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Preface

Fixed point theory is one of the most powerful and fruitful tools of modern
mathematics and may be considered a core subject of nonlinear analysis. In
recent years a number of excellent monographs and surveys by distinguished
authors about fixed point theory have appeared such as, e.g., [2, 4, 7, 25, 31,
32, 100, 101, 103, 104, 108, 155, 196]. Most of the books mentioned above deal
with fixed point theory related to continuous mappings in topological or even
metric spaces (work of Poincaré, Brouwer, Lefschetz–Hopf, Leray–Schauder)
and all its modern extensions.

This book focuses on an order-theoretic fixed point theory and its appli-
cations to a wide range of diverse fields such as, e.g., (multi-valued) nonlocal
and/or discontinuous partial differential equations of elliptic and parabolic
type, differential equations and integral equations with discontinuous nonlin-
earities in general vector-valued normed spaces of non-absolutely integrable
functions containing the standard Bochner integrable functions as special case,
and mathematical economics and game theory. In all these topics we are faced
with the central problem of handling the loss of continuity of mappings and/or
missing appropriate geometric and topological structure of their underlying
domain of definition. For example, it is noteworthy that, in particular, for
proving the existence of certain optimal strategies in game theory, there is
a need for purely order-related fixed point results in partially ordered sets
that are neither convex nor do they have lattice structure and where the fixed
point operator lacks continuity.

The aim of this monograph is to provide a unified and comprehensive
exposition of an order-theoretic fixed point theory in partially ordered sets
and its various useful interactions with topological structures. A characteristic
feature of this fixed point theory, which is developed in detail in Chap. 2, is
that it is based on an abstract recursion principle, called the Chain Generating
Recursion Principle, which was formulated in [112, 133], and which is the
common source of all the order-related fixed point results obtained in this
book. In particular, the developed fixed point theory includes the classical
order-theoretic fixed point result established by Knaster in [153], which was
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later extended by Tarski in [215], as well as the fixed point theorems due to
Bourbaki and Kneser (cf. [228, Theorem 11.C]) and Amann (cf. [228, Theorem
11.D]). Surprisingly enough, very recently, the classical and seminal Knaster–
Tarski fixed point theorem has been applied to computational geometry in
[195]. This unexpected application emphasizes even more the importance of
an order-theoretic fixed point theory.

Chapter 1 serves as an introduction to the subject and discusses some
simple examples of the order-theoretic fixed point results along with simple
applications from each of the diverse fields. This will help the reader to get
some idea of the theory and its applications before entering the systematic
study. Chapter 3 provides preliminary results on multi-valued variational in-
equalities regarding the topological and order-theoretical structure of solution
sets. This chapter, which may be read independently, is of interest on its own
and contains new results. Our main emphasis is on Chaps. 4–8 where we
demonstrate the power of the developed fixed point theory of Chap. 2, which
runs like a thread through the entire book. Attempts have been made to at-
tract a broad audience not only by the diverse fields of applications, but also
by emphasizing simple cases and ideas more than complicated refinements.
In the treatment of the applications, a wide range of mathematical theories
and methods from nonlinear analysis and integration theory are applied; an
outline of which has been given in an appendix chapter to make the book
self-contained.

This book is an outgrowth of the authors’ research on the subject during
the past 20 years. However, a great deal of the material presented here has
been obtained only in recent years and appears for the first time in book form.

We expect that our book will be accessible and useful to graduate students
and researchers in nonlinear analysis, pure and applied mathematics, game
theory, and mathematical economics.

We are most grateful to our friends and colleagues who contributed
through joint works and papers to the preparation of this book. Rather than
inadvertently leaving someone out, we have not listed the names, but we hope
our friends and collaborators will be satisfied with our thanks.

Finally, we wish to express our gratitude to the very professional editorial
staff of Springer, particularly to Vaishali Damle for her effective and produc-
tive collaboration.

Halle Siegfried Carl
Oulu Seppo Heikkilä
September 2010
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1

Introduction

In this introductory chapter we give a short account of the contents of the
book and discuss simple notions and examples of the fixed point theory to be
developed and applied to more involved applications in later chapters. As an
introduction to the fixed point theory and its applications let us recall two
fixed point theorems on a nonempty closed and bounded subset P of Rm, one
purely topological (Brouwer’s fixed point theorem) and one order-theoretically
based. A point x ∈ P is called a fixed point of a function G : P → P if x = Gx.
We assume that Rm is equipped with Euclidean metric.

Theorem 1.1 (Brouwer’s Fixed Point Theorem). If P is a closed,
bounded, and convex subset of Rm, then every continuous function G : P → P
has a fixed point.

To formulate the purely order-theoretic fixed point theorem we equip Rm with
the coordinatewise partial order ’≤’, i.e., for x, y ∈ Rm, we define x ≤ y if
and only if xi ≤ yi, i = 1, . . . ,m. A function G : P → P is called increasing if
x ≤ y implies Gx ≤ Gy. Further, we will need the notion of a sup-center of
the set P , which is defined as follows: A point c ∈ P is called a sup-center of
P if sup{c, x} ∈ P for each x ∈ P . The next fixed point theorem is a special
case of Corollary 2.41(a) of Chap. 2.

Theorem 1.2. If P is a closed and bounded subset of Rm having a sup-center,
then every increasing function G : P → P has a fixed point.

Note that in Theorem 1.2 neither continuity of the fixed point operator nor
convexity of the set P is needed. Let us give two examples of sets P that
have the required properties of Theorem 1.2. The geometrical center c =
(c1, . . . , cm) ∈ Rm of every set

P = {(x1, . . . , xm) ∈ Rm :
m∑
i=1

|xi − ci|p ≤ rp}, p, r ∈ (0,∞), (1.1)

 

From Differential and Integral Equations to Game Theory,  

  
 

DOI 10.1007/978-1-4419-7585-0_1, © Springer Science+Business Media, LLC 2011 

S. Carl and S. Heikkilä, 1  Fixed Point Theory in Ordered Sets and Applications:



2 1 Introduction

I

N

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

rrr

r
r r r

r
R

R

1−1

1

−1

Fig. 1.1. Closed Bounded Set in R2 with (0, 0) as Sup-Center

is a sup-center of P . Because these sets are also closed and bounded, then
every increasing mapping G : P → P has a fixed point. Notice that P is
not convex if 0 < p < 1, as assumed in Theorem 1.1. If P has the smallest
element c, then c is a sup-center of P . If m = 2, a necessary and sufficient
condition for a point c = (c1, c2) of P to be a sup-center of P is that whenever
a point y = (y1, y2) of P and c are unordered, then (y1, c2) ∈ P if y2 < c2 and
(c1, y2) ∈ P if y1 < c1. The second example of a set P ⊂ R2 is illustrated by
Fig. 1.1, where P consists of all the solid lines and the isolated points. One
easily verifies that c = (0, 0) is a sup-center.

Theorem 1.1 and Theorem 1.2 can be applied, e.g., in the study of the
solvability of a finite system of equations. For simplicity consider the system

u = u(x, y), v = v(x, y). (1.2)

Assume that P is a closed and bounded subset of R2, and that G = (u, v)
maps P into itself. By Theorem 1.1 the system (1.2) has a solution if G is
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continuous and P is convex. But there is no constructive method to solve
system (1.2) under these hypotheses. By Theorem 1.2 the system (1.2) has
a solution if G is increasing and P is only assumed to possess a sup-center.
As we shall see in Chap. 2 the proof of Theorem 1.2 is constructive. In the
special case when strictly monotone sequences of the image G[P ] are finite,
the following algorithm can be applied to obtain a solution of (1.2) when
the sup-center of P is c = (c1, c2). Maple commands ‘fi;od’ in the following
program mean ‘end if;end do’.

u := u(x, y) : v := v(x, y) : x := c1 : y := c2 :
for k from 0 while abs(u− x) + abs(v − y) > 0 do;
if (u− x)(v − y) < 0 then x := max{x, u} : y := max{y, v}

else x := u : y := v:fi;od;
sol := (x, y);

It is shown in Chap. 2 that the above algorithm can be applied to approximate
a solution of (1.2) in the case when G is continuous and increasing, replacing
G by its suitable upper and lower estimates.

Consider next generalizations of Theorem 1.1 and Theorem 1.2 to the case
when P is a nonempty subset of an infinite-dimensional normed space E. The
generalization of Brouwer’s fixed point theorem to infinite-dimensional Ba-
nach spaces requires the compactness of the fixed point operator. As compact
operators play a central role also in later chapters we recall their definition
here for convenience, see, e.g., [62, 228].

Definition 1.3. Let X and Y be normed spaces, and T : D(T ) ⊆ X → Y
an operator with domain D(T ). The operator T is called compact iff T is
continuous, and T maps bounded sets into relatively compact sets. Compact
operators are also called completely continuous.

In Theorem 1.5 we assume that E is ordered by a closed and convex cone E+

for which −E+ ∩ E+ = {0}. A subset A of P is said to have a sup-center in
P if there exists a c ∈ P such that sup{c, x} exists in E and belongs to P for
every x ∈ A.

Theorem 1.4 (Schauder’s Fixed Point Theorem). Let P be a nonempty,
closed, bounded, and convex subset of the Banach space E, and assume that
G : P → P is compact. Then G has a fixed point.

Theorem 1.5 ([116]). Let P be a subset of an ordered normed space E, and
let G : P → P be increasing. If the weak closure of G[P ] has a sup-center in
P , and if monotone sequences of G[P ] have weak limits in P , then G has a
fixed point.

If P is, e.g., the closed unit ball in l2 defined by

l2 = {x = (x1, x2, . . . ) :
∞∑
i=1

|xi|2 <∞},
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then the conclusion of Theorem 1.4 does not hold if G : P → P is only
assumed to be continuous (see Kakutani’s counterexample). Thus the result
of Theorem 1.4 is not valid if the compactness hypothesis of G is missing.
On the other hand, no compactness or continuity is assumed in Theorem 1.5,
which is also a consequence of Proposition 2.40(a). The geometrical centers
of bounded and closed balls of p-normed spaces lp, ordered coordinatewise,
and Lp(Ω), 1 ≤ p < ∞, ordered a.e. pointwise, are their sup-centers. This
is true also for closed and bounded balls of Sobolev spaces W 1,p(Ω) and
W 1,p

0 (Ω), 1 < p <∞, ordered a.e. pointwise. Moreover, these balls are weakly
sequentially closed and their monotone sequences have weak limits. Hence, if
P is any of these balls, then every increasing function G : P → P has a fixed
point by Theorem 1.5. To demonstrate the applicability of Theorem 1.4 and
Theorem 1.5 let us consider two simple examples of elliptic Dirichlet boundary
value problems with homogeneous boundary values.

Example 1.6.

−∆u(x) = f(x, u(x)) in Ω, u = 0 on ∂Ω, (1.3)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω. Let us
assume that f satisfies the following conditions:

(f1) f : Ω×R → R is a Carathéodory function, i.e., x 7→ f(x, s) is measurable
in Ω for all s ∈ R, and s 7→ f(x, s) is continuous for almost all (a.a.)
x ∈ Ω.

(f2) The function f fulfills the following growth condition: there is a function
k ∈ L2

+(Ω) and a positive constant a such that for a.a. x ∈ Ω and for all
s ∈ R we have

|f(x, s)| ≤ k(x) + a|s|.

By L2
+(Ω) we denote the positive cone of all nonnegative functions of L2(Ω).

Setting V0 = W 1,2
0 (Ω), V ∗

0 its dual space, A = −∆, and defining A : V0 → V ∗
0

by

〈Au, ϕ〉 =
∫
Ω

∇u∇ϕdx, ∀ ϕ ∈ V0,

then A : V0 → V ∗
0 is a strongly monotone, bounded, and continuous operator.

Denoting by F the Nemytskij operator associated with f by

F (u)(x) = f(x, u(x)),

then, in view of (f1)–(f2), F : L2(Ω) → L2(Ω) is continuous and bounded.
The compact embedding i : V0 ↪→ L2(Ω) readily implies that the operator
F = i∗ ◦ F ◦ i : V0 → V ∗

0 (i∗ is the adjoint operator of i) given by

〈F(u), ϕ〉 =
∫
Ω

F (u)ϕdx, ∀ ϕ ∈ V0
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is completely continuous. With these notations the weak solution of (1.3) can
be given the following form: Find u ∈ V0 such that

Au−F(u) = 0 in V ∗
0 . (1.4)

Since F : V0 → V ∗
0 is completely continuous and bounded, and A : V0 → V ∗

0 is
strongly monotone, continuous, and bounded, it follows that A−F : V0 → V ∗

0

is, in particular, continuous, bounded, and pseudomonotone. The classical
theory on pseudomonotone operators due to Brezis and Browder (see, e.g.,
[229]) ensures that if A−F : V0 → V ∗

0 is, in addition, coercive, then A−F :
V0 → V ∗

0 is surjective, which means that (1.4) has a solution, i.e., (1.3) has
a weak solution. A sufficient condition to ensure coerciveness of A − F is
that the positive constant a in (f2) satisfies a < λ1, where λ1 is the first
Dirichlet eigenvalue of A = −∆, which is known to be positive and simple,
see [6]. This can readily be verified by using (f2) and the following variational
characterization of the first eigenvalue λ1 by

λ1 = inf
06=v∈V0

∫
Ω
|∇v|2 dx∫
Ω
|v|2 dx

.

Now we estimate as follows

〈Au−F(u), u〉 ≥
∫
Ω

|∇u|2 dx− ‖k‖2‖u‖2 − a‖u‖22

≥
(
1− a

λ1

)
‖∇u‖22 −

‖k‖2√
λ1

‖∇u‖2,

where ‖ · ‖2 = ‖ · ‖L2(Ω). As ‖u‖ = ‖∇u‖2 is an equivalent norm in V0, we see
from the last estimate that

1
‖∇u‖2

〈Au−F(u), u〉 → ∞ as ‖∇u‖2 →∞,

which proves the coercivity, and thus the existence of solutions of (1.4).
An alternative approach to the existence proof for (1.4) that is closely

related to the pseudomonotone operator theory is based on Schauder’s fixed
point theorem (see Theorem 1.4). To this end, problem (1.4) is transformed
into a fixed point equation as follows: As A = −∆ : V0 → V ∗

0 is a linear,
strongly monotone, and bounded operator, it follows that the inverse A−1 :
V ∗

0 → V0 is linear and bounded, which allows us to rewrite (1.4) in the form:
Find u ∈ V0 such that

u = A−1 ◦ F(u) (1.5)

holds, i.e., that u ∈ V0 is fixed point of the operator

G = A−1 ◦ F .

Since under hypotheses (f1)–(f2), F : V0 → V ∗
0 is completely continuous, and

A−1 : V ∗
0 → V0 is linear and bounded, it readily follows that G : V0 → V ∗

0 is
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continuous and compact. In order to apply Schauder’s theorem we are going to
verify that under the same assumption on a, i.e., a < λ1, G maps a closed ball
B(0, R) ⊂ V0 into itself, which finally allows us to apply Schauder’s theorem,
and thus the existence of solutions of (1.4). Let v ∈ B(0, R), and denote
u = Gv. Then, by definition of the operator G, u ∈ V0 satisfies∫

Ω

∇u∇ϕdx =
∫
Ω

F (v)ϕdx, ∀ ϕ ∈ V0.

In particular, the last equation holds for u = ϕ, which yields

‖∇u‖22 =
∫
Ω

F (v)u dx ≤ ‖F (v)‖2‖u‖2 ≤ ‖k‖2‖u‖2 + a‖v‖2‖u‖2

≤ a

λ1
‖∇v‖2‖∇u‖2 +

‖k‖2√
λ1

‖∇u‖2,

which yields (note u = Gv) the norm estimate in V0

‖Gv‖V0 ≤
a

λ1
‖∇v‖2 +

‖k‖2√
λ1

, ∀ v ∈ V0,

where ‖u‖V0 := ‖∇u‖2. Thus if R > 0 is chosen in such a way that

a

λ1
R+

‖k‖2√
λ1

≤ R,

then G provides a mapping of B(0, R) into itself. Such an R always exists,
because a

λ1
< 1. This completes the existence proof via Schauder’s fixed point

theorem.

Schauder’s theorem fails if F : V0 → V ∗
0 lacks compactness, which may occur,

e.g., when in (f2) a critical growth of the form

|f(x, s)| ≤ k(x) + a|s|2
∗−1

is allowed, where 2∗ is the critical Sobolev exponent. Lack of compactness
occurs also if (1.3) is studied in unbounded domains, or if s 7→ f(x, s) is no
longer continuous. It is Theorem 1.5 that allows us to deal with these kinds
of problems provided the fixed point operator G is increasing. In particular,
if only continuity of G is violated, then neither monotone operator theory
in the sense of Brezis–Browder–Lions–Minty nor fixed point theorems that
assume as a least requirement the continuity of the fixed point operator can
be applied. To give a simple example, where standard methods fail, consider
the next example.

Example 1.7. Let Ω be as in the example before. We study the following dis-
continuous Dirichlet boundary value problem:
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−∆u(x) = a[u(x)] + k(x) in Ω, u = 0 on ∂Ω, (1.6)

where a > 0 is some constant, k ∈ L2(Ω), and s 7→ [s] stands for the integer
function, i.e., [s] denotes the greatest integer with [s] ≤ s. Apparently, in this
case f(x, s) := a[s] + k(x) is discontinuous in s ∈ R. Set k̃(x) = |k(x)| + 1,
then we have k̃ ∈ L2

+(Ω), and the following estimate holds

|f(x, s)| ≤ k̃(x) + a|s|.

Due to the structure of f the Nemytskij operator F : L2(Ω) → L2(Ω) is still
well defined and bounded, however, F is no longer continuous. With the same
notation as in Example 1.6 we can transform the elliptic problem (1.6) into
the fixed point equation in V0 of the form

u = A−1 ◦ F(u). (1.7)

The same estimate as in the previous example shows that the fixed point
operator G = A−1 ◦ F maps a ball B(0, R̃) ⊂ V0 into itself provided a < λ1,
and R̃ > 0 is sufficiently large. Note, however, that the fixed point operator is
no longer continuous. Now, we easily observe that G : V0 → V0 is increasing
with respect to the underlying natural partial order in V0 defined via the order
cone L2

+(Ω). The latter is a simple consequence of the fact that F : V0 → V ∗
0

is increasing, and because of the inverse monotonicity of A−1, which is a
consequence of the maximum principle for the Laplacian. Taking into account
the comments after Theorem 1.5, we may apply Theorem 1.5 to ensure that
G has a fixed point, which proves the existence of weak solutions for (1.6)
provided 0 < a < λ1. It should be noted that the classical fixed point results
for increasing self-mappings due to Amann, Tarski, and Bourbaki (see [228])
cannot be applied here.

Further applications of Theorem 1.5 to deal with elliptic problems that
lack compactness are demonstrated in [48], where we prove existence results
for elliptic problems with critical growth or discontinuity of the data.

The results of Theorem 1.4 and Theorem 1.5 can be extended to set-valued
(also called multi-valued) mappings. Let us assume that P is a nonempty
subset of a topological space X. In Theorem 1.9 we assume that X is equipped
with such a partial ordering that the order intervals [a, b] = {x ∈ X : a ≤ x ≤
b} are closed. Denote by 2P the set of all subsets of P . An element x of P is
called a fixed point of a set-valued mapping F : P → 2P if x ∈ F(x). We say
that F is increasing if, whenever x ≤ y in P , then for every z ∈ F(x) there
exists a w ∈ F(y) such that z ≤ w, and for every w ∈ F(y) there exists a
z ∈ F(x) such that z ≤ w.

Theorem 1.8 (Generalized Theorem of Kakutani). A multi-valued func-
tion F : P → 2P has a fixed point if P is a nonempty, compact, and convex set
in a locally convex Hausdorff space X, F : P → 2P is upper semi-continuous,
and if the set F(x) is nonempty, closed, and convex for all x ∈ P .



8 1 Introduction

The following theorem is a consequence of Theorem 2.12, which is proved
in Chap. 2.

Theorem 1.9. A multi-valued function F : P → 2P has a fixed point if F is
increasing, its values F(x) are nonempty and compact for all x ∈ P , chains
of F [P ] have supremums and infimums, and if F [P ] has a sup-center in P .

In particular, if P is any set defined in (1.1), then every increasing mapping
F : P → 2P whose values are nonempty closed subsets of Rm has a fixed
point by Theorem 1.9. As a further consequence of Theorem 1.9 one gets
the following order-theoretic fixed point result in infinite-dimensional ordered
Banach spaces, which is useful in applications to discontinuous differential
equations (see Theorem 4.37).

Theorem 1.10. Let P be a closed and bounded ball in a reflexive lattice-
ordered Banach space X, and assume that ‖x+‖ = ‖ sup{0, x}‖ ≤ ‖x‖ holds
for all x ∈ X. Then every increasing mapping F : P → 2P , whose values are
nonempty and weakly sequentially closed, has a fixed point.

To give an idea of how Theorem 1.10 can be applied to differential equa-
tions, let us consider a simple example.

Example 1.11. Consider the following slightly extended version of problem
(1.6):

−∆u(x) = a[u(x)] + g(x, u(x)) + k(x) in Ω, u = 0 on ∂Ω, (1.8)

where g : Ω × R → R is a Carathéodory function with the following growth
condition

(g) There exist a positive constant b with b < λ1 − a, and a h ∈ L2(Ω), such
that for a.a. x ∈ Ω and for all s ∈ R

|g(x, s)| ≤ h(x) + b|s|

holds. Here a and λ1 are as in Example 1.7

If we rewrite the right-hand side of equation (1.8) in the form

f(x, s, r) := a[r] + g(x, s) + k(x), (1.9)

of the right-hand side of (1.8). This allows an approach toward the existence
of solutions of (1.8) by means of the multi-valued fixed point Theorem 1.9.
Note, s 7→ f(x, s, r) is continuous, and r 7→ f(x, s, r) is discontinuous and
monotone increasing. Let v ∈ V0 be fixed, and consider the boundary value
problem

−∆u(x) = f(x, u(x), v(x)) in Ω, u = 0 on ∂Ω. (1.10)

then we can distinguish between the continuous and discontinuous dependence
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As the function (x, s) 7→ f(x, s, v(x)) with f defined in (1.9) is a Carathéodory
function, one can apply the same approach as in Example 1.6 to get the
existence of solutions for (1.10). For fixed v ∈ V0, denote now by Gv the set
of all solutions of (1.10). This provides a multi-valued mapping G : V0 → 2V0 ,
and certainly any fixed point of G is a solution of the original boundary
value problem (1.8), and vice versa. By similar estimates as in Examples
1.6 and 1.7 one can show that under the given assumptions, in particular
due to 0 < a + b < λ1, there is a closed ball B(0, R) ⊂ V0 such that the
multi-valued mapping G maps B(0, R) into itself. As V0 is a reflexive lattice-
ordered Banach space satisfying ‖u+‖ = ‖ sup{0, u}‖ ≤ ‖u‖ for all u ∈ V0,
for G : B(0, R) → 2B(0,R) to possess a fixed point it is enough to show that
G : B(0, R) → 2B(0,R) is increasing, and that the images Gv are weakly
sequentially closed, see Theorem 4.37. This will be demonstrated for more
involved elliptic problems in Chap. 4.

Chapter 3 is devoted to comparison principles for, in general, multi-valued
elliptic and parabolic variational inequalities, with an account of the main
differences between them. Elliptic multi-valued variational inequalities of the
following kind are considered: Let K ⊆W 1,p(Ω) be a closed convex set. Find
u ∈ K, η ∈ Lq(Ω), and ξ ∈ Lq(∂Ω) satisfying:

η(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω, (1.11)

〈Au− h, v − u〉+
∫
Ω

η (v − u) dx+
∫
∂Ω

ξ (γv − γu) dσ ≥ 0, ∀ v ∈ K, (1.12)

where s 7→ ∂jk(x, s) are given by Clarke’s generalized gradient of locally
Lipschitz functions s 7→ jk(x, s), k = 1, 2, γ is the trace operator, and A
is some quasilinear elliptic operator of Leray–Lions type. As for parabolic
multi-valued variational inequalities, the underlying solution space is

W = {u ∈ X : ∂u/∂t ∈ X∗},

where X = Lp(0, τ ;W 1,p(Ω)), and X∗ is its dual space. Consider the time-
derivative L = ∂

∂t : D(L) → X∗ as an operator from the domain D(L) to X∗

where D(L) is given by

D(L) = {u ∈W : u(0) = 0},

and let K ⊆ X be closed and convex. The following general class of multi-
valued parabolic variational inequalities is treated in Chap. 3: Find u ∈ K ∩
D(L), η ∈ Lq(Q), and ξ ∈ Lq(Γ ) satisfying:

η(x, t) ∈ ∂j1(x, t, u(x, t)), for a.e. (x, t) ∈ Q, (1.13)
ξ(x, t) ∈ ∂j2(x, t, γu(x, t)), for a.e. x ∈ Γ, and (1.14)

〈Lu+Au−h, v−u〉+
∫
Q

η (v−u) dxdt+
∫
Γ

ξ (γv−γu) dΓ ≥ 0, ∀ v ∈ K, (1.15)
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where Q = Ω × (0, τ) and Γ = ∂Ω × (0, τ). For both problems (1.11)–(1.12)
and (1.13)–(1.15) we establish existence and comparison results in terms of
appropriately defined sub- and supersolutions, and characterize their solution
sets topologically and order-theoretically. We are demonstrating by a number
of examples that the variational inequality problems (1.11)–(1.12) and (1.13)–
(1.15) include a wide range of specific elliptic and parabolic boundary value
problems and variational inequalities. In this sense, Chap. 3 is not only a
prerequisite for Chaps. 4 and 5, but it is of interest on its own and can be
read independently.

In Chaps. 4 and 5 we apply the fixed point results of Chap. 2 combined
with the comparison results of Chap. 3 to deal with discontinuous single and
multi-valued elliptic and parabolic problems of different kinds. In particu-
lar, we consider nonlocal, discontinuous elliptic and parabolic boundary value
problems and multi-valued elliptic problems with discontinuously perturbed
Clarke’s generalized gradient. In the study of those problems, besides fixed
point and comparison results, the existence of extremal solutions of certain as-
sociated auxiliary problems play an important role. Extremal solution results
that are proved in Chap. 3 require rather involved techniques. These results
are used to transform a given multi-valued elliptic or parabolic problem into
a fixed point equation.

Differential and integral equations treated in Sects. 6.1–6.4 and 7.1–7.2
contain functions that are Henstock–Lebesgue (HL) integrable with respect
to the independent variable. A function g from a compact real interval [a, b] to
a Banach space E is called HL integrable if there is a function f : [a, b] → E,
called a primitive of g, with the following property: To each ε > 0 there corre-
sponds such a function δ : [a, b] → (0,∞) that whenever [a, b] = ∪mi=1[ti−1, ti]
and ξi ∈ [ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for all i = 1, . . . ,m, then

m∑
i=1

‖f(ti)− f(ti−1)− g(ξi)(ti − ti−1)‖ < ε. (1.16)

Criteria for HL integrability that are sufficient in most of our applications are
given by the following lemma.

Lemma 1.12. Given a function g : [a, b] → E, assume there exists a con-
tinuous function f : [a, b] → E and a countable subset Z of [a, b] such that
f ′(t) = g(t) for all t ∈ [a, b] \ Z. Then g is HL integrable on [a, b], and f is a
primitive of g.

Proof: Since Z is countable, it can be represented in the form Z = {xj}j∈N.
Let ε > 0 be given. Since f is continuous, and the values of g have finite norms,
then for every xj ∈ Z there exists a δ(xj) > 0 such that ‖f(t̄)−f(t)‖ < 2−j−1ε,
and ‖g(xj)‖(t̄− t) < 2−j−1ε whenever xj − δ(xj) < t ≤ xj ≤ t̄ < xj + δ(xj).

To each ξ ∈ [a, b] \Z there corresponds, since f ′(ξ) exists, such a δ(ξ) > 0
that ‖f(t̄) − f(t) − f ′(ξ)(t̄ − t)‖ < ε(t̄ − t)/(b − a) whenever ξ ∈ [t, t̄] ⊂
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(ξ − δ(ξ), ξ + δ(ξ)). Consequently, if a = t0 < t1 < · · · < tm = b, and if
ξi ∈ [ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for all i = 1, . . . ,m, then

m∑
i=1

‖f(ti)− f(ti−1)− g(ξi)(ti − ti−1)‖

≤
∑

ξi=xj∈Z

(‖f(ti)− f(ti−1)‖+ ‖g(xj)‖(ti − ti−1))

+
∑

ξi∈[a,b]\Z

‖f(ti)− f(ti−1)− f ′(ξi)(ti − ti−1)‖ ≤ 2ε.

Thus g is HL integrable and f is its primitive. ut

Remark 1.13. If the set Z in Lemma 1.12 is uncountable, an extra condition,
called the Strong Lusin Condition (see Chap. 9), is needed to ensure HL
integrability.

Compared with Lebesgue and Bochner integrability, the definition of HL
integrability is easier to understand because no measure theory is needed.
Moreover, all Bochner integrable (i.e., in real-valued case Lebesgue integrable)
functions are HL integrable, but not conversely. For instance, HL integrability
encloses improper integrals. Consider the real-valued function f defined on
[0, 1] by f(0) = 0 and f(t) = t2 cos(1/t2) for t ∈ (0, 1]. This function is
differentiable on [0, 1], whence f ′ is HL integrable by Lemma 1.12. However,
f ′ is not Lebesgue integrable on [0, 1]. More generally, let t be called a singular
point of the domain interval of a real-valued function that is not Lebesgue
integrable on any subinterval that contains t. Then (cf. [167]) there exist “HL
integrable functions on an interval that admit a set of singular points with its
measure as close as possible but not equal to that of the whole interval.”

If g is HL integrable on [a, b], it is HL integrable on every closed subinterval
[c, d] of [a, b]. The Henstock–Kurzweil integral of g over [c, d] is defined by

K

∫ d

c

g(s) ds := f(d)− f(c), where f is a primitive of g.

The main advantage of the Henstock–Kurzweil integral is its applicability for
integration of highly oscillatory functions that occur in quantum theory and
nonlinear analysis. This integral provides a tool to construct a rigorous math-
ematical formulation for Feynman’s path integral, which plays an important
role in quantum physics (see, e.g., [143, 182]).

On the other hand, as stated in [98, p.13], the most important factor pre-
venting a widespread use of the Henstock–Kurzweil integral in engineering,
mathematics, and physics has been the lack of a natural Banach space struc-
ture for the class of HL integrable functions, even in the case when E = R.
However, if E is ordered, the validity of the dominated and monotone con-
vergence theorems, which we prove for order-bounded sequences of HL inte-
grable functions (see Chap. 9), considerably improve the applicability of the
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Henstock–Kurzweil integral in Nonlinear Analysis. Combined with fixed point
theorems in ordered normed spaces presented in Chap. 2, these convergence
theorems provide effective tools to solve differential and integral equations
that contain HL integrable valued functions and discontinuous nonlinearities.
All this will be discussed in detail in Chaps. 6 and 7 and shows once more the
importance of the order structure of the underlying function spaces. In par-
ticular, the above stated lack of a Banach space structure causes no problems
in our studies. Moreover, as the following simple example shows, the ordering
allows us to determine the smallest and greatest solutions of such equations.

Example 1.14. Determine the smallest and the greatest continuous solutions
of the following Cauchy problem:

y′(t) = q(t, y(t), y) for a.e. t ∈ J := [0, 4], y(0) = 0, (1.17)

where

q(t, x, y) = p(t) sgn(x) + h(y)(1 + cos(t)),

p(t) =
∣∣∣ cos

(1
t

)∣∣∣+ 1
t
sgn
(

cos
(1
t

))
sin
(1
t

)
,

h(y) =
[
2 arctan

(∫ 4

1

y(s) ds
)]
, sgn(x) =

 1, x > 0,
0, x = 0,

−1, x < 0,

[x] = max{n ∈ Z : n ≤ x}.

(1.18)

Note that the bracket function, called the greatest integer function, occurs in
the function h.

Solution: If y ∈ C(J,R) and y(t) > 0 when t > 0, then sgn(y(t)) = 1 when
t > 0. Thus

q(t, y(t), y) = qy(t) := p(t) + h(y)(1 + cos(t)), t ∈ J.

The function fy : J → R, defined by

fy(0) = 0, fy(t) = t
∣∣∣ cos

(1
t

)∣∣∣+ h(y)(t+ sin(t)), t ∈ (0, 4],

is continuous, and f ′y(t) = qy(t) if t ∈ (0, 4] and t 6= 1
(2n+1)π , n ∈ N0. Thus qy

is HL integrable on J and fy is its primitive by Lemma 1.12. This result and
the definitions of fy, qy and the Henstock–Kurzweil integral imply that

Gy(t) := K

∫ t

0

q(s, y(s), y) ds = fy(t), t ∈ J.

Moreover, h(y) =
[
2 arctan

(∫ 4

1
y(s) ds

)]
≤ 3 for every y ∈ C(J,R). Thus,

defining
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y∗(t) = t
∣∣∣ cos

(1
t

)∣∣∣+ 3(t+ sin(t)), t ∈ (0, 4], y∗(0) = 0,

then fy(t) ≤ y∗(t) for all t ∈ J and y ∈ C(J,R). On the other hand, it is easy

to show that h(y∗) =
[
2 arctan

(∫ 4

1
y∗(s) ds

)]
= 3. Consequently,

y∗(t) = fy∗(t) = Gy∗(t), t ∈ J.

It follows from the above equation by differentiation that

(y∗)′(t) = f ′y∗(t) = qy∗(t) = q(t, y∗(t), y∗), t ∈ (0, 4], t 6= 1
(2n+ 1)π

, n ∈ N0.

Moreover y∗(0) = 0, so that y∗ is a solution of problem (1.17). The above
reasoning shows also that if y ∈ C(J,R) is a solution of problem (1.17), then
y(t) ≤ y∗(t) for every t ∈ J . Thus y∗ is the greatest continuous solution of
problem (1.17).

By similar reasoning one can show that the smallest solution of the Cauchy
problem (1.17) is

y∗(t) = −t
∣∣∣ cos

(1
t

)∣∣∣− 4(t+ sin(t)), t ∈ (0, 4], y∗(0) = 0.

The function (t, x, y) 7→ q(t, x, y), defined in (1.18), has the following prop-
erties.

• It is HL integrable, but it is neither Lebesgue integrable nor continuous
with respect to the independent variable t if x 6= 0, because p is not
Lebesgue integrable.

• Its dependence on all the variables t, x, and y is discontinuous, since the
signum function sgn, the greatest integer function [·], and the function p
are discontinuous.

• Its dependence on the unknown function y is nonlocal, since the integral
of function y appears in the argument of the arctan-function.

• Its dependence on x is not monotone, since p attains positive and neg-
ative values in a infinite number of disjoint sets of positive measure.
For instance, y∗(t) > y∗(t) for all t ∈ (0, 4], but the difference func-
tion t 7→ q(t, y∗(t), y∗) − q(t, y∗(t), y∗) = 2p(t) + 7(t + sin(t)) is neither
nonnegative-valued nor Lebesgue integrable on J .

The basic theory of Banach-valued HL integrable functions needed in Chaps.
6 and 7 is presented in Chap. 9. However, readers who are interested in Real
Analysis may well consider the functions to be real-valued. For those readers
who are familiar with Bochner integrability theory, notice that all the theoret-
ical results of Chaps. 6 and 7 where HL integrability is assumed remain valid
if HL integrability is replaced by Bochner integrability. As far as the authors
know, even the so obtained special cases are not presented in any other book.
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In Sect. 6.5 we study functional differential equations equipped with a
functional initial condition in an ordered Banach space E. There we need
fixed point results for an increasing mapping G : P → P , where P is a subset
of the Cartesian product of the space L1(J,E) of Bochner integrable functions
from J := [t0, t1] to E and the space C(J0, E) of continuous functions from
J0 := [t0 − r, t0] to E. The difficulties one is faced with in the treatment of
the considered problems are, first, that only a.e. pointwise weak convergence
in L1(J,E) is available, and second, monotone and bounded sequences of
the pointwise ordered space C(J0, E) need not necessarily have supremums
and infimums in C(J0, E). The following purely order-theoretic fixed point
theorem, which is proved in Chap. 2, is the main tool that will allow us to
overcome the above described difficulties.

Theorem 1.15. Let G be an increasing self-mapping of a partially ordered
set P such that chains of the range G[P ] of G have supremums and infimums
in P , and that the set of these supremums and infimums has a sup-center.
Then G has minimal and maximal fixed points, as well as fixed points that are
increasing with respect to G.

This fixed point theorem will be applied, in particular, in Sects. 6.5 and 7.3
to prove existence and comparison results for solutions of operator equations
in partially ordered sets, integral equations, as well as implicit functional
differential problems in ordered Banach spaces. It is noteworthy that the data
of the considered problems, i.e., operators and functions involved, are allowed
to depend discontinuously on all their arguments. Moreover, we do not suppose
the existence of subsolutions and/or supersolutions in the treatment.

The abstract order-theoretic fixed poind theory developed in Chap. 2 has
been proved to be an extremely powerful tool in dealing with Nash equilibria
for normal form games, which is the subject of Chap. 8.

John Nash invented in [185] an equilibrium concept that now bears his
name. Because of its importance in economics, Nash earned the Nobel Prize
for Economics in 1994. In [185] Nash described his equilibrium concept in
terms of game theory as follows:

“Any N -tuple of strategies, one for each player, may be regarded as a point
in the product space obtained by multiplying the N strategy spaces of the
players. One such N -tuple counters another if the strategy of each player
in countering N -tuple yields the highest possible expectation for its player
against the N − 1 strategies of the other player in the countered N -tuple. A
self-countering N -tuple is called an equilibrium point.”

To convert this description into a mathematical concept, we utilize the
following notations. Let Γ = {S1, . . . , SN , u1, . . . , uN} be a finite normal-form
game, where the strategy set Si for player i is finite, and the utility function ui
of player i is real-valued and defined on S = S1×· · ·×SN . Using the notations
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s−i = (s1, . . . , si−1, si+1, . . . , sN ) and ui(s1, . . . , sN ) = ui(si, s−i), strategies
s∗1, . . . , s

∗
N form a pure Nash equilibrium for Γ if and only if

ui(s∗i , s
∗
−i) ≥ ui(si, s∗−i) for all si ∈ Si and i = 1, . . . , N.

This definition implies that the strategies of players form a pure Nash equi-
librium if and only if no player can improve his/her utility by changing the
strategy when all the other players keep their strategies fixed.

Besides economics, this equilibrium concept has been applied in other so-
cial and behavioral sciences, biology, law, politics, etc., cf. [83, 109, 177, 193,
210, 218, 220, 224]. The Nash equilibrium has found so many applications
partly because it can be usefully interpreted in a number of ways (cf. [144]).
For instance, in human interaction (social, economic, or political) the utilities
of players (individuals, firms, or politicians/parties) are mutually dependent
on actions of all players. The Nash equilibrium provides an answer to the
question of what is an optimal action for every player. The following simple
thought experiment describes the usefulness of the Nash equilibrium concept
and its relation to democratic decision procedure.

The traffic board of Sohmu hires a consultant to make a traffic plan for
the only crossroad of town having traffic lights. Traffic should be as safe as
possible. The consultant seeks Nash safety equilibria and finds two: either
every passenger goes toward green light, or, all passengers go toward red light.
He suggests to the board that one of these alternatives should be chosen. The
state council votes on the choice. Every council member votes according to
his/her preferences: Green, Red, or Empty. The result is in Nash equilibrium
with respect to the opinions of the council members.

The above thought experiment implies that the concept of Nash equilibrium
harmonizes with democratic decision making. It also shows that if actions are
in Nash equilibrium, they may give the best result for every participant. It
is not a matter of a zero-sum game where someone loses when someone else
wins.

Nash used in [186] a version of Theorem 1.8 (see [148]) to prove the exis-
tence of Nash equilibrium for a finite normal-form game. Because of finiteness
of strategy sets, the application of Kakutani’s fixed point theorem was not
possible without extensions of Si to be homeomorphic with convex sets. Thus
he extended the strategy sets to contain also strategies that are called mixed
strategies. This means that players i are allowed to choose independently ran-
domizations of strategies of Si, that is, each mixed strategy σi is a probability
measure over Si. The values of utilities Ui, i = 1, . . . , N , are then the expected
values:

Ui(σ1, . . . , σN ) =
∑

(s1,...,sN )∈S

σ1({s1}) · · ·σm({sN})ui(s1, . . . , sN ).

According to Nash’s own interpretation stated above, a mixed Nash equilib-
rium for Γ is a profile of mixed strategies, one for each N players, that has
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the property that each player’s strategy maximizes his/her expected utility
against the given strategies of the other players. To put this into a mathe-
matical form, denote σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ) and Ui(σ1, . . . , σN ) =
Ui(σi, σ−i), and let Σi denote the set of all mixed strategies of player i. We
say that mixed strategies σ∗1 , . . . , σ

∗
N form a mixed Nash equilibrium for Γ if

Ui(σ∗i , σ∗−i) = max
σi∈Σi

Ui(σi, σ∗−i) for all i = 1, . . . , N.

As for a variety of areas where the concept of Nash equilibrium is applied, see
[144, 183] and the references therein.

In Chap. 8 we present some recent results dealing with Nash equilibria
for normal-form games. Our study is focused on games with strategic com-
plementarities, which means roughly speaking that the best response of any
player is increasing in actions of the other players. Sections 8.1 and 8.2 are
devoted especially to those readers who are interested only in finite games.
In section 8.1 we prove the existence for the smallest and greatest pure Nash
equilibria of a normal-form game whose strategy spaces Si are finite sets of
real numbers, and the real-valued utility functions ui possess a finite differ-
ence property. If the utilities ui(s1, . . . , sN ) are also increasing (respectively
decreasing) in sj , j 6= i, the utilities of the greatest (respectively the smallest)
pure Nash equilibrium are shown to majorize the utilities of all pure Nash
equilibria. An application to a pricing problem is given.

Our presentation of Sects. 8.2–8.5 has three main purposes.
1. In order to avoid ”throwing die” in the search for Nash equilibria, it

would be desirable that Γ has a pure Nash equilibrium whose utilities majorize
the utilities of all other Nash equilibria for Γ , including mixed Nash equilibria.
In such a case it would be of no benefit to seek possible mixed Nash equilibria.
If Γ is a finite normal-form game, every player who has at least two pure
strategies has uncountably many mixed strategies. On the other hand, the
set of its pure strategies, as well as the ranges of its utilities, are finite for
each player. Thus one can find pure Nash equilibria in concrete situations by
finite methods. In Sect. 8.2 we prove that finite normal-form games, which are
supermodular in the sense defined in [218, p. 178], possess the above described
desirable properties. The proof is constructive and provides a finite algorithm
to determine the most profitable pure Nash equilibrium for Γ . This algorithm
and Maple programming is applied to calculate the most profitable pure Nash
equilibrium and the corresponding utilities for some concrete pricing games.
Proposition 8.61 deals also with finite normal-form games.

2. Theorem 1.9 along with other fixed point theorems presented in Chap.
2 are applied in Sects. 8.3 and 8.4 to derive existence and comparison results
for exremal Nash equilibria of normal-form games in more general settings.
For instance, the result for finite supermodular games proved in Sect. 8.2 is
extended in Sect. 8.4 to the case when the strategy spaces Si are compact
sublattices of complete and separable ordered metric spaces. The easiest case
is when strategy spaces are subsets of R. In fact, it has been shown recently (cf.
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[86]) that when the strategies of a supermodular normal-form game are real
numbers, the mixed extension of that game is supermodular, its equilibria form
a non-empty complete lattice, and its extremal equilibria are in pure strategies
when mixed strategies are ordered by first order stochastic dominance. A
problem that arises when the strategies are not in R is described in [86, Chap.
3] as follows:

“When the strategy spaces are multidimensional, the set of mixed strategies
is not a lattice. This implies that we lack the mathematical structure needed
for the theory of complementarities. We need lattice property to make sense
of increasing best responses when they are not real-valued. Multiple best
responses are always present when dealing with mixed equilibria and there
does not seem a simple solution to the requirement that strategy spaces be
lattices.”

In particular, classical fixed point theorems in complete lattices are not ap-
plicable, even for finite normal-form games having multidimensional strat-
egy spaces. Moreover, in such cases the desirable comparison results between
pure and mixed strategies cannot be obtained by the methods used, e.g., in
[86, 180, 217, 218, 222, 223]. The results of Theorems 2.20 and 2.21 and their
duals provide tools to overcome the problem caused by the above stated non-
lattice property. Our results imply that the smallest and greatest pure Nash
equilibria of supermodular games form lower and upper bounds for all pos-
sible mixed Nash equilibria when the set of mixed strategies is ordered by
first-order stochastic dominance. These lower and upper bounds have the im-
portant property that they are the smallest and greatest rationalizable strat-
egy profile, as shown in [179]. In particular, if these bounds are equal, then
there is only one pure Nash equilibrium, which is also a unique rationalizable
strategy profile, and no properly mixed Nash equilibria exist. In [218, Sect.
4] the following eight examples of supermodular games are presented: Pricing
game with substitute products, production game with complementary prod-
ucts, multimarket oligopoly, arms race game, trading partner search game,
optimal consumption game with multiple products, facility location game,
and minimum cut game. The first example is studied here more closely. In
this example the greatest Nash equilibrium has also the desirable property
that the utilities of the greatest Nash equilibrium majorize the utilities of all
other Nash equilibria, including mixed Nash equilibria. Concrete examples are
solved by using Maple programming.

3. Another property, which restricts the application of the original result of
Nash, is that the utility functions are assumed to be real-valued. This requires
that differences of values of ui can be estimated by numbers. The results of
Sects. 8.2 and 8.4 are proved in the case when the values of ui are in ordered
vector spaces Ei. Thus we can consider the cases when the values of utilities
are random variables by choosing Ei = L2(Ωi,R), ordered a.e. pointwise. If
the strategy spaces are finite, the only extra hypothesis is that the ranges of
ui(·, s−i) are directed upward. As an application the pricing game is extended
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to the form where the values of the utility functions are in Rmi . Concrete
examples are solved also in this case.

But in the definition of pure Nash equilibrium a partial ordering of the
values of ui is sufficient. The fixed point theorems presented in Chap. 2 apply
to derive existence results for extremal pure Nash equilibria of normal-form
games when both the strategy spaces Si and ranges of utility functions ui are
partially ordered sets. Such results are presented in Sect. 8.3. We also present
results dealing with monotone comparative statics, i.e., conditions that ensure
the monotone dependence of extremal pure Nash equilibria on a parameter
that belongs to a poset. As for applications, see, e.g., [10, 11, 180, 218]. These
results can be applied to cases where the utilities of different players are
evaluated in different ordinal scales, where all the values of the utility functions
need not even be order-related. Thus the way is open for new applications of
the theory of Nash equilibrium, for instance, in social and behavioral sciences.
In such applications the term ‘utility’ would approach to one of its meanings:
“the greatest happiness of the greatest number.”

A necessary condition for the existence of a Nash equilibrium for Γ is
that the functions ui(·, s−i) have maximum points. When the ranges of these
functions are in partially ordered sets that are not topologized, the classical
hypotheses, like upper semicontinuity, are not available. Therefore we define
a new concept, called upper closeness, which ensures the existence of required
maximum points. Upper semicontinuity implies upper closeness for real-valued
functions.

In Sect. 8.5 we study the existence of undominated and weakly dominating
strategies of normal-form games when the ranges of the utility functions are
in partially ordered sets. A justification for Sects. 8.2–8.5 is a philosophy of
economic modeling stated in [13]: ”The weakest sufficient conditions for robust
conclusions is particularly important to economists.” Concrete examples are
presented.

The existence of winning strategies for a pursuit and evasion game is
proved in Sect. 8.6. As an introduction to the subject consider a finite pursuit
and evasion game. Game board P is a nonempty subset of R2, equipped with
coordinatewise partial ordering ≤. Assume that to every position x ∈ P of
player p (pursuer) there corresponds a nonempty subset F(x) ⊆ P of possible
positions y of player q (quarry). The only rule of the game is:

(R) If (xn, yn) and (xn+1, yn+1) are consecutive positions of a play, then yn ≤
yn+1 whenever xn < xn+1, and yn+1 ≤ yn whenever xn+1 < xn.

We say that a strategy of p is a winning strategy if the use of it yields captur-
ing, i.e., after a finite number of move pairs p and q are in the same position.
Player p has a winning strategy if the following conditions hold:

(i) The set F [P ] =
⋃
{F(x) : x ∈ P} has a sup-center c ∈ P .
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(ii) If x ≤ y in P , then for every z ∈ F(x) for which z ≤ y there exists such
a w ∈ F(y) that z ≤ w, and for every w ∈ F(y) satisfying x ≤ w there
exists such a z ∈ F(x) that z ≤ w.

(iii) Strictly monotone sequences of F [P ] are finite.

The existence of a winning strategy for p can be justified as follows. Player
p starts from x0 = c, and q starts from y0 ∈ F(x0). If x0 = y0, then p wins.
Otherwise, let xn and yn ∈ F(xn) denote positions of p and q after nth move
pair of a play. If xn 6= yn, then p moves to xn+1 = sup{c, yn} if xn and yn
are unordered, and to xn+1 = yn if xn and yn are ordered. If xn < xn+1,
then q must obey rule (R) and choose a position yn+1 of F(xn+1) such that
yn ≤ yn+1, which is possible due to condition (ii). If xn+1 < xn, then similarly
q obeying the rule (R) can choose by condition (ii) yn+1 ∈ F(xn+1) so that
yn+1 ≤ yn. Condition (iii) ensures that every play which follows these rules
stops after a finite number of moves to the situation where xm = ym.

The correspondence x 7→ F(x) can be considered also as a set-valued
mapping from P to the set 2P \ ∅ of nonempty subsets of P . Since the final
positions x = xm of p and y = ym of q after a play satisfy x = y ∈ F(x), the
above reasoning shows that F has a fixed point under conditions (i)–(iii).

To see that the pursuit–evasion game and the fixed point problem formu-
lated above are different if one of the conditions (i)–(iii) is violated, choose
P = {a, b}, where a = (0, 1) and b = (1, 0). If F(a) = F(b) = P , then both
a and b are fixed points of F . If x0 is any of the points of P from which p
starts, then q can start from the other point of P , and p cannot capture q. In
this example conditions (ii) and (iii) hold, but (i) is not valid. This lack can
yield also a nonexistence of a fixed point of F even in the single-valued case,
as we see by choosing P as above and defining F(a) = {b} and F(b) = {a}.
Also in this case conditions (ii) and (iii) are valid. The above results hold true
also when P is a partially ordered set (poset), positive and negative directions
being determined by a partial ordering of P .

The finite game introduced above is generalized in Sect. 8.6, where we
study the existence of winning strategies for pursuit and evasion games that
are of ordinal length. The obtained results are then used to study the solvabil-
ity of equations and inclusions in ordered spaces. Monotonicity hypotheses,
like (ii) above, are weaker than those assumed in Chap. 2.

As for the roots of the methods used in the proofs of Theorems 1.2, 1.5, 1.9,
1.15, and related theorems in Chap. 2, and in Sect. 8.6, we refer to Ernst Zer-
melo’s letter to David Hilbert, dated September 24, 1904. This letter contains
the first proof that every set can be well-ordered, i.e., every set P has such
a partial ordering that each nonempty subset A of P has the minimum. The
proof in question was published in the same year in Mathematische Annalen
(see [231]). The influence of that proof is described in [94, p.84] as follows:
“The powder keg had been exploded through the match lighted by Zermelo in
his first proof of well-ordering theorem.” To find out what in that proof was
so shocking we give an outline of it. The notations are changed to reveal a re-



20 1 Introduction

cursion principle that is implicitly included in Zermelo’s proof. That principle
forms a cornerstone to proofs of the main existence and comparison results of
this book, including the fixed point results stated above. As for the concepts
related to ordering, see Chap. 2.

Let P be a nonempty set, and let f be a choice function that selects
from the complement P \ U of every proper subset U of P an element f(U)
(= γ(P \ U), where γ is “eine Belegung” in Zermelo’s proof). We say that a
nonempty subset A of P is an f-set if A has such an order relation < that
the following conditions holds:

(i) (A,<) is well-ordered, and if x ∈ A, then x = f(A<x),
where A<x = {y ∈ A : y < x}.

Applying a comparison principle for well-ordered sets proved by Georg Cantor
in 1897 (see [36]) one can show that if A = (A,<) and B = (B,≺) are f-sets
and A 6⊆ B, then B is an initial segment of A, and if x, y ∈ B, then x ≺ y
if and only if x < y. Using these properties it is then elementary to verify
that the union C of f-sets is an f-set, ordered by the union of the orderings
of f-sets.

We have C = P , for otherwise A = C ∪{f(C)} would be an f -set, ordered
by the union of the ordering of C and {(y, f(C)) : y ∈ C}, contradicting the
fact that C is the union of all f -sets. Thus P is an f -set, and hence well
ordered.

The proof is based on three principles. One of them ensures the exis-
tence of a choice function f . After his proof Zermelo mentions that “Die Idee,
unter Berufung auf dieses Prinzip eine beliebige Belegung der Wohlordnung zu
grunde zu legen, verdanke ich Herrn Erhard Schmidt.” This principle, which
is a form of the Axiom of Choice, caused the strongest reactions against Zer-
melo’s proof, because there exists no constructive method to determine f for
an arbitrary infinite set P . Another principle used in the proof is Cantor’s
comparison principle for well-ordered sets. A third principle is hidden in the
construction of the union C of f -sets: Because C is an f -set, then x ∈ C im-
plies x = f(C<x). Conversely, if x = f(C<x), then x ∈ P = C. Consequently,

(A) x ∈ C ⇐⇒ x = f(C<x).

In Zermelo’s proof f was a choice function. Recently, this special instance is
generalized to the following mathematical method, called the Chain Gener-
ating Recursion Principle (see [112, 133]).

Given any nonempty partially ordered set P = (P,<), a family D of subsets
of P with ∅ ∈ D and a mapping f : D → P , there is exactly one well-ordered
chain C of P such that (A) holds. Moreover, if C ∈ D, then f(C) is not a
strict upper bound of C.

In the proof of this result only elementary properties of set theory are used in
[112, 133]. In particular, neither the Axiom of Choice nor Cantor’s comparison
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principle are needed. To get this book more self-contained we give another
proof in the Preliminaries, Chap. 2.

To give a simple example, let D be the family of all finite subsets of the
set P = R of real numbers, and f(U), U ∈ D, the number of elements of U .
By the Chain Generating Recursion Principle there is exactly one subset C
of R that is well-ordered by the natural ordering of R and satisfies (A). The
elements of C are values of f , so that C ⊆ N0 = {0, 1, . . . }. On the other
hand, N0 is a well-ordered subset of R, and n = f(N<n0 ), n ∈ N0. Thus N0 is
an f -set, whence N0 ⊆ C. Consequently, C = N0, so that (A) generates the
set of natural numbers.

More generally, given (P,<,D, f), condition (A) can be considered for-
mally as a ‘recursion automate’ that generates exactly one well-ordered set
C. The amount of admissible quadruples (P,<,D, f) is so big that no set can
accommodate them.

The first elements of C satisfying (A) are

x0 := f(∅), . . . , xn+1 := f({x0, . . . , xn}), as long as xn < f({x0, . . . , xn}).
(1.19)

If xn+1 = xn for some n, then xn = maxC. This property can be used
to derive algorithmic methods that apply to determine exact or approxima-
tive solutions for many kinds of concrete discontinuous nonlocal problems, as
well as to calculate pure Nash equilibria and corresponding utilities for finite
normal-form games. The Chain Generating Recursion Principle is applied in
this book to introduce generalized iteration methods, which provide the basis
for the proofs of our main fixed point theorems including Theorems 1.2, 1.5,
1.9, and 1.15. They are applied to prove existence and comparison results for
a number of diverse problems such as, e.g., operator equations and inclusions,
partial differential equations and inclusions, ordinary functional differential
and integral equations in ordered Banach spaces involving singularities, dis-
continuities, and also non-absolutely integrable functions. Moreover, these ab-
stract fixed point results are shown to be useful and effective tools to prove
existence results for extremal Nash equilibria for normal-form games, and to
study the existence of winning strategies for pursuit and evasion games.



2

Fundamental Order-Theoretic Principles

In this chapter we use the Chain Generating Recursion Principle formulated in
the Introduction to develop generalized iteration methods and to prove exis-
tence and comparison results for operator equations and inclusions in partially
ordered sets. Algorithms are designed to solve concrete problems by appro-
priately constructed Maple programs.

2.1 Recursions and Iterations in Posets

Given a nonempty set P , a relation x < y in P ×P is called a partial ordering,
if x < y implies y 6< x, and if x < y and y < z imply x < z. Defining x ≤ y if
and only if x < y or x = y, we say that P = (P,≤) is a partially ordered set
(poset).

An element b of a poset P is called an upper bound of a subset A of P if
x ≤ b for each x ∈ A. If b ∈ A, we say that b is the greatest element of A,
and denote b = maxA. A lower bound of A and the smallest element minA
of A are defined similarly, replacing x ≤ b above by b ≤ x. If the set of all
upper bounds of A has the smallest element, we call it a supremum of A and
denote it by supA. We say that y is a maximal element of A if y ∈ A, and if
z ∈ A and y ≤ z imply that y = z. An infimum of A, inf A, and a minimal
element of A are defined similarly. A poset P is called a lattice if inf{x, y} and
sup{x, y} exist for all x, y ∈ P . A subset W of P is said to be upward directed
if for each pair x, y ∈ W there is a z ∈ W such that x ≤ z and y ≤ z, and
W is downward directed if for each pair x, y ∈W there is a w ∈W such that
w ≤ x and w ≤ y. If W is both upward and downward directed it is called
directed. A set W is said to be a chain if x ≤ y or y ≤ x for all x, y ∈W . We
say that W is well-ordered if nonempty subsets of W have smallest elements,
and inversely well-ordered if nonempty subsets of W have greatest elements.
In both cases W is a chain.

A basis to our considerations is the following Chain Generating Recursion
Principle (cf. [112, Lemma 1.1], [133, Lemma 1.1.1]).
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Lemma 2.1. Given a nonempty poset P , a subset D of 2P = {A : A ⊆ P}
with ∅ ∈ D, where ∅ denotes the empty set, and a mapping f : D → P . Then
there is a unique well-ordered chain C in P such that

x ∈ C if and only if x = f(C<x), where C<x = {y ∈ C : y < x}. (2.1)

If C ∈ D, then f(C) is not a strict upper bound of C.

Proof: A nonempty subset A of P is called an f-set (with f given in the
lemma, and thus the proof is independent on the Axiom of Choice) if it has
the following properties.

(i) (A,<) is well-ordered, and if x ∈ A, then x = f(A<x), where A<x = {y ∈
A : y < x}.

For instance, the singleton {f(∅)} is an f -set. These sets possess the following
property:

(a) If A and B are f-sets and A 6⊆ B, then B = A<x for some x ∈ A.

Namely, according to a comparison principle for well-ordered sets (see [36])
there exists such a bijection ϕ : B → A<x for some x ∈ A that ϕ(u) < ϕ(v) if
and only if u < v inB. The set S = {u ∈ B : u 6= ϕ(u)} is empty, for otherwise,
y = minS would exist and B<y = A<ϕ(y), which yields a contradiction:
y 6= ϕ(y) and y = f(B<y) = f(A<ϕ(y)) = ϕ(y). Thus B = ϕ[B] = A<x,
which proves (a).

Applying (a) it is then elementary to verify that the union C of all f -
sets is an f -set. Hence, x = f(C<x) for all x ∈ C. Conversely, if x ∈ P and
x = f(C<x), then C<x ∪ {x} is an f -set, whence x ∈ C. Thus (2.1) holds for
C.

To prove uniqueness, let B be a well-ordered subset of P for which x ∈
B ⇔ x = f(B<x). Since B is an f -set, so B ⊆ C. If B 6= C, then B = C<x by
(a). But then f(B<x) = f(B) = f(C<x) = x, and x 6∈ B, which contradicts
with x ∈ B ⇔ x = f(B<x). Thus B = C, which proves the uniqueness of
C. (the well-ordering condition is needed in this proof, since there may exist
other partially ordered sets that satisfy (2.1), cf. [110]).

If f(C) is defined, it cannot be a strict upper bound of C, for otherwise
f(C) 6∈ C and f(C) = f(C<f(C)), so that C ∪ f(C) would be an f -set, not
contained in C, which is the union of all f -sets. This proves the last assertion
of the lemma. ut

As a consequence of Lemma 2.1 we get the following result (cf. [116, Lemma
2]).

Lemma 2.2. Given G : P → P and c ∈ P , there exists a unique well-ordered
chain C = C(G) in P , called a w-o chain of cG-iterations, satisfying

x ∈ C if and only if x = sup{c,G[C<x]}. (2.2)
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Proof: Denote D = {W ⊆ P : W is well-ordered and sup{c,G[W ]} exists}.
Defining f(W ) = sup{c,G[W ]}, W ∈ D, we get a mapping f : D → P , and
(2.1) is reduced to (2.2). Thus the assertion follows from Lemma 2.1. ut

A subset W of a chain C is called an initial segment of C if x ∈ W and
y < x imply y ∈ W . The following application of Lemma 2.2 is used in the
sequel.

Lemma 2.3. Denote by G the set of all selections from F : P → 2P \ ∅, i.e.,

G := {G : P → P : G(x) ∈ F(x) for all x ∈ P}. (2.3)

Given c ∈ P and G ∈ G. Let CG denote the longest initial segment of the
w-o chain C(G) of cG-iterations such that the restriction G|CG of G to CG
is increasing (i.e., G(x) ≤ G(y) whenever x ≤ y in CG). Define a partial
ordering ≺ on G as follows: Let F, G ∈ G then

(O) F ≺ G if and only if CF is a proper initial segment of CG and G|CF =
F |CF .

Then (G,�) has a maximal element.

Proof: Let C be a chain in G. The definition (O) of ≺ implies that the sets
CF , F ∈ C, form a nested family of well-ordered sets of P . Thus the set
C := ∪{CF : F ∈ C} is well-ordered. Moreover, it follows from (O) that the
functions F |CF , F ∈ C, considered as relations in P × P , are nested. This
ensures that g := ∪{F |CF : F ∈ C} is a function from C to P . Since each
F ∈ C is increasing in CF , then g is increasing, and g(x) ∈ F(x) for each
x ∈ C. Let G be such a selection from F that G|C = g. Then G ∈ G, and G is
increasing on C. If x ∈ C, then x ∈ CF for some F ∈ C. The definitions of C
and the partial ordering ≺ imply that CF is C or its initial segment, whence
C<xF = C<x. Because F |CF = g|CF = G|CF , then

x = sup{c, F [C<xF ]} = sup{c,G[C<x]}. (2.4)

This result implies by (2.2) that C is C(G) or its proper initial segment. Since
G is increasing on C, then C is CG or its proper initial segment. Consequently,
G is an upper bound of C in G. This result implies by Zorn’s Lemma that G
has a maximal element. ut

Let P = (P,≤) be a poset. For z, w ∈ P , we denote

[z) = {x ∈ P : z ≤ x}, (w] = {x ∈ P : x ≤ w} and [z, w] = [z) ∩ (w].

A poset X equipped with a topology is called an ordered topological space if
the order intervals [z) and (z] are closed for each z ∈ X. If the topology of
X is induced by a metric, we say that X is an ordered metric space. Next we
define some concepts for set-valued functions.
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Definition 2.4. Given posets X and P , we say F : X → 2P \∅ is increasing
upward if x ≤ y in X and z ∈ F(x) imply that [z) ∩ F(y) is nonempty. F
is increasing downward if x ≤ y in X and w ∈ F(y) imply that (w] ∩
F(x) is nonempty. If F is increasing upward and downward, we say that F
is increasing.

Definition 2.5. A nonempty subset A of a subset Y of a poset P is called
order compact upward in Y if for every chain C of Y that has a supremum
in P the intersection ∩{[y) ∩ A : y ∈ C} is nonempty whenever [y) ∩ A is
nonempty for every y ∈ C. If for every chain C of Y that has the infimum in
P the intersection of all the sets (y]∩A, y ∈ C is nonempty whenever (y]∩A
is nonempty for every y ∈ C, we say that A is order compact downward
in Y . If both these properties hold, we say that A is order compact in Y .
Phrase ‘in Y ’ is omitted if Y = A.

Every poset P is order compact. If a subset A of P has the greatest el-
ement (respectively the smallest element), then A is order compact upward
(respectively downward) in any subset of P that contains A. Thus an order
compact set is not necessarily (topologically) compact, not even closed. On
the other hand, every compact subset A of an ordered topological space P is
obviously order compact in every subset of P that contains A.

2.2 Fixed Point Results in Posets

In this subsection we prove existence and comparison results for fixed points
of set-valued and single-valued functions defined in a poset P = (P,≤).

Definition 2.6. Given a poset P = (P ≤) and a set-valued function F : P →
2P \ ∅, denote Fix(F) = {x ∈ P : x ∈ F(x)}. Every element of Fix(F) is
called a fixed point of F . A fixed point of F is called minimal, maximal,
smallest, or greatest if it is a minimal, maximal, smallest, or greatest ele-
ment of Fix(F), respectively. For a single-valued function G : P → P replace
Fix(F) by Fix(G) = {x ∈ P : x = G(x)}.

2.2.1 Fixed Points for Set-Valued Functions

Our first proved fixed point result is an application of Lemma 2.1.

Lemma 2.7. Assume that F : P → 2P satisfies the following hypothesis.

(S+) The set S+ = {x ∈ P : [x) ∩ F(x) 6= ∅} is nonempty, and conditions: C
is a nonempty well-ordered chain in S+, G : C → P is increasing and
x ≤ G(x) ∈ F(x) for all x ∈ C, imply that G[C] has an upper bound in
S+.

Then F has a maximal fixed point, which is also a maximal element of S+.
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Proof: Denote

D = {W ⊂ S+ : W is well-ordered and has a strict upper bound in S+}.

Because S+ is nonempty by the hypothesis (S+), then ∅ ∈ D. Let f : D → P
be a function that assigns to each W ∈ D an element y = f(W ) ∈ [x)∩F(x),
where x is a fixed strict upper bound of W in S+. Lemma 2.1 ensures the
existence of exactly one well-ordered chain W in P satisfying (2.1). By the
above construction and (2.1) each element y of W belongs to [x)∩F(x), where
x is a fixed strict upper bound of W<y in S+. It is easy to verify that the set C
of these elements x form a well-ordered chain in S+; that the correspondence
x 7→ y defines an increasing mapping G : C → P ; that x ≤ G(x) ∈ F(x) for
all x ∈ C; and that W = G[C]. It then follows from the hypothesis (S+) that
W has an upper bound x ∈ S+, which satisfies x = maxW . For otherwise
f(W ) would exist, and as a strict upper bound of W would contradict the
last conclusion of Lemma 2.1. By the same reason x is a maximal element of
S+.

Since x ∈ S+, a y ∈ P exists such that x ≤ y ∈ F(x). It then follows
from the hypothesis (S+) when C = {x} and G(x) := y that {y} has an upper
bound z in S+. Because x is a maximal element of S+, then z = y = x ∈ F(x),
so that x is a fixed point of F . If z is a fixed point of F and x ≤ z, then z ∈ S+,
whence x = z. Thus x is a maximal fixed point of F . ut

As an application of Lemma 2.7 we obtain the following result.

Proposition 2.8. Assume that F : P → 2P \ ∅ is increasing upward, that the
set S+ = {x ∈ P : [x) ∩ F(x) 6= ∅} is nonempty, that well-ordered chains of
F [S+] have supremums in P , and that the values of F at these supremums
are order compact upward in F [S+]. Then F has a maximal fixed point, which
is also a maximal element of S+.

Proof: It suffices to show that the hypothesis (S+) of Lemma 2.7 holds.
Assume that C is a well-ordered chain in S+, that G : C → P is an increasing
mapping, and that x ≤ G(x) ∈ F(x) for all x ∈ C. Then G[C] is a well-ordered
chain in F [S+], so that y = supG[C] exists. Since F is increasing upward, then
[x) ∩ F(y) 6= ∅ for every x ∈ G[C]. Because F(y) is order compact upward in
F [S+], then the intersection of the sets [x)∩F(y), x ∈ G[C] contains at least
one element w. Thus G[C] has an upper bound w in F(y). Since y = supG[C],
then y ≤ w, so that w ∈ [y) ∩ F(y), i.e., y belongs to S+. ut

The next result is the dual to Proposition 2.8.

Proposition 2.9. Assume that F : P → 2P \ ∅ is increasing downward, that
the set S− = {x ∈ P : (x]∩F(x) 6= ∅} is nonempty, that inversely well-ordered
chains of F [S−] have infimums in P , and that values of F at these infimums
are order compact downward in F [S−]. Then F has a minimal fixed point,
which is also a minimal element of S−.
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If the range F [P ] has an upper bound (respectively a lower bound) in
P , it belongs to S− (respectively to S+). To derive other conditions under
which the set S− or the set S+ is nonempty, we introduce the following new
concepts.

Definition 2.10. Let A be a nonempty subset of a poset P . The set ocl(A)
of all possible supremums and infimums of chains of A is called the order
closure of A. If A = ocl(A), then A is order closed. We say that a subset
A of a poset P has a sup-center c in P if c ∈ P and sup{c, x} exists in
P for each x ∈ A. If inf{c, x} exists in P for each x ∈ A, we say that c is
an inf-center of A in P . If c has both these properties it is called an order
center of A in P . Phrase “in P” is omitted if A = P .

If P is an ordered topological space, then the order closure ocl(A) of A
is contained in the topological closure A of A. If c is the greatest element
(respectively the smallest element) of P , then c is an inf-center (respectively
a sup-center) of P , and trivially c is a sup-center (respectively an inf-center).
Therefore, both the greatest and the smallest element of P are order centers.
If P is a lattice, then its every point is an order center of P . If P is a subset
of R2, ordered coordinatewise, a necessary and sufficient condition for a point
c = (c1, c2) of P to be a sup-center of a subset A of P in P is that whenever
a point y = (y1, y2) of A and c are unordered, then (y1, c2) ∈ P if y2 < c2 and
(c1, y2) ∈ P if y1 < c1.

The following result is an application of Lemma 2.3.

Proposition 2.11. Assume that F : P → 2P \ ∅ is increasing upward and
that its values are order compact upward in F [P ]. If well-ordered chains of
F [P ] have supremums, and if the set of these supremums has a sup-center c
in P , then the set S− = {x ∈ P : (x] ∩ F(x) 6= ∅} is nonempty.

Proof: Let G be defined by (2.3), and let the partial ordering ≺ be defined
by (O). In view of Lemma 2.3, (G,�) has a maximal element G. Let C(G)
be the w-o chain of cG-iterations, and let C = CG be the longest initial
segment of C(G) on which G is increasing. Thus C is well-ordered and G is
an increasing selection from F|C. Since G[C] is a well-ordered chain in F [P ],
then w = supG[C] exists. Moreover, x = sup{c, w} exists in P by the choice
of c, and it is easy to see that x = sup{c,G[C]}. This result and (2.2) imply
that for each x ∈ C,

x = sup{c,G[C<x]} ≤ sup{c,G[C]} = x.

This proves that x is an upper bound of C, and also of G[C]. Moreover, F
is increasing upward and F(x) is order compact upward in F [P ]. Thus the
proof of Proposition 2.8 implies that G[C] has an upper bound z in F(x), and
w = supG[C] ≤ z. To show that x = maxC, assume on the contrary that x
is a strict upper bound of C. Let F be a selection from F whose restriction
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to C ∪ {x} is G|C ∪ {(x, z)}. Since G is increasing on C and F (x) = G(x) ≤
w ≤ z = F (x) for each x ∈ C, then F is increasing on C ∪ {x}. Moreover,

x = sup{c,G[C]} = sup{c, F [C]} = sup{c, F [{y ∈ C ∪ {x} : y < x}]},

whence C ∪ {x} is a subset of the longest initial segment CF of the w-o chain
of cF -iterations where F is increasing. Thus C = CG is a proper subset of
CF , and F |CG = F |CF . By (O) this means that G ≺ F , which, however,
is impossible because G is a maximal element of (G,�). Consequently, x =
maxC. Since G is increasing on C, then x = sup{c,G[C]} = sup{c,G(x)}. In
particular, F(x) 3 G(x) ≤ x, whence G(x) belongs to the set (x] ∩ F(x). ut

As a consequence of Propositions 2.8, 2.9, and 2.11 we obtain the following
fixed point result.

Theorem 2.12. Assume that F : P → 2P \∅ is increasing, and that its values
are order compact in F [P ]. If chains of F [P ] have supremums and infimums,
and if ocl(F [P ]) has a sup-center or an inf-center in P , then F has minimal
and maximal fixed points.

Proof: We shall give the proof in the case when ocl(F [P ]) has a sup-center
in P , as the proof in the case of an inf-center is similar. The hypotheses
of Proposition 2.11 are then valid, whence there exists a x ∈ P such that
(x] ∩ F(x) 6= ∅. Thus the hypotheses of Proposition 2.9 hold, whence F has
by Proposition 2.9 a minimal fixed point x−. In particular [x−)∩F(x−) 6= ∅.
The hypotheses of Proposition 2.8 are then valid, whence we can conclude
that F has also a maximal fixed point. ut

Example 2.13. Assume that Rm is ordered as follows. For all x = (x1, . . . , xm),
y = (y1, . . . , ym) ∈ Rm,

x ≤ y if and only if xi ≤ yi, i = 1, . . . , j, and xi ≥ yi, i = j + 1, . . . ,m,
(2.5)

where j ∈ {0, . . . ,m}. Show that if F : Rm → 2Rm \ ∅ is increasing, and its
values are closed subsets of Rm, and if F [Rm] is contained in the set

BpR(c) = {(x1, . . . , xm) ∈ Rm :
m∑
i=1

|xi − ci|p ≤ Rp}, p, R ∈ (0,∞),

where c = (c1, . . . , cm) ∈ Rm, then F has minimal and maximal fixed points.

Solution: Let x = (x1, . . . , xm) ∈ BpR(c) be given. Since |max{ci, xi} − ci| ≤
|xi − ci| and |min{ci, xi} − ci| ≤ |xi − ci| for each i = 1, . . . ,m, it follows
that sup{c, x} and inf{c, x} belong to BpR(c) for all x ∈ BpR(c). Moreover,
every BpR(c) is a closed and bounded subset of Rm, whence its monotone
sequences converge in BpR(c) with respect to the Euclidean metric of Rm.
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These results, Lemma 2.31 and the given hypotheses imply that chains of
F [Rm] have supremums and infimums, that c is an order center of ocl(F [Rm]),
and that the values of F are compact. Thus the hypotheses of Theorem 2.12
are satisfied, whence we conclude that F has minimal and maximal fixed
points. ut

2.2.2 Fixed Points for Single-Valued Functions

Next we present existence and comparison results for fixed points of single-
valued functions. The following auxiliary result is a consequence of Proposition
2.11 and its proof. We note that the Axiom of Choice is not needed in the
proof.

Proposition 2.14. Assume that G : P → P is increasing, that ocl(G[P ]) has
a sup-center c in P , and that supG[C] exists whenever C is a nonempty well-
ordered chain in P . If C is the w-o chain of cG-iterations, then x = maxC
exists, x = sup{c,G(x)} = sup{c,G[C]}, and

x = min{z ∈ P : sup{c,G(z)} ≤ z}. (2.6)

Moreover, x is the smallest solution of the equation x = sup{c,G(x)}, and it
is increasing with respect to G.

Proof: The mapping F := G : P → 2P \ ∅ is single-valued. Because G
is increasing, then C in Lemma 2.3 is the w-o chain of cG-iterations. The
hypotheses given for G imply also that c is a sup-center of ocl(F [P ]) in P ,
and that supG[C] exists. Since G is single-valued, the values of F are order
compact in F [P ]. Thus the proof of Proposition 2.11 implies that x = maxC
exists, and x = sup{c,G(x)} = sup{c,G[C]}. To prove (2.6), let z ∈ P satisfy
sup{c,G(z)} ≤ z. Then c = minC ≤ z. If x ∈ C and sup{c,G(y)} ≤ z for each
y ∈ C<x, then x = sup{c,G[C<x]} ≤ z. This implies by transfinite induction
that x ≤ z for each x ∈ C. In particular x = maxC ≤ z. From this result and
the fact that x = sup{c,G(x)} we infer that x = x is the smallest solution of
the equation x = sup{c,G(x)}, and that (2.6) holds. The last assertion is an
immediate consequence of (2.6). ut

The results presented in the next proposition are dual to those of Lemma
2.2 and Proposition 2.14.

Proposition 2.15. Given G : P → P and c ∈ P , there exists exactly one
inversely well-ordered chain D in P , called an inversely well-ordered (i.w-o)
chain of cG- iterations, satisfying

x ∈ D if and only if x = inf{c,G[{y ∈ D : x < y}]}. (2.7)

Assume that G is increasing, that ocl(G[P ]) has an inf-center c in P , and
that inf G[D] exists whenever D is a nonempty inversely well-ordered chain
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in P . If D is the i.w-o chain of cG-iterations, then x = minD exists, x =
inf{c,G(x)} = inf{c,G[D]}, and

x = max{z ∈ P : z ≤ inf{c,G(z)}}. (2.8)

Moreover, x is the greatest solution of the equation x = inf{c,G(x)}, and it
is increasing with respect to G.

Our first fixed point result is a consequence of Propositions 2.14 and 2.15.

Theorem 2.16. Let P be a poset and let G : P → P be an increasing map-
ping.

(a) If x ≤ G(x), and if supG[C] exists whenever C is a well-ordered chain in
[x) and x ≤ G(x) for every x ∈ C, then the w-o chain C of xG-iterations
has a maximum x∗ and

x∗ = maxC = supG[C] = min{y ∈ [x) : G(y) ≤ y}. (2.9)

Moreover, x∗ is the smallest fixed point of G in [x), and x∗ is increasing
with respect to G.

(b) If G(x) ≤ x, and if inf G[C] exists whenever C is an inversely well-ordered
chain (x] and G(x) ≤ x for every x ∈ C, then the i.w-o chain D of xG-
iterations has a minimum x∗ and

x∗ = minD = inf G[D] = max{y ∈ (x] : y ≤ G(y)}. (2.10)

Moreover, x∗ is the greatest fixed point of G in (x], and x∗ is increasing
with respect to G.

Proof: Ad (a) Since G is increasing and x ≤ G(x), then G[[x)] ⊂ [x). It is
also easy to verify that x ≤ G(x) for every element x of the w-o chain C of
xG-iterations. Thus the conclusions of (a) are immediate consequences of the
conclusion of Proposition 2.14 when c = x and G is replaced by its restriction
to [x).

Ad (b) The proof of (b) is dual to that of (a). ut

As an application of Propositions 2.14 and 2.15 and Theorem 2.16 we get
the following fixed point results.

Theorem 2.17. Assume that G : P → P is increasing, and that supG[C]
and inf G[C] exist whenever C is a chain in P .

(a) If ocl(G[P ]) has a sup-center or an inf-center in P , then G has minimal
and maximal fixed points.

(b) If ocl(G[P ]) has a sup-center c in P , then G has the greatest fixed point x∗

in (x], where x is the smallest solution of the equation x = sup{c,G(x)}.
Both x and x∗ are increasing with respect to G.
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(c) If c is an inf-center of ocl(G[P ]) in P , then G has the smallest fixed point
x∗ in [x), where x is the greatest solution of the equation x = inf{c,G(x)}.
Both x and x∗ are increasing with respect to G.

Theorem 2.16, Proposition 2.8, its proof, and Proposition 2.9 imply the
following results.

Proposition 2.18. Assume that G : P → P is increasing.

(a) If the set S+ = {x ∈ P : x ≤ G(x)} is nonempty, and if supG[C] exists
whenever C is a well-ordered chain in S+, then G has a maximal fixed
point. Moreover, G has for every x ∈ S+ the smallest fixed point in [x),
and it is increasing with respect to G.

(b) If the set S− = {x ∈ P : G(x) ≤ x} is nonempty, and if inf G[D] exists
whenever D is an inversely well-ordered chain in S−, then G has a minimal
fixed point. Moreover, G has for every x ∈ S− the greatest fixed point in
(x], and it is increasing with respect to G.

Example 2.19. Let R+ be the set of nonnegative reals, and let Rm be ordered
coordinatewise. Assume that G : Rm → Rm+ is increasing and maps increasing
sequences of the set S+ = {x ∈ Rm+ : x ≤ G(x)} to bounded sequences. Show
that G has the smallest fixed point and a maximal fixed point.

Solution: The origin is a lower bound of G[Rm]. Let C be a well-ordered
chain in S+. Since G is increasing, then G[C] is a well-ordered chain in Rm+ .
If (yn) is an increasing sequence in G[C], and xn = min{x ∈ C : G(x) = yn},
then the sequence (xn) is increasing and yn = G(xn) for every n. Thus (yn) is
bounded by a hypothesis, and hence converges with respect to the Euclidean
metric of Rm. This result implies by Lemma 2.31 that supG[C] exists. Thus
the assertions follow from Proposition 2.18. ut

2.2.3 Comparison and Existence Results

In the next application of Theorem 2.16, fixed points of a set-valued function
are bounded from above by a fixed point of a single-valued function.

Theorem 2.20. Given a poset X = (X,≤), a subset P of X and x ∈ P ,
assume that a function G : P → P and a set-valued function F : X → 2X

have the following properties.

(Ha) G is increasing, G(x) ≤ x, and inf G[D] exists in P whenever D is an
inversely well-ordered chain in (x].

(Hb) x is an upper bound of F [X] = ∪x∈XF(x), and if x ≤ p in X and p ∈ P ,
then G(p) is an upper bound of F(x).

Then G has the greatest fixed point x∗ in (x], and if x is any fixed point of F ,
then x ≤ x∗.
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Proof: Let D be the i.w-o chain of xG-iterations. Since D is inversely well-
ordered, then x∗ = inf G[D] exists and belongs to P by hypothesis (Ha).
Moreover, x∗ is the greatest fixed point of G in (x] by Theorem 2.16 (b).
To prove that x∗ is an upper bound for fixed points of F , assume on the
contrary an existence of a point x of X such that x ∈ F(x) and x 6≤ x∗. Since
x∗ = minD and D is inversely well-ordered, there exists the greatest element
p of D such that x 6≤ p. Because x ∈ F(x), then x ≤ x = maxD by (Hb),
whence p < x. If q ∈ D and p < q, then x ≤ q, so that x ≤ G(q) by (Hb). Thus
x is a lower bound of the set G[{q ∈ D : p < q}]. Since x is an upper bound
of this set, then p is by (2.7) with c = x the infimum of G[{q ∈ D : p < q}].
But then x ≤ p, which contradicts with the choice of p. Consequently, x ≤ x∗

for each fixed point x of F . ut

Using the result of Theorem 2.20 we prove the following existence and
comparison result for greatest fixed points of set-valued functions.

Theorem 2.21. Given a nonempty subset P of X and F : X → 2X , assume
that

(H0) F [X] has an upper bound x in P .
(H1) If p ∈ P , then maxF(p) exists, belongs to P , and is an upper bound of

F [X ∩ (p]].
(H2) Inversely well-ordered chains of the set {maxF(p) : p ∈ P} have infi-

mums in P .

Then F has a greatest fixed point, and it belongs to P . Assume moreover,
that F̂ : X → 2X is another set-valued function that satisfies the following
condition.

(H3) For each x ∈ X and y ∈ F̂(x) there exists a z ∈ F(x) such that y ≤ z.

Then the greatest fixed point of F is an upper bound for all the fixed points of
F̂ .

Proof: The hypothesis (H1) ensures that defining

G(p) := maxF(p), p ∈ P, (2.11)

we obtain an increasing mapping G : P → P . Moreover, G(x) ≤ x is by (H0),
and the hypothesis (H2) means that every inversely well-ordered chain of G[P ]
has an infimum in P . Thus the hypothesis (Ha) of Theorem 2.20 holds. The
hypothesis (H1) and the definition (2.11) of G imply that also the hypothesis
(Hb) of Theorem 2.20 is valid. Thus G has by Theorem 2.20 the greatest fixed
point x∗. Because x∗ = G(x∗) = maxF(x∗) ∈ F(x∗), then x∗ is also a fixed
point of F , which is by Theorem 2.20 an upper bound all fixed points of F .
Consequently, x∗ is the greatest fixed point of F , and x∗ = maxF(x∗) ∈ P
by (H1).

To prove the last assertion, let F̂ : X → 2X be such a set-valued function
that (H3) holds. The hypotheses (H0) and (H3) imply that x is an upper
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bound of F̂ [X]. Moreover, if x ≤ p in X and p ∈ P , then for each y ∈ F̂(x)
there is by (H3) a z ∈ F(x) such that y ≤ z, and z ≤ maxF(p) = G(p)
by (H1) and (2.11). Thus the hypotheses of Theorem 2.20 hold when F is
replaced by F̂ , whence x ≤ x∗ for each fixed point x of F̂ . ut

Remark 2.22. Applying Theorem 2.16 (a) we obtain obvious duals to Theo-
rems 2.20 and 2.21.

2.2.4 Algorithmic Methods

Let P be a poset, and let G : P → P be increasing. The first elements of the
w-o chain C of cG-iterations are: x0 = c, xn+1 = sup{c,Gxn}, n = 0, 1, . . . ,
as long as xn+1 exists and xn < xn+1. Assuming that strictly monotone
sequences of G[P ] are finite, then C is a finite strictly increasing sequence
(xn)mn=0. If sup{c, x} exists for every x ∈ G[P ], then x = sup{c,G[C]} =
maxC = xm is the smallest solution of the equation x = sup{c,G(x)} by
Proposition 2.14. In particular, Gx ≤ x. If G(x) < x, then first elements of
the i.w-o chain D of xG-iterations of x are y0 = x = xm, yj+1 = Gyj , as
long as yj+1 < yj . Since strictly monotone sequences of G[P ] are finite, D is
a finite strictly decreasing sequence (yj)kj=0, and x∗ = inf G[D] = yk is the
greatest fixed point of G in (x] by Theorem 2.16.

The above reasoning and its dual imply the following results.

Corollary 2.23. Conclusions of Theorem 2.17 hold if G : P → P is increas-
ing and strictly monotone sequences of G[P ] are finite, and if sup{c, x} and
inf{c, x} exist for every x ∈ G[P ]. Moreover, x∗ is the last element of the
finite sequence determined by the following algorithm:

(i) x0 = c. For n from 0 while xn 6= Gxn do: xn+1 = Gxn if Gxn < xn else
xn+1 = sup{c,Gxn},

and x∗ is the last element of the finite sequence determined by the following
algorithm:

(ii) x0 = c. For n from 0 while xn 6= Gxn do: xn+1 = Gxn if Gxn > xn else
xn+1 = inf{c,Gxn}.

Let G : P → P satisfy the hypotheses of Theorem 2.17. The result Corol-
lary 2.23 can be applied to approximate the fixed points x∗ and x∗ of G intro-
duced in Theorem 2.17 in the following manner. Assume that G, G : P → P
satisfy the hypotheses given for G in Corollary 2.23, and that

G(x) ≤ G(x) ≤ G(x) for all x ∈ P. (2.12)

Since x∗ and x∗ are increasing with respect to G, it follows from (2.12) that
x∗ ≤ x∗ ≤ x∗ and x∗ ≤ x∗ ≤ x∗, where x∗ and x∗ (respectively x∗ and x∗) are
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obtained by algorithm (i) (respectively (ii)) of Corollary 2.23 with G replaced
by G and G, respectively.

