, we must accept the idea that energy can be stored (Section 2.1). Bod-
ies—and physical systems in general—can contain energy, and they can absorb it and
emit it, thus changing the amounts stored.

As in the case of amounts of water—or amounts of electric charge—a law of balance
relates what happens to the quantity stored as the consequence of flow into and out of
the system. Because energy can neither disappear nor appear out of the blue, we know
that amounts stored can only be changed as the result of flows. This is what we call
the law of balance of energy for a system:

Energy can be stored and it can flow. The sum of all fluxes of energy
IE,net with respect to a system tell us how fast the amount of energy
stored will change:

(2.15)

(Fig. 2.19). This form holds for every moment. For a process lasting for
a certain period, we may also say that the change of the amount of
energy stored is determined by the total amount of energy Ee,net trans-
ferred into or out of the system:

(2.16)

Ee is called an amount of energy exchanged as the result of a process. Note that one of
the properties of energy—namely that it can be released and bound—does not appear
in a law of balance. Releasing and binding take place inside the system being consid-
ered whereas a law of balance only speaks of the relation between amounts stored and
amounts flowing into and out of the system.

2.4.2 Storing Energy with the Help of Gravity

We know how to calculate energy transfers. If we add to this the knowledge contained
in the law of balance, we can determine changes of quantities of energy contained in
particular systems. A particularly useful and graphically intuitive example is the stor-
age of liquids in containers in the gravitational field. If we fill a tank with water, we
add energy to the system along with the fluid, and this energy can usually be regained
if the water is let flow out.

Imagine a storage device such as an artificial lake having a certain shape. Water con-
tained in it can flow down to a power station which is located at a certain level H below
the bottom of the lake (Fig. 2.20). If we imagine a small amount of water having mass
∆m at level h lowered to h = 0, the quantity of energy flowing out of the system is equal
to Ee = gh∆m. This quantity is different for different layers of water in the lake. It is
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Figure 2.19:  The law of balance 
of energy resembles the law of 
balance of amounts of water. The 
energy content of a system can 
only be changed as the result of 
flows of energy into and out of 
the system. Bottom: Graphical 
representation of the law of bal-
ance in a system dynamics dia-
gram.
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Figure 2.20:  Water stored in an 
artificial lake contains a certain 
amount of energy relative to an 
arbitrary zero level.
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quite intuitive that, on average, all the water is lowered from the level of the center of
mass of the liquid to the bottom. In other words, the water comes from an average level
H + hCM. The total energy that flows out, and therefore the change of the energy of the
storage system, equals

(2.17)

There is a special form of this for a straight walled tank sitting at level h = 0 and being
filled to level h0. With H = 0, hCM = h0/2, and m = ρAh0, Equ.(2.17) becomes

Here, A is the cross sectional area of the tank. If we introduce a gravitational capaci-
tance of the storage device:

the former expression can be converted to

(2.18)

2.4.3 Storing Energy in Pressure Vessels

The derivation for the change of energy of a pressure vessel resulting from the change
of volume of liquid stored in it, proceeds along similar lines to what we just did. Let
me do it here in the general form. A pressure vessel is described by its elastance or its
(hydraulic) capacitance CV(P) which, in general, is a function of pressure (see Section
1.4.2). If we add fluid to the vessel at pressure P, there is an energy current equal to
PIV accompanying the current of liquid. The integral of this energy flux over time
equals the energy communicated to the tank which is equal to the change of energy
stored:

or, after a transformation of the integral,

(2.19)

If we consider the case of constant capacitance, this results in

(2.20)

Compare this to Equ.(2.18). We see that it is equivalent to what we obtained for a
straight walled open tank in the gravitational field which corresponds to CG = const.
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2.4.4 The Energy Content of Capacitors

The derivation of the energy content (or the change of energy) of electrical capacitors
does not add anything new. The result for capacitors having constant capacitance C is:

(2.21)

We can now summarize the results for storage of energy in simple gravitational, hy-
draulic, or electric systems having constant capacitances (see Table 2.4). Note that the
results are given in terms of energy changes. Commonly, absolute energy contents are
not known and are not needed, but we can always speak of an energy content relative
to an arbitrarily chosen zero level.

