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Introduction

In this introductory chapter we give a short account of the contents of the
book and discuss simple notions and examples of the fixed point theory to be
developed and applied to more involved applications in later chapters. As an
introduction to the fixed point theory and its applications let us recall two
fixed point theorems on a nonempty closed and bounded subset P of Rm, one
purely topological (Brouwer’s fixed point theorem) and one order-theoretically
based. A point x ∈ P is called a fixed point of a function G : P → P if x = Gx.
We assume that Rm is equipped with Euclidean metric.

Theorem 1.1 (Brouwer’s Fixed Point Theorem). If P is a closed,
bounded, and convex subset of Rm, then every continuous function G : P → P
has a fixed point.

To formulate the purely order-theoretic fixed point theorem we equip Rm with
the coordinatewise partial order ’≤’, i.e., for x, y ∈ Rm, we define x ≤ y if
and only if xi ≤ yi, i = 1, . . . ,m. A function G : P → P is called increasing if
x ≤ y implies Gx ≤ Gy. Further, we will need the notion of a sup-center of
the set P , which is defined as follows: A point c ∈ P is called a sup-center of
P if sup{c, x} ∈ P for each x ∈ P . The next fixed point theorem is a special
case of Corollary 2.41(a) of Chap. 2.

Theorem 1.2. If P is a closed and bounded subset of Rm having a sup-center,
then every increasing function G : P → P has a fixed point.

Note that in Theorem 1.2 neither continuity of the fixed point operator nor
convexity of the set P is needed. Let us give two examples of sets P that
have the required properties of Theorem 1.2. The geometrical center c =
(c1, . . . , cm) ∈ Rm of every set

P = {(x1, . . . , xm) ∈ Rm :
m∑
i=1

|xi − ci|p ≤ rp}, p, r ∈ (0,∞), (1.1)
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Fig. 1.1. Closed Bounded Set in R2 with (0, 0) as Sup-Center

is a sup-center of P . Because these sets are also closed and bounded, then
every increasing mapping G : P → P has a fixed point. Notice that P is
not convex if 0 < p < 1, as assumed in Theorem 1.1. If P has the smallest
element c, then c is a sup-center of P . If m = 2, a necessary and sufficient
condition for a point c = (c1, c2) of P to be a sup-center of P is that whenever
a point y = (y1, y2) of P and c are unordered, then (y1, c2) ∈ P if y2 < c2 and
(c1, y2) ∈ P if y1 < c1. The second example of a set P ⊂ R2 is illustrated by
Fig. 1.1, where P consists of all the solid lines and the isolated points. One
easily verifies that c = (0, 0) is a sup-center.

Theorem 1.1 and Theorem 1.2 can be applied, e.g., in the study of the
solvability of a finite system of equations. For simplicity consider the system

u = u(x, y), v = v(x, y). (1.2)

Assume that P is a closed and bounded subset of R2, and that G = (u, v)
maps P into itself. By Theorem 1.1 the system (1.2) has a solution if G is
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continuous and P is convex. But there is no constructive method to solve
system (1.2) under these hypotheses. By Theorem 1.2 the system (1.2) has
a solution if G is increasing and P is only assumed to possess a sup-center.
As we shall see in Chap. 2 the proof of Theorem 1.2 is constructive. In the
special case when strictly monotone sequences of the image G[P ] are finite,
the following algorithm can be applied to obtain a solution of (1.2) when
the sup-center of P is c = (c1, c2). Maple commands ‘fi;od’ in the following
program mean ‘end if;end do’.

u := u(x, y) : v := v(x, y) : x := c1 : y := c2 :
for k from 0 while abs(u− x) + abs(v − y) > 0 do;
if (u− x)(v − y) < 0 then x := max{x, u} : y := max{y, v}

else x := u : y := v:fi;od;
sol := (x, y);

It is shown in Chap. 2 that the above algorithm can be applied to approximate
a solution of (1.2) in the case when G is continuous and increasing, replacing
G by its suitable upper and lower estimates.

Consider next generalizations of Theorem 1.1 and Theorem 1.2 to the case
when P is a nonempty subset of an infinite-dimensional normed space E. The
generalization of Brouwer’s fixed point theorem to infinite-dimensional Ba-
nach spaces requires the compactness of the fixed point operator. As compact
operators play a central role also in later chapters we recall their definition
here for convenience, see, e.g., [62, 228].

Definition 1.3. Let X and Y be normed spaces, and T : D(T ) ⊆ X → Y
an operator with domain D(T ). The operator T is called compact iff T is
continuous, and T maps bounded sets into relatively compact sets. Compact
operators are also called completely continuous.

In Theorem 1.5 we assume that E is ordered by a closed and convex cone E+

for which −E+ ∩ E+ = {0}. A subset A of P is said to have a sup-center in
P if there exists a c ∈ P such that sup{c, x} exists in E and belongs to P for
every x ∈ A.

Theorem 1.4 (Schauder’s Fixed Point Theorem). Let P be a nonempty,
closed, bounded, and convex subset of the Banach space E, and assume that
G : P → P is compact. Then G has a fixed point.

Theorem 1.5 ([116]). Let P be a subset of an ordered normed space E, and
let G : P → P be increasing. If the weak closure of G[P ] has a sup-center in
P , and if monotone sequences of G[P ] have weak limits in P , then G has a
fixed point.

If P is, e.g., the closed unit ball in l2 defined by

l2 = {x = (x1, x2, . . . ) :
∞∑
i=1

|xi|2 <∞},
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then the conclusion of Theorem 1.4 does not hold if G : P → P is only
assumed to be continuous (see Kakutani’s counterexample). Thus the result
of Theorem 1.4 is not valid if the compactness hypothesis of G is missing.
On the other hand, no compactness or continuity is assumed in Theorem 1.5,
which is also a consequence of Proposition 2.40(a). The geometrical centers
of bounded and closed balls of p-normed spaces lp, ordered coordinatewise,
and Lp(Ω), 1 ≤ p < ∞, ordered a.e. pointwise, are their sup-centers. This
is true also for closed and bounded balls of Sobolev spaces W 1,p(Ω) and
W 1,p

0 (Ω), 1 < p <∞, ordered a.e. pointwise. Moreover, these balls are weakly
sequentially closed and their monotone sequences have weak limits. Hence, if
P is any of these balls, then every increasing function G : P → P has a fixed
point by Theorem 1.5. To demonstrate the applicability of Theorem 1.4 and
Theorem 1.5 let us consider two simple examples of elliptic Dirichlet boundary
value problems with homogeneous boundary values.

Example 1.6.