Since partial ordering is the only structure needed in the proofs, the above
results can be applied to problems where only ordinal scales are available. On
the other hand, these results have some practical value also in real analysis.
We shall demonstrate this by an example where the above described method
is applied to a system of the form

xi = Gi(x1, . . . , xm), i = 1, . . . ,m, (2.13)

where the functions Gi are real-valued functions of m real variables.

Example 2.24. Approximate a solution x∗ = (x1, y1) of the system

x = G1(x, y) :=
N1(x, y)

2− |N1(x, y)|
, y = G2(x, y) :=

N2(x, y)
3− |N2(x, y)|

, (2.14)

where

N1(x, y) =
11
12
x+

12
13
y +

1
234

and N2(x, y) =
15
16
x+

14
15
y − 7

345
, (2.15)

by calculating upper and lower estimates of (x1, y1) whose corresponding co-
ordinates differ by less than 10−100.

Solution: The mapping G = (G1, G2), defined by (2.14), (2.15) maps the set
P = {(x, y) ∈ R2 : |x| + |y| ≤ 1

2} into P , and is increasing on P . It follows
from Example 2.1 that c = (0, 0) is an order center of P , and that chains of P
have supremums and infimums. Thus the results of Theorem 2.17 are valid.

Upper and lower estimates to the fixed point x∗ = (x1, y1) of G, and hence
to a solution (x1, y1) of system (2.14), (2.15), can be obtained by applying the
algorithm (i) given in Corollary 2.23 to operators G and G, defined by{

G(x, y) = (10−101ceil(10101G1(x, y)), 10−101ceil(10101G2(x, y)),
G(x, y) = (10−101floor(10101G1(x, y)), 10−101floor(10101G2(x, y)),

(2.16)

where ceil(x) is the smallest integer ≥ x and floor(x) is the greatest integer
≤ x. The so defined operators G, G are increasing and map the set P =
{(x, y) ∈ R2 : |x| + |y| ≤ 1

2} into finite subsets of P , and (2.12) holds. We
are going to show that the required upper and lower estimates are obtained
by algorithm (i) of Corollary 2.23 with G replaced by G and G, respectively.
The following Maple program is used in calculations of the upper estimate
x∗ = (x1, y1).

(N1, N2) := (11/12 ∗ x+ 12/13 ∗ y + 1/234, 15/16 ∗ x+ 14/15 ∗ y − 7/345) :
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(z, w) := (N1/(2− abs(N1)), N2/(3− abs(N2))) :

(G1, G2) := (ceil(10101z)/10101, ceil(10101w)/10101) :
(x0, y0) := (0, 0);x := x0 : y := y0 : u := G1 : v := G2 : b[0] := [x, y] :
for k from 1 while abs(u− x) + abs(v − y) > 0 do :
if u <= x and v <= y then (x, y) := (u, v)
else (x, y) := (max{x, u},max{y, v}) : fi :
u := G1 : v := G2 : b[k] := [x, y] : od : n := k − 1 : x1 := x; y1 = y;

The above program yields the following results (n=1246).

x1 =− 0.00775318684978081165491069304103701961947143138
774717254950456999535626408273278584836718225237250043,

y1 =− 0.013599615424610901489836719913129280024524254401
2899273758805991617838548683927620135569441397855721

In particular, (x1, y1) is the fixed point x∗ of G.
Replacing ‘ceil’ by ‘floor’ in the above program, we obtain components of

the fixed point x∗ = (x2, y2) of G (n:=1248).

x2 =− 0.007753186849780811654910693041037019619471431387
7471725495045699953562640827327858483671822523725005,

y2 =− 0.0135996154246109014898367199131292800245242544012
8992737588059916178385486839276201355694413978557215

The above calculated components of x∗ and x∗ are exact, and their differences
are < 10−100. According to the above reasoning the exact fixed point x∗ of G
belongs to order interval [x∗, x∗]. In particular, both (x1, y1) and (x2, y2) ap-
proximate an exact solution (x1, y1) of system (2.14), (2.15) with the required
precision. Moreover, x1 ≤ x1 ≤ y1 and x2 ≤ y1 ≤ y2. ut

2.3 Solvability of Operator Equations and Inclusions

In this section we apply the results of Sect. 2.2 to study the solvability of
operator equations in the form Lu = Nu, where L and N are single-valued
mappings from a poset V = (V,≤) to another poset P = (P,≤). The solvabil-
ity of the corresponding inclusions Lu ∈ Nu, where N : V → 2P \∅, is studied
as well. In order to obtain solvability results applicable to implicit equations
and inclusions, we make use of the so-called graph ordering of V , defined by

u � v if and only if u ≤ v and Lu ≤ Lv. (2.17)
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2.3.1 Inclusion Problems

As an application of Theorem 2.12 and Propositions 2.8 and 2.9 we prove the
following existence result for the inclusion problem Lu ∈ Nu.

Theorem 2.25. Let L : V → P and N : V → 2P \ ∅ satisfy the following
hypotheses.

(L) The equation Lu = x has for each x ∈ P smallest and greatest solutions,
and they are increasing in x.

(N1) Chains of N [V ] have supremums and infimums in P , and ocl(N [V ])
has a sup-center or an inf-center in P .

(N2) N is increasing in (V,�) or in (V,≤), and its values are order compact
in N [V ].

Then Lu ∈ Nu has minimal and maximal solutions in (V,�).

Proof: Denote V− = {minL−1{x} : x ∈ P} and L− = L|V−. Define a
mapping F : P → 2P \ ∅ by

F(x) := N (L−1
− x), x ∈ P. (2.18)

Assume first that N is increasing in (V,�), and that its values are order
compact in N [V ]. To show that F is increasing, assume that x ≤ y in P . Then
u := minL−1{x} ≤ v := minL−1{y} by condition (L), and Lu = x ≤ y = Lv,
whence u � v. Since N is increasing in (V,�), thus [z)∩F(y) = [z)∩N v 6= ∅
for each z ∈ Nu = F(x) and (w] ∩ F(x) = (w] ∩ Nu 6= ∅ for each w ∈ N v =
F(y). This proves that F is increasing.

As F [P ] is contained inN [V ] by (2.18), the chains of F [P ] have supremums
and infimums in P by condition (N ), and the values of F are order compact
in F [P ]. Moreover, ocl(F [P ]) has a sup-center or an inf-center by hypothesis.

The above proof shows that F satisfies the hypotheses of Theorem 2.12,
whence we conclude that it has minimal and maximal fixed points. If x is any
fixed point of F , and u = L−1

− x, then Lu = x ∈ F(x) = Nu, which shows
that u is a solution of the inclusion problem Lu ∈ Nu.

To prove the existence of a minimal solution of Lu ∈ Nu, let x− be a
minimal fixed point of F . Then u− = L−1

− x− is a solution of the inclusion
problem Lu ∈ Nu. Let v ∈ V satisfy Lv ∈ N v, v ≤ u− and Lv ≤ Lu−.
Denoting y = Lv and u = L−1

− y, then u ≤ v and Lu = Lv, that is u � v.
Then (y] ∩ Nu 6= ∅ because N is increasing. Since Nu = NL−1

− y = F(y), we
have (y]∩F(y) 6= ∅. Thus y belongs to the set S− = {x ∈ P : (x]∩F(x) 6= ∅}.
Because y = Lv ≤ Lu− = x− and x− is, by Proposition 2.9, a minimal
element of S−, then y = x−. Hence it follows u = L−1

− y = L−1
− x− = u−.

Moreover, u ≤ v ≤ u−, whence v = u−, which proves that u− is a minimal
solution of Lu = Nu with respect to the graph ordering of V .

Denoting V+ = {maxL−1{x} : x ∈ P} and L+ = L|V+, and replacing L−
in (2.18) by L+ we obtain another mapping F : P → 2P \∅, which satisfies the
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hypotheses of Theorem 2.12. Thus F has minimal and maximal fixed points,
and to each fixed point x of F there corresponds a solution u = maxL−1{x}
of the inclusion problem Lu ∈ Nu. Moreover, if x+ is a maximal fixed point
of F , then by applying Proposition 2.8 one can show that u+ = L−1

+ x+ is a
maximal solution of Lu ∈ Nu in (V,�).

If N is increasing in (V,≤), it is increasing also in (V,�). Thus Lu ∈ Nu
has, by the above proof, minimal and maximal solutions in (V,�). ut

2.3.2 Single-Valued Problems

Consider next the single-valued case. As an application of Theorems 2.16 and
2.25 and Propositions 2.14 and 2.15 we obtain the following existence and
comparison results for the equation Lu = Nu.

Theorem 2.26. Given posets V and P , mappings L, N : V → P , assume
that L satisfies the hypothesis (L), that N is increasing in (V,�) or in (V,≤).
If ocl(N [V ]) has an order center c in P , and if chains of N [V ] have supremums
and infimums in P , then the following results hold.

(a) The equation Lu = sup{c,Nu} has the smallest solution u in (V+,≤),
where V+ = {maxL−1{x} : x ∈ P}, and the equation Lu = inf{c,Nu}
has the greatest solution u in (V−,≤), where V− = {minL−1{x} : x ∈ P}.

(b) If N is increasing in (V,�), then the equation Lu = Nu has smallest
and greatest solutions in the order interval [u, u] of (V,�), and they are
increasing in (V,≤) with respect to N .

(c) If N is increasing in (V,≤), then the equation Lu = Nu has smallest
and greatest solutions in the order interval [u, u] of (V,≤), and they are
increasing in (V,≤) with respect to N .

(d) The equation Lu = Nu has minimal and maximal solutions in (V,�).

Proof: Ad (a) The given hypotheses ensure that relation

G(x) := NL−1
+ x, x ∈ P, where L+ = L|V+, (2.19)

defines an increasing mapping G : P → P . Moreover, N [V+] = G[P ],
which in view of the hypotheses implies that chains of G[P ] have supremums
and infimums in P . Moreover, c is a sup-center of ocl(N [V+]) = ocl(G[P ])
in P . Thus, by Proposition 2.14, the equation x = sup{c,G(x)} has the
smallest solution x. Denoting by u = L−1

+ x, then G(x) = Nu, whence
Lu = x = sup{c,G(x)} = sup{c,Nu}. Thus u is a solution of the equation
Lu = sup{c,Nu}.

Assume that v = L−1
+ x, x ∈ P , and Lv = sup{c,Nv}. Then

x = Lv = sup{c,Nv} = sup{c,NL−1
+ x} = sup{c,G(x)}.

Since x is the smallest solution of the equation x = sup{c,G(x)}, we get
x ≤ x. This implies by condition (L) that u = L−1

+ x ≤ L−1
+ x = v. Thus u is

the smallest solution of Lu = sup{c,Nu} in (V+,≤).
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Ad (b) Assume that N is increasing in (V,�). By the proof of (a) u =
L−1

+ x, where x is the smallest solution of the equation x = sup{c,G(x)}. Then
G(x) ≤ x, whence G has the greatest fixed point x∗ in (x] by Theorem 2.16.
Denoting u∗ = L−1

+ x∗, we see that u∗ is a solution of the equation Lu = Nu
and u∗ ≤ u due to (L).

Let u ∈ V be a solution of Lu = Nu with u � u. Denoting x = Lu and
v = L−1

+ x, we infer u ≤ v and Lu = Lv, whence u � v. Thus x = Lv = Lu ≤
Lu = x and x = Nu ≤ Nv = NL−1

+ x = G(x). Since x∗ is the greatest fixed
point of G in (x], it follows that Lv = x ≤ x∗ = Lu∗ by (2.10). This implies
by condition (L) that v = L−1

+ x ≤ L−1
+ x∗ = u∗, whence v � u∗. Since u � v,

then u � u∗, and thus u∗ is the greatest solution of Lu = Nu within the order
interval (u] of (V,�).

To prove that u∗ is increasing with respect to N , assume that the hy-
potheses imposed on N remain valid when N is replaced by N̂ : V → P , and
that

N̂u ≤ Nu for all u ∈ V. (2.20)

The above proof shows that the equation Lu = N̂u has the greatest solution
v of the form v = L−1

+ y. Applying (2.19) and (2.20) we see that y = N̂v ≤
Nv = G(y). This result and (2.10) imply that y ≤ x∗, which results in v ≤ u∗

by condition (L). This shows that u∗ is increasing with respect to N .
By dual reasoning one can show that the equation Lu = Nu has the

smallest solution u∗ within the order interval [u) of (V,�), and that u∗ is
increasing with respect to N in (V,≤). In particular, u∗ and u∗ are smallest
and greatest solutions in the order interval [u, u] of (V,�).

Ad (c) Assume that N is increasing in (V,≤). Then N is increasing in
(V,�). Let u∗ be the solution constructed in the proof of (a). By the above
proof we have u∗ ≤ u. Let u ∈ V be a solution of Lu = Nu that satisfies u ≤ u.
Denoting x = Lu and v = L−1

+ x, then u ≤ v and x = Lv = Nu ≤ Nu ≤ Lu =
x, and x = Lv ≤ Nv = NL−1

+ x = G(x). Since x∗ is the greatest fixed point
of G in (x], it follows that x ≤ x∗ by (2.10). This implies by condition (L)
that v = L−1

+ x ≤ L−1
+ x∗ = u∗. Because u ≤ v, we obtain u ≤ u∗. Thus u∗ is

the greatest solution of Lu = Nu within the order interval (u] of (V,≤). The
proof that Lu = Nu has the smallest solution u∗ within the order interval
[u) of (V,≤) is done in similar way. In particular, u∗ and u∗ are smallest and
greatest solutions within the order interval [u, u] of (V,≤).

Ad (d) The hypotheses of Theorem 2.25 are valid, whence the equation
Lu = Nu has minimal and maximal solutions in (V,�). ut

The hypotheses of Theorem 2.26 hold true if L, N : V → P and c ∈ P
fulfil the following conditions:

(L1) L is a bijection and L−1 is increasing.
(N1) N is increasing, and strictly monotone sequences of N [V ] are finite.
(N2) sup{c, x} and inf{c, x} exist for every x ∈ N [V ].
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Applying the algorithms (i) and (ii) of Corollary 2.23 to G = N ◦ L−1, we
obtain the following result.

Corollary 2.27. Let the hypotheses (L1), (N1), and (N2) hold for L, N :
V → P and c ∈ P . Then the solutions u∗ and u∗ of the equation Lu = Nu in-
troduced in Theorem 2.26(b) are the last elements of the sequences determined
by the following algorithms.

(iii) Lu0 = c. For n from 0 while Lun 6= Nun do: Lun+1 = Nun if Nun <
Lun else Lun+1 = sup{c,Nun}.

(iv) Lu0 = c. For n from 0 while Lun 6= Nun do: Lun+1 = Nun if Nun >
Lun else Lun+1 = inf{c,Nun}.

The algorithms (iii) and (iv) can be used, for instance, to calculate exact
or approximative solutions for the equations Lu = Nu in Rm, and hence also
for systems of the form

Li(u1, . . . , um) = Ni(u1, . . . , um), i = 1, . . . ,m, (2.21)

where Li and Ni are real-valued functions of m real variables. Algorithms (iii)
and (iv) are applied in Sect. 6.5 to calculate exact solutions of an implicit
functional initial function problem.

In the case when the range of N has an upper bound or a lower bound we
have the following result.

Proposition 2.28. Given posets V and P and mappings L, N : V → P ,
assume that L satisfies the hypothesis (L), and that N is increasing in (V,≤)
or in (V,�).

(a) If N [V ] has an upper bound in P , and if chains of N [V ] have infimums,
then the equation Lu = Nu has a minimal solution in (V,�). The equation
has in (V,≤) the greatest solution, which is increasing with respect to N .

(b) If N [V ] has a lower bound in P , and if chains of N [V ] have supremums,
then the equation Lu = Nu has a maximal solution in (V,�). It has in
(V,≤) the smallest solution, which is increasing with respect to N .

Proof: Ad (a) Assume that N [V ] ⊆ (x] for some x ∈ P . Then x is an inf-
center of ocl(N [V ]), so that the hypotheses of Theorem 2.25 are valid. Thus
the equation Lu = Nu has a minimal solution in (V,�).

Next we prove the existence of the greatest solution. The given hypothe-
ses ensure that relation (2.19) defines an increasing mapping G : P → (x].
Moreover, the chains of G[P ] ⊆ N [V ] have infimums in P . Thus G has by
Proposition 2.18 the greatest fixed point x∗ in (x]. Denoting u∗ = L−1

+ x∗, it
follows that u∗ is a solution of the equation Lu = Nu.

Let u ∈ V be a solution of Lu = Nu. Denoting x = Lu and v = L−1
+ x,

then u ≤ v and Lu = Lv, whence u � v. Thus x = Nu ≤ Nv = NL−1
+ x =

G(x) ≤ x. Since x∗ is the greatest fixed point of G in (x], we have x ≤ x∗ by
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(2.10). This implies by condition (L) that v = L−1
+ x ≤ L−1

+ x∗ = u∗. As u ≤ v,
we conclude u ≤ u∗. Thus u∗ is the greatest solution of Lu = Nu in (V,≤).
The monotone dependence of u∗ with respect to N can be shown in just the
same way as in the proof of Theorem 2.26.

Ad (b) The proof of (b) is dual to the above proof. ut

Remark 2.29. (i) If Q : V × P → P is increasing with respect to the product
ordering of (V,≤) and (P,≤), then N := u 7→ Q(u, Lu) is increasing with
respect to the graph ordering � of V , defined by (2.17). Thus the result
of Theorem 2.26(b) can be applied to the implicit problem Lu = Q(u, Lu).
Similarly, the result of Theorem 2.25 is applicable to the implicit inclusion
problem Lu ∈ Q(u, Lu), where Q : V × P → 2P \ ∅.

(ii) In Sect. 8.6 we present results in the case when the functions F , G,
N , and N satisfy weaker monotonicity conditions as assumed above. The case
when V is not ordered is studied as well.

2.4 Special Cases

In this section we first formulate some fixed point results in ordered topolog-
ical spaces derived in Sect. 2.2. Second, we present existence and comparison
results for equations and inclusions in ordered normed spaces.

2.4.1 Fixed Point Results in Ordered Topological Spaces

Let P = (P,≤) be an ordered topological space, i.e., for each a ∈ P the order
intervals [a) = {x ∈ P : a ≤ x} and (a] = {x ∈ P : x ≤ a} are closed in the
topology of P .

Definition 2.30. A sequence (zn)∞n=0 of a poset is called increasing if
zn ≤ zm whenever n ≤ m, decreasing if zm ≤ zn whenever n ≤ m, and
monotone if it is increasing or decreasing. If the above inequalities are strict,
the sequence (zn)∞n=0 is called strictly increasing, strictly decreasing, or strictly
monotone, respectively.

In what follows, we assume that P has the following property:

(C) Each well-ordered chain C of P whose increasing sequences have limits in
P contains an increasing sequence that converges to supC, and each in-
versely well-ordered chain C of P whose decreasing sequences have limits
in P contains a decreasing sequence that converges to inf C.

Lemma 2.31. A second countable or metrizable ordered topological space has
property (C).
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Proof: If P is an ordered topological space that satisfies the second countabil-
ity axiom, then each chain of P is separable, whence P has property (C) by
the result of [133, Lemma 1.1.7] and its dual. If P is metrizable, the assertion
follows from [133, Proposition 1.1.5], and from its dual. ut

The following result is a consequence of Proposition 2.18.

Proposition 2.32. Given an ordered topological space P with property (C),
assume that G : P → P is an increasing function.

(a) If the set S+ = {x ∈ P : x ≤ G(x)} is nonempty, and if G maps increasing
sequences of S+ to convergent sequences, then G has a maximal fixed point.
Moreover, G has for every x ∈ S+ the smallest fixed point in [x), and it
is increasing with respect to G.

(b) If the set S− = {x ∈ P : G(x) ≤ x} is nonempty, and if G maps decreasing
sequences of S− to convergent sequences, then G has a minimal fixed point.
Moreover, G has for every x ∈ S− the greatest fixed point in (x], and it is
increasing with respect to G.

Proof: Ad (a) Let C be a well-ordered chain in S+. Since G is increasing,
then G[C] is well-ordered. Every increasing sequence of G[C] is of the form
(G(xn)), where (xn) is an increasing sequence in C. Thus the hypotheses of
(a) and property (C) imply that supG[C] exists in P , and, therefore, the
conclusions of (a) follows from Proposition 2.18(a).

Ad (b) The conclusions of (b) are similar consequences of Proposition
2.18(b). ut

The next result is a consequence of Theorem 2.17.

Theorem 2.33. Given an ordered topological space P with property (C), as-
sume that G : P → P is increasing and maps monotone sequences of P to
convergent sequences.

(a) If c is a sup-center of G[P ] in P , then G has minimal and maximal fixed
points. Moreover, G has the greatest fixed point x∗ in (x], where x is the
smallest solution of the equation x = sup{c,G(x)}. Both x and x∗ are
increasing with respect to G.

(b) If c is an inf-center of G[P ] in P , then G has minimal and maximal fixed
points. Moreover, G has the smallest fixed point x∗ in [x), where x is
the greatest solution of the equation x = inf{c,G(x)}. Both x and x∗ are
increasing with respect to G.

As a consequence of Propositions 2.8 and 2.9 and Theorem 2.12 we obtain
the following proposition.

Proposition 2.34. Let P be an ordered topological space with property (C),
and let the values of F : P → 2P \ ∅ be compact.
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(a) If F is increasing upward, if the set S+ = {x ∈ P : [x) ∩ F(x) 6= ∅} is
nonempty, and if (yn) converges whenever it is increasing and yn ∈ F(xn),
for every n, where (xn) is an increasing sequence of S+, then F has a
maximal fixed point.

(b) If F is increasing downward, if the set S− = {x ∈ P : (x] ∩ F(x) 6= ∅} is
nonempty, and if (yn) converges whenever it is decreasing and yn ∈ F(xn),
for every n, where (xn) is a decreasing sequence of S−, then F has a
minimal fixed point.

(c) If F is increasing, if F [P ] has a sup-center or an inf-center in P , and if
(yn) converges whenever yn ∈ F(xn), for every n, and both (xn) and (yn)
are either increasing or decreasing sequences of P , then F has minimal
and maximal fixed points.

The next theorem is a special case of Theorem 2.20.

Theorem 2.35. Given an ordered topological space X with property (C) and
a subset P of X, assume that a function G : P → P and a multifunction
F : X → 2X have the following properties:

(ha) G is increasing, G[P ] has an upper bound x in P , and G maps every
decreasing sequence (xn) of P to a convergent sequence whose limit is in
P .

(hb) x is an upper bound of F [X], and if x ≤ p in X and p ∈ P , then G(p) is
an upper bound of F(x).

Then G has the greatest fixed point x∗, and if x is any fixed point of F , then
x ≤ x∗.

As a special case of Theorem 2.21 we formulate the following existence
and comparison result for greatest fixed points of multifunctions.

Theorem 2.36. Given an ordered topological space X with property (C) and
a subset P of X. Assume that a multifunction F : X → 2X has the following
properties:

(h0) F [X] has an upper bound in P .
(h1) If p ∈ P , then maxF(p) exists, belongs to P and is an upper bound of

F [X ∩ (p]].
(h2) Decreasing sequences of {maxF(p) : p ∈ P} have limits in X and they

belong to P .

Then F has the greatest fixed point, and it belongs to P . Assume moreover,
that F̂ : X → 2X is another multifunction that satisfies the following condi-
tion:

(h3) For each x ∈ X and y ∈ F̂(x) there exists a z ∈ F(x) such that y ≤ z.

Then the greatest fixed point of F majorizes all the fixed points of F̂ .



44 2 Fundamental Order-Theoretic Principles

2.4.2 Equations and Inclusions in Ordered Normed Spaces

Definition 2.37. A closed subset E+ of a normed space E is called an order
cone if E+ + E+ ⊆ E+, E+ ∩ (−E+) = {0}, and cE+ ⊆ E+ for each c ≥ 0.
The space E, equipped with an order relation ‘≤’, defined by

x ≤ y if and only if y − x ∈ E+,

is called an ordered normed space.

It is easy to see that the above defined order relation ≤ is a partial ordering
in E.

Lemma 2.38. An ordered normed space E is an ordered topological space with
respect to the weak and the norm topologies. Moreover, property (C) holds in
both cases.

Proof: It is easy to verify that the first assertion holds. To prove the second
assertion, let C be a well-ordered chain in E. If all increasing sequences of C
have weak limits, there is, by [44, Lemma A.3.1], an increasing sequence (xn)
in C that converges weakly to x = supC. If C is inversely well-ordered and
its decreasing sequences have weak limits, then −C is a well-ordered chain
whose increasing sequences have weak limits. Thus there exists an increasing
sequence (xn) of −C that converges weakly to sup(−C) = − inf C. Denoting
yn = −xn, we obtain a decreasing sequence (yn) of C, which converges weakly
to inf C. If E is equipped with norm topology, it is an ordered metric space,
whence the conclusion follows from Lemma 2.31. ut

The next fixed point result is a consequence of Proposition 2.32 and Lemma
2.38.

Proposition 2.39. Let P be a subset of an ordered normed space, and let
G : P → P be increasing.

(a) If the set S+ = {x ∈ P : x ≤ G(x)} is nonempty, and if G maps increasing
sequences of S+ to sequences that have weak or strong limits in P , then G
has a maximal fixed point. Moreover, G has for every x ∈ S+ the smallest
fixed point in [x), and it is increasing with respect to G.

(b) If the set S− = {x ∈ P : G(x) ≤ x} is nonempty, and if G maps decreasing
sequences of S− to sequences that have weak or strong limits in P , then G
has a minimal fixed point. Moreover, G has for every x ∈ S− the greatest
fixed point in (x], and it is increasing with respect to G.

As a special case of Theorem 2.33 we obtain the following proposition.

Proposition 2.40. Given a subset P of an ordered normed space E, assume
that G : P → P is increasing, and that monotone sequences of G[P ] have weak
limits in P .
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(a) If the weak closure of G[P ] has a sup-center c in P , then G has minimal
and maximal fixed points. Moreover, G has the greatest fixed point x∗ in
(x], where x is the smallest solution of the equation x = sup{c,G(x)}.
Both x and x∗ are increasing with respect to G.

(b) If the weak closure of G[P ] has an inf-center c in P , then G has minimal
and maximal fixed points. Moreover, G has the smallest fixed point x∗ in
[x), where x is the greatest solution of the equation x = inf{c,G(x)}. Both
x and x∗ are increasing with respect to G.

In case that E is Rm equipped with Euclidean norm and ordered coordi-
natewise, we obtain the following consequence of Proposition 2.40.

Corollary 2.41. Let P be a closed and bounded subset of Rm, and assume
that G : P → P is increasing.

(a) If P has a sup-center c, then G has minimal and maximal fixed points.
Moreover, G has the greatest fixed point x∗ in (x], where x is the smallest
solution of the equation x = sup{c,G(x)}. Both x and x∗ are increasing
with respect to G.

(b) If P has an inf-center c, then G has minimal and maximal fixed points.
Moreover, G has the smallest fixed point x∗ in [x), where x is the greatest
solution of the equation x = inf{c,G(x)}. Both x and x∗ are increasing
with respect to G.

As a consequence of Proposition 2.28 and Lemma 2.38 we obtain the fol-
lowing proposition.

Proposition 2.42. Given a poset V and a subset P of an ordered normed
space, assume that mappings L, N : V → P satisfy the following hypotheses.

(L) The equation Lu = x has for each x ∈ P smallest and greatest solutions,
and they are increasing with respect to x.

(N) N is increasing in (V,≤) or in (V,�).

Then the following assertions hold.

(a) If N [V ] has an upper bound in P , and if decreasing sequences of N [V ]
have weak or strong limits in P , then the equation Lu = Nu has a minimal
solution in (V,�). It has in (V,≤) the greatest solution, which is increasing
with respect to N .

(b) If N [V ] has a lower bound in P , and if increasing sequences of N [V ] have
weak or strong limits in P , then the equation Lu = Nu has a maximal
solution in (V,�). It has in (V,≤) the smallest solution, which is increasing
with respect to N .

In what follows, E is an ordered normed space having the following prop-
erties.

(E0) Bounded and monotone sequences of E have weak or strong limits.
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(E1) x+ = sup{0, x} exists, and ‖x+‖ ≤ ‖x‖ for every x ∈ E.

When c ∈ E and R ∈ [0,∞), denote BR(c) := {x ∈ E : ‖x− c‖ ≤ R}. Recall
(cf., e.g., [227]) that if a sequence (xn) of a normed space E converges weakly
to x, then (xn) is bounded, i.e., supn ‖xn‖ <∞, and

‖x‖ ≤ lim inf
n→∞

‖xn‖. (2.22)

The next auxiliary result is needed in the sequel.

Lemma 2.43. If c ∈ E and R ∈ (0,∞), then c is an order center of BR(c),
and for every chain C of BR(c) both supC and inf C exist and belong to
BR(c).

Proof: Since

sup{c, x} = (x−c)+−c and inf{c, x} = c−(c−x)+, for all x ∈ E, (2.23)

(E1) and (2.23) imply that

‖ sup{c, x} − c‖ = ‖ inf{c, x} − c‖ = ‖(x− c)+‖ ≤ ‖x− c‖ ≤ R

for every x ∈ BR(c). Thus both sup{c, x} and inf{c, x} belong to BR(c). Let
C be a chain in BR(c). Since C is bounded, there is an increasing sequence
(xn) in C that converges weakly to x = supC due to (E0) and Lemma 2.38.
Since ‖xn − c‖ ≤ R for each n, it follows from (2.22) that

‖x− c‖ ≤ lim inf
n→∞

‖xn − c‖ ≤ R.

Thus x = supC exists and belongs to BR(c). Similarly one can show that
inf G[C] exists in E and belongs to BR(c). ut

Applying Theorem 2.17 and Lemma 2.43 we obtain the following fixed
point results.

Theorem 2.44. Given a subset P of E, assume that G : P → P is increasing,
and that G[P ] ⊆ BR(c) ⊆ P for some c ∈ P and R ∈ (0,∞). Then G has

(a)minimal and maximal fixed points;
(b) smallest and greatest fixed points x∗ and x∗ in the order interval [x, x]

of P , where x is the greatest solution of x = inf{c,G(x)}, and x is the
smallest solution of x = sup{c,G(x)}.

Moreover, x∗, x∗, x and x are all increasing with respect to G.

Proof: Let C be a chain in P . Since G[C] is a chain in BR(c), both supG[C]
and inf G[C] exist in E and belong to BR(c) ⊆ P by Lemma 2.43. Because
c is an order center of BR(c) and ocl(G[P ]) ⊆ G[P ] ⊆ BR(c) ⊆ P , then c is
an order center of ocl(G[P ]) in P . Thus the hypotheses of Theorem 2.17 are
valid. ut

Next we assume also that V = (V,≤) is a poset, and that P ⊆ E. By
means of Theorem 2.26 we obtain the following results.
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Theorem 2.45. Assume that the hypothesis (L) holds for L : V → P , that
N : V → P is increasing in (V,≤) (respectively in (V,�)), and that N [V ] ⊆
BR(c) ⊆ P for some c ∈ E and R ∈ (0,∞). Then the equation Lu = Nu has

(a) minimal and maximal solutions in (V,�);
(b) smallest and greatest solutions u∗, u∗ within the order interval [u, u] of

(V,≤) (respectively (V,�)), where u is the greatest solution of Lu =
inf{c,Nu} in V− = {minL−1{x} : x ∈ P}, and u is the smallest solution
of Lu = sup{c,Nu} in V+ = {maxL−1{x} : x ∈ P}.

Moreover, u∗, u∗, u and u are all increasing with respect to N in (V,≤).

Proof: The given hypotheses imply by Lemma 2.43 (cf. the proof of Theorem
2.44) that the hypotheses of Theorem 2.26 hold. The assertions follow then
from Theorem 2.26. ut

Noticing that inf{0, v} = −(−v)+, the next result is a consequence of
Theorem 2.45.

Corollary 2.46. Given a poset V and R ∈ (0,∞), assume that L, N : V →
BR(0) satisfy the following hypotheses.

(LN) L is a bijection, and both L−1 and N are increasing.

Then the equation Lu = Nu has

(a) minimal and maximal solutions in (V,�);
(b) smallest and greatest solutions u∗, u∗ within the order interval [u, u] of

(V,≤), where u is the greatest solution of Lu = −(−Nu)+ and u is the
smallest solution of Lu = (Nu)+ in (V,≤).

Moreover, u∗, u∗, u and u are all increasing with respect to N in (V,≤).

In the set-valued case we have the following consequences of Theorems
2.12 and 2.25.

Theorem 2.47. Assume that P is a subset of E which contains BR(c) for
some c ∈ E and R ∈ (0,∞). Then the following holds.

(a) Let F : P → 2P \ ∅ be an increasing mapping whose values are weakly
compact in E, and whose range F [P ] is contained in BR(c). Then F has
minimal and maximal fixed points.

(b) Assume that N : V → 2P \ ∅ is increasing in (V,≤) or in (V,�), that
its values are weakly compact in E, and that N [V ] ⊆ BR(c). If L : V →
P satisfies the hypothesis (L), then the inclusion problem Lu ∈ Nu has
minimal and maximal solutions in (V,�).

The next result is also a consequence of Theorem 2.45.

Theorem 2.48. Given a lattice-ordered Banach space E with properties (E0)
and (E1) and a poset W , assume that mappings Λ, F : W → E satisfy the
following hypotheses:
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(Λ) The equation Λu = v has for each v ∈ E smallest and greatest solutions,
and they are increasing with respect to v.

(F) F is increasing.
(ΛF) ‖F (u)‖ ≤ q(‖Λu‖) for all u ∈W , where q : R+ → R+ is increasing, and

there exists a R > 0 such that R = q(R), and, moreover, if s ≤ q(s),
then s ≤ R.

Then the equation
Λu = Fu (2.24)

has minimal and maximal solutions.

Proof: Let R > 0 be the constant in the hypothesis (ΛF). Define

P := BR(0), and V := {u ∈W : ‖Λu‖ ≤ R}. (2.25)

The growth condition (ΛF) implies that for each u ∈ V ,

‖Fu‖ ≤ q(‖Λu‖) ≤ q(R) = R,

so that F [V ] ⊆ P by (2.25).
Defining L = Λ|V and N = F|V , then L, N : V → P , L satisfies the

hypothesis (L) and N is increasing. Therefore, the results of Theorem 2.45 can
be applied. In particular, it follows that the equation Lu = Nu has minimal
and maximal solutions. If u ∈W and Λu = Fu, then

‖Λu‖ = ‖Fu‖ ≤ q(‖Λu‖)

by (ΛF), which implies that ‖Λu‖ ≤ R, i.e., u ∈ V . Thus all the solutions of
(2.24) are contained in V , whence we conclude that (2.24) and the equation
Lu = Nu have the same solutions. In particular, (2.24) has minimal and
maximal solutions. ut

The next result is a direct consequence of Theorem 2.48

Corollary 2.49. Let E be a lattice-ordered Banach space E with properties
(E0) and (E1), let W be a poset, and assume that Λ : W → E satisfies the
hypothesis (Λ), and that F : W → E is increasing and bounded. Then the
equation (2.24) has minimal and maximal solutions.

Proof: Defining q(s) ≡ R > sup{‖Fu‖ : u ∈ W}, we see that the hypothesis
(ΛF) holds. ut

Remark 2.50. As an application of Theorem 2.45(b) one can formulate other
existence results for equation (2.24). In particular, one can construct such
solutions of (2.24) that are increasing with respect to F .

According to the hypothesis (F) the operator F may be discontinuous
and noncompact. Moreover, the growth condition of (ΛF) does not provide
means to construct a priori upper and/or lower solutions for equation (2.24).
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Thus the standard theories such as the theory of monotone operators due to
Brezis and Browder, Schauder’s fixed point theorem, or the method of sub-
and supersolutions are, in general, not applicable under the hypotheses given
above to solve (2.24).

Each of the following spaces has properties (E0) and (E1) (as for the proofs,
see, e.g., [22, 44, 48, 118, 133, 152, 170]):

(a) A Sobolev space W 1,p(Ω) or W 1,p
0 (Ω), 1 < p <∞, ordered a.e. pointwise,

where Ω is a bounded domain in RN .
(b) A finite-dimensional normed space ordered by a cone generated by a basis.
(c) lp, 1 ≤ p <∞, normed by p-norm and ordered coordinatewise.
(d) Lp(Ω), 1 ≤ p < ∞, normed by p-norm and ordered a.e. pointwise, where

Ω is a σ-finite measure space.
(e) A separable Hilbert space whose order cone is generated by an orthonormal

basis.
(f) A weakly complete Banach lattice or a UMB-lattice (cf. [22]).
(g) Lp(Ω, Y ), 1 ≤ p < ∞, normed by p-norm and ordered a.e. pointwise,

where Ω is a σ-finite measure space and Y is any of the spaces (b)–(f).
(h) Newtonian spaces N1,p(Y ), 1 < p < ∞, ordered a.e. pointwise, where Y

is a metric measure space.

Thus the results of Theorems 2.44–2.48 hold if E is any of the spaces listed
in (a)–(g).

2.5 Fixed Point Results for Maximalizing Functions

In this section we prove fixed point results for a self-mapping G of a poset
P by assuming that G is maximalizing, i.e., G(x) is a maximal element
of {x,G(x)} for all x ∈ P . Concrete examples of maximalizing functions
that have or don’t have fixed points are presented. The generalized iteration
method introduced in Lemma 2.2 is used in the proofs.

2.5.1 Preliminaries

The following result helps to analyze the w-o chain of cG-iterations defined in
(2.2).

Lemma 2.51. Let A and B be nonempty subsets of P . If supA and supB
exists, then the equation

sup(A ∪B) = sup{supA, supB} (2.26)

is valid whenever either of its sides is defined.
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Proof: The sets A∪B and {supA, supB} have the same upper bounds, which
implies the assertion. ut

Recall that a subset W of a chain C is called an initial segment of C if
x ∈ W , y ∈ C, and y < x imply y ∈ W . If W is well-ordered, then every
element x of W that is not the possible maximum of W has a successor:
Sx = min{y ∈W : x < y}, in W .

A characterization of elements of the w-o chain of cG-iterations, defined
by (2.2), is provided by the following lemma.

Lemma 2.52. Given G : P → P and c ∈ P , and let C be the w-o chain of
cG-iterations. Then the elements of C have the following properties:

(a) minC = c.
(b) An element x of C has a successor in C if and only if sup{x,G(x)} exists

and x < sup{x,G(x)}, and then Sx = sup{x,G(x)}.
(c) If W is an initial segment of C and y = supW exists, then y ∈ C.
(d) If c < y ∈ C and y is not a successor, then y = supC<y.
(e) If y = supC exists, then y = maxC.
(f) If x∗ = sup{c,G[C]} exists in P , then x∗ = maxC, and G(x∗) ≤ x∗.

Proof: Ad (a) minC = sup{c,G[C<minC ]} = sup{c,G[∅]} = sup{c, ∅} = c.
Ad (b) Assume first that x ∈ C, and that Sx exists in C. Applying (2.2),

Lemma 2.51, and the definition of Sx we obtain

Sx = sup{c,G[C<Sx]} = sup{c,G[C<x] ∪ {G(x)}} = sup{x,G(x)}.

Moreover, x < Sx, by definition, whence x < sup{x,G(x)}.
Assume next that x ∈ C, that y = sup{x,G(x)} exists, and that x <

sup{x,G(x)}. The above proof implies that

(i) there is no element w ∈ C that satisfies x < w < sup{x,G(x)}.

Then {z ∈ C : z ≤ x} = C<y, so that

x < sup{x,G(x)} = sup{sup{c,G[C<x]}, G(x)}
= sup{{c} ∪G[C<x] ∪ {G(x)}} = sup{c,G[{z ∈ C : z ≤ x}]}
= sup{c,G[C<y]}.

Thus y = sup{x,G(x)} ∈ C by (2.2). This result and (i) imply that y =
sup{x,G(x)} = min{z ∈ C : x < z} = Sx.

Ad (c) Assume that W is an initial segment of C, and that y = supW
exists. If there is x ∈W that does not have the successor, then x = maxW =
y, so that y ∈ C. Assume next that every element x of W has the successor
Sx in W . Since Sx = sup{x,G(x)} by (b), then G(x) ≤ Sx < y. This holds
for all x ∈ W . Since c = minC = minW < y, then y is an upper bound of
{c}∪G[W ]. If z is an upper bound of {c}∪G[W ], then x = sup{c,G[C<x]} =
sup{c,G[W<x]} ≤ z for every x ∈W . Thus z is an upper bound of W , whence
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y = supW ≤ z. But then y = sup{c,G[W ]} = sup{c,G[C<y]}, so that y ∈ C
by (2.2).

Ad (d) Assume that c < y ∈ C, and that y is not a successor of any
element of C. Obviously, y is an upper bound of C<y. Let z be an upper
bound of C<y. If x ∈ C<y, then also Sx ∈ C<y since y is not a successor.
Because Sx = sup{x,G(x)} by (b), then G(x) ≤ Sx ∈ C<y. This holds for
every x ∈ C<y. Since also c ∈ C<y, then z is an upper bound of {c}∪G[C<y].
Thus y = sup{c,G[C<y]} ≤ z. This holds for every upper bound z of C<y,
whence y = supC<y.

Ad (e) If y = supC exists, then y ∈ C by (c) when W = C, whence
y = maxC.

Ad (f) Assume that x∗ = sup{c,G[C]} exists. If x ∈ C, then x =
sup{c,G[C<x] ≤ sup{c,G[C]} = x∗, whence x∗ is an upper bound of C. If x∗
is a strict upper bound of C, then C = C<x∗ , so that x∗ = sup{c,G[C<x∗ ]}.
But then x∗ ∈ C by (2.2), and x∗ is a strict upper bound of C, a contra-
diction. Thus x∗ = maxC. In particular, G(x∗) ∈ G[C], whence G(x∗) ≤
sup{c,G[C]} = x∗. ut

2.5.2 Main Results

Let P = (P,≤) be a nonempty poset. As an application of Lemma 2.52(f) we
shall prove our first existence result.

Theorem 2.53. A function G : P → P has a fixed point if G is maximalizing,
i.e., G(x) is a maximal element of {x,G(x)} for all x ∈ P , and if x∗ =
sup{c,G[C]} exists in P for some c ∈ P where C is the w-o chain of cG-
iterations.

Proof: If C is the w-o chain of cG-iterations, and if x∗ = sup{c,G[C]} exists
in P , then x∗ = maxC and G(x∗) ≤ x∗ by Lemma 2.52(f). Since G is maxi-
malizing, then G(x∗) = x∗, i.e., x∗ is a fixed point of G. ut

The following proposition is a consequence of Theorem 2.53 and Lemma
2.52(b),(e).

Proposition 2.54. Assume that G : P → P is maximalizing. Given c ∈ P ,
let C be a w-o chain of cG-iterations. If z = supC exists, then z is a fixed
point of G if and only if x∗ = sup{z,G(z)} exists.

Proof: Assume that z = supC exists. It follows from Lemma 2.52(e) that
z = maxC. If z is a fixed point of G, i.e., z = G(z), then x∗ = sup{z,G(z)} =
z.

Assume next that sup{z,G(z)} exists. Since Sz (successor) does not
exist, it follows from Lemma 2.52(b) that z 6< sup{z,G(z)}. Thus x∗ =
sup{z,G(z)} = z, so that G(z) ≤ z. Moreover, G(z) 6< z because G is maxi-
malizing, whence G(z) = z. ut

As a consequence of Proposition 2.54 we obtain the following corollary.
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Corollary 2.55. Assume that all nonempty chains of P have supremums in
P . If G : P → P is maximalizing, and if sup{x,G(x)} exists for all x ∈ P ,
then for each c ∈ P the maximum of the w-o chain of cG-iterations exists and
is a fixed point of G.

Proof: Let C be the w-o chain of cG-iterations. The given hypotheses imply
that both z = supC and x∗ = sup{z,G(z)} exist. Thus the hypotheses of
Proposition 2.54 are valid. ut

For completeness we formulate the obvious duals of the above results.

Theorem 2.56. A function G : P → P has a fixed point if G is minimalizing,
i.e., G(x) is a minimal element of {x,G(x)} for all x ∈ P , and if inf{c,G[W ]}
exists in P for some c ∈ P whenever W is a non-empty chain in P .

Proposition 2.57. A minimalizing function G : P → P has a fixed point if
every nonempty chain P has the infimum in P , and if inf{x,G(x)} exists for
all x ∈ P .

Remark 2.58. The hypothesis that G : X → X is maximalizing can be weak-
ened in Theorem 2.53 and in Proposition 2.54 to the form: G|{x∗} is maxi-
malizing, i.e., G(x∗) is a maximal element of {x∗, G(x∗)}.

2.5.3 Examples and Remarks

We shall first present an example of a maximalizing mapping whose fixed
point is obtained as the maximum of the w-o chain of cG-iterations.

Example 2.59. Let P be a closed disc P = {(u, v) ∈ R2 : u2 +v2 ≤ 2}, ordered
coordinatewise. Let [u] denote the greatest integer ≤ u when u ∈ R. Define a
function G : P → R2 by

G(u, v) =
(

min{1, 1− [u] + [v]}, 1
2
([u] + v2)

)
, (u, v) ∈ P. (2.27)

It is easy to verify that G[P ] ⊂ P , and that G is maximalizing. To find a fixed
point of G, choose c = (1, 0). It follows from Lemma 2.52 (a) and (b) that the
first elements of the w-o chain of cG-iterations are successive approximations

x0 = c, xn+1 = Sxn = sup{xn, G(xn)}, n = 0, 1, . . . , (2.28)

as long as Sxn is defined. Denoting xn = (un, vn), these successive approxi-
mations can be rewritten in the form

u0 = 1, un+1 = max{un,min{1, 1− [un] + [vn]}},

v0 = 0, vn+1 = max{vn,
1
2
([un] + v2

n)}, n = 0, 1, . . . ,
(2.29)
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as long as un ≤ un+1 and vn ≤ vn+1, and at least one of these inequalities
is strict. Elementary calculations show that un = 1, for every n ∈ N0. Thus
(2.29) can be rewritten as

un = 1, v0 = 0, vn+1 = max{vn,
1
2
(1 + v2

n)}, n = 0, 1, . . . . (2.30)

Since the function g(v) = 1
2 (1 + v2) is increasing in R+, then vn < g(vn) for

every n = 0, 1, . . . . Thus (2.30) can be reduced to the form

un = 1, v0 = 0, vn+1 = g(vn) =
1
2
(1 + v2

n), n = 0, 1, . . . . (2.31)

The sequence (g(vn))∞n=0 is strictly increasing, whence also (vn)∞n=0 is strictly
increasing by (2.31). Thus the set W = {(1, g(vn))}n∈N0 is an initial segment
of C. Moreover, v0 = 0 < 1, and if 0 ≤ vn < 1, then 0 < g(vn) < 1. Since
(g(vn))∞n=0 is bounded above by 1, then v∗ = limn g(vn) exists, and 0 < v∗ ≤ 1.
Thus (1, v∗) = supW , and it belongs to X, whence (1, v∗) ∈ C by Lemma
2.52(c). To determine v∗, notice that vn+1 → v∗ by (2.31). Thus v∗ = g(v∗), or
equivalently, v2

∗ − 2v∗ + 1 = 0, so that v∗ = 1. Since supW = (1, v∗) = (1, 1),
then (1, 1) ∈ C by Lemma 2.52(c). Because (1, 1) is a maximal element of X,
then (1, 1) = maxC. Moreover, G(1, 1) = (1, 1), so that (1, 1) is a fixed point
of G.

The first m + 1 elements of the w-o chain C of cG-iterations can be esti-
mated by the following Maple program (floor(·)=[·]):

x := min{1, 1− floor(u) + floor(v)} : y := (floor(u) + v2)/2 :

(u, v) := (1, 0) : c[0] := (u, v) :

for n to m do (u, v) := (max{x, u}, evalf(max{y, v}); c[n] := (u, v) end do;

For instance, c[100000]=(1,0.99998).

The verification of the following properties are left to the reader:

• If c = (u, v) ∈ X, u < 1 and v < 1, then the elements of w-o chain C
of cG-iterations, after two first terms if u < 1, are of the form (1, wn),
n = 0, 1, . . . , where (wn)∞n=0 is increasing and converges to 1. Thus (1, 1)
is the maximum of C and a fixed point of G.

• If c = (u, 1), u < 1, or c = (1,−1), then C = {c, (1, 1)}.
• If = (1, 0), then G2kc = (1, zk) and G2k+1c = (0, yk), k ∈ N0, where the

sequences (zk) and (yk) are bounded and increasing. The limit z of (zk)
is the smaller real root of z4 − 8z + 4 = 0; z ≈ 0.50834742498666121699,
and the limit y of (yk) is y = 1

2z
2 ≈ 0.12920855224528457650. Moreover

G(1, y) = (0, z) and G(0, z) = (1, y), whence no subsequence of the itera-
tion (Gnc) converges to a fixed point of G.

• For any choice of c = (u, v) ∈ P \ {(1, 1)} the iterations Gnc and Gn+1c
are not order related when n ≥ 2. The sequence (Gnc) does not converge,
and no subsequence of it converges to a fixed point of G.
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• Denote Y = {(u, v) ∈ R2
+ : u2 + v2 ≤ 2, v > 0} ∪ {(1, 0)}. The function G,

defined by (2.27) satisfies G[Y ] ⊂ Y , and is maximalizing. The maximum
of the w-o chain of cG-iterations with c = (1, 0) is x∗ = (1, 1), and x∗ is a
fixed point of G. If x ∈ Y \ {x∗}, then x and G(x) are not comparable.

The following example shows that G need not have a fixed point if either
of the hypothesis of Theorem 2.53 is not valid.

Example 2.60. Denote a = (1, y) and b = (0, z), where y and z are as in
Example 2.59. Choose X = {a, b}, and let G : X → X be defined by (2.27).
G is maximalizing, but G has no fixed points, since G(a) = b and G(b) = a.
The last hypothesis of Theorem 2.53 is not satisfied.

Denoting c = (1, z), then the set X = {a, b, c} is a complete join lattice,
i.e., every nonempty subset of X has the supremum in X. Let G : X → X
satisfy G(a) = b and G(b) = G(c) = a. G has no fixed points, but G is not
maximalizing, since G(c) < c.

Example 2.61. The components: u = 1, v = 1 of the fixed point of G in
Example 2.59 form also a solution of the system

u = min{1, 1− [u] + [v]}, v =
[u] + v2

2
.

Moreover, a Maple program introduced in Example 2.59 serves a method to
estimate this solution. When m = 100000, the estimate is: u = 1, v = .99998.

Remark 2.62. (i) The standard ‘solve’ and ‘fsolve’ commands of Maple 13
don’t give a solution or its approximation for the system of Example 2.61.

(ii) In Example 2.59 the mapping G is non-increasing, non-extensive, non-
ascending, not semi-increasing upward, and non-continuous.

(iii) The generalized iteration method presented in Lemma 2.2 is based on
the w-o chain of cG-iterations, defined by (2.2), where G is a self-mapping of
a poset P and c ∈ P . In the case when c ≤ G(c), this chain equals to the w-o
chain C = C(c) of G-iterations of c, defined by

c = minC, and x ∈ C \ {c} if and only if x = supG[C<x]. (2.32)

(iv) As for the use of C(c) in fixed point theory and in the theory of
discontinuous differential and integral equations, see, e.g., [44, 133] and the
references therein.

(v) Chain C(c) is compared in [175] with three other chains that generalize
the sequence of ordinary iterations (Gn(c))∞n=0, and which are used to prove
fixed point results forG. These chains are: the generalized orbit O(c) defined in
[175] (being identical with the set W (c) defined in [1]), the smallest admissible
set I(c) containing c (cf. [33, 34, 115]), and the smallest complete G-chain B(c)
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containing c (cf. [96, 175]). If G is extensive, and if nonempty chains of X have
supremums, then C(c) = O(c) = I(c), and B(c) is their cofinal subchain (cf.
[175], Corollary 7). The common maximum x∗ of these four chains is a fixed
point of G. This result implies Bourbaki’s Fixed Point Theorem, cf. [28, p.
37].

(vi) On the other hand, if the hypotheses of Theorem 2.56 hold and x ∈
C(c)\{c, x∗}, then x and G(x) are not necessarily comparable. The successor
of such an x in C(c) is sup{x,G(x)} by [115, Prop. 5]. In such a case the chains
O(c), I(c), and B(c) attain neither x nor any fixed point of G. For instance
when c = (0, 0) in Example 2.59, then C(c) = {(0, 0)} ∪ C, where C is the
w-o chain of (1, 0)G-iterations. Since (Gn(0, 0))∞n=0 = {(0, 0)}∪ (Gn(1, 0))∞n=0,
then B(c) does not exist, O(c) = I(c) = {(0, 0), (1, 0)} (see [175]). Thus only
C(c) attains a fixed point of G as its maximum. As shown in Example 2.59, the
consecutive elements of the iteration sequence (Gn(1, 0))∞n=0 are unordered,
and their limits are not fixed points of G. Hence, in these examples also finite
combinations of chains W (ci) used in [15, Theorem 4.2] to prove a fixed point
result are insufficient to attain a fixed point of G. As for other examples of
such cases, see [110, Example 3], and [115, Example 16].

(vii) Neither the above mentioned four chains nor their duals are available
to find fixed points of G if a and G(a) are not ordered. For instance, they
cannot be applied to prove Theorems 2.53 and 2.56 or Propositions 2.54 and
2.57.

2.6 Notes and Comments

In Sect. 2.1, the Chain Generating Recursion Principle is established and ap-
plied to derive generalized iteration methods. As noticed in the Introduction,
the argumentation in the proof of the Chain Generating Recursion Principle
is similar to that used in [231] to prove Zermelo’s first well-ordering theorem.
The importance of such an argumentation to set theory, to fixed point the-
ory in posets, to theories of inductive definitions, and to computer science is
studied in [147].

The recursion and iteration methods presented in Sect. 2.1 are applied to
prove fixed point results and existence and comparison results for solutions
of operator equations and inclusions in Sects. 2.2–2.5. The material of these
sections is based on papers [52, 117, 119, 121, 125, 127].
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Multi-Valued Variational Inequalities

In this chapter we provide existence, comparison, and extremality results for
multi-valued elliptic and parabolic variational inequalities that will be used in
subsequent chapters about discontinuously perturbed problems of this kind.
The subject of this chapter is not only a prerequisite for the following chapters,
but also is of independent interest. Our presentation is based on and includes
results recently obtained in [38, 39, 66, 69, 70, 72], which partly generalize
related results of [62] on this topic. Moreover, the theory about multi-valued
elliptic and parabolic variational inequalities allows us to treat a wide range
of nonsmooth elliptic and parabolic problems in a unified way.

3.1 Introductory Example

To motivate our study of multi-valued variational problems let us consider
first the following simple Dirichlet boundary value problem (BVP for short):

−∆pu+ g(u) = h in Ω, u = 0 on ∂Ω, (3.1)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, and ∆pu =
div(|∇u|p−2∇u) is the p-Laplacian with 1 < p <∞. The nonlinearity g : R →
R is assumed to be the Heaviside step function, i.e.,

g(s) =
{

0 if s ≤ 0,
1 if s > 0, (3.2)

and h(x) ≡ 1 is taken for simplicity. We are looking for weak solutions u of
(3.1) from the Sobolev space V0 = W 1,p

0 (Ω), which means that g(u) ∈ Lq(Ω)
(1/p+ 1/q = 1), and u satisfies

u ∈ V0 :
∫
Ω

(
|∇u|p−2∇u∇ϕ+g(u)ϕ

)
dx =

∫
Ω

hϕdx for all ϕ ∈ V0. (3.3)

From Differential and Integral Equations to Game Theory,  

  
 

S. Carl and S. Heikkilä,   

DOI 10.1007/978-1-4419-7585-0_3, © Springer Science+Business Media, LLC 2011 

57Fixed Point Theory in Ordered Sets and Applications:



58 3 Multi-Valued Variational Inequalities

Due to the discontinuous function g, the well-known method of sub-superso-
lution developed for nonlinear elliptic (and parabolic) BVPs (see, e.g., [62])
does not apply to the simple BVP (3.1) as will be seen next. Recall that a
function u ∈ V = W 1,p(Ω) is called a supersolution of (3.1) if g(u) ∈ Lq(Ω),
u ≥ 0 on ∂Ω, and u satisfies the inequality∫

Ω

(
|∇u|p−2∇u∇ϕ+ g(u)ϕ

)
dx ≥

∫
Ω

hϕdx for all ϕ ∈ V0 ∩ Lp+(Ω), (3.4)

where Lp+(Ω) is the positive cone of all nonnegative function of Lp(Ω). In an
obvious similar way a subsolution u ∈ V of (3.1) is defined by replacing u by
u, and reversing the inequality sign in the above inequalities.

One readily verifies that for any constant c > 0, the constant functions
u(x) ≡ −c and u(x) ≡ c form an ordered pair of sub- and supersolutions of
(3.1). However, the BVP (3.1) has no solutions within the interval [−c, c], and
even more, there are no solutions at all. To see this we argue by contradiction.
Suppose u was a solution of (3.1), i.e., u ∈ V0 satisfies (3.3), which yields by
using h(x) ≡ 1 the equality∫

Ω

|∇u|p−2∇u∇ϕdx =
∫
Ω

(1− g(u))ϕdx for all ϕ ∈ V0. (3.5)

In particular, (3.5) holds for ϕ = u, which results in∫
Ω

|∇u|p dx =
∫
Ω

(1− g(u))u dx. (3.6)

Applying the definition of the nonlinearity g to the right-hand side of (3.6)
we get∫
Ω

(1− g(u))u dx =
∫
{x∈Ω:u≤0}

(1− g(u))u dx+
∫
{x∈Ω:u>0}

(1− g(u))u dx ≤ 0,

and thus we obtain from (3.6)∫
Ω

|∇u|p dx = 0,

which implies u = 0. However, the latter is a contradiction, because u = 0 is
apparently not a solution of the BVP (3.1) (note h(x) ≡ 1).

Problem (3.1) with the nonlinearity g given by the Heaviside function is
now embedded into a multi-valued setting replacing g by the following multi-
function θ : R → 2R \ ∅ that arises from g by filling in the gap at the point of
discontinuity, i.e.,

θ(s) =

 0 if s < 0,
[0, 1] if s = 0,

1 if s > 0.
(3.7)

Let j : R → R be the primitive of g, i.e.,
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j(s) =
∫ s

0

g(t) dt.

By elementary calculation one easily verifies that j(s) = s+ where s+ =
max{s, 0}, which is a convex function, and θ(s) = ∂j(s), where ∂j is the
subdifferential of j. The relaxed multi-valued BVP associated with (3.1) reads
now as follows:

−∆pu+ ∂j(u) 3 h in Ω, u = 0 on ∂Ω, (3.8)

and we call a function u ∈ V0 a solution of (3.8), if there is an η ∈ Lq(Ω) such
that η(x) ∈ ∂j(u(x)) for a.e. x ∈ Ω and the equality∫

Ω

(
|∇u|p−2∇u∇ϕ+ ηϕ

)
dx =

∫
Ω

hϕdx

holds for all ϕ ∈ V0. As a natural generalization of the notion of sub-
supersolution for the multi-valued problem (3.8), we say u is a supersolution
if u ≥ 0 on ∂Ω, and if there is an η ∈ Lq(Ω) such that η(x) ∈ ∂j(u(x)) for
a.e. x ∈ Ω and the following inequality is satisfied:∫

Ω

(
|∇u|p−2∇u∇ϕ+ ηϕ

)
dx ≥

∫
Ω

hϕdx for all ϕ ∈ V0 ∩ Lp+(Ω). (3.9)

In an obvious similar way we define a subsolution u. One readily verifies that
the constant functions u(x) ≡ −c and u ≡ c form an ordered pair of sub-
supersolutions for the multi-valued BVP (3.8) for any constant c > 0. As
the method of sub-supersolution for the multi-valued BVP (3.8) holds true
(see [62]), u = 0 must be a solution of (3.8), which can readily be verified.
Moreover, u = 0 is the unique solution of (3.8), because ∂j(u) : R → 2R \ ∅
is a maximal monotone graph in R2. The latter can be justified also in the
following alternative way. Consider the functional E : V0 → R defined by

E(u) =
1
p

∫
Ω

|∇u|p dx+
∫
Ω

(j(u)− hu) dx,

which is a strictly convex, continuous, and coercive functional, and thus the
optimization problem

E(u) = inf
v∈V0

E(v) (3.10)

has a unique solution, which necessarily satisfies 0 ∈ ∂E(u), where ∂E(u)
is the subdifferential of E at u. In this case the inclusion condition is also
sufficient. The inclusion 0 ∈ ∂E(u) may be considered as a kind of Euler
equation for the minimum problem (3.10) and is nothing but the multi-valued
BVP (3.8).

Let us consider the problem of minimization of the functional E under
some constraint given in terms of a closed and convex subset K 6= ∅ of V0,
i.e.,
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u ∈ K : E(u) = inf
v∈K

E(v). (3.11)

Applying the main theorem of convex optimization (see [230, Theorem 47.C.],
a necessary and sufficient condition for u ∈ K to be a solution of (3.11) is
that the directional derivative E′(u;ϕ − u) of E at u in any direction ϕ − u
defined by

E′(u;ϕ− u) = lim
t↓0

E(u+ t(ϕ− u))− E(u)
t

,

fulfills
u ∈ K : E′(u;ϕ− u) ≥ 0, ∀ ϕ ∈ K. (3.12)

Evaluating the left-hand side of the last inequality we get the following
variational-hemivariational inequality∫
Ω

|∇u|p−2∇u∇(ϕ−u) dx+
∫
Ω

j′(u;ϕ−u) dx−
∫
Ω

h(ϕ−u) dx ≥ 0, ∀ϕ ∈ K,

(3.13)
where j′(s; r) is the directional derivative of the convex function j : R → R
at s in the direction r. As the functional E is strictly convex on K ⊆ V0 we
infer the existence of a unique solution of (3.11), which implies the existence
of a unique solution of (3.13).

Let us associate to (3.13) the following multi-valued variational inequality :
Find u ∈ K such that there is an η ∈ Lq(Ω) satisfying η(x) ∈ ∂j(u(x)) and
the inequality∫
Ω

|∇u|p−2∇u∇(ϕ− u) dx+
∫
Ω

η (ϕ− u) dx−
∫
Ω

h(ϕ− u) dx ≥ 0, ∀ϕ ∈ K.

(3.14)
Since s 7→ ∂j(s) is maximal monotone, the variational inequality (3.14) has
at most one solution. To verify this, let u1 and u2 be solutions of (3.14). Then
we obtain from (3.14) with ϕ = u2 and ϕ = u1 for the solution u1 and u2,
respectively, the inequalities∫
Ω

|∇u1|p−2∇u1∇(u2 − u1) dx+
∫
Ω

η1 (u2 − u1) dx−
∫
Ω

h(u2 − u1) dx ≥ 0,

∫
Ω

|∇u2|p−2∇u2∇(u1 − u2) dx+
∫
Ω

η2 (u1 − u2) dx−
∫
Ω

h(u1 − u2) dx ≥ 0,

where ηk(x) ∈ ∂j(uk(x)) for a.e. x ∈ Ω, k = 1, 2. Adding the last two inequal-
ities yields

0 ≤
∫
Ω

(
|∇u2|p−2∇u2−|∇u1|p−2∇u1

)
∇(u2−u1) dx ≤

∫
Ω

(η2−η1)(u1−u2) dx.

Because s 7→ ∂j(s) is maximal monotone, we get∫
Ω

(η2 − η1)(u1 − u2) dx ≤ 0,
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which implies ∇(u2 − u1) = 0 a.e. in Ω, and thus u2 − u1 = 0 (note u1, u2 ∈
K ⊆ V0).

If we denote by ∂cj Clarke’s generalized gradient of j and by jo(s; r) the
generalized directional derivative due to Clarke of j at s in direction r, then
for the convex function j : R → R we have

∂cj(s) = ∂j(s), ∀ s ∈ R, jo(s; r) = j′(s; r) ∀ s, r ∈ R,

see [80, Proposition 2.2.7]. Therefore, in what follows we can use the nota-
tion ∂j instead of ∂cj for Clarke’s generalized gradient. It is an immediate
consequence of the definition of Clarke’s gradient that any solution of (3.14)
is a solution of (3.13) as well, which again verifies the unique solvability of
(3.14), because (3.13) has a unique solution. In fact, one can show that the
two variational inequalities (3.13) and (3.14) are equivalent under the spe-
cific conditions of this section. To justify this equivalence we note that the
optimization problem (3.11) is equivalent to

u ∈ V0 : E(u) = inf
v∈V0

E(v) + IK(v), (3.15)

where IK : V0 → R ∪ {+∞} denotes the indicator function related to K
defined by

IK(v) =
{

0 if v ∈ K,
+∞ if v /∈ K. (3.16)

A necessary and sufficient condition for u to be a solution of (3.15) is

0 ∈ ∂(E + IK)(u).

Applying the sum rule for the subgradient of the sum of convex functionals
(see [230, Theorem 47.B]) we get as necessary and sufficient condition

0 ∈ ∂(E + IK)(u) = ∂E(u) + ∂IK(u), (3.17)

which is equivalent to (3.14).

Remark 3.1. The considerations above deal with the simple example that
j(s) = s+ and h(x) ≡ 1. We should mention that all the results concern-
ing the solvability of the variational-hemivariational inequality (3.13) and the
multi-valued variational inequality (3.14) and their interrelation remain true
also in case that h ∈ V ∗

0 , and that j : R → R is any convex function whose
subdifferential ∂j : R → 2R satisfies the following growth condition:

|η| ≤ c(1 + |s|p−1, ∀ η ∈ ∂j(s), ∀ s ∈ R. (3.18)

As can be seen from the above treatment, the arguments only rely on basic
tools from Convex Analysis.
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The main goal of the subsequent section is to establish the method of sub-
supersolutions for multi-valued quasilinear elliptic variational inequalities in
a much more general framework that allows us to include nonlinear elliptic
operators of non-potential type as well as nonconvex functions j. Comparison
results based on the sub-supersolution method will play an important role in
the study of related discontinuous multi-valued variational problems.

3.2 Multi-Valued Elliptic Variational Inequalities

Throughout this section let V = W 1,p(Ω) and V0 = W 1,p
0 (Ω), with 1 < p <

∞, denote the usual Sobolev spaces, where Ω ⊂ RN , N ≥ 1, is a bounded
domain with Lipschitz boundary ∂Ω. We denote by V ∗ and V ∗

0 the dual spaces
corresponding to V and V0, respectively, and by 〈·, ·〉 the duality pairing. Let
K be a closed, convex subset of V , and let j1 : Ω×R → R and j2 : ∂Ω×R → R
be functions that are only supposed to be measurable in their first and locally
Lipschitz continuous with respect to their second argument. The main goal of
this section is to extend the idea of the sub-supersolution method in a natural
and systematic way to quasilinear multi-valued elliptic variational inequalities.
Let q denote the Hölder conjugate to p, i.e., q satisfies 1/p+1/q = 1. We deal
with the following problem.

Find u ∈ K, η ∈ Lq(Ω), and ξ ∈ Lq(∂Ω) satisfying:

η(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω, (3.19)

〈Au− h, v − u〉+
∫
Ω

η (v − u) dx+
∫
∂Ω

ξ (γv − γu) dσ ≥ 0, ∀ v ∈ K, (3.20)

where

• the multi-valued functions s 7→ ∂jk(x, s) are given by Clarke’s generalized
gradient of the locally Lipschitz functions s 7→ jk(x, s), k = 1, 2, defined
by

∂jk(x, s) := {ζ ∈ R : jok(x, s; r) ≥ ζr, ∀ r ∈ R}
for a.a. x ∈ Ω in case of k = 1, and for a.a. x ∈ ∂Ω in case of k = 2, with
jok(x, s; r) denoting the generalized directional derivative of s 7→ jk(x, s) at
s in the direction r given by

jok(x, s; r) = lim sup
y→s, t↓0

jk(x, y + t r)− jk(x, y)
t

,

(cf., e.g., [80, Chap. 2]),
• A is a second-order quasilinear elliptic differential operator of the form

Au(x) = −
N∑
i=1

∂

∂xi
ai(x,∇u(x)), with ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
,

mailto:@
.We
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• γ : V → Lp(∂Ω) denotes the trace operator, which is known to be linear
and compact from V into Lp(∂Ω),

• h ∈ V ∗.

Before we discuss various special cases of the general setting of the multi-
valued variational inequality (3.19)–(3.20), let us formulate the assumptions
on the operator A. We assume the following hypotheses of Leray–Lions type
on the coefficient functions ai, i = 1, ..., N , of the operator A:

(A1) Each ai : Ω×RN → R satisfies the Carathéodory conditions, i.e., ai(x, ζ)
is measurable in x ∈ Ω for all ζ ∈ RN , and continuous in ζ for a.a. x ∈ Ω.
There exist a constant c0 > 0 and a function k0 ∈ Lq(Ω) such that

|ai(x, ζ)| ≤ k0(x) + c0 |ζ|p−1 ,

for a.a. x ∈ Ω and for all ζ ∈ RN .
(A2) For a.a. x ∈ Ω , and for all ζ, ζ ′ ∈ RN with ζ 6= ζ ′ the following monotonic-

ity holds:
N∑
i=1

(ai(x, ζ)− ai(x, ζ ′))(ζi − ζ ′i) > 0.

(A3) There is some constant ν > 0 such that for a.a. x ∈ Ω and for all ζ ∈ RN
the inequality

N∑
i=1

ai(x, ζ)ζi ≥ ν|ζ|p − k1(x)

is satisfied for some function k1 ∈ L1(Ω).

A particular case of the operator A satisfying (A1)–(A3) is the negative p-
Laplacian, i.e., A = −∆p, which is obtained if

ai(x, ζ) = |ζ|p−2ζi, i = 1, ..., N.

In view of (A1), (A2), the operator A defined by

〈Au,ϕ〉 :=
∫
Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx, ∀ ϕ ∈ V0

is known to provide a continuous, bounded, and monotone (resp. strictly
monotone) mapping from V (resp. V0) into V ∗

0 .
To demonstrate the general framework provided by (3.19) let us consider

a few important special cases.

Example 3.2. Let f : Ω × R → R be a Carathéodory function. Consider its
primitive given by

j(x, s) :=
∫ s

0

f(x, t) dt.
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Then the function s 7→ j(x, s) is continuously differentiable, and thus Clarke’s
gradient reduces to a singleton, i.e.,

∂j(x, s) = {∂j(x, s)/∂s} = {f(x, s)}.

If we set ĵ1(x, s) = j(x, s) + j1(x, s) with j1 given above, then ĵ1 satisfies
the same qualitative properties as j1, i.e., x 7→ ĵ1(x, s) is measurable, and
s 7→ ĵ1(x, s) is locally Lipschitz continuous. Therefore we can replace j1 in
(3.19) by ĵ1, which, due to the calculus of Clarke’s gradient (see Chap. 9)

∂ĵ1(x, s) = f(x, s) + ∂j1(x, s)

yields

〈Au+F (u)− h, v− u〉+
∫
Ω

η (v− u) dx+
∫
∂Ω

ξ (γv− γu) dσ ≥ 0, ∀ v ∈ K,

(3.21)
where F is the Nemytskij operator generated by f through F (u)(x) =
f(x, u(x)). Thus problems with elliptic operators Âu = Au + F (u) involv-
ing additional lower order terms of the form a0(x, u) = f(x, u) are already
included in (3.19)–(3.20).

Example 3.3. Let f1 : Ω × R → R and f2 : ∂Ω × R → R be measurable
functions, which are locally bounded with respect to their second argument.
If jk are the primitives of fk, i.e.,

jk(x, s) :=
∫ s

0

fk(x, t) dt, (3.22)

then s 7→ jk(x, s) are locally Lipschitz and their generalized Clarke’s gradients
are given by

∂jk(x, s) = [fk(x, s), fk(x, s)], (3.23)

where

fk(x, t) := lim
δ→0+

ess inf
|τ−t|<δ

f(x, τ), fk(x, t) := lim
δ→0+

ess sup
|τ−t|<δ

f(x, τ).

Example 3.4. If K = V , f1 : Ω × R → R, and f2 : ∂Ω × R → R are
Carathéodory functions, and if jk, k = 1, 2, are the primitives of fk given
by (3.22), then (3.19)–(3.20) reduces to the following quasilinear elliptic BVP

〈Au− h, v〉+
∫
Ω

f1(x, u) v dx+
∫
∂Ω

f2(x, γu) γv dσ = 0, ∀ v ∈ V, (3.24)

which is the formulation of the weak solution of the BVP

Au+ f1(x, u) = h in Ω,
∂u

∂ν
+ f2(x, u) = 0 on ∂Ω, (3.25)

where ∂/∂ν denotes the outward pointing conormal derivative associated with
A.
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Example 3.5. If K = V0, and jk as in Example 3.4, then (3.19)–(3.20) is
equivalent to

u ∈ V0 : 〈Au− h, v〉+
∫
Ω

f1(x, u) v dx = 0, ∀ v ∈ V0, (3.26)

which is nothing but the weak formulation of the homogeneous Dirichlet prob-
lem

Au+ f1(x, u) = h in Ω, u = 0 on ∂Ω. (3.27)

Example 3.6. If K = V0 or K = V , then (3.19)–(3.20) reduces to elliptic
inclusion problems, which for K = V0 yields the following Dirichlet problem

Au+ ∂j1(x, u) 3 h in Ω, u = 0 on ∂Ω, (3.28)

and for K = V the elliptic inclusion problem

Au+ ∂j1(x, u) 3 h in Ω,
∂u

∂ν
+ ∂j2(x, u) 3 0 on ∂Ω. (3.29)

We note that nonhomogeneous Dirichlet conditions that are given by the
trace γϕ with ϕ ∈ V can always be transformed to a homogeneous Dirichlet
problem. Moreover, by an appropriate choice of K also BVP with mixed
boundary conditions can be seen to be included as special case of the general
formulation (3.19)–(3.20). To this end let Γ1 and Γ2 be relatively open subsets
of ∂Ω satisfying Γ1 ∪Γ2 = ∂Ω and Γ1 ∩Γ2 = ∅. Then we obtain the following
special case of (3.19)–(3.20).

Example 3.7. If K ⊆ V is the closed subspace given by

K = {v ∈ V : γv = 0 on Γ1},

then (3.19)–(3.20) reduces to

Au+∂j1(x, u) 3 h in Ω,
∂u

∂ν
+∂j2(x, u) 3 0 on Γ2, u = 0 on Γ1. (3.30)

Example 3.8. If K ⊆ V , and jk = 0, then (3.19)–(3.20) is equivalent to the
usual variational inequality of the form

u ∈ K : 〈Au− h, v − u〉 ≥ 0, ∀ v ∈ K.

Remark 3.9. Applying the definition of Clarke’s generalized gradient of jk,
k = 1, 2, and assuming standard growth conditions for s 7→ ∂jk(x, s), one
readily verifies that any solution of the multi-valued variational inequality
(3.19)–(3.20) must be a solution of the following variational-hemivariational
inequality: Find u ∈ K such that

〈Au−h, v−u〉+
∫
Ω

jo1(x, u; v−u) dx+
∫
∂Ω

jo2(x, γu; γv−γu) dσ ≥ 0, ∀ v ∈ K.

(3.31)
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The reverse is well known to be true if the locally Lipschitz functions s 7→
jk(x, s) are assumed to be regular in the sense of Clarke, see [80, Chap. 2.3].
For example, if the functions s 7→ jk(x, s) are smooth (i.e., differentiable) or
convex then they are regular in the sense of Clarke.

In Sect. 3.2.4 we are going to show that the reverse still holds true without
imposing any additional regularity on the functions s 7→ jk(x, s) provided
the lattice condition (3.32) on K is fulfilled. This result on the equivalence
of problems (3.19)–(3.20) and (3.31) (see [41]) fills a gap in the literature
where both problems are treated separately. The main tools in the proof are
existence and comparison results based on an appropriate sub-supersolution
method that will be developed in what follows.

3.2.1 The Sub-Supersolution Method

The main goal of this subsection is to establish the method of sub-supersolution
for the multi-valued variational inequality (3.19)–(3.20). Our presentation is
motivated by and relies on results recently obtained in [38, 39, 62, 66, 69, 70].
It should be noted that the results we are going to present here include most
of the results in the above works, which is mainly due to the weakened as-
sumptions on the nonlinearities jk, k = 1, 2, whose generalized gradients
s 7→ ∂jk(x, s) need only satisfy a local growth condition with respect to an
ordered pair of sub-supersolutions whose definition will be given next.

For functions w, z and sets W and Z of functions defined on Ω or ∂Ω we
use the notations: w ∧ z = min{w, z}, w ∨ z = max{w, z}, W ∧ Z = {w ∧ z :
w ∈ W, z ∈ Z}, W ∨ Z = {w ∨ z : w ∈ W, z ∈ Z}, and w ∧ Z = {w} ∧ Z,
w ∨ Z = {w} ∨ Z. The following lattice property of the closed convex subset
K ⊆ V :

K ∧K ⊆ K, K ∨K ⊆ K (3.32)

will play a crucial role in the proof of the existence of extremal solutions.
Our basic notion of sub- and supersolution of the multi-valued variational

inequality (3.19)–(3.20) reads as follows.

Definition 3.10. A function u ∈ V is called a subsolution of (3.19)–(3.20)
if there is an η ∈ Lq(Ω) and a ξ ∈ Lq(∂Ω) satisfying

(i) u ∨K ⊆ K,

(ii) η(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω,

(iii) 〈Au− h, v − u〉+
∫
Ω

η (v − u) dx+
∫
∂Ω

ξ (γv − γu) dσ ≥ 0,

for all v ∈ u ∧K.

Definition 3.11. A function u ∈ V is called a supersolution of (3.19)–
(3.20) if there is an η ∈ Lq(Ω) and a ξ ∈ Lq(∂Ω) satisfying
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(i) u ∧K ⊆ K,

(ii) η(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω,

(iii) 〈Au− h, v − u〉+
∫
Ω

η (v − u) dx+
∫
∂Ω

ξ (γv − γu) dσ ≥ 0,

for all v ∈ u ∨K.

Remark 3.12. Note that the notions for sub- and supersolution defined in De-
finition 3.10 and Definition 3.11 have a symmetric structure, i.e., one obtains
the definition for the supersolution u from the definition of the subsolution by
replacing u in Definition 3.10 by u, and interchanging ∨ by ∧. Furthermore, the
lattice condition (3.32) readily implies that any solution of the multi-valued
variational inequality (3.19)–(3.20) is both a subsolution and a supersolution
for (3.19)–(3.20).

To justify that Definitions 3.10 and 3.11 are in fact natural extensions of
the usual notions of sub-supersolutions for elliptic boundary value problems,
let us discuss several special cases.

Example 3.13. Consider Example 3.4, i.e., K = V , f1 : Ω × R → R and
f2 : ∂Ω × R → R are Carathéodory functions, and jk, k = 1, 2, are the
primitives of fk given by (3.22), then Clarke’s generalized gradient ∂jk reduces
to a singleton, i.e.,

∂jk(x, s) = {fk(x, s)},
and (3.19)–(3.20) reduces to the quasilinear elliptic BVP (3.25). If u ∈ V is a
subsolution according to Definition 3.10, then the first condition (i) is trivially
satisfied. The second condition (ii) of Definition 3.10 means that

η(x) = f1(x, u(x)), a.e. x ∈ Ω, ξ(x) = f2(x, γu(x)), a.e. x ∈ ∂Ω.

Since K = V , any v ∈ u ∧ V has the form v = u ∧ ϕ = u − (u − ϕ)+ with
ϕ ∈ V , where w+ = max{w, 0}, condition (iii) becomes

〈Au− h,−(u− ϕ)+〉 +
∫
Ω

f1(·, u) (−(u− ϕ)+) dx

+
∫
∂Ω

f2(·, γu) (−(γu− γϕ)+) dσ ≥ 0, (3.33)

for all ϕ ∈ V . Since u ∈ V , we have

M = {(u− ϕ)+ : ϕ ∈ V } = V ∩ Lp+(Ω),

where Lp+(Ω) is the positive cone of Lp(Ω), and thus we obtain from inequality
(3.33)

〈Au− h, χ〉+
∫
Ω

f1(x, u)χdx+
∫
∂Ω

f2(x, γu) γχ dσ ≤ 0, ∀ χ ∈ V ∩ Lp+(Ω,

(3.34)
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which is nothing but the usual notion of a (weak) subsolution for the BVP
(3.25). Similarly, one verifies that u ∈ V , which is a supersolution according to
Definition 3.11, is equivalent with the usual supersolution of the BVP (3.25).

Example 3.14. In case that K = V0, and jk as in Example 3.13, then (3.19)–
(3.20) is equivalent to the BVP (3.26) (resp. (3.27)). Let us consider the notion
of subsolution in this case given via Definition 3.10. For u ∈ V condition (i)
means u ∨ V0 ⊆ V0. This last condition is satisfied if and only if

γu ≤ 0 i.e., u ≤ 0 on ∂Ω, (3.35)

and condition (ii) means, as above,

η(x) = f1(x, u(x)), a.e. x ∈ Ω.

(Note the boundary integral vanishes since γv = 0 for v ∈ V0.) Since any
v ∈ u∧V0 can be represented in the form v = u− (u−ϕ)+ with ϕ ∈ V0, from
(iii) of Definition 3.10 we obtain

〈Au− h,−(u− ϕ)+〉+
∫
Ω

f1(·, u) (−(u− ϕ)+) dx ≥ 0, ∀ ϕ ∈ V0. (3.36)

Set χ = (u− ϕ)+, then (3.36) results in

〈Au− h, χ〉+
∫
Ω

f1(·, u)χdx ≤ 0, ∀ χ ∈M0, (3.37)

where M0 := {χ ∈ V : χ = (u − ϕ)+, ϕ ∈ V0} ⊆ V0 ∩ Lp+(Ω). One can
prove that the set M0 is a dense subset of V0 ∩Lp+(Ω) (cf. [62]), which shows
that (3.37) together with (3.35) is nothing but the weak formulation for the
subsolution of the Dirichlet problem (3.26) (resp. (3.27)). Similarly, u ∈ V
given by Definition 3.11 is shown to be a supersolution of the Dirichlet problem
(3.26) (resp. (3.27)).

In the same way one can verify that the notion of sub- and supersolution
defined via Definition 3.10 and Definition 3.11, respectively, turns out to be
equivalent with the well established notion of sub-supersolution for all other
special cases as well.

Assume the existence of an ordered pair (u, u) of sub-supersolutions of
the multi-valued variational inequality (3.19)–(3.20) satisfying u ≤ u . With
respect to this ordered pair we impose the following hypotheses on the non-
linearities jk, k = 1, 2.

(E-j1) j1 : Ω × R → R satisfies
(i) x 7→ j1(x, s) is measurable in Ω for all s ∈ R, and s 7→ j1(x, s) is

locally Lipschitz continuous in R for a.e. x ∈ Ω.
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(ii) There exists a function kΩ ∈ Lq+(Ω) such that for a.e. x ∈ Ω and
for all s ∈ [u(x), u(x)] the growth condition

|η| ≤ kΩ(x), ∀ η ∈ ∂j1(x, s)

is fulfilled.
(E-j2) j2 : ∂Ω × R → R satisfies

(i) x 7→ j2(x, s) is measurable in ∂Ω for all s ∈ R, and s 7→ j2(x, s) is
locally Lipschitz continuous in R for a.e. x ∈ ∂Ω.

(ii) There exists a function k∂Ω ∈ Lq+(∂Ω) such that for a.e. x ∈ ∂Ω
and for all s ∈ [γu(x), γu(x)] the growth condition

|ξ| ≤ k∂Ω(x), ∀ ξ ∈ ∂j2(x, s)

is fulfilled.

Remark 3.15. We note that by the growth condition (ii) of (E-j1) and (E-
j2) only a local Lq-boundedness condition on Clarke’s generalized gradient
∂jk is assumed, which is trivially satisfied, in particular, if we suppose the
following natural growth condition on ∂jk: There exist c > 0, kΩ ∈ Lq(Ω)
and k∂Ω ∈ Lq+(∂Ω) such that

|η| ≤ kΩ(x) + c|s|p−1, ∀ η ∈ ∂j1(x, s),

for a.a. x ∈ Ω and for all s ∈ R, and

|ξ| ≤ k∂Ω(x) + c|s|p−1, ∀ ξ ∈ ∂j2(x, s),

for a.e. x ∈ ∂Ω and for all s ∈ R.

Since we are going to prove the existence of solutions of the multi-valued
variational inequality (3.19)–(3.20) within the ordered interval [u, u] of the
given sub- and supersolution of (3.19)–(3.20), truncation and comparison tech-
niques will play an important role. Therefore, we next provide some prelimi-
naries in this direction.

Preliminaries

Let us first briefly recall the definition of pseudomonotonicity for a multi-
valued operator A : X → 2X

∗
defined on a real reflexive Banach space X, see,

e.g., [184], and Chap. 9, Definition 9.88.

Definition 3.16. Let X be a real reflexive Banach space with dual space X∗.
The operator A : X → 2X

∗
is called pseudomonotone if the following con-

ditions hold:

(i) The set A(u) is nonempty, bounded, closed and convex for all u ∈ X;
(ii) A is upper semicontinuous from each finite dimensional subspace of X to

X∗ equipped with the weak topology;
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(iii) If (un) ⊂ X with un ⇀ u, and if u∗n ∈ A(un) is such that lim sup〈u∗n, un−
u〉 ≤ 0, then to each element v ∈ X there exists u∗(v) ∈ A(u) with

lim inf〈u∗n, un − v〉 ≥ 〈u∗(v), u− v〉.

The following proposition provides sufficient conditions for an operator A :
X → 2X

∗
to be pseudomonotone.

Proposition 3.17. Let X be a real reflexive Banach space, and assume that
A : X → 2X

∗
satisfies the following conditions:

(i) For each u ∈ X we have that A(u) is a nonempty, closed, and convex
subset of X∗;

(ii) A : X → 2X
∗

is bounded;
(iii) If un ⇀ u in X and u∗n ⇀ u∗ in X∗ provided one has that u∗n ∈ A(un)

and lim sup〈u∗n, un − u〉 ≤ 0, then u∗ ∈ A(u) and 〈u∗n, un〉 → 〈u∗, u〉.

Then the operator A : X → 2X
∗

is pseudomonotone.

As for the proof of Proposition 3.17 we refer, e.g., to [184, Chap. 2]. In the proof
of our main result we make use of the following surjectivity result for multi-
valued pseudomonotone mappings perturbed by maximal monotone operators
in reflexive Banach spaces (cf., e.g., [184, Theorem 2.12]).

Theorem 3.18. Let X be a real reflexive Banach space with dual space X∗,
Φ : X → 2X

∗
a maximal monotone operator, and v0 ∈ dom (Φ). Let A : X →

2X
∗

be a pseudomonotone operator, and assume that either Av0 is quasi-
bounded or Φv0 is strongly quasi-bounded. Assume further that A : X → 2X

∗

is v0-coercive, i.e., there exists a real-valued function a : R+ → R with a(r) →
+∞ as r → +∞ such that for all (u, u∗) ∈ graph (A) one has 〈u∗, u− v0〉 ≥
a(‖u‖X)‖u‖X . Then A+ Φ is surjective, i.e., range(A+ Φ) = X∗.