2.4.5 Storing Energy in Inductors

Energy can also be stored in inductive electric and hydraulic elements. We can use
Fig. 2.12a to demonstrate how to calculate the energy content of inductors. The deri-
vation goes along the line of what we have seen in Section 2.4.3. The result for induc-
tors having constant inductance is:

(2.22)

Here, IX represents either the electric current IQ or the current of volume IV. In the
electromagnetic case, the energy is stored in the magnetic field. In a fluid system, the
energy is the energy of motion of the fluid.

2.5 ANALOGY ONCE MORE: SIMPLE ROTATIONAL MOTION

To demonstrate the power of analogical reasoning in physics once more, let us take a
brief look at some simple phenomena from rotation. Now we can include the energy
concept as well. If we restrict our discussion to the motion of bodies around a fixed
axis, models turn out to be particularly simple, having a structure very similar to those
we constructed for fluid and electric systems in Chapter 1. 

Rather than developing a formal description of concepts of rotation, I shall limit my-
self to the construction of a few dynamical models. Ideas will be discussed and listed
as we go along.

Table 2.4: Capacitors with constant capacitance

Gravitation Hydraulics Electricity

Capacitance CG CV C

Potential difference ∆(gh) ∆P U

Stored quantity ∆m = CG∆(gh) ∆V = CV∆P ∆Q = CU

Stored energy ∆E = 1/2CG∆(gh)2 ∆E = 1/2CV∆P2 ∆E = 1/2CU2

∆E C U Uf= −( )1

2
2

0
2
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2.5.1 Rotational Collision of Two Flywheels

A simple phenomenon demonstrates the nature of rotation or, put differently, the
source of a successful conceptualization of such phenomena. In an experiment, two
plexiglass disks are mounted on the same vertical axis (Fig. 2.21). They are attached
to the axis with ball bearings which allows them to spin more or less freely. The upper
wheel can be lifted slightly from the lower one. If it is made to rotate, the lower one
stays at rest. When the upper flywheel is let fall onto the second one, it interacts with
it in a way that the former slows down as the latter spins up (Fig. 2.21, center).

Figure 2.21:  Two identical plexiglass flywheels rotate about the same vertical axis and interact 
(photograph on left). In an experiment, one wheel makes a second one spin up as it is slowing 
down (see the graph at the center which shows the angular speed of the wheels; dots: experi-
mental data). Right: System dynamics diagram of a model of this system. Simulation of model: 
Solid lines in the graph (center).

Take a closer look at the data of the experiment in Fig. 2.21. The gross features are
these. The upper wheel spins at constant rate—its angular speed is (almost) constant.
When it touches the lower wheel, its angular speed goes down while the angular speed
of the lower flywheel goes up. Within a very short period of time the angular speeds
of the two wheels become the same, roughly half of the original speed. The wheels
continue to spin at constant angular speed.

A second look confirms the first with the exception of the fact that angular speeds are
not constant during the phases when the first wheel spins freely and when they spin
together. During these periods, the angular speeds decrease.

This looks suspiciously like phenomena we have seen before in fluid or electric sys-
tems. Think about it—which simple fluid system would yield data similar to the one
we have here? A little consideration reveals that the levels of a liquid in two commu-
nicating tanks each having an additional outflow will behave quite similarly.

All of this suggests that we can conceptualize rotational processes as follows. A spin-
ning body possesses a “quantity of rotational momentum,” the more it has the faster it
moves. This “quantity of rotational momentum” which is officially called spin or an-
gular momentum can be communicated to other bodies through rotational interaction.
The flow of angular momentum measures the strength of the interaction. So we expect
a law of balance of angular momentum for a body:

(2.23)
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L is the symbol for angular momentum (spin) and IL denotes fluxes of this quantity. In
the case of our experiment this means we should represent two storage elements for
spin with their associated flows (Fig. 2.21, right). There is the flow of angular momen-
tum from wheel to wheel and one flow from each wheel to the environment represent-
ing the effect of friction (we know that friction makes a wheel slow down):

(2.24)

We expect the fluxes of spin to somehow depend upon the speed of rotation. The speed
at which a wheel spins is called angular speed. The simplest idea for a relation between
spin and angular speed is

(2.25)

ω is the symbol for angular speed, and J (the moment of inertia) is the measure of how
much angular momentum a wheel needs to rotate at a given speed. The latter quantity
is clearly analogous to a capacitance (Section 1.4.2). The intuitive meaning of angular
speed is a level: levels adjust in communicating reservoirs. When Equ.(2.25) is applied
to both wheels, the angular speeds can be calculated from the angular momenta. 