−∆u(x) = f(x, u(x)) in Ω, u = 0 on ∂Ω, (1.3)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω. Let us
assume that f satisfies the following conditions:

(f1) f : Ω×R → R is a Carathéodory function, i.e., x 7→ f(x, s) is measurable
in Ω for all s ∈ R, and s 7→ f(x, s) is continuous for almost all (a.a.)
x ∈ Ω.

(f2) The function f fulfills the following growth condition: there is a function
k ∈ L2

+(Ω) and a positive constant a such that for a.a. x ∈ Ω and for all
s ∈ R we have

|f(x, s)| ≤ k(x) + a|s|.

By L2
+(Ω) we denote the positive cone of all nonnegative functions of L2(Ω).

Setting V0 = W 1,2
0 (Ω), V ∗

0 its dual space, A = −∆, and defining A : V0 → V ∗
0

by

〈Au, ϕ〉 =
∫
Ω

∇u∇ϕdx, ∀ ϕ ∈ V0,

then A : V0 → V ∗
0 is a strongly monotone, bounded, and continuous operator.

Denoting by F the Nemytskij operator associated with f by

F (u)(x) = f(x, u(x)),

then, in view of (f1)–(f2), F : L2(Ω) → L2(Ω) is continuous and bounded.
The compact embedding i : V0 ↪→ L2(Ω) readily implies that the operator
F = i∗ ◦ F ◦ i : V0 → V ∗

0 (i∗ is the adjoint operator of i) given by

〈F(u), ϕ〉 =
∫
Ω

F (u)ϕdx, ∀ ϕ ∈ V0
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is completely continuous. With these notations the weak solution of (1.3) can
be given the following form: Find u ∈ V0 such that

Au−F(u) = 0 in V ∗
0 . (1.4)

Since F : V0 → V ∗
0 is completely continuous and bounded, and A : V0 → V ∗

0 is
strongly monotone, continuous, and bounded, it follows that A−F : V0 → V ∗

0

is, in particular, continuous, bounded, and pseudomonotone. The classical
theory on pseudomonotone operators due to Brezis and Browder (see, e.g.,
[229]) ensures that if A−F : V0 → V ∗

0 is, in addition, coercive, then A−F :
V0 → V ∗

0 is surjective, which means that (1.4) has a solution, i.e., (1.3) has
a weak solution. A sufficient condition to ensure coerciveness of A − F is
that the positive constant a in (f2) satisfies a < λ1, where λ1 is the first
Dirichlet eigenvalue of A = −∆, which is known to be positive and simple,
see [6]. This can readily be verified by using (f2) and the following variational
characterization of the first eigenvalue λ1 by

λ1 = inf
06=v∈V0

∫
Ω
|∇v|2 dx∫
Ω
|v|2 dx

.

Now we estimate as follows

〈Au−F(u), u〉 ≥
∫
Ω

|∇u|2 dx− ‖k‖2‖u‖2 − a‖u‖22

≥
(
1− a

λ1

)
‖∇u‖22 −

‖k‖2√
λ1

‖∇u‖2,

where ‖ · ‖2 = ‖ · ‖L2(Ω). As ‖u‖ = ‖∇u‖2 is an equivalent norm in V0, we see
from the last estimate that

1
‖∇u‖2

〈Au−F(u), u〉 → ∞ as ‖∇u‖2 →∞,

which proves the coercivity, and thus the existence of solutions of (1.4).
An alternative approach to the existence proof for (1.4) that is closely

related to the pseudomonotone operator theory is based on Schauder’s fixed
point theorem (see Theorem 1.4). To this end, problem (1.4) is transformed
into a fixed point equation as follows: As A = −∆ : V0 → V ∗

0 is a linear,
strongly monotone, and bounded operator, it follows that the inverse A−1 :
V ∗

0 → V0 is linear and bounded, which allows us to rewrite (1.4) in the form:
Find u ∈ V0 such that

u = A−1 ◦ F(u) (1.5)

holds, i.e., that u ∈ V0 is fixed point of the operator

G = A−1 ◦ F .

Since under hypotheses (f1)–(f2), F : V0 → V ∗
0 is completely continuous, and

A−1 : V ∗
0 → V0 is linear and bounded, it readily follows that G : V0 → V ∗

0 is
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continuous and compact. In order to apply Schauder’s theorem we are going to
verify that under the same assumption on a, i.e., a < λ1, G maps a closed ball
B(0, R) ⊂ V0 into itself, which finally allows us to apply Schauder’s theorem,
and thus the existence of solutions of (1.4). Let v ∈ B(0, R), and denote
u = Gv. Then, by definition of the operator G, u ∈ V0 satisfies∫

Ω

∇u∇ϕdx =
∫
Ω

F (v)ϕdx, ∀ ϕ ∈ V0.

In particular, the last equation holds for u = ϕ, which yields

‖∇u‖22 =
∫
Ω

F (v)u dx ≤ ‖F (v)‖2‖u‖2 ≤ ‖k‖2‖u‖2 + a‖v‖2‖u‖2

≤ a

λ1
‖∇v‖2‖∇u‖2 +

‖k‖2√
λ1

‖∇u‖2,

which yields (note u = Gv) the norm estimate in V0

‖Gv‖V0 ≤
a

λ1
‖∇v‖2 +

‖k‖2√
λ1

, ∀ v ∈ V0,

where ‖u‖V0 := ‖∇u‖2. Thus if R > 0 is chosen in such a way that

a

λ1
R+

‖k‖2√
λ1

≤ R,

then G provides a mapping of B(0, R) into itself. Such an R always exists,
because a

λ1
< 1. This completes the existence proof via Schauder’s fixed point

theorem.

Schauder’s theorem fails if F : V0 → V ∗
0 lacks compactness, which may occur,

e.g., when in (f2) a critical growth of the form

|f(x, s)| ≤ k(x) + a|s|2
∗−1

is allowed, where 2∗ is the critical Sobolev exponent. Lack of compactness
occurs also if (1.3) is studied in unbounded domains, or if s 7→ f(x, s) is no
longer continuous. It is Theorem 1.5 that allows us to deal with these kinds
of problems provided the fixed point operator G is increasing. In particular,
if only continuity of G is violated, then neither monotone operator theory
in the sense of Brezis–Browder–Lions–Minty nor fixed point theorems that
assume as a least requirement the continuity of the fixed point operator can
be applied. To give a simple example, where standard methods fail, consider
the next example.

Example 1.7. Let Ω be as in the example before. We study the following dis-
continuous Dirichlet boundary value problem:
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−∆u(x) = a[u(x)] + k(x) in Ω, u = 0 on ∂Ω, (1.6)

where a > 0 is some constant, k ∈ L2(Ω), and s 7→ [s] stands for the integer
function, i.e., [s] denotes the greatest integer with [s] ≤ s. Apparently, in this
case f(x, s) := a[s] + k(x) is discontinuous in s ∈ R. Set k̃(x) = |k(x)| + 1,
then we have k̃ ∈ L2

+(Ω), and the following estimate holds

|f(x, s)| ≤ k̃(x) + a|s|.