Remark 3.19. The operators Av0 and Φv0 that appear in the theorem above
are defined by Av0(v) := A(v0 + v) and similarly for Φv0 . As for the notion of
quasi-bounded and strongly quasi-bounded we refer to [184, p.51]. In particular,
any bounded operator is quasi-bounded and strongly quasi-bounded as well.

The proof of our main existence and comparison result strongly relies on an
appropriate modification of the functions jk outside the interval [u, u] formed
by the given sub- and supersolutions. Let (u, η, ξ) ∈ V × Lq(Ω) × Lq(∂Ω)
and (u, η, ξ) ∈ V × Lq(Ω) × Lq(∂Ω) satisfy the conditions of Definition 3.10
and Definition 3.11, respectively, with u ≤ u. Then we define the following
modifications j̃k of the given jk:

j̃1(x, s) =


j1(x, u(x)) + η(x)(s− u(x)) if s < u(x),
j1(x, s) if u(x) ≤ s ≤ u(x),
j1(x, u(x)) + η(x)(s− u(x)) if s > u(x),

(3.38)
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and similarly

j̃2(x, s) =


j2(x, γu(x)) + ξ(x)(s− γu(x)) if s < γu(x),
j2(x, s) if γu(x) ≤ s ≤ γu(x),
j2(x, γu(x)) + ξ(x)(s− γu(x)) if s > γu(x).

(3.39)

The following two lemmas list essential properties of the modified functions
j̃k.

Lemma 3.20. Let hypotheses (E-j1) be satisfied. Then the function j̃1 has the
following properties:

(P1) j̃1 : Ω × R → R satisfies
(i) x 7→ j̃1(x, s) is measurable in Ω for all s ∈ R, and s 7→ j̃1(x, s) is

Lipschitz continuous in R for a.e. x ∈ Ω.
(ii) Let ∂j̃1 denote Clarke’s generalized gradient of s 7→ j̃1(x, s), then for

a.e. x ∈ Ω and for all s ∈ R the growth

|η| ≤ kΩ(x), ∀ η ∈ ∂j̃1(x, s)

is fulfilled.
(iii)Clarke’s generalized gradient of s 7→ j̃1(x, s) is given by

∂j̃1(x, s) =


η(x) if s < u(x),
∂j̃1(x, u(x)) if s = u(x),
∂j1(x, s) if u(x) < s < u(x),
∂j̃1(x, u(x)) if s = u(x),
η(x) if s > u(x),

(3.40)

and the inclusions ∂j̃1(x, u(x)) ⊆ ∂j1(x, u(x)) and ∂j̃1(x, u(x)) ⊆
∂j1(x, u(x)) hold true.

Proof: The proof follows immediately from the definition (3.38) of j̃1, and
using the assumptions (E-j1) on j1 as well as from the fact that Clarke’s
generalized gradient ∂j1(x, s) is a convex set. ut

Lemma 3.21. Let hypotheses (E-j2) be satisfied. Then the function j̃2 has the
following properties:

(P2) j̃2 : ∂Ω × R → R satisfies
(i) x 7→ j̃2(x, s) is measurable in ∂Ω for all s ∈ R, and s 7→ j̃2(x, s) is

Lipschitz continuous in R for a.e. x ∈ ∂Ω.
(ii) Let ∂j̃2 denote Clarke’s generalized gradient of s 7→ j̃2(x, s), then for

a.e. x ∈ ∂Ω and for all s ∈ R the growth

|ξ| ≤ k∂Ω(x), ∀ ξ ∈ ∂j̃2(x, s)

is fulfilled.



72 3 Multi-Valued Variational Inequalities

(iii)Clarke’s generalized gradient of s 7→ j̃2(x, s) is given by

∂j̃2(x, s) =


ξ(x) if s < γu(x),
∂j̃2(x, γu(x)) if s = γu(x),
∂j2(x, s) if γu(x) < s < γu(x),
∂j̃2(x, γu(x)) if s = γu(x),
ξ(x) if s > γu(x),

(3.41)

and the inclusions ∂j̃2(x, γu(x)) ⊆ ∂j2(x, γu(x)) and ∂j̃2(x, γu(x)) ⊆
∂j2(x, γu(x)) hold true.

Proof: The proof is similar as for Lemma 3.20. ut
By means of j̃1 and j̃2 we introduce integral functionals J̃1 and J̃2 defined on
Lp(Ω) and Lp(∂Ω), respectively, and given by

J̃1(u) =
∫
Ω

j̃1(x, u(x)) dx, u ∈ Lp(Ω),

J̃2(v) =
∫
∂Ω

j̃2(x, v(x)) dσ, v ∈ Lp(∂Ω).

Due to (P1)(ii) and (P2) (ii) and applying Lebourg’s mean value theorem (see
[62, Theorem 2.177]), the functionals J̃1 : Lp(Ω) → R and J̃2 : Lp(∂Ω) → R
are well-defined and Lipschitz continuous, so that Clarke’s generalized gradi-
ents ∂J̃1 : Lp(Ω) → 2(Lp(Ω))∗ and ∂J̃2 : Lp(∂Ω) → 2(Lp(∂Ω))∗ are well-defined,
too. Moreover, Aubin–Clarke theorem (cf. [80, p. 83]) provides the following
characterization of the generalized gradients. For u ∈ Lp(Ω) we have

η̃ ∈ ∂J̃1(u) =⇒ η̃ ∈ Lq(Ω) with η̃(x) ∈ ∂j̃1(x, u(x)) for a.e. x ∈ Ω, (3.42)

and similarly for v ∈ Lp(∂Ω)

ξ̃ ∈ ∂J̃2(v) =⇒ ξ̃ ∈ Lq(∂Ω) with ξ̃(x) ∈ ∂j̃2(x, v(x)) for a.e. x ∈ ∂Ω. (3.43)

By means of Clarke’s generalized gradient ∂J̃k we introduce the following
multi-valued operators:

Φ1(u) := (i∗ ◦ ∂J̃1 ◦ i)(u), Φ2(u) := (γ∗ ◦ ∂J̃2 ◦ γ)(u), u ∈ V, (3.44)

where i∗ : Lq(Ω) → V ∗ and γ∗ : Lq(∂Ω) → V ∗ denote the adjoint operators
of the embedding i : V ↪→ Lp(Ω) and the trace operator γ : V → Lp(∂Ω),
respectively, defined by: If η ∈ Lq(Ω) and ξ ∈ Lq(∂Ω) then

〈i∗η, ϕ〉 =
∫
Ω

η ϕ dx, 〈γ∗ξ, ϕ〉 =
∫
∂Ω

ξ γϕ dσ, ∀ϕ ∈ V. (3.45)

The operators Φk, k = 1, 2, possess the following properties.

Lemma 3.22. The operators Φk : V → 2V
∗
, k = 1, 2, are bounded and

pseudomonotone.
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Proof: As for Φ1 : V → 2V
∗

we refer to [38, Lemma 3.1], and for Φ1 : V → 2V
∗

the proof is given in [38, Lemma 3.2] ut

Let b be the cut-off function defined as follows

b(x, s) =

 (s− u(x))p−1 if s > u(x)
0 if u(x) ≤ s ≤ u(x)
−(u(x)− s)p−1 if s < u(x).

Apparently, b : Ω × R → R is a Carathéodory function satisfying the growth
condition

|b(x, s)| ≤ k2(x) + c1|s|p−1 (3.46)

for a.e. x ∈ Ω and for all s ∈ R, where c1 > 0 is a constant and k2 ∈ Lq(Ω).
Moreover, one has the following estimate∫

Ω

b(x, u(x))u(x) dx ≥ c2‖u‖pLp(Ω) − c3, ∀u ∈ Lp(Ω), (3.47)

for some constants c2 > 0 and c3 > 0. Let B denote the Nemytskij operator
associated with b, i.e.,

B(u)(x) = b(x, u(x)).

In view of (3.46) the Nemytskij operator B : Lp(Ω) → Lq(Ω) is continuous
and bounded, and thus due to the compact embedding V ↪→ Lp(Ω), it follows
that the composed operator B̃ := i∗◦B◦i : V → V ∗ is completely continuous.

Consider the following multi-valued operator A defined by

A(u) = Au+ B̃(u) + Φ1(u) + Φ2(u). (3.48)

Lemma 3.23. The operator A : V → 2V
∗

is bounded, pseudomonotone, and
v0-coercive for v0 ∈ K.

Proof: Hypotheses (A1)–(A2) imply thatA : V → V ∗ is continuous, bounded,
and monotone, and thus, in particular, pseudomonotone, see, e.g., [62, The-
orem 2.109]. The cut-off operator B̃ : V → V ∗ is bounded and completely
continuous. Therefore, the (single-valued) operator A+ B̃ : V → V ∗ is contin-
uous, bounded and pseudomonotone. Due to Lemma 3.22, the multi-valued
operators Φk : V → 2V

∗
, k = 1, 2, are bounded and pseudomonotone. Since

pseudomonotonicity is invariant under addition (see [184, Chap. 2]), it follows
that A : V → 2V

∗
is bounded and pseudomonotone, and so it remains to show

that A is v0-coercive for v0 ∈ K, i.e., we need to verify that there exists a
real-valued function a : R+ → R with a(r) → +∞ as r → +∞ such that for
all (u, u∗) ∈ graph (A) one has

〈u∗, u− v0〉 ≥ a(‖u‖V )‖u‖V . (3.49)

To check (3.49) let u∗ ∈ A(u), i.e., u∗ has the form
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u∗ = Au+ B̃(u) + i∗η̃ + γ∗ξ̃,

where η̃ ∈ Lq(Ω) with η̃(x) ∈ ∂j̃1(x, u(x)), for a.e. x ∈ Ω, and ξ̃ ∈ Lq(∂Ω)
with ξ̃(x) ∈ ∂j̃2(x, γu(x)), for a.e. x ∈ ∂Ω. Hypotheses (A1), (A2), and the
estimates (3.46) and (3.47), as well as the uniform boundedness of ∂j̃1 and ∂j̃2
in view of (P1) (ii) of Lemma 3.20 and (P2) (ii) of Lemma 3.21, respectively,
allows us to estimate as follows:

|〈Au+ B̃(u) + i∗η̃ + γ∗ξ̃, v0〉| ≤ c(1 + ‖u‖p−1
V ), ∀ u ∈ V, (3.50)

for some constant c > 0, and

〈u∗, u〉 = 〈Au+ B̃(u) + i∗η̃ + γ∗ξ̃, u〉
≥ ν‖∇u‖pLp(Ω) − c4 + c2‖u‖pLp(Ω) − c3 − c5 ‖u‖Lp(Ω) − c6 ‖γu‖Lp(∂Ω)

≥ c7 ‖u‖pV − c8 ‖u‖V − c9. (3.51)

From (3.50) and (3.51) we get the estimate

〈Au+ B̃(u) + i∗η̃ + γ∗ξ̃, u− v0〉 ≥ c7 ‖u‖pV − c ‖u‖p−1
V − c8 ‖u‖V − c10,

for some positive constants ci, which proves the v0-coercivity. ut

Existence and Comparison Result, Sub-Supersolution Method

We are now in a position to prove the main existence and comparison result
for the multi-valued variational inequality (3.19)–(3.20).

Theorem 3.24 (Sub-Supersolution Method). Let (A1)–(A3) be satisfied.
Assume the existence of sub- and supersolutions u and u, respectively, of the
multi-valued variational inequality (3.19)–(3.20) with u ≤ u such that (E-
j1)–(E-j2) is fulfilled. Then there exist solutions of (3.19)–(3.20) within the
ordered interval [u, u].

Proof: Let IK : V → R∪{+∞} be the indicator function related to the given
closed convex set K 6= ∅, i.e.,

IK(u) =
{

0 if u ∈ K,
+∞ if u /∈ K,

which is known to be proper, convex, and lower semicontinuous. Consider the
following multi-valued operator

A+ ∂IK : V → 2V ∗, (3.52)

where A is given by (3.48), and ∂IK is the usual subdifferential of IK , which is
known to be a maximal monotone operator, cf., e.g., [229]. Taking into account
Lemma 3.23, we may apply the surjectivity result of Theorem 3.18, which
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implies the existence of u ∈ K such that h ∈ A(u) + ∂IK(u). By definition of
A and ∂IK the latter inclusion implies the existence of η∗ ∈ Φ1(u), ξ∗ ∈ Φ2(u),
and θ∗ ∈ ∂IK(u) with η∗ = i∗η̃ and ξ∗ = γ∗ξ̃ such that equation

Au+ B̃(u) + i∗η̃ + γ∗ξ̃ + θ∗ = h, in V ∗ (3.53)

holds, where in view of (3.42)–(3.43) we have η̃ ∈ Lq(Ω) with η̃(x) ∈
∂j̃1(x, u(x)), for a.e. x ∈ Ω, and ξ̃ ∈ Lq(∂Ω) with ξ̃(x) ∈ ∂j̃2(x, γu(x)),
for a.e. x ∈ ∂Ω. By using the definition of ∂IK(u), the solution u of equa-
tion (3.53) is seen to be a solution of the following multi-valued variational
inequality

u ∈ K : 〈Au− h+ B̃(u) + i∗η̃ + γ∗ξ̃, v − u〉 ≥ 0, ∀ v ∈ K, (3.54)

which is equivalent to

u ∈ K : 〈Au− h, v − u〉 +
∫
Ω

b(x, u) (v − u) dx+
∫
Ω

η̃ (v − u) dx

+
∫
∂Ω

ξ̃ (γv − γu) dσ ≥ 0, ∀ v ∈ K. (3.55)

We are going to show that any solution u of (3.55) is a solution of the multi-
valued variational inequality (3.19)–(3.20) satisfying u ∈ [u, u]. To this end
we first show that u indeed satisfies u ≤ u ≤ u. To prove the inequality u ≤ u
we apply the special test function v = u∨ u = u+ (u− u)+ in Definition 3.11
(iii), and v = u ∧ u = u − (u − u)+ ∈ K in (3.55), and get by adding the
resulting inequalities the following:

〈Au−Au, (u− u)+〉 −
∫
Ω

b(x, u) (u− u)+ dx+
∫
Ω

(η − η̃) (u− u)+ dx

+
∫
∂Ω

(ξ − ξ̃) (γu− γu)+ dσ ≥ 0. (3.56)

With the notation {u > u} = {x ∈ Ω : u(x) > u(x)} and {γu > γu} = {x ∈
∂Ω : γu(x) > γu(x)}, and by applying the results (P1)(iii) of Lemma 3.20
and (P2)(iii) of Lemma 3.21 we obtain∫

Ω

(η − η̃) (u− u)+ dx =
∫
{u>u}

(η − η̃) (u− u) dx = 0, (3.57)

because η̃(x) = η(x) for x ∈ {u > u}, and∫
∂Ω

(ξ − ξ̃) (γu− γu)+ dσ =
∫
{γu>γu}

(ξ − ξ̃) (γu− γu) dσ = 0, (3.58)

because ξ̃(x) = ξ(x) for x ∈ {γu > γu}. Taking the definition of the cut-off
function b into account we get
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Ω

b(x, u) (u− u)+ dx =
∫
Ω

(
(u− u)+

)p
dx, (3.59)

and by means of (A2) we obtain the estimate

〈Au−Au, (u− u)+〉 = −〈Au−Au, (u− u)+〉 ≤ 0. (3.60)

Applying the results (3.57)–(3.60) to (3.56) finally yields∫
Ω

(
(u− u)+

)p
dx = 0,

which implies (u−u)+ = 0, and thus u ≤ u. The proof for u ≤ u can be done
in a similar way. So far we have shown that any solution u of the auxiliary
multi-valued variational inequality (3.55) belongs to the interval [u, u], and
thus satisfies: u ∈ K, b(x, u(x)) = 0, η̃ ∈ Lq(Ω), ξ̃ ∈ Lq(∂Ω) and

η̃(x) ∈ ∂j̃1(x, u(x)), a.e. x ∈ Ω, ξ̃(x) ∈ ∂j̃2(x, γu(x)), a.e. x ∈ ∂Ω, (3.61)

〈Au− h, v − u〉+
∫
Ω

η̃ (v − u) dx+
∫
∂Ω

ξ̃ (γv − γu) dσ ≥ 0, ∀ v ∈ K. (3.62)

From (P1)(iii) of Lemma 3.20 we see that ∂j̃1(x, u(x)) ⊆ ∂j1(x, u(x)) for any
u ∈ [u, u], and from (P2)(iii) of Lemma 3.21 we see that ∂j̃2(x, γu(x)) ⊆
∂j2(x, γu(x)) for γu ∈ [γu, γu], and therefore we also have

η̃(x) ∈ ∂j1(x, u(x)), a.e. x ∈ Ω, ξ̃(x) ∈ ∂j2(x, γu(x)), a.e. x ∈ ∂Ω,

which shows that the solution u ∈ [u, u] of the auxiliary problem is in fact a
solution of the original multi-valued variational inequality (3.19)–(3.20). This
completes the proof. ut

Remark 3.25. It should be mentioned that the existence and comparison result
of Theorem 3.24 can be extended to more general elliptic operators A of Leray–
Lions type such as

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u,∇u(x)) + a0(x, u,∇u(x)),

where the coefficients ai : Ω × R × RN → R, i = 0, 1, . . . , N satisfy the
following conditions:

(A1’) Each ai(x, s, ζ) satisfies Carathéodory conditions, i.e., is measurable in
x ∈ Ω for all (s, ζ) ∈ R × RN and continuous in (s, ζ) for a.e. x ∈ Ω.
There exist a constant c0 > 0 and a function k0 ∈ Lq(Ω) so that

|ai(x, s, ζ)| ≤ k0(x) + c0(|s|p−1 + |ζ|p−1)

for a.e. x ∈ Ω and for all (s, ζ) ∈ R×RN , with |ζ| denoting the Euclidean
norm of the vector ζ.
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(A2’) The coefficients ai satisfy a monotonicity condition with respect to ζ in
the form

N∑
i=1

(ai(x, s, ζ)− ai(x, s, ζ ′))(ζi − ζ ′i) > 0

for a.e. x ∈ Ω , for all s ∈ R, and for all ζ, ζ ′ ∈ RN with ζ 6= ζ ′.
(A3’)

N∑
i=1

ai(x, s, ζ)ζi ≥ ν|ζ|p − k(x)

for a.e. x ∈ Ω , for all s ∈ R, and for all ζ ∈ RN with some constant
ν > 0 and some function k ∈ L1(Ω).

The proof of Theorem 3.24 under these more general assumptions can be done
by appropriately modifying the multi-valued operator A defined by (3.48) in
the following way:

A(u) = ATu+ λB̃(u) + Φ1(u) + Φ2(u), (3.63)

where AT is given by

ATu(x) = −
N∑
i=1

∂

∂xi
ai(x, Tu,∇u(x)) + a0(x, Tu,∇Tu(x)),

and T is the following truncation mapping

(Tu)(x) =

u(x) if u(x) > u(x)
u(x) if u(x) ≤ u(x) ≤ u(x)
u(x) if u(x) < u(x).

Then for λ > 0 sufficiently large one can prove that the modified operator
A : V → 2V

∗
is bounded, pseudomonotone, and v0-coercive for v0 ∈ K.

3.2.2 Directedness of Solution Set

Let S denote the set of all solutions of the multi-valued variational inequality
(3.19)–(3.20) that belong to the ordered interval [u, u] formed by the given
sub- and supersolution. In view of Theorem 3.24, we have that S 6= ∅. The
main goal of this subsection is to show that S is a directed set.

Definition 3.26 (directed set). Let (P,≤) be a partially ordered set. A
subset C of P is said to be upward directed if for each pair x, y ∈ C there
is a z ∈ C such that x ≤ z and y ≤ z. Similarly, C is downward directed
if for each pair x, y ∈ C there is a w ∈ C such that w ≤ x and w ≤ y. If C is
both upward and downward directed it is called directed.

Our main result is given by the following theorem.
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Theorem 3.27. Let the hypotheses of Theorem 3.24 and the lattice condition
(3.32) be satisfied. Then the solution set S of all solutions of (3.19)–(3.20)
within the interval [u, u] equipped with the natural partial ordering of functions
introduced by the order cone Lp+(Ω) is a directed set.

Proof: We are going to show that S is upward directed only, since the proof
for S being downward directed can be done in a similar way. To this end let
u1, u2 ∈ S. Our goal is to prove the existence of an element u ∈ S such that
u ≥ uk, k = 1, 2. The proof will be done in several steps and crucially relies
on an appropriately designed auxiliary problem.

Step 1: Auxiliary Problem

Let uk ∈ S, k = 1, 2, i.e., uk ∈ K, and there exist ηk ∈ Lq(Ω), ξk ∈ Lq(∂Ω)
such that ηk(x) ∈ ∂j1(x, uk(x)) for a.e. x ∈ Ω, ξk(x) ∈ ∂j2(x, γuk(x)) for a.e.
x ∈ ∂Ω, and the following variational inequality is satisfied:

〈Auk − h, v − uk〉+
∫
Ω

ηk (v − uk) dx+
∫
∂Ω

ξk (γv − γuk) dσ ≥ 0, ∀ v ∈ K.

(3.64)
Let us define u0 := max{u1, u2}, and η0 as follows

η0(x) =
{
η1(x) if x ∈ {u1 ≥ u2},
η2(x) if x ∈ {u2 > u1},

as well as define ξ0 by

ξ0(x) =
{
ξ1(x) if x ∈ {γu1 ≥ γu2},
ξ2(x) if x ∈ {γu2 > γu1}.

By the definition of η0, and ξ0 we readily see that η0 ∈ Lq(Ω), and ξ0 ∈
Lq(∂Ω), and

η0(x) ∈ ∂j1(x, u0(x)) for a.e. x ∈ Ω, ξ0(x) ∈ ∂j2(x, γu0(x)) for a.e. x ∈ ∂Ω.
(3.65)

By means of η0, ξ0, u0, and η, ξ, u of Definition 3.11 we introduce the follow-
ing modifications j̃1 : Ω × R → R and j̃2 : ∂Ω × R → R of the given j1 and
j2, respectively:

j̃1(x, s) =

 j1(x, u0(x)) + η0(x)(s− u0(x)) if s < u0(x),
j1(x, s) if u0(x) ≤ s ≤ u(x),
j1(x, u(x)) + η(x)(s− u(x)) if s > u(x),

(3.66)

and similarly

j̃2(x, s) =


j2(x, γu0(x)) + ξ0(x)(s− γu0(x)) if s < γu0(x),
j2(x, s) if γu0(x) ≤ s ≤ γu(x),
j2(x, γu(x)) + ξ(x)(s− γu(x)) if s > γu(x).

(3.67)
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In view of hypotheses (E-j1) and (E-j2) the modified function j̃1 and j̃2 given
by (3.66) and (3.67) enjoy the properties of Lemma 3.20 and Lemma 3.21,
respectively, with the only difference that Clarke’s gradient of j̃1 and j̃2 is
now given by:

∂j̃1(x, s) =


η0(x) if s < u0(x),
∂j̃1(x, u0(x)) if s = u0(x),
∂j1(x, s) if u0(x) < s < u(x),
∂j̃1(x, u(x)) if s = u(x),
η(x) if s > u(x),

(3.68)

with ∂j̃1(x, u0(x)) ⊆ ∂j1(x, u0(x)) and ∂j̃1(x, u(x)) ⊆ ∂j1(x, u(x)) being sa-
tisfied, and similarly,

∂j̃2(x, s) =


ξ0(x) if s < γu0(x),
∂j̃2(x, γu0(x)) if s = γu0(x),
∂j2(x, s) if γu0(x) < s < γu(x),
∂j̃2(x, γu(x)) if s = γu(x),
ξ(x) if s > γu(x),

(3.69)

with the inclusions ∂j̃2(x, γu0(x)) ⊆ ∂j2(x, γu0(x)) and ∂j̃2(x, γu(x)) ⊆
∂j2(x, γu(x)). Furthermore, we introduce functions g1,i : Ω × R → R,
g2,i : ∂Ω × R → R related to ηi, ξi and ui, i = 0, 1, 2, and defined by:

g1,0(x, s) =


η0(x) if s ≤ u0(x),
η0(x) + η(x)−η0(x)

u(x)−u0(x)
(s− u0(x)) if u0(x) < s < u(x),

η(x) if s ≥ u(x),
(3.70)

and for k = 1, 2

g1,k(x, s) =


ηk(x) if s ≤ uk(x),
ηk(x) + η0(x)−ηk(x)

u0(x)−uk(x) (s− uk(x)) if uk(x) < s < u0(x),
g1,0(x, s) if s ≥ u0(x),

(3.71)

as well as

g2,0(x, s) =


ξ0(x) if s ≤ γu0(x),
ξ0(x) + ξ(x)−ξ0(x)

γu(x)−γu0(x)
(s− γu0(x)) if γu0(x) < s < γu(x),

ξ(x) if s ≥ γu(x),
(3.72)

and for k = 1, 2

g2,k(x, s) =


ξk(x) if s ≤ γuk(x),
ξk(x) + ξ0(x)−ξk(x)

γu0(x)−γuk(x) (s− γuk(x)) if γuk(x) < s < γu0(x),
g2,0(x, s) if s ≥ γu0(x).

(3.73)
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Apparently, the functions g1,i : Ω × R → R, g2,i : ∂Ω × R → R, i = 0, 1, 2,
are Carathéodory functions that are piecewise linear with respect to s and
uniformly Lq(Ω) and Lq(∂Ω)-bounded, respectively. Finally, define the cut-
off function b̂ related to the pair u0 and u by:

b̂(x, s) =

 (s− u(x))p−1 if s > u(x)
0 if u0(x) ≤ s ≤ u(x)
−(u0(x)− s)p−1 if s < u0(x),

(3.74)

which qualitatively satisfies the same estimates as b in (3.46) and (3.47).
The function b̂ : Ω × R → R is a Carathéodory function, and its associated
Nemytskij operator B̂ : Lp(Q) → Lq(Q) defined by B̂u(x, t) = b̂(x, t, u(x, t))
is continuous and bounded. With i∗ : Lq(Ω) ↪→ V ∗ being the adjoint operator
of the embedding i : V ↪→ Lp(Ω), the operator B̂ = i∗ ◦ B̂ ◦ i : V → V ∗

is completely continuous and bounded, due to the compact embedding V ↪→
Lp(Ω). By means of the Carathéodory functions gk,i introduced in (3.70)–
(3.73) we define functions g1 : Ω × R → R and g2 : ∂Ω × R → R as follows:

gj(x, s) =
2∑
l=1

|gj,l(x, s)− gj,0(x, s)|, j = 1, 2, (3.75)

which are Carathéodory functions in their respective domains of definition,
and which are uniformly Lq(Ω) and Lq(∂Ω)-bounded, respectively. Thus, the
associated Nemytskij operators G1 : Lp(Ω) → Lq(Ω) and G2 : Lp(∂Ω) →
Lq(∂Ω) are continuous and bounded, which due to the compact embedding
V ↪→ Lp(Ω) and the compactness of the trace operator γ implies that

G1 = i∗ ◦G1 ◦ i : V → V ∗, G2 = γ∗ ◦G2 ◦ γ : V → V ∗ (3.76)

is bounded and completely continuous. Further, in a similar way as in Sect.
3.2.1, we let J̃1 : Lp(Ω) → R and J̃2 : Lp(∂Ω) → R be the integral functionals,
here associated to j̃1 and j̃2 defined by (3.66) and (3.67), respectively. With
Clarke’s generalized gradients ∂J̃k of J̃k we define the multi-valued functions
Φk as in (3.44), i.e.,

Φ1(u) := (i∗ ◦ ∂J̃1 ◦ i)(u), Φ2(u) := (γ∗ ◦ ∂J̃2 ◦ γ)(u), u ∈ V.

Further, define the multi-valued operator A as

A(u) = Au+ B̂(u) + Φ1(u) + Φ2(u)− G1(u)− G2(u). (3.77)

Since A given by (3.77) differs qualitatively from (3.48) basically only by
uniformly bounded and completely continuous perturbations Gk, we readily
observe that A given by (3.77) fulfills Lemma 3.23, i.e., A : V → 2V

∗
is

bounded, pseudomonotone, and v0-coercive for v0 ∈ K. Therefore, we may
apply the surjectivity result of Theorem 3.18 to the multi-valued operator
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A+ ∂IK : V → 2V
∗
,

where IK is the indicator function related to K. As a consequence of Theorem
3.18 we obtain the existence of a u ∈ K such that h ∈ A(u) + ∂IK(u), which
by definition (3.77) of A and ∂IK results in the existence of η∗ ∈ Φ1(u),
ξ∗ ∈ Φ2(u), and θ∗ ∈ ∂IK(u) with η∗ = i∗η̃, ξ∗ = γ∗ξ̃ such that equation

Au+ B̂(u) + i∗η̃ + γ∗ξ̃ − G1(u)− G2(u) + θ∗ = h, in V ∗ (3.78)

holds, where η̃ ∈ Lq(Ω) with η̃(x) ∈ ∂j̃1(x, u(x)), for a.e. x ∈ Ω, and ξ̃ ∈
Lq(∂Ω) with ξ̃(x) ∈ ∂j̃2(x, γu(x)), for a.e. x ∈ ∂Ω. By using the definition
of ∂IK(u), the solution u of equation (3.78) is seen to solve the following
auxiliary multi-valued variational inequality

u ∈ K : 〈Au−h+B̂(u)+i∗η̃+γ∗ξ̃−G1(u)−G2(u), v−u〉 ≥ 0, ∀ v ∈ K, (3.79)

which is equivalent to

u ∈ K : 〈 Au− h, v − u〉+
∫
Ω

b̂(x, u) (v − u) dx+
∫
Ω

(η̃ − g1(x, u)) (v − u) dx

+
∫
∂Ω

(ξ̃ − g2(x, γu)) (γv − γu) dσ ≥ 0, ∀ v ∈ K. (3.80)

Step 2: Comparison

Here we are going to show that any solution u of the auxiliary multi-valued
variational inequality (3.80) satisfies u0 ≤ u ≤ u.

Let us first verify u ≤ u. To this end we recall Definition 3.11, and take as
special test function in Definition 3.11 (iii) v = u ∨ u = u+ (u− u)+, and in
(3.80) the special test function v = u ∧ u = u− (u− u)+ ∈ K is applied. By
adding the resulting inequalities we obtain the following:

〈Au−Au, (u− u)+〉 −
∫
Ω

b̂(x, u) (u− u)+ dx

+
∫
Ω

(η − η̃ + g1(x, u)) (u− u)+ dx

+
∫
∂Ω

(ξ − ξ̃ + g2(x, γu)) (γu− γu)+ dσ ≥ 0. (3.81)

We recall that η̃(x) ∈ ∂j̃1(x, u(x)) and ξ̃(x) ∈ ∂j̃2(x, γu(x)) with ∂j̃1 and
∂j̃2 given by (3.68) and (3.69), respectively. Therefore, if x ∈ {u > u} then
η(x) = η̃(x), and due to (3.71) g1,l(x, u(x)) = g1,0(x, u(x)), for l = 1, 2, which
results in g1(x, u(x)) = 0, and thus∫
Ω

(η−η̃+g1(x, u)) (u−u)+ dx =
∫
{u>u}

(η−η̃+g1(x, u)) (u−u) dx = 0. (3.82)
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If x ∈ {γu > γu} then ξ(x) = ξ̃(x), and due to (3.73), g2,l(x, γu(x)) =
g2,0(x, γu(x)), for l = 1, 2, which results in g2(x, γu(x)) = 0, and thus∫

∂Ω

(ξ − ξ̃ + g2(x, γu)) (γu− γu)+ dσ = 0. (3.83)

Taking the definition of the cut-off function b̂ into account we get∫
Ω

b̂(x, u) (u− u)+ dx =
∫
Ω

(
(u− u)+

)p
dx, (3.84)

and by means of (A2) we obtain the estimate

〈Au−Au, (u− u)+〉 = −〈Au−Au, (u− u)+〉 ≤ 0. (3.85)

Applying the results (3.82)–(3.85) to (3.81) finally yields∫
Ω

(
(u− u)+

)p
dx = 0,

which implies (u− u)+ = 0, and thus u ≤ u.
In order to show that u ≥ u0 = max{u1, u2}, we show that u ≥ uk,

k = 1, 2. We recall that uk ∈ S means that uk is a solution of (3.19)–(3.20)
within the interval [u, u], i.e., there exist ηk ∈ Lq(Ω), ξk ∈ Lq(∂Ω) such
that ηk(x) ∈ ∂j1(x, uk(x)), for a.e. x ∈ Ω, ξk(x) ∈ ∂j2(x, γuk(x)) for a.e.
x ∈ ∂Ω, and the variational inequality (3.64) holds. If we test (3.64) with
v = uk ∧ u = uk − (uk − u)+ ∈ K, and the auxiliary multi-valued variational
inequality (3.80) with v = u ∨ uk = u+ (uk − u)+ ∈ K we get by adding the
resulting inequalities the following estimate:

〈Au−Auk, (uk − u)+〉+
∫
Ω

b̂(x, u) (uk − u)+ dx

+
∫
Ω

(η̃ − g1(x, u)− ηk) (uk − u)+ dx

+
∫
∂Ω

(ξ̃ − g2(x, γu)− ξk) (γuk − γu)+ dσ ≥ 0. (3.86)

We estimate the terms on the left-hand side of the last inequality individually.
By means of (A2) we get

〈Au−Auk, (uk − u)+〉 = −〈Auk −Au, (uk − u)+〉 ≤ 0. (3.87)

For x ∈ {uk > u}, from (3.70) it follows g1,0(x, u(x)) = η0(x), and (3.71)
yields g1,k(x, u(x)) = ηk(x), hence we obtain by using the definition of g1
given in (3.75) the equation (with l 6= k, and l, k ∈ {1, 2})

g1(x, u(x)) = |ηk(x)− η0(x)|+ |g1,l(x, u(x))− g1,0(x, u(x))|, x ∈ {uk > u}.
(3.88)
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Further, for x ∈ {uk > u} ⊆ {u0 > u} from (3.68) it follows η̃(x) ∈
∂j̃1(x, u(x)) = η0(x), which in conjunction with (3.88) results in the following
estimate of the third term on the left-hand side of (3.86): l 6= k∫

Ω

(η̃ − g1(x, u)− ηk) (uk − u)+ dx =
∫
{uk>u}

(η̃ − g1(x, u)− ηk) (uk − u) dx

=
∫
{uk>u}

(
η0 − ηk − |ηk − η0| − |g1,l(x, u)− g1,0(x, u)|

)
(uk − u) dx

≤ 0. (3.89)

Similarly, for x ∈ {γuk > γu}, from (3.72) it follows g2,0(x, γu(x)) = ξ0(x),
and (3.73) yields g2,k(x, γu(x)) = ξk(x), hence we obtain by using the defini-
tion of g2 given in (3.75) the following equation (with l 6= k, and l, k ∈ {1, 2})

g2(x, γu(x)) = |ξk(x)− ξ0(x)|+ |g2,l(x, γu(x))− g2,0(x, γu(x))| (3.90)

for x ∈ {γuk > γu}. Further, for x ∈ {γuk > γu} ⊆ {γu0 > γu} from (3.69) it
follows ξ̃(x) ∈ ∂j̃2(x, γu(x)) = ξ0(x), which in conjunction with (3.90) implies
the following estimate of the 4th term on the left-hand side of (3.86): l 6= k∫

∂Ω

(ξ̃ − g2(x, γu)− ξk) (γuk − γu)+ dσ

=
∫
{γuk>γu}

(ξ̃ − g2(x, γu)− ξk) (γuk − γu) dσ

=
∫
{γuk>γu}

(
ξ0 − ξk − |ξk − ξ0| − |g2,l(x, γu)− g2,0(x, γu)|

)
(γuk − γu) dσ

≤ 0. (3.91)

Using (3.87), (3.89), and (3.91), we get from (3.86) the estimate∫
Ω

b̂(x, u) (uk − u)+ dx ≥ 0,

which by applying the definition of b̂ finally results in

0 ≤
∫
Ω

b̂(x, u) (uk − u)+ dx =
∫
{uk>u}

b̂(x, u) (uk − u) dx

= −
∫
{uk>u}

(u0 − u)p−1 (uk − u) dx ≤ −
∫
{uk>u}

(uk − u)p dx

≤ −
∫
Ω

((uk − u)+)p dx ≤ 0.

The last inequality implies∫
Ω

((uk − u)+)p dx = 0,
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and hence it follows (uk−u)+ = 0, i.e., uk ≤ u, k = 1, 2, which completes the
comparison.

Step 3: S Is Upward Directed

In this final step we complete the proof of Theorem 3.27 showing that S is
indeed upward directed. To this end we only need to show that a solution u
of the auxiliary multi-valued variational inequality (3.80), which due to Step
2 above satisfies u0 ≤ u ≤ u, belongs to S. As u ∈ [u0, u], it follows that
b̂(x, u) = 0, and γu ∈ [γu0, γu]. Moreover, (3.70)–(3.73) imply g1(x, u) = 0
and g2(x, γu) = 0, and hence the solution u of (3.80) satisfies: u ∈ K and

〈Au− h, v − u〉+
∫
Ω

η̃ (v − u) dx+
∫
∂Ω

ξ̃ (γv − γu) dσ ≥ 0, ∀ v ∈ K (3.92)

where η̃(x) ∈ ∂j̃1(x, u(x)), and ξ̃ ∈ ∂j̃2(x, γu(x)). Because u ∈ [u0, u],
from (3.68) and (3.69) it follows that ∂j̃1(x, u(x)) ⊆ ∂j1(x, u(x)) as well as
∂j̃2(x, γu(x)) ⊆ ∂j2(x, γu(x)), which proves that u is in fact a solution of our
original multi-valued variational inequality (3.19)–(3.20). This completes the
proof. ut
Remark 3.28. If K = V , or K = V0, or K is the the closed subspace of V
given in Example 3.7, then the multi-valued variational inequality (3.19)–
(3.20) reduces to a multi-valued variational equation. In this case Theorem
3.27 on the directedness of S remains true also if the elliptic operator A is
replaced by the more general Leray–Lions operator as in Remark 3.25, i.e.,

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u,∇u(x)) + a0(x, u,∇u(x)),

where the coefficients ai : Ω×R×RN → R, i = 0, 1, . . . , N satisfy assumptions
(A1’)–(A3’) as in Remark 3.25, and the coefficients ai with i = 1, . . . , N
satisfy, in addition, the following hypothesis (A4’):

(A4’) There is a function k2 ∈ Lq+(Ω) and a continuous function ω : R+ → R+

such that

|ai(x, s, ζ)− ai(x, s′, ζ)| ≤ [k2(x) + |s|p−1 + |s′|p−1 + |ζ|p−1]ω(|s− s′|),

holds for a.a. x ∈ Ω, for all s, s′ ∈ R, and for all ζ ∈ RN , where ω
satisfies, for each ε > 0, ∫ ε

0

dr

ω(r)
= +∞. (3.93)

Relation (3.93) means that the integral diverges near zero. Hypothesis
(A4’) includes, for example, ω(r) = c r, for c > 0, and for all r ≥ 0,
which means that the coefficients ai(x, s, ζ) are Lipschitz continuous
with respect to s. The proof of the directedness makes use of a spe-
cial test function technique analogous to that for evolution variational
equations as will be demonstrated in Sect. 3.3.
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3.2.3 Extremal Solutions

In this subsection, the solution set S of all solutions of the multi-valued vari-
ational inequality (3.19)–(3.20) within the ordered interval [u, u] is shown to
possess extremal solutions, i.e., S has a smallest solution u∗ and a greatest so-
lution u∗ with respect to the natural underlying partial ordering induced by
the order cone Lp+(Ω). A first step toward this goal is the following topological
characterization of S.

Lemma 3.29. The solution set S is a compact set in K ⊆ V .

Proof: We first prove that S is bounded in V . Let c > 0 be a generic constant
that may change size, but which is independent of u. As S ⊆ [u, u], for any
u ∈ S one has γu ∈ [γu, γu], and thus

‖u‖Lp(Ω) ≤ c, ‖γu‖Lp(∂Ω) ≤ c, ‖u‖V ≤ c(1 + ‖∇u‖Lp(Ω)), ∀ u ∈ S.
(3.94)

Therefore, the boundedness of S in V is proved provided that ‖∇u‖Lp(Ω) is
bounded for all u ∈ S. Let v0 ∈ K be fixed, and u ∈ S. Then u, in particular,
satisfies: u ∈ K and

〈Au− h, v0 − u〉+
∫
Ω

η (v0 − u) dx+
∫
∂Ω

ξ (γv0 − γu) dσ ≥ 0, (3.95)

where η(x) ∈ ∂j1(x, u(x)), for a.e. x ∈ Ω, and ξ(x) ∈ ∂j2(x, γu(x)), for a.e.
x ∈ ∂Ω. By using (E-j1) and (E-j2) we immediately get∣∣∣∣∫

Ω

η (v0 − u) dx
∣∣∣∣ ≤ c,

∣∣∣∣∫
∂Ω

ξ (γv0 − γu) dσ
∣∣∣∣ ≤ c, ∀ u ∈ S. (3.96)

Assumption (A1) implies

|〈Au− h, v0〉| ≤ c(1 + ‖∇u‖p−1
Lp(Ω)), ∀ u ∈ S. (3.97)

Further we have

|〈h, u〉| ≤ ‖h‖V ∗‖u‖V ≤ c(1 + ‖∇u‖Lp(Ω)) ∀ u ∈ S. (3.98)

From (3.95), we obtain by using (3.96)–(3.98), as well as (A3), the following
estimate

ν ‖∇u‖pLp(Ω) ≤ c (1 + ‖∇u‖Lp(Ω) + ‖∇u‖p−1
Lp(Ω)), ∀ u ∈ S, (3.99)

which proves ‖∇u‖Lp(Ω) ≤ c, and thus

‖u‖V ≤ c, ∀ u ∈ S. (3.100)

Let (un) ⊆ S. Since V is reflexive, there exists a weakly convergent sub-
sequence (again denoted by (un)), which due to the compact embedding
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V ↪→ Lp(Ω) and the compactness of the trace operator γ : V → Lp(∂Ω),
has the following convergence properties

un ⇀ u in V,
un → u in Lp(Ω) and a.e. in Ω, (3.101)
γun → γu in Lp(∂Ω) and a.e. in ∂Ω.

Since (un) ⊂ K, and K is closed in V and convex, so K is weakly closed,
and thus u ∈ K. We are going to show that un → u (strongly) in V and
that u ∈ S, which completes the proof of the lemma. Testing the variational
inequality (3.20) with v = u, then each un satisfies

〈Aun − h, u− un〉+
∫
Ω

ηn (u− un) dx+
∫
∂Ω

ξn (γu− γun) dσ ≥ 0, (3.102)

where ηn(x) ∈ ∂j1(x, un(x)), for a.e. x ∈ Ω, and ξn(x) ∈ ∂j2(x, γun(x)),
for a.e. x ∈ ∂Ω. Note un ∈ S, which, in particular, implies un ∈ [u, u], and
therefore, by (E-j1) and (E-j2) the sequences (ηn) and (ξn) are uniformly
bounded in Lq(Ω) and Lq(∂Ω), respectively. The latter in conjunction with
(3.102) and the convergence properties (3.101) result in

lim sup
n→∞

〈Aun, un − u〉 ≤ 0. (3.103)

Taking into account that the operator A enjoys the (S+)-property (see Chap.
9), un ⇀ u and (3.103) imply the strong convergence un → u in V . Due to
‖ηn‖Lq(Ω) ≤ c and ‖ξn‖Lq(∂Ω) ≤ c, we get by passing to a further subsequence
if necessary (again denoted by (ηn) and (ξn))

ηn ⇀ η in Lq(Ω), ξn ⇀ ξ in Lq(∂Ω). (3.104)

The strong convergence un → u in V and (3.104) allow to pass to the limit in

〈Aun − h, v − un〉+
∫
Ω

ηn (v − un) dx+
∫
∂Ω

ξn (γv − γun) dσ ≥ 0, v ∈ K

which yields for the strong limit u ∈ K

〈Au− h, v − u〉+
∫
Ω

η (v − u) dx+
∫
∂Ω

ξ (γv − γu) dσ ≥ 0, v ∈ K. (3.105)

Apparently u ∈ [u, u]. To complete the proof we need to verify that η(x) ∈
∂j1(x, u(x)), for a.e. x ∈ Ω, and ξ(x) ∈ ∂j2(x, γu(x)), for a.e. x ∈ ∂Ω, which
together with (3.105) proves that u ∈ S. Let us check η(x) ∈ ∂j1(x, u(x)). For
this purpose, one only needs to prove that

η(x)r ≤ jo1(x, u(x); r) (3.106)
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for all r ∈ R and a.e. x ∈ Ω. Let r be a fixed real number and E be any
measurable subset of Ω. From the upper semicontinuity of (s, r) 7→ jo1(x, s; r)
(cf., e.g., [80]) and un(x) → u(x) for a.e. x ∈ Ω we get

jo1(x, u(x); r) ≥ lim sup jo1(x, un(x); r),

for a.e. x ∈ Ω, and thus∫
E

jo1(x, u(x); r)dx ≥
∫
E

lim sup jo1(x, un(x); r)dx. (3.107)

On the other hand, since

jo1(x, s; r) = max{ζr : ζ ∈ ∂j1(x, s)},

it follows from (E-j1) that

|jo1(x, s; r)| ≤ |r| kΩ(x), ∀s ∈ [u(x), u(x)]. (3.108)

Together with un ∈ [u, u], this implies that

|jo1(x, un(x); r)| ≤ |r| kΩ(x) (3.109)

for a.e. x ∈ Ω. Since the right-hand side is, in particular, in L1(Ω), one can
apply Fatou’s lemma to get∫

E

lim sup jo1(x, un(x); r)dx ≥ lim sup
∫
E

jo1(x, un(x); r)dx.

This estimate, together with (3.107), yields∫
E

jo1(x, u(x); r)dx ≥ lim sup
∫
E

jo1(x, un(x); r)dx. (3.110)

From the weak convergence (3.104) of ηn to η it follows∫
E

ηn(x)rdx→
∫
E

η(x)rdx as n→∞. (3.111)

For each n, we have ηn(x) ∈ ∂j1(x, un(x)) and consequently jo1(x, un(x); r) ≥
ηn(x)r for a.e. x ∈ Ω. Hence,∫

E

jo1(x, un(x); r)dx ≥
∫
E

ηn(x)rdx, ∀ n. (3.112)

Letting n→∞ in (3.112) and making use of (3.111) and (3.110), we obtain∫
E

jo1(x, u(x); r)dx ≥
∫
E

η(x)rdx.

Since this inequality holds for all measurable subsets E of Ω, we must have
(3.106) for a.e. x ∈ Ω. The proof of ξ(x) ∈ ∂j2(x, γu(x)) can be done in an
obvious similar way, which completes our compactness proof. ut
Theorem 3.27 on the directedness of S and Lemma 3.29 on the compactness
of S allow us to prove the following extremality property of S.
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Theorem 3.30. Let the hypotheses of Theorem 3.27 be satisfied. Then the
solution set S has the greatest element u∗ and the smallest element u∗, i.e.,
there exist greatest and smallest solutions u∗ and u∗, respectively, of the multi-
valued variational inequality (3.19)–(3.20) within the ordered interval [u, u] in
the sense that if u is any solution of (3.19)–(3.20) in [u, u] then it satisfies
u∗ ≤ u ≤ u∗.

Proof: Let us focus on the existence of the greatest element of S. Since V is
separable, it follows that S ⊂ V is separable, too, so there exists a countable,
dense subset Z = {zn : n ∈ N} of S. Since S is, in particular, upward directed,
we can construct an increasing sequence (un) ⊆ S as follows. Let u1 = z1.
Select un+1 ∈ S such that

max{zn, un} ≤ un+1 ≤ u.

The existence of un+1 is due to the directedness of S by Theorem 3.27. From
the compactness of S according to Lemma 3.29, there exists a subsequence
of (un), denoted again (un), and an element u ∈ S such that un → u in V ,
and un(x) → u(x) a.e. in Ω. This last property of (un) combined with its
increasing monotonicity implies that the entire sequence is convergent in V
and, moreover, u = supn un. By construction, we see that

max{z1, z2, . . . , zn} ≤ un+1 ≤ u, for all n ∈ N,

thus Z ⊆ [u, u]. Since the interval [u, u] is closed in V , we infer

S ⊆ Z ⊆ [u, u] = [u, u],

which in conjunction with u ∈ S ensures that u = u∗ is the greatest solution.
The existence of the smallest solution u∗ can be proved in a similar way using
the fact that S is downward directed. ut

3.2.4 Equivalence to Variational-Hemivariational Inequality

Here we are going to verify the assertion on the equivalence of problems (3.19)–
(3.20) and (3.31) that was already anticipated in Remark 3.9. The standard
growth conditions on the functions j1 : Ω × R → R and j2 : ∂Ω × R → R
mentioned in Remark 3.9 are as follows:

(G-j1) (i) x 7→ j1(x, s) is measurable in Ω for all s ∈ R, and s 7→ j1(x, s) is
locally Lipschitz continuous in R for a.e. x ∈ Ω.

(ii) There exist a constant c > 0 and a function kΩ ∈ Lq+(Ω) such that
for a.e. x ∈ Ω and for all s ∈ R the growth condition

|η| ≤ kΩ(x) + c|s|p−1, ∀ η ∈ ∂j1(x, s)

is fulfilled.
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(G-j2) (i) x 7→ j2(x, s) is measurable in ∂Ω for all s ∈ R, and s 7→ j2(x, s) is
locally Lipschitz continuous in R for a.e. x ∈ ∂Ω.

(ii) There exist a constant c > 0 and a function k∂Ω ∈ Lq+(∂Ω) such
that for a.e. x ∈ ∂Ω and for all s ∈ R the growth condition

|ξ| ≤ k∂Ω(x) + c|s|p−1, ∀ ξ ∈ ∂j2(x, s)

is fulfilled.

Before proving the equivalence result, let us first provide a short account
of the sub-supersolution method for the variational-hemivariational inequality
(3.31) that has been established in [39, 73]. Consider (3.31), which is: Find
u ∈ K such that

〈Au−h, v−u〉+
∫
Ω

jo1(x, u; v−u) dx+
∫
∂Ω

jo2(x, γu; γv−γu) dσ ≥ 0, ∀ v ∈ K.

By specifying the closed convex set K ⊆ V , one can see in a similar way as in
Sect. 3.2.1 that the variational-hemivariational (3.31) includes various elliptic
boundary value problems as special cases.

We introduce the following notion of sub- and supersolution, see [39, 62].

Definition 3.31. A function u ∈ V is called a subsolution of (3.31) if the
following holds:

(i) u ∨K ⊆ K,

(ii) 〈Au− h, v − u〉+
∫
Ω

jo1(x, u; v − u) dx+
∫
∂Ω

jo2(x, γu; γv − γu) dσ ≥ 0

for all v ∈ u ∧K.

Definition 3.32. A function u ∈ V is called a supersolution of (3.31) if
the following holds:

(i) u ∧K ⊆ K,

(ii) 〈Au− h, v − u〉+
∫
Ω

jo1(x, u; v − u) dx+
∫
∂Ω

jo2(x, γu; γv − γu) dσ ≥ 0

for all v ∈ u ∨K.

Remark 3.33. Note again that the notion for sub- and supersolution defined
in Definition 3.31 and Definition 3.32 have a symmetric structure, i.e., one
obtains the definition for the supersolution u from the definition of the sub-
solution by replacing u in Definition 3.31 by u, and interchanging ∨ by ∧.
If one applies Definitions 3.31 and 3.32 to specific K such as, e.g., K being
some subspace of V , then in a similar way as in Sect. 3.2.1 one can show that
the above definitions are in fact natural extensions of the usual notions of
sub-supersolutions for elliptic boundary value problems.
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As for the following existence and comparison result we refer to [39, 73].

Theorem 3.34. Let (A1)–(A3) be satisfied. Assume the existence of sub- and
supersolutions u and u, respectively, of the variational-hemivariational in-
equality (3.31) with u ≤ u such that (E-j1)–(E-j2) are fulfilled. Then there
exist solutions of (3.31)) within the ordered interval [u, u].

Note that by Remark 3.15 the conditions (E-j1)–(E-j2) are trivially satis-
fied if (G-j1) and (G-j2) are fulfilled.

The main result of this subsection is the following theorem.

Theorem 3.35. Let hypotheses (A1)–(A3) and (G-j1)–(G-j2) be satisfied,
and assume the lattice condition (3.32) of the closed convex subset K ⊆ V ,
i.e.,

K ∧K ⊆ K, K ∨K ⊆ K.

Then u is a solution of the multi-valued variational inequality (3.19)–(3.20) if
and only if u is a solution of the variational-hemivariational inequality (3.31).

Proof: Our aim is to show that any solution of the multi-valued variational
inequality (3.19)–(3.20) is a solution of the variational-hemivariational in-
equality (3.31), and vice versa. The basic tools to achieve our goal are The-
orem 3.24 and Theorem 3.34 on the sub-supersolution method for problems
(3.19)–(3.20) and (3.31), respectively.

Let u ∈ K be a solution of (3.19)–(3.20), i.e., there is an η ∈ Lq(Ω), and a
ξ ∈ Lq(∂Ω) such that η(x) ∈ ∂j1(x, u(x)), for a.e. x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)),
for a.e. x ∈ ∂Ω, and the following variational inequality is satisfied:

〈Au− h, v− u〉+
∫
Ω

η (v− u) dx+
∫
∂Ω

ξ (γv− γu) dσ ≥ 0, ∀ v ∈ K. (3.113)

By the definition of Clarke’s generalized gradient we readily obtain for any
v ∈ K:

jo1(x, u(x); v(x)− u(x)) ≥ η(x) (v(x)− u(x)), (3.114)
jo2(x, γu(x); γv(x)− γu(x)) ≥ ξ(x) (γv(x)− γu(x)), (3.115)

for a.e. x ∈ Ω and for a.e. x ∈ ∂Ω in (3.114) and (3.115), respectively. By (G-
j1)(ii) and (G-j2)(ii), the absolute value of the left-hand sides of (3.114) and
(3.115) can be bounded by L1(Ω) and L1(∂Ω) functions, respectively. Since
the functions (s, r) 7→ jok(x, s; r), k = 1, 2, are superpositionally measurable,
from (3.114) and (3.115) we obtain∫

Ω

jo1(x, u(x); v(x)− u(x)) dx ≥
∫
Ω

η(x) (v(x)− u(x)) dx,∫
∂Ω

jo2(x, γu(x); γv(x)− γu(x)) dx ≥
∫
∂Ω

ξ(x) (γv(x)− γu(x)) dσ.
(3.116)



3.2 Multi-Valued Elliptic Variational Inequalities 91

Thus, the variational inequality (3.113) along with (3.116) implies that u is a
solution of variational-hemivariational inequality (3.31). One readily observes
that this direction of the proof basically follows from the definition of Clarke’s
generalized gradient.

To prove the reverse, let u be any solution of (3.31), i.e., u ∈ K and u
satisfies (3.31), which is

〈Au−h, v−u〉+
∫
Ω

jo1(x, u; v−u) dx+
∫
∂Ω

jo2(x, γu; γv−γu) dσ ≥ 0, ∀ v ∈ K.

(3.117)
The lattice condition (3.32) implies that u is both a subsolution and a super-
solution for (3.31), i.e., of (3.117). Next we are going to show that u must be
both a subsolution and a supersolution for (3.19)–(3.20). Let us show first that
u is a subsolution of (3.19)–(3.20). Since u is a subsolution of (3.31), the in-
equality (3.117) is satisfied, in particular, for all v ∈ u∧K, i.e., v = u−(u−ϕ)+

with ϕ ∈ K, which yields

〈Au− h,−(u− ϕ)+〉+
∫
Ω

jo1(x, u;−(u− ϕ)+) dx

+
∫
∂Ω

jo2(x, γu;−(γu− γϕ)+) dσ ≥ 0, ∀ ϕ ∈ K.

Because r 7→ jok(·, s; r) is positively homogeneous, the last inequality is equiv-
alent to

〈Au− h,−(u− ϕ)+〉+
∫
Ω

jo1(x, u;−1)(u− ϕ)+ dx

+
∫
∂Ω

jo2(x, γu;−1)(γu− γϕ)+ dσ ≥ 0, ∀ ϕ ∈ K.

(3.118)
Using again for any v ∈ u∧K its representation in the form v = u− (u−ϕ)+

with ϕ ∈ K, (3.118) is equivalent to

〈Au− h, v − u〉 −
∫
Ω

jo1(x, u;−1)(v − u) dx

−
∫
∂Ω

jo2(x, γu;−1)(γv − γu) dσ ≥ 0, ∀ v ∈ u ∧K.
(3.119)

By [80, Proposition 2.1.2] we have

jo1(x, u(x);−1) = max{−θ(x) : θ(x) ∈ ∂j1(x, u(x))}
= −min{θ(x) : θ(x) ∈ ∂j1(x, u(x))} = −η(x), (3.120)

where

η(x) = min{θ(x) : θ(x) ∈ ∂j1(x, u(x))} ∈ ∂j1(x, u(x)), for a.e. x ∈ Ω.
(3.121)
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Since x 7→ jo1(x, u(x);−1) is a measurable function, it follows that x 7→ η(x)
is measurable in Ω, too, and in view of the growth condition (G-j1)(ii), we
infer η ∈ Lq(Ω).

In a similar way one can show that there is a ξ ∈ Lq(∂Ω) with

ξ(x) = min{θ(x) : θ(x) ∈ ∂j2(x, γu(x))} ∈ ∂j2(x, γu(x)), for a.e. x ∈ ∂Ω,
(3.122)

such that
jo2(x, γu(x);−1) = −ξ(x), for a.e. x ∈ ∂Ω. (3.123)

Taking (3.120)–(3.123) into account, (3.119) yields

〈Au−h, v−u〉+
∫
Ω

η(v−u) dx+
∫
∂Ω

ξ(γv−γu) dσ ≥ 0, ∀ v ∈ u∧K, (3.124)

which proves that u is a subsolution of (3.19)–(3.20). By applying similar
arguments, one shows that u is also supersolution of (3.19)–(3.20), i.e., there
is an η ∈ Lq(Ω), and a ξ ∈ Lq(∂Ω) such that η(x) ∈ ∂j1(x, u(x)), for a.e.
x ∈ Ω, ξ(x) ∈ ∂j2(x, γu(x)), for a.e. x ∈ ∂Ω, and the following inequality is
satisfied:

〈Au−h, v−u〉+
∫
Ω

η (v−u) dx+
∫
∂Ω

ξ (γv−γu) dσ ≥ 0, ∀ v ∈ u∨K. (3.125)

So far we have shown that any solution u of the variational-hemivariational
inequality (3.31) is both a subsolution and a supersolution of the multi-valued
variational inequality (3.19)–(3.20). Therefore, Theorem 3.24 ensures the ex-
istence of a solution ũ of (3.19)–(3.20) within the interval [u, u] = {u}, which
implies u = ũ. This proves that any solution u of (3.31) must be a solution of
(3.19)–(3.20), which completes the proof. ut

Remark 3.36. The lattice condition (3.32) on the closed, convex subset K ⊆ V
is fulfilled for a number of important models in applied sciences, see, e.g., [62,
p. 216]. Moreover, Theorem 3.35 remains true also in case that the operator
A is replaced by a more general Leray–Lions operator in the form:

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u,∇u(x)) + a0(x, u,∇u(x)).

3.3 Multi-Valued Parabolic Variational Inequalities

In this section we are going to establish existence and comparison principles
for the parabolic counterpart to the multi-valued elliptic variational inequality
(3.19)–(3.20) of Sect. 3.2. To formulate the problem to be considered here, let
us introduce some notations, cf. Sect. 9.5. As in Sect. 3.2 let Ω ⊂ RN , N ≥ 1,
be a bounded domain with Lipschitz boundary ∂Ω, and let V = W 1,p(Ω)
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and V0 = W 1,p
0 (Ω) denote the usual Sobolev spaces with their dual spaces

V ∗ and V ∗
0 , respectively. Let Q = Ω × (0, τ), be a cylindrical domain, and

denote by Γ = ∂Ω × (0, τ), its lateral boundary, with τ > 0 . For the sake
of simplicity we assume throughout this section 2 ≤ p < ∞ with q being its
Hölder conjugate, i.e., 1/p+1/q = 1. Then W 1,p(Ω) ↪→ L2(Ω) ↪→ (W 1,p(Ω))∗

(resp. W 1,p
0 (Ω) ↪→ L2(Ω) ↪→ (W 1,p

0 (Ω))∗) forms an evolution triple with all
the embeddings being continuous, dense, and compact, cf. [229]. We set X =
Lp(0, τ ;W 1,p(Ω)) , with its dual space X∗, and denote the norms in X and
X∗ by ‖ · ‖X and ‖ · ‖X∗ , respectively, which are given by

‖u‖X =
(∫ τ

0

‖u(t)‖pV dt
)1/p

, ‖u‖X∗ =
(∫ τ

0

‖u(t)‖qV ∗ dt
)1/q

.

As the derivative ∂u/∂t explicitly appears in the multi-valued problem to be
considered (see below), a natural underlying solution space is the function
space W defined by

W = {u ∈ X : ∂u/∂t ∈ X∗} ,

where the derivative ∂u/∂t is understood in the sense of vector-valued dis-
tributions, cf. Sect. 9.5. The space W endowed with the graph norm of the
operator ∂/∂t

‖u‖W = ‖u‖X + ‖∂u/∂t‖X∗

is a Banach space that is separable and reflexive due to the separability
and reflexivity of X and X∗, respectively. Furthermore, it is well known
that the embedding W ↪→ C([0, τ ], L2(Ω)) is continuous, cf. [229], and
because W 1,p(Ω) is compactly embedded in Lp(Ω), we have by Aubin’s
lemma that the W ↪→ Lp(Q) is compactly embedded, cf. Theorem 9.98.
Similarly, we set X0 = Lp(0, τ ;W 1,p

0 (Ω)) , whose dual space is given by
X∗

0 = Lq(0, τ ;V ∗) = Lq(0, τ ;W−1,q(Ω)), and introduce W0 defined by

W0 = {u ∈ X0 : ∂u/∂t ∈ X∗
0} .

We use the notation 〈·, ·〉 for any of the dual pairings between X and X∗, X0

and X∗
0 , W 1,p(Ω) and (W 1,p(Ω))∗, and W 1,p

0 (Ω) and W−1,q(Ω). For example,
with f ∈ X∗, u ∈ X,

〈f, u〉 =
∫ τ

0

〈f(t), u(t)〉 dt.

Let L := ∂/∂t, and its domain of definition D(L) be given by

D(L) = {u ∈W : u(0) = 0} .

The linear operator L : D(L) ⊂ X → X∗ is closed, densely defined, and
maximal monotone, e.g., cf. [229, Chap. 32], and Lemma 9.106.

Let K be a closed, convex subset of X, and let j1 : Q×R → R and j2 : Γ ×
R → R be functions that are only supposed to be measurable in their first and
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locally Lipschitz continuous with respect to their second argument. The main
goal of this section is to extend the sub-supersolution method to quasilinear
multi-valued parabolic variational inequalities of the following form:

Find u ∈ K ∩D(L), η ∈ Lq(Q), and ξ ∈ Lq(Γ ) satisfying:

η(x, t) ∈ ∂j1(x, t, u(x, t)), for a.e. (x, t) ∈ Q, (3.126)
ξ(x, t) ∈ ∂j2(x, t, γu(x, t)), for a.e. (x, t) ∈ Γ, and (3.127)

〈Lu+Au− h, v − u〉+
∫
Q

η (v − u) dxdt+
∫
Γ

ξ (γv − γu) dΓ ≥ 0, ∀ v ∈ K,

(3.128)
where

• the multi-valued functions s 7→ ∂jk(x, t, s) are given by Clarke’s general-
ized gradient of the locally Lipschitz functions s 7→ jk(x, t, s), k = 1, 2,
defined by

∂jk(x, t, s) := {ζ ∈ R : jok(x, t, s; r) ≥ ζr, ∀ r ∈ R}

for a.a. (x, t) ∈ Q in case k = 1, and for a.a. (x, t) ∈ Γ in case k = 2,
with jok(x, t, s; r) denoting the generalized directional derivative of s 7→
jk(x, t, s) at s in the direction r given by

jok(x, t, s; r) = lim sup
y→s, ε↓0

jk(x, t, y + ε r)− jk(x, t, y)
ε

.

• A is a second-order quasilinear elliptic differential operator of the form

Au(x, t) = −
N∑
i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)),

with ∇u = (∂u/∂x1, . . . , ∂u/∂xN ) .
• γ : X → Lp(Γ ) denotes the trace operator, which is linear and continu-

ous, and γ : W → Lp(Γ ) is linear and compact, see [42, Lemma 3.1], or
Proposition 9.100.

• h ∈ X∗.

A partial ordering in Lp(Q) is defined by u ≤ w if and only if w−u belongs to
the positive cone Lp+(Q) of all nonnegative elements of Lp(Q). This induces
corresponding partial orderings in the subspaces W and X of Lp(Q). The
partial ordering on X implies a corresponding partial ordering for the traces,
namely, if u,w ∈ X and u ≤ w then γu ≤ γw in Lp(Γ ). If u, w ∈ W with
u ≤ w, the order interval formed by u and w is the set

[u,w] = {v ∈W : u ≤ v ≤ w}.
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As in Sect. 3.2, for u, v ∈ X, and U1, U2 ⊆ X, we use the notation u ∧ v =
min{u, v}, u ∨ v = max{u, v}, U1 ∗ U2 = {u ∗ v : u ∈ U1, v ∈ U2}, u ∗ U1 =
{u} ∗ U1 with ∗ ∈ {∧,∨}.

We assume the following Leray–Lions conditions on the coefficient func-
tions ai, i = 1, . . . , N , entering the definition of the operator A.

(AP1) ai : Q×R×RN → R are Carathéodory functions, i.e., ai(·, ·, s, ζ) : Q→
R is measurable for all (s, ζ) ∈ R× RN and ai(x, t, ·, ·) : R× RN → R
is continuous for a.a. (x, t) ∈ Q. In addition, the following growth
condition holds:

|ai(x, t, s, ζ)| ≤ k0(x, t) + c0
(
|s|p−1 + |ζ|p−1

)
for a.a. (x, t) ∈ Q and for all (s, ζ) ∈ R×RN , for some constant c0 > 0
and some function k0 ∈ Lq(Q).

(AP2) For a.a. (x, t) ∈ Q , for all s ∈ R and for all ζ, ζ ′ ∈ RN with ζ 6= ζ ′ the
following monotonicity in ζ holds:

N∑
i=1

(ai(x, t, s, ζ)− ai(x, t, s, ζ ′))(ζi − ζ ′i) > 0.

(AP3) There is some constant ν > 0 such that for a.a. (x, t) ∈ Q and for all
(s, ζ) ∈ R× RN the inequality

N∑
i=1

ai(x, t, s, ζ)ζi ≥ ν|ζ|p − k1(x, t)

is satisfied for some function k1 ∈ L1(Q).
(AP4) A function k2 ∈ Lq+(Q) and a continuous function ω : R+ → R+ exist

such that

|ai(x, t, s, ζ)−ai(x, t, s′, ζ)| ≤ [k2(x, t)+|s|p−1+|s′|p−1+|ζ|p−1]ω(|s−s′|),

holds for a.a. (x, t) ∈ Q, for all s, s′ ∈ R, and for all ζ ∈ RN , where ω
satisfies, for each ε > 0, ∫ ε

0

dr

ω(r)
= +∞. (3.129)

Remark 3.37. Relation (3.129) means that the integral diverges near zero.
Hypothesis (AP4) includes, for example, ω(r) = c r, for c > 0, and for all
r ≥ 0, which means that the coefficients ai(x, t, s, ξ) are Lipschitz continuous
with respect to s.

In view of (AP1), the operator A defined by

〈Au,ϕ〉 :=
∫
Q

N∑
i=1

ai(x, t, u,∇u)
∂ϕ

∂xi
dx dt,
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is continuous and bounded from X (resp. X0) into its dual space.
Before we define our basic notion of sub-supersolutions for (3.126)–(3.128),

let us consider important special cases that arise from (3.126)–(3.128) by
specifying K.

Example 3.38. If K = X, and s 7→ jk(x, t, s) are given in terms of the primi-
tives of Carathéodory functions fk, i.e.,

jk(x, t, s) =
∫ s

0

fk(x, t, r) dr,

then ∂jk(x, t, s) = {fk(x, t, s)} is a singleton, and the multi-valued parabolic
variational inequality (3.126)–(3.128) reduces to the following (single-valued)
parabolic initial boundary value problem: Find u ∈ D(L) such that

〈Lu+Au− h, v〉+
∫
Q

f1(x, t, u) v dxdt+
∫
Γ

f2(x, t, γu) γv dΓ = 0, ∀ v ∈ X,

(3.130)
which is the formulation of the weak solution of the initial boundary value
problem

ut+Au+f1(x, t, u) = h in Q, u(·, 0) = 0 in Ω,
∂u

∂ν
+f2(x, t, u) = 0 on Γ,

(3.131)
where ∂/∂ν denotes the outward pointing conormal derivative associated with
A.

Example 3.39. If K = X0, and jk as in Example 3.38, then (3.126)–(3.128) is
equivalent to: Find u ∈ D(L) ∩X0 such that

〈Lu+Au− h, v〉+
∫
Q

f1(x, t, u) v dxdt = 0, ∀ v ∈ X0, (3.132)

which is nothing but the weak formulation of the homogeneous initial Dirichlet
boundary value problem

ut +Au+ f1(x, t, u) = h in Q, u(·, 0) = 0 in Ω, u = 0 on Γ. (3.133)

Example 3.40. If K = X0 or K = X, and s 7→ jk(x, t, s) not necessarily
differentiable, then (3.126)–(3.128) reduces to parabolic inclusion problems
of hemivariational type, which for K = X0 yields the following multi-valued
initial Dirichlet boundary value problem

ut +Au+ ∂j1(x, t, u) 3 h in Q, u(·, 0) = 0 in Ω, u = 0 on Γ, (3.134)

and for K = X the parabolic inclusion problem

ut+Au+∂j1(x, t, u) 3 h in Q, u(·, 0) = 0 in Ω,
∂u

∂ν
+∂j2(x, t, u) 3 0 on Γ.

(3.135)



3.3 Multi-Valued Parabolic Variational Inequalities 97

Let us remark that nonhomogeneous initial and Dirichlet conditions can al-
ways be transformed to homogeneous ones by simple translation provided
the initial and boundary values arise as traces of some function from W . By
specifying K appropriately, also mixed boundary conditions can be seen to
be a special case of the general formulation (3.126)–(3.128). To this end let
Γ1 = S1 × (0, τ) and Γ2 = S2 × (0, τ), where S1 and S2 are relatively open
subsets of ∂Ω satisfying S1 ∪ S2 = ∂Ω and S1 ∩ S2 = ∅.

Example 3.41. If K ⊆ X is the following closed subspace

K = {v ∈ X : γv = 0 on Γ1},

then (3.126)–(3.128) reduces to

ut +Au+ ∂j1(x, t, u) 3 h in Q,

u(x, 0) = 0 in Ω,
∂u

∂ν
+ ∂j2(x, t, u) 3 0 on Γ2, u = 0 on Γ1.

Example 3.42. If K ⊆ X, and jk = 0, then (3.126)–(3.128) is equivalent to
the parabolic variational inequality of the form

u ∈ K ∩D(L) : 〈Lu+Au− h, v − u〉 ≥ 0, ∀ v ∈ K, (3.136)

which has been treated, e.g., in [61, 62, 63].

Remark 3.43. Applying the definition of Clarke’s generalized gradient of jk,
k = 1, 2, and assuming standard growth conditions for s 7→ ∂jk(x, t, s), one
readily verifies that any solution of the multi-valued variational inequality
(3.126)–(3.128) must be a solution of the following parabolic variational-
hemivariational inequality: Find u ∈ K ∩D(L) such that

〈Lu+Au− h, v − u〉+
∫
Q

jo1(·, ·, u; v − u) dxdt

+
∫
Γ

jo2(·, ·, γu; γv − γu) dΓ ≥ 0, ∀ v ∈ K. (3.137)

The reverse holds true if K satisfies the lattice condition

K ∧K ⊆ K, K ∨K ⊆ K,

and provided that to the multi-valued variational inequality (3.126)–(3.128)
the method of sub-supersolution applies. Under these assumptions, the proof
for the latter follows basically the arguments of Sect. 3.2.4. For periodic-
Dirichlet problems, the equivalence of quasilinear parabolic inclusions and
the associated parabolic hemivariational inequalities has been proved among
others in [40].
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3.3.1 Notion of Sub-Supersolution

We first introduce our basic notion of sub-supersolution for the multi-valued
parabolic variational inequality (3.126)–(3.128), which, by specifying the
closed convex set K, will be seen as a natural extension of the well-known
notion of sub-supersolutions for single- and multi-valued initial and boundary
value problems such as, e.g., those of Examples 3.38–3.40.

Definition 3.44. A function u ∈ W is called a subsolution of (3.126)–
(3.128), if there is an η ∈ Lq(Q) and a ξ ∈ Lq(Γ ) such that the following
holds:

(i) u ∨K ⊆ K, u(·, 0) ≤ 0 in Ω,

(ii) η ∈ ∂j1(·, ·, u), ξ ∈ ∂j2(·, ·, γu),

(iii) 〈ut +Au− h, v − u〉+
∫
Q

η (v − u) dxdt+
∫
Γ

ξ (γv − γu) dΓ ≥ 0

for all v ∈ u ∧K.

Definition 3.45. A function u ∈ W is called a supersolution of (3.126)–
(3.128), if there is an η ∈ Lq(Q) and a ξ ∈ Lq(Γ ) such that the following
holds:

(i) u ∧K ⊆ K, u(·, 0) ≥ 0 in Ω,

(ii) η ∈ ∂j1(·, ·, u), ξ ∈ ∂j2(·, ·, γu),

(iii) 〈ut +Au− h, v − u〉+
∫
Q

η (v − u) dxdt+
∫
Γ

ξ (γv − γu) dΓ ≥ 0

for all v ∈ u ∨K.

Remark 3.46. Note that we use the notations ut or ∂u/∂t if u does not neces-
sarily belong to D(L), as it is the case, e.g., for the sub- and supersolution.

Let us next consider Definition 3.44 for specific K.

Example 3.47. Consider the Example 3.38, i.e., K = X, and s 7→ jk(x, t, s) are
given in terms of the primitives of Carathéodory functions fk, so the multi-
valued parabolic variational inequality (3.126)–(3.128) reduces to (3.130). If
u ∈W is a subsolution according to Definition 3.44, then the first condition in
(i) is trivially satisfied, because X possesses lattice structure, and (i) becomes

(i′) u(·, 0) ≤ 0 in Ω.

As ∂jk(·, ·, s) is a singleton, (ii) of Definition 3.44 becomes

(ii′) η(x, t) = f1(x, t, u(x, t)), a.e. (x, t) ∈ Q,
ξ(x, t) = f2(x, t, γu(x, t)), a.e. (x, t) ∈ Γ.
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Since K = X, any v ∈ u ∧ X has the form v = u ∧ ϕ = u − (u − ϕ)+ with
ϕ ∈ X, and condition (iii) becomes

(iii′) 〈ut +Au− h,−(u− ϕ)+〉+
∫
Q

f1(·, ·, u) (−(u− ϕ)+) dxdt

+
∫
Γ

f2(·, ·, γu) (−(γu− γϕ)+) dΓ ≥ 0,

for all ϕ ∈ X. Because u ∈ X, we have

M = {(u− ϕ)+ : ϕ ∈ X} = X ∩ Lp+(Q),

where Lp+(Q) is the positive cone of Lp(Q), and thus (iii’) is equivalent to

(iii′) 〈ut +Au− h, χ〉+
∫
Q

f1(·, ·, u)χdxdt

+
∫
Γ

f2(·, ·, γu) γχ dΓ ≤ 0

for all χ ∈ X∩Lp+(Q), which shows that the notion of subsolution according to
Definition 3.44 of the special case given in Example 3.38 reduces to (i’)–(iii’).
The latter is nothing but the usual notion of a (weak) subsolution for the
initial boundary value problem (3.130) or equivalently of (3.131). Analogous
arguments apply for the supersolution.

Example 3.48. Let K = X0, and let jk as before in Example 3.47, then
(3.126)–(3.128) is equivalent to the initial Dirichlet boundary value problem
(3.132): Find u ∈ D(L) ∩X0 such that

〈Lu+Au− h, v〉+
∫
Q

f1(x, t, u) v dxdt = 0, ∀ v ∈ X0.

We consider the notion of subsolution in this case given via Definition 3.44.
For u ∈ W , condition (i) means u(·, 0) ≤ 0 in Ω, and u ∨X0 ⊆ X0. This last
condition is satisfied if and only if

γu ≤ 0, i.e., u ≤ 0 on Γ, (3.138)

and condition (ii) means as above

η(x, t) = f1(x, t, u(x, t)), a.e. (x, t) ∈ Q.

(Again, the boundary integral vanishes since γv = 0 for v ∈ X0.) Since any
v ∈ u ∧ X0 can be represented in the form v = u − (u − ϕ)+ with ϕ ∈ X0,
from (iii) of Definition 3.44 we obtain

〈ut +Au− h,−(u− ϕ)+〉+
∫
Q

f1(·, ·, u) (−(u− ϕ)+) dxdt ≥ 0, ∀ ϕ ∈ X0.

(3.139)
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Set χ = (u− ϕ)+, then (3.139) results in

〈ut +Au− h, χ〉+
∫
Q

f1(·, ·, u)χdxdt ≤ 0, ∀ χ ∈M0, (3.140)

where M0 := {χ ∈ X0 : χ = (u−ϕ)+, ϕ ∈ X0} ⊆ X0∩Lp+(Ω). In [62, Lemma
5.36] it has been shown that the set M0 is a dense subset of X0 ∩ Lp+(Ω),
which shows that (3.140), (3.138) together with u(·, 0) ≤ 0 in Ω, is nothing
but the weak formulation for the subsolution of the initial Dirichlet problem
(3.132) (resp. (3.133)). Similarly, u ∈W given by Definition 3.45 is shown to
be a supersolution of the initial Dirichlet problem (3.132) (resp. (3.133)).

Also in case of other parabolic initial boundary value problems one can check
that the notion of sub- and supersolution defined via Definition 3.44 and
Definition 3.45 provides an appropriate general framework. As for the hy-
potheses on jk, in what follows we assume the existence of an ordered pair
(u, u) of sub-supersolutions of the multi-valued parabolic variational inequal-
ity (3.126)–(3.128) satisfying u ≤ u. With respect to this ordered pair we
impose the following hypotheses on the nonlinearities jk, k = 1, 2.

(P-j1) j1 : Q× R → R satisfies
(i) (x, t) 7→ j1(x, t, s) is measurable in Q for all s ∈ R, and s 7→

j1(x, t, s) is locally Lipschitz continuous in R for a.e. (x, t) ∈ Q.
(ii) There exists a function kQ ∈ Lq+(Q) such that for a.e. (x, t) ∈ Q

and for all s ∈ [u(x, t), u(x, t)] the growth condition

|η| ≤ kQ(x, t), ∀ η ∈ ∂j1(x, t, s)

is fulfilled.
(P-j2) j2 : Γ × R → R satisfies

(i) (x, t) 7→ j2(x, t, s) is measurable in Γ for all s ∈ R, and s 7→
j2(x, t, s) is locally Lipschitz continuous in R for a.e. (x, t) ∈ Γ .

(ii) There exists a function kΓ ∈ Lq+(Γ ) such that for a.e. (x, t) ∈ Γ
and for all s ∈ [γu(x, t), γu(x, t)] the growth condition

|ξ| ≤ kΓ (x, t), ∀ ξ ∈ ∂j2(x, t, s)

is fulfilled.

Remark 3.49. A similar remark as for (E-j1) and (E-j2) can be made here.
We note that by the growth condition (ii) of (P-j1) and (P-j2) only a local
Lq-boundedness condition on Clarke’s generalized gradient ∂jk is required,
which is trivially satisfied, in particular, if we assume the following natural
growth condition on ∂jk: There exist c > 0, kQ ∈ Lq+(Q) and kΓ ∈ Lq+(Γ )
such that

|η| ≤ kQ(x, t) + c|s|p−1, ∀ η ∈ ∂j1(x, t, s),
for a.a. (x, t) ∈ Q and for all s ∈ R, and

|ξ| ≤ kΓ (x, t) + c|s|p−1, ∀ ξ ∈ ∂j2(x, t, s),

for a.e. (x, t) ∈ Γ and for all s ∈ R.
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3.3.2 Multi-Valued Parabolic Equation

We consider in this subsection the case when the closed, convex subset K of X
is a closed subspace of X. As a prototype we assume K = X0. As seen in Sect.
3.3.1, in this case the multi-valued parabolic variational inequality (3.126)–
(3.128) reduces to the following multi-valued parabolic variational equation:
Find u ∈ X0 ∩D(L) such that there is an η ∈ Lq(Q) satisfying

(i) η(x, t) ∈ ∂j1(x, t, u(x, t)) for a.a. (x, t) ∈ Q, (3.141)

(ii) 〈Lu+Au− h, ϕ〉+
∫
Q

η ϕ dxdt = 0, ∀ ϕ ∈ X0, (3.142)

which is equivalent to the multi-valued initial Dirichlet boundary value prob-
lem (Example 3.40):

ut +Au+ ∂j1(·, ·, u) 3 h in Q,

u(·, 0) = 0 in Ω, u = 0 on Γ.

Remark 3.50. Let D0(L) denote the domain of the operator L = ∂/∂t given
by

D0(L) = {u ∈W0 : u(·, 0) = 0}.
By Hahn–Banach’s theorem we have D0(L) ⊆ X0 ∩ D(L). Therefore, any
solution u ∈ D0(L) of (3.141)–(3.142) belongs toX0∩D(L). Due toX∗ ↪→ X∗

0 ,
any solution u ∈ X0∩D(L) of (3.141)–(3.142) may be identified with a solution
u ∈ D0(L).

Similar to Example 3.48 we deduce from Definition 3.44 and Definition
3.45 the following notion of sub- and supersolution for (3.141)–(3.142).

Definition 3.51. A function u ∈ W is called a subsolution of (3.141)–
(3.142) if there is an η ∈ Lq(Q) satisfying η(x, t) ∈ ∂j1(x, t, u(x, t)) for a.a.
(x, t) ∈ Q such that u(x, 0) ≤ 0 for a.a. x ∈ Ω, u|Γ ≤ 0, and

〈ut +Au,ϕ〉+
∫
Q

η ϕ dx dt ≤ 〈h, ϕ〉, , ∀ ϕ ∈ X0 ∩ Lp+(Q). (3.143)

Definition 3.52. A function u ∈ W is called a supersolution of (3.141)–
(3.142) if there is an η ∈ Lq(Q) satisfying η(x, t) ∈ ∂j1(x, t, u(x, t)) for a.a.
(x, t) ∈ Q such that u(x, 0) ≥ 0 for a.a. x ∈ Ω, u|Γ ≥ 0, and

〈ut +Au,ϕ〉+
∫
Q

η ϕ dx dt ≥ 〈h, ϕ〉, ∀ ϕ ∈ X0 ∩ Lp+(Q). (3.144)

Our goal is to establish the method of sub- and supersolution for (3.141)–
(3.142), i.e., we are going to show the existence of solutions within the ordered
interval [u, u] of the given sub- and supersolution. Moreover, the existence of
extremal solutions within [u, u] will be proved as well. In view of Remark 3.50
we may use the following equivalent notion of solution for (3.141)–(3.142).
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Definition 3.53. A function u ∈ D0(L) ⊂ W0 is called a solution of
(3.141)–(3.142) if there is an η ∈ Lq(Q) with η(x, t) ∈ ∂j1(x, t, u(x, t)) for
a.a. (x, t) ∈ Q such that

〈Lu+Au,ϕ〉+
∫
Q

η ϕ dx dt = 〈h, ϕ〉, ∀ ϕ ∈ X0. (3.145)

Preliminaries

We briefly recall a general surjectivity result for multi-valued operators in
a real reflexive Banach space Y , which will be used later. To this end we
introduce the notion of multi-valued pseudomonotone operators with respect
to the graph norm topology of the domain D(L̂) (w.r.t. D(L̂) for short) of
some linear, closed, densely defined, and maximal monotone operator L̂ :
D(L̂) ⊆ Y → Y ∗.

Definition 3.54. Let L̂ : D(L̂) ⊆ Y → Y ∗ be a linear, closed, densely defined,
and maximal monotone operator. The operator A : Y → 2Y

∗
is called pseudo-

monotone w.r.t. D(L̂) if the following conditions are satisfied:

(i) The set A(u) is nonempty, bounded, closed, and convex for all u ∈ Y.
(ii) A is upper semicontinuous from each finite dimensional subspace of Y to

Y ∗ equipped with the weak topology.
(iii) If (un) ⊂ D(L̂) with un ⇀ u in Y , L̂un ⇀ L̂u in Y ∗, u∗n ∈ A(un)

with u∗n ⇀ u∗ in Y ∗ and lim sup〈u∗n, un − u〉 ≤ 0, then u∗ ∈ A(u) and
〈u∗n, un〉 → 〈u∗, u〉.

Definition 3.55. The operator A : Y → 2Y
∗

is called coercive iff either the
domain of A denoted by D(A) is bounded or D(A) is unbounded and

inf{〈v∗, v〉 : v∗ ∈ A(v)}
‖v‖Y

→ +∞ as ‖v‖Y →∞, v ∈ D(A).

The following surjectivity result, which will be used later, can be found, e.g.,
in [82, Theorem 1.3.73, p. 62].

Theorem 3.56. Let Y be a real reflexive, strictly convex Banach space with
dual space Y ∗, and let L̂ : D(L̂) ⊆ Y → Y ∗ be a closed, densely defined,
and maximal monotone operator. If the multi-valued operator A : Y → 2Y

∗
is

pseudomonotone w.r.t. D(L̂), bounded and coercive, then L̂+A is surjective,
i.e., range (L̂+A) = Y ∗.

The next abstract theorem represents a version of the well-known result
concerning the sum of pseudomonotone operators.

Theorem 3.57. Let Y be a real reflexive Banach space with dual space Y ∗, let
L̂ : D(L̂) ⊆ Y → Y ∗ be a linear, closed, densely defined, maximal monotone
operator, let A1 : Y → 2Y

∗
be a multi-valued operator which is bounded

and pseudomonotone w.r.t. D(L̂), and let A2 : Y → Y ∗ be a bounded and
pseudomonotone operator. Then the multivalued operator A1 +A2 : Y → 2Y

∗

is pseudomonotone w.r.t. D(L̂).
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Proof: It suffices to check condition (iii) of Definition 3.54 for A = A1 +A2.
To this end let sequences (un) ⊂ D(L̂) and (u∗n) ⊂ Y ∗ with un ⇀ u in Y,
L̂un ⇀ L̂u in Y ∗, u∗n ∈ A1(un) with u∗n +A2(un) ⇀ u∗ in Y ∗, and

lim sup
n

〈u∗n +A2(un), un − u〉 ≤ 0. (3.146)

We claim that
lim sup

n
〈u∗n, un − u〉 ≤ 0. (3.147)

Arguing by contradiction, we find subsequences (unk
) ⊂ D(L̂) and (u∗nk

) ⊂ Y ∗

such that
lim sup

n
〈u∗n, un − u〉 = lim

k
〈u∗nk

, unk
− u〉 > 0.