This allows us to formulate ideas for the fluxes of angular momentum. If we simply
apply the ideas from fluids or electricity, we might start with linear relations between
flows and speed differences:

(2.26)

All we still need are proper initial values for the angular momenta of the two wheels.
These are chosen according to the observed initial angular speeds. Choosing values for
J and adjusting the flow constants k in Equ.(2.26), we can try to fit simulation results
to data as in the graph of Fig. 2.21 (center). Clearly, the agreement between model and
experiment is not bad at all. This does not mean, however, that we should already be
satisfied with details of the model such as the forms for the flows in Equ.(2.26). Ob-
servations are not detailed enough to make a final judgement, but we can be sure that
the structure of the model of rotational motion leads in the right direction. 

We need values for the moments of inertia of the wheels to actually make the calcula-
tions, but we know that we can choose them arbitrarily—a change of J translates into
a change of the flow constants k by the same factor. This means that, on the basis of
considerations from rotational mechanics alone, we could arbitrarily define units for
the moment of inertia or, equivalently, for angular momentum. However, rotation can
couple to other phenomena and if these have been specified already, unit values must
agree to make this coupling unique. 

We have seen in this chapter that energy provides for a means of quantifying this cou-
pling, so here is an example of the utility of the energy principle. Consider how we
might apply this principle. Simply on the basis of analogy, we can formulate the ex-
pression for the energy stored in a spinning wheel; it should take the form found in
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Table 2.4. Now we can write an expression for the balance of energy of the wheels be-
fore and after the interaction:

The energy of the spinning wheels is smaller after the collision: energy has been re-
leased and used to produce heat. If we could measure the energy released, say by mea-
suring how fast a body of water is getting warmer and comparing the result to what we
know from how electricity warms the water (Section 2.2.1), we have additional infor-
mation which lets us quantify the moment of inertia of the wheels.

2.5.2 Electric Breaking of a Flywheel

Here is a practical example that demonstrates the use of the energy principle in a dy-
namical model. A flywheel is attached to an electric generator (Fig. 2.22, left). It spins
and drives the generator. If we hook up a resistor to the generator, the wheel will spin
down as shown in Fig. 2.22 (right). As expected, the resistor will get warm. The an-
gular velocity of the flywheel is close to an exponentially decaying function. (The an-
gular speed is measured with the help of a second generator whose voltage is an
indication of how fast the wheel spins.) Let us build a model for this experiment and
experience how energy considerations become an integral part of the solution of the
problem.

The phenomenon reminds us of a container or an electric capacitor discharging. From
the previous model in Section 2.5.1 we can be assured that the idea of discharging can
be transferred to a spinning wheel as well. There are two phenomena affecting the be-
havior of the flywheel. First, the body would slow down even if we did not have a load
connected to the generator. There is friction which, by the way, could or even should
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be quantified in an independent experiment. Then there is the effect of the electric cir-
cuit upon the rest of the system which can be best understood if we draw a process
diagram of the devices making up the system (Fig. 2.23). The wheel emits angular mo-
mentum through the generator—this is why it decelerates. In the generator, the angular
momentum flows from the high level, i.e., the angular speed of the spinning body, to
the ground. If analogy can be used as a guide, energy must be released in this process
which then drives the electric process of the flow of charge through the resistors in the
circuit (there is the external load, but just as importantly, the wires making up part of
the generator have and electric resistance as well). Energy is released in the electric
process which is used to produce heat.