Due to the structure of f the Nemytskij operator F : L2(Ω) → L2(Ω) is still
well defined and bounded, however, F is no longer continuous. With the same
notation as in Example 1.6 we can transform the elliptic problem (1.6) into
the fixed point equation in V0 of the form

u = A−1 ◦ F(u). (1.7)

The same estimate as in the previous example shows that the fixed point
operator G = A−1 ◦ F maps a ball B(0, R̃) ⊂ V0 into itself provided a < λ1,
and R̃ > 0 is sufficiently large. Note, however, that the fixed point operator is
no longer continuous. Now, we easily observe that G : V0 → V0 is increasing
with respect to the underlying natural partial order in V0 defined via the order
cone L2

+(Ω). The latter is a simple consequence of the fact that F : V0 → V ∗
0

is increasing, and because of the inverse monotonicity of A−1, which is a
consequence of the maximum principle for the Laplacian. Taking into account
the comments after Theorem 1.5, we may apply Theorem 1.5 to ensure that
G has a fixed point, which proves the existence of weak solutions for (1.6)
provided 0 < a < λ1. It should be noted that the classical fixed point results
for increasing self-mappings due to Amann, Tarski, and Bourbaki (see [228])
cannot be applied here.

Further applications of Theorem 1.5 to deal with elliptic problems that
lack compactness are demonstrated in [48], where we prove existence results
for elliptic problems with critical growth or discontinuity of the data.

The results of Theorem 1.4 and Theorem 1.5 can be extended to set-valued
(also called multi-valued) mappings. Let us assume that P is a nonempty
subset of a topological space X. In Theorem 1.9 we assume that X is equipped
with such a partial ordering that the order intervals [a, b] = {x ∈ X : a ≤ x ≤
b} are closed. Denote by 2P the set of all subsets of P . An element x of P is
called a fixed point of a set-valued mapping F : P → 2P if x ∈ F(x). We say
that F is increasing if, whenever x ≤ y in P , then for every z ∈ F(x) there
exists a w ∈ F(y) such that z ≤ w, and for every w ∈ F(y) there exists a
z ∈ F(x) such that z ≤ w.

Theorem 1.8 (Generalized Theorem of Kakutani). A multi-valued func-
tion F : P → 2P has a fixed point if P is a nonempty, compact, and convex set
in a locally convex Hausdorff space X, F : P → 2P is upper semi-continuous,
and if the set F(x) is nonempty, closed, and convex for all x ∈ P .
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The following theorem is a consequence of Theorem 2.12, which is proved
in Chap. 2.

Theorem 1.9. A multi-valued function F : P → 2P has a fixed point if F is
increasing, its values F(x) are nonempty and compact for all x ∈ P , chains
of F [P ] have supremums and infimums, and if F [P ] has a sup-center in P .

In particular, if P is any set defined in (1.1), then every increasing mapping
F : P → 2P whose values are nonempty closed subsets of Rm has a fixed
point by Theorem 1.9. As a further consequence of Theorem 1.9 one gets
the following order-theoretic fixed point result in infinite-dimensional ordered
Banach spaces, which is useful in applications to discontinuous differential
equations (see Theorem 4.37).

Theorem 1.10. Let P be a closed and bounded ball in a reflexive lattice-
ordered Banach space X, and assume that ‖x+‖ = ‖ sup{0, x}‖ ≤ ‖x‖ holds
for all x ∈ X. Then every increasing mapping F : P → 2P , whose values are
nonempty and weakly sequentially closed, has a fixed point.

To give an idea of how Theorem 1.10 can be applied to differential equa-
tions, let us consider a simple example.

Example 1.11. Consider the following slightly extended version of problem
(1.6):

−∆u(x) = a[u(x)] + g(x, u(x)) + k(x) in Ω, u = 0 on ∂Ω, (1.8)

where g : Ω × R → R is a Carathéodory function with the following growth
condition

(g) There exist a positive constant b with b < λ1 − a, and a h ∈ L2(Ω), such
that for a.a. x ∈ Ω and for all s ∈ R

|g(x, s)| ≤ h(x) + b|s|

holds. Here a and λ1 are as in Example 1.7

If we rewrite the right-hand side of equation (1.8) in the form

f(x, s, r) := a[r] + g(x, s) + k(x), (1.9)

of the right-hand side of (1.8). This allows an approach toward the existence
of solutions of (1.8) by means of the multi-valued fixed point Theorem 1.9.
Note, s 7→ f(x, s, r) is continuous, and r 7→ f(x, s, r) is discontinuous and
monotone increasing. Let v ∈ V0 be fixed, and consider the boundary value
problem

−∆u(x) = f(x, u(x), v(x)) in Ω, u = 0 on ∂Ω. (1.10)

then we can distinguish between the continuous and discontinuous dependence
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As the function (x, s) 7→ f(x, s, v(x)) with f defined in (1.9) is a Carathéodory
function, one can apply the same approach as in Example 1.6 to get the
existence of solutions for (1.10). For fixed v ∈ V0, denote now by Gv the set
of all solutions of (1.10). This provides a multi-valued mapping G : V0 → 2V0 ,
and certainly any fixed point of G is a solution of the original boundary
value problem (1.8), and vice versa. By similar estimates as in Examples
1.6 and 1.7 one can show that under the given assumptions, in particular
due to 0 < a + b < λ1, there is a closed ball B(0, R) ⊂ V0 such that the
multi-valued mapping G maps B(0, R) into itself. As V0 is a reflexive lattice-
ordered Banach space satisfying ‖u+‖ = ‖ sup{0, u}‖ ≤ ‖u‖ for all u ∈ V0,
for G : B(0, R) → 2B(0,R) to possess a fixed point it is enough to show that
G : B(0, R) → 2B(0,R) is increasing, and that the images Gv are weakly
sequentially closed, see Theorem 4.37. This will be demonstrated for more
involved elliptic problems in Chap. 4.