We derive from (3.146) that

lim sup
k

〈A2(unk
), unk

− u〉 ≤ − lim
k
〈u∗nk

, unk
− u〉 < 0. (3.148)

The pseudomonotonicity of A2 and (3.148) guarantee that for every w ∈ Y
we have

〈A2(u), u− w〉 ≤ lim inf
k

〈A2(unk
), unk

− w〉.

Setting w = u and using (3.148) we reach a contradiction, which establishes
(3.147).

Now we claim that

lim sup
n

〈A2(un), un − u〉 ≤ 0. (3.149)

On the contrary, we would find a subsequence (unk
) such that

lim sup
n

〈A2(un), un − u〉 = lim
k
〈A2(unk

), unk
− u〉 > 0.

Taking into account the boundedness ofA1, there exists a subsequence (u∗nk
) ⊂

Y ∗ satisfying u∗nk
⇀ ξ in Y ∗, for some ξ ∈ Y ∗. By (3.146) it follows that

lim sup
n

〈u∗nk
, unk

− u〉 ≤ − lim
k
〈A2(unk

), unk
− u〉 < 0.

Since A1 is pseudomonotone w.r.t. D(L̂), it turns out that ξ ∈ A1(u) and
〈u∗nk

, unk
〉 → 〈ξ, u〉, which results in

lim sup
n

〈u∗nk
+A2unk

, unk
− u〉 = lim

k
〈A2(unk

), unk
− u〉 > 0.

This contradicts (3.146), so (3.149) holds true.
The boudedness of A2 ensures that there is a subsequence (unk

) with
A2(unk

) ⇀ η in Y ∗, for some η ∈ Y ∗. The property of A2 to be pseudomono-
tone and (3.149) imply that η = A2(u), thus A2(un) ⇀ A2(u) in Y ∗, which
reads as u∗n ⇀ u∗ −A2(u) in Y ∗, and
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〈A2(un), un〉 → 〈A2(u), u〉. (3.150)

In addition, by (3.147) and the pseudomonotonicity of A1 w.r.t. D(L̂), it is
seen that u∗−A2(u) ∈ A1(u) and 〈u∗n, un〉 → 〈u∗−A2(u), u〉. Due to (3.150),
the proof is complete. ut

The Sub-Supersolution Method

Let u ≤ u be an ordered pair of sub-supersolution of (3.141)–(3.142), i.e.,
(u, η) ∈ W × Lq(Q) and (u, η) ∈ W × Lq(Q) satisfy the conditions in Defini-
tion 3.51 and Definition 3.52, respectively, with η(x, t) ∈ ∂j1(x, t, u(x, t)) and
η(x, t) ∈ ∂j1(x, t, u(x, t)). We define the following modification j̃1 : Q×R → R
of the given j1:

j̃1(x, t, s) =


j1(x, t, u(x, t)) + η(x, t)(s− u(x, t)) if s < u(x, t),
j1(x, t, s) if u(x, t) ≤ s ≤ ū(x, t),
j1(x, t, u(x, t)) + η(x, t)(s− u(x, t)) if s > u(x, t).

(3.151)

Lemma 3.58. Let j1 satisfy (P-j1). Then the modified function j̃1 : Q×R →
R has the following properties:

(i) (x, t) 7→ j̃1(x, t, s) is measurable in Q for all s ∈ R, and s 7→ j̃1(x, t, s) is
Lipschitz continuous in R for a.a. (x, t) ∈ Q.

(ii) Clarke’s generalized gradient ∂j̃1(x, t, s) of s 7→ j̃1(x, t, s) satisfies the
estimate

|η| ≤ kQ(x, t), ∀ η ∈ ∂j̃1(x, t, s)

for a.a. (x, t) ∈ Q and for all s ∈ R.
(iii) Clarke’s generalized gradient of s 7→ ∂j̃1(x, t, s) is given by

∂j̃1(x, t, s) =


η(x, t) if s < u(x, t),
∂j̃1(x, t, u(x, t)) if s = u(x, t),
∂j1(x, t, s) if u(x, t) < s < ū(x, t),
∂j̃1(x, t, u(x, t)) if s = u(x, t),
η(x, t) if s > u(x, t),

(3.152)

and the inclusions ∂j̃1(x, t, u(x, t)) ⊆ ∂j1(x, t, u(x, t)) as well as
∂j̃1(x, t, u(x, t)) ⊆ ∂j(x, t, u(x, t)) hold true.

Proof: The proof follows immediately from the definition (3.152) of j̃, and
using the assumptions (P-j1) on j as well as from the fact that Clarke’s gen-
eralized gradient ∂j(x, t, s) is a convex set. ut

By means of j̃1 we introduce the integral functional J̃1 given by

J̃1(v) =
∫
Q

j̃1(x, t, v(x, t)) dxdt, v ∈ Lp(Q).
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Due to hypotheses (P-j1), and applying Lebourg’s mean value theorem (see
[62, Theorem 2.177]), the functional J̃1 : Lp(Q) → R is well defined and
Lipschitz continuous, so that Clarke’s generalized gradient ∂J̃1 : Lp(Q) →
2L

q(Q) is well defined, too. Moreover, Aubin–Clarke theorem (cf. [80, p. 83])
provides the following characterization of the generalized gradient. For u ∈
Lp(Q) we have

η̃ ∈ ∂J̃1(u) =⇒ η̃ ∈ Lq(Q) with η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) for a.a. (x, t) ∈ Q.
(3.153)

By means of Clarke’s generalized gradient ∂J̃1 we further introduce the fol-
lowing multi-valued operator:

Ψ(u) := (i∗ ◦ ∂J̃1 ◦ i)(u), u ∈ X0,

where i∗ : Lq(Q) ↪→ X∗
0 is the adjoint operator of the embedding i : X0 ↪→

Lp(Q). As the operator Ψ is easily seen to be bounded due to hypothesis
(P-j1), we obtain in conjunction with [62, Lemma 6.22] the following result.

Lemma 3.59. Let hypothesis (P-j1) be fulfilled. Then the operator Ψ : X0 →
2X

∗
0 is bounded and pseudomonotone w.r.t. D0(L).

The sub-supersolution method for (3.141)–(3.142) is established by the fol-
lowing theorem.

Theorem 3.60. Let hypotheses (AP1)–(AP3) and (P-j1) be satisfied, and let
u and u be the given sub- and supersolution, respectively, satisfying u ≤ u.
Then there exist solutions of (3.141)–(3.142) within the ordered interval [u, u].

Proof: The following auxiliary, multi-valued, initial-boundary value problem
plays a crucial role in the proof of the theorem:

ut +ATu+ B̂(u) + ∂j̃1(·, ·, u) 3 h in Q, (3.154)
u(·, 0) = 0 in Ω, u = 0 on Γ, (3.155)

where j̃1 is defined in (3.151), and AT is given by

〈ATu, ϕ〉 :=
∫
Q

N∑
i=1

ai(x, t, Tu,∇u)
∂ϕ

∂xi
dx dt, ∀ϕ ∈ X0,

with T being the following truncation operator

(Tu)(x, t) =

u(x, t) if u(x, t) > u(x, t)
u(x, t) if u(x, t) ≤ u(x, t) ≤ u(x, t)
u(x, t) if u(x, t) < u(x, t).

Let B be the Nemytskij operator associated with the cut-off function b :
Q× R → R given by
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b(x, t, s) =

 (s− u(x, t))p−1 if s > u(x, t)
0 if u(x, t) ≤ s ≤ u(x, t)
−(u(x, t)− s)p−1 if s < u(x, t).

Then b : Q×R → R is a Carathéodory function satisfying the growth condition

|b(x, t, s)| ≤ k2(x, t) + c1|s|p−1 (3.156)

for a.e. (x, t) ∈ Q and for all s ∈ R, where c1 > 0 is a constant and k2 ∈ Lq(Q).
Moreover, one has the following estimate∫

Q

b(x, t, u(x, t))u(x, t) dx dt ≥ c2‖u‖pLp(Q) − c3, ∀u ∈ Lp(Q), (3.157)

for some constants c2 > 0 and c3 > 0. Thus in view of (3.156), the Nemytski
operator B : Lp(Q) → Lq(Q) defined by Bu(x, t) = b(x, t, u(x, t)) is contin-
uous and bounded. Therefore, the operator B̂ = i∗ ◦ B ◦ i : X0 → X∗

0 is
continuous, bounded, and pseudomonotone w.r.t. D0(L) due to the compact
embedding W0 ↪→ Lp(Q). The weak formulation of problem (3.154)–(3.155)
is as follows: Find u ∈ D0(L) such that

〈Lu+ATu+ B̂(u), ϕ〉+
∫
Q

η̃ ϕ dx dt = 〈h, ϕ〉, ∀ ϕ ∈ X0, (3.158)

where η̃ ∈ Lq(Q) and η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) a.e. in Q. The proof of the
theorem is accomplished in two steps. First, we are going to show the existence
of solutions of (3.158). Secondly, we are going to verify that any solution of
(3.158) belongs to the interval [u, u], which completes the proof, because then
ATu = Au, B̂(u) = 0, and η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) ⊆ ∂j1(x, t, u(x, t)). The
latter is due to Lemma 3.58 (iii).

Step 1: Existence for (3.158)

As for the existence of solutions of (3.158) let us consider the multi-valued
mapping

A(u) := ATu+ B̂(u) + Ψ(u) : X0 → 2X
∗
0 . (3.159)

Due to (A1)–(A3) and since T : X0 → X0 is continuous and bounded, the
operator AT : X0 → X∗

0 is bounded, continuous, and pseudomonotone w.r.t.
D0(L), cf. Theorem 9.109. By Lemma 3.59 the multi-valued operator Ψ is
pseudomonotone w.r.t. D0(L), and in view of Lemma 3.58 even uniformly
bounded. As B̂ : X0 → X∗

0 is continuous, bounded, and pseudomonotone
w.r.t. D0(L), we see that A : X0 → 2X

∗
0 is bounded and pseudomonotone

w.r.t. D0(L) in the sense of Definition 3.54, and thanks to (A3) and (3.157)
it is also coercive. Thus, by Theorem 3.56 the operator L+A : X0 → 2X

∗
0 is

surjective, which implies the existence of u ∈ D0(L) such that

h ∈ Lu+A(u) in X∗
0 .
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The latter means that there is an η̃ ∈ ∂J̃1(i(u)) = ∂J̃1(u) such that

Lu+ATu+ B̂(u) + i∗η̃ = h in X∗
0 . (3.160)

From (3.153) and (3.160) we see that the solution u of (3.160) is in fact a
solution of the auxiliary problem (3.158). To complete the proof it remains to
verify that any solution of (3.158) belongs to the interval [u, u].

Step 2: Comparison

Let us prove that u ≤ u holds, where u is the given supersolution. Sub-
tracting (3.144) from (3.160) we obtain the following inequality:

〈ut− ut +ATu−Au+ B̂(u) + i∗η̃− i∗η, ϕ〉 ≤ 0, ∀ ϕ ∈ X0 ∩Lp+(Q), (3.161)

where η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) and η(x, t) ∈ ∂j1(x, t, u(x, t)) for a.a. (x, t) ∈
Q. With the special test function ϕ = (u − u)+ ∈ X0 ∩ Lp+(Q) in (3.161) we
get for the individual terms on the left-hand side of inequality (3.161) the
following estimates:

〈ut − ut, (u− u)+〉 ≥ 0, (cf. 9.78) (3.162)

〈ATu−Au, (u− u)+〉

=
∫
{u>u}

N∑
i=1

(
ai(x, t, u,∇u)− ai(x, t, u,∇u

)∂(u− u)
∂xi

dx dt ≥ 0, (3.163)

where {u > u} = {(x, t) ∈ Q : u(x, t) > u(x, t)}, and

〈i∗η̃ − i∗η, (u− u)+〉 =
∫
{u>u}

(η̃ − η)(u− u) dx dt = 0, (3.164)

because for (x, t) ∈ {u > u} we get by Lemma 3.58 (iii) that η̃(x, t) = η(x, t).
In view of (3.162)–(3.164) we obtain from (3.161) the inequality

〈B̂(u), (u− u)+〉 =
∫
Q

b(x, t, u)(u− u)+ dx dt ≤ 0,

which by using the definition of b implies

0 ≤
∫
Q

[(u− u)+]p dx dt ≤ 0, (3.165)

and thus it follows (u − u)+ = 0, i.e., u ≤ u. The inequality u ≤ u can be
shown analogously, which completes the proof of the theorem. ut

Directedness of the Solution Set

Let S denote the set of all solutions of (3.141)–(3.142) that belong to the
ordered interval [u, u] formed by the given sub- and supersolution. In view of
Theorem 3.60, we have that S 6= ∅.
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Theorem 3.61. Let hypotheses (AP1)–(AP4) and (P-j1) be satisfied. Then
the solution set S equipped with the natural partial ordering of functions in-
troduced by the order cone Lp+(Q) is a directed set.

Proof: We are going to show that S is upward directed only, since the proof
for S being downward directed can be done in a similar way. To this end let
u1, u2 ∈ S. Our goal is to prove the existence of an element u ∈ S such that
u ≥ uk, k = 1, 2. The proof will be done in 4 steps and crucially relies on an
appropriately designed auxiliary problem.

Step 1: Auxiliary Problem

Let uk ∈ S, k = 1, 2, i.e., uk ∈ D0(L) ⊂ W0, and there are ηk ∈ Lq(Q) with
ηk(x, t) ∈ ∂j1(x, t, uk(x, t)) for a.e. (x, t) ∈ Q such that

〈Luk +Auk, ϕ〉+
∫
Q

ηk ϕdx dt = 〈h, ϕ〉, ∀ ϕ ∈ X0. (3.166)

Let us define u0 := max{u1, u2}, and η0 by

η0(x, t) =
{
η1(x, t) if (x, t) ∈ {u1 ≥ u2},
η2(x, t) if (x, t) ∈ {u2 > u1},

where {uj ≥ (>)uk} stands for {(x, t) ∈ Q : uj(x, t) ≥ (>)uk(x, t)}. By the
definition of η0 we readily see that η0 ∈ Lq(Q), and

η0(x, t) ∈ ∂j(x, t, u0(x, t)) for a.e. (x, t) ∈ Q. (3.167)

By means of η0, u0, and η, u of Definition 3.52 we introduce the following
modification j̃1 : Q× R → R of the given j:

j̃1(x, t, s) =

 j1(x, t, u0(x, t)) + η0(x, t)(s− u0(x, t)) if s < u0(x, t),
j1(x, t, s) if u0(x, t) ≤ s ≤ u(x, t),
j1(x, t, u(x, t)) + η(x, t)(s− u(x, t)) if s > u(x, t).

(3.168)
In view of hypothesis (P-j1) the modified function j̃1 : Q × R → R has the
following properties:

(a) (x, t) 7→ j̃1(x, t, s) is measurable in Q for all s ∈ R, and s 7→ j̃1(x, t, s) is
Lipschitz continuous in R for a.a. (x, t) ∈ Q.

(b) Clarke’s generalized gradient s 7→ ∂j̃1(x, t, s) is uniformly bounded, i.e.,

|η| ≤ kQ(x, t), ∀ η ∈ ∂j̃1(x, t, s) (3.169)

for a.a. (x, t) ∈ Q and for all s ∈ R.
(c) Clarke’s generalized gradient of s 7→ j̃1(x, t, s) is given by

∂j̃1(x, t, s) =


η0(x, t) if s < u0(x, t),
∂j̃1(x, t, u0(x, t)) if s = u0(x, t),
∂j1(x, t, s) if u0(x, t) < s < u(x, t),
∂j̃1(x, t, u(x, t)) if s = u(x, t),
η(x, t) if s > u(x, t).

(3.170)
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Moreover, the inclusions

∂j̃1(x, t, u0(x, t)) ⊆ ∂j1(x, t, u0(x, t)), ∂j̃1(x, t, u(x, t)) ⊆ ∂j1(x, t, u(x, t))
(3.171)

hold true due to the fact that Clarke’s generalized gradient ∂j(x, t, s) is a
convex set.

Furthermore, we introduce the functions gi : Q × R → R related with ηi
and ui, for i = 0, 1, 2, and defined by:

g0(x, t, s) =


η0(x, t) if s ≤ u0(x, t),
η0(x, t) + η(x,t)−η0(x,t)

u(x,t)−u0(x,t)
(s− u0(x, t)) if u0(x, t) < s < u(x, t),

η(x, t) if s ≥ u(x, t),
(3.172)

and for k = 1, 2

gk(x, t, s) =


ηk(x, t) if s ≤ uk(x, t),
ηk(x, t) + η0(x,t)−ηk(x,t)

u0(x,t)−uk(x,t) (s− uk(x, t)) if uk(x, t) < s < u0(x, t),
g0(x, t, s) if s ≥ u0(x, t).

(3.173)
Apparently, the functions (x, t, s) 7→ gi(x, t, s) are Carathéodory functions
that are piecewise linear with respect to s. Finally, define the cut-off function
b̂ related to the pair u0 and u by:

b̂(x, t, s) =

 (s− u(x, t))p−1 if s > u(x, t)
0 if u0(x, t) ≤ s ≤ u(x, t)
−(u0(x, t)− s)p−1 if s < u0(x, t).

(3.174)

Apparently b̂ : Q × R → R is a Carathéodory function satisfying the growth
condition

|b̂(x, t, s)| ≤ k3(x, t) + c1|s|p−1 (3.175)

for a.a. (x, t) ∈ Q and for all s ∈ R, where c1 > 0 is a constant and k3 ∈ Lq(Q).
Moreover, one has the following estimate∫

Q

b̂(x, t, u(x, t))u(x, t) dx dt ≥ c2‖u‖pLp(Q) − c3, ∀u ∈ Lp(Q), (3.176)

for some constants c2 > 0 and c3 > 0. By (3.175), the associated Nemytskij
operator B̂ : Lp(Q) → Lq(Q) defined by B̂u(x, t) = b̂(x, t, u(x, t)) is continu-
ous and bounded. If i∗ : Lq(Q) ↪→ X∗

0 is the adjoint operator of the embedding
i : X0 ↪→ Lp(Q), then the operator B̂ = i∗ ◦ B̂ ◦ i : X0 → X∗

0 is continuous,
bounded, and pseudomonotone w.r.t. D0(L) due to the compact embedding
W0 ↪→ Lp(Q). Now we are ready to introduce the following auxiliary problem,
which is crucial for the rest of the proof: Let j̃1, gi, and B̂ be given by (3.168),
(3.172)–(3.174), we consider
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ut +ATu+ B̂(u) + ∂j̃(x, t, u)−
2∑
l=1

|gl(x, t, u)− g0(x, t, u)| 3 h in Q,

(3.177)

u(·, 0) = 0 in Ω, u = 0 on Γ, (3.178)

with the operator AT defined by

〈ATu, ϕ〉 :=
∫
Q

N∑
i=1

ai(x, t, Tu,∇u)
∂ϕ

∂xi
dx dt, ∀ϕ ∈ X0,

where here T denotes the truncation operator given by

(Tu)(x, t) =
{
u(x, t) if u(x, t) > u(x, t)
u(x, t) if u(x, t) ≤ u(x, t),

which is known to be continuous from X into X. In the steps to follow we are
going to show that the auxiliary Problem (3.177)–(3.178) enjoys the following
properties:

(i) Existence: There exist solutions of Problem (3.177)–(3.178).
(ii) Comparison: Any solution u of (3.177)–(3.178) satisfies uk ≤ u ≤ u,

k = 1, 2.
(iii) Upward Directedness: Any solution u of (3.177)–(3.178) is a solution of

the original problem (3.141)–(3.142), which due to (ii) exceeds uk, and
thus S is upward directed.

Step 2: Existence of Solutions of the Auxiliary Problem

To prove the existence of solutions of (3.177)–(3.178) let

g(x, t, u) :=
2∑
l=1

|gl(x, t, u)− g0(x, t, u)|. (3.179)

By definitions (3.172)–(3.173), the functions gi : Q×R → R are Carathéodory
functions that are uniformly Lq(Q)-bounded. Therefore, the associated Ne-
mytskij operator G : Lp(Q) → Lq(Q) is continuous and bounded, and
G = i∗ ◦ G ◦ i : X0 → X∗

0 is continuous, bounded, and pseudomonotone
w.r.t. D0(L) due to the compact embedding W0 ↪→ Lp(Q). Thus the weak
formulation of problem (3.177)–(3.178) is as follows: Find u ∈ D0(L) such
that

〈Lu+ATu+ B̂(u)− G(u), ϕ〉+
∫
Q

η̃ ϕ dx dt = 〈h, ϕ〉, ∀ ϕ ∈ X0, (3.180)

where η̃ ∈ Lq(Q) and η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) a.e. on Q. By means of j̃1 we
introduce the integral functional J̃1 given by
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J̃1(v) =
∫
Q

j̃1(x, t, v(x, t)) dxdt, v ∈ Lp(Q).

Hypotheses (P-j1) together with Lebourg’s mean value theorem imply that
the functional J̃1 : Lp(Q) → R is well defined and even Lipschitz continuous,
so that Clarke’s generalized gradient ∂J̃1 : Lp(Q) → 2L

q(Q) is well defined,
too. Moreover, Aubin–Clarke’s theorem (cf. [80, p. 83]) provides the following
characterization of the generalized gradient. For u ∈ Lp(Q) we have

η̃ ∈ ∂J̃1(u) =⇒ η̃ ∈ Lq(Q) with η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) for a.a. (x, t) ∈ Q.
(3.181)

By means of Clarke’s generalized gradient ∂J̃1 we further introduce the fol-
lowing multi-valued operator:

Ψ̃(u) := (i∗ ◦ ∂J̃1 ◦ i)(u), u ∈ X0.

As the operator Ψ̃ is bounded due to hypothesis (P-j1), we obtain, in conjunc-
tion with [62, Lemma 6.22], that the multi-valued operator Ψ̃ : X0 → 2X

∗
0 is

bounded and pseudomonotone w.r.t.D0(L). To show the existence of solutions
of (3.180) let us consider the following multi-valued mapping

A(u) := ATu+ B̂(u)− G(u) + Ψ̃(u). (3.182)

As pseudomonotonicity w.r.t. D0(L) is invariant under addition, the operator
A : X0 → 2X

∗
0 of (3.182) is bounded and pseudomonotone w.r.t. D0(L) in the

sense of Definition 3.54. By the definitions of the gi we deduce from (3.172)–
(3.173) that G : X0 → X∗

0 is globally bounded. From (3.169) it follows that
also Ψ̃ : X0 → 2X

∗
0 is globally bounded. Since b̂ defining the operator B̂

satisfies an estimate of the form (3.176), we infer from hypothesis (A3) that
A : X0 → 2X

∗
0 is coercive. This allows us to apply Theorem 3.56. Hence it

follows that the operator L + A : X0 → 2X
∗
0 is surjective, which implies the

existence of u ∈ D0(L) such that

h ∈ Lu+A(u) in X∗
0 .

The latter means that there is an η̃ ∈ ∂J̃1(i(u)) = ∂J̃1(u) such that

Lu+ATu+ B̂(u)− G(u) + i∗η̃ = h in X∗
0 , (3.183)

which in view of (3.181) completes the existence proof of the auxiliary problem
(3.177)–(3.178) in its weak form (3.180).

Step 3: Comparison

Next we show that any solution u of the auxiliary problem (3.177)–(3.178)
satisfies uk ≤ u ≤ u. Let us prove first u ≤ u. Subtracting the inequality
(3.144) satisfied by the supersolution u from the equation (3.183) and testing
the resulting inequality by (u− u)+ ∈ X0 ∩ Lp+(Q), we obtain:
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〈ut − ut +ATu−Au+ B̂(u)− G(u) + i∗η̃ − i∗η, (u− u)+〉 ≤ 0. (3.184)

We estimate the individual terms on the left-hand side of (3.184) as follows:

〈ut − ut, (u− u)+〉 ≥ 0, (3.185)

due to (9.78), and because (u− u)+(·, 0) = 0. In view of (A2) and due to the
definition of AT we get

〈ATu−Au, (u− u)+〉

=
∫
{u>u}

N∑
i=1

(
ai(x, t, u,∇u)− ai(x, t, u,∇u)

)∂(u− u)
∂xi

dx dt ≥ 0, (3.186)

and by (3.172), (3.173)

〈−G(u), (u− u)+〉 =
∫
{u>u}

−G(u) (u− u) dx dt = 0. (3.187)

From (3.170) we see that

〈i∗η̃ − i∗η, (u− u)+〉 =
∫
{u>u}

(η̃ − η) (u− u) dx dt = 0. (3.188)

Taking into account (3.185)–(3.188), and (3.174), from (3.184) we finally get

〈B̂(u), (u− u)+〉 =
∫
{u>u}

b̂(x, t, u) (u− u) dx dt =
∫
{u>u}

(u− u)p dx dt ≤ 0,

and thus (u− u)+ = 0, i.e., u ≤ u.
The proof of uk ≤ u for k = 1, 2 requires more involved tools. The solu-

tions uk ∈ S satisfy (3.166). Subtracting the equation (3.180) (or equivalently
(3.183)) satisfied by a solution u of the auxiliary problem from (3.166), and
noting that Tu = u by the previous comparison, yields

〈(uk−u)t+Auk−Au−B̂(u)+G(u)+ i∗ηk− i∗η̃, ϕ〉 = 0, ∀ ϕ ∈ X0. (3.189)

Unlike in the previous comparison procedure, a more subtle test function
technique is required here. This is because u has to be compared with both
u1 and u2, and the operator A is not specified for one particular uk. It is here
where the assumption (A4) comes into play. For this purpose we construct a
special test function ϕ for (3.189). By (A4), for any fixed ε > 0 there exists
δ(ε) ∈ (0, ε) such that ∫ ε

δ(ε)

1
ω(r)

dr = 1.

We define the function θε : R → R+ as follows:
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θε(s) =


0 if s < δ(ε)∫ s

δ(ε)

1
ω(r)

dr if δ(ε) ≤ s ≤ ε

1 if s > ε.

One readily verifies that, for each ε > 0, the function θε is continuous, piece-
wise differentiable, and the derivative is nonnegative and bounded. Therefore
the function θε is Lipschitz continuous and nondecreasing. In addition, it sat-
isfies

θε → χ{s>0} as ε→ 0, (3.190)

where χ{s>0} is the characteristic function of the real half line {s ∈ R : s > 0},
and one has

θ′ε(s) =

{
1/ω(s) if δ(ε) < s < ε

0 if s 6∈ [δ(ε), ε].

As our special test function we choose the composition of θε with (uk − u),
i.e.,

ϕ = θε(uk − u) ∈ X0 ∩ Lp+(Q), (3.191)

and note that
∂

∂xi
θε(uk − u) = θ′ε(uk − u)

∂(uk − u)
∂xi

.

We use (3.191) to test (3.189), and estimate the terms on the left-hand side
individually. Let Θε be the primitive of the function θε defined by

Θε(s) =
∫ s

0

θε(r) dr.

We obtain for the first term on the left-hand side of (3.189) by using Lemma
9.103 〈∂(uk − u)

∂t
, θε(uk − u)

〉
=
∫
Ω

Θε(uk − u)(x, τ) dx ≥ 0. (3.192)

Making use of (A2) and (A4), the term 〈Auk−Au, θε(uk−u)〉 can be estimated
as follows:

〈Auk −Au, θε(uk − u)〉

=
∫
Q

N∑
i=1

(
ai(x, t, uk,∇uk)− ai(x, t, u,∇u)

) ∂

∂xi
θε(uk − u) dx dt

=
∫
Q

N∑
i=1

(
ai(x, t, uk,∇uk)− ai(x, t, uk,∇u)

)
θ′ε(uk − u)

∂(uk − u)
∂xi

dx dt

+
∫
Q

N∑
i=1

(
ai(x, t, uk,∇u)− ai(x, t, u,∇u)

)
θ′ε(uk − u)

∂(uk − u)
∂xi

dx dt,
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which yields the estimate

〈Auk −Au, θε(uk − u)〉

≥
∫
Q

N∑
i=1

(
ai(x, t, uk,∇u)− ai(x, t, u,∇u)

)
θ′ε(uk − u)

∂(uk − u)
∂xi

dx dt

≥ −N
∫
Q

(k2 + |u|p−1 + |uk|p−1 + |∇u|p−1)×

× ω(|uk − u|)θ′ε(uk − u)|∇(uk − u)| dx dt

≥ −N
∫
{δ(ε)<uk−u<ε}

% |∇(uk − u)| dx dt,

(3.193)
where % = k2+|u|p−1+|uk|p−1+|∇u|p−1 ∈ Lq(Q). The term on the right-hand
side of (3.193) tends to zero as ε→ 0. Next we estimate the term

〈G(u) + i∗ηk − i∗η̃, θε(uk − u)〉

=
∫
Q

( 2∑
l=1

|gl(x, t, u)− g0(x, t, u)|+ ηk − η̃
)
θε(uk − u) dx dt.

(3.194)

By using (3.190) and applying Lebesgue’s dominated convergence theorem,
and taking into account the definitions of gl (l = 0, 1, 2) according to (3.172)
and (3.173), from (3.190) we obtain

lim
ε→0

〈G(u) + i∗ηk − i∗η̃, θε(uk − u)〉

=
∫
Q

( 2∑
l=1

|gl(x, t, u)− g0(x, t, u)|+ ηk − η̃
)
χ{uk−u>0} dx dt.

(3.195)

If uk − u > 0, then u < u0, and thus for (x, t) ∈ {uk − u > 0} we get
η̃(x, t) = η0(x, t), g0(x, t, u) = η0(x, t), and gk(x, t, u) = ηk(x, t), which implies
the following estimate of the right-hand side of (3.195) (with l 6= k, and
l, k ∈ {1, 2})∫

Q

( 2∑
l=1

|gl(x, t, u)− g0(x, t, u)|+ ηk − η̃
)
χ{uk−u>0} dx dt

=
∫
Q

(
|gk(x, t, u)− g0(x, t, u)|+ ηk − η̃

)
χ{uk−u>0} dx dt

+
∫
Q

|gl(x, t, u)− g0(x, t, u)|χ{uk−u>0} dx dt

≥
∫
{uk−u>0}

(
|ηk − η0|+ ηk − η0

)
dx dt ≥ 0.

(3.196)

Using (3.192)–(3.196) we finally obtain from (3.189) as ε → 0 the following
inequality:
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lim
ε→0

〈−B̂(u), θε(uk − u)〉 = −
∫
Q

b̂(x, t, u)χ{uk−u>0} dx dt ≤ 0. (3.197)

As uk ≤ u0, and for (x, t) ∈ {uk − u > 0} the cut-off function becomes
b̂(x, t, u) = −(u0(x, t)− u(x, t))p−1, inequality (3.197) yields the estimate

0 ≤
∫
{uk−u>0}

(uk(x, t)− u(x, t))p−1 dx dt

≤
∫
{uk−u>0}

(u0(x, t)− u(x, t))p−1 dx dt ≤ 0,

which implies ∫
Q

(
(uk(x, t)− u(x, t))+

)p−1

dx dt = 0,

and thus (uk − u)+ = 0, i.e., uk ≤ u in Q, for k = 1, 2.

Step 4: S Is Upward Directed

From Step 1–Step 3 we know that any solution u of the auxiliary problem
(3.177)–(3.178) (or equivalently (3.180)) satisfies uk ≤ u ≤ u, where uk ∈ S,
k = 1, 2, and therefore u ≥ u0. The proof of the upward directedness is
complete, if the solution u of the auxiliary problem in fact turns out to be a
solution of the original problem (3.141)–(3.142). Because uk ≤ u ≤ u it is clear
that u ∈ [u, u]. Due to u0 ≤ u ≤ u, it follows that ATu = Au, B̂(u) = 0, and
G(u) = 0, because then g0(x, t, u) = gl(x, t, u), l = 1, 2, see (3.173). Hence,
the solution of the auxiliary problem in fact fulfills: u ∈ D0(L) such that

〈Lu+Au,ϕ〉+
∫
Q

η̃ ϕ dx dt = 〈h, ϕ〉, ∀ ϕ ∈ X0, (3.198)

where η̃ ∈ Lq(Q) and η̃(x, t) ∈ ∂j̃1(x, t, u(x, t)) a.e. on Q. In view of (3.170)–
(3.171) we see that ∂j̃1(x, t, u(x, t)) ⊆ ∂j1(x, t, u(x, t)), which shows that u is
in fact a solution of the original problem (3.141)–(3.142). ut

Remark 3.62. The directedness of the solution set S ensured by Theorem 3.61
is the crucial step toward the existence of the smallest and greatest element of
S, which are the smallest and greatest solution of (3.141)–(3.142) within the
interval [u, u] (also called the extremal solutions). The proof of the extremal
solutions will be done in the next paragraph.

Extremal Solutions

Let S denote the set of all solutions of (3.141)–(3.142) within the interval
[u, u]. A first step toward the existence of extremal elements of S, i.e., the
extremal solutions of (3.141)–(3.142) within [u, u], is the following topological
characterization of S.
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Lemma 3.63. The solution set S is compact in X0, and weakly sequentially
compact in W0.

Proof: Due to S ⊆ [u, u], S is bounded in Lp(Q). Let u ∈ S be given. Then
with the special test function ϕ = u in (3.145) one gets

〈Lu+Au, u〉+
∫
Q

η u dxdt = 〈h, u〉 (3.199)

with η ∈ ∂j1(·, ·, u). As u ∈ D0(L), it follows

〈Lu, u〉 = 〈ut, u〉 =
1
2
‖u(·, τ)‖2L2(Ω) ≥ 0.

By means of (A3) and the uniform boundedness of ∂j1(·, ·, u) due to (P-j1)
and using the last inequality, we get from (3.199) a uniform bound for the
gradient ‖∇u‖Lp(Q), which together with the Lp(Q)-boundedness of S results
in

‖u‖X0 ≤ c, ∀ u ∈ S. (3.200)

Any solution u ∈ S satisfies (3.145), i.e.,

Lu+Au+ i∗η = h in X∗
0 .

From the last equation, and (3.200) along with the boundedness of A : X0 →
X∗

0 , we readily infer
‖ut‖X∗0 ≤ c, ∀ u ∈ S, (3.201)

and thus, from (3.200) and (3.201) we obtain

‖u‖W0 ≤ c, ∀ u ∈ S. (3.202)

Let (un) ⊆ S be any sequence. Then, due to (3.202), a weakly convergent
subsequence (uk) exists with

uk ⇀ u in W0.

As uk are solutions of (3.145), we get by testing (3.145) with ϕ = uk − u the
estimate

〈Auk, uk − u〉 = 〈Luk + i∗ηk − h, u− uk〉 ≤ 〈Lu+ i∗ηk − h, u− uk〉 → 0,

which yields
lim sup

k
〈Auk, uk − u〉 ≤ 0. (3.203)

As A : X0 → X∗
0 is pseudomonotone w.r.t. D0(L), from (3.203) it follows that

Auk ⇀ Au, 〈Auk, uk〉 → 〈Au, u〉,
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and because A is of class (S+) w.r.t. to D0(L) (cf., e.g., [62, Theorem 2.153]),
the strong convergence uk → u in X0 holds. Thus, the proof is complete
provided the limit u belongs to S. As u apparently belongs to the interval
[u, u], we only need to justify that u is a solution of (3.145). The uk fulfill
(3.145), i.e., we have

〈Luk +Auk, ϕ〉+
∫
Q

ηk ϕdxdt = 〈h, ϕ〉, (3.204)

where ηk ∈ ∂j1(·, ·, uk). By (P-j1) (ηk) is bounded in Lq(Q), and thus passing
to a subsequence if necessary, again denoted by (ηk)), we get

ηk ⇀ η in Lq(Q) as k →∞.

In just the same way as in Sect. 3.2.3 we can prove that η ∈ ∂j1(·, ·, u) holds
true. Using the convergence properties of (uk) derived above, and passing to
the limit in (3.204) as k →∞, completes the proof. ut

Theorem 3.61 and Lemma 3.63 are the main ingredients for proving the
following theorem on the existence of extremal solutions. The proof follows
similar arguments as in the proof of Theorem 3.30, and therefore will be
omitted.

Theorem 3.64. Let hypotheses (AP1)–(AP4) and (P-j1) be satisfied. Then
the solution set S has the greatest element u∗ and the smallest element u∗.

Remark 3.65. If K = X, then (see Example 3.40) (3.126)–(3.128) reduces to
the multi-valued parabolic problem (3.135) including multi-valued Robin-type
boundary conditions. Similarly as in Example 3.47, we deduce the correspond-
ing notion of sub-supersolution from the general notions given by Definition
3.44 and Definition 3.45. We note that under (AP1)–(AP4), and (P-j1)–(P-
j2), all the results obtained above for the case K = X0 can be extended in a
straightforward way to the case K = X.

3.3.3 Parabolic Variational Inequality

In this subsection the closed, convex subset K is not necessarily a closed sub-
space of X. Unlike in the elliptic case, in the treatment of parabolic variational
inequalities we are faced with additional difficulties. In order to demonstrate
of what kind these difficulties are, and how to overcome them, we consider
some special case of the general variational inequality formulated in (3.126)–
(3.128). That is, throughout this subsection we assume j1 = 0, and assume ai
to be independent of u, i.e., the operator A is of the form

Au(x, t) = −
N∑
i=1

∂

∂xi
ai(x, t,∇u(x, t)),
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with coefficients ai satisfying (AP1)–(AP3). Note, in this case (AP4) is triv-
ially fulfilled. The special multi-valued variational inequality we are going to
study here is as follows: Find u ∈ K ∩D(L), and ξ ∈ Lq(Γ ) such that

〈Lu+Au− h, v − u〉+
∫
Γ

ξ (γv − γu) dΓ ≥ 0, ∀ v ∈ K, (3.205)

where ξ ∈ ∂j2(·, ·, γu). Let us further assume h ∈ Lq(Q).

The Sub-Supersolution Method

Let us recall the notion of sub- and supersolution introduced in Sect. 3.3.1
specified for the parabolic variational inequality (3.205).

Definition 3.66. A function u ∈ W is called a subsolution of (3.205), if
there is a ξ ∈ Lq(Γ ) such that the following holds:

(i) u ∨K ⊆ K, u(·, 0) ≤ 0 in Ω,

(ii) ξ ∈ ∂j2(·, ·, γu),

(iii) 〈ut +Au− h, v − u〉+
∫
Γ

ξ (γv − γu) dΓ ≥ 0, ∀ v ∈ u ∧K.

Definition 3.67. A function u ∈W is called a supersolution of (3.205), if
there is a ξ ∈ Lq(Γ ) such that the following holds:

(i) u ∧K ⊆ K, u(·, 0) ≥ 0 in Ω,

(ii) ξ ∈ ∂j2(·, ·, γu),

(iii) 〈ut +Au− h, v − u〉+
∫
Γ

ξ (γv − γu) dΓ ≥ 0, ∀ v ∈ u ∨K.

In our approach to extend the sub-supersolution method to the parabolic
variational inequality (3.205), the notion of the so-called penalty operator
associated with K will play an important role.

Definition 3.68. Let K 6= ∅ be a closed and convex subset of a reflexive
Banach space Y. A bounded, hemicontinuous, and monotone operator P :
Y → Y ∗ is called a penalty operator associated with K if

P (u) = 0 ⇐⇒ u ∈ K. (3.206)

We impose the following hypothesis on the given closed and convex subset
K ⊆ X.

(P)Assume the existence of a penalty operator P : X → X∗ associated with
K satisfying the following condition:
For each u ∈ D(L), there exists w = w(u) ∈ X, w 6= 0 if P (u) 6= 0, such
that
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(i) 〈u′ +Au,w〉 ≥ 0, and
(ii) 〈P (u), w〉 ≥ D‖P (u)‖X∗(‖w‖Lp(Q) + ‖γw‖Lp(Γ )),

with some constant D > 0 independent of u and w.

With respect to a given ordered pair of sub-supersolutions u ≤ u, we introduce
the modification j̃2 : Γ × R → R by

j̃2(x, t, s) =


j2(x, t, γu(x, t)) + ξ(x, t)(s− γu(x, t)) if s < γu(x, t),
j2(x, t, s) if γu(x, t) ≤ s ≤ γu(x, t),
j2(x, t, γu(x, t)) + ξ(x, t)(s− γu(x, t)) if s > γu(x, t).

(3.207)

Lemma 3.69. Let hypothesis (P-j2) be satisfied. Then the function j̃2 : Γ ×
R → R has the following properties:

(i) (x, t) 7→ j̃2(x, t, s) is measurable in Γ for all s ∈ R, and s 7→ j̃2(x, t, s) is
Lipschitz continuous in R for a.e. (x, t) ∈ Γ .

(ii) Clarke’s generalized gradient ∂j̃2(x, t, s) of s 7→ j̃2(x, t, s) satisfies the
estimate

|ξ| ≤ kΓ (x, t), ∀ ξ ∈ ∂j̃2(x, t, s)

for a.e. (x, t) ∈ Γ and for all s ∈ R.
(iii) Clarke’s generalized gradient of s 7→ j̃2(x, t, s) is given by

∂j̃2(x, t, s) =


ξ(x, t) if s < γu(x, t),
∂j̃2(x, t, γu(x, t)) if s = γu(x, t),
∂j2(x, t, s) if γu(x, t) < s < γu(x, t),
∂j̃2(x, t, γu(x, t)) if s = γu(x, t),
ξ(x, t) if s > γu(x, t),

(3.208)

and the inclusions ∂j̃2(x, t, γu(x, t)) ⊆ ∂j2(x, t, γu(x, t)) and
∂j̃2(x, t, γu(x, t)) ⊆ ∂j2(x, t, γu(x, t)) hold true.

Proof: The proof follows immediately from the definition (3.207) of j̃2, and
using the assumptions (P-j2) on j2, as well as from the fact that Clarke’s
generalized gradient ∂j2(x, t, s) is a convex set. ut

By means of j̃2 we introduce the integral functional J̃2 defined on Lp(Γ ) and
and given by

J̃2(v) =
∫
Γ

j̃2(x, t, v(x, t)) dΓ, v ∈ Lp(Γ ).

Due to hypotheses (P-j2), and (ii) of Lemma 3.69, by applying Lebourg’s mean
value theorem (see [62, Theorem 2.177]), the functional J̃2 : Lp(Γ ) → R is well
defined and Lipschitz continuous, so that Clarke’s generalized gradient ∂J̃2 :
Lp(Γ ) → 2L

q(Γ ) is well defined, too. Moreover, Aubin–Clarke theorem (cf. [80,
p. 83]) provides the following characterization of the generalized gradient. For
v ∈ Lp(Γ ) we have
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ξ̃ ∈ ∂J̃2(v) =⇒ ξ̃ ∈ Lq(Γ ) with ξ̃(x, t) ∈ ∂j̃2(x, t, v(x, t)) for a.a. (x, t) ∈ Γ .
(3.209)

By means of Clarke’s generalized gradient ∂J̃2 we further introduce the fol-
lowing multi-valued operator:

Φ(u) := (γ∗ ◦ ∂J̃2 ◦ γ)(u), u ∈ X,

where γ∗ : Lq(Γ ) → X∗ denotes the adjoint operator of the trace operator
γ : X → Lp(Γ ). If ξ ∈ Lq(Γ ) then

〈γ∗ξ, ϕ〉 =
∫
Γ

ξ γϕ dΓ, ∀ ϕ ∈ X.

In view of (ii) of Lemma 3.69, the multi-valued operator Φ : X → 2X
∗ \ {∅}

is uniformly bounded.

Lemma 3.70. Let hypothesis (P-j2) be satisfied. Then the operator Φ : X →
2X

∗ \ {∅} is uniformly bounded, and pseudomonotone w.r.t. D(L).

Proof: We only need to show that Φ is pseudomonotone w.r.t. D(L). For
any u ∈ X the set ∂J̃2(γu) ⊂ Lq(Γ ) is nonempty, convex, weak-compact, and
bounded, i.e.,

‖ξ‖Lq(Γ ) ≤ C, ∀ ξ ∈ ∂J̃2(γu),

cf. [80, Prop. 2.1.2]. Therefore, γ∗(∂J̃2(γu)) is nonempty, convex, and bounded
in X∗. To see that γ∗(∂J̃2(γu)) is closed, let (γ∗ξn) be a sequence such that

γ∗ξn → w in X∗, ξn ∈ ∂J̃2(γu).

Since ∂J̃2(γu) ⊂ Lq(Γ ) is weak-compact there is a subsequence (ξni) such
that ξni

⇀ ξ in Lq(Γ ) with ξ ∈ ∂J̃2(γu), which implies γ∗ξni
⇀ γ∗ξ = w,

and thus the closedness of γ∗(∂J̃2(γu)). By hypothesis (ii) of Lemma 3.69 the
multifunction ∂J̃2 : Lp(Γ ) → 2L

q(Γ ) \ {∅} is bounded, hence the mapping
γ∗ ◦ ∂J̃2 ◦ γ : X → 2X

∗ \ {∅} is bounded as well. To verify condition (ii) of
Definition 3.54 assume that γ∗ ◦ ∂J̃2 ◦ γ fails to be upper semicontinuous in
u ∈ X. Thus there is a sequence (uk) ⊂ X with uk → u in X, and a sequence
(ξk) ⊆ ∂J̃2(γuk) such that γ∗ξk ⇀ u∗ in X∗ and u∗ /∈ γ∗(∂J̃2(γu)). This,
however, yields a contradiction in the following way: uk → u in X implies
γuk → γu in Lp(Γ ). Since (ξk) ⊆ ∂J̃2(γuk) is bounded there is a subsequence
(ξkj

) such that ξkj
⇀ ξ in Lq(Γ ), which implies

γ∗ξkj
⇀ γ∗ξ = u∗.

Applying the upper semicontinuity of J̃2
o

: Lp(Γ )× Lp(Γ ) → R we obtain

J̃2
o
(γu; γv) ≥ lim sup

j→∞
J̃2
o
(γukj

; γv) ≥ lim sup
j→∞

〈ξkj
, γv〉 = 〈ξ, γv〉,
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which shows that ξ ∈ ∂J̃2(γu), and thus γ∗ξ = u∗ ∈ γ∗(∂J̃2(γu)), i.e., we
have reached a contradiction and (ii) of Definition 3.54 is verified. To prove
condition (iii) of Definition 3.54, let (un) ⊂ D(L) with un ⇀ u in X, Lun ⇀
Lu in X∗, and u∗n := γ∗ξn with ξn ∈ ∂J̃2(γun) such that u∗n ⇀ u∗ in X∗. We
are going to show that these assumptions already imply the desired assertions,
i.e., 〈u∗n, un〉 → 〈u∗, u〉 and u∗ ∈ γ∗(∂J̃2(γu)). By the assumptions on (un)
we have un ⇀ u in W , which due to the compactness of the trace operator
γ : W → Lp(Γ ) implies γun → γu in Lp(Γ ). Since J̃2 : Lp(Γ ) → R is locally
Lipschitz there is a constant C (depending on γu) such that for n sufficiently
large we have

|J̃2
o
(γun; v)| ≤ C ‖v‖Lp(Γ ), ∀ v ∈ Lp(Γ ),

and thus, in particular,

|〈ξn, γun − γu〉| ≤ C ‖γun − γu‖Lp(Γ ). (3.210)

In view of γun → γu in Lp(Γ ) we get from (3.210)

〈γ∗ξn, un − u〉 → 0 as n→∞,

which implies
〈u∗n, un〉 − 〈u∗n, u〉 → 0. (3.211)

Since u∗n ⇀ u∗, it follows
〈u∗n, u〉 → 〈u∗, u〉,

and thus by (3.211) we obtain 〈u∗n, un〉 → 〈u∗, u〉. Finally, to prove that u∗ ∈
γ∗(∂J̃2(γu)) holds, we note first that according to ξn ∈ ∂J̃2(γun) we have

J̃2
o
(γun; v) ≥ 〈ξn, v〉, ∀ v ∈ Lp(Γ ),

which implies by the upper semicontinuity of J̃2
o
, and the boundedness of

(ξn) in Lq(Γ ), and using γun → γu in Lp(Γ ), the inequality

J̃2
o
(γu; v) ≥ 〈ξ, v〉, ∀ v ∈ Lp(Γ ), (3.212)

where ξ is the weak limit of some weakly convergent subsequence (ξnj
) of (ξn).

As u∗nj
= γ∗ξnj

⇀ u∗ in X∗ and also γ∗ξnj
⇀ γ∗ξ we get u∗ = γ∗ξ, which in

view of (3.212) proves u∗ ∈ γ∗(∂J̃2(γu)). ut

As in Sect. 3.3.2 we introduce the cut-off function b : Q× R → R related
to the ordered pair of sub- and supersolutions, and given by

b(x, t, s) =

 (s− u(x, t))p−1 if s > ū(x, t),
0 if u(x, t) ≤ s ≤ u(x, t),
−(u(x, t)− s)p−1 if s < u(x, t).
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Then b : Q × R → R is a Carathéodory function satisfying the estimate
(3.156) and (3.157), which implies that the associated Nemytskij operator
B : Lp(Q) → Lq(Q) is bounded and continuous, and B̂ = i∗ ◦B ◦ i : X → X∗

is bounded and pseudomonotone w.r.t. D(L) due to the compact embedding
W ↪→ Lp(Q). By hypotheses (AP1)–(AP3), the operator A : X → X∗ is
continuous, bounded, and pseudomonotone w.r.t. D(L) (cf. Theorem 9.109),
which together with the properties of B̂ and Φ yields the following result.

Lemma 3.71. Let (AP1)–(AP3) and (P-j2) be fulfilled. Then the multi-valued
operator A : X → 2X

∗
defined by A = A + B̂ + Φ is bounded, coercive, and

pseudomonotone w.r.t. D(L).

Proof: Apparently A is bounded, because each of the operators A, B̂, and
Φ is bounded. The coercivity of A readily follows from (AP3), (3.157), and
the uniform boundedness of Φ. Thus it only remains to show that A is
pseudomonotone w.r.t. D(L), and for this only condition (iii) of Definition
3.54 needs to be checked, because (i) and (ii) of Definition 3.54 are obvious.
To this end assume (un) ⊂ D(L) with un ⇀ u in X, Lun ⇀ Lu in X∗,
u∗n ∈ (A+ B̂ + Φ)(un) with u∗n ⇀ u∗ in X∗, and

lim sup
n

〈u∗n, un − u〉 ≤ 0. (3.213)

Due to u∗n ∈ (A + B̂ + Φ)(un) we have u∗n = Aun + B̂(un) + γ∗ξ̃n with
ξ̃n ∈ ∂J̃2(un). The compact embedding W ↪→ Lp(Q) implies that the operator
B̂ : W → Lq(Q) ⊂ X∗ is completely continuous, and hence it follows that
B̂(un) → B̂(u) in X∗. As (ξ̃n) is uniformly bounded in Lq(Γ ), and γun → γu
in Lp(Γ ), we get

lim
n→∞

〈γ∗ξ̃n, un − u〉 = lim
n→∞

∫
Γ

ξ̃n(γun − γu) dΓ = 0.

From (3.213) we thus deduce

lim sup
n

〈Aun, un − u〉 ≤ 0.

The sequence (Aun) ⊂ X∗ is bounded, so that there is a subsequence with
Auk ⇀ v. Since A is pseudomonotone w.r.t. D(L), it follows that v = Au and
〈Auk, uk〉 → 〈Au, u〉. It is clear that we have shown that

Aun ⇀ Au and 〈Aun, un〉 → 〈Au, u〉. (3.214)

From (3.214) and u∗n ⇀ u∗ we obtain γ∗ξ̃n ⇀ u∗ −Au− B̂(u), which in view
of the pseudomonotonicity of Φ, implies u∗ ∈ (A+ B̂ +Φ)(u) and 〈u∗n, un〉 →
〈u∗, u〉. ut

Lemma 3.72. Let (AP1)–(AP3) and (P-j2) be fulfilled. Then the multi-valued
operator Aε : X → 2X

∗
defined by Aε = A + B̂ + 1

εP + Φ, is bounded,
coercive, and pseudomonotone w.r.t. D(L) for any ε > 0, where P is the
penalty operator belonging to K.
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Proof: By Lemma 3.71, the multi-valued operator A + B̂ + Φ : X → 2X
∗

is
pseudomonotone w.r.t. D(L), bounded, and coercive. On the other hand, by
definition, the penalty operator P : X → X∗ is bounded, hemicontinuous, and
monotone. This implies that P : X → X∗ is pseudomonotone and bounded.
Thus, by applying Theorem 3.57 with A1 = A + B̂ + Φ and A2 = 1

εP , Aε :
X → 2X

∗
is bounded and pseudomonotone w.r.t. D(L). Finally, the coercivity

of Aε is obtained by a straightforward calculation employing the fact that P
is a monotone operator. ut

A crucial point in the proof of the sub-supersolution method is the solvability
of the following auxiliary multi-valued parabolic variational inequality.

Auxiliary Variational Inequality

Find u ∈ K ∩D(L), and ξ̃ ∈ Lq(Γ ) such that

〈Lu+Au+ B̂ − h, v − u〉+
∫
Γ

ξ̃ (γv − γu) dΓ ≥ 0, ∀ v ∈ K, (3.215)

where ξ̃ ∈ ∂j̃2(·, ·, γu).

Lemma 3.73. Let (AP1)–(AP3), (P-j2), and (P) be satisfied, and suppose
D(L)∩K 6= ∅. Then the auxiliary parabolic variational inequality (3.215) has
a solution.

Proof: We introduce the following Penalty problem related to (3.215): Find
u ∈ D(L), and ξ̃ ∈ Lq(Γ ) such that

〈Lu+Au+ B̂(u) +
1
ε
P (u)− h, v〉+

∫
Γ

ξ̃ γv dΓ = 0, ∀ v ∈ X, (3.216)

where ε > 0, P is the associated penalty operator, and ξ̃ ∈ ∂j̃2(·, ·, γu).
Step 1: Existence of solutions of (3.216)

In view of Lemma 3.72, the operator Aε = A + B̂ + 1
εP + Φ is bounded,

coercive, and pseudomonotone w.r.t. D(L) for any ε > 0, and therefore, by
applying Theorem 3.56, there exists a u ∈ D(L) such that

h ∈ Lu+Aεu,

which means that there is a ξ̃ ∈ ∂j̃2(·, ·, γu) such that

Lu+Au+ B̂ +
1
ε
P (u) + γ∗ξ̃ = h in X∗. (3.217)

The latter shows that u solves (3.216).

Step 2: Boundedness of the penalty solutions of (3.216) in W

According to Step 1, for any ε > 0 problem (3.216) admits a solution uε. We
show that the family {uε : ε > 0 small} is bounded with respect to the graph
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norm of D(L). To this end let u0 be a (fixed) element of D(L) ∩ K. Using
(3.217) with u replaced by uε, we get

〈Luε +Auε + B̂(uε) +
1
ε
P (uε) + γ∗ξ̃ε, uε − u0〉 = 〈h, uε − u0〉,

where ξ̃ε ∈ ∂j̃2(·, ·, γuε). On the basis of the monotonicity of L and because
Pu0 = 0, we derive

〈h− u′0, uε − u0〉

= 〈u′ε − u′0, uε − u0〉+ 〈(A+ B̂)(uε), uε − u0〉+
1
ε
〈Puε − Pu0, uε − u0〉

+〈γ∗ξ̃ε, uε − u0〉
≥ 〈(A+ B̂)(uε) + γ∗ξ̃ε, uε − u0〉.

Thus,
〈(A+ B̂)(uε) + γ∗ξ̃ε, uε − u0〉

‖uε − u0‖X
≤ ‖h− u′0‖X∗ ,

for all ε > 0. Since the operator A+B̂+Φ : X → 2X
∗

is coercive, we have that
‖uε‖X is bounded. As a consequence, the sequences (Auε), (B̂(uε)), and (γ∗ξ̃ε)
are bounded in X∗. Moreover, from the growth conditions of b, we readily see
that (B(uε)) is a bounded sequences in Lq(Q). All these facts make clear from
(3.217) that (u′ε) is bounded if and only if ( 1

εP (uε)) is bounded.
Next, we check that the sequence ( 1

εP (uε)) is bounded in X∗, assuming
P (uε)) 6= 0, because otherwise it is trivial. To see this, for each ε, we choose
w = wε to be an element satisfying (P) with u = uε. From (3.217), we have

〈u′ε, wε〉+ 〈(A+ B̂)(uε) + γ∗ξ̃ε, wε〉+
1
ε
〈P (uε), wε〉 = 〈h,wε〉.

Also, from (P) we know that 〈u′ε, wε〉+ 〈Auε, wε〉 ≥ 0, therefore

1
ε
〈P (uε), wε〉 ≤ 〈h− B̂(uε)− γ∗ξ̃ε, wε〉. (3.218)

Let c > 0 be some generic constant. By the definition of Φ and the boundedness
properties of (uε), (B̂(uε)), we see that there is c > 0 such that

|〈h− B̂(uε)− γ∗ξ̃ε, wε〉| ≤ c(‖wε‖Lp(Q) + ‖γwε‖Lp(Γ )), ∀ε > 0 small.

This, (3.218), and (P) imply that

1
ε
‖Puε‖X∗ ≤

c

D
, ∀ε > 0 small. (3.219)

Consequently, (uε) is bounded in W , and thus for a relabeled subsequence
(un) with un := uεn and εn → 0 as n→∞ we obtain



3.3 Multi-Valued Parabolic Variational Inequalities 125

un ⇀ u in X, u′n ⇀ u′ in X∗.

Since D(L) is closed in W and convex, it is true that u ∈ D(L).

Step 3: The limit u solves (3.215)

First, note that by (3.219) we have Pun → 0 in X∗. It follows from the
monotonicity of P that

〈Pv, v − u〉 ≥ 0, ∀v ∈ X.

As in the proof of Minty’s lemma (cf. [151]), this leads to 〈Pu, v〉 ≥ 0 for all
v ∈ X. Hence, Pu = 0 in X∗, so u ∈ K. If we test (3.216) satisfied by the
penalty solutions un with v = un − u we obtain

〈u′n+Aun+B̂(un)+
1
εn
P (un)−h, un−u〉+

∫
Γ

ξ̃n (γun−γu) dΓ = 0. (3.220)

Taking into account that

〈u′ − u′n, u− un〉 ≥ 0,
1
εn
〈P (un), un − u〉 ≥ 0,

we have from (3.220) the inequality

〈Aun, un − u〉 ≤ 〈u′ + B̂(un)− h, u− un〉+
∫
Γ

ξ̃n (γu− γun) dΓ.

Due to the compact embedding W ↪→ Lp(Q), the compactness of the trace
operator γ : W → Lp(Γ ), and the uniform boundedness of (ξ̃n) in Lq(Γ ), we
get

lim sup
n→∞

〈Aun, un − u〉 ≤ 0.

Because A is an operator of class (S+) with respect to D(L) (cf., e.g., [20,
21, 44], or Theorem 9.109), we infer the strong convergence un → u in X. On
the other hand, testing (3.216) satisfied by un with v − un where v ∈ K, we
obtain the following inequality for the penalty solutions un:

〈u′n+Aun+B̂(un)−h, v−un〉+
∫
Γ

ξ̃n (γv−γun) dΓ = 〈− 1
εn
P (un), v−un〉 ≥ 0

(3.221)
As (ξ̃n) ⊂ Lq(Γ ) is uniformly bounded, there is a weakly convergent subse-
quence (ξ̃k), i.e.,

ξ̃k ⇀ ξ̃ as k →∞.

From ξ̃k ∈ ∂j̃2(·, ·, γuk) and γuk → γu in Lp(Γ ), it follows that the weak limit
ξ̃ satisfies ξ̃ ∈ ∂j̃2(·, ·, γu). Replacing un in (3.221) by uk and ξ̃n by ξ̃k, and
passing to the limit as k →∞ proves that u is a solution of (3.215). ut

Our main existence and comparison result is formulated in the following
theorem.
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Theorem 3.74. Let the hypotheses of Lemma 3.73 be satisfied including that
D(L)∩K 6= ∅, and let (u, u) be a pair of sub-supersolutions of problem (3.205)
with u ≤ u. Then the multi-valued variational inequality (3.205) has at least
one solution within the ordered interval [u, u].

Proof: In view of Lemma 3.73 the auxiliary problem (3.215) possesses solu-
tions. To prove the assertion of Theorem 3.74 we only need to show that there
are solutions u of (3.215) lying within the interval [u, u]. This is because in
such a case B̂(u) = 0, and ξ̃ ∈ ∂j̃2(·, ·, γu), which due to Lemma 3.69 implies
∂j̃2(·, ·, γu) ⊆ ∂j2(·, ·, γu), and thus u must be a solution of (3.205). In fact
we are going to show that any solution u of (3.215) belongs to [u, u]. Let us
show first that u ≤ u, where u is a solution of (3.215) and u is the given
supersolution of (3.205)

By using v = u∧u = u−(u−u)+ ∈ K in (3.215) and v = u∨u = u+(u−u)+
in Definition 3.67, we obtain

〈Lu+Au+ B̂(u)− h,−(u− u)+〉+
∫
Γ

ξ̃ (−(γu− γu)+) dΓ ≥ 0, (3.222)

where ξ̃ ∈ ∂j̃2(·, ·, γu), and

〈ut +Au− h, (u− u)+〉+
∫
Γ

ξ (γu− γu)+ dΓ ≥ 0, (3.223)

where ξ ∈ ∂j2(·, ·, γu). Adding (3.222) and (3.223) we get

〈ut−ut+Au−Au− B̂(u), (u−u)+〉+
∫
Γ

(ξ− ξ̃) (γu−γu)+ dΓ ≥ 0. (3.224)

Because of

〈ut − ut, (u− u)+〉 ≥ 0, 〈Au−Au, (u− u)+〉 ≥ 0,

and, by applying Lemma 3.69 (iii),∫
Γ

(ξ − ξ̃) (γu− γu)+ dΓ = 0

we obtain the following inequality from (3.224)

〈B̂(u), (u− u)+〉 ≤ 0,

which means∫
Q

b(·, ·, u)(u− u)+ dxdt =
∫
Q

(
(u− u)+

)p
dxdt ≤ 0.

From the last inequality we readily infer (u − u)+ = 0, i.e., u ≤ u. Since the
proof of u ≤ u can be done in a similar way, this completes the proof of the
theorem. ut
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Application: Obstacle Problem

We consider an obstacle problem, where the convex, closed set K is given by

K = {u ∈ X : u ≤ ψ a.e. on Q},

with any obstacle function ψ specified as follows:

(i) ψ ∈W and ψ(·, 0) ≥ 0 in Ω,
(ii) ψ′ +Aψ ≥ 0 in X∗, i.e., 〈ψ′ +Aψ, v〉 ≥ 0, ∀v ∈ X ∩ Lp+(Q).

The penalty operator P : X → X∗ can be chosen as

〈P (u), v〉 =
∫
Q

[(u− ψ)+]p−1 v dxdt+
∫
Γ

[(γu− γψ)+]p−1 γv dΓ, (3.225)

for all u, v ∈ X. Indeed, P is bounded, continuous, and monotone. Let us check
that it satisfies (3.206), and thus is a penalty operator for K. If P (u) = 0,
then (u− ψ)+ = 0 a.e. in Q, i.e.,

u ≤ ψ a.e. in Q, (3.226)

that is u ∈ K. Conversely, assume that u satisfies (3.226). Then, for a.a.
t ∈ (0, τ), we have u(·, t) ≤ ψ(·, t) a.e. in Ω, which implies that

γ∂Ωu(·, t) ≤ γ∂Ωψ(·, t) a.e. on ∂Ω

(γ∂Ω is the trace operator on ∂Ω). This means that γu ≤ γψ a.e. on Γ showing
that P (u) = 0. To check (P), for each u ∈ D(L) we choose w = (u − ψ)+.
Then, w ∈ X, and w 6= 0 whenever P (u) 6= 0. We justify that (P)(i) is
satisfied. Since, according to assumption (i) for ψ, (u−ψ)+(·, 0) = 0, we have

〈u′ − ψ′, (u− ψ)+〉 =
1
2
‖(u− ψ)+(·, τ)‖2L2(Ω) ≥ 0.

Combining with the inequality 〈Au−Aψ, (u− ψ)+〉 ≥ 0, we arrive at

〈u′ +Au, (u− ψ)+〉 ≥ 〈ψ′ +Aψ, (u− ψ)+〉 ≥ 0

because (u − ψ)+ ∈ X ∩ Lp+(Q). So we have checked (i) of (P). To verify
(P)(ii), we note that

〈P (u), w〉 = ‖(u− ψ)+‖pLp(Q) + ‖(γu− γψ)+‖pLp(Γ ). (3.227)

From (3.225) and Hölder’s inequality, we derive, for a constant c > 0, that

|〈P (u), v〉| ≤ ‖(u− ψ)+‖p−1
Lp(Q)‖v‖Lp(Q) + ‖(γu− γψ)+‖p−1

Lp(Γ )‖v‖Lp(Γ )

≤ c(‖(u− ψ)+‖p−1
Lp(Q) + ‖(γu− γψ)+‖p−1

Lp(Γ ))‖v‖X ,
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for all v ∈ X. Hence,

‖P (u)‖X∗ ≤ c(‖(u− ψ)+‖p−1
Lp(Q) + ‖(γu− γψ)+‖p−1

Lp(Γ )), ∀u ∈ X.

This, together with (3.227), implies (P)(ii).
For our example of K, u ∧ K ⊆ K for every u ∈ W , and u ∨ K ⊆ K if

u ≤ ψ on Q.

We conclude this chapter by several remarks.

3.4 Notes and Comments

The main goal of this chapter was to establish a general method of sub-
supersolutions for multi-valued variational inequalities of elliptic and parabolic
type that include as special cases, in particular, a wide range of specific elliptic
and parabolic boundary value problems by specifying the closed convex set
K to some subspace of V and X, respectively. Our presentation is based on
and includes results recently obtained in [38, 39, 66, 69, 70, 72], which partly
extend results of [62] that are based on some one-sided growth condition of
Clarke’s generalized gradient. In our treatment we only require some local
Lq-growth condition on the Clarke’s generalized gradient.

The treatment of the multi-valued parabolic variational inequality (3.126)–
(3.128) is by no means a straightforward extension of the elliptic case con-
sidered in Sect. 3.2, and raises additional technical challenges. First, while
V, V0, X, and X0 possess lattice structure, the solution spaces W and W0

of (3.126)–(3.128) do not have lattice structure. Second, the solvability of
(3.126)–(3.128) requires certain additional properties on the penalty operator
associated with K, unless K is a closed subspace of X. The sub-supersolution
method that has been established in that section also improves earlier results
obtained in this direction in the monograph [62], where, as mentioned above,
the generalized gradients s 7→ ∂jk(x, t, , s) were required to satisfy a one-sided
growth condition of the form

ηi ∈ ∂jk(x, t, si) : η1 ≤ η2 + c (s2 − s1)p−1, (3.228)

for a.a. (x, t), for all ηi ∈ ∂jk(x, t, si), i = 1, 2, and for all s1, s2 with s1 < s2.
As in Sect. 3.2, here we establish a comparison principle for (3.126)–(3.128) in
terms of sub-supersolution without assuming condition (3.228), whose proof
at the same time simplifies the proofs of comparison results for this kind
of problem in recent works (see, e.g., [62, 64]), which were based on rather
involved regularization techniques as well as passing to the limit procedures.

Regarding parabolic variational inequalities we note that under the hy-
potheses of Theorem 3.74, and employing the technique as in Sect. 3.3.2, one
can prove that the solution set S of all solutions of (3.205) lying within the
interval [u, u] is directed provided K possesses the lattice structure in the form
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that K ∧K ⊆ K and K ∨K ⊆ K. The existence of extremal solutions can
be proved if, in addition, S is bounded in W . The boundedness of S in X is
readily obtained and can be proved in the same way as in the elliptic case.
However, to get the boundedness in W , one needs, in addition, that∥∥∥∂u

∂t

∥∥∥
X∗

≤ c, ∀ u ∈ S,

which requires additional conditions. As seen from the proof of the comparison
result for parabolic variational inequalities we need to impose an additional
assumption on the closed convex set K given in terms of conditions imposed
on the penalty operator, which is the main difference between elliptic and
parabolic variational inequalities. This was basically needed to get control of
‖∂u/∂t‖X∗ .

Finally, it should be noted that the sub-supersolution method along with
the characterization of the solution set within the sector of sub- and super-
solution as developed in this chapter plays an important role in the qualita-
tive study of (nonsmooth) elliptic and parabolic problems. In particular, this
method when combined with variational methods provides an effective tool
to prove existence and multiplicity results for such kind of problems, see, e.g.,
[40, 67, 68, 71].



4

Discontinuous Multi-Valued Elliptic Problems

In this chapter we study various multi-valued elliptic boundary value problems
involving discontinuous and nonlocal nonlinearities. The basic tools in dealing
with these kinds of problems are on the one hand the existence and comparison
results of Sect. 3.2 and on the other hand the abstract fixed point results
provided in Chap. 2.

4.1 Nonlocal and Discontinuous Elliptic Inclusions

We consider multi-valued elliptic problems with nonlocal nonlinearities. As-
suming only certain growth conditions on the data, we are able to prove exis-
tence results for the problem under consideration. In particular, no continuity
assumptions are imposed on the nonlocal term.

Let us use the notation of Sect. 3.2, i.e., let Ω ⊂ RN be a bounded do-
main with Lipschitz boundary ∂Ω, and let V = W 1,p(Ω) and V0 = W 1,p

0 (Ω),
1 < p < ∞. In this subsection we consider the following quasilinear elliptic
inclusion problem: Find u ∈ V0 and an η ∈ Lq(Ω) satisfying

〈−∆pu, v〉+
∫
Ω

η v dx = 〈Fu, v〉, ∀ v ∈ V0, (4.1)

where η(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω, with s 7→ ∂j(x, s) denoting Clarke’s
generalized gradient of the locally Lipschitz function j(x, ·) : R → R. Only for
simplifying our presentation, the elliptic operator is ∆pu = div (|∇u|p−2∇u),
which is the p-Laplacian with 1 < p < ∞. As usual, 〈·, ·〉 stands for the
duality pairing between V0 and V ∗

0 . The mapping F : V0 → V ∗
0 on the right-

hand side of (4.1) comprises the nonlocal term and is generated by a function
F : Ω × Lp(Ω) → R through

Fu := F (·, u). (4.2)

Thus (4.1) stands for the formulation of the weak solution of the quasilinear
elliptic inclusion
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−∆pu(x) + ∂j(x, u(x)) 3 F (x, u) in Ω, u = 0 on ∂Ω.

While multi-valued elliptic problems in the form (4.1) with Fu replaced by
a given element h ∈ V ∗

0 have been treated in Sect. 3.2 under the assumption
that appropriately defined sub- and supersolutions are available, the novelty
of the problem under consideration is that the term on the right-hand side
of (4.1) is nonlocal and not necessarily continuous in u. Moreover, we do not
assume the existence of sub- and supersolutions.

Our main goal is to prove existence results for the problem (4.1) only under
the assumption that certain growth conditions on the data are satisfied. Let
us next consider a few important special cases that are included in (4.1).

(i) For s 7→ j(x, s) smooth, (4.1) is the weak formulation of the nonlocal
single-valued Dirichlet problem

u ∈ V0 : −∆pu+ j′(x, u) = Fu in V ∗
0 .

(ii) If s 7→ j(x, s) is locally Lipschitz, and g : Ω × R → R is a Carathéodory
function with its Nemytskij operator G, then the multi-valued elliptic
problem: Find u ∈ V0 and η ∈ Lq(Ω) such that

η ∈ ∂j(·, u), 〈−∆pu, v〉+
∫
Ω

η v dx = 〈G(u), v〉, ∀ v ∈ V0, (4.3)

is a special case of (4.1) by defining F (x, u) := g(x, u(x)), which has been
treated in Sect. 3.2.

(iii) As for an example of a (discontinuous) nonlocal F that will be treated
later we consider F defined by

F (x, u) = [|x|] + γ

∫
Ω

[u(y)] dy,

where γ is some positive constant, and [·] : R → Z is the integer-function
that assigns to each s ∈ R the greatest integer [s] ∈ Z satisfying [s] ≤ s.
Apparently, u 7→ F (·, u) is nonlocal and discontinuous.

4.1.1 Hypotheses, Main Result, and Preliminaries

We denote the norms in Lp(Ω), V0 and V ∗
0 by ‖ · ‖p, ‖ · ‖V0 , and ‖ · ‖V ∗0 ,

respectively, and by λ1 the first Dirichlet eigenvalue of −∆p, which is positive
(see [171]) and variationally characterized by

λ1 = inf
06=u∈V0

∫
Ω
|∇u|p dx∫
Ω
|u|p dx

.

As usual, let Lp(Ω) be equipped with the natural partial ordering of functions
defined by u ≤ w if and only if w − u belongs to the positive cone Lp+(Ω) of
all nonnegative elements of Lp(Ω). We assume the following hypothesis for j
and F :
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(H1) The function j : Ω×R → R is a Carathéodory function, with s 7→ j(x, s)
being locally Lipschitz for a.e. x ∈ Ω, and Clarke’s generalized gradient
∂j satisfies the following growth condition: There is a ε ∈ (0, λ1) and a
k1 ∈ Lq+(Ω) such that

|η| ≤ k1(x) + (λ1 − ε)|s|p−1, ∀ η ∈ ∂j(x, s), ∀ s ∈ R,

and for a.e. x ∈ Ω.
(H2) The function F : Ω × Lp(Ω) → R is assumed to satisfy:

(i) (x, u) 7→ F (x, u) is measurable in x ∈ Ω for all u ∈ Lp(Ω); and for
a.e. x ∈ Ω the function u 7→ F (x, u) is increasing, i.e., F (x, u) ≤
F (x, v) whenever u ≤ v.

(ii) There exist constants c2 ≥ 0, µ ≥ 0 and α ∈ [0, p− 1] such that

‖Fu‖q ≤ c2 + µ ‖u‖αp , ∀ u ∈ Lp(Ω),

where µ ≥ 0 may be arbitrarily if α ∈ [0, p − 1), and µ ∈ [0, ε) if
α = p− 1, where ε is the constant in (H1).

The main result of this subsection is given by the following theorem.

Theorem 4.1. Let hypotheses (H1) and (H2) be satisfied. Then problem (4.1)
possesses solutions, and the solution set of all solutions of (4.1) is bounded in
V0 and has minimal and maximal elements.

Note that the existence result formulated in Theorem 4.1 only assumes
certain growth conditions on Clarke’s generalized gradient and on the nonlocal
mapping F . Further, the notion of maximal and minimal is understood in the
set theoretical sense. The proof of Theorem 4.1 requires several preliminary
results, which will be provided next.

Preliminaries

Let h ∈ V ∗
0 be given. We consider first the following auxiliary multi-valued

problem: Find u ∈ V0 and η ∈ Lq(Ω) such that

η ∈ ∂j(·, u), 〈−∆pu, v〉+
∫
Ω

η v dx = 〈h, v〉, ∀ v ∈ V0. (4.4)

We are going to prove the existence of solutions of (4.4), the existence of ex-
tremal solutions of (4.4), and the monotone dependence on h of these extremal
solutions. For the existence of solutions of (4.4) we make use of the following
surjectivity result for multivalued pseudomonotone and coercive operators,
see, e.g., [184, Theorem 2.6] or [229, Chapter 32], which we recall here for
convenience (see also Chap. 9, Theorem 9.92).

Corollary 4.2. Let X be a real reflexive Banach space with dual space X∗,
and let the multivalued operator A : X → 2X

∗
be pseudomonotone, bounded,

and coercive. Then A is surjective, i.e., range (A) = X∗.
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By means of Corollary 4.2 the proof of the following result is basically a
simple application of arguments used in the proof of the sub-supersolution
method of Sect. 3.2.

Lemma 4.3. The multi-valued elliptic problem (4.4) possesses solutions for
each h ∈ V ∗

0 .

Proof: We introduce the functional J : Lp(Ω) → R defined by

J(v) =
∫
Ω

j(x, v(x)) dx, ∀ v ∈ Lp(Ω).

Using the growth condition (H1) and Lebourg’s mean value theorem, we note
that the function J is well-defined and Lipschitz continuous on bounded sets
in Lp(Ω), thus locally Lipschitz. Moreover, the Aubin–Clarke theorem (see
[80, p. 83]) ensures that, for each u ∈ Lp(Ω) we have

η ∈ ∂J(u) =⇒ η ∈ Lq(Ω) with η(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω.

Consider now the multi-valued operator A : V0 → 2V
∗
0 defined by

A(v) = −∆pv + Φ(v), ∀ v ∈ V0,

where Φ(v) = (i∗ ◦ ∂J ◦ i)(v). It is well known that −∆p : V0 → V ∗
0 is contin-

uous, bounded, strictly monotone, and thus, in particular, pseudomonotone.
From Sect. 3.2 we know that the multi-valued operator Φ : V0 → 2V

∗
0 is

pseudomonotone in the multi-valued sense, and bounded due to (H1). Thus
A : V0 → 2V

∗
0 is bounded and pseudomonotone, and due to Corollary 4.2,

the operator A is surjective provided A is coercive. By making use of the
equivalent norm in V0, which is ‖u‖pV0

=
∫
Ω
|∇u|p dx, and the variational

characterization of the first eigenvalue of −∆p, the coercivity can readily be
seen as follows: For any v ∈ V0 and any η ∈ Φ(v) we obtain by applying (H1)
the estimate

1
‖v‖V0

〈−∆pv + η, v〉 ≥ 1
‖v‖V0

[∫
Ω

|∇v|p dx−
∫
Ω

(k1 + (λ1 − ε)|v|p−1)|v| dx
]

≥ 1
‖v‖V0

[
‖v‖pV0

− λ1 − ε

λ1
‖v‖pV0

− ‖k1‖q‖v‖p
]
,

which proves the coercivity of A. Applying Corollary 4.2 we obtain the ex-
istence of u ∈ V0 such that h ∈ A(u), i.e., there is an η ∈ Φ(u) with
η ∈ Lq(Ω) and η(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω such that

−∆pu+ η = h in V ∗
0 , (4.5)

where
〈η, ϕ〉 =

∫
Ω

η(x)ϕ(x) dx, ∀ ϕ ∈ V0, (4.6)

which proves that u ∈ V0 is a solution of (4.4). ut
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Lemma 4.4. The multi-valued elliptic problem (4.4) possesses extremal solu-
tions, i.e., (4.4) has the greatest solution u∗ and the smallest solution u∗.

Proof: Let us introduce the set S of all solutions of (4.4). The proof will be
given in steps (a), (b), and (c).

(a) Claim: S is compact in V0

First, let us show that S is bounded in V0. To this end let u be any solution
of (4.4). Testing equation (4.4) with v = u we get

〈−∆pu, u〉 = 〈h, u〉 −
∫
Ω

η u dx, (4.7)

which yields by applying (H1) and taking into account η ∈ ∂j(·, u),

‖u‖pV0
≤ ‖h‖V ∗0 ‖u‖V0 + ‖k1‖q ‖u‖p + (λ1 − ε)‖u‖pp.

By means of Young’s inequality we get for any δ > 0

‖u‖pV0
≤ ‖h‖V ∗0 ‖u‖V0 + c(δ) + δ ‖u‖pp + (λ1 − ε)‖u‖pp,

which yields for δ < ε and setting ε̃ = ε− δ the estimate

‖u‖pV0
≤ ‖h‖V ∗0 ‖u‖V0 + c(δ) +

λ1 − ε̃

λ1
‖u‖pV0

,

and hence the boundedness of S in V0.
Let (un) ⊆ S. Then there is a subsequence (uk) of (un) with

uk ⇀ u in V0, uk → u in Lp(Ω), and uk(x) → u(x) a.e. in Ω. (4.8)

Since the uk solve (4.4), we get with v = uk − u in (4.4)

〈−∆puk, uk − u〉 = 〈h, uk − u〉 −
∫
Ω

ηk (uk − u) dx, (4.9)

where ηk ∈ ∂j(·, uk), and (ηk) ⊂ Lq(Ω) is bounded due to the boundedness
of (uk) in V0 and by applying (H1). We thus obtain from (4.8) and (4.9)

lim sup
k

〈−∆puk, uk − u〉 = 0. (4.10)

Since the operator −∆p enjoys the (S+)-property, the weak convergence of
(uk) in V0 along with (4.10) imply the strong convergence uk → u in V0, see,
e.g., [44, Theorem D.2.1]. As (ηk) ⊂ Lq(Ω) is bounded, there is a subsequence
(again denoted by (ηk)) that is weakly convergent in Lq(Ω), i.e.,

ηk ⇀ η in Lq(Ω).
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Similarly as in the proof of Lemma 3.29 of Sect. 3.2.3, one shows that η ∈
∂j(·, u). Replacing u in (4.4) by uk and η by ηk we may pass to the limit as
k →∞, which proves that the limit u of (uk) ⊆ S belongs to S, and hence it
follows that S is compact.

(b) Claim: S is a directed set

Let us show that S is upward directed, i.e., given u1, u2 ∈ S such that
(u1, η1) and (u2, η2) satisfy (4.4), where ηk ∈ ∂j(·, uk). We need to show that
there is a u ∈ S satisfying u1 ≤ u and u2 ≤ u. The proof adopts ideas used in
Sect. 3.2.2 and relies on an appropriate construction of an auxiliary problem.
To this end we consider the following auxiliary multi-valued problem: Find
u ∈ V0 and η ∈ Lq(Ω) such that

η̃ ∈ ∂j̃(·, u) : 〈−∆pu− h+ B̂(u)− Ĝ(u), v〉+
∫
Ω

η̃ v dx = 0, ∀ v ∈ V0,

(4.11)
where B̂ = i∗◦B◦i with B being the Nemytskij operator given by the following
cut-off function b : Ω × R → R:

b(x, s) =
{

0 if u0(x) ≤ s,
−(u0(x)− s)p−1 if s < u0(x),

(4.12)

with u0 = max{u1, u2}. The function b is easily seen to be a Carathéodory
function satisfying a growth condition of order p − 1, which implies that B :
Lp(Ω) → Lq(Ω) is bounded and continuous, and thus B̂ : V0 → V ∗

0 defines
a completely continuous and bounded operator. The function j̃ : Ω × R → R
arises from the given j by the following construction:

j̃(x, s) =
{
j(x, u0(x)) + η0(x)(s− u0(x)) if s < u0(x),
j(x, s) if u0(x) ≤ s,

(4.13)

where η0 is defined by

η0(x) =
{
η1(x) if x ∈ {u1 ≥ u2},
η2(x) if x ∈ {u2 > u1}.

Thus Clarke’s generalized gradient of s 7→ j̃(x, s) is given by

∂j̃(x, s) =


η0(x) if s < u0(x),
∂j̃(x, u0(x)) if s = u0(x),
∂j(x, s) if u0(x) < s,

(4.14)

and the inclusions ∂j̃(x, u0(x)) ⊆ ∂j(x, u0(x)) holds true. If we introduce the
functional J̃ by

J̃(v) =
∫
Ω

j̃(x, v(x)) dx, ∀ v ∈ Lp(Ω),
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then
Φ̃ = i∗ ◦ ∂J̃ ◦ i

possesses qualitatively the same properties as Φ before. The operator Ĝ is
given by

Ĝ = i∗ ◦G ◦ i,

where G is the Nemytskij operator associated to g : Ω × R → R defined as
follows

g(x, s) =
2∑
l=1

|gl(x, s)− η0(x)|, (4.15)

with

gl(x, s) =


ηl(x) if s ≤ ul(x),
ηl(x) + η0(x)−ηl(x)

u0(x)−ul(x)
(s− ul(x)) if ul(x) < s < u0(x),

η0(x) if s ≥ u0(x).
(4.16)

One easily verifies that g : Ω × R → R is a Carathéodory function, and its
Nemytskij operatorG : Lp(Ω) → Lq(Ω) is continuous and uniformly bounded.
This allows us to apply the same arguments as in the proof of Lemma 4.3 to
show the existence of solutions of problem (4.11) provided we are able to verify
that the corresponding multi-valued operator related to (4.11) is coercive, i.e.,
we only need to verify the coercivity of A = −∆p+ B̂− Ĝ+ Φ̃. This, however,
readily follows from the proof of the coercivity of the operator −∆p + Φ, the
uniform boundedness of Ĝ, and the following estimate of 〈B̂(v), v〉. In view
of the definition (4.12) the function s 7→ b(x, s) is increasing and b(·, u0) = 0.
Therefore we get by applying Young’s inequality for any δ > 0 the estimate

〈B̂(v), v〉 =
∫
Ω

b(·, v)(v−u0+u0) dx ≥
∫
Ω

b(·, v)u0 dx ≥ −δ‖v‖pp−c(δ), (4.17)

which implies the coercivity of −∆p+ B̂− Ĝ+ Φ̃ when δ is chosen sufficiently
small, and hence the existence of solutions of the auxiliary problem (4.11).
Now the set S is shown to be upward directed provided that any solution u
of (4.11) with η ∈ ∂j̃(·, u) satisfies uk ≤ u, k = 1, 2, because then u0 ≤ u, and
therefore B̂u = 0, Ĝu = 0 and η ∈ ∂j̃(·, u) ⊆ ∂j(·, u), and hence thus u ∈ S
exceeding uk. Recall that uk ∈ S means that uk satisfies

ηk ∈ ∂j(·, uk) : 〈−∆puk − h, v〉+
∫
Ω

ηk v dx = 0, ∀ v ∈ V0. (4.18)

Taking the special test functions v = (uk − u)+ in (4.11) and in (4.18), and
subtracting the resulting equations we obtain

〈−∆puk − (−∆pu), (uk − u)+〉 − 〈B̂(u), (uk − u)+〉

+〈Ĝ(u), (uk − u)+〉+
∫
Ω

(ηk − η̃)(uk − u)+) dx = 0, (4.19)
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where η̃ ∈ ∂j̃(·, u). For the first term on the left-hand side of (4.19) we have
the estimate

〈−∆puk − (−∆pu), (uk − u)+〉 ≥ 0. (4.20)

For x ∈ {uk > u}, from (4.16) it follows gk(x, u(x)) = ηk(x), hence we obtain
by using the definition of g the equation (with l 6= k, and l, k ∈ {1, 2})

g(x, u(x)) = |ηk(x)− η0(x)|+ |gl(x, u(x))− η0(x)|, x ∈ {uk > u}. (4.21)

Further, for x ∈ {uk > u} ⊆ {u0 > u} from (4.14) it follows η̃(x) ∈
∂j̃(x, u(x)) = η0(x), and thus by taking (4.21) into account we get

〈Ĝ(u), (uk − u)+〉+
∫
Ω

(ηk − η̃)(uk − u)+) dx ≥ 0. (4.22)

In view of (4.20) and (4.22), from (4.19) we obtain

−〈B̂(u), (uk − u)+〉 ≤ 0,

which by definition of B̂ yields

0 ≥ −〈B̂(u), (uk−u)+〉 =
∫
Ω

(u0−u)p−1(uk−u)+ dx ≥
∫
Ω

((uk−u)+)p dx ≥ 0.

The last inequality implies∫
Ω

((uk − u)+)p dx = 0,

and hence it follows (uk − u)+ = 0, i.e., uk ≤ u, k = 1, 2,, which completes
the proof of S being upward directed. The proof that S is downward directed
is done similarly by changing the construction of the auxiliary problem in an
obvious way.