By applying the argument in reverse we can calculate the angular momentum flux
from the wheel through the generator. The angular momentum of the flywheel lets us
find the angular speed which converts to the open circuit voltage of the generator.
With values for the resistances in the electric circuit we calculate the electric current.
Finally, electric current and open circuit voltage of the generator yield the electric
power which is equal to the rotational power. The important new idea that completes
the model concerns the expression for rotational power:

(2.27)

By now we have become accustomed to formulating expression for the power of a pro-
cess (Section 2.2). Rotation is not any different. If angular momentum flows through
a difference of angular speeds, energy is released at a rate given by Equ.(2.27). The
idea is visualized by the standard waterfall diagram in Fig. 2.24.

2.6 THE EXCHANGE OF ENERGY IN MAGNETIC SYSTEMS

Consider the concrete example of a paramagnetic substance filling the interior of a
long straight coil. If we turn on an electric current through the coil, a magnetic field
will be set up which leads to the magnetization of the body inside. Naturally, this pro-
cess involves the transfer of energy to the magnetized body.

It is known from electromagnetic theory that the rate of transfer of energy may be ex-
pressed in terms of the product of the magnetic tension Umag and the Hertz magnetic
current Imag:

5

5. Herrmann and Schmid (1986).
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(2.28)

The magnetic tension and the magnetic current are defined as follows:

(2.29)

(2.30)

These definitions are similar to the quantities known from electricity. A and C stand
for surface area and curve, respectively. The former is the path integral of the mag-
netic field H, while the latter is the rate of change of the magnetic flux. Obviously, the
magnetic flux plays the role of the extensive magnetic quantity, and its rate of change
replaces the rate of flow of electric charge in this analogy.

Let us now derive these quantities for the special example mentioned above. The mag-
netic tension in the uniform field of the coil is equal to

(2.31)

where L is the length of the coil. Since the magnetic flux density B is taken to be uni-
form over the cross section of the coil, the magnetic current turns out to be

(2.32)

so that the magnetic energy current is equal to

(2.33)

With a paramagnetic substance in the field, the magnetic flux density may be ex-
pressed as follows:

(2.34)

M is the total magnetization of the body. If we consider only the body as the physical
system and neglect the field in empty space, the magnetic energy current associated
with the magnetization of the paramagnetic substance is

(2.35)

There is an interesting point to be made about the example just treated and the com-
pression of a gas (Section 2.3.2). The power involved in the compression of a simple
fluid and in the magnetization of a body involves the production rate or the rate of
change of an extensive quantity rather than the transfer of a quantity such as charge or
mass. Obviously, there are physical processes in which quantities are not transported.
Rather, they change their values directly at the locations where they are to be found.
Such processes may be interpreted in terms of the creation or the destruction of the
quantity involved. Production and destruction join transport processes in our descrip-
tion of nature. 
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EXERCISES AND PROBLEMS

1. Viscous oil is to be pumped from a shallow container into one lying 10 m higher up. The
pipe has a diameter of 5.0 cm and a length of 20 m. If the mass flux is required to be 10 kg/
s, how large should the power of the pump be? Draw the process diagram of the system and
the processes. Neglect the acceleration of the fluid. Take values of 800 kg/m3 and 0.20 Pa · s
for the density and the viscosity of the fluid, respectively.

2. A large oil tank is filled through a pipe at its bottom (see Fig. P.2). The flow of oil is as-
sumed to be laminar. (a) Derive the instantaneous power of the ideal pump in terms of the
length and the radius of the pipe, the viscosity and density of the oil, and the height of the
oil in the tank. (b) Express the energy needed to fill the tank up to a certain height in terms
of the hydraulic capacitance. (c) Where has the energy that was supplied gone to?

3. If you fill the tank of Problem 2 through a pipe which leads to the top of the tank (Fig. P.3),
how much energy is required? How does this compare to the results of those problems? Has
energy been lost?

4. Derive the expression for the energy stored in a charged capacitor by considering the pro-
cess of charging. Compare the result to the analogous hydraulic expression.

5. Consider two capacitors, one of them charged, connected in a circuit. (a) Calculate the final
charges and voltages of the capacitors in terms of the initial charge and the capacitances.
(b) Is the energy of the capacitors conserved? (c) Translate the problem into an equivalent
hydraulic one.