Chapter 3 is devoted to comparison principles for, in general, multi-valued
elliptic and parabolic variational inequalities, with an account of the main
differences between them. Elliptic multi-valued variational inequalities of the
following kind are considered: Let K ⊆W 1,p(Ω) be a closed convex set. Find
u ∈ K, η ∈ Lq(Ω), and ξ ∈ Lq(∂Ω) satisfying:

η(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω, (1.11)

〈Au− h, v − u〉+
∫
Ω

η (v − u) dx+
∫
∂Ω

ξ (γv − γu) dσ ≥ 0, ∀ v ∈ K, (1.12)

where s 7→ ∂jk(x, s) are given by Clarke’s generalized gradient of locally
Lipschitz functions s 7→ jk(x, s), k = 1, 2, γ is the trace operator, and A
is some quasilinear elliptic operator of Leray–Lions type. As for parabolic
multi-valued variational inequalities, the underlying solution space is

W = {u ∈ X : ∂u/∂t ∈ X∗},

where X = Lp(0, τ ;W 1,p(Ω)), and X∗ is its dual space. Consider the time-
derivative L = ∂

∂t : D(L) → X∗ as an operator from the domain D(L) to X∗

where D(L) is given by

D(L) = {u ∈W : u(0) = 0},

and let K ⊆ X be closed and convex. The following general class of multi-
valued parabolic variational inequalities is treated in Chap. 3: Find u ∈ K ∩
D(L), η ∈ Lq(Q), and ξ ∈ Lq(Γ ) satisfying:

η(x, t) ∈ ∂j1(x, t, u(x, t)), for a.e. (x, t) ∈ Q, (1.13)
ξ(x, t) ∈ ∂j2(x, t, γu(x, t)), for a.e. x ∈ Γ, and (1.14)

〈Lu+Au−h, v−u〉+
∫
Q

η (v−u) dxdt+
∫
Γ

ξ (γv−γu) dΓ ≥ 0, ∀ v ∈ K, (1.15)
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where Q = Ω × (0, τ) and Γ = ∂Ω × (0, τ). For both problems (1.11)–(1.12)
and (1.13)–(1.15) we establish existence and comparison results in terms of
appropriately defined sub- and supersolutions, and characterize their solution
sets topologically and order-theoretically. We are demonstrating by a number
of examples that the variational inequality problems (1.11)–(1.12) and (1.13)–
(1.15) include a wide range of specific elliptic and parabolic boundary value
problems and variational inequalities. In this sense, Chap. 3 is not only a
prerequisite for Chaps. 4 and 5, but it is of interest on its own and can be
read independently.

In Chaps. 4 and 5 we apply the fixed point results of Chap. 2 combined
with the comparison results of Chap. 3 to deal with discontinuous single and
multi-valued elliptic and parabolic problems of different kinds. In particu-
lar, we consider nonlocal, discontinuous elliptic and parabolic boundary value
problems and multi-valued elliptic problems with discontinuously perturbed
Clarke’s generalized gradient. In the study of those problems, besides fixed
point and comparison results, the existence of extremal solutions of certain as-
sociated auxiliary problems play an important role. Extremal solution results
that are proved in Chap. 3 require rather involved techniques. These results
are used to transform a given multi-valued elliptic or parabolic problem into
a fixed point equation.

Differential and integral equations treated in Sects. 6.1–6.4 and 7.1–7.2
contain functions that are Henstock–Lebesgue (HL) integrable with respect
to the independent variable. A function g from a compact real interval [a, b] to
a Banach space E is called HL integrable if there is a function f : [a, b] → E,
called a primitive of g, with the following property: To each ε > 0 there corre-
sponds such a function δ : [a, b] → (0,∞) that whenever [a, b] = ∪mi=1[ti−1, ti]
and ξi ∈ [ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for all i = 1, . . . ,m, then

m∑
i=1

‖f(ti)− f(ti−1)− g(ξi)(ti − ti−1)‖ < ε. (1.16)

Criteria for HL integrability that are sufficient in most of our applications are
given by the following lemma.

Lemma 1.12. Given a function g : [a, b] → E, assume there exists a con-
tinuous function f : [a, b] → E and a countable subset Z of [a, b] such that
f ′(t) = g(t) for all t ∈ [a, b] \ Z. Then g is HL integrable on [a, b], and f is a
primitive of g.

Proof: Since Z is countable, it can be represented in the form Z = {xj}j∈N.
Let ε > 0 be given. Since f is continuous, and the values of g have finite norms,
then for every xj ∈ Z there exists a δ(xj) > 0 such that ‖f(t̄)−f(t)‖ < 2−j−1ε,
and ‖g(xj)‖(t̄− t) < 2−j−1ε whenever xj − δ(xj) < t ≤ xj ≤ t̄ < xj + δ(xj).

To each ξ ∈ [a, b] \Z there corresponds, since f ′(ξ) exists, such a δ(ξ) > 0
that ‖f(t̄) − f(t) − f ′(ξ)(t̄ − t)‖ < ε(t̄ − t)/(b − a) whenever ξ ∈ [t, t̄] ⊂
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(ξ − δ(ξ), ξ + δ(ξ)). Consequently, if a = t0 < t1 < · · · < tm = b, and if
ξi ∈ [ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for all i = 1, . . . ,m, then

m∑
i=1

‖f(ti)− f(ti−1)− g(ξi)(ti − ti−1)‖

≤
∑

ξi=xj∈Z

(‖f(ti)− f(ti−1)‖+ ‖g(xj)‖(ti − ti−1))

+
∑

ξi∈[a,b]\Z

‖f(ti)− f(ti−1)− f ′(ξi)(ti − ti−1)‖ ≤ 2ε.

Thus g is HL integrable and f is its primitive. ut

Remark 1.13. If the set Z in Lemma 1.12 is uncountable, an extra condition,
called the Strong Lusin Condition (see Chap. 9), is needed to ensure HL
integrability.

Compared with Lebesgue and Bochner integrability, the definition of HL
integrability is easier to understand because no measure theory is needed.
Moreover, all Bochner integrable (i.e., in real-valued case Lebesgue integrable)
functions are HL integrable, but not conversely. For instance, HL integrability
encloses improper integrals. Consider the real-valued function f defined on
[0, 1] by f(0) = 0 and f(t) = t2 cos(1/t2) for t ∈ (0, 1]. This function is
differentiable on [0, 1], whence f ′ is HL integrable by Lemma 1.12. However,
f ′ is not Lebesgue integrable on [0, 1]. More generally, let t be called a singular
point of the domain interval of a real-valued function that is not Lebesgue
integrable on any subinterval that contains t. Then (cf. [167]) there exist “HL
integrable functions on an interval that admit a set of singular points with its
measure as close as possible but not equal to that of the whole interval.”

If g is HL integrable on [a, b], it is HL integrable on every closed subinterval
[c, d] of [a, b]. The Henstock–Kurzweil integral of g over [c, d] is defined by

K

∫ d

c

g(s) ds := f(d)− f(c), where f is a primitive of g.

The main advantage of the Henstock–Kurzweil integral is its applicability for
integration of highly oscillatory functions that occur in quantum theory and
nonlinear analysis. This integral provides a tool to construct a rigorous math-
ematical formulation for Feynman’s path integral, which plays an important
role in quantum physics (see, e.g., [143, 182]).