(c) Claim: S possesses extremal solutions

The proof of this assertion is based on steps (a) and (b). We shall show
the existence of the greatest element of S. Since V0 is separable we have that
S ⊂ V0 is separable, too, so there exists a countable, dense subset Z = {zn :
n ∈ N} of S. By step (b), S is upward directed, so we can construct an
increasing sequence (un) ⊆ S as follows. Let u1 = z1. Select un+1 ∈ S such
that

max{zn, un} ≤ un+1.

The existence of un+1 is due to step (b). By the compactness of S we find
a subsequence of (un), denoted again by (un), and an element u ∈ S such
that un → u in V0, and un(x) → u(x) a.e. in Ω. This last property of (un)
combined with its increasing monotonicity implies that the entire sequence is
convergent in V0 and, moreover, u = supn un. By construction, we see that
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max{z1, z2, . . . , zn} ≤ un+1 ≤ u, ∀n,

thus Z ⊆ V ≤u
0 := {w ∈ V0 : w ≤ u}. Since V ≤u

0 is closed in V0, we infer

S ⊆ Z ⊆ V ≤u
0 ,

which in conjunction with u ∈ S ensures that u is the greatest solution of
(4.4).

The existence of the smallest solution of (4.4) can be proved in a similar
way. This completes the proof of Lemma 4.4. ut

Monotone dependence of the extremal solutions of (4.4)

From Lemma 4.4 we know that for given h ∈ V ∗
0 the multi-valued problem

(4.4) has a smallest solution u∗ and a greatest solution u∗. The purpose of
this paragraph is to show that these extremal solutions depend monotonously
on h ∈ V ∗

0 , where the dual order in V ∗
0 is defined by:

h1, h2 ∈ V ∗
0 : h1 ≤ h2 ⇐⇒ 〈h1, ϕ〉 ≤ 〈h2, ϕ〉, ∀ ϕ ∈ V0 ∩ Lp+(Ω).

Lemma 4.5. Let u∗k be the greatest and uk,∗ the smallest solutions of (4.4)
with right-hand sides hk ∈ V ∗

0 , k = 1, 2, respectively. If h1 ≤ h2 then it follows
u∗1 ≤ u∗2 and u1,∗ ≤ u2,∗.

Proof: We are going to prove u∗1 ≤ u∗2. To this end we consider the following
auxiliary multi-valued problem: Find u ∈ V0 and η ∈ Lq(Ω) such that

η ∈ ∂ĵ(·, u) : 〈−∆pu+ B̂(u), v〉+
∫
Ω

η v dx = 〈h2, v〉, ∀ v ∈ V0, (4.23)

where B̂ = i∗ ◦B ◦ i, and B is the Nemytskij operator related to the following
cut-off function b : Ω × R → R:

b(x, s) =
{

0 if u∗1(x) ≤ s,
−(u∗1(x)− s)p−1 if s < u∗1(x),

(4.24)

which can be written as b(x, s) = −[(u∗1(x)−s)+]p−1. The function ĵ : Ω×R →
R is defined as the following modification of the given j: Let η∗1 ∈ Lq(Ω) belong
to u∗1, such that (u∗1, η

∗
1) is the greatest solution of (4.4) with right-hand side

h1, then we set

ĵ(x, s) =
{
j(x, u∗1(x)) + η∗1(x)(s− u∗1(x)) if s < u∗1(x),
j(x, s) if u∗1(x) ≤ s.

(4.25)

Clarke’s generalized gradient of ĵ is now given by:

∂ĵ(x, s) =


η∗1(x) if s < u∗1(x),
∂ĵ(x, u∗1(x)) if s = u∗1(x),
∂j(x, s) if u∗1(x) < s,

(4.26)
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and the inclusion ∂ĵ(x, u∗1(x)) ⊆ ∂j(x, u∗1(x)) holds true. With Ĵ : Lp(Ω) → R
given by

Ĵ(v) =
∫
Ω

ĵ(x, v(x)) dx

we define
Φ̂(u) = (i∗ ◦ ∂Ĵ ◦ i)(u).

The multi-valued operator

A = −∆p + B̂ + Φ̂ : V0 → 2V
∗
0

is seen to satisfy Corollary 4.2, and thus A : V0 → 2V
∗
0 is surjective. The proof

follows basically the same arguments as in Lemma 4.3. Therefore, there exists
a u ∈ V0 such that h2 ∈ A(u), i.e., there is an η ∈ ∂Ĵ(u) with η(x) ∈ ĵ(x, u(x))
such that

〈−∆pu+ B̂(u) + i∗η, v〉 = 〈h2, v〉, ∀ v ∈ V0,

which shows that the auxiliary problem (4.23) has a solution. Let us show
next that any solution u of (4.23) satisfies u∗1 ≤ u, where u∗1 is the greatest
solution of (4.4) with right-hand side h1, i.e.,

η∗1 ∈ ∂j(·, u∗1), 〈−∆pu
∗
1, v〉+

∫
Ω

η∗1 v dx = 〈h1, v〉, ∀ v ∈ V0. (4.27)

Subtracting (4.23) from (4.27) and testing the resulting equation by v =
(u∗1 − u)+ ∈ V0 ∩ Lp+(Ω) yields

〈−∆pu
∗
1 − (−∆pu), (u∗1 − u)+〉 − 〈B̂(u), (u∗1 − u)+〉

+
∫
Ω

(η∗1 − η)(u∗1 − u)+ dx = 〈h1 − h2, (u∗1 − u)+〉. (4.28)

For x ∈ {u∗1 > u} we get in view of (4.26) that η(x) ∈ ∂ĵ(x, u(x)) = η∗1(x),
and therefore ∫

Ω

(η∗1 − η)(u∗1 − u)+ dx = 0.

Since h1 ≤ h2, the right-hand side of (4.28) is nonpositive, and thus from
(4.28) we deduce the inequality

−〈B̂(u), (u∗1 − u)+〉 ≤ 0,

which by definition of B̂ results in

−
∫
Ω

−[(u∗1 − u)+]p−1(u∗1 − u)+ dx =
∫
Ω

[(u∗1 − u)+]p dx ≤ 0.

The last inequality implies (u∗1 − u)+ = 0, i.e., u∗1 ≤ u, and hence B̂(u) = 0.
Furthermore, as u∗1 ≤ u, from (4.26) we see that η ∈ ∂ĵ(x, u(x)) ⊆ ∂j(x, u(x)),
and hence any solution u of (4.23) is a solution of (4.4) with right-hand side h2

as well, which satisfies u∗1 ≤ u. Because u∗2 is the greatest solution of (4.4) with
right-hand side h2, it follows u∗1 ≤ u∗2. The proof for the monotone dependence
of the smallest solutions follows by similar arguments and can be omitted. ut
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4.1.2 Proof of Theorem 4.1

The proof of Theorem 4.1 is based on the results of the preceding subsection,
and, in particular, on the following consequence of the abstract fixed point
result, Theorem 2.47, which has been proved in Chap. 2.

Theorem 4.6. Let E = (E, ‖ · ‖,≤) be an ordered Banach space having the
following properties:

(E0) Bounded and monotone sequences of E have weak or strong limits.
(E1) x+ = sup{0, x} exists, and ‖x+‖ ≤ ‖x‖ for every x ∈ E.

If G : BR(c) → 2BR(c) \ ∅ is an increasing multi-valued mapping whose values
are weakly compact in E, then G has a maximal and minimal fixed point in
BR(c), where BR(c) denotes the ball with radius R centered at c ∈ E.

Remark 4.7. (i) Note that according to the hypotheses of Theorem 4.6, no
continuity assumption is imposed on the operator G.

(ii) The notions minimal and maximal have to be understood in the
usual set-theoretical sense. As for the definition of an increasing multi-valued
mapping, we refer to Definition 2.4.

(iii) Theorem 4.6 remains true if E is merely an ordered normed space. As
for examples of ordered Banach spaces E satisfying (E0) and (E1), we refer
to Remark 2.50 of Chap. 2. In particular, the following two spaces, which are
of importance here, are easily seen to have these properties:

(iv) Lp(Ω), 1 < p <∞, ordered a.e. pointwise, where Ω is a σ-finite measure
space.

(v) The Sobolev spaces W 1,p(Ω), W 1,p
0 (Ω), 1 < p < ∞, ordered a.e. point-

wise with Ω being a bounded Lipschitz domain in RN .

Proof of Theorem 4.1

We are going to relate our original nonlocal multi-valued elliptic problem (4.1)
to the abstract setting of Theorem 4.6. For this purpose we need to transform
problem (4.1) into a fixed point equation of the form

u ∈ Gu

for an appropriately defined multi-valued and increasing fixed point operator
G acting on some ball BR of V0 = W 1,p

0 (Ω) into itself. In view of hypothesis
(H2), the operator F : V0 → Lq(Ω) is well-defined and, moreover, increasing.
Lemma 4.4 shows that for each h ∈ Lq(Ω), the elliptic inclusion (4.4) has the
greatest and the smallest solution, which due to Lemma 4.5 depend monoto-
nously on the right-hand side h. Now, let us define the operator G : v 7→ Gv
as follows:

For given v ∈ V0, let Gv denote the set of all solutions of the following
multi-valued elliptic problem
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〈−∆pu, ϕ〉+
∫
Ω

η ϕ dx = 〈Fv, ϕ〉, ∀ ϕ ∈ V0, (4.29)

where η ∈ Lq(Ω) with η(x) ∈ ∂j(x, u(x)). Setting h = Fv, which is in Lq(Ω) ⊆
V ∗

0 , from Lemma 4.3 we know that Gv 6= ∅, and, in view of Lemma 4.4,
Gv ⊆ V0 has the smallest and greatest element. Taking into account that
F : V0 → Lq(Ω) is an increasing operator, both the existence of extremal
elements of Gv and the monotone dependence of these extremal solutions on
h = Fv allow us to verify that G : V0 → 2V0 \ ∅ is an increasing multi-valued
mapping according to Definition 2.4. Moreover, one readily observes that any
fixed point of G is a solution of the original multi-valued elliptic problem (4.1)
and vice versa. As V0 satisfies (E0) and (E1) due to Remark 4.7, according
to Theorem 4.6 it remains to show the existence of some ball BR ⊂ V0 with
radius R (centered at c = 0) such that the multi-valued mapping G defined
above is a mapping from BR into itself whose values are weakly compact in V0.
Let us first prove the existence of a ball BR ⊂ V0 such that G : BR → 2BR \ ∅.
Let u ∈ Gv be any solution of (4.29). Testing equation (4.29) with ϕ = u and
applying the growth condition of (H1) and (H2) on ∂j and F , respectively,
we obtain the estimate

‖u‖pV0
≤ ‖k1‖q‖u‖p + (λ1 − ε)‖u‖pp + ‖Fv‖q ‖u‖p

≤ ‖k1‖q‖u‖p + (λ1 − ε)‖u‖pp +
(
c2 + µ‖v‖αp

)
‖u‖p, (4.30)

where ‖u‖pV0
:=
∫
Ω
|∇u|p dx for u ∈ V0. By using the variational characteriza-

tion of the first eigenvalue λ1 we see that

λ1‖u‖pp ≤ ‖u‖pV0
, ∀ u ∈ V0. (4.31)

From (4.30) and (4.31) we deduce for some positive constant c3 the following
estimate:

‖u‖pV0
≤
(
c3 + µ‖v‖αp

)
‖u‖p + (λ1 − ε)‖u‖pp

≤
(
c3 + µ

( 1
λ1

)α
p ‖v‖αV0

)( 1
λ1

) 1
p ‖u‖V0 +

λ1 − ε

λ1
‖u‖pV0

,

which results in
ε

λ1
‖u‖p−1

V0
≤ c4 + µ

( 1
λ1

)α+1
p ‖v‖αV0

,

where c4 = c3(1/λ1)1/p, and thus we get

‖u‖p−1
V0

≤ c5 +
µ

ε
λ

p−1−α
p

1 ‖v‖αV0
, (4.32)

where c5 = c4(λ1/ε). According to hypothesis (H2) we have to consider two
cases.
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Case 1: α ∈ [0, p− 1) and µ ≥ 0 arbitrary

First, by means of Young’s inequality we get for any δ > 0 not depending on
v the inequality

‖v‖αV0
≤ δ ‖v‖p−1

V0
+ C(δ), ∀ v ∈ V0. (4.33)

Therefore, from (4.32) in conjunction with (4.33) we obtain

‖u‖p−1
V0

≤ δ̃ ‖v‖p−1
V0

+ C(δ̃), ∀ v ∈ V0, (4.34)

for any δ̃ > 0. Thus, by choosing δ̃ small enough such that 0 < δ̃ < 1, from
(4.34) we infer the existence of R > 0 satisfying

C(δ̃) + δ̃Rp−1 = Rp−1,

which proves that G is a mapping of BR into itself.

Case 2: α = p− 1 and µ ∈ [0, ε)

In this case, from (4.32) we get

‖u‖p−1
V0

≤ c5 +
µ

ε
‖v‖p−1

V0
,

and as 0 < µ/ε < 1, we readily find an R > 0 such that

c5 +
µ

ε
Rp−1 = Rp−1,

which shows again that G is a mapping from BR into itself.
To apply the abstract fixed point theorem (Theorem 4.6) it remains to

verify that the values of Gv are weakly compact in V0, where v ∈ BR ⊂ V0.
To this end let us be given any sequence (un) ⊆ Gv, i.e., the un satisfy (4.29),
which is

〈−∆pun, ϕ〉+
∫
Ω

ηn ϕdx = 〈Fv, ϕ〉, ∀ ϕ ∈ V0, (4.35)

where ηn ∈ Lq(Ω) with ηn(x) ∈ ∂j(x, un(x)) for a.e. x ∈ Ω. We already know
that (un) ⊂ BR ⊂ V0 for some R > 0, and therefore, due to (H1) the sequence
(ηn) is bounded in Lq(Ω). Thus there exists a subsequence (uk) of (un) and
(ηk) of (ηn) with

uk ⇀ u in V0, uk → u in Lp(Ω), ηk ⇀ η in Lq(Ω). (4.36)

Replacing in (4.35) n by k, ϕ by uk − u, and applying (4.36), one gets

lim
k→∞

〈−∆puk, uk − u〉 = 0,

which yields the strong convergence of uk → u in V0, since the operator −∆p

enjoys the (S+)-property. Replacing again n by k in (4.35), we may pass to
the limit as k →∞, which results in
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〈−∆pu, ϕ〉+
∫
Ω

η ϕ dx = 〈Fv, ϕ〉, ∀ ϕ ∈ V0, (4.37)

where ηk ⇀ η in Lq(Ω) with ηk(x) ∈ ∂j(x, uk(x)) for a.e. x ∈ Ω. Similarly as
in the proof of Lemma 3.29 of Sect. 3.2.3, we see that for the limit η we have
η(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω. This proves the weak compactness of Gv.
Thus we may apply the abstract fixed point result Theorem 4.6, which asserts
the existence of minimal and maximal solutions of the original problem (4.1)
in some ball BR. To finish the proof of Theorem 4.1 we only need to verify that
the set of all solutions of (4.1) belong to some ball BR. The latter, however,
readily follows from estimate (4.32) when replacing v on the right-hand side
by u, which results in the following estimate for any solution of u of (4.1):

‖u‖p−1
V0

≤ c5 +
µ

ε
λ

p−1−α
p

1 ‖u‖αV0
. (4.38)

In both cases of the hypothesis (H2)(ii) we readily see from (4.38) that all
solutions are contained in some ball BR. ut

Example 4.8. Consider problem (4.1) with the nonlocal term F generated by
the following F .

F (x, u) = [|x|] + γ

∫
Ω

[u(y)] dy, (4.39)

where [·] : R → Z is the integer-function and γ is some positive constant. Let
|Ω| denote the Lebesgue measure of the bounded domain Ω ⊂ RN , and c > 0
some generic constant not depending on u. Then for u ∈ Lp(Ω) we get

|(Fu)(x)| ≤ c+ γ

∫
Ω

(|u(y)|+ 1) dy ≤ c+ γ |Ω|1/q‖u‖p,

which yields the estimate

‖Fu‖q ≤ c|Ω|1/q + γ |Ω|2/q‖u‖p. (4.40)

According to hypothesis (H2)(ii) we have the following correspondences: c2 =
c|Ω|1/q, µ = γ |Ω|2/q, and α = 1. Hence, under the assumption (H1) on j, by
Theorem 4.1 the existence of solutions of (4.1) follows provided either p > 2
or p = 2 and γ |Ω|2/q < ε.

Remark 4.9. We note that the results obtained in this section can be extended
to more general problems of the form (4.1) replacing the p-Laplacian by a
general quasilinear elliptic operator of Leray–Lions type. By applying the def-
inition of Clarke’s generalized gradient, it is obvious that any solution of (4.1)
is also a solution of the following so-called nonlocal hemivariational inequality:

u ∈ V0 : 〈−∆pu, v − u〉+
∫
Ω

jo(·, u; v − u) dx ≥ 〈Fu, v − u〉, ∀ v ∈ V0,

(4.41)
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where jo(x, s; r) denotes the generalized directional derivative of the locally
Lipschitz function s 7→ j(x, s) at s in the direction r given by

jo(x, s; r) = lim sup
y→s, t↓0

j(x, y + t r)− j(x, y)
t

.

Problem (4.41) has been treated in [54], however, under an additional restric-
tion on Clarke’s generalized gradient s→ ∂j(x, s) of the following form: There
exists a constant c ≥ 0 such that

η1 ≤ η2 + c(s2 − s1)p−1

for all ηi ∈ ∂j(x, si), i = 1, 2, and for all s1, s2 with s1 < s2. Our treatment
here allows us to completely drop this one-sided growth condition.

4.1.3 Extremal Solutions

Theorem 4.1 ensures the existence of minimal and maximal solutions of our
original discontinuous, multi-valued, and nonlocal elliptic problem (4.1). The
goal of this subsection is to show that (4.1) possesses in fact extremal solutions,
i.e, (4.1) has the greatest and smallest solution. For this we only need to know
that the solution set S of all solutions of (4.1) is a directed set, as will be seen
by the following lemma.

Lemma 4.10. If the solution set S of all solutions of (4.1) is directed, then
S has the greatest and smallest element, which is the greatest and smallest
solution of (4.1).

Proof: Due to Theorem 4.1 there are minimal and maximal elements of S,
which are minimal and maximal solutions of (4.1). Let us prove the existence
of the greatest element of S. To this end we show that the maximal element is
uniquely defined. Therefore, let u1 and u2 be two maximal elements of S with
u1 6= u2. Because S is supposed to be directed, it is, in particular, upward
directed, and thus there is a u ∈ S satisfying u ≥ u1 and u ≥ u2. However, this
is a contradiction to the assumption of u1 and u2 being maximal elements.
Let u∗ be the uniquely defined maximal element. We easily can then see that
u∗ must be the greatest element of S. In fact, suppose there is a u ∈ S such
that u 6≤ u∗. Then, due to S being upward directed, there is a v ∈ S such that
u ≤ v and u∗ ≤ v. Apparently v 6= u∗, which is a contradiction to the fact that
u∗ is the uniquely defined maximal solution. Hence, it follows that u∗ must be
greatest element of S, i.e., u∗ is the greatest solution of (4.1). Since the proof
of the existence of the smallest solution follows obvious similar arguments,
this completes the proof of the lemma. ut

Theorem 4.11. Let hypotheses (H1) and (H2) be satisfied. Then the solution
set S of all solutions of (4.1) is directed, and thus possesses extremal solutions.
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Proof: Let us prove only that S is upward directed, since the proof for S
being downward directed follows similar arguments. Assume u1, u2 ∈ S, i.e.,
there are η1, η2 ∈ Lq(Ω) such that (uk, ηk), k = 1, 2, satisfy (4.1), that is,

ηk ∈ ∂j(·, uk) : 〈−∆puk, v〉+
∫
Ω

ηk v dx = 〈Fuk, v〉, ∀ v ∈ V0. (4.42)

The following appropriately constructed auxiliary problem is crucial for the
proof: Find u ∈ V0, and η̃ ∈ Lq(Ω) satisfying

η̃ ∈ ∂j̃(·, u) : 〈−∆pu+ B̂(u)− Ĝ(u), v〉+
∫
Ω

η̃ v dx = 〈Fu0u, v〉, ∀ v ∈ V0,

(4.43)
where u0 = max{u1, u2}, and j̃, B̂, and Ĝ are constructed by means of uk,
u0 and ηk, η0 just like in step (b) of the proof of Lemma 4.4 in Sect. 4.1.1.
The nonlocal term Fu0 on the right-hand side of (4.43) is defined as Fu0u =
Fu0(·, u), where Fu0(·, u) arises from F (·, u) by truncation as follows:

Fu0(x, u) =
{
F (x, u0) if x ∈ {u < u0},
F (x, u) if x ∈ {u ≥ u0}.

If we set A = −∆p + B̂ − Ĝ, then the auxiliary problem (4.43) is equivalent
to

η̃ ∈ ∂j̃(·, u) : 〈Au, v〉+
∫
Ω

η̃ v dx = 〈Fu0u, v〉, ∀ v ∈ V0. (4.44)

As Ĝ = i∗ ◦ G ◦ i, and G : Lp(Ω) → Lq(Ω) is continuous and uniformly
bounded, we get

|〈Ĝ(u), v〉| ≤
∫
Ω

|G(u)| |v| dx ≤ c ‖v‖p.

Due to (4.17) we have for any δ > 0 the estimate

〈B̂(v), v〉 ≥ −δ ‖v‖pp − c(δ).

By the last two estimates we obtain for any δ̂ > 0

〈Av, v〉 ≥ ‖v‖pV0
− δ̂ ‖v‖pp − c(δ̂). (4.45)

The operator A may be considered as a compact perturbation of −∆p, and
thus behaves qualitatively basically like −∆p. In view of (4.45), and because j̃
and Fu0 fulfil hypotheses (H1) and (H2), respectively, we may apply Theorem
4.1 to (4.44), which guarantees the existence of solutions of (4.44). The proof
of the theorem is complete, provided one can show that any solution u of (4.44)
satisfies u1 ≤ u and u2 ≤ u, since then u0 ≤ u, and thus B̂(u) = 0, Ĝ(u) = 0,
Fu0u = Fu, and η̃ ∈ ∂j̃(·, u) ⊆ ∂j(·, u), which shows that u is a solution of
the original problem (4.1), i.e., u ∈ S and u exceeds u1, u2 ∈ S. Taking the
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special functions v = (uk−u)+ in (4.42) and in (4.43), and subtracting (4.43)
from (4.42) we obtain

〈−∆puk − (−∆pu), (uk − u)+〉 − 〈B̂(u), (uk − u)+〉

+〈Ĝ(u), (uk − u)+〉+
∫
Ω

(ηk − η̃)(uk − u)+) dx

= 〈Fuk −Fu0u, (uk − u)+〉. (4.46)

Taking into account the definition of Fu0 and hypothesis (H2) (i), the right-
hand side of (4.46) can be estimated as follows:

〈Fuk −Fu0u, (uk − u)+〉 =
∫
Ω

(F (·, uk)− Fu0(·, u)(uk − u)+ dx

=
∫
{u<uk}

(F (·, uk)− F (·, u0)(uk − u) dx ≤ 0, (4.47)

because F (·, uk) − F (·, u0) ≤ 0 due to (H2) (i). The left-hand side of (4.46)
can be estimated below exactly the same way as in step (b) of the proof of
Lemma 4.4, which yields

〈−∆puk − (−∆pu), (uk − u)+〉+ 〈−B̂(u) + Ĝ(u), (uk − u)+〉
≥ −〈B̂(u), (uk − u)+〉. (4.48)

From (4.46)–(4.48) we finally get

−〈B̂(u), (uk − u)+〉 ≤ 0,

which by definition of B̂ yields

0 ≥ −〈B̂(u), (uk−u)+〉 =
∫
Ω

(u0−u)p−1(uk−u)+ dx ≥
∫
Ω

((uk−u)+)p dx ≥ 0.

The last inequality implies∫
Ω

((uk − u)+)p dx = 0,

and hence it follows (uk−u)+ = 0, i.e., uk ≤ u, k = 1, 2, which completes the
proof of S being upward directed. ut

In the next subsection, Theorem 4.1 and Theorem 4.11 are applied to
elliptic inclusions whose multi-valued nonlinearity is given as the difference
of Clarke’s generalized gradient of some locally Lipschitz function and the
subdifferential of a convex function.
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4.1.4 Application: Difference of Clarke’s Gradient and
Subdifferential

We consider the Dirichlet boundary value problem for an elliptic inclusion
governed by the p-Laplacian and a multivalued term that is given by the dif-
ference of Clarke’s generalized gradient of some locally Lipschitz function and
the subdifferential of some convex function. Our main goal is to characterize
the solution set of the problem under consideration. In particular we are going
to prove that the solution set possesses extremal elements with respect to the
underlying natural partial ordering of functions, and that the solution set is
compact.

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω. We
consider the Dirichlet problem for the following elliptic inclusion

−∆pu+ ∂j(·, u)− ∂β(·, u) 3 0 in Ω, u = 0, on ∂Ω, (4.49)

where s 7→ ∂j(x, s) is Clarke’s generalized gradient of some locally Lipschitz
function j(x, ·) : R → R, which is measurable in x ∈ Ω. The function β :
Ω×R → R is assumed to be the primitive of some Borel measurable function
h : Ω × R → R, which is increasing in its second variable, i.e.,

β(x, s) =
∫ s

0

h(x, τ) dτ. (4.50)

Thus β(x, ·) : R → R is convex, and ∂β(x, ·) : R → 2R \ ∅ is the usual
subdifferential of convex functions. Then one has

∂β(x, s) = [h(x, s), h(x, s)], (4.51)

where h(x, s) and h(x, s) denote the left-sided and right-sided limits of h at
s, respectively.

Definition 4.12. A function u ∈ V0 = W 1,p
0 (Ω) is called a solution of the

Dirichlet problem (4.49) if there are functions η ∈ Lq(Ω) and θ ∈ Lq(Ω) such
that the following holds:

(i) η(x) ∈ ∂j(x, u(x)), θ(x) ∈ ∂β(x, u(x)) for a.e. x ∈ Ω,

(ii) 〈−∆pu, ϕ〉+
∫
Ω

(η(x)− θ(x))ϕ(x) dx = 0, ∀ ϕ ∈ V0.

We assume the following hypotheses on j and h, where, as in Sect. 4.1.1,
λ1 > 0 is the first Dirichlet eigenvalue of −∆p.

(D1) The function j : Ω×R → R satisfies hypothesis (H1) of Sect. 4.1.1, i.e.,
j is a Carathéodory function that is locally Lipschitz with respect to its
second variable, and there is a ε ∈ (0, λ1) and a k1 ∈ Lq+(Ω) such that

|η| ≤ k1(x) + (λ1 − ε)|s|p−1, ∀ η ∈ ∂j(x, s), ∀ s ∈ R,

for a.e. x ∈ Ω.
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(D2) The function h : Ω×R → R is Borel measurable, increasing in its second
argument, and satisfies with some function k2 ∈ Lq+(Ω) the growth
condition

|h(x, s)| ≤ k2(x) + µ |s|p−1

for a.e. x ∈ Ω and for all s ∈ R, and some constant µ ∈ [0, ε).

The main result of this subsection is given by the following theorem.

Theorem 4.13. Let hypotheses (D1)–(D2) be satisfied. Then the multi-valued
elliptic BVP (4.49) possesses extremal solutions, and the solution set of all
solutions of (4.49) is a compact subset in V0.

Proof: The proof is carried out in two steps.

Step 1: Existence of extremal solutions

Consider the following auxiliary multi-valued problem related to (4.49):

−∆pu+ ∂j(·, u) 3 h(·, u) in Ω, u = 0, on ∂Ω. (4.52)

A function u ∈ V0 is called a solution of (4.52), if there is an η ∈ Lq(Ω) such
that

η ∈ ∂j(·, u) : 〈−∆pu, v〉
∫
Ω

η v dx =
∫
Ω

h(·, u) v dx, ∀ v ∈ V0. (4.53)

If we define F (x, u) = h(x, u(x)) then by hypothesis (D2) we get the estimate

‖Fu‖q ≤ ‖k2‖q + µ ‖u‖p−1
p , ∀ u ∈ Lp(Ω),

and thus (4.52) satisfies all assumptions of Theorem 4.11, which guarantees
the existence of extremal solutions of (4.52). Apparently, any solution of (4.52)
is a solution of (4.49) as well. Denote the greatest solution of (4.52) by u∗.
We are going to show that any solution w of (4.49) satisfies w ≤ u∗, which
proves the existence of the greatest solution of (4.49). Recall that w ∈ V0 is
a solution of (4.49) if there are functions ηw ∈ Lq(Ω) and θw ∈ Lq(Ω) such
that the following holds:

(i) ηw(x) ∈ ∂j(x,w(x)), θw(x) ∈ ∂β(x,w(x)) for a.e. x ∈ Ω,

(ii) 〈−∆pw, v〉+
∫
Ω

ηw(x) v(x) =
∫
Ω

θw(x) v(x) dx, ∀ v ∈ V0. (4.54)

To show w ≤ u∗, let us define an auxiliary problem that arises from (4.52) by
truncation procedures as follows: Find u ∈ V0, η ∈ Lq(Ω) such that

η ∈ ∂ĵ(·, u) : 〈−∆pu+ B̂(u), v〉+
∫
Ω

η v dx =
∫
Ω

hw(·, u) v dx, ∀ v ∈ V0,

(4.55)
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where B̂ = i∗ ◦ B ◦ i and B is the Nemytskij operator given by the following
cut-off function b : Ω × R → R:

b(x, s) =
{

0 if w(x) ≤ s,
−(w(x)− s)p−1 if s < w(x), (4.56)

which can be written as b(x, s) = −[(w(x)−s)+]p−1. The function ĵ : Ω×R →
R is defined as the following modification of the given j:

ĵ(x, s) =
{
j(x,w(x)) + ηw(x)(s− w(x)) if s < w(x),
j(x, s) if w(x) ≤ s.

(4.57)

Clarke’s generalized gradient of ĵ is now given by:

∂ĵ(x, s) =


ηw(x) if s < w(x),
∂ĵ(x,w(x)) if s = w(x),
∂j(x, s) if w < s,

(4.58)

and the inclusion ∂ĵ(x,w(x)) ⊆ ∂j(x,w(x)) holds true. The nonlinearity hw :
Ω × R → R on the right-hand side of (4.55) is defined by

hw(x, s) =
{
h(x,w(x)) if s < w(x),
h(x, s) if w(x) ≤ s.

(4.59)

One verifies that (4.55) satisfies all assumptions of Theorem 4.11, which guar-
antees the existence of solutions, even extremal solutions of (4.55). Let u be
any solution of (4.55). We next show that w ≤ u. To this end we test (4.54)
and (4.55) with v = (w − u)+ and subtract (4.55) from (4.54) to get

〈−∆pw − (−∆pu), (w − u)+〉 − 〈B̂(u), (w − u)+〉+
∫
Ω

(ηw − η)(w − u)+ dx

=
∫
Ω

(θw − hw(·, u)) (w − u)+ dx. (4.60)

For x ∈ {w > u} we get in view of (4.58) that η(x) ∈ ∂ĵ(x, u(x)) = ηw(x),
and therefore ∫

Ω

(ηw − η)(w − u)+ dx = 0.

The right-hand side of (4.60) is nonpositive, since θw(x) − hw(x, u(x))) ≤ 0
for x ∈ {w > u}. Thus from (4.60) we deduce the inequality

−〈B̂(u), (w − u)+〉 ≤ 0,

which by definition of B̂ results in

−
∫
Ω

−[(w − u)+]p−1(w − u)+ dx =
∫
Ω

[(w − u)+]p dx ≤ 0.
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The last inequality implies (w−u)+ = 0, i.e., w ≤ u, and hence B̂(u) = 0, and
hw = h. Furthermore, as w ≤ u, from (4.58) we see that η ∈ ∂ĵ(x, u(x)) ⊆
∂j(x, u(x)), and hence any solution u of the auxiliary problem (4.55) must
be a solution of (4.53). As u∗ is the greatest solution of (4.53), it follows
w ≤ u∗, which completes the proof of the existence of the greatest solution.
The existence of the smallest solution u∗ of (4.49) can be shown in a similar
way by using the auxiliary problem

−∆pu+ ∂j(·, u) 3 h(·, u) in Ω, u = 0, on ∂Ω.

Step 2: Compactness of the solution set

Let S denote the set of all solutions of (4.49), which has extremal solutions
according to Step 1, i.e., there is the greatest and smallest solution u∗ and u∗,
respectively, and

u∗ ≤ u ≤ u∗, ∀ u ∈ S.
This implies that S is Lp(Ω)-bounded. Let (un) ⊆ S be any sequence. Re-
placing u by un in (ii) of Definition 4.12, testing the relation with ϕ = un,
and applying (D1)–(D2) we get the estimate

‖∇un‖pp ≤ (‖k1‖q + ‖k2‖q)‖un‖p + (λ1 − ε+ µ)‖un‖pp,

which shows that (un) is bounded in V0, because the right-hand side of the last
inequality is bounded. The corresponding sequences (ηn) and (θn) satisfying
ηn ∈ ∂j(·, un) and θn ∈ β(·, un), are bounded in Lq(Ω). Therefore, there are
subsequences (uk), (ηk), and (θk) with the following convergence properties:

uk ⇀ u in V0, uk → u in Lp(Ω), (4.61)
ηk ⇀ η in Lq(Ω), (4.62)
θk ⇀ θ in Lq(Ω), (4.63)

which satisfy the relation

〈−∆puk, ϕ〉+
∫
Ω

(ηk(x)− θk(x))ϕ(x) dx = 0, ∀ ϕ ∈ V0. (4.64)

Testing (4.64) with ϕ = uk − u, we readily observe that

lim sup
k→∞

〈−∆puk, uk − u〉 = 0,

which in view of the (S)+-property of −∆p yields the strong convergence of
(uk) in V0. This along with the convergence properties above allows to pass
to the limit as k →∞ in (4.64), which results in

〈−∆pu, ϕ〉+
∫
Ω

(η(x)− θ(x))ϕ(x) dx = 0, ∀ ϕ ∈ V0. (4.65)
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For the limits η and θ we have η ∈ ∂j(·, u) and θ ∈ β(·, u), which can be shown
in a standard way, e.g., like in Sect. 3.2.3. This completes the proof. ut

Remark 4.14. (i) Theorem 4.13 can be extended to more general Leray–Lions
operators A such as, e.g.,

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u(x),∇u(x)).

Only for the sake of simplifying our presentation and in order to emphasize
the main idea we have taken A = −∆p.

(ii) Hypotheses (D1) and (D2) can be relaxed in case that one assumes
the existence of an ordered pair u ≤ u with u ≤ 0 on ∂Ω and u ≥ 0 on ∂Ω
that satisfies the following inequalities:

u ∈ V : −∆pu+ η ≤ h(·, u), where η ∈ ∂j(·, u),

u ∈ V : −∆pu+ η ≥ h(·, u), where η ∈ ∂j(·, u).

In this case ∂j and h are only required to satisfy a local growth condition
where λ1 − ε in (D1) and µ in (D2) may be replaced by any constant.

4.2 State-Dependent Clarke’s Gradient Inclusion

We develop a flexible tool in terms of sub- and supersolutions that allows for
obtaining existence, bounds, and multiplicity of solutions for quasilinear ellip-
tic inclusions with a discontinuous multi-function that is given as the product
of a discontinuous nonlinearity and Clarke’s generalized gradient, i.e., a dis-
continuously state-dependent Clarke’s gradient. The special feature of this
kind of multi-function is that they need neither be upper nor lower semicon-
tinuous, which is usually a least requirement for its theoretical treatment.
Our approach is based on a combined use of abstract fixed point results for
monotone mappings on partially ordered sets provided in Chap. 2, and on ex-
istence and comparison results for multi-valued quasilinear elliptic problems
with Clarke’s generalized gradient developed in Chap. 3.

4.2.1 Statement of the Problem

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω. As before, let
V = W 1,p(Ω) and V0 = W 1,p

0 (Ω), 1 < p <∞. We consider the following qua-
silinear elliptic inclusion under homogeneous Dirichlet boundary conditions:

u ∈ V0 : Au+ f(·, u) ∈ h(u)∂j(·, u) in V ∗
0 , (4.66)

whereA is a second-order quasilinear elliptic differential operator of divergence
form
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Au(x) = −
N∑
i=1

∂

∂xi
ai(x,∇u(x)), with ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
.

The function (x, s) 7→ j(x, s) with j : Ω×R → R is assumed to be measurable
in x ∈ Ω for all s ∈ R, and locally Lipschitz in s ∈ R for a.a. x ∈ Ω, and
s 7→ ∂j(x, s) denotes Clarke’s generalized gradient. Further, we assume that
∂j(x, s) ⊂ R+ (cf., e.g., Fig. 4.1), h : R → R is increasing and bounded (not
necessarily continuous), and f : Ω ×R → R is a Carathéodory function. As h
is allowed to be discontinuous the multi-valued function s 7→ h(s)∂j(·, s) on
the right-hand side of (4.66) is, in general, neither monotone nor continuous.
Even more, s 7→ h(s)∂j(·, s) need not necessarily be an upper semicontinuous
or a lower semicontinuous multi-valued function (cf., e.g., Fig. 4.2), where
h : R → R is given by h(s) = −1 if s ≤ 0, and h(s) = 1 if s > 0. Therefore,
in general, s 7→ h(s)∂j(·, s) cannot be represented in the form of a Clarke’s
generalized gradient, which causes serious difficulties in the analytical treat-
ment of problem (4.66). This is because for the analysis of our discontinuous
multi-valued problem neither variational methods nor fixed point theorems
for multi-valued operators or the theory of multi-valued pseudomonotone op-
erators can be applied. Differential inclusions (4.66) with h = 1 have attracted
increasing interest over the past decades, because, among others, they arise,
e.g., in mechanical problems governed by nonconvex, possibly nonsmooth en-
ergy functionals that appear if nonmonotone, multi-valued constitutive laws
are taken into account, see [184, 190]. As the function h in (4.66) may be
discontinuous, we are in a position to model certain free boundary problems
or threshold phenomena, i.e., to take into consideration the fact that a certain
constitutive law is active only if u passes a specific threshold value.

Our main goal and the novelty here is to establish existence and compari-
son results for the discontinuous multi-valued problem (4.66) in terms of sub-
and supersolutions as introduced in Chap. 3. More precisely, we are going to
prove the existence of extremal (greatest and smallest) solutions within an
ordered interval of sub- and supersolution. In this way we are able to pro-
vide existence and comparison results for (4.66) with a rather irregular and
complicated multi-valued right-hand side.

If the function j : Ω×R → R is given by the primitive of some nonnegative,
measurable, and locally bounded function g : Ω × R → R, i.e.,

j(x, s) :=
∫ s

0

g(x, t) dt, (4.67)

then the function s 7→ j(x, s) is locally Lipschitz for a.a. x ∈ Ω, and the
multi-valued function s 7→ h(s)∂j(·, s) on the right-hand side of (4.66) can be
characterized as follows:

h(s)∂j(x, s) = h(s)[g1(x, s), g2(x, s)], (4.68)

where
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Fig. 4.2. State-Dependent Clarke’s Gradient

g1(x, t) := lim
δ→0+

ess inf
|τ−t|<δ

g(x, τ), g2(x, t) := lim
δ→0+

ess sup
|τ−t|<δ

g(x, τ),



4.2 State-Dependent Clarke’s Gradient Inclusion 155

see [181, Proposition 1.7]. In this case problem (4.66) includes the following
special cases:

(i) If h : R → R is continuous then one can show that (4.66) reduces to the
multi-valued elliptic boundary value problem

u ∈ V0 : Au ∈ ∂j̃(·, u) in V ∗
0 , (4.69)

where s 7→ ∂j̃(x, s) is Clarke’s generalized gradient of some appropriately
modified locally Lipschitz function s 7→ j̃(x, s). Existence and comparison
results for inclusions of the form (4.69) governed by Clarke’s gradient
have been studied in Chap. 3.

(ii) If h : R → R is continuous and g : Ω × R → R is a Carathéodory
function then the function s 7→ j(x, s) is continuously differentiable, and
∂j(x, s) = {∂j(x, s)/∂s} = {g(x, s)}, i.e., s 7→ ∂j(x, s) is single-valued,
and (4.66) reduces to the (single-valued) elliptic boundary value problem

u ∈ V0 : Au+ f̃(·, u) = 0 in V ∗
0 , (4.70)

where (x, s) 7→ f̃(x, s) := f(x, s)−h(s)g(x, s) is a Carathéodory function.
This is a special case of the multi-valued elliptic problems studied in
Chap. 3.

(iii) If h : R → R is only assumed to be increasing (not necessarily continu-
ous), and g : Ω×R → R is a Carathéodory function, then (4.66) reduces
to the single-valued discontinuous elliptic boundary value problem

u ∈ V0 : Au = f̃(·, u, u) in V ∗
0 , (4.71)

where (x, r, s) 7→ f̃(x, r, s) := h(r)g(x, s)− f(x, s), i.e., (x, s) 7→ f̃(x, r, s)
is a Carathéodory function for r ∈ R fixed, and r 7→ f̃(x, r, s) is increasing
for fixed (x, s) (note: g(x, s) ≥ 0). This kind of single-valued problem will
be treated in Sect. 4.3, see also Sect. 4.1 and [44, Chap. 5].

It should be mentioned that problem (4.66) can be extended to include
more general elliptic operators A of Leray–Lions type such as

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u,∇u(x)) + a0(x, u,∇u(x)).

Nonlinear mixed boundary conditions can be treated as well.

4.2.2 Notions, Hypotheses, and Preliminaries

Let q denote the Hölder conjugate real to p with 1 < p < ∞. We assume
the following hypotheses of Leray–Lions type on the coefficient functions ai,
i = 1, ..., N , of the operator A:
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(A1) Each ai : Ω×RN → R satisfies the Carathéodory conditions, i.e., ai(x, ζ)
is measurable in x ∈ Ω for all ζ ∈ RN , and continuous in ζ for a.a. x ∈ Ω.
There exist a constant c0 > 0 and a function k0 ∈ Lq(Ω) such that

|ai(x, ζ)| ≤ k0(x) + c0 |ζ|p−1 ,

for a.a. x ∈ Ω and for all ζ ∈ RN .
(A2) For a.a. x ∈ Ω , and for all ζ, ζ ′ ∈ RN with ζ 6= ζ ′ the following

monotonicity holds:

N∑
i=1

(ai(x, ζ)− ai(x, ζ ′))(ζi − ζ ′i) > 0.

(A3) There is some constant ν > 0 such that for a.a. x ∈ Ω and for all ζ ∈ RN
the inequality

N∑
i=1

ai(x, ζ)ζi ≥ ν|ζ|p − k1(x)

is satisfied for some function k1 ∈ L1(Ω).

Let 〈·, ·〉 denote the dual pairing between V0 and V ∗
0 . In view of (A1), (A2),

the operator A defined by

〈Au,ϕ〉 :=
∫
Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx, ∀ ϕ ∈ V0

is known to provide a continuous, bounded, and monotone (resp. strictly
monotone) mapping from V (resp. V0) into V ∗

0 .
As for the functions j : Ω × R → R, h : R → R, and f : Ω × R → R we

assume the following hypotheses with c ≥ 0 being some universal constant
that may have different values at different places:

(H1) The function x 7→ j(x, s) is measurable in Ω for all s ∈ R, and s 7→
j(x, s) is locally Lipschitz continuous in R for a.a. x ∈ Ω. There exists
a k2 ∈ Lq+(Ω) such that

0 ≤ η ≤ k2(x) + c|s|p−1, ∀ η ∈ ∂j(x, s),

for a.a. x ∈ Ω and for all s ∈ R.
(H2) h : R → R is increasing and bounded, i.e.,

|h(s)| ≤ c, ∀ s ∈ R.

(H3) f : Ω × R → R is a Carathéodory function satisfying for some k3 ∈
Lq+(Ω) the growth condition

|f(x, s)| ≤ k3(x) + c|s|p−1

for a.a. x ∈ Ω and for all s ∈ R.
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Notions

For convenience let us recall the notion of sub- and supersolution specified to
the multi-valued problem (4.66)

Definition 4.15. A function u ∈ V0 is called a solution of (4.66) if there is
an η ∈ Lq(Ω) satisfying η(x) ∈ ∂j(x, u(x)) for a.a. x ∈ Ω, and∫

Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx+

∫
Ω

f(x, u)ϕdx =
∫
Ω

h(u) η ϕ dx, ∀ ϕ ∈ V0.

(4.72)

If F and H denote the Nemytskij operators related to f and h by
F (u)(x) := f(x, u(x)) and H(u)(x) := h(u(x)), then equality (4.72) is equiv-
alent to the following operator equation:

Au+ i∗F (u) = i∗(H(u)η) in V ∗
0 ,

where i∗ : Lq(Ω) ↪→ V ∗
0 denotes the adjoint operator to the embedding i :

V ↪→ Lp(Ω), i.e., for α ∈ Lq(Ω) we have

〈i∗α, ϕ〉 =
∫
Ω

αϕdx, ∀ ϕ ∈ V0.

(Note we write iu = u ∈ Lp(Ω) for u ∈ V .) Let us recall our basic notion
of sub- and supersolution for (4.66), which can easily be deduced from the
general notion introduced in Chap. 3

Definition 4.16. A function u ∈ V is called a subsolution of (4.66) if
u|∂Ω ≤ 0, and if there is an η ∈ Lq(Ω) satisfying η(x) ∈ ∂j(x, u(x)) for
a.a. x ∈ Ω, and∫

Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx+

∫
Ω

f(x, u)ϕdx ≤
∫
Ω

h(u)η ϕ dx, ∀ ϕ ∈ V0,+.

(4.73)

Here we set V0,+ := V0∩Lp+(Ω) with Lp+(Ω) denoting the (positive) cone of all
nonnegative functions in Lp(Ω). In a similar way we define the supersolution.

Definition 4.17. A function u ∈ V is called a supersolution of (4.66) if
u|∂Ω ≥ 0, and if there is an η ∈ Lq(Ω) satisfying η(x) ∈ ∂j(x, u(x)) for a.a.
x ∈ Ω, and∫

Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx+

∫
Ω

f(x, u)ϕdx ≥
∫
Ω

h(u)η ϕ dx, ∀ ϕ ∈ V0,+.

(4.74)
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Remark 4.18. As already mentioned in Sect. 4.2.1, one can reduce problem
(4.66) to the special case (4.69) in case that h : R → R is continuous and
bounded. However, if h is allowed to be discontinuous, then, in general, s 7→
h(s)∂j(x, s) − f(x, s) is neither upper nor lower semicontinous (see figures),
and therefore (4.66) can no longer be reduced to (4.69).

Our main result of this section states that there exist extremal solutions
of (4.66) within the ordered interval [u, u] formed by a pair of sub- and su-
persolution. The proof of our main result is based on fixed point results for
not necessarily continuous fixed point operators in partially ordered sets (see
Sect. 2), and on comparison principles for multi-valued elliptic problems with
Clarke’s gradient proved in Chap. 3.

Preliminaries

First, we recall the comparison principle for elliptic inclusions with Clarke’s
generalized gradient of the form

u ∈ V0 : Au ∈ ∂ĵ(·, u) in V ∗
0 , (4.75)

where ĵ : Ω × R → R is a function satisfying the following hypotheses:

(j1) The function x 7→ ĵ(x, s) is measurable in Ω for all s ∈ R, and s 7→ ĵ(x, s)
is locally Lipschitz continuous in R for a.a. x ∈ Ω.

(j2) There exist c > 0, and k ∈ Lq(Ω) such that

|η| ≤ k(x) + c|s|p−1, ∀ η ∈ ∂ĵ(x, s),

for a.a. x ∈ Ω and for all s ∈ R.

In Sect. 3 the following result has been proved.

Theorem 4.19. Let hypotheses (A1)–(A3) and (j1)–(j2) be satisfied, and as-
sume the existence of sub- and supersolutions of (4.75), u and u, respectively,
satisfying u ≤ u. Then there exist the greatest and smallest solution of (4.75)
within the ordered interval [u, u].

Furthermore, in the proof of our main result we make use of an abstract
fixed point theorem for increasing (not necessarily continuous) operators in
subsets of ordered normed spaces. Let (E,≤) be an ordered normed space with
partial order ≤. The fixed point result we are going to apply is the following
one.

Theorem 4.20. Let P be a subset of an ordered normed space E, and let
G : P → P be an increasing mapping, that is, if x, y ∈ P and x ≤ y, then
Gx ≤ Gy. Then the following holds:

(a) If the image G(P) has a lower bound in P and increasing sequences of
G(P) converge weakly in P, then G has the smallest fixed point x∗ =
min{x : Gx ≤ x}.
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(b) If the image G(P) has an upper bound in P and decreasing sequences
of G(P) converge weakly in P, then G has the greatest fixed point x∗ =
max{x : x ≤ Gx}.

Proof: As for the proof we note that Theorem 4.20 is a consequence of Propo-
sition 2.39 of Chap. 2 (see also [44, Theorem 1.1.1]). ut

4.2.3 Existence and Comparison Result

Let (u, u) be an ordered pair of sub- and supersolutions of (4.66), i.e., u ≤ u.
Throughout this section we assume hypotheses (A1)–(A3) and (H1)–(H3).
Consider the following auxiliary inclusion problem: Let v ∈ [u, u] be fixed.
Find u ∈ V0 such that

Au+ f(·, u) ∈ h(v)∂j(·, u) in V ∗
0 . (4.76)

By means of (4.76) we are going to define a fixed point operator on some
subset of the partially ordered normed space V , which will allow us to apply
Theorem 4.20. For this purpose several auxiliary lemmas will be proved next.

Lemma 4.21. Let v ∈ [u, u] be any fixed supersolution of (4.66). Then prob-
lem (4.76) has the greatest solution v∗ and the smallest solution v∗ within
[u, v]. Analogously, if w ∈ [u, u] is any fixed subsolution of (4.66), then prob-
lem (4.76) with v replaced by w has the greatest solution w∗ and the smallest
solution w∗ within [w, u].

Proof: We are going to prove the first part of the lemma. Let v ∈ [u, u] be a
fixed supersolution of (4.66). Defining

ĵ(x, s) := h(v(x)) j(x, s)−
∫ s

0

f(x, t) dt, (4.77)

we obtain ∂ĵ(x, s) = h(v(x)) ∂j(x, s) − f(x, s), and thus problem (4.76) can
be rewritten in the form

u ∈ V0 : Au ∈ ∂ĵ(x, u) in V ∗
0 . (4.78)

By means of (H1)–(H3) one verifies that ĵ satisfies hypotheses (j1)–(j2) of
Theorem 4.19. Furthermore, since v is a supersolution of (4.66), it is also a
supersolution of (4.76), and thus of (4.78). The given subsolution u of (4.66)
is readily seen to be a subsolution of (4.78) due to (H1) and (H2). Applying
Theorem 4.19 we obtain the existence of extremal solutions of problem (4.76)
within [u, v]. By similar arguments the second part of the lemma can be
proved. ut

Lemma 4.22. Let v ∈ [u, u] be a supersolution of (4.66), and let v∗ be the
greatest solution of (4.76) within [u, v]. Let z ∈ [u, u] be a supersolution of
(4.66), and let z∗ be the greatest solution within [u, z] of (4.76) with v replaced
by z. If z ≤ v, then z∗ ≤ v∗.
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Proof: By definition z∗ is the greatest solution of

z∗ ∈ V0 : Az∗ + f(·, z∗) ∈ h(z)∂j(·, z∗) in V ∗
0 (4.79)

within [u, z]. From ∂j(x, s) ≥ 0, s 7→ h(s) increasing, and z ≤ v it follows that
z∗ is a subsolution for problem (4.76). As v is also a supersolution of (4.76)
we infer by Theorem 4.19 the existence of extremal solutions of (4.76) within
[z∗, v], which implies v∗ ∈ [z∗, v], i.e., z∗ ≤ v∗. ut

By obvious dual reasoning one can show the following result.

Lemma 4.23. Let w ∈ [u, u] be a subsolution of (4.66), and let w∗ be the
smallest solution within [w, u] of (4.76) with v replaced by w. Let y ∈ [u, u]
be a subsolution of (4.66), and let y∗ be the smallest solution within [y, u] of
(4.76) with v replaced by y. If y ≤ w, then y∗ ≤ w∗.

We define subsets U and W of V as follows:

U := {v ∈ V : v ∈ [u, u] and v is a supersolution of (4.66)}, (4.80)

W := {w ∈ V : w ∈ [u, u] and w is a subsolution of (4.66)}, (4.81)

and introduce operators G and L on U and W, respectively. For v ∈ U let
Gv := v∗ denote the greatest solution of (4.76) within [u, v]. For w ∈ W let
Lw := w∗ denote the smallest solution within [w, u] of (4.76) with v replaced
by w. In view of Lemma 4.22 and Lemma 4.23, the operators G : U → V0 and
L : W → V0 are well defined.

Lemma 4.24. The operator G : U → U is increasing, and any fixed point of
G is a solution of (4.66) within [u, u], and vice versa.

Proof: By Lemma 4.22 the operator G : U → V0 is increasing, and for any
v ∈ U we have u ≤ Gv ≤ v where v∗ := Gv is the greatest solution of (4.76)
in [u, v], i.e.,

Av∗ + f(·, v∗) = h(v)η∗ in V ∗
0 ,

where η∗ ∈ ∂j(·, v∗). Due to (H1) and (H2), the last equation results in

Av∗ + f(·, v∗) ≥ h(v∗)η∗ in V ∗
0 ,

which shows that Gv ∈ U , and thus G : U → U is increasing. The definition
of G immediately implies that any fixed point u of G is a solution of (4.66)
which belongs to [u, u]. Conversely, if u ∈ [u, u] is a solution of (4.66) then
u is, in particular, a supersolution, i.e., u ∈ U , and it is trivially a solution
of (4.76) with v replaced by u, and thus u is the greatest solution of (4.76)
within [u, u], i.e., u = Gu. ut

Lemma 4.25. The range G(U) of G has an upper bound in U , and decreasing
sequences of G(U) converge weakly in U .
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Proof: The given supersolution u ∈ U ⊆ [u, u] is apparently an upper bound
of G(U). Let (un) ⊆ G(U) be a decreasing sequence. Since U is Lp-bounded,
we infer by means of (A3) and (H1)–(H3) that (un) is bounded in V0, and thus
by the monotonicity of the sequence and the compact embedding V0 ↪→ Lp(Ω)
we get:

un ⇀ u in V0, un → u in Lp(Ω). (4.82)

To complete the proof we need to show that u ∈ U . To this end we note that
un = Gvn for some vn ∈ U , i.e.,

Aun + f(·, un) = h(vn)ηn in V ∗
0 , (4.83)

where ηn ∈ ∂j(·, un). Testing (4.83) with ϕ = un − u ∈ V0 we obtain

〈Aun, un − u〉 =
∫
Ω

(
h(vn)ηn − f(·, un)

)
(un − u) dx. (4.84)

Due to the boundedness of
(
h(vn)ηn−f(·, un)

)
in Lq(Ω), the right-hand side

of (4.84) tends to zero in view of (4.82), which by the (S+)-property of A and
the weak convergence of (un) results in the strong convergence of (un) in V0,
i.e.,

un → u in V0.

As the limit u satisfies
u ≤ u ≤ un ≤ vn ≤ u,

we get by (H1) and (H2) h(vn)ηn ≥ h(u)ηn for all n ∈ N, which yields

〈Aun, ϕ〉+
∫
Ω

f(·, un)ϕdx ≥
∫
Ω

h(u)ηn ϕdx, ∀ ϕ ∈ V0,+. (4.85)

From (H1) and (H2) it follows that (ηn) is bounded in Lq(Ω), and thus there
is a weakly convergent subsequence of (ηn) (which is again denoted by (ηn)),
i.e.,

ηn ⇀ η in Lq(Ω). (4.86)

The weak convergence of (ηn) and the strong convergence of (un) in V0 allows
us to pass to the limit in (4.85) (for some subsequence if necessary), which
results in

〈Au,ϕ〉+
∫
Ω

f(·, u)ϕdx ≥
∫
Ω

h(u)η ϕ dx, ∀ ϕ ∈ V0,+. (4.87)

As u ∈ [u, u], the last inequality shows that the limit u is a supersolution of
(4.66), i.e., u ∈ U , provided the inclusion

η(x) ∈ ∂j(x, u(x)) for a.a. x ∈ Ω (4.88)

holds. To complete the proof we are going to verify (4.88) by appropriately
adopting the idea from Sect. 3. By definition of Clarke’s gradient, (4.88) is
proved provided that
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η(x) r ≤ jo(x, u(x); r) (4.89)

holds for a.a. x ∈ Ω and for all r ∈ R. To this end let r ∈ R be fixed and E
be any measurable subset of Ω. First we note that from the definition of jo

we infer that x 7→ jo(x, v(x); r) is measurable in Ω whenever x 7→ v(x) is a
measurable function in Ω, and thus

x 7→ jo(x, u(x); r), x 7→ jo(x, un(x); r) are measurable.

In view of (H1) and the inequality u ≤ u ≤ un ≤ vn ≤ u we get

|jo(x, u(x); r)| ≤ |r|(k2(x) + c|u(x)|p−1) ≤ k̃(x)
|jo(x, un(x); r)| ≤ |r|(k2(x) + c|un(x)|p−1) ≤ k̃(x),

for some k̃ ∈ Lq+(Ω), and thus jo(·, u; r) ∈ Lq(Ω) and jo(·, un; r) ∈ Lq(Ω)
for all n ∈ N. As un(x) → u(x) for a.a. x ∈ Ω and s 7→ jo(x, s; r) is upper
semicontinuous, we get by applying Fatou’s lemma

lim sup
n

∫
E

jo(x, un(x); r) dx ≤
∫
E

lim sup
n

jo(x, un(x); r) dx

≤
∫
E

jo(x, u(x); r) dx. (4.90)

The weak convergence (4.86) implies∫
E

ηn(x)r dx→
∫
E

η(x)r dx as n→∞. (4.91)

For each n ∈ N we have ηn(x) ∈ ∂j(x, un(x)), which by definition of Clarke’s
gradient results in

ηn(x)r ≤ jo(x, un(x); r) for a.a. x ∈ Ω,

and thus ∫
E

ηn(x)r dx ≤
∫
E

jo(x, un(x); r) dx, ∀n ∈ N. (4.92)

Passing to the lim sup in (4.92) and applying (4.90), (4.91), we finally get∫
E

η(x)r dx ≤
∫
E

jo(x, u(x); r) dx. (4.93)

Since inequality (4.93) holds for all measurable subsets E of Ω, it follows that
(4.89) holds for a.a. x ∈ Ω, which completes our proof. ut

As for the operator L : W → V0 defined above, we obtain analogous
results that are summarized in the following lemma whose proof can be done
by obvious modifications of the proofs of Lemmas 4.24 and 4.25.
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Lemma 4.26. The operator L : W → W is increasing, and any fixed point
of L is a solution of (4.66) within the interval [u, u] and vice versa. The
range L(W) of L has a lower bound in W, and increasing sequences of L(W)
converge weakly in W.

Our main result here is the following existence and comparison theorem
for problem (4.66).

Theorem 4.27. Let hypotheses (A1)–(A3) and (H1)–(H3) be satisfied, and
assume the existence of sub- and supersolutions of (4.66), u and u, respec-
tively, satisfying u ≤ u. Then problem (4.66) has the greatest and smallest
solution within the ordered interval [u, u].

Proof: The proof is an immediate consequence of Lemma 4.24, Lemma 4.25,
and Lemma 4.26 in conjunction with Theorem 4.20. First, let us focus on
the existence of the greatest solution of (4.66) within [u, u]. By Lemma 4.24
any fixed point of G : U → U is a solution of (4.66) in [u, u] and vice versa.
Lemma 4.24 and Lemma 4.25 imply that Theorem 4.20 (b) can be applied,
which yields the existence of the greatest fixed point of G in U , and thus the
greatest solution of (4.66) within [u, u]. Finally, by Lemma 4.26 and Theorem
4.20 (a) one infers the existence of the smallest solution of (4.66) within [u, u].

ut

4.2.4 Application: Multiplicity Results

Let us consider the following specific inclusion

−∆pu ∈ h(u)∂j(u) in Ω, u = 0 on ∂Ω, (4.94)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, and 2 ≤ p <∞. We assume
that the multi-function s 7→ h(s)∂j(s) on the right-hand side of (4.94) is like
in the second figure of Sect. 4.2.1. By inspection we see that the multi-function
admits an estimate in the form

−a1 ≤ h(s)∂j(s) ≤ a1 + a2|s|, ∀ s ∈ R, (4.95)

where a1, a2 are some positive constants. Let λ1 be the first eigenvalue of
(−∆p, V0), which is positive and simple, see [6]. If p > 2 then by Young’s
inequality from (4.95) we get for any δ > 0 the estimate

−a1 ≤ h(s)∂j(s) ≤ a3(δ) + δ|s|p−1, ∀ s ∈ R, (4.96)

where a3(δ) is some positive constant that only depends on δ. In particular,
δ may always be chosen in such a way that δ < λ1.

Corollary 4.28. If 2 < p < ∞, then problem (4.94) has a greatest and a
smallest solution. If p = 2, then (4.94) has a greatest and a smallest solution
provided that the constant a2 in (4.95) satisfies 0 ≤ a2 < λ1.
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Proof: In the case that 2 < p < ∞ we consider the auxiliary (single-valued)
problem

u ∈ V0 : −∆pu = a3(δ) + δ|u|p−1 in V ∗
0 (4.97)

with 0 < δ < λ1. One readily verifies that the operator S defined as Su :=
−∆pu − δ |u|p−1 is a bounded, continuous, pseudomonotone, and coercive
operator from V0 into V ∗

0 . Hence it follows that S : V0 → V ∗
0 is surjective,

which ensures the existence of solutions of (4.97). Moreover, any solution u of
(4.97) must be nonnegative. This can readily be seen by testing the equation
(4.97) with u− := max{−u, 0} ∈ V0, which results in∫

Ω

|∇u|p−2∇u∇(u−) dx =
∫
Ω

(a3(δ) + δ|u|p−1)u− dx ≥ 0,

and thus ∫
Ω

|∇u−|p dx =
∫
{x∈Ω:u(x)≤0}

|∇u|p dx ≤ 0,

which implies u− = 0. Problem (4.97) may be considered as a special case of
problem (4.49) treated in Sect. 4.1.4, and thus we can ensure the existence of
greatest and smallest solutions of (4.97). Let u denote the greatest solution of
(4.97). In view of (4.96) we infer that u is a supersolution for problem (4.94),
where for x 7→ η(x) one can take any measurable selection of x 7→ ∂j(u(x). As
−∆p : V0 → V ∗

0 is bounded, continuous, and even strongly monotone (note:
2 ≤ p <∞) we readily conclude that the Dirichlet problem

u ∈ V0 : −∆pu = −a1 in V ∗
0 (4.98)

has a unique solution denoted by u, which apparently is nonpositive and a
subsolution of (4.94). Therefore, by applying Theorem 4.27, problem (4.94)
has the greatest solution u∗ and the smallest solution u∗ within [u, u]. More-
over, because any solution u of (4.94) is a subsolution of the auxiliary problem
(4.97) and supersolution of the auxiliary problem (4.98), it must belong to the
interval [u, u], since u is the greatest solution of (4.97) and u is the unique
solution of (4.98). This shows that the set S of all solutions of (4.94) satisfies
S ⊆ [u∗, u∗] ⊆ [u, u], and u∗, u

∗ are the extremal elements of S. The case
p = 2 can be treated in just the same way. ut

A more detailed analysis can be carried out due to the behavior of s 7→
h(s)∂j(s) for s ≤ 0, which allows for an estimate in the form

−a1 ≤ h(s)∂j(s) ≤ −a4, ∀ s ≤ 0, (4.99)

with some positive constant a4. By means of estimate (4.99) we can construct
a nonpositive supersolution of (4.94) using the eigenfunction ϕ1 of (−∆p, V0)
corresponding to λ1, which satisfies ϕ1 ∈ int (C1

0 (Ω)+), where int (C1
0 (Ω)+) is

the interior of the positive cone C1
0 (Ω)+, which can be characterized by
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int (C1
0 (Ω)+) = {u ∈ C1

0 (Ω) : u(x) > 0, ∀x ∈ Ω, and
∂u

∂n
(x) < 0, ∀x ∈ ∂Ω}.

Let us find a nonpositive supersolution v of (4.94) in the form v = −εϕ1 with
ε > 0. Applying (4.99) we get for ε sufficiently small

−∆pv − h(v)∂j(u) ≥ −∆pv + a4 = −λ1ε
p−1ϕp−1

1 + a4 ≥ 0,

which shows that v = −εϕ1 is in fact a supersolution of (4.94). Let u be
the unique solution of (4.98), which is a nonpositive subsolution of (4.94).
The nonlinear regularity theory for the p-Laplacian and the nonlinear strong
maximum principle due to [221] imply u ∈ −int (C1

0 (Ω)+). Therefore, for ε
small enough one can always get u ≤ v = −εϕ1, which by applying Theorem
4.27 yields the following result.

Corollary 4.29. The smallest solution u∗ of problem (4.94) is nonpositive
and satisfies u ≤ u∗ ≤ −εϕ1 for ε sufficiently small, where u is the unique
solution of (4.98).

Next we are going to verify that the greatest solution u∗ of (4.94) is non-
negative. As h(0)∂j(0) = {−a5} for some positive constant a5 we readily see
that u = 0 is not a solution of problem (4.94). Thus (4.94) has at least two
distinct solutions, namely u∗ and u∗ satisfying

u ≤ u∗ ≤ 0 ≤ u∗ ≤ u, (4.100)

where u and u are given above. To prove (4.100) we are going to construct a
nonnegative subsolution v of (4.94) in the form v = εϕ1 with ε > 0 and ϕ1

as above. By inspection of the graph of s 7→ h(s)∂j(s) (see second figure in
Sect. 4.2.1) and in view of (4.96) we have the following estimate:

0 < a6 ≤ h(s)∂j(s) ≤ a3(δ) + δ sp−1, for s > 0, (4.101)

with 0 < δ < λ1, where a6 is some positive constant. Note, for s = 0 we have
h(0)∂j(0) = {−a5}. If ϕ ∈ V0,+ is any nonnegative test function, then we
obtain with v = εϕ1 ≥ 0

〈−∆pv − h(v)∂j(v), ϕ〉 =
∫
Ω

λ1(εϕ1)p−1ϕdx−
∫
{x∈Ω:v(x)=0}

h(v)∂j(v)ϕdx

−
∫
{x∈Ω:v(x)>0}

h(v)∂j(v)ϕdx. (4.102)

As ϕ1 ∈ int (C1
0 (Ω)+) we conclude that the N -dimensional Lebesgue measure

of {x ∈ Ω : v(x) = 0} is zero, and hence by means of (4.101) and (4.102) we
get the estimate

〈−∆pv − h(v)∂j(v), ϕ〉 ≤
∫
Ω

(
λ1(εϕ1)p−1 − a6

)
ϕdx ≤ 0 (4.103)
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for ε > 0 sufficiently small, which shows that v = εϕ1 ≥ 0 is in fact a
subsolution of (4.94). To complete the proof of (4.100) we need to make sure
that the inequality v = εϕ1 ≤ u holds true for some ε small. To this end
we only note that v is readily seen to be also a subsolution of the auxiliary
problem (4.97), and one can prove that (4.97) must have solutions above v.
Therefore, because u is the greatest solution of (4.97), it follows that v ≤ u,
and thus (v, u) is a pair of sub- and supersolution of (4.94). We summarize
the obtained results in the following corollary.

Corollary 4.30. The multi-valued boundary value problem (4.94) has a neg-
ative smallest solution u∗ satisfying u ≤ u∗ ≤ −εϕ1, and a greatest positive
solution u∗ satisfying εϕ1 ≤ u∗ ≤ u, where u is the unique solution of (4.98)
and u is the greatest solution of (4.97).

4.3 Discontinuous Elliptic Problems via Fixed Points for
Multifunctions

In this section we shall first recall fixed point results for multi-valued mappings
G : P → 2P \ ∅ defined on a nonempty subset P of a lattice-ordered reflexive
Banach space E with the property:

(N+) ‖u+‖ ≤ ‖u‖ for each x ∈ E, where u+ := sup{u, 0}.

As is readily seen, the function spaces Lp(Ω), W 1,p(Ω) and W 1,p
0 (Ω), 1 < p <

∞, ordered by the positive cone Lp+(Ω), possess property (N+). By means
of these abstract fixed point theorems for multi-valued self-mappings we are
able to treat discontinuous elliptic problems without assuming the existence
of an ordered pair of sub-supersolutions. The problems considered here are
single-valued generalizations of those treated in Sect. 4.1. Moreover, it should
be mentioned that also elliptic problems with lack of compactness such as,
e.g., elliptic equations involving nonlinearities with critical growth (critical
Sobolev exponent) or elliptic problems in unbounded domains, can be treated
using these abstract results, cf. [48]. The abstract fixed point theorems we are
going to apply here are extensions of those already used in Sect. 4.1.

4.3.1 Abstract Fixed Point Theorems for Multi-Functions

Let E be a lattice-ordered reflexive Banach space. Before formulating the
abstract fixed point theorems let us recall a few important notions in this
respect.

Definition 4.31. Given a nonempty subset P of E, we say that v ∈ P is a
maximal fixed point of a multi-valued mapping F : P → 2P \∅, if v ∈ F (v),
and if u ∈ F (u) and v ≤ u implies u = v. If u ∈ F (u) and u ≤ v implies
u = v, we call v a minimal fixed point of F .
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The following notions of monotonicity for multi-valued mappings is used
in what follows, see also Definition 2.4.

Definition 4.32. We say that F : P → 2P \ ∅ is increasing upward if
u, v ∈ P , u ≤ v, and x ∈ F (u) imply the existence of y ∈ F (v) such that
x ≤ y. F is increasing downward if u, v ∈ P , u ≤ v, and y ∈ F (v) imply
that x ≤ y for some x ∈ F (u). If F is increasing upward and downward we
say that F is increasing.

Definition 4.33. We say that a subset P of E has a sup-center (resp. an
inf-center) c if sup{c, u} (resp. inf{c, u}) exists and belongs to P for each
u ∈ P . If c is both a sup-center and an inf-center of P we say that c is an
order center of P .

Example 4.34. For instance, if E is a lattice-ordered Banach space, and if
‖u+‖ ≤ ‖u‖ for each u ∈ E, that is (N+) holds, then the center of each closed
ball B of E is its order center, which is justified by the the following lemma.

Lemma 4.35. Let E be a lattice-ordered Banach space, and let ‖u+‖ ≤ ‖u‖
for each u ∈ E be satisfied. Then the center a of any closed ball B(a, r) =
{x ∈ E : ‖x− a‖ ≤ r} with radius r is both a sup-center and inf-center.

Proof: According to the definition of sup-center and inf-center we need to
show that for any y ∈ B(a, r) both sup{a, y} and inf{a, y} belong to B(a, r).
This, however, readily follows from the following representations:

sup{a, y} = (y − a)+ + a and inf{a, y} = a− (a− y)+,

so that by (N+), i.e., by applying ‖x±‖ ≤ ‖x‖ we get

‖sup{a, y} − a‖ = ‖(y − a)+‖ ≤ ‖(y − a)‖ ≤ r,

which shows that sup{a, y} ∈ B(a, r), and similarly inf{a, y} ∈ B(a, r). ut

The following theorem can be deduced from Chap. 2, Theorem 2.12, and
Theorem 2.25.

Theorem 4.36. Let E be a lattice-ordered reflexive Banach space. Assume
that P is a bounded and weakly sequentially closed subset of E, and that G :
P → 2P \ ∅ is an increasing mapping whose values are weakly sequentially
closed. Then the following holds:

(a) If P has a sup-center, then G has a minimal fixed point.
(b) If P has an inf-center, then G has a maximal fixed point.
(c) If P has an order center, then G has minimal and maximal fixed points.

An immediate consequence is the following theorem, which will be used later
in our study of discontinuous elliptic problems.
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Theorem 4.37. Let E be a lattice-ordered reflexive Banach space with the
property (N+) given above. If B is a closed and bounded ball in E, then each
increasing mapping G : B → 2B \ ∅ with weakly sequentially closed values has
minimal and maximal fixed points.

Proof: The ball B, as a closed and convex set, is weakly sequentially closed.
Moreover, property (N+) of E ensures that the center of B is its order center,
see Example 4.34. Thus all the hypotheses of Theorem 4.36 hold, which implies
the assertion. ut

Examples of spaces possessing property (N+) that are useful in applica-
tions are given in the following lemma whose proof is quite obvious and can
therefore be omitted.

Lemma 4.38. Each of the following spaces are lattice-ordered and reflexive
Banach spaces having property (N+), when 1 < p <∞.

(a) Lp(Ω), ordered a.e. pointwise, where (Ω,A, µ) is a σ-finite measure space.
(b) W 1,p(Ω), and W 1,p

0 (Ω), ordered a.e. pointwise, where Ω is a bounded Lip-
schitz domain in RN .

(c) lp, ordered coordinatewise and normed by the usual p-norm.
(d) RN , ordered coordinatewise and normed by the p-norm.

4.3.2 Discontinuous Elliptic Functional Equations

Let Ω ⊂ RN be bounded, and denote V0 = W 1,p
0 (Ω) with 1 < p < ∞.

By Lemma 4.38 it follows that V0 is a lattice-ordered reflexive Banach space
possessing property (N+) given at the beginning of Sect. 4.3. As an example of
a quasilinear discontinuous boundary value problem we consider the following
functional Dirichlet boundary value problem (BVP for short):

u ∈ V0 : −∆pu = f(·, u(·), u) in V ∗
0 , (4.104)

where ∆p is as in the preceding sections the p-Laplacian. According to (4.104)
we are seeking functions u ∈ V0 that satisfy the following variational equation:∫

Ω

N∑
i=1

|∇u|p−2 ∂u

∂xi

∂ϕ

∂xi
dx =

∫
Ω

f(x, u(x), u)ϕdx, ∀ ϕ ∈ V0.

For the nonlinearity f : Ω ×R× V0 → R we make the following assumptions:

(f1) The function f is superpositionally measurable (sup-measurable ), i.e.,
x 7→ f(x, u(x), v) is measurable in Ω whenever x 7→ u(x) is measurable,
s 7→ f(x, s, v) is continuous in R, and v 7→ f(x, s, v) is increasing for a.e.
x ∈ Ω and for all s ∈ R and v ∈ V0.
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(f2) f satisfies the growth condition

|f(x, s, v)| ≤ k(x)+µ |s|p−1 for a.e. x ∈ Ω, ∀ s ∈ R, ∀ v ∈ V0 (4.105)

with k ∈ Lq+(Ω), q = p/p− 1, and 0 ≤ µ < λ1, where λ1 is the first
Dirichlet eigenvalue of −∆p.

Note that the right-hand side (x, v) 7→ f(x, s, v) of (4.104) is, in general, non-
linear and discontinuous, and depends functionally on v. Therefore, problem
(4.104) may be considered as a single-valued extension of the multi-valued
problem treated in Sect. 4.1.

Let us denote the norms in V0 and Lp(Ω) by ‖ · ‖V0 and ‖ · ‖p, respectively.
By applying the abstract fixed point theorems of the preceding subsection, we
are going to prove first the following existence result.

Theorem 4.39. Let hypotheses (f1) and (f2) be satisfied. Then the BVP
(4.104) has minimal and maximal solutions in V0.

Proof: The proof will be given in three steps.

Step 1: A Priori Bound

Let u be any solution of (4.104). Then, by using the special test function
ϕ = u, the growth condition (4.105), the variational characterization of the
first eigenvalue λ1, and Young’s inequality, we obtain

‖∇u‖pp ≤
∫
Ω

|k(x)u(x)| dx+ µ

∫
Ω

|u(x)|p dx ≤ C(ε) +
ε+ µ

λ1
‖∇u‖pp,

for any ε > 0. In view of (f2) and selecting ε sufficiently small, the last
inequality implies the existence of a positive constant R such that

‖u‖V0 ≤ R.

Step 2: Multi-Valued Fixed Point Operator

Let B(0, R) be the closed ball in V0, and v ∈ B(0, R) be fixed. Consider
the following BVP:

u ∈ V0 : −∆pu = f(·, u(·), v) in V ∗
0 . (4.106)

For v ∈ V0 fixed let Fv(u)(x) = f(x, u(x), v). Due to (f2) the mapping u 7→
Fv(u) is bounded and continuous from Lp(Ω) into Lq(Ω), and thus i∗ ◦ Fv ◦
i : V0 → V ∗

0 is a bounded and completely continuous operator due to the
compact embedding V0 ↪→ Lp(Ω). As −∆p : V0 → V ∗

0 is bounded and strictly
monotone, it follows that

−∆p − i∗ ◦ Fv ◦ i : V0 → V ∗
0 is bounded and pseudomonotone.

The BVP (4.106) is equivalent to the operator equation
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u ∈ V0 : −∆pu− (i∗ ◦ Fv ◦ i)(u) = 0 in V ∗
0 . (4.107)

Therefore, the BVP (4.106) possesses solutions provided −∆ − i∗ ◦ Fv ◦ i :
V0 → V ∗

0 is coercive. By applying (f2) we obtain

〈−∆pu− (i∗ ◦ Fv ◦ i)(u), u〉 ≥ ‖∇u‖pp − ‖k‖q‖u‖p − µ ‖u‖pp
≥
(
1− µ

λ1

)
‖u‖pV0

− c ‖u‖V0 ,

which proves the coercivity. In view of Step 1, for v ∈ B(0, R) fixed, any
solution of (4.106) belongs to B(0, R) ⊂ V0. Now we define the multi-valued
mapping G : B(0, R) → 2B(0,R) as v 7→ G(v), where G(v) is the set of all
solutions of (4.106). Apparently, any fixed point of G is a solution of the
original problem (4.104) and vice versa.

Step 3: Existence of Maximal and Minimal Solutions

The existence of maximal and minimal solutions is proved provided G has
maximal and minimal fixed points. By Theorem 4.37 the assertion is proved
provided the multi-valued operatorG : B(0, R) → 2B(0,R) introduced in Step 2
is increasing, and G(v) is a weakly sequentially closed subset in B(0, R) ⊂ V0.
Note the closed ball B(0, R) of V0 has property (N+) by Lemma 4.38. To
show that G(v) is weakly sequentially closed, assume that (un) is a sequence
in G(v), and that un ⇀ u. Since B(0, R) is weakly sequentially closed, then
u ∈ B(0, R). We only need to verify that u ∈ G(v), which means that u
satisfies (4.107). By definition the functions un satisfy

u ∈ V0 : −∆pun − (i∗ ◦ Fv ◦ i)(un) = 0 in V ∗
0 . (4.108)

From (4.108) we see that

〈−∆pun, un − u〉 =
∫
Ω

Fv(un) (un − u) dx→ 0, as n→∞,

which implies in view of the (S)+-property of −∆p : V0 → V ∗
0 that un → u is

strongly convergent in V0. Passing to the limit in (4.108) as n → ∞ verifies
that u ∈ G(v), and thus G(v) is weakly sequentially closed.

Next we are going to show that the multi-valued mapping G : B(0, R) →
2B(0,R) \ ∅ defined above is increasing in the sense of Definition 4.32. Let us
first show that G : B(0, R) → 2B(0,R) \ ∅ is increasing upward. To this end let
v1, v2 ∈ B(0, R) be given with v1 ≤ v2, and let u1 ∈ G(v1), which means

u1 ∈ V0 : −∆pu1 = f(·, u1(·), v1) in V ∗
0 . (4.109)

We need to show the existence of an u2 ∈ G(v2) such that u1 ≤ u2 holds.
Consider the auxiliary BVP

u ∈ V0 : −∆pu = f̂(·, u(·), v2) in V ∗
0 , (4.110)
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where f̂ is defined as follows:

f̂(x, s, v) =

{
f(x, s, v) if s > u1(x),
f(x, u1(x), v) if s ≤ u1(x) .

Obviously, the truncated function f̂ possesses the same regularity and growth
conditions as f , and thus the existence of solutions of (4.110) can be shown
in the same way as for (4.106). Let u2 be any solution of (4.110). Then sub-
tracting (4.110) from (4.109), and taking into account the monotonicity of
v 7→ f(x, s, v), we obtain the inequality

−(∆pu1 −∆pu2) ≤ f(·, u1(·), v2)− f̂(·, u2(·), v2), in V ∗
0 . (4.111)

Testing the last inequality with the nonnegative test function ϕ = (u1−u2)+,
we obtain the inequality∫

Ω

N∑
i=1

(
|∇u1|p−2 ∂u1

∂xi
− |∇u2|p−2 ∂u2

∂xi

)∂(u1 − u2)+

∂xi
dx

≤
∫
Ω

(
f(x, u1(x), v2)− f̂(x, u2(x), v2)

)
(u1 − u2)+(x) dx. (4.112)

Applying the definition of f̂ one readily sees that the right-hand side of (4.112)
is zero, which yields

0 ≤
∫
{u1≥u2}

N∑
i=1

(
|∇u1|p−2 ∂u1

∂xi
− |∇u2|p−2 ∂u2

∂xi

)∂(u1 − u2)
∂xi

dx ≤ 0,

and thus ∇(u1 − u2)+ = 0, i.e., ‖(u1 − u2)+‖V0 = 0, which is equivalent to
(u1 − u2)+ = 0, i.e., u1 ≤ u2. But then we have f̂(·, u2(·), v2) = f(·, u2(·), v2),
and therefore the solution u2 is actually a solution of the BVP

u2 ∈ V0 : −∆pu2 = f(·, u2(·), v2) in V ∗
0 ,

which means u2 ∈ G(v2). This proves that G is increasing upward. In a similar
way one can also prove that G is increasing downward, i.e., for any u2 ∈ G(v2)
there exists a u1 ∈ G(v1) such that u1 ≤ u2. This completes the proof for the
multifunction G to be increasing. Now we are able to apply Theorem 4.37,
which completes the proof of the existence of minimal and maximal solutions
of the BVP (4.104). ut

Remark 4.40. (i) Denoting the set of all solution of the BVP (4.104) by S, one
can show that S is a directed set, which implies that S has extremal solutions.
The proof follows basically the approach used in Sect. 4.1.

(ii) Replacing f(x, s, v) by g(x, s, v(x)) and µ by µ1 + µ2 we get the fol-
lowing existence theorem for the BVP

u ∈ V0 : −∆pu = g(·, u(·), u(·)) in V ∗
0 . (4.113)
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Corollary 4.41. Assume that the function g : Ω × R × R → R satisfies the
following hypotheses.

(g1) g(·, s, ·) : Ω × R → R is superpositionally measurable (sup-measurable),
s 7→ g(x, s, r) is continuous, and r 7→ g(x, s, r) is increasing for a.e.
x ∈ Ω and for all s, r ∈ R.

(g2) |g(x, s, r)| ≤ k(x) + µ1 |s|p−1 + µ2|r|p−1 for a.e. x ∈ Ω, for all s, r ∈ R,
with k ∈ Lq+(Ω), q = p/p− 1, µ1 ≥ 0 and µ2 ≥ 0.

(g3) µ1 + µ2 < λ1, where λ1 is the first Dirichlet eigenvalue of −∆p.

Then the BVP (4.113) has minimal and maximal solutions, and even extremal
ones in V0.

Remark 4.42. In case that there exists an ordered pair of sub- and supersolu-
tions for the discontinuous BVP (4.113), the assertion of Corollary 4.41 holds
true without assuming hypotheses (g2) and (g3). Instead of (g2) and (g3) only
a local Lq(Ω)-bound with respect to the ordered interval of sub-supersolutions
for the nonlinearity g is needed.

4.3.3 Implicit Discontinuous Elliptic Functional Equations

The abstract fixed point theorem Theorem 4.37 of Sect. 4.3.1 is used to prove
first existence results for discontinuous functional equations in general Lp-
spaces, which will then be employed to treat implicit and explicit elliptic
boundary-value problems involving discontinuous nonlinearities.

Functional Equations in Lp(Ω)

Let Ω = (Ω,A, µ) be a measure space, and assume that the space Lp(Ω) with
norm ‖ · ‖p , 1 < p <∞, is ordered by the positive cone Lp+(Ω), i.e., Lp(Ω) is
ordered a.e. pointwise. In the proof of our existence theorem for the functional
equation

h(x) = f(x, φ(h(x)), h(x)) a.e. in Ω, (4.114)

we make use of the following fixed point result.

Lemma 4.43. Assume that a mapping G : Lp(Ω) → Lp(Ω) is increasing,
and that ‖Gh‖p ≤ M + ψ(‖h‖p), where ψ : R+ → R+ is increasing, and
M + ψ(R) ≤ R for some R > 0. Then G has a fixed point.

Proof: Choose an R > 0 such that M + ψ(R) ≤ R. Because ψ is increasing,
then G maps the set B(0, R) = {h ∈ Lp(Ω) : ‖h‖p ≤ R} into itself. Due to
Lemma 4.38 the space Lp(Ω) is a lattice-ordered and reflexive Banach space
satisfying the property (N+). Thus G has a fixed point in B(0, R) by Theorem
4.37. ut

For the functions φ : Lp(Ω) → Lp(Ω) and f : Ω × R× R → R we impose
the following hypotheses:
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(φ) φ is increasing, and ‖φ ◦ h‖p ≤ m+ κ‖h‖p for some m ≥ 0 and κ > 0.
(f1) f is sup-measurable, i.e., x 7→ f(x, u(x), v(x)) is measurable in Ω when-

ever u, v : Ω → R are measurable.
(f2) |f(x, y, z)| ≤ k(x) + c1(x)|y|α + c2(x)|z|β for a.e. x ∈ Ω and for all

y, z ∈ R, where k ∈ Lp(Ω), and either

(i) 0 < α, β < 1, c1 ∈ L
p

1−α

+ (Ω), c2 ∈ L
p

1−β

+ (Ω), and f(x, ·, ·) is increasing
for a.e. x ∈ Ω, or

(ii) α = β = 1, κ‖c1‖∞ + ‖c2‖∞ < 1, where κ is the constant in (φ), and
the function (y, z) 7→ f(x, y, z) + λz is increasing for a.e. x ∈ Ω and
for some λ ≥ 0.

Our existence result for the functional equation (4.114 reads as follows.

Theorem 4.44. Under the assumptions (φ), (f1), and (f2), equation (4.114)
has a solution h in Lp(Ω).

Proof: The hypotheses (φ) and (f1) imply that for each h ∈ Lp(Ω) the relation

Gh := f(·, φ(h(·)), h(·)) (4.115)

defines a measurable function Gh : Ω → R. To show that (4.115) defines
an increasing mapping G : Lp(Ω) → Lp(Ω) that satisfies the hypotheses of
Lemma 4.43, we need to consider three cases depending on the assumptions
of (f2):

(a) Case: (f2) (i)

‖Gh‖p = ‖f(·, φ(h), h)‖p ≤ ‖k‖p + ‖c1|φ(h)|α‖p + ‖c2|h|β‖p
≤ ‖k‖p + (‖cp1‖ 1

1−α
‖ |φ(h)|pα‖ 1

α
)

1
p + (‖cp2‖ 1

1−β
‖ |h|pβ‖ 1

β
)

1
p

= ‖k‖p + ‖c1‖ p
1−α

‖φ ◦ h‖αp + ‖c2‖ p
1−β

‖h‖βp
≤ ‖k‖p + ‖c1‖ p

1−α
(m+ κ‖h‖p)α + ‖c2‖ p

1−β
‖h‖βp .