6. A capacitor (capacitance 150 µF) and a resistor (resistance 1500 Ω) are connected in series
to a battery (voltage 50 V) at time t = 0 s. The initial charge of the capacitor is equal to zero.
(a) Derive the equation of balance of the charge of the capacitor. Derive the formula for the
electric current as a function of time from its solution. (b) Draw the process diagrams for
the battery, the resistor, and the capacitor. (c) What are the values of the electrical power of
the three elements at 0.15 s? (d) What are the values of the corresponding electrical energy
currents at that point in time? (e) Calculate the rate of change of the energy of the capacitor.
(f) How large is the rate of change of the energy of the resistor?

7. A small photovoltaic panel consisting of 21 cells arranged in series is exposed to sunlight.
(The surface area of a single cell is about 15 cm2.) It is connected to a load resistor with
variable resistance. Voltage and electric current for the load resistor have been measured
for different values of the resistance (see Fig. P.7). Irradiation was about 60 W/m2 for the
first, 200 W/m2 for the second, and nearly 400 W/m2 for the third (the highest) curve. (a)
Calculate the electric power of the panel for a voltage of 4.0 V for the three characteristic
curves. (b) Determine the maximum values of the electric power for the three cases. What
are the values of the load resistance for the maximum power point for the three curves? (c)
Determine the efficiency of the panel for maximum power point conditions for the three
cases.

8. Imagine an artificial mountain lake in the shape of a cuboid of 10.0 km2 surface area, and
50 m depth. The turbine station of a power plant is located 150 m below the bottom of the
lake. Assume that the lake can be filled and drained once a year. (a) How large is the energy
stored with the water if we take the bottom of the lake as our reference level? (Assume the
lake to be full.) (b) How large is the energy stored with the water if we take the turbine sta-
tion as our reference level? (c) How large is the power of the water flowing out of the lake
to the power plant if the lake is full? If it is almost empty? Take a flow of 20.0 m3/s. (d)
How much energy is released by the water flowing out of the lake and down to the power
plant if the lake is drained completely once a year? (e) Now we cover the lake with photo-
voltaic cells. How much energy can we gain from them in one year if we assume the cells
to have an efficiency of 10%.

9. Assume that 4 capacitors of 1.0 F capacitance each are connected in parallel. We want to
charge them with the help of the photovoltaic panel of Problem 7 (Fig. P.9.1). The sun
shines at 400 W/m2 which yields the characteristic curve shown in the diagram (FIg. P.9.2).
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A resistor is between the panel and the capacitors. (a) Choose the resistor so that if it were
the only element in the circuit, we would have maximum power conditions. (b) What will
the electric current be right at the beginning (when the capacitors are still uncharged)?
What is the energy current flowing into the capacitors at that moment? (c) At a certain mo-
ment, the current through the circuit is 80 mA. What is the voltage across the capacitors at
that time? What is the energy current flowing into the capacitor at that time? What are the
electric power of the cells and the power of the resistor? (d) At a certain moment, the volt-
age across the capacitors is 5.0 V. What is the current through the circuit at that moment?
(You will have to solve a set of nonlinear equations.) What will the energy current flowing
into the capacitor be?

10. A large and shallow lake is going to be filled through a horizontal pipe with a length of 10
km. Initially, the lake is empty; in the end it is supposed to contain 105 m3 of water. Assume
the hydraulic resistance to be modeled by the law of Hagen and Poiseuille; i.e., take the
volume flux to be proportional to the pressure difference across the pipe. The pressure
drops by 102 Pa per meter of length at a volume flux of 1.0 m3/s. While the lake is being
filled, water evaporates from its surface at a rate of 0.10 m3/s. (a) If the volume flux is con-
stant and equal to 0.50 m3/s how much energy is required for pumping while filling the
lake? (b) How large should the (constant) volume flux be for the energy required to fill the
lake to be minimal?