On the other hand, as stated in [98, p.13], the most important factor pre-
venting a widespread use of the Henstock–Kurzweil integral in engineering,
mathematics, and physics has been the lack of a natural Banach space struc-
ture for the class of HL integrable functions, even in the case when E = R.
However, if E is ordered, the validity of the dominated and monotone con-
vergence theorems, which we prove for order-bounded sequences of HL inte-
grable functions (see Chap. 9), considerably improve the applicability of the
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Henstock–Kurzweil integral in Nonlinear Analysis. Combined with fixed point
theorems in ordered normed spaces presented in Chap. 2, these convergence
theorems provide effective tools to solve differential and integral equations
that contain HL integrable valued functions and discontinuous nonlinearities.
All this will be discussed in detail in Chaps. 6 and 7 and shows once more the
importance of the order structure of the underlying function spaces. In par-
ticular, the above stated lack of a Banach space structure causes no problems
in our studies. Moreover, as the following simple example shows, the ordering
allows us to determine the smallest and greatest solutions of such equations.

Example 1.14. Determine the smallest and the greatest continuous solutions
of the following Cauchy problem:

y′(t) = q(t, y(t), y) for a.e. t ∈ J := [0, 4], y(0) = 0, (1.17)

where

q(t, x, y) = p(t) sgn(x) + h(y)(1 + cos(t)),

p(t) =
∣∣∣ cos

(1
t

)∣∣∣+ 1
t
sgn
(

cos
(1
t

))
sin
(1
t

)
,

h(y) =
[
2 arctan

(∫ 4

1

y(s) ds
)]
, sgn(x) =

 1, x > 0,
0, x = 0,

−1, x < 0,

[x] = max{n ∈ Z : n ≤ x}.

(1.18)

Note that the bracket function, called the greatest integer function, occurs in
the function h.

Solution: If y ∈ C(J,R) and y(t) > 0 when t > 0, then sgn(y(t)) = 1 when
t > 0. Thus

q(t, y(t), y) = qy(t) := p(t) + h(y)(1 + cos(t)), t ∈ J.

The function fy : J → R, defined by

fy(0) = 0, fy(t) = t
∣∣∣ cos

(1
t

)∣∣∣+ h(y)(t+ sin(t)), t ∈ (0, 4],

is continuous, and f ′y(t) = qy(t) if t ∈ (0, 4] and t 6= 1
(2n+1)π , n ∈ N0. Thus qy

is HL integrable on J and fy is its primitive by Lemma 1.12. This result and
the definitions of fy, qy and the Henstock–Kurzweil integral imply that

Gy(t) := K

∫ t

0

q(s, y(s), y) ds = fy(t), t ∈ J.

Moreover, h(y) =
[
2 arctan

(∫ 4

1
y(s) ds

)]
≤ 3 for every y ∈ C(J,R). Thus,

defining
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y∗(t) = t
∣∣∣ cos

(1
t

)∣∣∣+ 3(t+ sin(t)), t ∈ (0, 4], y∗(0) = 0,

then fy(t) ≤ y∗(t) for all t ∈ J and y ∈ C(J,R). On the other hand, it is easy

to show that h(y∗) =
[
2 arctan

(∫ 4

1
y∗(s) ds

)]
= 3. Consequently,

y∗(t) = fy∗(t) = Gy∗(t), t ∈ J.

It follows from the above equation by differentiation that

(y∗)′(t) = f ′y∗(t) = qy∗(t) = q(t, y∗(t), y∗), t ∈ (0, 4], t 6= 1
(2n+ 1)π

, n ∈ N0.

Moreover y∗(0) = 0, so that y∗ is a solution of problem (1.17). The above
reasoning shows also that if y ∈ C(J,R) is a solution of problem (1.17), then
y(t) ≤ y∗(t) for every t ∈ J . Thus y∗ is the greatest continuous solution of
problem (1.17).

By similar reasoning one can show that the smallest solution of the Cauchy
problem (1.17) is

y∗(t) = −t
∣∣∣ cos

(1
t

)∣∣∣− 4(t+ sin(t)), t ∈ (0, 4], y∗(0) = 0.

The function (t, x, y) 7→ q(t, x, y), defined in (1.18), has the following prop-
erties.

• It is HL integrable, but it is neither Lebesgue integrable nor continuous
with respect to the independent variable t if x 6= 0, because p is not
Lebesgue integrable.

• Its dependence on all the variables t, x, and y is discontinuous, since the
signum function sgn, the greatest integer function [·], and the function p
are discontinuous.

• Its dependence on the unknown function y is nonlocal, since the integral
of function y appears in the argument of the arctan-function.

• Its dependence on x is not monotone, since p attains positive and neg-
ative values in a infinite number of disjoint sets of positive measure.
For instance, y∗(t) > y∗(t) for all t ∈ (0, 4], but the difference func-
tion t 7→ q(t, y∗(t), y∗) − q(t, y∗(t), y∗) = 2p(t) + 7(t + sin(t)) is neither
nonnegative-valued nor Lebesgue integrable on J .

The basic theory of Banach-valued HL integrable functions needed in Chaps.
6 and 7 is presented in Chap. 9. However, readers who are interested in Real
Analysis may well consider the functions to be real-valued. For those readers
who are familiar with Bochner integrability theory, notice that all the theoret-
ical results of Chaps. 6 and 7 where HL integrability is assumed remain valid
if HL integrability is replaced by Bochner integrability. As far as the authors
know, even the so obtained special cases are not presented in any other book.
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In Sect. 6.5 we study functional differential equations equipped with a
functional initial condition in an ordered Banach space E. There we need
fixed point results for an increasing mapping G : P → P , where P is a subset
of the Cartesian product of the space L1(J,E) of Bochner integrable functions
from J := [t0, t1] to E and the space C(J0, E) of continuous functions from
J0 := [t0 − r, t0] to E. The difficulties one is faced with in the treatment of
the considered problems are, first, that only a.e. pointwise weak convergence
in L1(J,E) is available, and second, monotone and bounded sequences of
the pointwise ordered space C(J0, E) need not necessarily have supremums
and infimums in C(J0, E). The following purely order-theoretic fixed point
theorem, which is proved in Chap. 2, is the main tool that will allow us to
overcome the above described difficulties.

Theorem 1.15. Let G be an increasing self-mapping of a partially ordered
set P such that chains of the range G[P ] of G have supremums and infimums
in P , and that the set of these supremums and infimums has a sup-center.
Then G has minimal and maximal fixed points, as well as fixed points that are
increasing with respect to G.

This fixed point theorem will be applied, in particular, in Sects. 6.5 and 7.3
to prove existence and comparison results for solutions of operator equations
in partially ordered sets, integral equations, as well as implicit functional
differential problems in ordered Banach spaces. It is noteworthy that the data
of the considered problems, i.e., operators and functions involved, are allowed
to depend discontinuously on all their arguments. Moreover, we do not suppose
the existence of subsolutions and/or supersolutions in the treatment.