Thus Gh ∈ Lp(Ω), and

‖Gh‖p ≤M + ψ(‖h‖p), (4.116)

where M = ‖k‖p and ψ(r) := ‖c1‖ p
1−α

(m + κr)α + ‖c2‖ p
1−β

rβ . If h1, h2 ∈
Lp(Ω), h1 ≤ h2, then φ(h1) ≤ φ(h2) by (φ). Since f(x, ·, ·) is increasing, then
for a.e. x ∈ Ω,

Gh1(x) = f(x, φ(h1(x)), h1(x)) ≤ f(x, φ(h2(x)), h2(x)) = Gh2(x) .

This proves that G is increasing. Since 0 < α, β < 1, then the mapping
ψ : R+ → R+ defined in (4.116) is increasing, and r − ψ(r) → ∞ as r → ∞.
Thus M + ψ(R) ≤ R when R is large enough, whence G has a fixed point by
Lemma 4.43.
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(b) Case: (f2) (ii) and λ = 0

In this case f(x, ·, ·) is increasing, whence G is increasing by the above proof.
Since α = β = 1 we get:

‖Gh‖p ≤ ‖k‖p + ‖c1‖∞‖φ(h)‖p + ‖c2‖∞‖h‖p
≤M + ψ(‖h‖p)

with ψ given by ψ(r) = ‖c1‖∞(m + κr) + ‖c2‖∞r. If κ‖c1‖∞ + ‖c2‖∞ < 1,
then M +ψ(R) ≤ R when R is sufficiently large. Thus G has a fixed point by
Lemma 4.43.

The above proof shows that in the cases (a) and (b), G has a fixed point
h ∈ Lp(Ω). This implies by (4.115) that h(x) = Gh(x) = f(x, φ(h(x)), h(x))
a.e. in Ω.

(c) Case: (f2) (ii) and λ > 0

Assume finally that the hypothesis (f2) (ii) holds with λ > 0. Then a function
f̃ : Ω × R× R, defined by

f̃(x, y, z) =
f(x, y, z) + λz

1 + λ
, x ∈ Ω, y, z ∈ R, (4.117)

is sup-measurable, f̃(x, ·, ·) is increasing, and

|f̃(x, y, z)| ≤ ‖k̃‖2 + c̃1(x)|y|+ c̃2(x)|z|,

where k̃2 = k2
1+λ , c̃1 = c1

1+λ , c̃2 = c2+λ
1+λ . Since κ‖c1‖∞ + ‖c2‖∞ < 1, then

κ‖c̃1‖∞ + ‖c̃2‖∞ =
κ‖c1‖∞ + ‖c2‖∞ + λ

1 + λ
<

1 + λ

1 + λ
= 1.

Thus f̃ satisfies the hypotheses (f1) and (f2) (ii) with λ = 0. The proof of
the case (b) above implies the existence of a h ∈ Lp(Ω) such that h(x) =
f̃(x, φ(h(x)), h(x)), or equivalently, by (4.117), h(x) = f(x, φ(h(x)), h(x)) a.e.
in Ω. This concludes the proof. ut

As a consequence of Theorem 4.44 we obtain an existence result for the
equation

h(x) = g(x, φ(h(x))), a.e. in Ω, (4.118)

under the following hypotheses on g:

(g1) g is sup-measurable, and g(x, ·) is increasing for a.e. x ∈ Ω.
(g2) |g(x, y)| ≤ k(x) + c1(x)|y|α for a.e. x ∈ Ω and for all y ∈ R, where

k ∈ Lp(Ω), and either 0 < α < 1 and c1 ∈ L
p

1−α

+ (Ω), or α = 1 and
κ‖c1‖∞ < 1.

Corollary 4.45. Assume that φ : Lp(Ω) → Lp(Ω) satisfies the hypothesis
(φ), and that g : Ω × R → R satisfies (g1) and (g2). Then (4.118) has a
solution h in Lp(Ω).
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Remark 4.46. The hypotheses of Theorem 4.44 and Corollary 4.45 allow the
functions f and g to be discontinuous in all their arguments. Even the mapping
φ may be discontinuous.

Implicit Discontinuous Elliptic Problems

Let Ω ⊂ RN , N ≥ 3, be a bounded domain with Lipschitz boundary ∂Ω. In
this paragraph we study the existence of weak solutions of the implicit elliptic
BVP

Au(x) = f(x, u(x), Au(x)) in Ω, u = 0 on ∂Ω, (4.119)

where A is the semilinear elliptic operator

Au(x) := −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)
+ q(x, u(x)).

Theorem 4.44 will be the main tool in our investigations. We assume that the
coefficients aij ∈ L∞(Ω) satisfy the ellipticity condition

N∑
i,j=1

aij(x)ζiζj ≥ γ
N∑
i=1

ζ2
i (4.120)

for a.e. x ∈ Ω, all ζ = (ζ1, . . . , ζN ) ∈ RN , and some γ > 0.
Let V0 = W 1,2

0 (Ω) and V ∗
0 its dual space. We are going to introduce

conditions that ensure that (4.119) has a weak solution in the following sense.

Definition 4.47. A function u ∈ V0 is called a solution of the BVP (4.119)
if there exists a function h ∈ L2(Ω) such that

h(x) = f(x, u(x), h(x)) for a.e. x ∈ Ω, (4.121)

and u is a (weak) solution of the semilinear BVP

Au(x) = h(x) in Ω, u = 0 on ∂Ω. (4.122)

We first prove an existence, uniqueness, and comparison result for the BVP
(4.122), where we assume the following hypotheses for q:

(q1) q is a Carathéodory function, and s 7→ q(x, s) is increasing for a.e. x ∈ Ω.
(q2) |q(x, s)| ≤ k0(x) + c0(x) |s|p0−1 for a.e. x ∈ Ω and for all s ∈ R, where

k0 ∈ L
p0

p0−1 (Ω), c0 ∈ L∞+ (Ω) and 1 < p0 ≤ 2∗ := 2N
N−2 (critical Sobolev

exponent).

Lemma 4.48. Assume that q : Ω × R → R satisfies (q1) and (q2). Then
(4.122) has a unique weak solution u for each h ∈ L2(Ω). Moreover, u is
increasing with respect to h and there exist constants m ≥ 0 and κ > 0 such
that

‖u‖V0 ≤ m+ κ‖h‖2. (4.123)
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Proof: Due to (4.120) and hypotheses (q1), (q2), the semilinear operator
A : V0 → V ∗

0 is continuous, bounded, and strongly monotone, which im-
plies that A : V0 → V ∗

0 is bijective. Thus the BVP (4.122) has a uniquely
defined solution, in particular, for each h ∈ L2(Ω) ⊂ V ∗

0 . Further, by stan-
dard comparison arguments one readily observes that the solution depends
monotonically on h, i.e., the inverse A−1 : V ∗

0 → V0 is monotone increasing.
To prove estimate (4.123), let h ∈ L2(Ω) be given, and let u ∈ V0 be the so-
lution of (4.122). The monotonicity of s 7→ q(x, s) along with the continuous
embedding V0 ↪→ Lp0(Ω) and (4.120) yield the following estimate:

c ‖u‖2V0
≤ 〈Au, u〉 −

∫
Ω

q(x, 0)u(x) dx

=
∫
Ω

h(x)u(x) dx−
∫
Ω

q(x, 0)u(x) dx

≤ ‖h‖2‖u‖2 + ‖k0‖ p0
p0−1

‖u‖p0 ≤ (b ‖k0‖ p0
p0−1

+ ‖h‖2)‖u‖V0 ,

for some positive constant b. Thus (4.123) holds with m = b
c‖k0‖ p0

p0−1
and

κ = 1/c. ut
As an application of Theorem 4.44 and Lemma 4.48, we are going to prove

the following existence result for (4.119).

Theorem 4.49. Assume that q : Ω×R → R satisfies the hypotheses (q1) and
(q2), and that f : Ω × R × R → R satisfies the hypotheses (f1) and (f2) with
p = 2. Then the implicit BVP (4.119) possesses solutions.

Proof: From Lemma 4.48 follows that the mapping φ : L2(Ω) → L2(Ω),
which assigns to each h ∈ L2(Ω) the unique solution u := φ(h) ∈ V0 ⊂ L2(Ω)
of the BVP (4.122), is increasing. Moreover, the inequality (4.123) holds,
whence

‖φ ◦ h‖2 = ‖u‖2 ≤ ‖u‖V0 ≤ m+ κ‖h‖2, h ∈ L2(Ω).

This proves that φ satisfies the hypothesis (φ). Thus the hypotheses of The-
orem 4.44 hold when p = 2, whence there exists a function h ∈ L2(Ω) such
that

h(x) = f(x, φ(h(x)), h(x)) = f(x, u(x), h(x)) a.e. in Ω,

and u is a solution of (4.122). This implies by Definition 4.47 that u is a
solution of (4.119). ut

As a consequence of Theorem 4.49, we obtain an existence result for the
(explicit) BVP

Au(x) = g(x, u(x)) a.e. in Ω, u = 0 on ∂Ω, (4.124)

where, as before,

Au(x) := −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)
+ q(x, u(x)).



4.3 Discontinuous Elliptic Problems via Fixed Points for Multifunctions 177

Corollary 4.50. Assume that q : Ω × R → R satisfies the hypotheses (q1)
and (q2), and that g : Ω × R → R satisfies the hypotheses (g1) and (g2) with
p = 2. Then the BVP (4.124) has a weak solution.

Remark 4.51. (i) The hypotheses of Theorem 4.49 and Corollary 4.50 allow
both functions f and g to be discontinuous in all their arguments.

(ii) Theorem 4.49 and Corollary 4.50 also apply to problems in domains
Ω of dimensions N = 1 and N = 2, since in these cases the critical exponent
2∗ = ∞ and Lemma 4.48 is valid with an exponent p0 satisfying 1 < p0 <∞.

(iii) If the coefficients aij are uniformly Lipschitz continuous, it follows by
the regularity result [99, Theorem 8.8] that the weak solutions of problems
(4.119) and (4.124) satisfy their differential equation a.e. pointwise. This holds,
in particular, when aij = δij , which is the case in the following examples,
where [z] denotes the greatest integer ≤ z ∈ R.

Example 4.52. Assume that R4 is equipped with the Euclidean norm | · |.
Choose Ω = {x ∈ R4 : 1

2 < |x| < 1}, and consider the BVP

Au(x) = 5+[6|x|]+7[109u(x)]
1
3 +8[1010Au(x)]

1
5 , a.e. in Ω, u = 0 on ∂Ω,

(4.125)
where Au(x) := −∆u(x) + u(x)3, for x ∈ Ω. The BVP (4.125) is of the form
(4.119), where

aij(x) ≡ δij , q(x, y) = y3 and f(x, y, z) = 5+[6|x|]+7[109y]1/3+8[1010z]1/5.

The critical exponent here is 2∗ = 4, and it is easy to see that the hypotheses
(q), (f1), and (f2) with p = 2 hold, whence the BVP (4.125) has a solution by
Theorem 4.49.

Example 4.53. For Ω = (0, 1), consider the boundary-value problem

−u′′(x) = 2 + 2[2− 2x] + 2 [(2u(x)− 2x)
1
3 ] + [(−u′′(x)− 1)

1
3 ] a.e. in (0, 1)

u(0) = u(1) = 0 .
(4.126)

Problem (4.126) is of the form (4.119), with

q(x, y) ≡ −1, and f(x, y, z) = 1 + 2[2− 2x] + 2 [(2y − 2x)
1
3 ] + [(z − 1)

1
3 ].

(4.127)
By elementary calculations one can show that for each h ∈ L2(Ω) the function

u(x) = φ(h(x)) = (1− x)
∫ x

0

t(1 + h(t))dt+ x

∫ 1

x

(1− t)(1 + h(t))dt

=
x− x2

2
+ (1− x)

∫ x

0

th(t)dt+ x

∫ 1

x

(1− t)h(t)dt, x ∈ [0, 1]

(4.128)
is the unique solution of the BVP
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Au(x) := −u′′(x)− 1 = h(x) in (0, 1), u(0) = u(1) = 0

in W 1,2
0 (0, 1), and that for certain nonnegative constants m, κ, one has

‖u‖2 = ‖φ ◦ h‖2 ≤ m+ κ ‖h‖2.

Thus the hypothesis (φ) holds. Obviously, f is sup-measurable, i.e., (f1) is
fulfilled. Since

|f(x, y, z)| ≤ 15 + 4|y|1/3 + |z|1/3,

then the hypothesis (f2) (i) is satisfied. It then follows from Theorem 4.49
that the BVP (4.126) has a solution.

4.4 Notes and Comments

The results and the presentation of this chapter are mainly based on the au-
thors’ joint work of recent years, see [48, 49, 51, 52, 57, 58]. The development
of more efficient comparison results for multi-valued elliptic problems as pro-
vided in Chap. 3 allows for improvements of most of the results in the above
cited works.

We emphasize that classical fixed point theorems for discontinuous opera-
tors on partially ordered sets such as, e.g., the Bourbaki-Kneser Fixed Point
Theorem, the Amann or Tarski Fixed Point Theorem (see, e.g., [228, Chap.
11]) cannot be applied in the proof of Theorem 4.27, because these would re-
quire, e.g., that every chain of U has an infimum (or at least a lower bound),
which need not be true. Moreover, the abstract fixed point results applied in
this chapter can also be used as alternative tools in the study of elliptic bound-
ary value problems that lack continuity and/or compactness of the operators
involved, which has been demonstrated in [48]. The lack of continuity and/or
compactness may be caused in various different ways such as, e.g., in the fol-
lowing cases: (i) the lower order terms have critical growth, or (ii) the lower
order nonlinearity is discontinuous with respect to the unknown function, or
(iii) the domain Ω in which the problem is defined is unbounded.

We note that one can extend the investigation of Sect. 4.2 on state-
dependent Clarke’s gradient inclusions to problems in the following form

Au+ ∂j(·, u, u) 3 h, in Ω, u = 0 on ∂Ω,

where Clarke’s generalized gradient is allowed to depend discontinuously on
the state u in a much more general way. This, however, would require a more
subtle treatment. Only for the sake of simplifying our presentation and in
order to avoid too much technicalities have we restricted our presentation to
problem (4.66).



5

Discontinuous Multi-Valued Evolutionary
Problems

In this chapter we consider multi-valued evolutionary problems involving dis-
continuous data. Abstract fixed point results developed in Chap. 2 and the
theory on multi-valued parabolic variational inequalities provided in Chap. 3
are the main tools used in the treatment of such kind of problems.

5.1 Discontinuous Parabolic Inclusions with Clarke’s
Gradient

Throughout this section we adopt the notions of Sect. 3.3. We are going to
study here the following initial-Dirichlet problem:

ut +Au+ ∂j(·, ·, u) 3 F (u) + h, in Q (5.1)
u(·, 0) = 0 in Ω, u = 0 on Γ, (5.2)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, Q =
Ω × (0, τ), and Γ = ∂Ω × (0, τ). Let V = W 1,p(Ω) and V0 = W 1,p

0 (Ω), and
assume 2 ≤ p <∞ with its Hölder conjugate q. As in Sect. 3.3 the underlying
solution space for the problem (5.1)–(5.2) is W0 = {u ∈ X0 : ut ∈ X∗

0}, where
X0 = Lp(0, τ ;V0) and X∗

0 denotes its dual space. We also use the spaces
X = Lp(0, τ ;V ) and W = {u ∈ X : ut ∈ X∗}. By L : X0 → X∗

0 we denote
the time derivative ∂/∂t considered as a mapping form X0 into its dual, with
its domain of definition D0(L) given by

D0(L) = {u ∈W0 : u(·, 0) = 0}.

Let u, u ∈W be an ordered pair of sub-supersolutions for (5.1)–(5.2), and let
h ∈ X∗

0 . We assume the following hypotheses on A, j, and F :

(A) The operator A is a second-order quasilinear elliptic differential operator
of the form
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Au(x, t) = −
N∑
i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)),

whose coefficients ai satisfy conditions (AP1)–(AP4) given in Sect. 3.3.
(j) The function j : Q× R → R fulfills condition (P-j1) given in Sect. 3.3.1,

i.e., let [u, u] be the ordered interval formed by given sub- and superso-
lutions of (5.1)–(5.2), then j satisfies:
(i) (x, t) 7→ j(x, t, s) is measurable in Q for all s ∈ R, and s 7→ j(x, t, s)

is locally Lipschitz continuous in R for a.e. (x, t) ∈ Q.
(ii) There exists a function kQ ∈ Lq+(Q) such that for a.e. (x, t) ∈ Q and

for all s ∈ [u(x, t), u(x, t)] the growth condition for Clarke’s general-
ized gradient ∂j

|η| ≤ kQ(x, t), ∀ η ∈ ∂j(x, t, s)

is fulfilled.
(F) F denotes the Nemytskij operator related to some nonlinearity f : Q ×

R × R → R by F (u)(x, t) = f(x, t, u(x, t), u(x, t)), where f satisfies the
hypotheses:
(i) For each r ∈ R, (x, t, s) 7→ f(x, t, s, r) is a Carathéodory function in

Q× R.
(ii) For a.e. (x, t) ∈ Q, for all s ∈ R, r 7→ f(x, t, s, r) is increasing, and

(x, t) 7→ f(x, t, u(x, t), v(x, t)) is measurable whenever the functions
(x, t) 7→ u(x, t) and (x, t) 7→ v(x, t) are measurable, i.e., f is sup-
measurable.

(iii)There exists a function kf ∈ Lq+(Q) such that for a.e. (x, t) ∈ Q and
for all s , r ∈ [u(x, t), u(x, t)] the growth condition

|f(x, t, s, r)| ≤ kf (x, t)

is fulfilled.

Remark 5.1. (i) Without loss of generality we have assumed homogeneous ini-
tial and boundary conditions in (5.2). Nonhomogeneous initial and boundary
conditions can be transformed to homogeneous ones by translation provided
the nonhomogeneous initial and boundary values are the traces, respectively,
of some function from W . Moreover, mixed nonlinear boundary conditions of
Robin type can be treated as well by the method to be developed later.

(ii) The Nemytskij operator F may be discontinuous as r 7→ f(x, t, s, r) is
only assumed to be increasing, i.e., not necessarily continuous.

Method of Sub-Supersolution

Let us first recall the notions for the (weak) solution, and the sub-supersolu-
tions for the parabolic problem (5.1)–(5.2) introduced in Sect. 3.3.2.
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Definition 5.2. A function u ∈ D0(L) ⊂ W0 is called a solution of (5.1)–
(5.2) if there is an η ∈ Lq(Q) with η(x, t) ∈ ∂j(x, t, u(x, t)) for a.a. (x, t) ∈ Q
such that

〈Lu+Au,ϕ〉+
∫
Q

η ϕ dx dt =
∫
Q

F (u)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0. (5.3)

Definition 5.3. A function u ∈ W is called a subsolution of (5.1)–(5.2) if
there is an η ∈ Lq(Q) satisfying η(x, t) ∈ ∂j(x, t, u(x, t)) for a.a. (x, t) ∈ Q
such that u(x, 0) ≤ 0 for a.a. x ∈ Ω, u|Γ ≤ 0, and

〈ut +Au,ϕ〉+
∫
Q

η ϕ dx dt ≤
∫
Q

F (u)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0 ∩ Lp+(Q).

(5.4)

Definition 5.4. A function u ∈ W is called a supersolution of (5.1)–(5.2)
if there is an η ∈ Lq(Q) satisfying η(x, t) ∈ ∂j(x, t, u(x, t)) for a.a. (x, t) ∈ Q
such that u(x, 0) ≥ 0 for a.a. x ∈ Ω, u|Γ ≥ 0, and

〈ut +Au,ϕ〉+
∫
Q

η ϕ dx dt ≥
∫
Q

F (u)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0 ∩ Lp+(Q).

(5.5)

Our main goal in this subsection is to show that the discontinuous par-
abolic problem (5.1)–(5.2) has extremal solutions within the ordered interval
of a given pair of sub-supersolutions. The main tools used to achieve this
goal are Theorem 3.64 of Sect. 3.3 on the existence of extremal solutions for
(5.1)–(5.2) when f is independent on r, and the abstract fixed point theorem,
Theorem 4.20, of Sect. 4.2.2.

Theorem 5.5. Let u, u ∈ W be sub- and supersolution of (5.1)–(5.2) such
that u ≤ u. Assume hypotheses (A), (j), and (F). Then problem (5.1)–(5.2)
admits extremal solutions, i.e., a greatest solution u∗ and a smallest solution
u∗, within the interval [u, u].

Proof: In the proof we focus on the existence of the greatest solution u∗ of
(5.1)–(5.2) within [u, u], because the existence of the smallest solution is then
shown by obvious analog reasoning. To this end we first derive an equivalent
fixed point equation that allows us to apply statement (b) of the abstract
Theorem 4.20.

Step 1: Equivalent Fixed Point Problem

For any v ∈ [u, u] fixed, let us introduce the operator Fv defined as follows

Fv(u)(x, t) = f(x, t, u(x, t), v(x, t))

which is the Nemytskij operator generated by the nonlinearity (x, t, s) 7→
f(x, t, s, v(x, t)), which for v fixed is a Carathéodory function, and thus by
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hypothesis (f) it follows that Fv : [u, u] → Lq(Q) is bounded and continuous.
For v fixed, consider next the auxiliary problem

ut +Au+ ∂j(·, ·, u) 3 Fv(u) + h, in Q
u(·, 0) = 0 in Ω, u = 0 on Γ,

which is equivalent to: Find a function u ∈ D0(L) ⊂ W0 and an η ∈ Lq(Q)
with η(x, t) ∈ ∂j(x, t, u(x, t)) for a.a. (x, t) ∈ Q such that

〈Lu+Au,ϕ〉+
∫
Q

η ϕ dx dt =
∫
Q

Fv(u)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0. (5.6)

We next prove the following assertion.

Lemma 5.6. Let v ∈ [u, u] be any fixed supersolution of (5.1)–(5.2). Then
problem (5.6) has the greatest solution v∗ and the smallest solution v∗ within
[u, v].

If v ∈ [u, u] is a supersolution of the original problem, then v is, in particular, a
supersolution of (5.6). Due to the monotonicity of r 7→ f(x, t, s, r) one readily
sees that the given subsolution u is also a subsolution of (5.6). Introducing
ĵ : Q× R → R defined by

ĵ(x, t, s) = j(x, t, s)−
∫ s

0

f(x, t, ς, v(x, t)) dς,

problem (5.6) can equivalently be written in the form: Find a function u ∈
D0(L) ⊂W0 and an η̂ ∈ Lq(Q) with η̂(x, t) ∈ ∂ĵ(x, t, u(x, t)) for a.a. (x, t) ∈ Q
such that

〈Lu+Au,ϕ〉+
∫
Q

η̂ ϕ dx dt = 〈h, ϕ〉, ∀ ϕ ∈ X0. (5.7)

Since ĵ has the same qualities as j, we may apply Theorem 3.64 of Sect. 3.3
to ensure the existence of the greatest solution v∗ and the smallest solution
v∗ of the auxiliary problem (5.6) within [u, v], which proves Lemma 5.6.

Now we introduce the set U as

U := {v ∈ [u, u] : v is a supersolution of (5.1)–(5.2)}

and define an operator G on U as follows. For v ∈ U let Gv := v∗ denote
the greatest solution of (5.6) within [u, v]. In view of the monotonicity of
r 7→ f(x, t, s, r) we readily verify that Gv is again a supersolution of the
original problem (5.1)–(5.2). Thus by Lemma 5.6 the operator G : U → U is
well defined, and, moreover, the following holds.

Lemma 5.7. Any fixed point of G : U → U is a solution of (5.1)–(5.2) within
the interval [u, u], and vice versa.
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The definition of G implies that any fixed point u of G is a solution of (5.1)–
(5.2), which belongs to [u, u]. Conversely, if u ∈ [u, u] is a solution of (5.1)–
(5.2), then u is, in particular, a supersolution, i.e., u ∈ U , and it is trivially a
solution of (5.6) with v replaced by u, and thus u is the greatest solution of
(5.6) within [u, u], which proves the assertion of Lemma 5.7.

Step 2: G Has the Greatest Fixed Point

By Step 1, Lemma 5.7, the greatest fixed point of G corresponds to the great-
est solution of (5.1)–(5.2) within [u, u]. For the proof of the existence of the
greatest fixed point of G we are going to apply Theorem 4.20 (b). To this end
we first verify that G : U → U is increasing. Let v, w ∈ U be given such that
v ≤ w is fulfilled. By definition, Gv = v∗ is the greatest solution of (5.6) within
[u, v], and Gw = w∗ is the greatest solution of (5.6) within [u,w], where v on
the right-hand side of (5.6) is replaced by w. Since v ≤ w and r 7→ f(x, t, s, r)
is increasing, we see that v∗ ∈ [u, v] is a subsolution of (5.6) with v replaced
by w, i.e., of the problem: Find u ∈ D0(L) ⊂ W0 and an η ∈ Lq(Q) with
η(x, t) ∈ ∂j(x, t, u(x, t)) for a.a. (x, t) ∈ Q such that

〈Lu+Au,ϕ〉+
∫
Q

η ϕ dx dt =
∫
Q

Fw(u)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0. (5.8)

Because w is a supersolution of (5.8), and w ≥ v ≥ v∗, we infer again by
applying Theorem 3.64 the existence of the greatest solution of (5.8) within
[v∗, w], which implies v∗ ≤ w∗, i.e., G : U → U is increasing. To complete
the proof of the existence of the greatest fixed point we need to verify the
following:

Lemma 5.8. The range G(U) of G has an upper bound in U , and decreasing
sequences of G(U) converge weakly in U .

The given supersolution u ∈ U ⊆ [u, u] is apparently an upper bound of
G(U). Let (un) ⊆ G(U) be a decreasing sequence, i.e, un = Gvn for certain
vn ∈ U , which means un is the greatest solution in [u, vn] of the following
problem: un ∈ D0(L) ⊂ W0, ηn ∈ Lq(Q) with ηn(x, t) ∈ ∂j(x, t, un(x, t)) for
a.a. (x, t) ∈ Q such that

〈Lun +Aun, ϕ〉+
∫
Q

ηn ϕdx dt =
∫
Q

Fvn
(un)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0.

(5.9)
Testing (5.9) by ϕ = un and taking into account that U is Lp(Q)-bounded,
and

〈Lun, un〉 ≥ 0, ∀ n ∈ N,

we readily infer by means of (AP3), (j), and (F) that (un) is bounded in X0,
which in turn implies, by using the equation (5.9), that (Lun) is bounded in
X∗

0 , and thus
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‖un‖W0 ≤ c, ∀ n ∈ N.

By the monotonicity of the sequence (un), and the compact embedding W0 ↪→
Lp(Q), we get

un ⇀ u in W0, un → u in Lp(Q). (5.10)

To complete the proof we need to show that u ∈ U . Testing (5.9) with ϕ =
un − u ∈ X0, and using

〈Lun − Lu, un − u〉 ≥ 0, ∀ n ∈ N,

as well as the boundedness of (ηn), (Fvn
(un)) in Lq(Q), and the convergence

properties (5.10), we obtain

lim sup
n→∞

〈Aun, un − u〉 ≤ 0.

Hence, by the (S+)-property w.r.t. D0(L) of A (see, e.g., [62, Theorem 2.153])
we infer the strong convergence of (un) in X0, i.e., un → u in X0. The limit
u satisfies

u ≤ u ≤ un ≤ vn ≤ u,

which due to the monotonicity of r 7→ f(x, t, s, r) implies

〈Lun+Aun, ϕ〉+
∫
Q

ηn ϕdx dt ≥
∫
Q

Fu(un)ϕdx dt+〈h, ϕ〉, ∀ ϕ ∈ X0∩Lp+(Q).

(5.11)
As (ηn) is bounded in Lq(Q), there is a subsequence (ηnk

) of (ηn) converging
weakly to η, i.e.,

ηnk
⇀ η in Lq(Q),

where the weak limit satisfies η(x, t) ∈ ∂j(x, t, u(x, t)) for a.a. (x, t) ∈ Q. The
convergence properties of (un) and (ηnk

) allow to pass to the limit in (5.11)
for some subsequence (unk

), which results in

〈Lu+Au,ϕ〉+
∫
Q

η ϕ dx dt ≥
∫
Q

Fu(u)ϕdx dt+ 〈h, ϕ〉, ∀ ϕ ∈ X0 ∩ Lp+(Q),

(5.12)
and hence u ∈ U , which completes the proof of Theorem 5.5. ut

5.2 Implicit Functional Evolution Equations

In this section we prove existence results for initial value problems of implicit
functional evolution equations involving discontinuous nonlinearities. One of
the main tools is the abstract fixed point result (see Theorem 4.37) for in-
creasing self-mappings of closed balls in ordered Banach spaces, which is used
already in Sect. 4.3. The obtained existence results are applied to implicit
functional parabolic initial-boundary value problems.
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5.2.1 Preliminaries

Let V ⊆ H ⊆ V ∗ be an ordered evolution triple, i.e., the following properties
hold:

(H) H = (H, (·|·)H ,≤) is a lattice-ordered separable Hilbert space, the map-
ping x 7→ x+ := sup{0, x} is continuous, and ‖x+‖ ≤ ‖x‖ for all x ∈ H.

(V) V is a separable and reflexive Banach space that is continuously and
densely embedded in H, and whose dual is denoted by V ∗.

For instance, if H = L2(Ω) is equipped with the a.e. pointwise ordering
and the natural inner product, and if V = W 1,p

0 (Ω), 2 ≤ p <∞, where Ω is a
bounded domain in RN , then V , H, and V ∗ form an ordered evolution triple.
We consider the following implicit functional initial value problem (IVP)

u′(t) +A(t)u(t) = F (t, u, u′ + Âu) a.e. in J = (0, τ), u(0) = 0, (5.13)

where A(t) : V → V ∗, F : J ×L2(J,H)×L2(J,H) → H, and Â is defined by

(Âu)(t) := A(t)u(t), u ∈ V, t ∈ J.

We introduce the space W defined by

W = {u ∈ L2(J, V ) : u′ ∈ L2(J, V ∗)}

where the derivative u′ is understood in the sense of vector-valued distribu-
tions. The solution space for (5.13) is given by

W := {u ∈ W : u(0) = 0 and u′ + Âu ∈ L2(J,H)}. (5.14)

The ordering of H and the a.e. pointwise ordering of L2(J,H) induce partial
orderings to their subsets V and W , respectively.

The mappings A(t), t ∈ J , and F are assumed to satisfy the following
hypotheses:

(A1) Denoting by 〈·, ·〉V the duality pairing between V and V ∗, we define

〈A(t)y, z〉V := a(y, z; t), t ∈ J, y, z ∈ V, (5.15)

where a(y, z; ·) : J → R is measurable for all y, z ∈ V , a(·, ·; t) : V ×V →
R is bilinear for all t ∈ J , and for all y, z ∈ V and for a.e. t ∈ J

a(y, y; t) ≥ κ‖y‖2V − ρ‖y‖2H and |a(y, z; t)| ≤ C ‖y‖V ‖z‖V (5.16)

with constants C, κ > 0, and ρ ≥ 0 being independent of t.
(A2) If w ∈W and w′(t) +A(t)w(t) ≤ 0 for a.e. t ∈ J , then w(t) ≤ 0 for a.e.

t ∈ J .
(F1) The function t 7→ F (t, u, v) is measurable in J for all u, v ∈ L2(J,H),

and the function (u, v) 7→ F (·, u, v) is increasing.
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(F2) There exist nonnegative constants M, µ, λ, α and β such that
‖F (·, u, v)‖L2(J,H) ≤ M + µ‖u‖αL2(J,H) + λ‖v‖βL2(J,H) for all u, v ∈
L2(J,H).

According to these hypotheses we are faced with the following difficulties
in the treatment of (5.13). In view of (F1) the mapping F may depend dis-
continuously on all its arguments and, in addition, functionally on its last two
arguments. The growth condition (F2) does not provide means to construct a
priori subsolutions and/or supersolutions for the IVP (5.13) so that methods
based on sub-supersolutions and related fixed point theorems are not directly
applicable here. Moreover, the differential equation of (5.13) is implicit with
respect to the evolution operator u′ + Âu.

Our main goal is to show that the hypotheses (H), (V), (A1), (A2), (F1),
and (F2), where either 0 ≤ α, β < 1, or α = β = 1 and the constants µ and λ
in (F2) are small enough, or α, β > 1 and the constantM in (F2) is sufficiently
small, ensure the existence of a solution of the IVP (5.13) in W . The proof
is based on a fixed point result that states that increasing self-mappings of
closed balls of L2(J,H) have fixed points.

Precise a priori estimate and the inverse monotonicity of the evolution
operator are additional tools that allow us to define an increasing mapping
G : L2(J,H) → L2(J,H) such that any fixed point h of G provides a solution
of the IVP (5.13) by u = L−1h, where L−1 is the inverse of the evolution
operator.

Abstract Fixed Point Result

Assume that the spaces V , H, and V ∗ form an ordered evolution triple, i.e.,
the properties listed in (H) and (V) are satisfied. We recall here for convenience
a single-valued version of Theorem 4.37 that will be used later.

Theorem 5.9. Assume that E is a reflexive lattice-ordered Banach space, and
that for all x ∈ E, ‖x+‖ ≤ ‖x‖, where x+ = sup{0, x}. Then each increasing
self-mapping G : B → B of a closed ball B of E has a fixed point.

As an application of Theorem 5.9 we obtain the following lemma.

Lemma 5.10. If B = {u ∈ L2(J,H) : ‖u‖L2(J,H) ≤ R}, R ≥ 0, and if a
mapping G : B → B is increasing with respect to the a.e. pointwise ordering
of B, then G has a fixed point.

Proof: L2(J,H) is a lattice-ordered Hilbert space with respect to the a.e.
pointwise ordering and the inner product

(u|v) =
∫ τ

0

(u(t)|v(t))H dt, u, v ∈ L2(J,H). (5.17)

In particular, L2(J,H) is a reflexive and lattice-ordered Banach space with
respect to the norm ‖u‖L2(J,H) = (u|u) 1

2 . Moreover, since ‖x+‖ ≤ ‖x‖ for
each x ∈ H, then
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‖u+‖2L2(J,H) =
∫ τ

0

‖u+(t)‖2H dt =
∫ τ

0

‖u(t)+‖2H dt

≤
∫ τ

0

‖u(t)‖2H dt = ‖u‖2L2(J,H),

i.e., ‖u+‖L2(J,H) ≤ ‖u‖L2(J,H). The assertion now follows from Theorem 5.9.
ut

Lemma 5.11. Let the hypotheses (A1) and (A2) be satisfied. Then for any
h ∈ L2(J,H) the IVP

u′(t) +A(t)u(t) = h(t) a.e. in J, u(0) = 0, (5.18)

has a unique solution u ∈W , which is increasing with respect to h ∈ L2(J,H).

Proof: The unique solvability follows from [229, Corollary 23.26]. Let h1, h2 ∈
L2(J,H), h1 ≤ h2, be given, and let uj ∈W denote the solution of (5.18) with
h = hj , j = 1, 2. Denoting w = u1 − u2 we then have

w′(t) +A(t)w(t) ≤ 0 for a.e. t ∈ J.

This implies by (A2) that w ≤ 0, i.e., u1 ≤ u2. ut

Lemma 5.12. Let the hypothesis (A1) hold. Then for each h ∈ L2(J,H) the
solution u ∈W of the IVP (5.18) satisfies the following inequality:

‖u‖L2(J,H) ≤

√
eτ(2ρ+1) − 1

2ρ+ 1
‖h‖L2(J,H). (5.19)

Proof: Let h ∈ L2(J,H) be given, and let u ∈ W be the solution of (5.18).
Thus

〈u′(t) +A(t)u(t), v〉V = 〈h(t), v〉V ,

which means

〈u′(t), v〉V + a(u(t), v; t) = (h(t)|v)H , for a.e. t ∈ J, ∀ v ∈ V.

Choosing v = u(t) and applying the hypothesis (A1) we obtain

〈u′(t), u(t)〉V + κ‖u(t)‖2V − ρ‖u(t)‖2H ≤ (h(t)|u(t))H .

for a.e. t ∈ J. Deleting the second term from the left-hand side and applying
Hölder and Young’s inequality to the right-hand side of the above inequality,
we get by applying the integration by parts formula (cf. [229, 23.6])

1
2
‖u(t)‖2H ≤

∫ t

0

(
ρ‖u(s)‖2H +

1
2
‖h(s)‖2H +

1
2
‖u(s)‖2H

)
ds

for all t ∈ J. Denoting



188 5 Discontinuous Multi-Valued Evolutionary Problems

y(t) := ‖u(t)‖2H , c1 := 2ρ+ 1 and c2 := ‖h‖2L2(J,H), (5.20)

we obtain

y(t) ≤ c1

∫ t

0

y(s) ds+ c2, t ∈ J.

The function z(t) = c2e
c1t is a unique solution of the integral equation

z(t) = c1

∫ t

0

z(s) ds+ c2, t ∈ J.

Denoting w(t) = max{0, y(t)− z(t)}, t ∈ J , we then have

w(t) ≤ c1

∫ t

0

w(s) ds, t ∈ J,

whence w(t) = 0 a.e. on J (cf. [44, B7]). Thus y(t) ≤ z(t) a.e. on J , i.e.,

y(t) ≤ c2e
c1t for a.e. t ∈ J.

Integrating the last inequality over J = (0, τ) we get∫ τ

0

y(t) dt ≤ c2
c1

(ec1τ − 1).

In view of (5.20) this inequality can be rewritten as

‖u‖2L2(J,H) ≤
eτ(2ρ+1) − 1

2ρ+ 1
‖h‖2L2(J,H),

which implies (5.19). ut

Remark 5.13. Instead of Gronwall’s lemma we have used integral inequality
techniques in the proof of Lemma 5.12 in order to get the sharper estimate
(5.19).

5.2.2 Main Result

By means of Lemmas 5.10–5.12 we are now able to prove the following exis-
tence result for the IVP (5.13).

Theorem 5.14. Assume that the spaces H and V have properties (H) and
(V), that the operators A(t) : V → V ∗, t ∈ J , satisfy the hypotheses (A1) and
(A2), and that F : J ×L2(J,H)×L2(J,H) → H satisfies the hypotheses (F1)
and (F2). Then the IVP (5.13) has a solution in W in the following cases:

(a) α = β = 1 and µ c + λ < 1, where α, β, µ, and λ are the constants in

(F2), and c =
√

eτ(2ρ+1)−1
2ρ+1 with ρ as in (5.16).
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(b) 0 ≤ α, β < 1 in the hypothesis (F2).
(c) α, β > 1 and the constant M in the hypothesis (F2) is small enough.

Proof: Let us introduce the set U defined by

U := {u ∈W : u is the solution of (5.18) for some h ∈ L2(J,H)},

and the operator L defined by

Lu(t) := u′(t) +A(t)u(t), u ∈ U, t ∈ J. (5.21)

From Lemma 5.11 it follows that L : U → L2(J,H) is a bijection, and that
its inverse L−1 is increasing. The growth condition (F2) and the inequality
(5.19) ensure that the equation

Gh := F (·, L−1h, h), h ∈ L2(J,H), (5.22)

defines a mappingG : L2(J,H) → L2(J,H). If h1, h2 ∈ L2(J,H), and h1 ≤ h2,
then L−1h1 ≤ L−1h2 by Lemma 5.11. Thus the hypothesis (F1) and the
definition (5.22) of G imply that

Gh1 = F (·, L−1h1, h1) ≤ F (·, L−1h2, h2) = Gh2,

which shows that G is increasing. The growth condition (F2) and (5.19) imply
that

‖Gh‖L2(J,H) = ‖F (·, L−1h, h)‖L2(J,H) ≤M + µ‖L−1h‖αL2(J,H) + λ‖h‖βL2(J,H)

≤ M + µ cα‖h‖αL2(J,H) + λ‖h‖βL2(J,H)

= M + ψ(‖h‖L2(J,H)), (5.23)

where
ψ(r) = µ cα rα + λ rβ , r ≥ 0. (5.24)

Ad (a) Assume first that α = β = 1. In this case the function ψ in (5.24)
takes the form ψ(r) = (µ c + λ)r. Hence, if µ c + λ < 1 and R ≥ M

1−(µ c+λ) ,
then G maps the ball

BR := {h ∈ L2(J,H) | ‖h‖L2(J,H) ≤ R} (5.25)

into itself.

Ad (b) Assume next that 0 ≤ α, β < 1 in (F2). Since ψ given by (5.24) is
increasing and r − ψ(r) → ∞ as r → ∞, then choosing R > 0 large enough
such that M + ψ(R) ≤ R, it follows from (5.23) that G maps the ball BR
defined in (5.25) into itself.

Ad (c) Assume finally that α, β > 1. In this case the function ψ given by
(5.24) satisfies ψ(R) < R for small R > 0. Thus M +ψ(R) ≤ R when both R
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and M are sufficiently small, which implies G[BR] ⊆ BR, where BR is given
by (5.25).

The above proof shows that in all the cases (a)–(c), G is a self-mapping of
a closed ball BR of L2(J,H). Since G is also increasing, then G has by Lemma
5.10 a fixed point h. Denoting u = L−1h, then u ∈ U ⊆W and

Lu = h = Gh = F (·, L−1h, h) = F (·, u, Lu).

In view of this result and (5.21), u is a solution of the IVP (5.13) in W . ut

5.2.3 Generalization and Special Cases

Assume that the spaces H and V have properties (H) and (V), and that
operators A(t), t ∈ J = (0, τ), have properties (A1) and (A2). Consider the
implicit functional evolution problem

u′(t) +A(t)u(t) = F(t, u, u′(t) +A(t)u(t)) a.e. in J, u(0) = 0, (5.26)

where F : J × L2(J,H)×H → H satisfies the following hypotheses:

(F1) t 7→ F(t, u, v(t)) is measurable for all u, v ∈ L2(J,H), and there is a
constant b ≥ 0 such that (u, ζ) 7→ F(t, u, ζ) + b ζ is increasing in u and
in ζ for a.e. t ∈ J.

(F2) There exist constants M̂, µ̂ ≥ 0, and λ̂ ∈ [0, 1) such that for all u, v ∈
L2(J,H),

‖F(·, u, v(·))‖L2(J,H) ≤ M̂ + µ̂‖u‖L2(J,H) + λ̂ ‖v‖L2(J,H) .

We are going to show that these hypotheses with µ̂ small enough are
sufficient to ensure the existence of a solution to the IVP (5.26).

Theorem 5.15. Let hypotheses (A1), (A2), (F1), and (F2) with

µ̂ <

√
2ρ+ 1(1− λ̂)√
eτ(2ρ+1) − 1

be satisfied. Then the IVP (5.26) has a solution.

Proof: Define F as follows:

F (t, u, v) :=
1

1 + b
(F(t, u, v(t)) + bv(t)), t ∈ J, u, v ∈ L2(J,H).

Then the IVP (5.26) is equivalent to (5.13). The hypotheses given for F imply
that F satisfies the hypotheses (F1), and (F2) with α = β = 1, M = M̂

1+b ,

λ = λ̂+b
1+b , and µ = µ̂

1+b . The hypothesis given for µ̂ implies that µ̂ c + λ̂ < 1,

where c =
√

eτ(2ρ+1)−1
2ρ+1 . Thus
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µ c+ λ =
µ̂ c

1 + b
+
λ̂+ b

1 + b
=
µ̂ c+ λ̂+ b

1 + b
<

1 + b

1 + b
= 1.

The asserted existence result follows then from Theorem 5.14 (a). ut

Remark 5.16. The implicit functional evolution problem

H(t, u, u′(t) +A(t)u(t)) = 0 a.e. in J, u(0) = 0, (5.27)

where H : J × L2(J,H) × H → H, can be converted to the form (5.26) by
defining

F(t, u, ζ) = ζ − (ν · H)(t, u, ζ), t ∈ J, u ∈ L2(J,H), ζ ∈ H,

where ν : J × L2(J,H)×H → (0,∞). If ν can be chosen in such a way that
the so defined function F has the properties assumed in Theorem 5.15, we
obtain an existence result for (5.27).

The nonfunctional implicit evolution problem

u′(t) +A(t)u(t) = q(t, u(t), u′(t) +A(t)u(t)) a.e. in J, u(0) = 0, (5.28)

where q : J ×H ×H → H, can be reduced to problem (5.26) by defining

F(t, u, ζ) = q(t, u(t), ζ), t ∈ J, u ∈ L2(J,H), ζ ∈ H.

The so defined function F : J × L2(J,H) ×H → H satisfies the hypotheses
(F1) and (F2) when we impose the following hypotheses on q:

(q1) The nonlinearity q is sup-measurable, and there is a constant b ≥ 0 such
that (r, ζ) 7→ q(t, r, ζ) + b ζ is increasing for a.e. t ∈ J.

(q2) There exist constants M̂, µ̂ ≥ 0, and λ̂ ∈ [0, 1) such that for all u, v ∈
L2(J,H) the following estimate holds:

‖q(·, u(·), v(·))‖L2(J,H) ≤ M̂ + µ̂ ‖u‖L2(J,H) + λ̂ ‖v‖L2(J,H) .

Thus Theorem 5.15 implies the following existence results for the IVB
(5.28).

Proposition 5.17. Let hypotheses (A1), (A2), (q1), and (q2) with µ̂ <
√

2ρ+1(1−λ̂)√
eτ(2ρ+1)−1

be satisfied. Then the IVP (5.28) has a solution.

As a consequence of Theorem 5.14 we readily obtain an existence result
for the explicit functional IVP in the form

u′(t) +A(t)u(t) = g(t, u) a.e. in J, u(0) = 0, (5.29)

where g : J × L2(J,H) → H is assumed to satisfy the hypotheses:
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(g1) g is sup-measurable, and u 7→ g(t, u) is increasing for a.e. t ∈ J.
(g2) ‖g(·, u)‖L2(J,H) ≤M+µ‖u‖αL2(J,H) for all u ∈ L2(J,H), where M, µ ≥ 0,

and either 0 ≤ α < 1, or α = 1 and µ ≤
√

2ρ+1
eτ(2ρ+1)−1

, or α > 1 and M is
small enough.

Proposition 5.18. If the hypotheses (g1), (g2), (A1), and (A2) are satisfied,
then the IVP (5.29) has a solution.

5.2.4 Application

We apply the result of Theorem 5.14 to the following implicit functional par-
abolic initial-boundary value problem (IBVP)

Λu(x, t) = f(x, t, u, Λu) in Q, u = 0 on Γ, u = 0 in Ω × {0}, (5.30)

where Ω ⊂ RN is a bounded domain, Q = Ω×J , J = (0, τ), Γ = ∂Ω× (0, τ),
f : Ω × J × L2(Q)× L2(Q) → R, and the operator Λ is defined by

Λu :=
∂u

∂t
−

N∑
i,j=1

∂

∂xi

(
aij(x, t)

∂u

∂xj

)
+

N∑
i=1

bi(x, t)
∂u

∂xi
+ a(x, t)u. (5.31)

As an immediate consequence of the weak maximum principle for linear
parabolic equations, we obtain the following comparison result.

Lemma 5.19. Assume that the coefficients in (5.31) have the properties:

(C) aij , bi, a ∈ L∞(Q) and
∑N
i,j=1 aij(x, t)ξiξj ≥ γ

∑N
i=1(ξi)

2 for a.e. (x, t) ∈
Q for all (ξ1, ..., ξN ) ∈ RN , with some constant γ > 0.

Choose H = L2(Ω) and V = W 1,2
0 (Ω)), and define the operators A(t), t ∈ J ,

by (5.15), where the mapping a : W 1,2
0 (Ω) ×W 1,2

0 (Ω) × J → R, is given by
the bilinear form

a(y, z; t) :=
∫
Ω

( N∑
i,j=1

aij(·, t)DiyDjz +
N∑
i=1

bi(·, t)zDiy + a(·, t) yz
)
dx, (5.32)

with Diy = ∂y
∂xi

denoting the generalized partial derivative. If w belongs to the
set

W = {u ∈ L2(J, V ) :
∂u

∂t
∈ L2(J, V ∗), u(·, 0) = 0 and Λu ∈ L2(Q)}, (5.33)

and if w′(t) +A(t)w(t) ≤ 0 for a.e. t ∈ J , then w(t) ≤ 0 for a.e. t ∈ J .

Applying Theorem 5.14 we obtain the following result.
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Theorem 5.20. Assume hypothesis (C) of Lemma 5.19, and let the mapping
f : Q × L2(Q) × L2(Q) → R satisfy the following hypotheses when L2(Q) is
equipped with the a.e. pointwise ordering:

(f1) The function (x, t) 7→ f(x, t, u, v) is measurable in Q for all u, v ∈ L2(Q),
and the function (u, v) 7→ f(·, ·, u, v) is increasing for a.e. (x, t) ∈ Q .

(f2) There exist nonnegative constants M, µ, λ, α, and β such that

‖f(·, ·, u, v)‖L2(Q) ≤M + µ ‖u‖αL2(Q) + λ‖v‖βL2(Q)

for all u, v ∈ L2(Q).

Then the IBVP (5.30) has a solution in W in the following cases.

(a) α = β = 1 and µ c+ λ < 1, where c =
√

eτ(2ρ+1)−1
2ρ+1

with ρ = max
1≤i≤N

‖bi‖∞ + ‖a‖∞.

(b) 0 ≤ α, β < 1.
(c) α, β > 1, and the constant M is small enough.

Proof: Choosing H = L2(Ω) and V = W 1,2
0 (Ω)), one can transform IBVP

(5.30) into an evolution problem of the form (5.13), where the operators A(t),
t ∈ J , are defined by (5.15) with a : V × V × J → R given by (5.32), and
where we set

u(t)(x) := u(x, t) and F (t, u, v)(x) := f(x, t, u, v), x ∈ Ω, t ∈ J. (5.34)

Since L2(Q) can be identified with L2(J,H), the hypotheses (f1) and (f2) im-
ply that the hypotheses (F1) and (F2) are satisfied for the mapping F defined
in (5.34). By means of (C), one readily verifies that the bilinear form a defined
by (5.32) has the properties listed in (A1) (see also [229, Proposition 23.30]),
where ρ in inequality (5.16) is given by ρ = max

1≤i≤N
‖bi‖∞ + ‖a‖∞. Moreover,

the hypothesis (A2) is valid due to Lemma 5.19. Thus all the hypotheses of
Theorem 5.14 are satisfied, which concludes the proof. ut

Example 5.21. Let Ω = {x ∈ R4 : |x| < 1} be the unit sphere in R4, equipped
with the Euclidean norm | · |, Q = Ω × (0, 1) and Γ = ∂Ω × (0, 1), and let [z]
denote the greatest integer ≤ z ∈ R. Consider the IBVP{

Λu(x, t) = [t+ |x|] + 1
11 [u(x, t)] + 1

11 [
∫
Q
Λu(x, t) dx dt] in Q,

u = 0 in Ω × {0}, u = 0 on Γ,
(5.35)

where

Λu(x, t) :=
∂u(x, t)
∂t

−∆u(x, t)−
4∑
i=1

∂u(x, t)
∂xi

+ u(x, t).

The IBVP (5.35) is of the form (5.30), where
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f(x, t, u, v) = [t+ |x|] +
1
11

[u(x, t)] +
1
11

[∫
Q

v(x, t) dx dt
]
,

and the operator Λ is of the form (5.31), where aij(x, t) ≡
{

1, i = j,
0, i 6= j,

bi(x, t) ≡ −1 and a(x, t) ≡ 1. In particular, the hypothesis (C) of Lemma 5.19
is satisfied. The function f(·, ·, u, v) is obviously measurable, and f(x, t, ·, ·) is
increasing, whence the hypothesis (f1) holds, and by elementary calculations
one gets

‖f(·, ·, u, v)‖L2(Q) ≤ 5 +
1
11
‖u‖L2(Q) +

π2

22
‖v‖L2(Q)

for all u, v ∈ L2(Q). Because µ = 1
11 , λ = π2

22 and ρ = 2, we have

µ c+ λ =
1
11

√
e5 − 1

5
+
π2

22
≈ .94 < 1.

Thus the hypotheses of Theorem 5.20 (a) are satisfied, whence the IBVP
(5.35) has a solution.

5.3 Notes and Comments

The presentation of this chapter is mainly based on the authors’ joint work,
see, e.g., [43, 45, 47, 50, 55].

By means of Theorem 5.5 on extremal solutions for discontinuous parabolic
inclusions, we are able to deal with more general parabolic inclusions, such
as, e.g., the following:

ut +Au+ ∂j(·, ·, u)− ∂β(·, ·, u) 3 h, in Q (5.36)
u(·, 0) = 0 in Ω, u = 0 on Γ, (5.37)

where A, j, and h are the same as before, and s 7→ ∂β(x, t, s) is the usual
subdifferential of some Carathéodory function β : Q × R → R, which, in
addition, is convex with respect to s. Although s 7→ j(x, t, s) − β(x, t, s) is
a locally Lipschitz function, in general, one only has a strict inclusion of the
form (see Sect. 9.6)

∂(j − β)(x, t, s) ⊆ ∂j(x, t, s)− ∂β(x, t, s), (5.38)

and equality in (5.38) holds if at least one of the functions s 7→ j(x, t, s) or
s 7→ β(x, t, s) is strictly differentiable in s. In this sense the solution set for
(5.36)–(5.37) is larger than for the parabolic inclusion

ut +Au+ ∂(j − β)(·, ·, u) 3 h, in Q (5.39)
u(·, 0) = 0 in Ω, u = 0 on Γ. (5.40)
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But still we can prove existence of extremal solutions of (5.36)–(5.37) by
making use of Theorem 5.5. A special case of problem (5.36)–(5.37) has been
considered in [65] under an additional one-sided growth condition on Clarke’s
generalized gradient. Due to our general comparison results of Chap. 3, we
are now able to completely drop this one-sided growth condition.

We note that in most of the problems treated in this chapter, we do not
suppose the existence of sub-supersolutions. Moreover, it won’t be even pos-
sible to construct ordered pairs of sub-supersolutions. But still the abstract
fixed point theorems, Theorem 5.9 and Lemma 5.10, allow us to ensure the
existence of solutions of implicitly defined problems with governing nonlinear-
ities that may be discontinuous in all their arguments.

Another advantage of the existence result of Theorem 5.20 is that the
assumptions can easily be verified in practice, as seen from Example 5.21.
The results of Sect. 5.2.3 have analogous applications in the theory of par-
abolic IBVPs. As for other existence results for implicit parabolic differential
equations, see, e.g., [27, 44, 47].

The hypothesis (A2) of Sect. 5.2.1 is needed only in the proof of Lemma
5.11. All the above results can also be proved when (A2) is replaced by the
following, more general assumption:

(A3) For each h ∈ L2(J,H) the IVP (5.18) has in W the smallest solution,
which is increasing with respect to h.

The only change is to replace the subset U of W defined in the proof of
Theorem 5.14 by

U := {u ∈W : u is the smallest solution of (5.18) for some h ∈ L2(J,H)}.

The assumption (A3) allows to treat cases where the operators A(t) are non-
linear, and where the corresponding IVP (5.18) is not necessarily uniquely
solvable. As for conditions that ensure (A3) for parabolic operators, see, e.g.,
[44].

Finally we remark that discontinuously coupled systems of evolution vari-
ational inequalities have been treated in [59] by employing the abstract fixed
point theory of Chap. 2.
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Banach-Valued Ordinary Differential Equations

The main purpose of this chapter is to derive well-posedness, extremality, and
comparison results for solutions of discontinuous ordinary differential equa-
tions in Banach spaces. A novel feature is that functions in considered differ-
ential equations are allowed to be Henstock–Lebesgue (HL) integrable with
respect to the independent variable. HL integrability can be replaced also by
Bochner integrability, although it is assumed explicitly only in the last section.

In Sect. 6.1 we study existence and uniqueness of solutions and their con-
tinuous dependence on the initial values. By assuming that the underlying Ba-
nach space is ordered, we derive in Sect. 6.2 existence and comparison results
for extremal, i.e., the smallest and greatest solutions of first order discontin-
uous nonlocal semilinear differential equations, equipped with discontinuous
and nonlocal initial conditions.

In Sect. 6.3 we apply results of Sects. 6.1 and 6.2 to derive well-posedness,
existence, and comparison results for solutions of higher order differential
equations in Banach spaces. Section 6.4 deals with the existence and compari-
son of the smallest and greatest solutions of first and second order initial value
problems as well as for second order boundary value problem in an ordered
Banach space. In the problems under consideration the dependence of the
nonlinearities involved upon the unknown function is allowed to be implicit
(except in Sect. 6.4.1), discontinuous, and nonlocal.

Finally, in Sect. 6.5 we study the existence and comparison of solutions of
first order implicit functional differential equations containing Bochner inte-
grable functions. A novel feature is that the existence of subsolutions and/or
supersolutions is not assumed explicitly.

The main tools used in the treatment of the above problems are the
abstract existence and comparison results derived in Chap. 2 for solutions
of equations in ordered spaces, and the results presented in Chap. 9 for
Bochner integrable and HL integrable vector-valued functions. Moreover, con-
crete problems are solved by using symbolic programming.
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6.1 Cauchy Problems

In this section we study Cauchy problems in a Banach space. The functions
in the considered differential equations are HL integrable with respect to the
independent variable. Recall that K

∫
denotes the Henstock–Kurzweil integral.

6.1.1 Preliminaries

Let E be a Banach space, and let J be a compact interval in R. Denote by
C(J,E) the space of all continuous functions from J to E. This space is a
Banach space with respect to the usual addition and scalar multiplication of
functions and the uniform norm: ‖y‖0 = sup{‖y(t)‖ : t ∈ J}.

Recall that a function y : [a, b] → E satisfies the Strong Lusin Condition
if for each ε > 0 and for each null set Z of [a, b] there exists a function
δ : [a, b] → (0,∞) such that

∑m
i=1 ‖y(t2i)−y(t2i−1)‖ < ε if the sequence (ti)2mi=1

of [a, b] is increasing, {ξi}mi=1 ⊆ Z and ξi−δ(ξi) < t2i−1 ≤ ξi ≤ t2i < ξi+δ(ξi)
for every i = 1, . . . ,m.

Consider the Cauchy problem

y′(t) = f(t, y(t)) for a.e. t ∈ J := [a, b], y(a) = x0, (6.1)

where a < b, f : J × E → E, and y′(t) is the derivative of a function y at t.
We are looking for solutions of (6.1) from the set

W 1
SL(J,E) =

{
y : J → E : y is a.e. differentiable and
satisfies the Strong Lusin Condition.

}
(6.2)

From Theorem 9.18 we deduce the following auxiliary result.

Lemma 6.1. A function y ∈ W 1
SL(J,E) is a solution of the Cauchy problem

(6.1) if and only if f(·, y(·)) is HL integrable on J and y is a solution of the
integral equation

y(t) = x0 + K

∫ t

a

f(s, y(s))ds, t ∈ J. (6.3)

6.1.2 A Uniqueness Theorem of Nagumo Type

As an application of Lemma 6.1 we prove the following uniqueness result for
the Cauchy problem (6.1).

Theorem 6.2. Problem (6.1) has at most one solution in W 1
SL(J,E) provided

f : J × E → E satisfies the following properties.

(fi) f is continuous at (a, x0), and ‖f(t, y)−f(t, z)‖ ≤ ‖y−z‖
t−a for all y, z ∈ E

and for a.e. t ∈ J .
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(fii) f(·, x(·)) is strongly measurable for all x ∈ C(J,E).

Proof: Assume that x and y are solutions of (6.1) in W 1
SL(J,E). The function

s 7→ f(s, x(s)) − f(s, y(s)) is by (fii) strongly measurable. Let β ∈ (a, b) be
fixed. In view of the hypothesis (fi) we obtain

‖f(s, x(s))− f(s, y(s))‖ ≤ ‖x(s)− y(s)‖
s− a

for a.e. s ∈ [β, b]. (6.4)

Thus s 7→ f(s, x(s)) − f(s, y(s)) is Bochner integrable, and hence also HL
integrable on [β, b], which in conjunction with Lemma 6.1 implies that

x(t)− y(t) = x(β)− y(β) + K

∫ t

β

(f(s, x(s))− f(s, y(s))) ds, β ≤ t ≤ b. (6.5)

Applying (6.4) we get∥∥∥∥K∫ t

β

(f(s, x(s))− f(s, y(s))) ds
∥∥∥∥ ≤ ∫ t

β

‖x(s)− y(s)‖
s− a

ds, β ≤ t ≤ b. (6.6)

From (6.5) and (6.6) it follows that

‖x(t)− y(t)‖ ≤ ‖x(β)− y(β)‖+
∫ t

β

‖x(s)− y(s)‖
s− a

ds, β ≤ t ≤ b. (6.7)

The greatest solution of

u(t) ≤ ‖x(β)− y(β)‖+
∫ t

β

u(s)
s− a

ds, β ≤ t ≤ b, (6.8)

is
uβ(t) = ‖x(β)− y(β)‖ t− a

β − a
, β ≤ t ≤ b. (6.9)

Thus, by (6.7), (6.8), and (6.9) we obtain

‖x(t)− y(t)‖ ≤ ‖x(β)− y(β)‖ b− a

β − a
, β ≤ t ≤ b. (6.10)

This last result is valid for all β ∈ (a, b). Moreover, we have

‖x(β)− y(β)‖
β − a

=
1

β − a

∥∥∥∥K∫ β

a

(f(s, x(s))− f(s, y(s))) ds
∥∥∥∥, a < β ≤ b. (6.11)

Since f is continuous at (a, x0), then f(s, x(s))−f(s, y(s)) → 0 as s→ a, and
hence

1
β − a

∥∥∥∥K∫ β

a

(f(s, x(s))− f(s, y(s))) ds
∥∥∥∥→ 0 as β → a. (6.12)

It then follows from (6.11) and (6.12) that ‖x(β)−y(β)‖
β−a → 0 as β → a. Thus

x(t) ≡ y(t) by (6.10), so that the Cauchy problem (6.1) can have only one
solution in W 1

SL(J,E). ut
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6.1.3 Existence Results

In this subsection we prove existence results for the Cauchy problem

y′(t) = g(t, y(t), y) for a.e. t ∈ J := [a, b], y(a) = x0, (6.13)

where a < b and g : J × E × C(J,E) → E.

A first existence result is based on the following fixed point theorem, which
follows from Proposition 2.39, and also from [44, Proposition 1.1.1].

Lemma 6.3. Let [y, y] = {x ∈ X : y ≤ x ≤ y} be a nonempty order interval
in an ordered normed space X, and let G : [y, y] → [y, y] be increasing. If G
maps monotone sequences to convergent sequences, then G has the smallest
and greatest fixed points in [y, y], and they are increasing with respect to G.

Lemma 6.3 is used to prove the following existence result for the Cauchy
problem (6.13).

Theorem 6.4. Let E be a Banach space ordered by a regular order cone.
Assume that C(J,E) is ordered pointwise, and that g : J ×E × C(J,E) → E
satisfies the following hypotheses:

(gi) g(·, x(·), x) is strongly measurable for all x ∈ C(J,E).
(gii) g(t, x, y) is increasing in x and in y for a.e. t ∈ J , and there exist HL

integrable functions f± : J → E such that f−(t) ≤ g(t, x, y) ≤ f+(t) for
a.e. t ∈ J and for all x ∈ E and y ∈ C(J,E).

Then the Cauchy problem (6.13) has the smallest and greatest solutions in
W 1
SL(J,E).

Proof: The hypotheses (gi) and (gii) imply by Proposition 9.14 that g(·, y(·), y)
is HL integrable for every y ∈ C(J,E). Applying the hypothesis (gii) and the
result of Lemma 9.11, it is easy to show that if x, y ∈ C(J,E), and x(s) ≤ y(s)
for all s ∈ J , and if a ≤ t ≤ t ≤ b, then

K

∫ t

t

f−(s) ds ≤ K

∫ t

t

g(s, x(s), x) ds ≤ K

∫ t

t

g(s, y(s), y) ds ≤ K

∫ t

t

f+(s) ds.

(6.14)
Define functions y, y of C(J,E) by

y(t) = x0 + K

∫ t

a

f−(s) ds, y(t) = x0 + K

∫ t

a

f+(s) ds t ∈ J. (6.15)

From (6.14) and (6.15) it follows that the integral operator G, defined by

Gx(t) = x0 + K

∫ t

a

g(s, x(s), x)ds, t ∈ J, (6.16)
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is increasing and maps C(J,E) into its order interval [y, y]. Moreover, (6.14),
(6.15), and (6.16) imply that for all x ∈ [y, y],

0 ≤ Gx(t)−Gx(t)− (y(t)− y(t)) ≤ y(t)− y(t)− (y(t)− y(t)), (6.17)

whenever a ≤ t ≤ t ≤ b. Because the order cone of E is regular, it is also
normal by Lemma 9.3. So from (6.16) and (6.17) it then follows that for all
x ∈ [y, y],

‖Gx(t)−Gx(t)‖ ≤ (λ+1)‖y(t)−y(t)‖+λ‖y(t)−y(t)‖, a ≤ t ≤ t ≤ b. (6.18)

Let (xn) be a monotone sequence in [y, y]. Then for every t ∈ J , (Gxn(t))
is a monotone sequence in the order interval [y(t), y(t)] of E. Since the order
cone of E is regular, then (Gxn(t)) converges in E for every t ∈ J . Moreover,
from (6.18) we see that the sequence (Gxn) is equicontinuous, which in view
of Lemma 9.44 implies that (Gxn) converges uniformly on J , and hence with
respect to the uniform norm of C(J,E).

The above proof shows that the hypotheses of Lemma 6.3 are valid for
the restriction to [y, y] of mapping G defined by (6.16), where X is replaced
by C(J,E) equipped with the pointwise ordering and the uniform norm, and
the functions y, y of C(J,E) are defined by (6.15). Thus by Lemma 6.3, the
mapping G has the smallest fixed point y∗ and the greatest fixed point y∗ in
[y, y], and hence in C(J,E), because G maps C(J,E) into [y, y]. This result
implies by Lemma 6.1 that y∗ and y∗ are the smallest and greatest solutions
of the Cauchy problem (6.13) in W 1

SL(J,E). ut

Remark 6.5. According to Theorem 2.16 the smallest fixed point y∗ of G :
[y, y] → [y, y] in Lemma 6.3 is the maximum of the w-o chain C of yG-
iterations. The greatest fixed point y∗ of G is by Theorem 2.16 the minimum
of the i.w-o chain D of yG iterations. Since y ≤ Gy, the first elements of C
are iterations Gny. These iterations form an increasing sequence because G is
increasing. If Gny = Gn+1y for some n, then Gny = maxC = y∗. Similarly,
the first elements of D are iterations Gny. These iterations form a decreasing
sequence. If Gmy = Gm+1y for some m, then Gmy = minD = y∗ (see Sect.
2.2.4).

Example 6.6. Determine the smallest and greatest solutions of the system
u′(t) = 1

t sin 1
t + 10−4[2 · 104 arctan(

∫ 4

1
v(s)ds)](1 + cos t)

for a.e. t ∈ J, u(0) = 0,
v′(t) = − 1

t sin 1
t + 10−4[3 · 104 tanh(

∫ 1

0
u(s)ds)](1 + cos t)

for a.e. t ∈ J, v(0) = 0,

(6.19)

where J = [0, 4]. Note, the brackets in the equations stand for the integer
function s 7→ [s] := max{n ∈ Z : n ≤ s}.
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Solution: Problem (6.19) can be converted to the Cauchy problem (6.13),
where the components of g = (g1, g2) : J × C(J,R2) → R2, J = [0, 4] are
defined by

g1(t, (u, v)) = 1
t sin 1

t + 10−4[2 · 104 arctan(
∫ 4

1
v(s)ds)](1 + cos t),

g2(t, (u, v)) = − 1
t sin 1

t + 10−4[3 · 104 tanh(
∫ 1

0
u(s)ds)](1 + cos t).

(6.20)

It is easy to see that G satisfies the hypotheses (gi) and (gii) of Theorem 6.4
when

f−(t) = ( 1
t sin 1

t − 3.1416(1 + cos t),− 1
t sin 1

t − 3(1 + sin t)),
f+(t) = ( 1

t sin 1
t + 3.1415(1 + cos t),− 1

t sin 1
t + 3(1 + sin t)).

The functions y = (u−, v−), y = (u+, v+), defined in (6.15), have the following
components, which are continuous on J and differentiable on (0, 4]:

u−(t) = −Si( 1
t )− 3.1416(t+ sin t) + π

2 ,
v−(t) = Si( 1

t )− 3(1− t− cos(t))− π
2 ,

u+(t) = −Si( 1
t ) + 3.1415(t+ sin t) + π

2 ,
v+(t) = Si( 1

t ) + 3(1− t− cos(t))− π
2 ,

where
Si(x) =

∫ x

0

sin s
s

ds

is the sine integral. Thus the hypotheses of Lemma 1.12 hold for the func-
tions u± and v±.

Calculating the iterations Gny, n ∈ N, where G is defined by (6.16), we
see that G5y = G6y, so that y∗ := G5y is the smallest fixed point of G
by Remark 6.5. The fixed point y∗ = (u∗, v∗) is the smallest solution of the
Cauchy problem (6.19) by the proof of Theorem 6.4. Similarly, we see that
y∗ := G5y is the greatest fixed point of G, and hence the greatest solution
of the Cauchy problem (6.19). The exact expressions of the components of
y∗ = (u∗, v∗) and y∗ = (u∗, v∗) are:

u∗(t) = −Si( 1
t )− 3.0909(t+ sin t) + π

2 ,
v∗(t) = Si( 1

t )− 2.9799(1− t− cos(t))− π
2 ,

u∗(t) = −Si( 1
t ) + 3.0806(t+ sin t) + π

2 ,
v∗(t) = Si( 1

t ) + 2.9872(1− t− cos(t))− π
2 .

(6.21)

Calculations are carried out by constructing appropriate Maple programs.

As a special case of Theorem 6.4 we get the following corollary.

Corollary 6.7. Let E be a Banach space ordered by a regular order cone.
Assume that f : J × E → E satisfies the hypothesis (fii) of Theorem 6.2 and
the following hypothesis:
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(fiii) The function x 7→ f(t, x) is increasing for a.e. t ∈ J , and there exist HL
integrable functions f± : J → E such that f−(t) ≤ f(t, x) ≤ f+(t) for
a.e. t ∈ J and for all x ∈ E.

Then problem (6.1) has the smallest and greatest solutions in W 1
SL(J,E).

Theorem 6.9 given below provides another type of existence results for
(6.13). Its novel feature is that neither order boundedness of the right-hand
side nor sub-supersolutions are assumed. The proof of Theorem 6.9 is based
on a fixed point result that is given by the next lemma. Before we formulate
and prove this lemma, recall that an ordered Banach space E is lattice ordered
if sup{x, y} and inf{x, y} exist for all x, y ∈ E. When x ∈ E, denote

|x| = sup{x,−x}, x+ = sup{0, x} and x− = sup{−x, 0} = (−x)+. (6.22)

We call E a Banach lattice if

|x| ≤ |y| in E implies ‖x‖ ≤ ‖y‖. (6.23)

The following fixed point result is a special case of Proposition 2.40.

Lemma 6.8. Given a Banach lattice E and a nonempty compact real interval
J , we assume that C(J,E) is equipped with the pointwise ordering ≤ and the
uniform norm ‖ · ‖0. If a mapping G : C(J,E) → C(J,E) is increasing, and
if a sequence (Gyn)∞n=0 converges in (C(J,E), ‖ · ‖0) whenever (yn)∞n=0 is a
monotone sequence in C(J,E), then G has

(a) minimal and maximal fixed points;
(b) smallest and greatest fixed points y∗ and y∗ in [y, y], where y is the greatest

solution of y = −(−Gy)+ and y is the smallest solution of y = (Gy)+.
(c) All the solutions y, y, y∗, and y∗ are increasing with respect to G.

Proof: Since E is a Banach lattice, it can be shown (see, e.g., [204]) that
|x± − y±| ≤ |x− y| for all x, y ∈ E. Thus, by (6.23),

‖x± − y±‖ ≤ ‖x− y‖, x, y ∈ E.

In particular, the mappings E 3 x 7→ x± are continuous. Hence, if y ∈ C(J,E),
then the mappings y± := t 7→ y(t)± belong to C(J,E). Consequently, the zero
function is an order center of C(J,E). Moreover, C(J,E) is an ordered normed
space with respect to the pointwise ordering and the sup-norm. Noticing also
that sup{0, y} = y+ and inf{0, y} = −(−y)+, the conclusions follow from
Proposition 2.40. ut

Applying Lemma 6.8, we shall prove existence and comparison results for
the Cauchy problem (6.13) when the function g : J×E×C(J,E) → E satisfies
the following hypotheses.

(g) g(·, y(·), y) is HL integrable for all y ∈ C(J,E).
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(gg) If x ≤ y in C(J,E), then g(s, x(s), x) ≤ g(s, y(s), y) for a.e. s ∈ J .
(ggg) The sequence

(
K
∫ b
a
g(s, yn(s), yn) ds

)∞
n=0

is bounded whenever (yn)∞n=0

is a monotone sequence in C(J,E).

Theorem 6.9. Let E be a weakly sequentially complete Banach lattice, and
assume hypotheses (g)–(ggg). Then the Cauchy problem (6.13) has

(a) minimal and maximal solutions;
(b) least and greatest solutions y∗ and y∗ in [y, y], where y is the greatest

solution of the equation

y(t) = −
(
−x0 − K

∫ t

a

g(s, y(s), y)ds
)+

, t ∈ J,

and y is the smallest solution of the equation

y(t) =
(
x0 + K

∫ t

a

g(s, y(s), y)ds
)+

, t ∈ J.

(c) All the solutions y, y, y∗, and y∗ are increasing with respect to g and x0.

Proof: According to hypotheses (g) and (gg), relation (6.16) defines the map-
ping G : C(J,E) → C(J,E), which is increasing by Lemma 9.11. In order to
show that G maps monotone sequences of C(J,E) to convergent sequences,
let (yn)∞n=0 be an increasing sequence in C(J,E). Since G is increasing, the
sequence (Gyn)∞n=0 is increasing, too. Hypotheses (gg), (ggg), and (6.16) im-
ply that the sequence (Gyn(b))∞n=0 is bounded in E and increasing. Moreover,
the order cone of E is normal by (6.23), and hence fully regular by Lemma
9.3. Thus the sequence (Gyn(b))∞n=0 converges. By using

0 ≤ Gym(t)−Gyn(t) ≤ Gym(b)−Gyn(b), t ∈ J, n ≤ m,

and (6.23), we obtain

‖Gym(t)−Gyn(t)‖ ≤ ‖Gym(b)−Gyn(b)‖, t ∈ J, n ≤ m.

This result implies

‖Gym −Gyn‖0 = sup
t∈J

‖Gym(t)−Gyn(t)‖ ≤ ‖Gym(b)−Gyn(b)‖, n ≤ m.

(6.24)
Because the sequence (Gyn(b))∞n=0 converges, it is a Cauchy sequence in
E, which along with (6.24) implies that (Gyn)∞n=0 is a Cauchy sequence in
(C(J,X), ‖ · ‖0). Therefore, (Gyn)∞n=0 converges whenever (yn)∞n=0 is an in-
creasing sequence in C(J,E). The proof that the sequence (Gyn)∞n=0 converges
in (C(J,E), ‖ · ‖0) whenever (yn)∞n=0 is a decreasing sequence in C(J,E) is
similar. The above proof shows that G satisfies the hypotheses of Lemma 6.8.
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Moreover, G is increasing with respect to g and x0. Thus the conclusions fol-
low from Lemma 6.8 since solutions of the Cauchy problem (6.13) and the
fixed points of G are same. ut

The following spaces are examples of weakly sequentially complete Banach
lattices:

- Rm, ordered coordinatewise and normed by a p-norm, 1 ≤ p <∞.
- Reflexive Banach lattices.
- Separable Hilbert spaces whose order cones are generated by orthonormal

bases.
- Sequence spaces lp, 1 ≤ p < ∞, normed by p-norm and ordered compo-

nentwise.
- Function spaces Lp(Ω), 1 ≤ p < ∞, normed by p-norm and ordered a.e.

pointwise, where Ω is a measure space.
- Function spaces Lp([a, b], X), 1 ≤ p < ∞, ordered a.e. pointwise, where
X is any of the spaces listed above.

6.1.4 Existence and Uniqueness Results

Combining the results of Theorem 6.2 and Corollary 6.7 we obtain the follow-
ing existence and uniqueness result.

Proposition 6.10. Let E be an ordered Banach space, ordered by a regular
order cone, and f : J × E → E. If the hypotheses (fi), (fii), and (fiii) of
Theorem 6.2 and Corollary 6.7 are valid, then the Cauchy problem (6.1) has
exactly one solution in W 1

SL(J,E).

In what follows, E is a Banach space. We are going to present conditions
for a function f : J × E → E under which the Cauchy problem (6.1) has a
uniquely determined solution that can be obtained by the method of successive
approximations. In the proof we make use of the following auxiliary result.

Lemma 6.11. Assume that the function q : J × [0, r] → R+, r > 0, satisfies
the following condition.

(q) q(·, x) is measurable for all x ∈ [0, r], q(·, r) ∈ L1(J,R+), q(t, ·) is increas-
ing and right-continuous for a.e. t ∈ J , and the zero-function is the only
absolutely continuous (AC) solution with u0 = 0 of the Cauchy problem

u′(t) = q(t, u(t)) a.e. on J, u(a) = u0. (6.25)

Then there exists an r0 > 0 such that the Cauchy problem (6.25) has for every
u0 ∈ [0, r0] the smallest AC solution u = u(·, u0), which is increasing with
respect to u0. Moreover, u(t, u0) → 0 uniformly over t ∈ J when u0 → 0+.
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Proof: Defining

q̂(t, x) = q(t,max{0,min{x, r}}), t ∈ J, x ∈ R, (6.26)

we obtain a function q̂ : J×R → R+ that is L1-bounded, q̂(·, x) is measurable
for every x ∈ R, and q̂(t, ·) is increasing and right-continuous for a.e. t ∈ J .
Moreover, for every u0 ∈ [0, r] the zero-function u(t) ≡ 0 is a lower AC solution
of

u′(t) = q̂(t, u(t)) a.e. on J, u(a) = u0, (6.27)

and the function u(t) = r +
∫ t
a
q(s, r) ds, t ∈ J is an upper AC solution

of (6.27). It then follows from [44, Theorem 2.1.4] that (6.27) has for every
u0 ∈ [0, r] the smallest AC solution u = u(·, u0), and

u(t, u0) = min{u+(t) : u+ is an upper AC solution of (6.27)}. (6.28)

If 0 ≤ û0 ≤ u0 ≤ r, then u(·, u0) is an upper AC solution of (6.27) with u0

replaced by û0. This implies by (6.28) that u(·, u0) is increasing with respect
to u0.

To prove the assertions, choose k ≥ 1
r and denote un = u(·, 1

n ), n ≥ k. The
so obtained sequence (un)∞n=k is decreasing by the above proof, and bounded
from below by the zero function, whence the limit

v(t) = lim
n→∞

un(t) (6.29)

exists for each t ∈ J . Since q̂(·, x) is measurable for every x ∈ R and q̂(t, ·) is
right-continuous for a.e. t ∈ J , then q̂(·, un(·)) is measurable for every n ≥ k
(cf. the proof of [161, Proposition 1.1.4]). Because q̂(·, un(·)) is nonnegative-
valued and bounded from above by a Lebesgue integrable function q(·, r), then
q̂(·, un(·)) is also Lebesgue integrable. Thus

un(t) =
1
n

+
∫ t

a

q̂(s, un(s)) ds, t ∈ J, n ≥ k. (6.30)

Since q̂(s, ·) is increasing for a.e. s ∈ J , and since (un) is decreasing, it follows
from (6.30) that

0 ≤ un(t)−um(t) ≤ 1
n
− 1
m

+
∫ b

a

(q̂(s, un(s))− q̂(s, um(s))) ds = un(b)−um(b)

whenever a ≤ t ≤ b and k ≤ n ≤ m, so that the convergence in (6.29) is
uniform. In particular, v ∈ C(J,R+). Because (un) is decreasing and q̂(t, ·) is
right-continuous, then

lim
n→∞

q̂(t, un(t)) = q̂(t, v(t)) for a.e. t ∈ J.

It then follows from (6.30) by the dominated convergence theorem, as n→∞,
that
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v(t) =
∫ t

a

q̂(s, v(s)) ds, t ∈ J.

But this implies that v is an AC solution of the Cauchy problem (6.27) with
u0 = 0. Applying the definition of q̂ and the hypothesis that u(t) ≡ 0 is
the only AC solution of (6.25) when u0 = 0, it is elementary to verify that
v(t) ≡ 0. In particular un(t) = u(t, 1

n ) → 0 uniformly over t ∈ J as n → ∞.
This result and the fact that u(·, u0) is increasing with respect to u0 imply
that u(t, u0) → 0 uniformly over t ∈ J when u0 → 0+. In particular, there
exists an r0 > 0 such that u(t, u0) ≤ r for all t ∈ J , and u0 ∈ [0, r0]. Thus
u(·, u0) is by (6.26) the smallest AC solution of (6.25) when u0 ∈ [0, r0]. ut

Denoting |y| = ‖y(·)‖, y ∈ C(J,E), we have the following fixed point
result.

Proposition 6.12. ([133, Theorem 1.4.9]) Let F : C(J,E) → C(J,E) satisfy
the hypothesis:

(F) There exists a v ∈ C(J,R+) and an increasing mapping Q : [0, v] → [0, v]
satisfying Qv(t) < v(t) and Qnv(t) → 0 for each t ∈ J , such that

|Fy − F ȳ| ≤ Q|y − ȳ| for y, ȳ ∈ C(J,E), |y − ȳ| ≤ v. (6.31)

Then for each y0 ∈ C(J,E) the sequence (Fny0)∞n=0 converges uniformly on
J to a unique fixed point of F .

Now we are able to prove an existence and uniqueness theorem for the
solution of the Cauchy problem (6.1).

Theorem 6.13. Assume that f : J × E → E has the following properties:

(f1) f(·, x) is strongly measurable for all x ∈ E and HL integrable for some
x ∈ E.

(f2) There exists an r > 0 such that

‖f(t, y)− f(t, z)‖ ≤ q(t, ‖y − z‖)

for all y, z ∈ E with ‖y− z‖ ≤ r and for a.e. t ∈ J , where q : J × [0, r] →
R+ satisfies the hypothesis (q) of Lemma 6.11.

Then for each x0 ∈ E the Cauchy problem (6.1) has a unique solution y in
W 1
SL(J,E). Moreover, y is the uniform limit of the sequence (yn)∞n=0 of the

successive approximations

yn+1(t) = x0 + K

∫ t

a

f(s, yn(s)) ds, t ∈ J, n ∈ N0, (6.32)

for each choice of y0 ∈ C(J,E).
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Proof: According to Lemma 6.11 the Cauchy problem (6.25) has for some
u0 = r0 > 0 the smallest AC solution v = u(·, r0), and r0 ≤ v(t) ≤ r for each
t ∈ J . Since q(s, ·) is increasing and right-continuous in [0, r] for a.e. s ∈ J ,
and because q(·, x) is measurable for all x ∈ [0, r] and q(·, r) is Lebesgue
integrable, it follows that q(·, u(·)) is Lebesgue integrable whenever u belongs
to the order interval [0, v] = {u ∈ C(J,R) : 0 ≤ u(t) ≤ v(t), t ∈ J}. Thus the
equation

Qw(t) =
∫ t

a

q(s, w(s)) ds, t ∈ J (6.33)

defines a mapping Q : [0, v] → C(J,R+). Condition (q) ensures that Q is
increasing, and the choice of r0 and v that

r0 +Qv = v. (6.34)

Thus Qv(t) < v(t) for every t ∈ J . The sequence (Qnv)∞n=0 is decreasing
because q(t, ·) is increasing for a.e. t ∈ J . The reasoning similar to that ap-
plied to the sequence (un) in the proof of Lemma 6.11 shows that (Qnv)∞n=0

converges uniformly on J to the zero function. Since this function satisfies
by (q) the equation u′(t) = q(t, u(t)) for a.e. t ∈ J , then q(t, 0) = 0 for a.e.
t ∈ J . This result and hypotheses (f1) and (f2) imply that f is a Carathéodory
function. Thus by [133, Theorem 1.4.3] f(·, y(·)) is strongly measurable on J
for all y ∈ C(J,E). Let y ∈ C(J,E) be fixed, and choose by (f1) a z ∈ E so
that f(·, z) is HL integrable. Choosing

yi(t) = z +
i

m
(y(t)− z), i = 0, . . . ,m ≥ ‖y − z‖

r0
,

we have ‖yi(t)− yi−1(t)‖ ≤ r0 ≤ v(t) on J for each i = 1, . . . ,m, whence

‖f(t, y(t))− f(t, z)‖ ≤
m∑
i=1

‖f(t, yi(t))− f(t, yi−1(t))‖

≤
m∑
i=1

q(t, ‖yi(t)− yi−1(t)‖) ≤
m∑
i=1

q(t, v(t)) = mv′(t)

for a.e. t ∈ J . This result and the strong measurability of f(·, y(·)) and f(·, z)
imply that f(·, y(·)) − f(·, z) is Bochner integrable, and hence also HL inte-
grable on J . Thus f(·, y(·)) = f(·, z) + f(·, y(·)) − f(·, z) is HL integrable on
J . In particular, for each fixed x0 ∈ E the equation

Fy(t) = x0 + K

∫ t

a

f(s, y(s))ds, t ∈ J, (6.35)

defines a mapping F : C(J,E) → C(J,E).
Next we show that the mappings Q and F defined by (6.33) and (6.35) sat-

isfy the hypotheses of Proposition 6.12. To verify that (6.31) holds, let y, ȳ ∈
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C(J,E) be given. The functions f(·, y(·)) − f(·, z) and f(·, ȳ(·)) − f(·, z) are
Bochner integrable by the above proof. Thus the function f(·, y(·))−f(·, ȳ(·))
is Bochner integrable. This result implies that the function ‖f(·, ȳ(·))−f(·, z)‖
is Lebesgue integrable. Moreover, for all t ∈ J we have the estimate∥∥∥∥K∫ t

a

f(s, y(s)) ds− K

∫ t

a

f(s, ȳ(s)) ds
∥∥∥∥ =

∥∥∥∥∫ t

a

(f(s, y(s)) ds− f(s, ȳ(s))) ds
∥∥∥∥

≤
∫ t

a

‖f(s, y(s)) ds− f(s, ȳ(s))‖ ds.

Applying this result, the hypotheses (f1) and (f2), and definitions (6.33) and
(6.35) we see that

|Fy − F ȳ| ≤ Q|y − ȳ| for y, ȳ ∈ C(J,E), |y − ȳ| ≤ v.