11. Fig. P.11.1 shows a windkessel model of the systemic blood flow circuit. Resistances and
capacitance are assumed to be constant. The capacitance of the aorta is C = 2.0 · 10–9 m3/
Pa. The resistance between pump (heart) and container (aorta) is 4.0 · 107 Pa·s/m3, the one
for the systemic vessels is 4.0 · 108 Pa·s/m3. The diagrams (Fig. P.11.2) give data of a sim-
ulation of the model for one cardiac cycle of 0.60 s. In Fig. 11.2 (left), we see the pressure
at the exit of the pump (PV) and the capacitive pressure difference for the blood in the aorta
(∆PC). The volume currents out of the heart (IVH) and out of the aorta (IVs) are shown in
Fig. P.11.2 (right). Data apply to the case of a sheep. 

(a) Identify the functions in the diagrams. (b) Determine the energy current associated with
the blood flow from the heart and sketch the result as a function of time. Use this to deter-
mine the amount of energy flowing from the heart in one cycle. (c) How can the result from
(b) be used to estimate the energy released in one cycle by the heart? What is a realistic
value for the energy use of the heart of a sheep? (d) Determine the (lost) power for the flow
from the heart to the aorta and use this to calculate the energy lost due to friction. (e) From
when until when does the energy of the blood in the aorta increase? Determine the maxi-
mum change of energy of the blood in the aorta. (f) Formulate the law of balance of energy
of the blood in the aorta in instantaneous form and add constitutive expressions to the equa-
tion.

12. Derive the expression for the energy contained in an inductive element (consider the pro-
cess of starting a current flowing through a circuit containing a battery, an inductor, and a
resistor). Translate the result for hydraulics. Show that you can obtain the formula for the
inductance of a pipe with fluid by comparing the energy of the inductive element with the
kinetic energy of the fluid in the pipe.

É É É É

É

É
É

É

É

É

É
ÉÉ0

50

100

150

0 4 8 12

E
le

ct
ri

c 
cu

rr
en

t /
 m

A

Voltage / V

Figure P.9.2

Pump

Windkessel

Valve
Hose

IVs

IVH

PV

∆PC

Figure P.11.1

Figure P.11.2
0.0E+0

5.0E+3

1.0E+4

1.5E+4

1.2 1.4 1.6 1.8

Pr
es

su
re

 / 
Pa

Time / s

0.0E+0

5.0E-5

1.0E-4

1.5E-4

2.0E-4

1.2 1.4 1.6 1.8

V
ol

um
e 

cu
rr

en
t /

 m
^3

/s

Time / s


	CHAPTER 2
	ENERGY IN PHYSICAL PROCESSES
	2.1 ENERGY AND COUPLING IN CHAINS OF PROCESSES
	2.1.1 Processes Driving Other Processes
	2.1.2 Chains of Processes: Transferring Energy
	2.1.3 Interrupting and Resuming Processes: The Storage of Energy
	2.1.4 Conservation of Energy: Can Energy Be Lost or Created?
	2.1.5 The Properties of Energy

	2.2 POWER: THE RATE AT WHICH ENERGY IS RELEASED IN A PROCESS
	2.2.1 Power of an Electric Process
	2.2.2 Hydroelectric Power Plants and the Power of a Gravitational Process
	2.2.3 The Efficiency of Processes
	2.2.4 Power of a Hydraulic Process
	2.2.5 Power in Inductive Processes
	2.2.6 Processes and Power in General
	2.2.7 Electric and Hydraulic Circuits: The Balance of Power

	2.3 ENERGY TRANSFER AND ENERGY CARRIERS
	2.3.1 Energy Carriers, Potentials, and Energy Currents
	2.3.2 Energy Transfer in Compression

	2.4 ENERGY STORAGE AND THE BALANCE OF ENERGY
	2.4.1 The General Law of Balance of Energy
	2.4.2 Storing Energy with the Help of Gravity
	2.4.3 Storing Energy in Pressure Vessels
	2.4.4 The Energy Content of Capacitors
	2.4.5 Storing Energy in Inductors

	2.5 ANALOGY ONCE MORE: SIMPLE ROTATIONAL MOTION
	2.5.1 Rotational Collision of Two Flywheels
	2.5.2 Electric Breaking of a Flywheel

	2.6 THE EXCHANGE OF ENERGY IN MAGNETIC SYSTEMS
	EXERCISES AND PROBLEMS