The abstract order-theoretic fixed poind theory developed in Chap. 2 has
been proved to be an extremely powerful tool in dealing with Nash equilibria
for normal form games, which is the subject of Chap. 8.

John Nash invented in [185] an equilibrium concept that now bears his
name. Because of its importance in economics, Nash earned the Nobel Prize
for Economics in 1994. In [185] Nash described his equilibrium concept in
terms of game theory as follows:

“Any N -tuple of strategies, one for each player, may be regarded as a point
in the product space obtained by multiplying the N strategy spaces of the
players. One such N -tuple counters another if the strategy of each player
in countering N -tuple yields the highest possible expectation for its player
against the N − 1 strategies of the other player in the countered N -tuple. A
self-countering N -tuple is called an equilibrium point.”

To convert this description into a mathematical concept, we utilize the
following notations. Let Γ = {S1, . . . , SN , u1, . . . , uN} be a finite normal-form
game, where the strategy set Si for player i is finite, and the utility function ui
of player i is real-valued and defined on S = S1×· · ·×SN . Using the notations
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s−i = (s1, . . . , si−1, si+1, . . . , sN ) and ui(s1, . . . , sN ) = ui(si, s−i), strategies
s∗1, . . . , s

∗
N form a pure Nash equilibrium for Γ if and only if

ui(s∗i , s
∗
−i) ≥ ui(si, s∗−i) for all si ∈ Si and i = 1, . . . , N.

This definition implies that the strategies of players form a pure Nash equi-
librium if and only if no player can improve his/her utility by changing the
strategy when all the other players keep their strategies fixed.

Besides economics, this equilibrium concept has been applied in other so-
cial and behavioral sciences, biology, law, politics, etc., cf. [83, 109, 177, 193,
210, 218, 220, 224]. The Nash equilibrium has found so many applications
partly because it can be usefully interpreted in a number of ways (cf. [144]).
For instance, in human interaction (social, economic, or political) the utilities
of players (individuals, firms, or politicians/parties) are mutually dependent
on actions of all players. The Nash equilibrium provides an answer to the
question of what is an optimal action for every player. The following simple
thought experiment describes the usefulness of the Nash equilibrium concept
and its relation to democratic decision procedure.

The traffic board of Sohmu hires a consultant to make a traffic plan for
the only crossroad of town having traffic lights. Traffic should be as safe as
possible. The consultant seeks Nash safety equilibria and finds two: either
every passenger goes toward green light, or, all passengers go toward red light.
He suggests to the board that one of these alternatives should be chosen. The
state council votes on the choice. Every council member votes according to
his/her preferences: Green, Red, or Empty. The result is in Nash equilibrium
with respect to the opinions of the council members.

The above thought experiment implies that the concept of Nash equilibrium
harmonizes with democratic decision making. It also shows that if actions are
in Nash equilibrium, they may give the best result for every participant. It
is not a matter of a zero-sum game where someone loses when someone else
wins.

Nash used in [186] a version of Theorem 1.8 (see [148]) to prove the exis-
tence of Nash equilibrium for a finite normal-form game. Because of finiteness
of strategy sets, the application of Kakutani’s fixed point theorem was not
possible without extensions of Si to be homeomorphic with convex sets. Thus
he extended the strategy sets to contain also strategies that are called mixed
strategies. This means that players i are allowed to choose independently ran-
domizations of strategies of Si, that is, each mixed strategy σi is a probability
measure over Si. The values of utilities Ui, i = 1, . . . , N , are then the expected
values:

Ui(σ1, . . . , σN ) =
∑

(s1,...,sN )∈S

σ1({s1}) · · ·σm({sN})ui(s1, . . . , sN ).

According to Nash’s own interpretation stated above, a mixed Nash equilib-
rium for Γ is a profile of mixed strategies, one for each N players, that has
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the property that each player’s strategy maximizes his/her expected utility
against the given strategies of the other players. To put this into a mathe-
matical form, denote σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ) and Ui(σ1, . . . , σN ) =
Ui(σi, σ−i), and let Σi denote the set of all mixed strategies of player i. We
say that mixed strategies σ∗1 , . . . , σ

∗
N form a mixed Nash equilibrium for Γ if

Ui(σ∗i , σ∗−i) = max
σi∈Σi

Ui(σi, σ∗−i) for all i = 1, . . . , N.

As for a variety of areas where the concept of Nash equilibrium is applied, see
[144, 183] and the references therein.

In Chap. 8 we present some recent results dealing with Nash equilibria
for normal-form games. Our study is focused on games with strategic com-
plementarities, which means roughly speaking that the best response of any
player is increasing in actions of the other players. Sections 8.1 and 8.2 are
devoted especially to those readers who are interested only in finite games.
In section 8.1 we prove the existence for the smallest and greatest pure Nash
equilibria of a normal-form game whose strategy spaces Si are finite sets of
real numbers, and the real-valued utility functions ui possess a finite differ-
ence property. If the utilities ui(s1, . . . , sN ) are also increasing (respectively
decreasing) in sj , j 6= i, the utilities of the greatest (respectively the smallest)
pure Nash equilibrium are shown to majorize the utilities of all pure Nash
equilibria. An application to a pricing problem is given.

Our presentation of Sects. 8.2–8.5 has three main purposes.
1. In order to avoid ”throwing die” in the search for Nash equilibria, it

would be desirable that Γ has a pure Nash equilibrium whose utilities majorize
the utilities of all other Nash equilibria for Γ , including mixed Nash equilibria.
In such a case it would be of no benefit to seek possible mixed Nash equilibria.
If Γ is a finite normal-form game, every player who has at least two pure
strategies has uncountably many mixed strategies. On the other hand, the
set of its pure strategies, as well as the ranges of its utilities, are finite for
each player. Thus one can find pure Nash equilibria in concrete situations by
finite methods. In Sect. 8.2 we prove that finite normal-form games, which are
supermodular in the sense defined in [218, p. 178], possess the above described
desirable properties. The proof is constructive and provides a finite algorithm
to determine the most profitable pure Nash equilibrium for Γ . This algorithm
and Maple programming is applied to calculate the most profitable pure Nash
equilibrium and the corresponding utilities for some concrete pricing games.
Proposition 8.61 deals also with finite normal-form games.