The above proof shows that the operators F and Q satisfy the hypotheses
of Proposition 6.12. Thus the iteration sequence (Fny0)∞n=0, which equals to
the sequence (yn)∞n=0 of successive approximations (6.32), converges for every
choice of y0 ∈ C(J,E) uniformly in J to a unique fixed point y of F . This
result and the definition of F imply by Lemma 6.1 that y is the uniquely
determined solution of the Cauchy problem (6.1) in W 1

SL(J,E). ut

6.1.5 Dependence on the Initial Value

We shall first prove that under the hypotheses (f1) and (f2), the difference of
solutions y of (6.1) belonging to initial values x0 and x̂0, respectively, can be
estimated by the smallest solution of the comparison problem (6.25) with ini-
tial value u0 = ‖x0−x̂0‖. This estimate implies by Lemma 6.11 the continuous
dependence of y on x0.

Proposition 6.14. Let f : J ×E → E satisfy the hypotheses (f1) and (f2). If
y = y(·, x0) denotes the solution of the Cauchy problem (6.1) and u = u(·, u0)
the smallest solution of the Cauchy problem (6.25), then for all x0, x̂0 ∈ E,
with ‖x0 − x̂0‖ small enough,

‖y(t, x0)− y(t, x̂0))‖ ≤ u(t, ‖x0 − x̂0‖), t ∈ J. (6.36)

In particular, y(·, x0) depends continuously on x0 in the sense that y(t, x̂0) →
y(t, x0) uniformly over t ∈ J as x̂0 → x0.

Proof: Assume that x0, x̂0 ∈ E, and that ‖x0 − x̂0‖ ≤ r0, where r0 is chosen
as in Lemma 6.11. The solutions y = y(·, x0) and ŷ = y(·, x̂0) exist by Theorem
6.13, and they satisfy

y(t) = Fy(t) = x0 + K

∫ t

a

f(s, y(s)) ds, t ∈ J,
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and

ŷ(t) = F̂ ŷ(t) = x̂0 + K

∫ t

a

f(s, ŷ(s)) ds, t ∈ J.

Moreover, F satisfies the hypotheses of Proposition 6.12 with Q defined by

Qw(t) =
∫ t

a

q(s, w(s)) ds, t ∈ J,

and u = u(·, ‖x0 − x̂0‖) is the smallest AC solution of

u = ‖x0 − x̂0‖+Qu.

Denote
W = {y ∈ C(J,E) : |y − ŷ| ≤ u}.

Since Q is increasing, and since

F ŷ(t)− ŷ(t) = F ŷ(t)− F̂ ŷ(t) = x0 − x̂0

for all t ∈ J , we have for every y ∈W ,

|Fy − ŷ| ≤ |F ŷ − ŷ|+ |Fy − F ŷ| ≤ |F ŷ − ŷ|+Q|y − ŷ|
≤ ‖x0 − x̂0‖+Qu = u.

Thus F [W ] ⊆ W . Since ŷ ∈ W , then (Fnŷ) ∈ W for every n ∈ N0. The
uniform limit y = limn F

nŷ exists by Theorem 6.13 and is the solution of
(6.1). Because W is closed, then y ∈ W , so that |y − ŷ| ≤ u. This proves
(6.36). According to Lemma 6.11, u(t, ‖x0 − x̂0‖) → 0 uniformly over t ∈ J
as ‖x0 − x̂0‖ → 0. This result and (6.36) imply that the last assertion of the
proposition is true. ut

Remark 6.15. If r = ∞ in condition (f2), then (6.36) holds for all x0, x̂0 ∈ E.
The hypotheses imposed on q : J × [0, r] → R+ in (q) hold if q(t, ·) is

increasing for a.e. t ∈ J , and if q is an L1-bounded Carathéodory function
such that the following local Kamke’s condition holds.

u ∈ C(J, [0, r]) and u(t) ≤
∫ t
a
q(s, u(s)) ds for all t ∈ J imply u(t) ≡ 0.

6.1.6 Well-Posedness of a Semilinear Cauchy Problem

The main goal of this subsection is to study the well-posedness of the following
semilinear Cauchy problem

y′(t) = A(t) y(t) + g(t, y(t)) for a.e. t ∈ J := [a, b], y(a) = x0. (6.37)

Given a Banach space E, denote by L(E) the space of all bounded linear
mappings T : E → E. We impose the following hypotheses on A : J → L(E)
and g : J × E → E.
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(A) A(·)x is strongly measurable for each x ∈ E, and ‖A(·)‖ ≤ p1 ∈
L1(J,R+).

(g1) g(·, x) is strongly measurable for every x ∈ E and HL integrable for some
x ∈ E.

(g2) There exists an r > 0 such that for all x, y ∈ E with ‖x − y‖ ≤ r and
for a.e. t ∈ J the estimate

‖g(t, x)− g(t, y)‖ ≤ p(t)φ(‖x− y‖)

holds, where p ∈ L1(J,R+), φ : [0, r] → R+ is increasing and right-
continuous, and

∫ r
0

dv
φ(v) = ∞.

Theorem 6.16. If the hypotheses (A) (g1) and (g2) are satisfied, then the
Cauchy problem (6.37) has for each x0 ∈ E a unique solution in W 1

SL(J,E)
that continuously depends on x0.

Proof: It suffices to show that the hypotheses (f1), (f2), and (q) hold for the
functions f : J × E → E and q : J × R+ → R+ defined by

f(t, x) = A(t)x+ g(t, x), t ∈ J, x ∈ E (6.38)

and
q(t, u) = p1(t)u+ p(t)φ(u), t ∈ J, u ∈ R+. (6.39)

If y ∈ C(J,E), it follows from hypothesis (A) by means of [133, Corollary 1.4.4]
that A(·)y(·) is strongly measurable. This result and the hypothesis (g1) imply
that f(·, y(·)) = A(·)y(·)+g(·, y(·)) is strongly measurable. By hypothesis (g1)
there exists also such a z ∈ E that g(·, z) is HL integrable on J . Since A(·)z is
strongly measurable, and ‖A(·)z‖ ≤ ‖z‖ p1 ∈ L1(J,R+), then A(·)z is Bochner
integrable, and hence also HL integrable. Thus f(·, z) = A(·)z + g(·, z) is HL
integrable. Consequently, the hypothesis (f1) is valid.

The hypotheses (A) and (g2) imply that the functions f : J ×E → E and
q : J × R+ → R+ defined by (6.38) and (6.39) satisfy

‖f(t, x)− f(t, y)‖ ≤ q(t, ‖x− y‖)

for all x, y ∈ E with ‖x−y‖ ≤ r and for a.e. t ∈ J . Moreover, the properties of
p1 and φ given in the hypothesis (g2) imply by the proof of [133, Proposition
5.1.1] that the function q : J × R+ → R+ defined by (6.39) satisfies the
hypothesis (q) of Lemma 6.11. Consequently, the function f : J × E → E
defined by (6.38) satisfies the hypothesis (f2). Thus by applying Theorem 6.13
and Proposition 6.14, the Cauchy problem (6.1) with f defined by (6.38), or
equivalently, the Cauchy problem (6.37) has for every choice of x0 ∈ E a
unique solution in W 1

SL(J,E) that continuously depends on x0. ut

Remark 6.17. Let lnn and expn denote n-fold iterated logarithm and exponen-
tial functions, respectively, and exp0(1) := 1. The functions φn : R+ → R+,
n ∈ N, defined by φn(0) = 0, and
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φn(x) = x
n∏
j=1

lnj
1
x
, 0 < x ≤ expn(1)−1,

have properties assumed in (g2) for the function φ.

Example 6.18. Let E be the Banach space c0 of the sequences (xn)∞n=1 of real
numbers that converge to 0, ordered componentwise and normed by ‖x‖0 =
supn |xn|. The mapping h = (hn)∞n=1 : [0, 1] → c0, whose components hn are
defined by hn(0) = 0,

hn(t) =
2t√
n

cos
( 1
t2

)
+

2√
nt

sin
( 1
t2

)
, t ∈ (0, 1], n ∈ N (6.40)

belongs to HL([0, 1], c0) by Lemma 1.12. The solutions of the initial value
problems

u′(t))+
1

(e+ t) ln(e+ t)
u(t) =

h(t)
ln(e+ t)

for a.e. t ∈ [0, 1], u(0) =
(

1√
n

)∞
n=1

,

(6.41)
are

u±(t) =
(

1√
n log(e+ t)

(
t2 cos

( 1
t2

)
+ 1
))∞

n=1

. (6.42)

More generally, the infinite system of Cauchy problems defined in J = [0, 1] y′n(t) +
1

(e+ t) ln(e+ t)
yn(t) =

1
ln(e+ t)

(hn(t) + gn(y(t)) for a.e. t ∈ J,

yn(0) = xn, n ∈ N,
(6.43)

where g = (gn)∞n=1 : c0 → c0, has by Theorem 6.16 for each x0 = (xn)∞n=1 ∈ c0
a unique solution (yn)∞n=1, which depends continuously on x0, if there exists
a function p ∈ L1([0, 1],R+) such that

sup
n
|gn(x)− gn(y)| ≤ p(t)‖x− y‖0 ln

1
‖x− y‖0

whenever 0 < ‖x− y‖0 ≤
1
e
.

Remark 6.19. No component of the mapping h defined in (6.40) is Lebesgue
integrable on [0, t] for any t ∈ (0, 1]. Consequently, the mapping h is not
Bochner integrable on [0, t] for any t ∈ (0, 1].

6.2 Nonlocal Semilinear Differential Equations

In this section we derive existence and comparison results for extremal so-
lutions of first order discontinuous nonlocal semilinear differential equations
containing non-absolutely integrable functions, and equipped with discontin-
uous and nonlocal initial conditions. In the proofs we apply results proved in
Chap. 9 for HL integrable functions from a real interval to an ordered Banach
space and fixed point results proved in Chap. 2.
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6.2.1 Existence and Comparison Results

We study first the semilinear initial function problem{
y′(t) = A(t)y(t) + f(t, y, y(t)) for a.e. t ∈ J := [0, b],
y(t) = B(t, y) in J0 := [−r, 0],

(6.44)

where 0 < b <∞, 0 ≤ r <∞, A : J → L(E) = {T : E → E : T is linear and
bounded}, f : J × C([−r, b], E)×E → E and B : J0 × C([−r, b], E) → E. E
is a Banach space ordered by a regular order cone.

We present conditions under which problem (6.44) has solutions in the set

S = {y ∈ C([−r, b], E) : y|J ∈W 1
SL(J,E)}. (6.45)

We also study the dependence of the solutions of (6.44) on the functions f
and B.

Definition 6.20. We say that a function y ∈ S is a subsolution of problem
(6.44) if

y′(t) ≤ A(t)y(t)+f(t, y, y(t)) for a.e. t ∈ J, y(t) ≤ B(t, y) in J0, (6.46)

If reversed inequalities hold in (6.46), we say that y is a supersolution of
(6.44). If equalities hold in (6.46), then y is called a solution of (6.44).

Assuming that the spaces C([−r, b], E) and C(J0, E) are equipped with point-
wise ordering, we impose the following hypotheses on the functions A, f , and
B.

(A0) A(·)x is strongly measurable for every x ∈ E.
(A1) There is a p̂ ∈ L1(J,R+) such that x 7→ A(t)x + p̂(t)x is increasing for

a.e. t ∈ J .
(f0) f(·, y, y(·)) is strongly measurable on J for every y ∈ C([−r, b], E).
(f1) There is an p ∈ L1(J,R+) such that (y, x) 7→ f(t, y, x)+p(t)x is increas-

ing for a.e. t ∈ J .
(B0) If (yn) is a monotone and order bounded sequence in C([−r, b], E), then

the sequence (B(·, yn)) is equicontinuous on J0.
(B1) B(t, y) is increasing with respect to y for all t ∈ J0.
(lu) Problem (6.44) has a subsolution y ∈ S and a supersolution y ∈ S, and

y ≤ y.

Denote by HL(J,E) the set of all HL integrable functions y : J → E, and
equip HL(J,E) with the a.e. pointwise ordering.

Lemma 6.21. Let the hypotheses (A0), (A1), (f0), (f1), (B0), (B1), and (lu)
be satisfied. Denote [y, y] = {y ∈ C([−r, b], E) : y ≤ y ≤ y}, where y, y ∈ S
are sub- and supersolutions of (6.44), and y ≤ y.



214 6 Banach-Valued Ordinary Differential Equations

(a) The equation

Fy(t) := A(t)y(t) + f(t, y, y(t)) + p(t)y(t), y ∈ [y, y], t ∈ J, p = p̂+ p,
(6.47)

defines an increasing mapping F : [y, y] → HL(J,E).
(b) Denoting t− = min{0, t}, t+ = max{0, t}, t ∈ R, and P (t) =

∫ t
0
p(s) ds,

t ∈ J , the equation

Gy(t) := e−P (t+)

(
B(t−, y) + K

∫ t+

0

eP (s)Fy(s) ds
)

(6.48)

defines an increasing mapping G : [y, y] → [y, y].

Proof: Ad (a) The given hypotheses ensure that (6.47) defines for every
y ∈ [y, y] a strongly measurable mapping Fy : J → E, and that

y′(t) + p(t)y(t) ≤ Fy1(t) ≤ Fy2(t) ≤ y′(t) + p(t)y(t) (6.49)

for a.e. t ∈ J , and for y ≤ y1 ≤ y2 ≤ y. Because y′ + py and y′ + py are HL
integrable on J , the above result implies by Proposition 9.14 and Lemma 9.11
that the functions Fy1 and Fy2 belong to HL(J,E), and that Fy1 ≤ Fy2.

Ad (b) Let y ∈ [y, y] be fixed. Since Fy is HL integrable by (a), then
(6.48) defines a mapping Gy : [−r, b] → E for every y ∈ [y, y]. Because
Gy(t) = B(t, y) for t ∈ J0, then Gy is continuous on J0 by (B0). If t ∈ J ,
then Gy(t) = e−P (t)B(0, y) + K

∫ t
0
eP (s)Fy(s) ds, whence Gy is continuous on

J . Moreover, Gy(t) → B(0, y) as t→ 0+, whence Gy is continuous also at 0.
Consequently, Gy ∈ C([−r, b], E).

Since y is a supersolution of (6.44), it follows from (6.47) and (6.48) by
Lemma 9.22 that for every t ∈ J the following holds:

Gy(t) = e−P (t)

(
B(0, y) + K

∫ t

0

eP (s)(A(s)y(s) + f(s, y, y(s)) + p(s)y(s)) ds
)

≤ e−P (t)

(
B(0, y) + K

∫ t

0

eP (s)(y′(s) + p(s)y(s)) ds
)

≤ e−P (t)
(
B(0, y) + eP (t)y(t)− y(0)

)
≤ y(t).

When t ∈ J0, then
Gy(t) = B(t, y) ≤ y(t).

The above proof shows that Gy ≤ y. Similarly it can be shown that y ≤ Gy.
If y ≤ y1 ≤ y2 ≤ y, then B(·, y1) ≤ B(·, y2) by (B1), and Fy1 ≤ Fy2 by

(a). It then follows from (6.48) by Lemma 9.11 and by the above proof that

y ≤ Gy ≤ Gy1 ≤ Gy2 ≤ Gy ≤ y.

This result proves (b). ut
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Lemma 6.22. Assume hypotheses (A0), (A1), (f0), (f1), (B0), (B1), and (lu).
Then y ∈ [y, y] is a solution of problem (6.44) if and only if y is a fixed point
of the mapping G : [y, y] → [y, y] defined by (6.48).

Proof: Assume first that y ∈ [y, y] is a solution of problem (6.44). Then y ∈ S,
so that y′ is HL integrable on J , and

y′(t) = A(t)y(t) + f(t, y, y(t)) for a.e. t ∈ J, y(0) = B(0, y).

Applying this result, and (6.47), (6.48) as well as Lemma 9.22, we have for
every t ∈ J (Note, P (t) =

∫ t
0
p(s) ds),

Gy(t) = e−P (t)

(
B(0, y) + K

∫ t

0

eP (s)(A(s)y(s) + f(s, y, y(s)) + p(s)y(s)) ds
)

= e−P (t)

(
B(0, y) + K

∫ t

0

eP (s)(y′(s) + p(s)y(s)) ds
)

= e−P (t)
(
B(0, y) + eP (t)y(t)− y(0)

)
= y(t).

Moreover, if t ∈ J0, then

y(t) = B(t, y) = Gy(t).

Thus y = Gy.
Conversely, assume that y is a fixed point of the mapping G : [y, y] →

[y, y] defined by (6.48). Since t 7→ e−P (t) is absolutely continuous on J and
t 7→ B(0, y) + K

∫ t
0
eP (s)Fy(s) ds is a primitive of a HL integrable function on

J , from

y(t) = Gy(t) = e−P (t)

(
B(0, y) + K

∫ t

0

eP (s)Fy(s) ds
)
, t ∈ J

and by Lemma 9.22 it follows that y|J ∈W 1
SL(J,E), and that

y′(t) = −p(t)y(t) + Fy(t) = A(t)y(t) + f(t, y, y(t))

for a.e. t ∈ J . Moreover, (6.48) implies that y(t) = Gy(t) = B(t, y) for t ∈ J0.
Thus y ∈ S and y is a solution of problem (6.44). ut

Now we are in the position to prove an existence and comparison theorem
for solutions of problem (6.44).

Theorem 6.23. Assume hypotheses (A0), (A1), (f0), (f1), (B0), and (B1),
and let y, y ∈ S be sub- and supersolutions of (6.44) such that y ≤ y. Then
problem (6.44) has the smallest and greatest solutions within the order interval
[y, y]. Moreover, these extremal solutions are increasing with respect to f and
B.



216 6 Banach-Valued Ordinary Differential Equations

Proof: We shall first show that the mapping G : [y, y] → [y, y], defined by
(6.48), satisfies the hypotheses of Lemma 6.3. G is increasing by Lemma 6.21.
To show that (Gyn)∞n=0 is equicontinuous on [−r, b] whenever (yn)∞n=0 is an
increasing sequence in [y, y], let (yn)∞n=0 be such a sequence. The definition
(6.48) of G implies that Gyn(t) = B(t, yn) for all t ∈ J0 and n ∈ N0. Thus the
sequence (Gyn)∞n=0 is equicontinuous on J0 by the hypothesis (B0).

Next we prove (Gyn)∞n=0 is equicontinuous also on J when (yn)∞n=0 is an
increasing sequence in [y, y]. Denote

vn(s) = eP (s)Fyn(s)), s ∈ J, n ∈ N0,

v(s) = eP (s)(y′(s) + p(s)y(s)), s ∈ J

v(s) = eP (s)(y′(s) + p(s)y(s)), s ∈ J.

(6.50)

It follows from (6.49) that (vn(s))∞n=0 is for a.e. s ∈ J an increasing sequence
within the order interval [v(s), v(s))]. Both the functions v and v are HL
integrable, and every vn is strongly measurable on J . Thus every vn is HL
integrable on J by Proposition 9.14. Denote

wn(t) = K

∫ t

0

vn(s) ds = K

∫ t

0

eP (s)Fyn(s)) ds, t ∈ J, n ∈ N0. (6.51)

The sequence (wn)∞n=0 belongs to C(J,E) by [207, Theorem 7.4.1], and is
increasing by Lemma 9.11. According to Lemma 9.11 we have

0 ≤ K

∫ t

a

(vn(s)− v(s)) ds ≤ K

∫ t

a

(v(s)− v(s)) ds, 0 ≤ a ≤ t ≤ b.

This result and the normality of the order cone E+ imply that∥∥∥∥K∫ t

a

(vn(s)− v(s)) ds
∥∥∥∥ ≤ λ

∥∥∥∥K∫ t

a

(v(s)− v(s)) ds
∥∥∥∥, 0 ≤ a ≤ t ≤ b.

The last inequality and (6.51) result in

‖wn(t)− wn(a)‖ ≤
∥∥∥∥K∫ t

a

v(s) ds
∥∥∥∥+ λ

∥∥∥∥K∫ t

a

(v(s)− v(s)) ds
∥∥∥∥, 0 ≤ a ≤ t ≤ b

for all n ∈ N0. This result, the notations (6.51), and the definition (6.48)
imply that the sequence of functions

Gyn(t) := e−P (t+)

(
B(0, yn) + K

∫ t+

0

eP (s)Fyn(s) ds
)

is equicontinuous on J .
The above proof shows that (Gyn)∞n=0 is equicontinuous on J0∪J = [−r, b]

when (yn)∞n=0 is an increasing sequence in [y, y]. The proof that (Gyn)∞n=0 is
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equicontinuous on [−r, b] when (yn)∞n=0 is a decreasing sequence in [y, y] is
similar. This result and Lemma 9.44 imply that (Gyn) converges uniformly
on [−r, b], and hence with respect to the uniform norm of C([−r, b], E).

The above proof shows that the hypotheses of Lemma 6.3 are valid for the
mapping G defined by (6.48), whenX is C([−r, b], E) equipped with the point-
wise ordering and the uniform norm, and the functions y, y of C([−r, b], E)
are defined by (6.15), because G is also increasing due to Lemma 6.21. Thus
by Lemma 6.3, G has the smallest and greatest fixed points y∗ and y∗. In view
of Lemma 6.22, y∗ and y∗ are the smallest and greatest solutions of problem
(6.44) in [y, y].

It follows from (6.48) and by Lemma 9.11 that G is increasing with respect
to f and B. This result implies the last conclusion of the theorem because y∗
and y∗ are increasing with respect to G by Lemma 6.3. ut

Example 6.24. Let E be the Banach space c0 of the sequences (xn)∞n=1 of real
numbers that converge to 0, ordered componentwise and normed by ‖x‖0 =
supn |xn|. The mapping h : [0, 1] → c0, defined by h(0) = (0, 0, . . . ),

h(t) =
(

2t√
n

cos
( 1
t2

)
+

2√
nt

sin
( 1
t2

))∞
n=1

, t ∈ (0, 1], (6.52)

belongs to HL([0, 1], c0) by Lemma 1.12. The solutions of the initial value
problems

y′(t) +
y(t)

(e+ t) ln(e+ t)
=
h(t)± ( 1√

n
)∞n=1

ln(e+ t)
for a.e. t ∈ [0, 1],

y(0) =
(
± 1√

n

)∞
n=1

,

(6.53)

are

y±(t) =
(

1√
n ln(e+ t)

(
t2 cos

( 1
t2

)
± (t+ 1)

))∞
n=1

. (6.54)

More generally, consider the problem
y′(t) +

1
(e+ t) ln(e+ t)

y(t) = h(t) +
(

1√
n
fn(y)

)∞
n=1

a.e. on [0, 1],

y(0) =
(Bn(y)√

n

)∞
n=1

,

(6.55)
where each fn, Bn : C([0, 1], c0) → R, is increasing and −1 ≤ Bn(y), fn(y) ≤ 1
for all y ∈ C([0, 1], c0) and n ∈ N. The functions y± are sub- and supersolu-
tions of (6.55). It is easy to verify that all the hypotheses of Theorem 6.23 are
valid when r = 0, b = 1, A(t) = 1

(e+t) ln(e+t)I, B(0, y) = (Bn(y)√
n

)∞n=1,

f(t, y, y(t)) = h(t) +
(

1√
n
fn(y)

)∞
n=1

.
(6.56)
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Thus (6.55) has the smallest and greatest solutions y∗ = (y∗n)∞n=1 and
y∗ = (y∗n)

∞
n=1 within the order interval [y−, y+], where y± are given by (6.54).

Because interval [y−, y+] contains all the solutions of (6.55), then y∗ and y∗

are the smallest and greatest solutions of (6.55).

Remark 6.25. No component of the mapping h defined in (6.52) is Lebesgue
integrable on [0, t] for any t ∈ (0, 1]. Consequently, the mapping h is not
Bochner integrable on [0, t] for any t ∈ (0, 1].

6.2.2 Applications to Multipoint Initial Value Problems

The main result of Sect. 6.2.1 can be applied to the following multipoint initial
value problem:


y′(t) = A(t)y(t) + f(t, y, y(t)) for a.e. t ∈ J := [0, b],

y(0) =
m∑
k=1

bky(tk),
(6.57)

where 0 < tk < b, bk ∈ R+, k = 1, . . . ,m,
∑m
k=1 bk = 1, A : J → L(E) and

f : J × C(J,E) × E → E. E is a Banach space ordered by a regular order
cone.

Definition 6.26. We say that a function y ∈ W 1
SL(J,E) is a subsolution

of problem (6.57), if

y′(t) ≤ A(t)y(t) + f(t, y, y(t)) for a.e. t ∈ J, y(0) ≤
m∑
k=1

bky(tk). (6.58)

If reversed inequalities hold in (6.58), we say that y is a supersolution of
(6.57). If equalities hold in (6.58), then y is called a solution of (6.57).

As a consequence of Theorem 6.23 we obtain the following result.

Proposition 6.27. Let the hypotheses (A0), (A1), (f0), and (f1) hold, and let
y, y ∈ S be sub- and supersolutions of (6.57) such that y ≤ y. Then problem
(6.57) has the smallest and greatest solutions within the order interval [y, y],
and these extremal solutions are increasing with respect to f .

Proof: Choosing r = 0 and B(0, y) =
∑m
k=1 bky(tk), y ∈ C(J,E), we see that

the hypotheses (B0) and (B1) are valid. The conclusions follow then from
Theorem 6.23. ut
Remark 6.28. (i) The functional dependence on the unknown function y of f
and B may occur, e.g., as bounded, linear, and positive operators, such as
integral operators of Volterra and/or Fredholm type with nonnegative ker-
nels. Thus the results derived in this section can be applied also to integro-
differential equations.

(ii) Functional differential equations containing non-absolutely integrable
functions are studied also in [92, 93, 132].
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6.3 Higher Order Differential Equations

In this section we shall study higher order differential equations in Banach
spaces. We shall first apply results of Sect. 6.1 to derive existence, unique-
ness, and estimation results for an mth order Cauchy problem, as well as suf-
ficient conditions for the continuous dependence of its solution and its lower
order derivatives on the initial values. By assuming that the underlying Ba-
nach space is ordered, we then prove existence and comparison results for
the smallest and greatest solutions of mth order semilinear initial function
problems by using results of Sect. 6.2. The data of the considered differen-
tial equations are allowed to be non-absolutely integrable with respect to the
independent variable and may depend discontinuously on the unknown (de-
pendent) variables.

6.3.1 Well-Posedness Results

Given a Banach space E and J = [0, b], b > 0, consider the mth order Cauchy
problem{

y(m)(t) = g(t, y(t), y′(t), . . . , y(m−1)(t)) for a.e. t ∈ J,
y(0) = x01, y

′(0) = x02, . . . , y
(m−1)(0) = x0m,

(6.59)

where g : J × Em → E and x0i ∈ E, i = 1, . . . ,m. In this section we assume
that the product space Em is equipped with the norm

‖x‖ = ‖x1‖+ · · ·+ ‖xm‖, x = (x1, . . . , xm) ∈ Em. (6.60)

Definition 6.29. We say that y : J → E is a solution of (6.59) if y(m−1)

belongs to W 1
SL(J,E), and if (6.59) holds.

By using these notations and definitions the Cauchy problem (6.59) can
be converted into the first order Cauchy problem as follows:

Lemma 6.30. y : J → E is a solution of the Cauchy problem (6.59) if and
only if
x = (x1, . . . , xm) = (y, y′, . . . , y(m−1)) is a solution of the Cauchy problem

x′(t) = f(t, x(t)) for a.e. t ∈ J, x(0) = x0, (6.61)

where f : J × Em → Em is defined by

f(t, x) = (x2, x3, . . . , xm, g(t, x)), (6.62)

with t ∈ J and x = (x1, . . . , xm) ∈ Em.

We shall first prove that the Cauchy problem (6.59) has a uniquely deter-
mined solution if g : J × Em → E has the following properties.
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(g1) g(·, x) is strongly measurable for each x ∈ Em, and g(·, 0) is HL inte-
grable.

(g2) There is r > 0 such that ‖g(t, x)−g(t, y)‖ ≤ q(t, ‖x−y‖) for all x, y ∈ Em
with ‖x− y‖ < r and for a.e. t ∈ J , where q : J × [0, r] → R+, q(·, x) is
measurable for all x ∈ [0, r], q(·, r) ∈ L1(J,R+), q(t, ·) is increasing and
right-continuous for a.e. t ∈ J , and the zero-function is for u0 = 0 the
only absolutely continuous solution of the Cauchy problem

u′(t) = u(t) + q(t, u(t)), for a.e. t ∈ J, u(0) = u0, (6.63)

Theorem 6.31. If the hypotheses (g1) and (g2) hold, then the Cauchy prob-
lem (6.59) has a unique solution y on J for each x0 = (x01, . . . , x0m) ∈ Em.
Moreover, y can be obtained by the method of successive approximations.

Proof: The hypotheses (g1) and (g2) imply that the function f , defined in
(6.62), satisfies the hypotheses of Theorem 6.13 when E is replaced by Em

and q(t, u) by u + q(t, u). Thus by Theorem 6.13 the Cauchy problem (6.61)
has a unique solution x = (x1, . . . , xm), which can be obtained as the uniform
limit of the successive approximations. This result and Lemma 6.30 prove the
assertions. ut

Next we shall consider the dependence of the solution of the Cauchy prob-
lem (6.59) on the initial values x01, . . . , x0m.

Proposition 6.32. Assume that g : J × Em → E satisfies the hypotheses
(g1) and (g2). Let y and ŷ denote the solutions of the Cauchy problem (6.59)
corresponding to initial values x0 = (x01, . . . , x0m) and x̂0 = (x̂01, . . . , x̂0m),
and let u = u(·, u0) denote the smallest solution of the Cauchy problem (6.63).
Then for ‖x0 − x̂0‖ sufficiently small and t ∈ J we have

‖y(t)− ŷ(t)‖+‖y′(t)− ŷ′(t)‖+ · · ·+‖y(m−1)(t)− ŷ(m−1)(t)‖ ≤ u(t, ‖x0− x̂0‖).
(6.64)

Moreover, y, y′, . . . , y(m−1) depend continuously on x01, . . . , x0m.

Proof: The assertions are immediate consequences of Lemma 6.30, Proposi-
tion 6.14 and (6.60). ut

6.3.2 Semilinear Problem

Consider the mth order semilinear Cauchy problem
y(m)(t) =Am(t)y(m−1)(t) + · · ·+A1(t)y(t)

+ f(t, y(t), y′(t), . . . , y(m−1)(t)) a.e. on J,

y(0) =x01, y
′(0) = x02, . . . , y

(m−1)(0) = x0m,

(6.65)

where J := [0, b], Ai : J → L(E), i = 1, . . . ,m, and f : J ×Em → E. Problem
(6.65) can be converted into the first order semilinear Cauchy problem as
follows:



6.3 Higher Order Differential Equations 221

Lemma 6.33. y : J → E is a solution of the Cauchy problem (6.65) if and
only if
x = (x1, . . . , xm) = (y, y′, . . . , y(m−1)) is a solution of the semilinear Cauchy
problem

x′(t) = A(t)x(t) + g(t, x(t)) a.e. on J x(0) = x0, (6.66)

where g : J × Em → Em and A : J → L(Em) are defined by

g(t, x) = (x2, x3, . . . , xm, f(t, x)), A(t)x = (0, . . . , 0,
m∑
i=1

Ai(t)xi), (6.67)

when t ∈ J and x = (x1, . . . , xm) ∈ Em.

We shall assume that the functions Ai : J → L(E) and f : J × Em → E
have the following properties.

(A0) For each i = 1, . . . ,m and x ∈ E, Ai(·)x is strongly measurable, and
there is pi ∈ L1(J,R+) such that ‖Ai(t)‖ ≤ pi(t) for a.e. t ∈ J .

(f1) f(·, x) is strongly measurable for each x ∈ Em, and f(·, 0) is HL inte-
grable.

(f2) There is r > 0 and p0 ∈ L1(J,R+) such that

‖f(t, x)− f(t, y)‖ ≤ p0(t)φ(‖x− y‖) (6.68)

for all x, y ∈ Em with ‖x− y‖ < r and for a.e. t ∈ J , where φ : [0, r] →
R+ is increasing and right-continuous, and

∫ r
0

dv
φ(v) = ∞.

Theorem 6.34. If the hypotheses (A0), (f1), and (f2) are satisfied, then
the Cauchy problem (6.65) has a unique solution y on J for each x0 =
(x01, . . . , x0m) ∈ Em. Moreover, y, y′, . . . , y(m−1) depend continuously on
x01, . . . , x0m.

Proof: The hypotheses (A0), (f1), and (f2) imply that the functions A and g
in (6.66) satisfy the hypotheses of Theorem 6.16 when E is replaced by Em, p
by 1+p0, φ(u) by u+φ(u), and p1 by max{pi}mi=1. Thus by Theorem 6.16, the
Cauchy problem (6.66) has a unique solution x = (x1, . . . , xm), which depends
continuously on x0. This result and Lemma 6.33 imply the assertions. ut

Corollary 6.35. Let the hypotheses (A0) and (f1) hold. Assume there exist
r > 0 and p0 ∈ L1(J,R+) such that

‖f(t, x)− f(t, y)‖ ≤ p0(t) ‖x− y‖ (6.69)

for all x, y ∈ Em with ‖x − y‖ < r and for a.e. t ∈ J . Then the Cauchy
problem (6.65) has for each x0 = (x01, . . . , x0m) ∈ Em exactly one solution y.
Moreover, y, y′, . . . , y(m−1) depend continuously on x01, . . . , x0m.
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In particular, we have.

Corollary 6.36. If Ai : J → L(E), i = 1, . . . ,m, satisfy condition (A0), and
if h ∈ HL(J,E), then the Cauchy problem{

y(m) = Am(t)y(m−1) + · · ·+A1(t)y + h(t) a.e. on J,

y(0) = x01, y
′(0) = x02, . . . , y

(m−1)(0) = x0m

has for each x0 = (x01, . . . , x0m) ∈ Em a unique solution, which together with
its first m− 1 derivatives depend continuously on x01, . . . , x0m.

6.3.3 Extremal Solutions

In this subsection we shall consider the existence of extremal solutions of mth
order semilinear initial function problems when E is an ordered Banach space.
We shall assume in this subsection that the order cone E+ of E is regular.
Obviously, Em+ is a regular order cone in Em, whose norm is defined by (6.60).
Given b > 0, denote J := [0, b]. We shall first study the mth order semilinear
initial function problem

y(m)(t) =Am(t)y(m−1)(t) + · · ·+A1(t)y(t)

+ g(t, y(t), y′(t), . . . , y(m−1)(t)) for a.e. t ∈ J,
y(0) =B1(y), y′(0) = B2(y′), . . . , y(m−1)(0) = Bm(y(m−1)),

(6.70)

where Ai : J → L(E), Bi : C(J,E) → E, i = 1, . . . ,m, and g : J × Em → E.

We shall present conditions under which problem (6.70) has solutions in
the set

S = {y ∈ C(J,E) : y(m−1) ∈W 1
SL(J,E)}. (6.71)

We study also dependence of solutions of (6.70) on the functions g and Bi.

Definition 6.37. We say that a function y ∈ S is a subsolution of problem
(6.70) if

y(m)(t) ≤Am(t)y(m−1)(t) + · · ·+A1(t)y(t)

+ g(t, y(t), y′(t), . . . , y(m−1)(t)) for a.e. t ∈ J,
y(0) ≤B1(y), y′(0) ≤ B2(y′), . . . , y(m−1)(0) ≤ Bm(y(m−1)).

(6.72)

If reversed inequalities hold in (6.72), we say that y is a supersolution of
(6.70). If equalities hold in (6.72), then y is called a solution of (6.70).

Lemma 6.38. The function y : J → E is a subsolution, a supersolution, or a
solution of problem (6.70) if and only if x = (x1, . . . , xm) = (y, y′, . . . , y(m−1))
is a subsolution, a supersolution, or a solution of the semilinear problem
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x′(t) = A(t)x(t) + f(t, x(t)), for a.e. t ∈ J, x(0) = B(x), (6.73)

where f : J × Em → Em, A : J → L(Em) and B : C(J,Em) → Em are
defined by

f(t, x) = (x2, x3, . . . , xm, g(t, x)), A(t)x = (0, . . . , 0,
m∑
i=1

Ai(t)xi), t ∈ J,

B(x) = (B1(x1), . . . , Bm(xm)), x = (x1, . . . , xm).
(6.74)

Assuming that the space C(J,E) is equipped with pointwise ordering, we
impose the following hypotheses on the functions Ai, g, and Bi.

(A0) Ai(·)x is strongly measurable for all x ∈ E and i = 1, . . . ,m.
(A1) For every i = 1, . . . ,m Ai(t)E+ ⊆ E+ for a.e. t ∈ J .
(g0) g(·, y1(·), . . . , ym(·)) is strongly measurable on J for all yi ∈ C(J,E),

i = 1, . . . ,m.
(g1) g(t, ·) is increasing for a.e. t ∈ J .
(B0) Bi is increasing for every i = 1, . . . ,m.
(lu) Problem (6.70) has a subsolution y ∈ S and a supersolution y ∈ S, and

y ≤ y, y′ ≤ y′, . . . , y(m−1) ≤ y(m−1).

As a consequence of Theorem 6.23 we obtain an existence comparison
theorem for solutions of problem (6.70).

Theorem 6.39. Let the hypotheses (A0), (A1), (g0), (g1), (B0), and (lu) hold,
and let y, y ∈ S be sub- and supersolutions of (6.70) assumed in (lu). Then
problem (6.70) has the smallest and greatest solutions in the order interval
[y, y] of C(J,E), and they are increasing with respect to g and Bi, i = 1, . . . ,m.

Proof: Let A : J → L(Em) and f : J × Em → Em be defined by (6.74).
Denoting x = (y, y′, . . . , y(m−1)) and x̄ = (y, y′, . . . , y(m−1)), it is easy to see
that the hypotheses (A0), (A1), (f0), (f1), (B0), and (B1) given in Sect. 6.2.1
hold when p = p̂ ≡ 0. Thus by Theorem 6.23, problem (6.70) has the smallest
and greatest solutions in [x, x̄], and they are increasing with respect to g and
B. This result and Lemma 6.38 imply the assertions. ut

We apply the results of Theorem 6.39 to the following multipoint initial
value problem, where ti ∈ J , i = 1, . . . ,m.

y(m)(t) =Am(t)y(m−1)(t) + · · ·+A1(t)y(t)

+ g(t, y(t), y′(t), . . . , y(m−1)(t)) for a.e. t ∈ J,
y(0) =y(t1), y′(0) = y′(t2), . . . , y(m−1)(0) = y(m−1)(tm).

(6.75)

As a consequence of Theorem 6.39 we obtain the following result.
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Proposition 6.40. Assume that the hypotheses (A0), (A1), (g0), and (g1)
hold. Suppose that problem (6.75) has a subsolution y ∈ S and a supersolution
y ∈ S, and that y ≤ y, y′ ≤ y′, . . . , y(m−1) ≤ y(m−1). Then problem (6.75) has
the smallest and greatest solutions within the order interval [y, y] of C(J,E),
and these extremal solutions are increasing with respect to g.

Proof: The hypothesis (B0) holds when Bi(xi) = xi(ti), xi ∈ C(J,E), ti ∈ J ,
i = 1, . . . ,m. ut

Next we consider the existence of the smallest and greatest solutions of
the Cauchy problem{

y(m) = Am(t)y(m−1) + · · ·+A1(t)y + g(t, y, y′, . . . , y(m−1)),

y(0) = x01, y
′(0) = x02, . . . , y

(m−1)(0) = x0m.
(6.76)

Proposition 6.41. Assume that Ai : J → L(E), i = 1, . . . ,m, and g, g, g :
J×Em → E satisfy the hypotheses (A0), (A1), (g0), and (g1). Further assume
that the hypotheses (A0), (f1), and (f2) of Theorem 6.34 hold for functions
Ai, i = 1, . . . ,m, f = g and f = g, and that

g(t, x) ≤ g(t, x) ≤ g(t, x) for all x ∈ Em and for a.e. t ∈ J. (6.77)

Then for every choice of x0i ∈ E, i = 1, . . . ,m, the Cauchy problem (6.76) has
the smallest and greatest solutions, and these extremal solutions are increasing
with respect to g and x0i ∈ E, i = 1, . . . ,m.

Proof: Let x0i ∈ E, i = 1, . . . ,m, be given. The hypotheses (A0), (f1), and
(f2) imposed on the functions Ai, i = 1, . . . ,m, f = g and f = g ensure
by Theorem 6.31 that the Cauchy problem (6.76) has uniquely determined
solutions y and y when g is replaced by g and g, respectively. Because the
functions Ai, i = 1, . . . ,m, and g, g, g satisfy also the hypotheses (A0), (A1),
(g0), and (g1), the conclusions follow from Theorem 6.39. ut

As special case of the above result we obtain the following corollary.

Corollary 6.42. Assume that Ai : J → L(E), i = 1, . . . ,m, and g : J×Em →
E satisfy the hypotheses of Proposition 6.41. Assume also that

h(t) ≤ g(t, x) ≤ h(t) for all x ∈ Em and for a.e. t ∈ J, (6.78)

where h, h ∈ HL(J,E). Then for every choice of x0i ∈ E, i = 1, . . . ,m,
the Cauchy problem (6.76) has the smallest and greatest solutions, which are
increasing with respect to g and x0i ∈ E, i = 1, . . . ,m.

Remark 6.43. The following spaces are examples of Banach spaces that have
regular order cones (cf [133]):
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1. A reflexive (e.g., a uniformly convex) Banach space ordered by a normal
order cone.

2. A finite-dimensional normed space ordered by any closed cone.
3. A separable Hilbert space whose order cone is generated by an orthonor-

mal basis.
4. A Hilbert space H with such an order cone H+ that (x|y) ≥ 0 for all
x ∈ H+.

5. A Hilbert space H whose order cone is H+ = {x ∈ H : (x|e) ≥ c‖x‖2},
where e is an unit vector of H and c ∈ (0, 1).

6. A function space Lp(Ω), 1 ≤ p <∞, normed by p-norm and ordered a.e.
pointwise, where Ω is a measure space.

7. A function space Lp([a, b], X), 1 ≤ p <∞, normed by p-norm and ordered
a.e. pointwise, where X is any of the spaces listed above.

8. A function space HL([a, b], E), normed by Alexiewicz norm and ordered
a.e. pointwise, where E is any of the spaces listed above.

9. A sequence space lp, 1 ≤ p <∞, normed by p-norm and ordered compo-
nentwise.

10. The sequence space c0 of the sequences of real numbers converging to zero,
normed by sup-norm, and ordered componentwise.

6.4 Singular Differential Equations

In this section we derive existence and comparison results for the smallest and
greatest solutions of first and second order initial value problems as well as for
a second order boundary value problem in an ordered Banach space E whose
order cone is regular. The right-hand sides of differential equations comprise
locally HL integrable vector-valued functions. The following special types are
included in the considered problems:

– differential equations may be singular;
– both the differential equations and the initial or boundary conditions may

depend functionally on the unknown function and/or on its derivatives;
– both the differential equations and the initial or boundary conditions may

be implicit and contain discontinuous nonlinearities;
– problems of random type.

In case that E is the sequence space c0, we obtain results for infinite sys-
tems of initial and boundary value problems, as shown in examples. Moreover,
concrete finite systems are solved to illustrate the effects of non-absolutely in-
tegrable data to the solutions of such problems.

6.4.1 First Order Explicit Initial Value Problems

In this section we study the explicit initial value problem (IVP)
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d

dt
(p(t)u(t)) = g(t, u(t), u) for a.e. t ∈ J := (a, b),

lim
t→a+

(p(t)u(t)) = x0,
(6.79)

where −∞ < a < b ≤ ∞, x0 ∈ E, p : J → R+, and g : J ×E×HLloc(J,E) →
E. We assume that E is a Banach space ordered by a regular order cone. We
are looking for extremal solutions of (6.79) from the subset S of the space
HLloc(J,E) of locally HL integrable functions from J to E, defined by

S :=

{
u ∈ HLloc(J,E) : p · u ∈W 1

SL(I, E)
for every closed subinterval I of [a, b)

}
. (6.80)

We shall first convert the IVP (6.79) to an integral equation.

Lemma 6.44. Assume that x0 ∈ E, that 1
p ∈ L

1
loc(J,R+), and that g(·, u(·), u)

belongs to HLloc([a, b), E) for all u ∈ HLloc(J,E). Then u is a solution of the
IVP (6.79) in S if and only if u is a solution of the following integral equation
in HLloc(J,E):

u(t) =
1
p(t)

(
x0 + K

∫ t

a

g(s, u(s), u) ds
)
, t ∈ J. (6.81)

Proof: Assume that u is a solution of (6.79) in S. The definition (6.80) of S
and (6.79) ensure by Corollary 9.19 that

K

∫ t

r

g(s, u(s), u) ds = K

∫ t

r

d

ds
(p(s)u(s))ds = p(t)u(t)−p(r)u(r), a < r ≤ t < b.

This result and the initial condition of (6.79) imply that (6.81) is valid. Con-
versely, let u be a solution of (6.81) in HLloc(J,E). According to (6.81) we
have

p(t)u(t) = x0 + K

∫ t

a

g(s, u(s), u) ds, t ∈ J. (6.82)

This equation implies by Theorem 9.18 that u ∈ S, that the initial condition
of (6.79) is valid, and that

d

dt
(p(t)u(t)) = g(t, u(t), u) for a.e. t ∈ J.

Thus u is a solution of the IVP (6.79). ut

To prove our main existence and comparison result for the IVP (6.79),
assume that S is ordered a.e. pointwise, and that the functions p and g satisfy
the following hypotheses:

(p) 1
p ∈ L

1
loc(J,R+).

(g0) g(·, u(·), u) ∈ HLloc(J,E) for every u ∈ HLloc(J,E).
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(g1) There exist w± ∈ S with w− ≤ w+ such that for all u, v ∈ S satisfying
w− ≤ u ≤ v ≤ w+, the inequality

p(t)w−(t)− x0 ≤ K

∫ t

a

g(s, u(s), u) ds

≤ K

∫ t

a

g(s, v(s), v) ds ≤ p(t)w+(t)− x0

holds true for all t ∈ J .

Proposition 6.45. Let the hypotheses (p), (g0), and (g1) hold. Then the
IVP (6.79) has the smallest and greatest solutions within the order interval
[w−, w+] of S. Moreover, these solutions are increasing with respect to g.

Proof: Let x0 ∈ E be given. The given hypotheses ensure that the relation

G(u)(t) :=
1
p(t)

(
x0 + K

∫ t

a

g(s, u(s), u) ds
)
, (6.83)

defines an increasing mapping G : [w−, w+] → [w−, w+]. Let W be a well-
ordered or an inversely well-ordered chain in the range of G. It follows from
Proposition 9.39 that supW and infW exist in HLloc(J,E). The above proof
shows that the operator G defined by (6.83) satisfies the hypotheses of Propo-
sition 2.18. Thus G has the smallest fixed point u∗ and the greatest fixed point
u∗. According to Lemma 6.44, u∗ and u∗ belong to S, and they are solutions
of the IVP (6.79). To prove that u∗ and u∗ are the smallest and greatest of all
solutions of (6.79) within the order interval [w−, w+] of S, let u ∈ [w−, w+]
be any solution of (6.79). In view of Lemma 6.44 and the definition (6.83) of
G, u is a fixed point of mapping G. Because u∗ and u∗ are the smallest and
greatest fixed points of G, then u∗ ≤ u ≤ u∗. In particular, u∗ and u∗ are
the smallest and greatest of all solutions of the IVP (6.79) in [w−, w+]. The
last assertion is a consequence of (6.83) and the last conclusion of Proposition
2.18. ut

Example 6.46. Consider the following system of initial value problems:{
t u′i(t) + ui(t) = pi(t) sgn(ui(t)) + qi(t)hi(u1−i) for a.e. t ∈ J := (0,∞),
lim
t→0+

t ui(t) = 0, i = 0, 1,

(6.84)
where

p0(t) =
∣∣∣ cos

(
1
t

) ∣∣∣+ 1
t
sgn
(

cos
(

1
t

))
sin
(

1
t

)
,

p1(t) =
∣∣∣ sin(1

t

) ∣∣∣− 1
t
sgn
(

sin
(

1
t

))
cos
(

1
t

)
,

h0(y) =
1

106

[
2 · 106 arctan

(
K

∫ 4

1

y(s) ds
)]
,
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h1(y) =
1

106

[
3 · 106 tanh

(
K

∫ 2

1

y(s) ds
)]
,

q0(t) = 1 + cos(t), q1(t) = 1 + sin(t),

[x] = max{n ∈ Z : n ≤ x} and sgn(x) =

 1, x > 0,
0, x = 0,

−1, x < 0.

Note, that the greatest integer function [·] occurs in the functions hi, i = 0, 1.

Problem (6.84) is of the form (6.79), where x0 = (0, 0), p(t) = t, u =
(u0, u1) and

g(t, u(t), u) = (p0(t) sgn(u0(t)) + q0(t)h0(u1), p1(t) sgn(u1(t)) + q1(t)h1(u0)).
(6.85)

We shall first determine R2
+-valued solutions of (6.84). Denote

u+(t) =
(
t
∣∣∣ cos

(
1
t

) ∣∣∣+ 8, t
∣∣∣ sin(1

t

) ∣∣∣+ 6
)
, w+(t) =

1
t
u+(t), t ∈ J.

It can be shown by applying Lemmas 1.12 and 9.11 (see also the reasoning
used in Example 1.14) that

0 ≤ K

∫ t

0

g(s, u(s), u) ds ≤ K

∫ t

0

g(s, v(s), v) ds ≤ u+(t)

for all t ∈ J whenever u, v ∈ HLloc(J,R2) as well as (0, 0) ≤ u(t) ≤ v(t) for
all t ∈ J . Thus the hypotheses of Proposition 6.45 are valid when w− = (0, 0).
Moreover, relation

Gu(t) :=
1
t
K

∫ t

0

g(s, u(s), u) ds, t ∈ J (6.86)

defines an increasing mapping G from HLloc((0,∞),R2
+) to its order interval

[(0, 0), w+]. By the proof of Theorem 2.16, the greatest fixed point of G is
the minimum of the inversely well-ordered chain D of G-iterations of w+.
The greatest elements of D are iterations Gnw+, n ∈ N. Calculating these
iterations we see that u∗ := G5w+ = Gu∗. This means (cf. 6.5) that u∗ =
minD, whence u∗ is the greatest fixed point of G in [(0, 0), w+], and hence
also in HLloc((0,∞),R2

+). According to the proof of Proposition 6.45, u∗ is
also the greatest nonnegative-valued solution, and hence the greatest solution,
of the initial value problem (6.84). The exact expression of the components of
u∗ = (u∗0, u

∗
1) are:

u∗0(t) =
∣∣∣ cos

(
1
t

) ∣∣∣+ 3016003
1000000

(
1 +

sin(t)
t

)
,

u∗1(t) =
∣∣∣ sin(1

t

) ∣∣∣+ 2999941
1000000

(
1 +

1− cos(t)
t

)
.
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Other solutions of problem (6.84) whose components are nonnegative-valued
are of the form u = (u0, u1), where:

u0(t) =


0, if 0 < t ≤ t0,∣∣∣ cos

(
1
t

) ∣∣∣− t0
t

∣∣∣ cos
(

1
t0

) ∣∣∣+ b0(t0)
t

(t− t0 + sin(t)− sin(t0)),

if t0 < t <∞,

and

u1(t) =


0, if 0 < t ≤ t0,∣∣∣ sin(1

t

) ∣∣∣− t0
t

∣∣∣ sin( 1
t0

) ∣∣∣+ b1(t0)
t

(t− t0 − cos(t) + cos(t0)),

if t0 < t <∞,

where t0 goes through all the points of the interval (0,∞), and b0(t0) ∈
{0, 1, 2, 3} and b1(t0) ∈ {0, 1, 2} are constants that depend on t0.

To determine solutions of (6.84) whose components are negative-valued,
denote

u−(t) =
(
−t
∣∣∣ cos

(
1
t

) ∣∣∣− 8,−t
∣∣∣ sin(1

t

) ∣∣∣− 6
)
, w−(t) =

1
t
u−(t), t ∈ J.

It can be shown that w−(t) ≤ Gu(t) ≤ Gv(t) ≤ 0 for all t ∈ J whenever
u, v ∈ HLloc(J,R2) and u(t) ≤ v(t) ≤ (0, 0) for all t ∈ J . Calculating the
iterations Gnw−, n ∈ N, we obtain u∗ := G5w− = Gu∗, so that u∗ is a
fixed point of G. In fact, it is the smallest fixed point of G. It is also the
smallest solution of the Cauchy problem (6.84). The exact expressions of the
components of u∗ = (u0∗, u1∗) are:

u0∗(t) = −
∣∣∣ cos

(
1
t

) ∣∣∣− 754001
250000

(
1 +

sin(t)
t

)
,

u1∗(t) = −
∣∣∣ sin(1

t

) ∣∣∣− 1499971
500000

(
1 +

1− cos(t)
t

)
.

Components of other negative-valued solutions u = (u0, u1) of (6.84) are of
the form:

u0(t) =


0, if 0 < t ≤ t0,

−
∣∣∣ cos

(
1
t

) ∣∣∣− t0
t

∣∣∣ cos
(

1
t0

) ∣∣∣− b0(t0)
t

(t− t0 + sin(t)− sin(t0)),

if t0 < t <∞,

and
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u1(t) =


0, if 0 < t ≤ t0,

−
∣∣∣ sin(1

t

) ∣∣∣+ t0
t

∣∣∣ sin( 1
t0

) ∣∣∣− b1(t0)
t

(t− t0 − cos(t) + cos(t0)),

if t0 < t <∞,

where t0 goes through all the points of the interval (0,∞), and bi(t0) ∈
{−4,−3,−2,−1} are constants that depend on t0. Notice also that the zero
function is a solution of (6.84).

The above results imply that every point (t0, (0, 0)), t0 ∈ [0,∞), is a
bifurcation point for at least three solutions of (6.84).

The function (t, x, y) 7→ g(t, x, y), defined in (6.85), has the following fea-
tures:

• It is locally HL integrable by Lemma 1.12, but it is neither Lebesgue
integrable nor continuous with respect to the independent variable t on any
interval [0, a], a > 0, if x 6= 0, because the functions pi are not Lebesgue
integrable.

• Its dependence on all the variables t, x, and y is discontinuous, since the
signum function sgn, the greatest integer function [·], and the functions pi
are discontinuous.

• Its dependence on x is not monotone, since the functions pi change their
signs infinitely many times. For instance, u∗i (t) > ui∗(t) for all t ∈ (0,∞),
but the difference functions t 7→ gi(t, u∗(t), u∗) − gi(t, u∗(t), u∗), i = 0, 1,
are neither nonnegative-valued nor Lebesgue integrable on any interval
[0, a], a > 0.

6.4.2 First Order Implicit Initial Value Problems

In this subsection we study the implicit initial value problemLu(t) :=
d

dt
(p(t)u(t)) = f(t, u, Lu) for a.e. t ∈ J := (a, b),

limt→a+(p(t)u(t)) = c(u, Lu)
(6.87)

in the space HLloc(J,E) of locally HL integrable functions from J to a Banach
space E ordered by a regular order cone.

Given −∞ < a < b ≤ ∞, p : J → R+, f : J×HLloc(J,E)×HLloc(J,E) →
E, and c : HLloc(J,E) × HLloc(J,E) → E, we are looking for extremal
solutions of (6.87) from the set

S :=

{
u ∈ HLloc(J,E) : p · u ∈W 1

SL(I, E)
for every closed subinterval I of [a, b)

}
. (6.88)

A first step in the treatment is to equivalently convert the IVP (6.87) to
a system of two equations.
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Lemma 6.47. Assume that 1
p ∈ L1

loc(J,R+), and that f(·, u, v) belongs to
HLloc([a, b), E) for all u, v ∈ HLloc(J,E). Then u is a solution of the IVP
(6.87) in S if and only if (u, Lu) = (u, v), where (u, v) is a solution of the
following system in HLloc(J,E)×HLloc(J,E):u(t) =

1
p(t)

(
c(u, v) + K

∫ t

a

v(s) ds
)
, t ∈ J,

v(t) = f(t, u, v), for a.e. t ∈ J.
(6.89)

Proof: Assume that u is a solution of (6.87) in S. Denote

v(t) = Lu(t) =
d

dt
(p(t)u(t)), t ∈ J. (6.90)

The differential equation of (6.87) implies that the second equation of (6.89)
holds. The definition (6.88) of S and (6.90) ensure by Corollary 9.21 that

K

∫ s

r

v(t) dt = K

∫ s

r

d

dt
(p(t)u(t))dt = p(s)u(s)− p(r)u(r), a < r ≤ s < b.

This result and the initial condition of (6.87) imply that the first equation of
(6.89) is valid.

Conversely, let (u, v) be a solution of the system (6.89) in HLloc(J,E) ×
HLloc(J,E). According to (6.89) we have

p(t)u(t) = c(u, v) + K

∫ t

a

v(s) ds, t ∈ J. (6.91)

This equation implies by Theorem 9.18 that u ∈ S, and that

v(t) =
d

dt
(p(t)u(t)) = Lu(t) for a.e. t ∈ J.

This result, the equation (6.91), and the second equation of (6.89) imply that
u is a solution of the IVP (6.87). ut

To prove our main existence and comparison result for the IVP (6.87),
assume that HLloc(J,E), HLloc([a, b), E) and S are ordered a.e. pointwise,
and that the functions p, f , and c satisfy the following hypotheses:

(p) 1
p ∈ L

1
loc(J,R+).

(fa) f(·, u, v) is strongly measurable for all u, v ∈ HLloc(J,E), and there exist
functions h−, h+ ∈ HLloc([a, b), E) such that h− ≤ f(·, u, v) ≤ h+ for
all u, v ∈ HLloc(J,E).

(fb) There is a λ ≥ 0 such that f(·, u1, v1)+λv1 ≤ f(·, u2, v2)+λv2 whenever
ui, vi ∈ HLloc(J,E), i = 1, 2, u1 ≤ u2 and v1 ≤ v2.

(c) There are functions c−, c+ ∈ E such that c− ≤ c(u1, v1) ≤ c(u2, v2) ≤ c+
whenever ui, vi ∈ HLloc(J,E), i = 1, 2, u1 ≤ u2 and v1 ≤ v2.
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Theorem 6.48. Assume that the hypotheses (p), (fa), (fb), and (c) hold.
Then the IVP (6.87) has the smallest and greatest solutions, and they are
increasing with respect to f and c.

Proof: Assume that P = HLloc(J,E)2 is ordered componentwise. The rela-
tions

x±(t) :=
( 1
p(t)

(
c± + K

∫ t

a

h±(s) ds
)
, h±(t)

)
(6.92)

define functions x−, x+ ∈ P (cf. the proof of Theorem 6.54). By Proposition
9.14 v : [a, b) → E is in HLloc([a, b), E) whenever v is strongly measurable
and h− ≤ v ≤ h+. Hence, if (u, v) ∈ [x−, x+], then v ∈ HLloc([a, b), E). By
applying this result, and taking into account the given hypotheses, Lemma
9.11, and Theorem 9.18, one can verify that the relations

G1(u, v)(t) :=
1
p(t)

(
c(u, v) + K

∫ t

a

v(s) ds
)
, G2(u, v)(t) :=

f(t, u, v) + λv(t)
1 + λ

,

(6.93)
define an increasing mapping G = (G1, G2) : [x−, x+] → [x−, x+].

Let W be a well-ordered chain in the range of G. The sets W1 = {u :
(u, v) ∈ W} and W2 = {v : (u, v) ∈ W} are well-ordered and order-bounded
chains in HLloc(J,E). It then follows from Proposition 9.39 that supW1 and
supW2 exist in HLloc(J,E). Obviously, (supW1, supW2) is a supremum of
W in P . Similarly one can show that each inversely well-ordered chain of the
range of G has an infimum in P .

The above proof shows that the operator G = (G1, G2) defined by (6.93)
satisfies the hypotheses of Proposition 2.18, whence we conclude that G
has the smallest fixed point x∗ = (u∗, v∗) and the greatest fixed point
x∗ = (u∗, v∗). From (6.93)it follows that (u∗, v∗) and (u∗, v∗) are solutions
of the system (6.89). According to Lemma 6.47, u∗ and u∗ belong to S and
both are solutions of the IVP (6.87).

To prove that u∗ and u∗ are the smallest and greatest of all solutions
of (6.87) in S, let u ∈ S be any solution of (6.87). In view of Lemma 6.47,
(u, v) = (u, Lu) is a solution of the system (6.89). Applying the hypotheses
(fa) and (c) it is easy to show that x = (u, v) ∈ [x−, x+], where x± are
defined by (6.92). Thus x = (u, v) is a fixed point of mapping G. Because
x∗ = (u∗, v∗) and x∗ = (u∗, v∗) are the smallest and greatest fixed points of
G, then (u∗, v∗) ≤ (u, v) ≤ (u∗, v∗). In particular, u∗ ≤ u ≤ u∗, whence u∗
and u∗ are the smallest and greatest of all solutions of the IVP (6.87).

The last assertion is an easy consequence of the last conclusion of Propo-
sition 2.18 and the definition of G. ut

As a special case we obtain an existence result for the IVP
d

dt
(p(t)u(t)) = g(t, u(t),

d

dt
(p(t)u(t))) for a.e. t ∈ J := (a, b),

limt→a+(p(t)u(t)) = c.
(6.94)
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Proposition 6.49. Let the hypothesis (p) hold, and let g : J × E × E → E
satisfy the following hypotheses:

(ga) g(·, u(·), v(·)) is strongly measurable, and h− ≤ g(·, u(·), v(·)) ≤ h+ for
all u, v ∈ HLloc(J,E) and for some h± ∈ HLloc([a, b), E).

(gb) There is a λ ≥ 0 such that g(t, x, z) + λz ≤ g(t, y, w) + λw for a.e. t ∈ J
whenever x ≤ y and z ≤ w in E.

Then the IVP (6.94) has for each choice of c ∈ E the smallest and greatest
solutions in S. Moreover, these solutions are increasing with respect to g and
c.

Proof: If c ∈ E, the IVP (6.94) is reduced to (6.87) when we define{
f(t, u, v) = g(t, u(t), v(t)), t ∈ J, u, v ∈ HLloc(J,E),
c(u, v) ≡ c, u, v ∈ HLloc(J,E).

(6.95)

The hypotheses (ga) and (gb) imply that f satisfies the hypotheses (fa) and
(fb). The hypothesis (c) is also valid. Therefore, (6.87) with f and c defined
by (6.95), and hence also (6.94), has the smallest and greatest solutions due to
Theorem 6.48. The last assertion follows from the last assertion of Theorem
6.48. ut

Example 6.50. Determine the smallest and greatest solutions of the following
system of IVPs:

L1u1(t) :=
d

dt
(
√
tu1(t)) = −1

t
sin

1
t

+
[
∫ 2

1
(u2(s) + L2u2(s)) ds]

1 + |[
∫ 2

1
(u2(s) + L2u2(s)) ds]|

,

L2u2(t) :=
d

dt
(
√
tu2(t)) =

1
t

sin
1
t

+
[
∫ 2

1
(u1(s) + L1u1(s)) ds]

1 + |[
∫ 2

1
(u1(s) + L1u1(s)) ds]|

,

lim
t→0+

√
tu1(t) =

2 [u2(1)]
1 + |[u2(1)]|

, lim
t→0+

√
tu2(t) =

3 [u1(1)]
1 + |[u1(1)]|

,

(6.96)
where the differential equations in (6.96) hold for a.e. t ∈ (0,∞), and where
s 7→ [s] denotes the integer function, i.e., [s] is the greatest integer ≤ s.

Solution: System (6.96) is a special case of (6.87) when E = R2, or-
dered coordinatewise, a = 0, b = ∞, p(t) =

√
t, and the components of

f(t, (u1, u2), (v1, v2)) = (f1(t, (u1, u2), (v1, v2)), f2(t, (u1, u2), (v1, v2))) as well
as c are given by

f1(t, (u1, u2), (v1, v2)) = −1
t

sin
1
t

+
[
∫ 2

1
(u2(s) + v2(s)) ds]

1 + |[
∫ 2

1
(u2(s) + v2(s)) ds]|

,

f2(t, (u1, u2), (v1, v2)) =
1
t

sin
1
t

+
[
∫ 2

1
(u1(s) + v1(s)) ds]

1 + |[
∫ 2

1
(u1(s) + v1(s)) ds]|

,

(6.97)
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c((u1, u2), (v1, v2)) =
(

2 [u2(1)]
1 + |[u2(1)]|

,
3 [u1(1)]

1 + |[u1(1)]|

)
.

The hypotheses (fa), (fb), and (c) are satisfied when setting h±(t) = (− 1
t sin 1

t±
1, 1

t sin 1
t ± 1), λ = 0, and c± = (±2,±3). Thus (6.96) has the smallest and

greatest solutions. The functions x− and x+ defined by (6.92) can be calcu-
lated, and one obtains

x−(t) =
((

− 2√
t

+
Si( 1

t )√
t
− π

2
√
t
−
√
t,− 3√

t
−
Si( 1

t )√
t

+
π

2
√
t
−
√
t

)
, h−(t)

)
x+(t) =

((
2√
t

+
Si( 1

t )√
t
− π√

t
+
√
t,

3√
t
−
Si( 1

t )√
t

+
π

2
√
t

+
√
t

)
, h+(t)

)
,

where
Si(x) =

∫ x

0

sin t
t

dt

is the sine integral function. According to Lemma 6.47 the smallest solution
of (6.96) is equal to the first component of the smallest fixed point of G =
(G1, G2), defined by (6.93), with f and c given by (6.97), and p(t) =

√
t. By

the proof of Proposition 2.14 the smallest fixed point of G is the maximum of
a well-ordered chain of x−G-iterations, whose smallest elements are iterations
Gnx−. Calculating these iterations it turns out that G3x− = G4x−. Thus
G3

1x− is the smallest solution of (6.96). Similarly, one can show that G3x+ =
G4x+, which implies that G3

1x+ is the greatest solution of (6.96). The exact
expressions of the components of these solutions are

u1∗(t) = − 3
2
√
t

+
Si
(

1
t

)
√
t

− π

2
√
t
− 3

4

√
t,

u2∗(t) = − 9
4
√
t
−
Si
(

1
t

)
√
t

+
π

2
√
t
− 5

6

√
t,

u∗1(t) =
4

3
√
t

+
Si
(

1
t

)
√
t

− π

2
√
t

+
3
4

√
t,

u∗2(t) =
3

2
√
t
−
Si
(

1
t

)
√
t

+
π

2
√
t
− 1

2

√
t.

Example 6.51. Let E be the space c0 of the sequences of real numbers con-
verging to zero, ordered componentwise and normed by the sup-norm. The
mappings h± : (0,∞) → c0, defined by

h±(t) =
(

1
n

∣∣∣ cos
(π
t

)∣∣∣+ π

nt
sgn
(
cos
(π

t

))
sin
(π

t

)
± 1

n

)∞
n=1

(6.98)

belong to HLloc([0,∞), c0) by Lemma 1.12. Thus these mappings are possible
upper and lower boundaries for f in the hypothesis (fa) of Theorem 6.48
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and for g in the hypothesis (ga) of Proposition 6.49 when E = c0. Choosing
c± = (±n−1)∞n=1 and p(t) := t, the solutions of the initial value problems

d

dt
(p(t)u(t)) = h±(t) for a.e. t ∈ (0,∞), limt→0+p(t)u(t) = c±, (6.99)

are

u±(t) =
(

1
nt

(
t
∣∣∣ cos

(π
t

)∣∣∣± (t+ 1)
))∞

n=1

. (6.100)

Consider, in particular, the infinite system of initial value problems
d

dt
(tun(t)) =

1
n

(∣∣∣ cos
(π
t

)∣∣∣+ π

t
sgn
(
cos
(π

t

))
sin
(π

t

)
+ fn(t,u)

)
for a.e. t ∈ (0,∞),

limt→0+(tun(t)) =
cn
n
, n ∈ N.

(6.101)

Setting u = (un)∞n=1 and f = (fn)∞n=1 : (0,∞) × HLloc((0,∞), c0) → c0,
and assuming that f(·, u) is strongly measurable for each u ∈ c0, that f [t, ·)
is increasing, as well as that −1 ≤ cn ≤ 1 and −1 ≤ f(·, u) ≤ 1 for all
u ∈ HLloc((0,∞), c0) and n ∈ N, then (6.101) has by Theorem 6.48 the
smallest and greatest solutions u∗ = (u∗n)∞n=1 and u∗ = (u∗n)

∞
n=1, respectively,

and they belong to the order interval [u−, u+], where u± are given by (6.100).

Remark 6.52. No component of the mappings h± defined in (6.98) belongs
to L1((0, t),R) for any t > 0. Consequently, the mappings h± don’t be-
long to L1((0, t), c0) for any t > 0. Notice also that if f in Theorem 6.48
and g in Proposition 6.49 are norm-bounded by a function h0 that be-
longs to L1((a, t),R+) for every t ∈ (a, b), then the mappings f(·, u, v) and
g(·, u(·), v(·)) belong to L1((a, t), E) for all t ∈ (a, b).

6.4.3 Second Order Initial Value Problems

Next we study the second order initial value problem
Lu(t) :=

d

dt
(p(t)u′(t)) = f(t, u, u′, Lu) for a.e. t ∈ J := (a, b),

lim
t→a+

(p(t)u′(t)) = c(u, u′, Lu), lim
t→a+

u(t) = d(u, u′, Lu),
(6.102)

where −∞ < a < b ≤ ∞, f : J ×HLloc(J,E)3 → E, c, d : HLloc(J,E)3 → E,
and p : J → R+. Now we are looking for the smallest and greatest solutions
of (6.102) from the set

Y :=

{
u : J → E : u and pu′ are in W 1

SL(I, E)
for compact intervals I of J

}
. (6.103)

The IVP (6.102) can be converted to a system of equations that does not
contain derivatives.
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Lemma 6.53. Assume that 1
p ∈ L1

loc([a, b),R+), and that f(·, u, v, w) ∈
HLloc([a, b), E) for all u, v, w ∈ HLloc(J,E). Then u is a solution of the
IVP (6.102) in Y if and only if (u, u′, Lu) = (u, v, w), where (u, v, w) ∈
HLloc(J,E)3 is a solution of the system

u(t) = d(u, v, w) + K

∫ t

a

v(s) ds, t ∈ J,

v(t) =
1
p(t)

(
c(u, v, w) + K

∫ t

a

w(s) ds
)
, t ∈ J,

w(t) = f(t, u, v, w) for a.e. t ∈ J.

(6.104)

Proof: Assume that u is a solution of (6.102) in Y , and denote

w(t) = Lu(t) =
d

dt
(p(t)v(t)), v(t) = u′(t). (6.105)

The differential equation, the initial conditions of (6.102), the definition
(6.103) of Y , and the notations (6.105) ensure by Corollary 9.21 that the
third equation of (6.104) is satisfied, and that

K

∫ t

a

w(s) ds = lim
r→a+

K

∫ t

r

w(s) ds = lim
r→a+

K

∫ t

r

d

ds
(p(s)v(s))ds

= lim
r→a+

(p(t)v(t)− p(r)v(r)) = p(t)v(t)− c(u, v, w), t ∈ J,

and

u(t)− d(u, v, w) = lim
r→a+

(u(t)− u(r)) = lim
r→a+

K

∫ t

r

u′(s) ds

= K

∫ t

a

u′(s) ds = K

∫ t

a

v(s) ds, t ∈ J.

Thus the first and second equations of (6.104) hold.
Conversely, let (u, v, w) be a solution of the system (6.104) inHLloc(J,E)3.

The first equation of (6.104) implies by Theorem 9.18 that v = u′, that u ∈
W 1
SL(I, E) for every closed interval I of J , and that the second initial condition

of (6.102) is fulfilled. Since v = u′, it follows from the second equation of
(6.104) that

p(t)u′(t) = c(u, u′, w) + K

∫ t

a

w(s) ds, t ∈ J. (6.106)

By Theorem 9.18 the equation (6.106) implies that p · u′ ∈ W 1
SL(I, E) for

every closed interval I of J , and thus u ∈ Y , as well as that

w(t) =
d

dt
(p(t)u′(t)) = Lu(t) for a.e. t ∈ J. (6.107)

The last relation and (6.106) imply that the first initial condition of (6.102)
holds. The validity of the differential equation of (6.102) is a consequence of
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the third equation of (6.104), the equation (6.107), and the fact that v = u′.
ut

Assume that HLloc(J,E) and HLloc([a, b), E) are ordered a.e. pointwise,
that Y is ordered pointwise, and that the functions p, f , c, and d satisfy the
following hypotheses:

(p0) 1
p ∈ L

1
loc([a, b),R+).

(f0) f(·, u, v, w) is strongly measurable, and there exist such h−, h+ ∈
HLloc([a, b), E) that h− ≤ f(·, u, v, w) ≤ h+ for all u, v, w ∈ HLloc(J,E).

(f1) There exists a λ ≥ 0 such that f(·, u1, v1, w1) + λw1 ≤ f(·, u2, v2, w2) +
λw2 whenever ui, vi, wi ∈ HLloc(J,E), i = 1, 2, u1 ≤ u2, v1 ≤ v2, and
w1 ≤ w2.

(c0) c± ∈ R, and c− ≤ c(u1, v1, w1) ≤ c(u2, v2, w2) ≤ c+ whenever ui, vi, wi ∈
HLloc(J,E), i = 1, 2, u1 ≤ u2, v1 ≤ v2, and w1 ≤ w2.

(d0) d± ∈ R, and d− ≤ d(u1, v1, w1) ≤ d(u2, v2, w2) ≤ d+ whenever
ui, vi, wi ∈ HLloc(J,E), i = 1, 2, u1 ≤ u2, v1 ≤ v2, and w1 ≤ w2.

Our main existence and comparison result for the IVP (6.102) reads as
follows.

Theorem 6.54. Assume that the hypotheses (p0), (f0), (f1), (c0), and (d0)
hold. Then the IVP (6.102) has the smallest and greatest solutions in Y , and
they are increasing with respect to f , c, and d.

Proof: Assume that P = HLloc(J,E)3 is ordered componentwise. We shall
first show that the vector-functions x+, x− given by

x±(t) :=


d± + K

∫ t

a

1
p(s)

(
c± + K

∫ s

a

h±(τ) dτ
)
ds

1
p(t)

(
c± + K

∫ t

a

h±(s) ds
)

h±(t)

 (6.108)

define functions x± ∈ P . The third components of x± belong to HLloc(J,E)
by the hypothesis (f0). Since 1/p is locally Lebesgue integrable and the func-
tions t 7→ c± + K

∫ t
a
h±(s) ds are continuous on [a, b), then the second com-

ponents of x± are strongly measurable by [133, Theorem 1.4.3]. Moreover, if
t1 ∈ J then for each t ∈ [a, t1], ‖ 1

p(t) (c± + K
∫ t
a
h±(s) ds)‖ ≤ M±

1
p(t) , where

M± = max{‖c± + K
∫ t
a
h±(s) ds‖ : t ∈ [a, t1]}. Thus the second components

of x± are locally Bochner integrable, and belong to HLloc(J,E). This result
implies that the first components of x± are defined and continuous, whence
they belong to HLloc(J,E).

Similarly, by applying the given hypotheses in conjunction with Lemma
9.11, Proposition 9.14, and Theorem 9.18, one can verify thatG = (G1, G2, G3) :
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[x−, x+] → [x−, x+] defines an increasing mapping, where the components Gi,
i = 1, 2, 3 are given by the following relations:

G1(u, v, w)(t) := d(u, v, w) + K

∫ t

a

v(s) ds, t ∈ J,

G2(u, v, w)(t) :=
1
p(t)

(
c(u, v, w) + K

∫ t

a

w(s) ds
)
, t ∈ J,

G3(u, v, w)(t) :=
f(t, u, v, w) + λw(t)

1 + λ
, t ∈ J,

(6.109)

LetW be a well-ordered chain in the range ofG. The setsW1 = {u : (u, v, w) ∈
W},W2 = {v : (u, v, w) ∈W}, andW3 = {w : (u, v, w) ∈W} are well-ordered
and order-bounded chains in HLloc(J,E). It then follows from Proposition
9.39 that the supremums of W1, W2, and W3 exist in HLloc(J,E). Obviously,
(supW1, supW2, supW3) is the supremum of W in P . Similarly one can show
that each inversely well-ordered chain of the range of G has the infimum in
P .

The above proof shows that the operator G = (G1, G2, G3) defined by
(6.109) satisfies the hypotheses of Proposition 2.18, and therefore G has
the smallest fixed point x∗ = (u∗, v∗, w∗) and the greatest fixed point
x∗ = (u∗, v∗, w∗). It follows from (6.109) that (u∗, v∗, w∗) and (u∗, v∗, w∗)
are solutions of the system (6.104). According to Lemma 6.53, u∗ and u∗

belong to Y and are solutions of the IVP (6.102).
To prove that u∗ and u∗ are the smallest and greatest of all solutions of

(6.102) in Y , let u ∈ Y be any solution of (6.102). In view of Lemma 6.53,
(u, v, w) = (u, u′, Lu) is a solution of the system (6.104). Applying the hy-
potheses (f0), (c0), and (d0), it is easy to show that x = (u, v, w) ∈ [x−, x+],
where x± are defined by (6.108). Thus x = (u, v, w) is a fixed point of
G = (G1, G2, G3) : [x−, x+] → [x−, x+], defined by (6.109). Because x∗ =
(u∗, v∗, w∗) and x∗ = (u∗, v∗, w∗) are the smallest and greatest fixed points
of G, then (u∗, v∗, w∗) ≤ (u, v, w) ≤ (u∗, v∗, w∗). In particular, u∗ ≤ u ≤ u∗,
whence u∗ and u∗ are the smallest and greatest of all solutions of the IVP
(6.102).

The last assertion is an easy consequence of the last conclusion of Propo-
sition 2.18, Lemma 9.11, and the definition (6.109) of G = (G1, G2, G3). ut

As a special case we obtain an existence result for the IVP
d

dt
(p(t)u′(t)) = g(t, u(t), u′(t),

d

dt
(p(t)u′(t))) for a.e. t ∈ J,

limt→a+(p(t)u′(t)) = c, limt→a+u(t) = d.
(6.110)

Corollary 6.55. Assume hypothesis (p0), and let g : J × E × E × E → E
satisfy the following hypotheses:

(g0) g(·, u(·), v(·), w(·)) is strongly measurable and h− ≤ g(·, u(·), v(·), w(·)) ≤
h+ for all u, v, w ∈ HLloc(J,E) and for some h± ∈ HLloc([a, b), E).
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(g1) There exists a λ ≥ 0 such that g(t, x1, x2, x3)+λx3 ≤ g(t, y1, y2, y3)+λy3
for a.e. t ∈ J and whenever xi ≤ yi in E, i = 1, 2, 3.

Then the IVP (6.110) has for each choice of c, d ∈ E the smallest and greatest
solutions in Y . Moreover, these solutions are increasing with respect to g, c,
and d.

Proof: If c, d ∈ E, the IVP (6.110) is reduced to (6.102) when we define

f(t, u, v, w) = g(t, u(t), v(t), w(t)), t ∈ J, u, v, w ∈ HLloc(J,E),
c(u, v, w) ≡ c, d(u, v, w) ≡ d, u, v, w ∈ HLloc(J,E).

The hypotheses (g0) and (g1) imply that f satisfies the hypotheses (f0) and
(f1). The hypotheses (c0) and (d0) are also valid, whence we conclude that
(6.102), with f , c, and d defined above, and hence also (6.110), has the smallest
and greatest solutions due to Theorem 6.54. The last assertion follows from
the last assertion of Theorem 6.54. ut

Example 6.56. Determine the smallest and greatest solutions of the following
system of implicit singular IVPs in J = (0,∞)

L1u1(t) =
d

dt
(t sin

1
t
) +

[
∫ 2

1
(u2(s) + u′2(s) + L2u2(s)) ds]

1 + |[
∫ 2

1
(u2(s) + u′2(s) + L2u2(s)) ds]|

,

L2u2(t) =
d

dt
(t cos

1
t
) +

[
∫ 2

1
(u1(s) + u′1(s) + L1u1(s)) ds]

1 + |[
∫ 2

1
(u1(s) + u′1(s) + L1u1(s)) ds]|

,

lim
t→0+

√
tu′1(t) =

[u′2(1)])
1 + |[u′2(1)]|

, lim
t→0+

u1(t) =
[u2(1)]

1 + |[u2(1)]|
,

lim
t→0+

√
tu′2(t) =

[u′1(1)]
1 + |[u′1(1)]|

, lim
t→0+

u2(t) =
[u1(1)]

1 + |[u1(1)]|
,

(6.111)

where
L1u1(t) :=

d

dt
(
√
tu′1(t)) and L2u2(t) :=

d

dt
(
√
tu′2(t)).

Solution: System (6.111) is a special case of (6.102) by setting E = R2, a = 0,
b = ∞, p(t) =

√
t, and f = (f1, f2), c, d given by

f1(t, (u1, u2), (v1, v2), (w1, w2)) =
d

dt
(t sin

1
t
)

+
[
∫ 2

1
(u2(s) + v2(s) + w2(s)) ds]

1 + |[
∫ 2

1
(u2(s) + v2(s) + w2(s)) ds]|

,

f2(t, (u1, u2), (v1, v2), (w1, w2)) =
d

dt
(t cos

1
t
)

+
[
∫ 2

1
(u1(s) + v1(s) + w1(s)) ds]

1 + |[
∫ 2

1
(u1(s) + v1(s) + w1(s)) ds]|

,
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c((u1, u2), (v1, v2), (w1, w2)) =
(

[v2(1)]
1 + |[v2(1)]|

,
[v1(1)])

1 + |[v1(1)]|

)
,

d((u1, u2), (v1, v2), (w1, w2)) =
(

[u2(1)]
1 + |[u2(1)]|

,
[u1(1)])

1 + |[u1(1)]|

)
.

(6.112)

In view of Lemma 1.12 and Lemma 9.11, the hypotheses (f0), (f1), (c0), and
(d0) hold when h±(t) = ( ddt (t sin

1
t )±1, ddt (t cos 1

t )±1), λ = 0, and c± = d± =
(±1,±1). Thus (6.111) has the smallest and greatest solutions. The functions
x− and x+ defined by (6.93) can be calculated, and their first components are

u−(t) =− 1− 2
√

2π
3

− 2
√
t+

2t
√
t

3
sin

1
t

+
4
√
t

3
cos

1
t

+
4
√

2π
3

FrC(

√
2
π t

)− 2t
√
t

3
,

v−(t) =− 1− 2
√

2π
3

− 2
√
t+

2t
√
t

3
cos

1
t

− 4
√
t

3
sin

1
t

+
4
√

2π
3

FrC(

√
2
π t

)− 2t
√
t

3
,

u+(t) =1− 2
√

2π
3

+ 2
√
t+

2t
√
t

3
sin

1
t

+
4
√
t

3
cos

1
t

+
4
√

2π
3

FrC(

√
2
π t

) +
2t
√
t

3
,

v+(t) =1− 2
√

2π
3

+ 2
√
t+

2t
√
t

3
cos

1
t

− 4
√
t

3
sin

1
t

+
4
√

2π
3

FrC(

√
2
π t

) +
2t
√
t

3
,

where
FrC(x) =

∫ x

0

cos
(π

2
t2
)
dt

is the Fresnel cosine integral. According to Lemma 6.53 the smallest solu-
tion of (6.111) is equal to the first component of the smallest fixed point of
G = (G1, G2, G3), defined by (6.109), with f , c, and d given by (6.112) and
p(t) =

√
t. Calculating the iterations Gnx− it turns out that G2x− = G3x−,

whence G2
1x− is the smallest solution of (6.111). Similarly, one can show that

G4
1x+ is the greatest solution of (6.111). The exact expressions of the compo-

nents of these solutions are

u1∗(t) =− 3
4
− 2

√
2π

3
−
√
t+

2t
√
t

3
sin

1
t

+
4
√
t

3
cos

1
t

+
4
√

2π
3

FrC(

√
2
π t

)− t
√
t

2
,
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u2∗(t) =− 2
3
− 2

√
2π

3
−
√
t+

2t
√
t

3
cos

1
t

+
4
√
t

3
sin

1
t

+
4
√

2π
3

FrC(

√
2
π t

)− 8t
√
t

15
,

u∗1(t) =
2
3
− 2

√
2π

3
+

4
√
t

3
+

2t
√
t

3
sin

1
t

+
4
√
t

3
cos

1
t

+
4
√

2π
3

FrC(

√
2
π t

) +
16t
√
t

27
,

u∗2(t) =
3
4
− 2

√
2π

3
+

4
√
t

3
+

2t
√
t

3
cos

1
t

− 4
√
t

3
sin

1
t

+
4
√

2π
3

FrC(

√
2
π t

) +
7t
√
t

12
.

Example 6.57. Let E be the space (c0), ordered coordinatewise and normed by
the sup-norm. The mappings h± : [0,∞) → c0, defined by h±(0) = (0, 0, . . . )
and

h±(t) =
(

1
nt

sin
1
t

+
1
n

cos
1
t
± 1
n

)∞
n=1

, t ∈ (0,∞), (6.113)

belong to HLloc([0,∞), E) by Lemma 1.12. Thus these mappings are possible
upper and lower boundaries for f in the hypothesis (f0) of Theorem 6.54
and for g in the hypothesis (g0) of Corollary 6.55 when E = c0. Choosing
c± = (±n−1)∞n=1, d± = (±n−1)∞n=1, and p(t) :=

√
t, the solutions of the

initial value problems
d

dt
(
√
t u′(t)) = h±(t) for a.e. t ∈ (0,∞),

limt→0+(
√
t u′(t)) = c±, limt→0+u(t) = d±

(6.114)

are

u+(t) =

(
1
n

(2
3
t
√
t cos

(1
t

)
− 4

3
sin
(1
t

)
+

4
√

2π
3

FrC
(√ 2

π t

)
+2
√
t+

2
3
t
√
t+ 1− 2

3

√
2π
))∞

n=1

,

u−(t) =

(
1
n

(2
3
t
√
t cos

(1
t

)
− 4

3
sin
(1
t

)
+

4
√

2π
3

FrC
(√ 2

π t

)
−2
√
t− 2

3
t
√
t− 1− 2

3

√
2π
))∞

n=1

.

(6.115)

Consider, in particular, the infinite system of initial value problems on (0,∞)
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Lnun(t) :=

d

dt
(
√
t u′n(t)) =

1
n

(
1
t

sin
1
t

+ cos
1
t

+ fn(u, u′, Lu)
)

a.e.,

limt→0+(
√
t u′n(t)) =

cn
n
, limt→0+un(t) =

dn
n
, n ∈ N.

(6.116)
Setting u = (un)∞n=1, Lu = (Lnun)∞n=1, and assuming that each fn :
HLloc((0,∞), c0)3 → R is increasing with respect to every argument, and
−1 ≤ cn, dn, fn(u, v, w) ≤ 1 for all u, v, w ∈ HLloc((0,∞), c0) and n ∈ N,
then (6.116) has the smallest and greatest solutions u∗ = (u∗n)∞n=1 and
u∗ = (u∗n)

∞
n=1, and they belong to the order interval [u−, u+] , where u±

are given by (6.115).

6.4.4 Second Order Boundary Value Problems

This section is devoted to the study of the boundary value problemLu(t) := − d

dt
(p(t)u′(t)) = f(t, u, u′, Lu) for a.e. t ∈ J := [a, b],

limt→a+(p(t)u′(t)) = c(u, u′, Lu), limt→b−u(t) = d(u, u′, Lu),
(6.117)

where −∞ < a < b <∞, f : J ×HL(J,E)3 → E, c, d : HL(J,E)3 → E and
p : J → R+. Now we are looking for the smallest and greatest solutions of
(6.117) from the set

Z := {u : [a, b) → E : u and pu′ are in W 1
SL(J,E)}. (6.118)

As in Sect. 6.4.3 we first convert the BVP (6.117) to an equivalent system of
three equations.