2. Theorem 1.9 along with other fixed point theorems presented in Chap.
2 are applied in Sects. 8.3 and 8.4 to derive existence and comparison results
for exremal Nash equilibria of normal-form games in more general settings.
For instance, the result for finite supermodular games proved in Sect. 8.2 is
extended in Sect. 8.4 to the case when the strategy spaces Si are compact
sublattices of complete and separable ordered metric spaces. The easiest case
is when strategy spaces are subsets of R. In fact, it has been shown recently (cf.
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[86]) that when the strategies of a supermodular normal-form game are real
numbers, the mixed extension of that game is supermodular, its equilibria form
a non-empty complete lattice, and its extremal equilibria are in pure strategies
when mixed strategies are ordered by first order stochastic dominance. A
problem that arises when the strategies are not in R is described in [86, Chap.
3] as follows:

“When the strategy spaces are multidimensional, the set of mixed strategies
is not a lattice. This implies that we lack the mathematical structure needed
for the theory of complementarities. We need lattice property to make sense
of increasing best responses when they are not real-valued. Multiple best
responses are always present when dealing with mixed equilibria and there
does not seem a simple solution to the requirement that strategy spaces be
lattices.”

In particular, classical fixed point theorems in complete lattices are not ap-
plicable, even for finite normal-form games having multidimensional strat-
egy spaces. Moreover, in such cases the desirable comparison results between
pure and mixed strategies cannot be obtained by the methods used, e.g., in
[86, 180, 217, 218, 222, 223]. The results of Theorems 2.20 and 2.21 and their
duals provide tools to overcome the problem caused by the above stated non-
lattice property. Our results imply that the smallest and greatest pure Nash
equilibria of supermodular games form lower and upper bounds for all pos-
sible mixed Nash equilibria when the set of mixed strategies is ordered by
first-order stochastic dominance. These lower and upper bounds have the im-
portant property that they are the smallest and greatest rationalizable strat-
egy profile, as shown in [179]. In particular, if these bounds are equal, then
there is only one pure Nash equilibrium, which is also a unique rationalizable
strategy profile, and no properly mixed Nash equilibria exist. In [218, Sect.
4] the following eight examples of supermodular games are presented: Pricing
game with substitute products, production game with complementary prod-
ucts, multimarket oligopoly, arms race game, trading partner search game,
optimal consumption game with multiple products, facility location game,
and minimum cut game. The first example is studied here more closely. In
this example the greatest Nash equilibrium has also the desirable property
that the utilities of the greatest Nash equilibrium majorize the utilities of all
other Nash equilibria, including mixed Nash equilibria. Concrete examples are
solved by using Maple programming.

3. Another property, which restricts the application of the original result of
Nash, is that the utility functions are assumed to be real-valued. This requires
that differences of values of ui can be estimated by numbers. The results of
Sects. 8.2 and 8.4 are proved in the case when the values of ui are in ordered
vector spaces Ei. Thus we can consider the cases when the values of utilities
are random variables by choosing Ei = L2(Ωi,R), ordered a.e. pointwise. If
the strategy spaces are finite, the only extra hypothesis is that the ranges of
ui(·, s−i) are directed upward. As an application the pricing game is extended
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to the form where the values of the utility functions are in Rmi . Concrete
examples are solved also in this case.

But in the definition of pure Nash equilibrium a partial ordering of the
values of ui is sufficient. The fixed point theorems presented in Chap. 2 apply
to derive existence results for extremal pure Nash equilibria of normal-form
games when both the strategy spaces Si and ranges of utility functions ui are
partially ordered sets. Such results are presented in Sect. 8.3. We also present
results dealing with monotone comparative statics, i.e., conditions that ensure
the monotone dependence of extremal pure Nash equilibria on a parameter
that belongs to a poset. As for applications, see, e.g., [10, 11, 180, 218]. These
results can be applied to cases where the utilities of different players are
evaluated in different ordinal scales, where all the values of the utility functions
need not even be order-related. Thus the way is open for new applications of
the theory of Nash equilibrium, for instance, in social and behavioral sciences.
In such applications the term ‘utility’ would approach to one of its meanings:
“the greatest happiness of the greatest number.”

A necessary condition for the existence of a Nash equilibrium for Γ is
that the functions ui(·, s−i) have maximum points. When the ranges of these
functions are in partially ordered sets that are not topologized, the classical
hypotheses, like upper semicontinuity, are not available. Therefore we define
a new concept, called upper closeness, which ensures the existence of required
maximum points. Upper semicontinuity implies upper closeness for real-valued
functions.

In Sect. 8.5 we study the existence of undominated and weakly dominating
strategies of normal-form games when the ranges of the utility functions are
in partially ordered sets. A justification for Sects. 8.2–8.5 is a philosophy of
economic modeling stated in [13]: ”The weakest sufficient conditions for robust
conclusions is particularly important to economists.” Concrete examples are
presented.

The existence of winning strategies for a pursuit and evasion game is
proved in Sect. 8.6. As an introduction to the subject consider a finite pursuit
and evasion game. Game board P is a nonempty subset of R2, equipped with
coordinatewise partial ordering ≤. Assume that to every position x ∈ P of
player p (pursuer) there corresponds a nonempty subset F(x) ⊆ P of possible
positions y of player q (quarry). The only rule of the game is:

(R) If (xn, yn) and (xn+1, yn+1) are consecutive positions of a play, then yn ≤
yn+1 whenever xn < xn+1, and yn+1 ≤ yn whenever xn+1 < xn.

We say that a strategy of p is a winning strategy if the use of it yields captur-
ing, i.e., after a finite number of move pairs p and q are in the same position.
Player p has a winning strategy if the following conditions hold:

(i) The set F [P ] =
⋃
{F(x) : x ∈ P} has a sup-center c ∈ P .
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(ii) If x ≤ y in P , then for every z ∈ F(x) for which z ≤ y there exists such
a w ∈ F(y) that z ≤ w, and for every w ∈ F(y) satisfying x ≤ w there
exists such a z ∈ F(x) that z ≤ w.

(iii) Strictly monotone sequences of F [P ] are finite.

The existence of a winning strategy for p can be justified as follows. Player
p starts from x0 = c, and q starts from y0 ∈ F(x0). If x0 = y0, then p wins.
Otherwise, let xn and yn ∈ F(xn) denote positions of p and q after nth move
pair of a play. If xn 6= yn, then p moves to xn+1 = sup{c, yn} if xn and yn
are unordered, and to xn+1 = yn if xn and yn are ordered. If xn < xn+1,
then q must obey rule (R) and choose a position yn+1 of F(xn+1) such that
yn ≤ yn+1, which is possible due to condition (ii). If xn+1 < xn, then similarly
q obeying the rule (R) can choose by condition (ii) yn+1 ∈ F(xn+1) so that
yn+1 ≤ yn. Condition (iii) ensures that every play which follows these rules
stops after a finite number of moves to the situation where xm = ym.

The correspondence x 7→ F(x) can be considered also as a set-valued
mapping from P to the set 2P \ ∅ of nonempty subsets of P . Since the final
positions x = xm of p and y = ym of q after a play satisfy x = y ∈ F(x), the
above reasoning shows that F has a fixed point under conditions (i)–(iii).

To see that the pursuit–evasion game and the fixed point problem formu-
lated above are different if one of the conditions (i)–(iii) is violated, choose
P = {a, b}, where a = (0, 1) and b = (1, 0). If F(a) = F(b) = P , then both
a and b are fixed points of F . If x0 is any of the points of P from which p
starts, then q can start from the other point of P , and p cannot capture q. In
this example conditions (ii) and (iii) hold, but (i) is not valid. This lack can
yield also a nonexistence of a fixed point of F even in the single-valued case,
as we see by choosing P as above and defining F(a) = {b} and F(b) = {a}.
Also in this case conditions (ii) and (iii) are valid. The above results hold true
also when P is a partially ordered set (poset), positive and negative directions
being determined by a partial ordering of P .

The finite game introduced above is generalized in Sect. 8.6, where we
study the existence of winning strategies for pursuit and evasion games that
are of ordinal length. The obtained results are then used to study the solvabil-
ity of equations and inclusions in ordered spaces. Monotonicity hypotheses,
like (ii) above, are weaker than those assumed in Chap. 2.

As for the roots of the methods used in the proofs of Theorems 1.2, 1.5, 1.9,
1.15, and related theorems in Chap. 2, and in Sect. 8.6, we refer to Ernst Zer-
melo’s letter to David Hilbert, dated September 24, 1904. This letter contains
the first proof that every set can be well-ordered, i.e., every set P has such
a partial ordering that each nonempty subset A of P has the minimum. The
proof in question was published in the same year in Mathematische Annalen
(see [231]). The influence of that proof is described in [94, p.84] as follows:
“The powder keg had been exploded through the match lighted by Zermelo in
his first proof of well-ordering theorem.” To find out what in that proof was
so shocking we give an outline of it. The notations are changed to reveal a re-
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cursion principle that is implicitly included in Zermelo’s proof. That principle
forms a cornerstone to proofs of the main existence and comparison results of
this book, including the fixed point results stated above. As for the concepts
related to ordering, see Chap. 2.

Let P be a nonempty set, and let f be a choice function that selects
from the complement P \ U of every proper subset U of P an element f(U)
(= γ(P \ U), where γ is “eine Belegung” in Zermelo’s proof). We say that a
nonempty subset A of P is an f-set if A has such an order relation < that
the following conditions holds:

(i) (A,<) is well-ordered, and if x ∈ A, then x = f(A<x),
where A<x = {y ∈ A : y < x}.

Applying a comparison principle for well-ordered sets proved by Georg Cantor
in 1897 (see [36]) one can show that if A = (A,<) and B = (B,≺) are f-sets
and A 6⊆ B, then B is an initial segment of A, and if x, y ∈ B, then x ≺ y
if and only if x < y. Using these properties it is then elementary to verify
that the union C of f-sets is an f-set, ordered by the union of the orderings
of f-sets.

We have C = P , for otherwise A = C ∪{f(C)} would be an f -set, ordered
by the union of the ordering of C and {(y, f(C)) : y ∈ C}, contradicting the
fact that C is the union of all f -sets. Thus P is an f -set, and hence well
ordered.

The proof is based on three principles. One of them ensures the exis-
tence of a choice function f . After his proof Zermelo mentions that “Die Idee,
unter Berufung auf dieses Prinzip eine beliebige Belegung der Wohlordnung zu
grunde zu legen, verdanke ich Herrn Erhard Schmidt.” This principle, which
is a form of the Axiom of Choice, caused the strongest reactions against Zer-
melo’s proof, because there exists no constructive method to determine f for
an arbitrary infinite set P . Another principle used in the proof is Cantor’s
comparison principle for well-ordered sets. A third principle is hidden in the
construction of the union C of f -sets: Because C is an f -set, then x ∈ C im-
plies x = f(C<x). Conversely, if x = f(C<x), then x ∈ P = C. Consequently,

(A) x ∈ C ⇐⇒ x = f(C<x).

In Zermelo’s proof f was a choice function. Recently, this special instance is
generalized to the following mathematical method, called the Chain Gener-
ating Recursion Principle (see [112, 133]).

Given any nonempty partially ordered set P = (P,<), a family D of subsets
of P with ∅ ∈ D and a mapping f : D → P , there is exactly one well-ordered
chain C of P such that (A) holds. Moreover, if C ∈ D, then f(C) is not a
strict upper bound of C.

In the proof of this result only elementary properties of set theory are used in
[112, 133]. In particular, neither the Axiom of Choice nor Cantor’s comparison
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principle are needed. To get this book more self-contained we give another
proof in the Preliminaries, Chap. 2.

To give a simple example, let D be the family of all finite subsets of the
set P = R of real numbers, and f(U), U ∈ D, the number of elements of U .
By the Chain Generating Recursion Principle there is exactly one subset C
of R that is well-ordered by the natural ordering of R and satisfies (A). The
elements of C are values of f , so that C ⊆ N0 = {0, 1, . . . }. On the other
hand, N0 is a well-ordered subset of R, and n = f(N<n0 ), n ∈ N0. Thus N0 is
an f -set, whence N0 ⊆ C. Consequently, C = N0, so that (A) generates the
set of natural numbers.

More generally, given (P,<,D, f), condition (A) can be considered for-
mally as a ‘recursion automate’ that generates exactly one well-ordered set
C. The amount of admissible quadruples (P,<,D, f) is so big that no set can
accommodate them.

The first elements of C satisfying (A) are

x0 := f(∅), . . . , xn+1 := f({x0, . . . , xn}), as long as xn < f({x0, . . . , xn}).
(1.19)

If xn+1 = xn for some n, then xn = maxC. This property can be used
to derive algorithmic methods that apply to determine exact or approxima-
tive solutions for many kinds of concrete discontinuous nonlocal problems, as
well as to calculate pure Nash equilibria and corresponding utilities for finite
normal-form games. The Chain Generating Recursion Principle is applied in
this book to introduce generalized iteration methods, which provide the basis
for the proofs of our main fixed point theorems including Theorems 1.2, 1.5,
1.9, and 1.15. They are applied to prove existence and comparison results for
a number of diverse problems such as, e.g., operator equations and inclusions,
partial differential equations and inclusions, ordinary functional differential
and integral equations in ordered Banach spaces involving singularities, dis-
continuities, and also non-absolutely integrable functions. Moreover, these ab-
stract fixed point results are shown to be useful and effective tools to prove
existence results for extremal Nash equilibria for normal-form games, and to
study the existence of winning strategies for pursuit and evasion games.
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