Lemma 6.58. Assume that 1
p ∈ L

1(J,R+), and that f(·, u, v, w) ∈ HL(J,E)
for all u, v, w ∈ HL(J,E). Then u is a solution of the BVP (6.117) in Z,
defined by (6.118) if and only if (u, u′, Lu) = (u, v, w), where (u, v, w) ∈
HL(J,E)3 is a solution of the system

u(t) = d(u, v, w)− K

∫ b

t

v(s) ds, t ∈ J,

v(t) =
1
p(t)

(
c(u, v, w)− K

∫ t

a

w(s) ds
)
, t ∈ J,

w(t) = f(t, u, v, w) for a.e. t ∈ J.

(6.119)

Proof: Assume that u is a solution of (6.117) in Z, and denote

w(t) = Lu(t) = − d

dt
(p(t)v(t)), v(t) = u′(t), t ∈ J. (6.120)

The differential equation and the boundary conditions of (6.117), the defin-
ition (6.118) of Z, and notations (6.120) ensure by Corollary 9.21 that the
third equation of (6.119) is satisfied, and that



6.4 Singular Differential Equations 243

− K

∫ t

a

w(s) ds = − lim
r→a+

K

∫ t

r

w(s) ds = lim
r→a+

K

∫ t

r

d

ds
(p(s)v(s))ds

= lim
r→a+

(p(t)v(t)− p(r)v(r)) = p(t)v(t)− c(u, v, w), t ∈ J,

and

− K

∫ b

t

v(s) ds = − lim
r→b−

K

∫ r

t

v(s) ds = − lim
r→b−

K

∫ r

t

u′(s) ds

= − lim
r→b−

(u(r)− u(t)) = u(t)− d(u, v, w), t ∈ J.

Thus the first and second equations of (6.119) hold.
Conversely, let (u, v, w) be a solution of the system (6.119) in HL(J,E)3.

The first equation of (6.119) implies by Theorem 9.18 that u is in W 1
SL(J,E),

that v = u′, and that the second boundary condition of (6.117) holds. Since
v = u′, it follows from the second equation of (6.119) that

p(t)u′(t) = c(u, u′, w)− K

∫ t

a

w(s) ds, t ∈ J. (6.121)

This equation implies by Theorem 9.18 that p · u′ is in W 1
SL(J,E), and thus

u ∈ Z, and that

w(t) = − d

dt
(p(t)u′(t)) = Lu(t) for a.e. t ∈ J. (6.122)

The last equation and (6.121) imply that the first boundary condition of
(6.117) is fulfilled. The validity of the differential equation of (6.117) is a
consequence of the third equation of (6.119), the equation (6.122), and the
fact that v = u′. ut

Assuming that HL(J,E) is ordered a.e. pointwise, we shall impose the
following hypotheses for the functions p, f , c, and d.

(p1) 1
p ∈ L

1(J,R+).

(f0) f(·, u, v, w) is strongly measurable, and there are functions h−, h+ ∈
HL(J,E) such that h− ≤ f(·, u, v, w) ≤ h+ for all u, v, w ∈ HL(J,E).

(f1) There exists a λ ≥ 0 such that f(·, u1, v1, w1) + λw1 ≤ f(·, u2, v2, w2) +
λw2 whenever ui, vi, wi ∈ HL(J,E), i = 1, 2, u1 ≤ u2, v1 ≥ v2, and
w1 ≤ w2.

(c1) There are c± ∈ E with c− ≤ c(u2, v2, w2) ≤ c(u1, v1, w1) ≤ c+ whenever
ui, vi, wi ∈ HL(J,E), i = 1, 2, u1 ≤ u2, v1 ≥ v2, and w1 ≤ w2.

(d1) There exist d± ∈ E such that and d− ≤ d(u1, v1, w1) ≤ d(u2, v2, w2) ≤
d+ whenever ui, vi, wi ∈ HL(J,E), i = 1, 2, u1 ≤ u2, v1 ≥ v2, and
w1 ≤ w2.

The next theorem is our main existence and comparison result for the
BVP (6.117).
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Theorem 6.59. Assume that the hypotheses (p1), (f0), (f1), (c1), and (d1)
hold. Then the BVP (6.117) has the smallest and greatest solutions in Z, and
they are increasing with respect to f and d and decreasing with respect to c.

Proof: Assume that P = HL(J,E)3 is ordered by

(u1, v1, w1) � (u2, v2, w2) if and only if u1 ≤ u2, v1 ≥ v2, and w1 ≤ w2.
(6.123)

The following triples(
d− −

∫ b

t

1
p(s)

(
c+ − K

∫ s

a

h−(τ) dτ
)
ds,

1
p(t)

(
c+ − K

∫ t

a

h−(s) ds
)
, h−(t)

)
and(
d+ −

∫ b

t

1
p(s)

(
c− − K

∫ s

a

h+(τ) dτ
)
ds,

1
p(t)

(
c− − K

∫ t

a

h+(s) ds
)
, h+(t)

)
(6.124)

define functions x± ∈ P satisfying x− � x+. To show that x± ∈ P , notice first
that the third components of x± are in HL(J,E) by the hypothesis (f0). Since
1/p is Lebesgue integrable and the function t 7→ c+ − K

∫ t
a
h−(s) ds is contin-

uous on J , then the second component of x+ is strongly measurable by [133,
Theorem 1.4.3]. Moreover, for each t ∈ J , ‖ 1

p(t) (c+−
K
∫ t
a
h−(s) ds)‖ ≤M 1

p(t) ,

where M = max{‖c+ − K
∫ t
a
h−(s) ds‖ : t ∈ J}. Thus the second component

of x+ is Bochner integrable, and hence also HL integrable on J . Similarly
one can show that the second component of x− belongs to HL(J,E). These
results ensure that the first components of x± are defined and continuous in
t, and hence are in HL(J,E).

Similarly, by applying the given hypotheses in conjunction with Lemma
9.11, Proposition 9.14, and Theorem 9.18, one can verify that the relations

G1(u, v, w)(t) := d(u, v, w)− K

∫ b

t

v(s) ds, t ∈ J,

G2(u, v, w)(t) :=
1
p(t)

(
c(u, v, w)− K

∫ t

a

w(s) ds
)
, t ∈ J,

G3(u, v, w)(t) :=
f(t, u, v, w) + λw(t)

1 + λ
, t ∈ J

(6.125)

define an increasing mapping G = (G1, G2, G3) : [x−, x+] → [x−, x+].
Let W be a well-ordered chain in the range of G. The sets W1 =

{u : (u, v, w) ∈ W} and W3 = {w : (u, v, w) ∈ W} are well-ordered,
W2 = {v : (u, v, w) ∈ W} is inversely well-ordered, and all three are order-
bounded in HL(J,E). It then follows from Proposition 9.39 that the supre-
mums of W1 and W3 and the infimum of W2 exist in HL(J,E). Obviously,
(supW1, infW2, supW3) is the supremum of W in (P,�). Similarly one can
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show that each inversely well-ordered chain of the range of G has the infimum
in (P,�).

The above proof shows that the operator G = (G1, G2, G3) defined by
(6.125) satisfies the hypotheses of Proposition 2.18, whence G has the smallest
fixed point x∗ = (u∗, v∗, w∗) and a greatest fixed point x∗ = (u∗, v∗, w∗).
It follows from (6.125) that (u∗, v∗, w∗) and (u∗, v∗, w∗) are solutions of the
system (6.119). According to Lemma 6.58, u∗ and u∗ belong to Z and are
solutions of the BVP (6.117).

To prove that u∗ and u∗ are the smallest and greatest of all solutions of
(6.117) in Z, let u ∈ Z be any solution of (6.117). In view of Lemma 6.58,
(u, v, w) = (u, u′, Lu) is a solution of the system (6.119). Applying the hy-
potheses (f1), (c1), and (d1) it is easy to show that x = (u, v, w) ∈ [x−, x+],
where x± are defined by (6.124). Thus x = (u, v, w) is a fixed point of
G = (G1, G2, G2) : [x−, x+] → [x−, x+], defined by (6.125). Because x∗ =
(u∗, v∗, w∗) and x∗ = (u∗, v∗, w∗) are the smallest and greatest fixed points
of G, respectively, then (u∗, v∗, w∗) � (u, v, w) � (u∗, v∗, w∗). In particular,
u∗ ≤ u ≤ u∗, whence u∗ and u∗ are the smallest and greatest of all solutions
of the IVP (6.117).

The last assertion is an easy consequence of the last conclusions of Propo-
sition 2.18, Lemma 9.11, and the definition (6.125) of G = (G1, G2, G3). ut

As a special case we obtain an existence result for the BVP− d

dt
(p(t)u′(t)) = g(t, u(t), u′(t),− d

dt
(p(t)u′(t))) for a.e. t ∈ J,

limt→a+(p(t)u′(t)) = c, limt→b−u(t) = d.
(6.126)

Corollary 6.60. Let the hypothesis (p1) hold, and let g : J × E × E → E
satisfy the following hypotheses:

(g0) g(·, u(·), v(·), w(·)) is strongly measurable and h− ≤ g(·, u(·), v(·), w(·)) ≤
h+ for all u, v, w ∈ HL(J,E) and for some h± ∈ HL(J,E) .

(g1) There exists a λ ≥ 0 such that g(t, x1, y1, z1)+λz1 ≤ g(t, x2, y2, x2)+λz2
for a.e. t ∈ J and whenever x1 ≤ x2, y1 ≥ y2, and z1 ≤ z2 in E.

Then the BVP (6.126) has for each choice of c, d ∈ E the smallest and greatest
solutions in Z. Moreover, these solutions are increasing with respect to g and
d and decreasing with respect to c.

Proof: If c, d ∈ E, then the BVP (6.126) is reduced to (6.117) when we define{
f(t, u, v, w) = g(t, u(t), v(t), w(t)), t ∈ J, u, v, w ∈ HL(J,E),
c(u, v, w) ≡ c, d(u, v, w) ≡ d, u, v, w ∈ HL(J,E). (6.127)

The hypotheses (g0) and (g1) imply that f satisfies the hypotheses (f0) and
(f1). The hypotheses (c1) and (d1) are satisfied as well, whence (6.117) with
f , c, and d defined by (6.127), and hence also (6.126), has the smallest and
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greatest solutions by Theorem 6.59. The last assertion follows from the last
assertion of Theorem 6.59. ut

Example 6.61. Determine the smallest and greatest solutions of the following
system of BVPs in J = [0, 3]:

L1u1(t) := − d

dt
(
√
tu′1(t))

=
d

dt
(t sin

1
t
) +

[
10 tanh

( 1
100

∫ 2

1

(3u2(s)− 2u′2(s) + L2u2(s)) ds
)]
,

L2u2(t) := − d

dt
(
√
tu′2(t))

=
d

dt
(t cos

1
t
) +

[
10 arctan

( 1
100

∫ 2

1

(
2u1(s)− u′1(s) + 3L1u1(s)

)
ds
)]
,

lim
t→0+

√
tu′1(t) =

[u′2(1)]
1 + |[u′2(1)]|

, u1(3) =
[u2(1)]

1 + |[u2(1)]|
,

lim
t→0+

√
tu′2(t) =

[u′1(1)]
1 + |[u′1(1)]|

, u2(3) =
[u1(1)]

1 + |[u1(1)]|
.

(6.128)

Solution: System (6.128) is a special case of (6.117) when setting E = R2,
a = 0, b = 3, p(t) =

√
t, and f = (f1, f2), c, and d defined by

f1(t, (u1, u2), (v1, v2), (w1, w2))

=
d

dt
(t sin

1
t
) +

[
10 tanh

(∫ 2

1

(3u2(s)− 2v2(s) + w2(s)) ds/100
)]
,

f2(t, (u1, u2), (v1, v2), (w1, w2))

=
d

dt
(t cos

1
t
) +

[
10 arctan

(∫ 2

1

(2u1(s)− v1(s) + 3w1(s)) ds/100
)]
,

c((u1, u2), (v1, v2), (w1, w2)) =
(

[v2(1)]
1 + |[v2(1)]|

,
[v1(1)]

1 + |[v1(1)]|

)
,

d((u1, u2), (v1, v2), (w1, w2)) =
(

[u2(1)]
1 + |[u2(1)]|

,
[u1(1)]

1 + |[u1(1)]|

)
,

(6.129)
where again s 7→ [s] denotes the integer function. The hypotheses (f0), (f1),
(c1), and (d1) hold when h±(t) = ( ddt (t sin

1
t )±10, ddt (t cos 1

t )±16), λ = 0, and
c± = d± = (±1,±1). Thus (6.128) has the smallest and greatest solutions.
The first components of the functions x− and x+ defined by (6.124) are

u−(t) =

−1 + 2
√
t− 2t

√
t

3 sin 1
t −

4
√
t

3 cos 1
t −

4
√

2π
3 FrS

( √
2√
tπ

)
+ 20t

√
t

3

−22
√

3 + 2
√

3 sin 1
3 + 4

√
3

3 cos 1
3 + 4

√
2π

3 FrS
( √

6
3
√
π

)
,
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v−(t) =

−1 + 2
√
t− 2t

√
t

3 cos 1
t + 4

√
t

3 sin 1
t −

4
√

2π
3 FrC

( √
2√
tπ

)
+ 32t

√
t

3

−34
√

3 + 2
√

3 cos 1
3 −

4
√

3
3 sin 1

3 + 4
√

2π
3 FrC

( √
6

3
√
π

)
,

u+(t) =

1− 2
√
t− 2t

√
t

3 sin 1
t −

4
√
t

3 cos 1
t −

4
√

2π
3 FrS

( √
2√
tπ

)
− 20t

√
t

3

+22
√

3 + 2
√

3 sin 1
3 + 4

√
3

3 cos 1
3 + 4

√
2π

3 FrS
( √

6
3
√
π

)
,

v+(t) =

1− 2
√
t− 2t

√
t

3 cos 1
t + 4

√
t

3 sin 1
t −

4
√

2π
3 FrC

( √
2√
tπ

)
− 32t

√
t

3

+34
√

3 + 2
√

3 cos 1
3 −

4
√

3
3 sin 1

3 + 4
√

2π
3 FrC

( √
6

3
√
π

)
,

where

FrS(x) =
∫ x

0

sin
(π

2
t2
)
dt and FrC(x) =

∫ x

0

cos
(π

2
t2
)
dt

are the Fresnel sine and cosine integrals.
According to Lemma 6.58 the smallest solution of (6.128) is equal to the

first component of the smallest fixed point of G = (G1, G2, G3), defined by
(6.125), with f , c, and d given by (6.129) and p(t) =

√
t. Calculating the first

iterations Gnx− it turns out that G6x− = G7x−. Thus G6
1x− is the smallest

solution of (6.128). Similarly, one can show that G4x+ = G5x+, whence G4
1x+

is the greatest solution of (6.128). The exact expressions of the components
of these solutions are

u∗1(t) =


15
16 −

12
√
t

7 − 2t
√
t

3 sin 1
t −

4
√
t

3 cos 1
t −

4
√

2π
3 FrS

( √
2√
tπ

)
− 10t

√
t

3

+ 82
7

√
3 + 2

√
3 sin 1

3 + 4
√

3
3 cos 1

3 + 4
√

2π
3 FrS

( √
6

3
√
π

)
,

u∗2(t) =


17
18 −

7
√
t

4 − 2t
√
t

3 cos 1
t + 4

√
t

3 sin 1
t −

4
√

2π
3 FrC

( √
2√
tπ

)
− 8t

√
t

3

+ 39
4

√
3 + 2

√
3 cos 1

3 −
4
√

3
3 sin 1

3 + 4
√

2π
3 FrC

( √
6

3
√
π

)
,

u1∗(t) =

−
14
15 + 5

√
t

3 − 2t
√
t

3 sin 1
t −

4
√
t

3 cos 1
t −

4
√

2π
3 FrS

( √
2√
tπ

)
+ 10t

√
t

3

− 35
3

√
3 + 2

√
3 sin 1

3 + 4
√

3
3 cos 1

3 + 4
√

2π
3 FrS

( √
6

3
√
π

)
,

u2∗(t) =

−
15
16 + 8

√
t

5 − 2t
√
t

3 cos 1
t + 4

√
t

3 sin 1
t −

4
√

2π
3 FrC

( √
2√
tπ

)
+ 10t

√
t

3

− 58
5

√
3 + 2

√
3 cos 1

3 −
4
√

3
3 sin 1

3 + 4
√

2π
3 FrC

( √
6

3
√
π

)
.

Example 6.62. Let E be the space (c0), ordered coordinatewise and normed by
the sup-norm. The mappings h± : [0, 1] → c0, defined by hpm(0) = h±(1) = 0,

h±(t) =
(

1
nt

sin
1
t

+
1
n

cos
1
t

+
1

n
√

1− t
sin
(

1
1− t

)
± 1
n

)∞
n=1

, t ∈ (0, 1),

(6.130)
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belong to HL([0, 1], c0) by Lemma 1.12. Thus these mappings are possible
upper and lower boundaries for f in the hypothesis (f0) of Theorem 6.59
and for g in the hypothesis (g0) of Corollary 6.60 when E = c0. Choosing
c = (n−1)∞n=1, d = (n−1)∞n=1, and p(t) ≡ 1, the solutions of the boundary
value problems {

− u′′(t)) = h±(t) for a.e. t ∈ [0, 3],
lim
t→0+

u′(t) = c, lim
t→1−

u(t) = d
(6.131)

are u+(t) = ( 1
nv(t))

∞
n=1 and u−(t) = ( 1

n (v(t) + t2 − 1))∞n=1, where

v(t) = − t
2

2
cos
(

1
t

)
+
t

2
sin
(

1
t

)
− 1

2
Ci

(
1
t

)
− 4

3
√

1− t sin
(

1
t− 1

)
+

4t
3
√

1− t sin
(

1
t− 1

)
− 4

3
√

1− t cos
(

1
t− 1

)
− 4

3

√
2πFrS

( √
2√

π(1− t)

)
− 2

√
2πFrC

( √
2√

π(1− t)

)

+ 2t
√

2πFrC

( √
2√

π(1− t)

)
− t2

2
+ t+ 2t sin 1− 2FrC

(√
2√
π

)
√

2πt

− 1
2

+
1
2

cos 1− 5
2

sin 1 +
1
2
Ci(1) +

2
3

√
2π + 2FrC

(√
2√
π

)
√

2π,

and

Ci(x) =
∫ x

0

cos t− 1
t

dt+ γ + lnx, γ = lim
n→∞

(
n∑
i=1

1
i
− lnn

)
is the cosine integral.

Consider, in particular, the infinite system of boundary value problems
− u′′n(t) =

1
n

(
1
t

sin
1
t

+ cos
1
t

+
1

n
√

1− t
sin
(

1
1− t

)
+ fn(u, u′, u′′)

)
a.e. on [0, 1], lim

t→0+
u′n(t)) =

1
n
, limt→1−un(t) =

1
n
, n ∈ N.

(6.132)
Set u = (un)∞n=1, and suppose that each function fn : HL([0, 1], c0)3 → R
is increasing with respect the first and third argument, and decreasing with
respect to the second argument. Further let −1 ≤ fn(u, v, w) ≤ 1 be satisfied
for all u, v, w ∈ HLloc((0, 1), c0), and n ∈ N. Then (6.132) has the smallest
and greatest solutions u∗ = (u∗n)∞n=1 and u∗ = (u∗n)

∞
n=1, respectively, and

they belong to the order interval [u−, u+], where u± are given above.

Remark 6.63. Examples of ordered Banach spaces whose order cones are reg-
ular are given in Remark 6.43. In particular, we can choose E to be one of
these spaces in the above considerations.
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Problems of the form (6.79), (6.102), and (6.117) include many kinds of
special types, and may be, e.g.,

• singular, because a case limt→a+p(t) = 0 is allowed, and since the limits
limt→a+f(t, u, v) and/or limt→b−f(t, u, v) need not exist;

• functional, because the functions c, d, and f may depend functionally on
u, u′, and/or Lu;

• discontinuous, because the dependencies of c, d, and f on u, u′, and/or
Lu can be discontinuous;

• a finite system when E = Rm;
• an infinite system when E is lp or c0-space;
• of random type when E = Lp(Ω) and Ω is a probability space.

The solutions of the above examples have been calculated by using simple
Maple programming.

6.5 Functional Differential Equations Containing
Bochner Integrable Functions

In this subsection we apply Theorem 2.26 to derive existence and comparison
results for solutions of first order implicit functional differential equations in
an ordered Banach space E = (E, ‖ · ‖,≤) that has the following properties.

(E0) Bounded and monotone sequences of E have weak limits.
(E1) E is lattice-ordered and ‖x+‖ ≤ ‖x‖ for all x ∈ E, where x+ = sup{0, x}.
(E2) The mapping E 3 x→ x+ is continuous.

We shall first study solvability of the implicit functional problem
d

dt
(ϕ(t)u(t)) = p(t)u(t) + f(t, u, u(t),

d

dt
(ϕ(t)u(t))− p(t)u(t)) a.e. on J,

u(t) = B(t, u, u(t)) in J0,
(6.133)

where J = [a, b] and J0 = [a − r, a], a ≤ b, r ≥ 0, ϕ ∈ C(J, (0,∞)), f :
J × X × E × E → E, and B : J0 × X × E → E, X = C([a − r, b], E). We
study also dependence of the solutions of (6.133) on the data f and B. As a
special case we get existence and comparison results for implicit initial value
problems when r = 0 and implicit functional equations when b = a.

Solutions are assumed to be in the set

W = {u ∈ C([a− r, b], E) : ϕ · u|J ∈W 1,1(J,E)}, (6.134)

where

W 1,1(J,E) = {v : J → E : v is absolutely continuous and a.e. differentiable.}
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6.5.1 Hypotheses and Preliminaries

Assuming that the spaces X = C([a−r, b], E) and C(J0, E) are equipped with
pointwise ordering, and L1(J,E) with a.e. pointwise ordering, we impose the
following hypotheses on the functions f and B.

(f1) f(·, u, u(·), v(·)) is strongly measurable whenever u ∈ X and v ∈
L1(J,E).

(f2) f(t, u, x, y) is increasing in u, x, and y for a.e. t ∈ J .
(f3) ‖f(t, u, x, y)‖ ≤ h1(t) + p1(t)‖x‖ + λ1‖y‖ for a.e. t ∈ J and all u ∈ X

and x, y ∈ E, where p1, h1 ∈ L1(J,R+) and λ1 ∈ [0, 1).
(B1) The chains of the set {t 7→ B(t, u, u(t)) : u ∈ X} are equicontinuous.
(B2) B(t, u, x) is increasing in u and x for a.e. t ∈ J0.
(B3) ‖B(t, u, x)‖ ≤ ψ(t, ‖x‖) for all u ∈ X, x ∈ E, and t ∈ J0, where ψ ∈

C(J0 × R+,R+), ψ(t, ·) is increasing for all t ∈ J0, and there exists a
function R ∈ C(J0,R+) such that R(·) = ψ(·, R(·)), and r ≤ R whenever
r ∈ C(J0,R+) and r(·) ≤ ψ(·, r(·)).

In our considerations we need the following existence, uniqueness, and com-
parison result.

Lemma 6.64. If p ∈ L1(J,R+), h ∈ L1(J,E), and α ∈ C(J0, E), then the
linear initial function problem

d

dt
(ϕ(t)u(t)) = p(t)u(t) + h(t) a.e. on J, u(t) = α(t) in J0 (6.135)

has a unique solution u = φ(h, α) in W that is given by

u(t) =


α(t), t ∈ J0,

e
R t

a
p(s)
ϕ(s)ds

ϕ(t)

(
ϕ(a)α(a) +

∫ t

a

e−
R s

a
p(τ)
ϕ(τ)dτh(s)

)
ds, t ∈ J.

Moreover, u is increasing with respect to h and α.

In case E = R, Lemma 6.64 implies that if the functions h1, p1, and R
and the constant λ1 are as in the hypotheses (f3) and (B3), then problem

d

dt
(ϕ(t)w(t)) =

h1(t) + p1(t)w(t)
(1− λ1)

+ p(t)w(t) a.e. on J,

w(t) = R(t) in J0,

(6.136)

has a unique solution w. Denote

Y = L1(J,E)× C(J0, E), q(t) =
h1(t) + p1(t)w(t)

1− λ1
, t ∈ J, (6.137)

P = {(h, α) ∈ Y : ‖h(t)‖ ≤ q(t) a.e. on J , ‖α(t)‖ ≤ R(t) in J0}, (6.138)

and define a partial ordering on Y by

(h, α) ≤ (ĥ, α̂) iff h(t) ≤ ĥ(t) a.e. on J and α(t) ≤ α̂(t) in J0. (6.139)
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Lemma 6.65. The following equations{
L1u(t) := d

dt (ϕ(t)u(t))− p(t)u(t), t ∈ J,
L2u(t) := u(t), t ∈ J0,

(6.140)

define mappings L1 : W → L1(J,E) and L2 : W → C(J0, E). Setting

Lu := (L1u, L2u), u ∈ V := φ[P ], (6.141)

where φ : Y → W is as in Lemma 6.64, we obtain a bijection L : V → P ,
whose inverse is increasing. Moreover, (0, 0) is an order-center of P .

Proof: By Lemma 6.64, φ assigns to each (h, α) ∈ P a unique solution u =
φ(h, α) of the IFP (6.135) in V = φ[P ] ⊆W , i.e., L1u = h, L2u = α. Thus the
mapping L, defined by (6.141) is surjective. Moreover, since φ is increasing,
then u ≤ û in V whenever Lu ≤ Lû in P . This implies that L is also injective,
and that its inverse is increasing.

The proofs of Propositions 9.49 and 9.50 imply that (h+, α+) ∈ P when-
ever (h, α) ∈ P . Moreover, it is easy to see that (h+, α+) = sup{(0, 0), (h, α)}
with respect to the partial ordering of P defined in (6.138). Consequently,
c = (0, 0) is a sup-center of P . Similarly one can show that (0, 0) is an inf-
center of P . ut

Lemma 6.66. Let w be the solution of (6.136). If u ∈ V , then ‖u(t)‖ ≤ w(t),
for each t ∈ J0 ∪ J .

Proof: Let u ∈ V be given. Since Lu = (h, α) ∈ P by Lemma 6.65, we get by
applying (6.138), (6.140), and (6.141) that for each t ∈ J0,

‖u(t)‖ = ‖α(t)‖ ≤ R(t) = w(t).

Moreover, it follows from (6.138), (6.139), and (6.141) that

‖L1u(t)‖ = ‖h(t)‖ ≤ h1(t) + p1(t)w(t)
1− λ1

for a.e. t ∈ J.

This inequality and the definition (6.140) of L1u(t) imply that

‖ d
dt

(ϕ(t)u(t))‖ ≤ ‖L1u(t)‖+ ‖p(t)u(t)‖ ≤ h1(t) + p1(t)w(t)
1− λ1

+ p(t)‖u(t)‖.

Noticing also that ‖u(a)‖ ≤ w(a), we get for t ∈ J

‖ϕ(t)u(t)‖ ≤ ‖ϕ(a)u(a)‖+
∫ t

a

‖ d
ds

(ϕ(s)u(s))‖ds

≤ ϕ(a)w(a) +
∫ t

a

(
h1(s) + p1(s)w(s)

(1− λ1)
+ p(s)‖u(s)‖

)
ds.

(6.142)

In view of (6.136), we have for each t ∈ J ,
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ϕ(t)w(t) = ϕ(a)w(a) +
∫ t

a

(
h1(s) + p1(s)w(s)

(1− λ1)
+ p(s)w(s)

)
ds.

It follows from this equality and from inequality (6.142) that

v(t) :=
∫ t

a

p(s)(w(s)− ‖u(s)‖)ds ≤ ϕ(t)(w(t)− ‖u(t)‖), t ∈ J, (6.143)

so that

v′(t) = p(t)(w(t)− ‖u(t)‖) ≥ p(t)
ϕ(t)

v(t) a.e. on J, v(a) = 0.

This implies that for each t ∈ J ,∫ t

a

e−
R s

a
p(τ)
ϕ(τ)dτ (v′(s)− p(s)

ϕ(s)
v(s))ds = e−

R t
a

p(τ)
ϕ(τ)dτv(t) ≥ 0.

Applying the last inequality and (6.143) we obtain

0 ≤ v(t) ≤ ϕ(t)(w(t)− ‖u(t)‖), i.e., ‖u(t)‖ ≤ w(t) on J.

The above proof shows that ‖u(t)‖ ≤ w(t) for each t ∈ J0 ∪ J . ut

Lemma 6.67. Let the hypotheses (f1)–(f3) and (B1)–(B3) be satisfied. Rela-
tions 

Nu := (N1u,N2u), u ∈ V = φ[P ], where
N1u(t) := f(t, u, u(t), L1u(t)), t ∈ J,
N2u(t) := B(t, u, L2u(t)), t ∈ J0,

(6.144)

define an operator N : V → P . Moreover, N is increasing with respect to the
product ordering (6.139) of P and the graph ordering � of V , defined by

u � v iff u ≤ v and Lu ≤ Lv. (6.145)

Proof: The given hypotheses imply that (6.144) defines a mapping N : V →
Y . To prove that N [V ] ⊆ P , let u ∈ V be given. Applying the inequality
‖u(t)‖ ≤ w(t) on J0∪J , proved in Lemma 6.66, definitions (6.137) and (6.144),
and conditions (f3) and (B3), we get

‖N1u(t)‖ = ‖f(t, u, u(t), L1u(t))‖ ≤ h1(t) + p1(t)‖u(t)‖+ λ1‖L1u(t)‖
≤ h1(t) + p1(t)w(t) + λ1q(t) = q(t), a.e. on J,

and

‖N2u(t)‖ = ‖B(t, u, L2u(t))‖ ≤ ψ(t, ‖L2u(t)‖) ≤ ψ(t, R(t)) = R(t), t ∈ J0.

These inequalities and the definition (6.138) of P imply thatNu = (N1u,N2u)
belongs to P . To prove that N is increasing, assume that u � û, i.e., u ≤ û
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and Lu ≤ Lû. These inequalities, (6.144) and the hypotheses (f2) and (B2)
yield

Nu = (f(·, u, u(·), L1u(·)), B(·, u, L2u(·)))
≤ (f(·, û, û(·), L1û(·)), B(·, û, L2û(·))) = Nû,

which proves that N is increasing. ut

The next result implies that the implicit functional problem (IFP) (6.133)
has the same solutions as the operator equation Lu = Nu.

Lemma 6.68. Let the hypotheses (f1)–(f3) and (B1)–(B3) be fulfilled. Then
u ∈W is a solution of the IFP (6.133) if and only if u ∈ V and u is a solution
of the operator equation Lu = Nu.

Proof: Assume that u ∈ W is a solution of the IFP (6.133). Then, by first
equations of (6.133) and (6.140), we get for a.e. t ∈ J

‖L1u(t)‖ = ‖f(t, u, u(t), L1u(t))‖ ≤ h1(t) + p1(t)‖u(t)‖+ λ1‖L1u(t)‖,

whence

‖L1u(t)‖ = ‖f(t, u, u(t), L1u(t))‖ ≤
h1(t) + p1(t)‖u(t)‖

1− λ1
. (6.146)

This inequality and the definition (6.140) of L1u(t) result in

‖ d
dt

(ϕ(t)u(t))‖ ≤ ‖L1u(t)‖+ ‖p(t)u(t)‖ ≤ h1(t) + p1(t)‖u(t)‖
1− λ1

+ p(t)‖u(t)‖.

Noticing also that ‖u(a)‖ ≤ w(a), we get for t ∈ J

‖ϕ(t)u(t)‖ ≤ ‖ϕ(a)u(a)‖+
∫ t

a

‖ d
ds

(ϕ(s)u(s))‖ds

≤ ϕ(a)w(a) +
∫ t

a

(
h1(s) + p1(s)‖u(s)‖

(1− λ1)
+ p(s)‖u(s)‖

)
ds. (6.147)

In view of (6.136) we have for each t ∈ J ,

ϕ(t)w(t) = ϕ(a)w(a) +
∫ t

a

(
h1(s) + p1(s)w(s)

(1− λ1)
+ p(s)w(s)

)
ds.

From the last equality and from inequality (6.147), it follows that

v(t) :=
∫ t

a

(
p1(s)
1− λ1

+ p(s)
)

(w(s)−‖u(s)‖)ds ≤ ϕ(t)(w(t)−‖u(t)‖), (6.148)

so that v(a) = 0, and for a.e. t ∈ J
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v′(t) =
(
p1(t)
1− λ1

+ p(t)
)

(w(t)− ‖u(t)‖) ≥

(
p1(t)
1−λ1

+ p(t)
)

ϕ(t)
v(t).

This implies that for each t ∈ J ,∫ t

a

e
−
R s

a

�
p1(τ)
1−λ1

+p(τ)
�

dτ
ϕ(τ) (v′(s)−

(
p1(s)
1− λ1

+ p(s)
)
v(s)
ϕ(s)

)ds

= e
−
R t

a

�
p1(τ)
1−λ1

+p(τ)
�

dτ
ϕ(τ) v(t) ≥ 0.

By means of the last inequality and (6.148) we obtain

0 ≤ v(t) ≤ ϕ(t)(w(t)− ‖u(t)‖), i.e., ‖u(t)‖ ≤ w(t) on J.

The above proof shows that ‖u(t)‖ ≤ w(t) for each t ∈ J0∪J . This result and
(6.146) imply that

‖L1u(t)‖ = ‖f(t, u, u(t), L1u(t))‖ ≤
h1(t) + p1(t)w(t)

1− λ1
= q(t) for a.e. t ∈ J.

Moreover, it follows from (6.133), (6.140), and (B3) that for each t ∈ J0,

‖L2u(t)‖ = ‖B(t, u, L2u(t))‖ ≤ ψ(t, ‖L2u(t)‖),

which by means of hypothesis (B3) yields

‖L2u(t)‖ ≤ R(t), t ∈ J0.

By the above proof and the definition (6.138) of P we infer that Lu =
(L1u, L2u) ∈ P , whence u ∈ V in view of the definition of V . It then fol-
lows that u is a solution of the operator equation Lu = Nu. Conversely, if
u ∈ V and Lu = Nu, it follows from (6.133), (6.140), (6.141), and (6.144)
that u ∈W , and u is a solution of the IFP (6.133). ut

6.5.2 Existence and Comparison Results

Applying the results of Sect. 6.5.1 and Theorem 2.26 we shall prove an exis-
tence and comparison result for the initial function problem (6.133).

Theorem 6.69. Assume that mappings f and B satisfy the hypotheses (f1)–
(f3) and (B1)–(B3), and let � be defined by (6.139). Then the IFP (6.133)
has

(a) minimal and maximal solutions in (W,�);
(b) the smallest and greatest solutions u∗ and u∗ within the order interval

[u, u] of (W,�), where u is the smallest solution of the IFP{
L1u(t) = f(t, u, u(t), L1u(t))+ a.e. on J = [a, b],
L2u(t) = B(t, u, L2u(t))+ in J0 = [a− r, a], (6.149)
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and u is the greatest solution of the IFP{
L1u(t) = −(−f(t, u, u(t), L1u(t)))+ a.e. on J = [a, b],
L2u(t) = −(−B(t, u, L2u(t)))+ in J0 = [a− r, a]. (6.150)

Moreover, both u∗ and u∗ are increasing with respect to f and B.

Proof: According to Lemmas 6.65 and 6.67, the relations (6.138), (6.141),
and (6.144) define function spaces V ⊆W and P ⊂ Y = L1(J,E)×C(J0, E)
and mappings L, N : V → P , which satisfy the hypotheses

(L1) L is bijective, and L−1 : (P,≤) → (V,≤) is increasing.
(N) N : (V,�) → (P,≤) is increasing.

In order to apply Theorem 2.26 we have to show that chains of N [V ] have
supremums and infimums in P . Let C be a well-ordered subset of N [V ]. Since
N [V ] ⊆ P ⊆ L1(J,E)× C(J0, E), then the projections

C1 = {f(·, u, u(·), L1u(·)) : u ∈ L−1[C]},
C2 = {B(·, u, L2u(·)) : u ∈ L−1[C]}

of C into L1(J,E) and C(J0, E), respectively, are well-ordered. Since C ⊂ P ,
then C1 is a well-ordered chain of L1(J,E), which is a.e. pointwise bounded
by an L1-function q, given by (6.138). Thus y = supC1 exists by Lemma 9.32.
C2 is a bounded and well-ordered subset of C(J0, E), and also equicontinuous
by hypothesis (B1), whence b = supC2 exists by Proposition 9.41. It is easy
to see that

(y, b) = (supC1, supC2) = supC.

Moreover, the above cited results imply the existence of increasing sequences
(yjn)

∞
n=0 in Cj such that

y1
n(t) ⇀ y(t) for a.e. t ∈ J, y2

n(t) ⇀ b(t), t ∈ J0,

which along with (6.138) yields

‖y(t)‖ ≤ lim inf
n→∞

‖y1
n(t)‖ ≤ q(t) a.e. on J,

‖b(t)‖ ≤ lim inf
n→∞

‖y2
n(t)‖ ≤ R(t), t ∈ J0.

The last inequalities and (6.138) imply that supC = (y, b) ∈ P . Similarly, it
can be shown that each inversely well-ordered subset of N [V ] has the infimum
in P . Because (0, 0) is by Lemma 6.65 an order center of P , and since N is
increasing in (V,�), the operator equation Lu = Nu has by Theorem 2.26
minimal and maximal solutions in (V,�), as well as the smallest and greatest
solutions u∗ and u∗ within the order interval [u, u] of (V,�), where u is the
smallest solution of Lu = (Nu)+ and u is the smallest solution of Lu =
−(−Nu)+. These results imply the assertions (a) and (b), because by Lemma
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6.68 the IFP (6.133) has the same solutions as the operator equation Lu = Nu,
and the same holds also for problems (6.149) and (6.150) and corresponding
operator equations Lu = (Nu)+ and Lu = −(−Nu)+. Moreover, both u∗ and
u∗ are increasing with respect to N , which implies by (6.144) that they are
increasing with respect to f and B. ut

The hypothesis (f2) of Theorem 6.69 can be generalized as follows.

Proposition 6.70. The results of Theorem 6.69 remain true if condition (f2)
is replaced by the following hypothesis

(f2’) There exists a constant β ≥ 0 such that f(t, u, x, y) + βy is increasing in
u, x, and y for a.e. t ∈ J .

Proof: Consider the problem

d

dt
(ϕ(t)u(t)) = p(t)u(t)) + f̂(t, u, u(t),

d

dt
(ϕ(t)u(t))− p(t)u(t))) a.e. on J,

u(t) = B(t, u, u(t)) in J0,
(6.151)

where f̂ : J ×X × E × E → E is defined by

f̂(t, u, x, y) =
f(t, u, x, y) + βy

1 + β
. (6.152)

The function f̂ satisfies the hypotheses (f1)–(f3) with λ1 replaced by λ1+β
1+β .

Thus the results of Theorem 6.69 hold for the IFP (6.151) with f̂ defined by
(6.152). In view of (6.151) and (6.152), the solutions of (6.151) are the same
as those of (6.133). This implies the assertions because f increases if and only
if f̂ increases. ut

As a special case of Theorem 6.69 we obtain the following result.

Proposition 6.71. Assume that g : J × E → E satisfies the following hy-
potheses.

(g1) g(·, u(·)) is strongly measurable whenever u ∈ C(J,E).
(g2) g(t, x) is increasing in x for a.e. t ∈ J .
(g3) ‖g(t, x)‖ ≤ p(t)‖x‖ for a.e. t ∈ J and all x ∈ E, where p ∈ L1(J,R+).

Assume that p ∈ L1(J,R+), h ∈ L1(J,E), and α ∈ C(J0, E), and let � be
defined by (6.139). Then the initial function problem

d

dt
(ϕ(t)u(t)) = g(t, u(t)) + h(t) a.e. on J, u(t) = α(t) in J0 (6.153)

has

(a) minimal and maximal solutions in (W,�);
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(b) the smallest and greatest solutions u− and u+ in the order interval [u, u]
of (W,�), where u is the smallest solution of the problem

d

dt
(ϕ(t)u(t)) = (g(t, u(t)) + h(t))+ a.e. on J, u(t) = α(t)+ in J0

(6.154)
and u is the greatest solution of the following problem

d

dt
(ϕ(t)u(t)) = −(−g(t, u(t))− h(t))+ a.e. on J,

u(t) = −(−α(t))+ in J0.
(6.155)

Moreover, both u− and u+ are increasing with respect to α and h.

The result of Proposition 6.71 is applied in the proof of the following
theorem.

Theorem 6.72. Assume that the functions f : J × X × E × E → E, g :
J × E → E and B : J0 × X × E → E satisfy the hypotheses (f1)–(f3),
(g1)–(g3), and (B1)–(B3). Then the IFP

d

dt
(ϕ(t)u(t)) = g(t, u(t)) + f(t, u, u(t),

d

dt
(ϕ(t)u(t))− g(t, u(t))), a.e. on J,

u(t) = B(t, u, u(t)) in J0.
(6.156)

has solutions in the set W , defined by (6.134).

Proof: The equations{
L1u(t) := d

dt (ϕ(t)u(t))− g(t, u(t)), t ∈ J,
L2u(t) := u(t), t ∈ J0,

(6.157)

define mappings L1 : W → L1(J,E) and L2 : W → C(J0, E). Let φ+ : Y →
W be the mapping that assigns to each (h, α) ∈ Y the solution u+ of the IFP
(6.153) determined in Proposition 6.71. Defining

Lu := (L1u, L2u), u ∈ V+ := φ+[P ], (6.158)

we obtain a bijection L : V+ → P , whose inverse is increasing due to Propo-
sition 6.71. The hypotheses (g1)–(g3) ensure that we can apply the proof of
Lemma 6.65 to show that if u ∈ V+, then ‖u(t)‖ ≤ w(t), for each t ∈ J0 ∪ J ,
where w is the solution of (6.136). This result and the proof of Lemma 6.67
show that equations (6.144) define a mapping N : V+ → P , which is increas-
ing when V+ is ordered by the graph ordering � defined by (6.145) and P
is ordered by the product ordering (6.139). As in the proof of Theorem 6.69
one can verify that the chains of N [V+] have supremums and infimums in P .
Thus by Theorem 2.26 the operator equation Lu = Nu has the smallest and
greatest solutions u∗ and u∗ within the order interval [u, u] of (V+,�), where
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u is the smallest solution of Lu = (Nu)+ and u is the smallest solution of
Lu = −(−Nu)+. In view of (6.144), (6.157), and (6.158), both u∗ and u∗ are
solutions of the IFP (6.156).

Similar results are obtained also when φ+ is replaced above by the mapping
φ− : Y →W that assigns to each [h, α) ∈ Y the solution u− of the IFP (6.153)
determined in Proposition 6.71. ut

Example 6.73. Consider the IFP

u′(t) =H(u(t)− 3t) +
[3u(t− 1)]

2 + |[3u(t− 1)]|
+

[2u(t)− 4t]
4

+
[u′(t)−H(u(t)− 3t)]

2
, a.e. on J = [0, 1],

u(t) =
1
2
−

[
∫ 1

−1
u(t)dt]

1 + |[
∫ 1

−1
u(t)dt]|

t, in J0 = [−1, 0],

(6.159)

where H is the Heaviside function:

H(x) =
{

1 if x ≥ 0,
0 if x < 0,

and [x] denotes the greatest integer less than or equal to x, i.e., x 7→ [x] is the
integer function. The IFP (6.147) is of the form (6.156) with E = R, ϕ(t) ≡ 1,
and

f(t, u, x, y) = H(x− 3t) +
[3u(t− 1)]

2 + |[3u(t− 1)]|
+

[2x− 4t]
4

+
[y]
2
,

B(t, u, x) =
1
2
−

[
∫ 1

−1
u(t)dt]

1 + |[
∫ 1

−1
u(t)dt]|

t.

(6.160)

Obviously the hypotheses (f1)–(f3) and (B1)–(B3) are satisfied. Thus by The-
orem 6.72, the IFP (6.159) has solutions u∗ and u∗. In this case the algorithm
(iii) of Corollary 2.27 can be used to approximate the solution u∗ of (6.159).
Using simple numerical integration methods to calculate the functions un of
the algorithm (iii) with c = 0, we get the following estimate for u∗ (χ[a,b] is
the characteristic function of the interval [a, b]):

u∗(t) ≈ (1− .5(t+ 1))χ[−1,0] + (.5 + 1.5t)χ[0,.333]

+(.998 + .5(t− .333))χ[.333,.555] + (1.108 + .25(t− .555))χ[.555,.667]

+(1.136 + .083(t− .667))χ[.667,.825] + (1.15− .667(t− .825)χ[.825,1].

This approximation yields also
∫ 1

−1
u∗(t) dt ≈ 1.73. With the help of these

estimates and noticing that u is continuous at the discontinuity points of u′,
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one can infer that H(u(t) − 3t) jumps from 1 to 0 at t = 1
3 , that [3u(t − 1)]

jumps from 2 to 1 at t = 2
3 , that [2u(t)− 4t] jumps from 0 to −1 at t = 5

9 and
from −1 to −2 at t = 19

23 , and that the exact formula for u∗ is

u∗(t) =
(1

2
− 1

2
t
)
χ[−1,0] +

(1
2

+
3
2
t
)
χ[0, 13 ] +

(5
6

+
1
2
t
)
χ[ 13 ,

5
9 ]

+
(35

36
+

1
4
t
)
χ[ 59 ,

2
3 ] +

(13
12

+
1
12
t
)
χ[ 23 ,

19
23 ] +

(235
138

− 2
3
t
)
χ[ 1923 ,1]

.

The algorithm (iv) of Corollary 2.27 can be used to calculate another solution
u∗ of (6.159). On the basis of the so obtained estimate, one can infer that

u∗(t) =
(1

2
− 1

2
t
)
χ[−1,0] +

(1
2

+
3
2
t
)
χ[0, 13 ] +

(5
6

+
1
2
t
)
χ[ 13 ,

5
9 ]

+
(5

4
− 1

4
t
)
χ[ 59 ,

2
3 ] +

(49
36
− 5

12
t
)
χ[ 23 ,

67
87 ] +

(811
522

− 2
3
t
)
χ[ 6787 ,

87
100 ]

+
(103807

52200
− 7

6
t
)
χ[ 87

100 ,
156007
165300 ] +

(4412687
1983600

− 17
12
t
)
χ[ 156007165300 ,1]

.

Moreover, denoting

A =
{

(t, x) : t ∈
[5
9
, 1
]
, u∗(t) ≤ x ≤ u∗(t)

}
,

it is easy to show that each point of A is a bifurcation point for solutions of
(6.159). Thus between u∗ and u∗ there is a continuum of chaotically behaving
solutions of problem (6.159).

6.6 Notes and Comments

In Chap. 6 we have studied discontinuous differential equations in Banach
spaces. The material of Sect. 6.1 is adopted from [126]. The results of Sects.
6.2 and 6.3 are new. Section 6.4 is based on [128] as well as on recently
submitted manuscripts by the second author jointly with M. Kumpulainen.
Problems that include some of the types considered in Sect. 6.4 when E = R
are studied, e.g., in [3, 16, 17, 44, 137, 138, 174, 187, 225]. Initial and boundary
value problems in ordered Banach spaces are studied, e.g., in [53, 56, 106, 129,
132, 133]. In Sect. 6.4 no continuity hypotheses are imposed on functions f ,
c, b, and g. Existence and uniqueness results for first order discontinuous
implicit differential equations with or without impulses are derived, e.g., in
[43, 113, 114, 130, 173, 208]. The material of Sect. 6.5 is adopted from [117].
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Banach-Valued Integral Equations

In this chapter we derive existence, uniqueness, extremality, and comparison
results for solutions of discontinuous nonlinear integral equations in various
spaces of functions with values in an ordered Banach space E.

In Sect. 7.1 we study integral equations of Fredholm and Volterra types.
We assume that E is ordered by a regular order cone, which means that order
bounded and monotone sequences of E have strong limits. The solutions are
assumed to be locally HL integrable functions, except in Sect. 7.1.4, where
solutions are Bochner integrable. Integrals that occur in the equations are of
Henstock–Kurzweil type.

In Sect. 7.2 we derive existence and comparison results for functional in-
tegral equations of Urysohn, Fredholm, and Volterra types in Lp-spaces. The
data functions of the considered integral equations may be discontinuous in
all their arguments.

Sect. 7.3 deals with the existence of continuous solutions of discontinu-
ous functional evolution type integral equations. Well-posedness results are
derived for equations containing HL integrable functions. The obtained re-
sults are applied to a Cauchy problem. Furthermore, extremality results are
derived for solutions of equations containing HL integrable or Bochner inte-
grable functions.

We also study cases where ordinary iterative methods are applicable and
use them in conjunction with symbolic programming to solve concrete prob-
lems involving discontinuous nonlinearities that may even allow for functional
dependence on the solution. The obtained results are applied to impulsive
functional differential equations and to partial differential equations of par-
abolic type.
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7.1 Integral Equations in HL-Spaces

7.1.1 Fredholm Integral Equations

In this subsection we apply the following fixed point result, which is a conse-
quence of Propositions 2.16 and 9.39.

Theorem 7.1. Let E be a Banach space ordered by a regular order cone
E+ and (a, b) an open real interval, and let [w−, w+] be a nonempty or-
der interval in the a.e. pointwise ordered space HLloc((a, b), E) of locally
HL integrable functions from (a, b) to E. Then every increasing mapping
G : HLloc((a, b), E) → [w−, w+] has the smallest and greatest fixed points,
and they are increasing with respect to G.

Denote by L(E) the set of all bounded linear operators on E. We shall
first study the functional Fredholm integral equation

u(t) = h(t, u) + K

∫ b

a

T (t, s)f(s, u) ds, t ∈ [a, b], (7.1)

where −∞ < a < b < ∞, h, f : [a, b] × HLloc((a, b), E) → E, and T :
[a, b] × [a, b] → L(E). Assuming that HLloc((a, b), E) is equipped with a.e.
pointwise ordering, we impose the following hypotheses on the functions h, f ,
and T .

(h1) h(t, ·) is increasing for a.e. t ∈ [a, b], h(·, u) is strongly measurable for
all u ∈ HLloc((a, b), E), and there exist h± ∈ HLloc((a, b), E) such
that h− ≤ h(·, u) ≤ h+ for all u ∈ HLloc((a, b), E).

(f1) f(·, u) is strongly measurable for each u ∈ HLloc((a, b), E).
(f2) f(s, ·) is increasing for a.e. s ∈ [a, b].
(f3) f− ≤ f(·, u) ≤ f+ for all u ∈ HLloc((a, b), E), where f± : [a, b] → E

are strongly measurable.
(T1) (t, s) 7→ T (t, s)x is continuous for each x ∈ E.
(T2) T (t, s)E+ ⊆ E+ for all (t, s) in the domain of T .
(Tf±) The mappings s 7→ T (t, s)f±(s), t ∈ [a, b] are HL integrable on [a, b]

Our main existence and comparison result for the integral equation (7.1)
reads as follows.

Theorem 7.2. Let E be a Banach space ordered by a regular order cone.
Assume that the hypotheses (h1), (f1), (f2), (f3), (T1), (T2), and (Tf±) are
satisfied. Then the equation (7.1) has the smallest and greatest solutions in
HLloc((a, b), E). Moreover, these solutions are increasing with respect to h
and f .
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Proof: The hypotheses (h1), (f3), and (Tf±) imply that the equations

w±(t) = h±(t) + K

∫ b

a

T (t, s)f±(s) ds, t ∈ [a, b], (7.2)

define functions w± : [a, b] → E. Since the integrand on the right-hand side of
(7.2) is by (T1) continuous in t for fixed s, one can show by applying the Domi-
nated Convergence Theorem 9.26 that the integral term on the right-hand side
of (7.2) is continuous in t. Thus the functions w± belong to HLloc((a, b), E).
Similarly, it follows from the hypotheses (h1), (f1), (f3), (T1), and (Tf±) and
Theorem 9.26 that the relation

Gu(t) = h(t, u) + K

∫ b

a

T (t, s)f(s, u) ds, t ∈ [a, b] (7.3)

defines a mapping G : HLloc((a, b), E) → HLloc((a, b), E). Applying the hy-
potheses (h1), (f2), and (T2) we see that if u, v ∈ HLloc((a, b), E) and u ≤ v,
then

w−(t) ≤ Gu(t) ≤ Gv(t) ≤ w+(t) for a.e. t ∈ [a, b].

Thus (7.3) defines an increasing mapping G : HLloc((a, b), E) → [w−, w+].
The above proof shows that all the hypotheses of Theorem 7.1 are valid for
the operator G defined by (7.3). Thus G has the smallest and greatest fixed
point u∗ and u∗. Noticing that fixed points of G defined by (7.3) are solutions
of (7.1) and vice versa, then u∗ and u∗ are the smallest and greatest solutions
of (7.1). It follows from (7.3) that G is increasing with respect to h and f ,
whence the last assertion of the theorem follows from the last assertion of
Theorem 7.1. ut

Next we consider a situation where the extremal solutions, i.e., the small-
est and greatest solutions, of the integral equation (7.1) can be obtained by
ordinary iterations.

Proposition 7.3. Assume the hypotheses of Theorem 7.2, and let G be de-
fined by (7.3). Then the following assertions hold.

(a) The sequence (un)∞n=0 = (Gnw−)∞n=0 is increasing and converges a.e.
pointwise to a function u∗ ∈ HLloc((a, b), E). Moreover, u∗ is the smallest
solution of (7.1) if h(t, un) → h(t, u∗) for a.e. t ∈ [a, b] and f(s, un) →
f(s, u∗) for a.e. s ∈ [a, b];

(b) The sequence (vn)∞n=0 = (Gnw+)∞n=0 is decreasing and converges a.e.
pointwise to a function u∗ ∈ HLloc((a, b), E). Moreover, u∗ is the greatest
solution of (7.1) if h(t, vn) → h(t, u∗) for a.e. t ∈ [a, b] and f(s, vn) →
f(s, u∗) for a.e. s ∈ [a, b].

Proof: Ad (a) It is easy to see that the sequence (Gnw−) is increasing and is
contained in the order interval [w−, w+]. It then follows from Proposition 9.39
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that the asserted a.e. pointwise limit u∗ ∈ HLloc((a, b), E) exists. Defining
the sequence of successive approximations un : [a, b] → E by

un+1(t) = h(t, un) + K

∫ b

a

T (t, s)f(s, un) ds, u0(t) = w−(t), t ∈ [a, b], (7.4)

then (un) = (Gnw−), whence (un) converges a.e. pointwise to u∗. In view of
this result, the hypotheses of (a), and Theorem 9.26 it follows from (7.4) that
u∗ is a solution of (7.1). If u is any solution of (7.1), then u = Gu ∈ [w−, w+].
By induction one can show that un = Gnw− ∈ [w−, u] for each n. Thus
u∗ = supn un ≤ u, which proves that u∗ is the smallest solution of (7.1).

Ad (b) the proof of (b) is similar to that of (a). ut

The above results can be applied to the functional Fredholm integral equa-
tion

u(t) = Gu(t) := h(t, u) + K

∫ b

a

k(t, s)f(s, u) ds, t ∈ [a, b]. (7.5)

Corollary 7.4. Assume that the hypotheses (h1), (f1), (f2), and (f3) hold,
and that the hypotheses (T1), (T2), and (Tf±) are replaced by the hypothesis

(k1) k : [a, b] × [a, b] → R+ is continuous and the mappings s 7→ k(t, s)f±(s)
are HL integrable on [a, b] for each t ∈ [a, b].

Then the equation (7.5) has the smallest and greatest solutions in the space
HLloc((a, b), E). Moreover, the solutions u∗ and u∗ are increasing with respect
to h and f .

Proof: The hypothesis (k1) implies that the equation

T (t, s)x = k(t, s)x, t, s ∈ [a, b], x ∈ E,

defines a mapping T : [a, b] × [a, b] → L(E), and that the hypotheses (T1),
(T2), and (Tf±) are valid. Thus the conclusions follow from Theorem 7.2. ut

The following corollary is a consequence of Proposition 7.3.

Corollary 7.5. Assume that the hypotheses of Corollary 7.4 hold, and let w±
and G be defined by (7.2) and (7.3) with T (t, s) replaced by k(t, s). Then the
following holds.

(a) The sequence (un)∞n=0 = (Gnw−)∞n=0 is increasing and converges a.e.
pointwise to a function u∗ ∈ HLloc((a, b), E). Moreover, u∗ is the smallest
solution of (7.5) if h(t, un) → h(t, u∗) for a.e. t ∈ [a, b] and f(s, un) →
f(s, u∗) for a.e. s ∈ [a, b];

(b) The sequence (vn)∞n=0 = (Gnw+)∞n=0 is decreasing and converges a.e.
pointwise to a function u∗ ∈ HLloc((a, b), E). Moreover, u∗ is the greatest
solution of (7.5) if h(t, vn) → h(t, u∗) for a.e. t ∈ [a, b] and f(s, vn) →
f(s, u∗) for a.e. s ∈ [a, b].
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Remark 7.6. The functional dependence of h and f on u in equations (7.1) and
(7.5) can be given, e.g., in terms of bounded, linear, and positive operators,
such as integral operators of Volterra and/or Fredholm type with nonnega-
tive kernels. Thus the results derived in this subsection can be applied also to
integro-differential equations. The continuity hypotheses imposed on T and
k, and Theorem 9.26 ensure that the integrals in (7.1) and (7.5) are contin-
uous in t. If also h is continuous in t in these equations, then their solutions
are continuous. Fredholm integral equations in Banach spaces involving HL
integrable functions has been studied, e.g., in [91].

The first example is an application of Corollaries 7.4 and 7.5.

Example 7.7. Determine the smallest and greatest solutions of the following
system of impulsive boundary value problems:

−u′′1(t) =
1
t
√
t
sin

1
t

+ arctan([
∫ 1

1
2

u2(x) dx]), a.e. on (0, 1),

−u′′2(t) =
1

(1− t)2
sin(

1
1− t

) + 2 tanh([
∫ 1

1
2

u1(x) dx]), a.e. on (0, 1),

u1(0+) = u2(0+) = 0,

u1(1−) = ∆u1(
1
2
) = 3 tanh([2u2(1−)]),

u2(1−) = ∆u2(
1
2
) = 2 arctan([2u1(1−)]).

(7.6)

(Hint: s 7→ [s] denotes the integer function.)
Solution. System (7.6) can be converted to the Fredholm integral equation
(7.5) with E = R2, ordered coordinatewise, a = 0, b = 1, and setting

f(t, (u1, u2)) = (f1(t, u2), f2(t, u1)), h(t, (u1, u2)) = (h1(t, u2), h2(t, u1)),

f1(t, u2) =
1
t
√
t
sin

1
t

+ arctan
([∫ 1

1
2

u2(x) dx
])
,

f2(t, u1) =
1

(1− t)2
sin
(

1
1− t

)
+ 2 tanh

([∫ 1

1
2

u1(x) dx
])
,

h1(t, u2) = 3H(t− 1
2
) tanh([2u2(1−)]),

h2(t, u1) = 2H(t− 1
2
) arctan([2u1(1−)]),

k(t, s) = (1− t)s, 0 ≤ s ≤ t, t(1− s), t ≤ s ≤ 1.
(7.7)

The hypotheses (h1), (f1), (f2), and (f3) hold when
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f±(t) =
(

1
t
√
t
sin
(

1
t

)
± π

2
,

1
(1− t)2

sin
(

1
1− t

)
± 2
)
,

h±(t) = H

(
t− 1

2

)
(±3,±π) .

Also hypothesis (k1) is fulfilled due to Lemma 1.12. Thus (7.6) has by Corol-
lary 7.4 the smallest and greatest solutions. To determine these solutions,
notice that G, defined by (7.5), can be rewritten as

Gu(t) = (G1u2(t), G2u1(t)), (7.8)

where

G1u2(t) = h1(t, u2) + (1− t)K
∫ t

0

sf1(s, u2) ds+ tK
∫ 1

t

(1− s)f1(s, u2) ds,

G2u1(t) = h2(t, u1) + (1− t)K
∫ t

0

sf2(s, u1) ds+ tK
∫ 1

t

(1− s)f2(s, u1) ds.

The functions w− = (w−1 , w
−
2 ) and w+ = (w+

1 , w
+
2 ) defined by (7.2) with

T (t, s) replaced by k(t, s) defined above can be calculated, and one obtains

w−1 (t) =− 3H(t− 1
2
) +

√
2π

(
t FrS

(√
2
πt

)
− 2FrC

(√
2
πt

))

+
√

2π

(
2FrC

(√
2
π

)
− FrS

(√
2
π

))
t+ 2

√
t sin(

1
t
)

− 2 sin(1)t+
√

2π(1− t) +
π

4
(t2 − t),

w−2 (t) =− πH(t− 1
2
) + (t− 1) cos(

1
t− 1

)

+ Si(
1

t− 1
) + (cos(1) + Si(1))(1− t) + (

π

2
− 1)t+ t2,

w+
1 (t) =3H(t− 1

2
) +

√
2π

(
t FrS

(√
2
πt

)
− 2FrC

(√
2
πt

))

+
√

2π

(
FrS

(√
2
π

)
− FrC

(√
2
π

))
t+ 2

√
t sin(

1
t
)

− 2 sin(1)t+
√

2π(1− t) +
π

4
(t− t2),

w+
2 (t) =πH(t− 1

2
) + (t− 1) cos(

1
t− 1

)

+ Si(
1

t− 1
) + (cos(1) + Si(1))(1− t) + (

π

2
+ 1)t− t2,

where Si is the sine integral function, FrS is the Fresnel sine integral, and
FrC is the Fresnel cosine integral, i.e.,
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Si(x) =
∫ x

0

sin t
t

dt, FrS(x) =
∫ x

0

sin(
π

2
t2) dt, FrC(x) =

∫ x

0

cos(
π

2
t2) dt.

The smallest solution of (7.6) is equal to the smallest fixed point of G =
(G1, G2), defined by (7.8). Calculating the iterations Gnw− it turns out that
G2w− = G3w−. Thus u∗ = G2w− is by Corollary 7.5 the smallest solution
of (7.6). Similarly, one can show that G2w+ = G3w+, which implies that
u∗ = G2w+ is the greatest solution of (7.6). The exact expression of the
components of these solutions u∗ = (u∗1, u∗2) and u∗ = (u∗1, u

∗
2) are

u∗1(t) =− 3 tanh(3)H(t− 1
2
) +

√
2π

(
t FrS

(√
2
πt

)
− 2FrC

(√
2
πt

))

+
√

2π

(
2FrC

(√
2
π

)
− FrS

(√
2
π

))
t+ 2

√
t sin(

1
t
)− 2 sin(1)t

+
√

2π(1− t) +
1
2

arctan(2)(t2 − t),

u∗2(t) =− 2 arctan(6)H(t− 1
2
) + (t− 1) cos(

1
t− 1

)

+ Si(
1

t− 1
) + (cos(1) + Si(1))(1− t) +

π

2
t+ tanh(2)(t2 − t),

u∗1(t) =3 tanh(2)H(t− 1
2
) +

√
2π

(
t FrS

(√
2
πt

)
− 2FrC

(√
2
πt

))

+
√

2π

(
2FrC

(√
2
π

)
− FrS

(√
2
π

))
t

+ 2
√
t sin(

1
t
)− 2 sin(1)t+

√
2π(1− t) +

π

8
(t− t2),

u∗2(t) =2 arctan(5)H(t− 1
2
) + (t− 1) cos(

1
t− 1

) + Si(
1

t− 1
)

+ (cos(1) + Si(1))(1− t) +
π

2
t+ tanh(1)(t− t2).

Example 7.8. The infinite system of impulsive boundary value problems

−w′′2n−1(t) =
1

2n− 1

(
−

sin(1
t )

t2
± 1
)
,

−w′′2n(t) =
1
2n

(
sin( 1

1−t )
(1− t)2

± 1

)
,

w2n−1(0+) = 0, w2n−1(1−) = ∆w2n−1

(
t− 2n− 1

2n+ 1

)
= ± 1

2n− 1
,

w2n(0+) = 0, w2n(1−) = ∆w2n

(
t− 2n

2n+ 1

)
= ± 1

2n− 1
, n ∈ N,

(7.9)
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have unique solutions w±(t) =
(

1
nw

±
n (t)

)∞
n=1

, where

w+
2n−1(t) = H

(
t− 2n−1

2n+1

)
+ (1− t)

(
Si
(
t−1
)
− 1

2 π + 1
2 t

2
)

+t
(
− cos (1)− Si (1) + cos

(
t−1
)

+ Si
(
t−1
)
− t+ 1

2 + 1
2 t

2
)
,

w−2n−1(t) = −H
(
t− 2n−1

2n+1

)
+ (1− t)

(
Si
(
t−1
)
− 1

2 π −
1
2 t

2
)

+t
(
− cos (1)− Si (1) + cos

(
t−1
)

+ Si
(
t−1
)

+ t− 1
2 −

1
2 t

2
)
,

w+
2n(t) = H

(
t− 2 n

2n+1

)
+ t
(
Si
(

1
t−1

)
+ 1

2 π − t+ 1
2 + 1

2 t
2
)

+(1− t)
(
cos (1) + Si (1)− cos

(
1
t−1

)
+ Si

(
1
t−1

)
+ 1

2 t
2
)
,

w−2n(t) = −H
(
t− 2 n

2n+1

)
+ t
(
Si
(

1
t−1

)
+ 1

2 π + t− 1
2 −

1
2 t

2
)

+(1− t)
(
cos (1) + Si (1)− cos

(
1
t−1

)
+ Si

(
1
t−1

)
− 1

2 t
2
)
.

Since w± ∈ HLloc((0, 1), c0), Corollary 7.4 can be applied to show that the
smallest and greatest solutions u∗ = (u∗n)∞n=1 and u∗ = (u∗n)

∞
n=1 of the infinite

system of impulsive boundary value problems

−u′′2n−1(t) =
1

2n− 1

(
−

sin(1
t )

t2
+ g2n−1(u)

)
,

−u′′2n(t) =
1
2n

(
sin( 1

1−t )
(1− t)2

+ g2n(u)

)
,

u2n−1(0+) = 0, u2n−1(1−) = ∆u2n−1

(
t− 2n− 1

2n+ 1

)
=

1
2n− 1

q2n−1(u),

u2n(0+) = 0, u2n(1−) = ∆u2n

(
t− 2n

2n+ 1

)
=

1
2n
q2n(u), n ∈ N

(7.10)
exist inHLloc((0, 1), c0) and belong to its order interval [w−, w+], if we assume
that all the functions gn, qn : HLloc((0, 1), c0) → R, are increasing, and if
−1 ≤ gn(u), qn(u) ≤ 1 for all u ∈ HLloc((0, 1), c0) and n ∈ N.

Remark 7.9. (i) In Example 7.7 the functions f± are not HL integrable. How-
ever, k(t, s) is continuous, and the integrals K

∫ 1

0
k(t, s)f±(s) ds exist for each

t ∈ (0, 1) by Lemma 1.12, whence the hypothesis (k1) is valid.
(ii) The calculations needed in Examples 7.7 and 7.8 are carried out by

using a simple Maple programming.
(iii) Differential equations in Banach spaces with HL integrable data is

studied, e.g., in [92], [200].

7.1.2 Volterra Integral Equations

Throughout this subsection, E = (E,≤, ‖ ·‖) is an ordered Banach space with
a regular order cone and −∞ < a < b ≤ ∞. Here we first study the functional
Volterra integral equation
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u(t) = h(t, u) + K

∫ t

a

T (t, s)f(s, u) ds, t ∈ J := (a, b), (7.11)

where h, f : J ×HLloc(J,E) → E and T is a mapping from Λ = {(t, s) : a <
s ≤ t < b} to L(E). The following conditions are imposed on T .

(T0) T (t, t) = I, and T (t, r) = T (t, s)T (s, r) whenever a < r ≤ s ≤ t < b.
(T1) (t, s) 7→ T (t, s)x is continuous for each x ∈ E.
(T2) T (t, s)E+ ⊆ E+ for all (t, s) in the domain of T .

Lemma 7.10. Let the hypotheses (T0) and (T1) hold. Assume that q : J →
E, that s 7→ T (t, s)q(s) is HL integrable on [a, t] for every t ∈ J , and that
t 7→ K

∫ t
a
T (t, s)q(s)ds is locally bounded. Then the equation

u(t) = K

∫ t

a

T (t, s)q(s)ds, t ∈ J, (7.12)

defines a left-continuous function u : J → E.

Proof: If a < t ≤ t < b, it follows from (7.12) that

‖u(t)− u(t)‖ ≤
∥∥∥∥K∫ t

a

(T (t, s)− T (t, s))q(s) ds
∥∥∥∥

+
∥∥∥∥K∫ t

t

T (t, s)q(s) ds
∥∥∥∥ = I1 + I2, (7.13)

where

I1 =
∥∥∥∥K∫ t

a

(T (t, s)− T (t, s))q(s) ds
∥∥∥∥

≤ ‖T (t, t)− I‖
∥∥∥∥K∫ t

a

T (t, s)q(s) ds
∥∥∥∥, (7.14)

I2 =
∥∥∥∥K∫ t

t

T (t, s)q(s) ds
∥∥∥∥.

It follows from (7.14) by (T0) and (T1) that I1 + I2 → 0 as t → t−. This
implies by (7.13) that ‖u(t)− u(t)‖ → 0 as t→ t−. Thus u is left-continuous
on J . ut

Assuming that HLloc(J,E) is equipped with a.e. pointwise ordering, we
impose the following hypotheses on the functions h, f , and T .

(h0) h(t, ·) is increasing for a.e. t ∈ J , h(·, u) is strongly measurable for all
u ∈ HLloc(J,E), and there exist h± ∈ HLloc(J,E) such that h− ≤
h(·, u) ≤ h+ for all u ∈ HLloc(J,E).

(f0) There exist strongly measurable functions f± : J → E such that f− ≤
f(·, u) ≤ f+ for all u ∈ HLloc(J,E).
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(f1) The mapping f(·, u) is strongly measurable for each u ∈ HLloc(J,E).
(f2) f(s, ·) is increasing for a.e. s ∈ J .
(Tf) The functions s 7→ T (t, s)f±(s) are HL integrable on [a, t] for every

t ∈ J , and the functions t 7→ K
∫ t
a
T (t, s)f±(s)ds are locally bounded.

Our main existence and comparison result for the integral equation (7.11)
reads as follows.

Theorem 7.11. Assume that the hypotheses (h0), (f0), (f1), (f2) (T0), (T1),
(T2), and (Tf) are satisfied. Then the equation (7.11) has the smallest and
greatest solutions in HLloc((a, b), E). Moreover, these solutions u∗ and u∗ are
increasing with respect to h and f .

Proof: The hypotheses (h0), (f0), and (Tf) ensure that the equations

w±(t) = h±(t) + K

∫ t

a

T (t, s)f±(s) ds, t ∈ J, (7.15)

define functions w± : J → E. The integral term on the right-hand side of
(7.15) is left-continuous in t by Lemma 7.10. Thus the functions w± belong
to HLloc(J,E). By using the hypotheses, Lemmas 7.10 and 9.11, Proposition
9.14, and Theorem 9.26, it can be shown that the equation

Gu(t) = h(t, u) + K

∫ t

a

T (t, s)f(s, u) ds, t ∈ J, (7.16)

defines an increasing mapping G : HLloc(J,E) → [w−, w+]. From Theorem
7.1 it then follows that G has the smallest and greatest fixed points u∗ and u∗.
Noticing that fixed points of G defined by (7.16) are solutions of (7.11) and
vice versa, then u∗ and u∗ are the smallest and greatest solutions of (7.11).
By Lemma 9.11, from (7.16) it follows that G is increasing with respect to h
and f , and thus the last assertion of the theorem is a consequence of the last
assertion of Theorem 7.1. ut

Next we study a special case where the extremal solutions of the integral
equation (7.11) can be obtained by ordinary iterations.

Proposition 7.12. Assume that the hypotheses of Theorem 7.11 hold, and let
G be defined by (7.16). Then the following assertions are true.

(a) The sequence (un)∞n=0 := (Gnw−)∞n=0 is increasing and converges a.e.
pointwise to a function u∗ ∈ HLloc(J,E). Moreover, u∗ is the smallest
solution of (7.11) provided that h(t, un) → h(t, u∗) for a.e. t ∈ J and
f(s, un) → f(s, u∗) for all t ∈ J and for a.e. s ∈ [a, t];

(b) The sequence (vn)∞n=0 := (Gnw+)∞n=0 is decreasing and converges a.e.
pointwise to a function u∗ ∈ HLloc((a, b), E). Moreover, u∗ is the great-
est solution of (7.11) provided that h(t, vn) → h(t, u∗) for a.e. t ∈ J and
f(s, vn) → f(s, u∗) for a.e. s ∈ J .
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Proof: Ad (a) The sequence (un) := (Gnw−) is increasing and contained
in the order interval [w−, w+]. Hence the asserted a.e. pointwise limit u∗ ∈
HLloc(J,E) exists by Proposition 9.39. Moreover, (un) equals to the sequence
of successive approximations un : J → E defined by

un+1(t) = h(t, un) + K

∫ t

a

T (t, s)f(s, un) ds, u0(t) = w−(t), t ∈ J, n ∈ N0.

(7.17)
In view of these results, the hypotheses of (a) and Theorem 9.26, it follows
from (7.17) as n→∞ that u∗ is a solution of (7.11).

If u is any solution of (7.11), then u = Gu ∈ [w−, w+]. By induction one
can show that un = Gnw− ∈ [w−, u] for each n. Thus u∗ = supn un ≤ u,
which proves that u∗ is the smallest solution of (7.11).

Ad (b) The proof of (b) is similar to that of (a). ut

The next result is a special case of Theorem 7.11.

Corollary 7.13. The results of Theorem 7.11 remain true for solutions of the
Volterra integral equation

u(t) = h(t, u) + K

∫ t

a

k(t, s)f(s, u) ds, t ∈ J, (7.18)

where h, f : J ×HLloc(J,E) → E satisfy the hypotheses (h0), (f0), (f1), and
(f2), and k : Λ→ R+ has the following properties.

(k0) k is continuous, k(t, t) = 1, and k(t, r) = k(t, s)k(s, r) whenever a <
r ≤ s ≤ t < b.

(kf±) The functions s 7→ k(t, s)f±(s) are HL integrable on [a, t] for each t ∈ J ,
and the functions t 7→ K

∫ t
a
k(t, s)f±(s)ds are locally bounded.

Proof: The hypotheses (k0) and (kf±) imply that the equation

T (t, s)x = k(t, s)x, (t, s) ∈ Λ, x ∈ E,

defines a mapping T : Λ → L(E), and that the hypotheses (T0), (T1), (T2),
and (Tf) are valid. Thus the conclusions follow from Theorem 7.2. ut

The next result is an application of Proposition 7.12.

Corollary 7.14. Assume that the hypotheses of Corollary 7.13 hold, and let
w± and G be defined by (7.15) and (7.16) with T (t, s) replaced by k(t, s).

(a) The sequence (un)∞n=0 = (Gnw−)∞n=0 is increasing and converges a.e.
pointwise to a function u∗ ∈ HLloc(J,E). Moreover, u∗ is the smallest
solution of (7.18) provided that h(t, un) → h(t, u∗) for a.e. t ∈ J and
f(s, un) → f(s, u∗) for a.e. s ∈ J ;
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(b) The sequence (vn)∞n=0 = (Gnw+)∞n=0 is decreasing and converges a.e.
pointwise to a function u∗ ∈ HLloc(J,E). Moreover, u∗ is the greatest
solution of (7.18) provided that h(t, vn) → h(t, u∗) for a.e. t ∈ J and
f(s, vn) → f(s, u∗) for a.e. s ∈ J .

Example 7.15. Let E be the space c0 of all sequences (cn)∞n=1 of real numbers
converging to zero, ordered componentwise and normed by the sup-norm.
Define fn, hn : [0,∞) → R and k : (0,∞)× [0,∞) → R+ by the equations

fn(t) =
2√
n

cos
( 1
t2

)
+

2√
nt2

sin
( 1
t2

)
, t > 0, fn(0) = 0,

hn(t) =
1√
nt
H
(
t− 2n− 1

2n

)
, t > 0, hn(0) = 0, n ∈ N,

k(t, s) =
s

t
, t > 0, s ≥ 0.

(7.19)

The solutions of the infinite system of integral equations

wn(t) = ±hn(t) + K

∫ t

0

k(t, s)
(
fn(s)±

1√
n

)
ds, n ∈ N, (7.20)

in HLloc((0,∞), c0) are given by

w±(t) = (wn±(t))∞n=1 =
(
± 1√

nt
H
(
t− 2n− 1

2n

)
+

t√
n

cos
( 1
t2

)
± t

2
√
n

)∞
n=1

.

(7.21)
In particular, Corollary 7.13 can be applied to show that the infinite system
of integral equations

un(t) = qn(u)hn(t) + K

∫ t

0

k(t, s)
(
fn(s) +

1√
n
gn(u)

)
ds, (7.22)

has the smallest and greatest solutions u∗ = (u∗n)∞n=1 and u∗ = (u∗n)
∞
n=1 in

HLloc((0,∞), c0), provided that all the functions qn, gn : HLloc([0,∞), c0) →
R are increasing, and −1 ≤ gn(u), qn(u) ≤ 1 for all u ∈ HLloc((0,∞), c0) and
n ∈ N. Moreover, both u∗ and u∗ belong to the order interval [w−, w+] of
HLloc(0,∞), c0), where the functions w± are given by (7.21).

Remark 7.16. (i) The functions fn in Example 7.15 are not HL integrable on
[0, t] for any t > 0. However, k(t, s) = s

t satisfies the hypothesis (k0), and the
functions k(t, ·)fn satisfy hypothesis (kf±) in view of Lemma 1.12.

7.1.3 Application to Impulsive IVP

Let E be a Banach space ordered by a regular order cone. The result of
Corollary 7.13 will now be applied to the following impulsive initial value
problem



7.1 Integral Equations in HL-Spaces 273{
u′(t) + p(t)u(t) = f(t, u) a.e. on J = (a, b),
u(a) = x0, ∆u(λ) = D(λ, u), λ ∈W,

(7.23)

where p ∈ L1([a, t],R) for every t ∈ J , f : J × HLloc(J,E) → E, x0 ∈ E,
∆u(λ) = u(λ+0)−u(λ), D : W ×HLloc(J,E) → E, and W is a well-ordered
(and hence countable) subset of (a, b).

Denoting W<t = {λ ∈ W : λ < t}, t ∈ J , and by W 1
SL,loc(J,E) the set

of all functions from J to E that are a.e. differentiable and satisfy the Strong
Lusin Condition on every compact interval of J , we say that u : J → E is
a solution of problem (7.23) if it satisfies the equations of (7.23), and if it
belongs to the set

V =
{
u : J → E :

∑
λ∈W ‖∆u(λ)‖ <∞, and

t 7→ u(t)−
∑
λ∈W<t ∆u(λ) ∈W 1

SL,loc(J,E)

}
.

It is easy to verify that V is a subset of HLloc(J,E).
The following result, which is a generalization of [46, Lemma 3.1], allows

us to transform problem (7.23) into a Volterra integral equation.

Lemma 7.17. Let p : J → R, g : J → E, x0 ∈ E, and c : W → E be given.
Assume that p ∈ L1

loc([a, b),R), g ∈ HLloc([a, b), E), and that
∑
λ∈W ‖c(λ)‖ <

∞. Then the problem{
u′(t) + p(t)u(t) = g(t) a.e. on J,

u(a) = x0, ∆u(λ) = c(λ), λ ∈W,
(7.24)

has a unique solution u. This solution can be represented as

u(t) = e−
R t

a
p(s)dsx0 +

∑
λ∈W<t

e−
R t

λ
p(s)dsc(λ) + K

∫ t

a

e−
R t

s
p(τ)dτg(s)ds, t ∈ J.

(7.25)
Moreover, u is increasing with respect to g, c, and x0.

Proof: Let u : J → E be defined by (7.25). Given a compact subinterval
I = [a, t1] of J , define a mapping Γ : I → I by

Γ (s) = min{t ∈W ∪ {t1} : s < t}, s ∈ [a, t1), Γ (t1) = t1.

Denote by C the well-ordered chain of Γ -iterations of a, i.e., (cf. [133], Theo-
rem 1.1.1) C is the only well-ordered subset of I with the following properties:

a = minC, and if s > a, then s ∈ C iff s = supΓ{t ∈ C|t < s}.
It follows from [133], Corollary 1.1.1 that W ⊂ C, and I is a disjoint union
of C and open intervals (s, Γ (s)), s ∈ C. Moreover, C is countable as a well-
ordered set of real numbers. Hence, rewriting (7.25) as

u(t) = e−
R t

a
p(s)ds

[
x0 +

∑
λ∈W<t

e−
R a

λ
p(s)dsc(λ) + K

∫ t

a

e−
R a

s
p(τ)dτg(s)ds

]
,



274 7 Banach-Valued Integral Equations

it is easy to verify that

u′(t) + p(t)u(t) = g(t) for a.e. t ∈ I, u(a) = x0. (7.26)

For each λ ∈W the open interval (λ, Γ (λ)) does not contain any point of W ,
so that

∆u(λ) = u(λ+ 0)− u(λ) = lim
t→λ+0

e−
R t

λ
p(s)dsc(λ) = c(λ), λ ∈W. (7.27)

It follows from (7.25) and (7.27) that

u(t)−
∑

λ∈W<t

∆u(λ) = u(t)−
∑

λ∈W<t

c(λ) = v(t) + w(t), (7.28)

where
v(t) = e−

R t
a
p(s)dsx0 + K

∫ t
a
e−

R t
s
p(τ)dτg(s)ds, t ∈ I,

w(t) =
∑
λ∈W<t(e−

R t
λ
p(s)ds − 1)c(λ), t ∈ I.

Thus, for a ≤ t̄ < t ≤ t1 we obtain

w(t)− w(t̄) =
∑
λ∈W∩(a,t̄)(e

−
R t

λ
p(s)ds − e−

R t̄
λ
p(s)ds)c(λ)

+
∑
λ∈W∩[t̄,t)(e

−
R t

λ
p(s)ds − 1)c(λ) =

∑
λ∈W∩(a,t̄)

∫ t
t̄
−p(s)e−

R s
λ
p(τ)dτds c(λ)

+
∑
λ∈W∩[t̄,t)

∫ t
λ
−p(s)e−

R s
λ
p(τ)dτds c(λ).

Applying this representation and denoting M = e
R t1

a
|p(s)|ds∑

λ∈W ‖c(λ)‖, it
follows that

‖w(t)− w(t̄)‖ ≤M

∫ t

t̄

|p(s)|ds for a ≤ t̄ < t ≤ t1.

This implies that w is absolutely continuous. Obviously, w is a.e. differentiable
and the function v belongs to W 1

SL,loc(J,E).
The above result holds for every t1 ∈ (a, b), so that u ∈ V by (7.28). This,

(7.26), and (7.27) imply that u is a solution of problem (7.24).
If v ∈ V is a solution of (7.24), then w = u − v is a function of V and

∆w(λ) = 0 for each λ ∈ W , whence w ∈ W 1
SL,loc(J,E) and w is a solution of

the initial value of problem

w′(t) + p(t)w(t) = 0 a.e. on J, w(a) = 0. (7.29)

For every fixed t ∈ J the function

h(s) = e
R s

a
p(τ)dτ , s ∈ I = [a, t],

is absolutely continuous on I and real-valued. It then follows from Lemma
9.22 that

h(t)w(t)− h(a)w(a) = K

∫ t

a

(h′(s)w(s) + h(s)w′(s)) ds, t ∈ J,
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or equivalently,

h(t)w(t)− h(a)w(a) = K

∫ t

a

(e
R s

a
p(τ)dτ (p(s)w(s) + w′(s)) ds, t ∈ J.

This equation and (7.29) imply that h(t)w(t) ≡ 0, so that w(t) ≡ 0, whence
u = v.

The last assertion of the lemma is a direct consequence from the represen-
tation (7.25) and Lemma 9.11. ut

Let us impose the following hypotheses on the function D of (7.23).

(D0) D(λ, ·) is increasing for all λ ∈ W , and there exist c± : W → E such
that c−(λ) ≤ D(λ, u) ≤ c+(λ) for all λ ∈ W and u ∈ HLloc(J,E), and
that

∑
λ∈W ‖c±(λ)‖ <∞.

As an application of Corollary 7.13 we get the following existence and com-
parison result for problem (7.23).

Theorem 7.18. Let the functions f and D in (7.23) satisfy the hypotheses
(f0)–(f2) and (D0). If p ∈ L1

loc([a, b),R), and if the functions f± are locally HL
integrable on [a, b), then problem (7.23) has for each x0 ∈ E the smallest and
greatest solutions u∗ and u∗ in V . Moreover, these solutions are increasing
with respect to x0, D, and f .

Proof: The hypotheses given for D and p ensure that for each x0 ∈ E the
relations{

h(t, u) = e−
R t

a
p(s)dsx0 +

∑
λ∈W<t e−

R t
λ
p(s)dsD(λ, u), t ∈ J,

k(t, s) = e−
R t

s
p(τ)dτ , (t, s) ∈ Λ,

(7.30)

define mappings h : J ×HLloc(J,E) → E and k : Λ→ R+, which satisfy the
hypotheses (h0) and (k0) of Corollary 7.13. Then the integral equation (7.18),
which by (7.30) can be rewritten as a fixed point equation

u(t) = Gu(t) :=e−
R t

a
p(s)dsx0 +

∑
λ∈W<t

e−
R t

λ
p(s)dsD(λ, u)

+ K

∫ t

a

e−
R t

s
p(τ)dτf(s, u)ds, (7.31)

has by Corollary 7.13 the smallest and greatest solutions u∗ and u∗, and they
are increasing with respect to h and f . Because by Lemma 7.17 the solutions
of problem (7.23) are the same as the solutions of the integral equation (7.31),
then u∗ and u∗ are the smallest and greatest solutions of problem (7.23), and
they are increasing with respect to x0, D, and h. ut

The next result is a consequence of Corollary 7.14.
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Proposition 7.19. Assume the hypotheses of Theorem 7.18, and let G be
defined by (7.31). Then the following assertions hold.

(a) The sequence (un)∞n=0 = (Gnw−)∞n=0 is increasing and converges a.e.
pointwise to a function u∗ ∈ HLloc(J,E). Moreover, u∗ is the smallest
solution of (7.23) provided that D(λ, un) → D(λ, u∗) for each λ ∈W and
f(s, un) → f(s, u∗) for a.e. s ∈ J ;

(b) The sequence (vn)∞n=0 = (Gnw+)∞n=0 is decreasing and converges a.e.
pointwise to a function u∗ ∈ HLloc(J,E). Moreover, u∗ is the greatest
solution of (7.23) provided that D(λ, vn) → D(λ, u∗) for each λ ∈W and
f(s, vn) → f(s, u∗) for a.e. s ∈ J .

Example 7.20. Let E be, as in Example 7.15, the space c0 of the sequences of
real numbers converging to zero, ordered componentwise and normed by the
sup-norm. The solutions of the infinite system of problems

w′n(t) +
1

1 + t
wn(t) =

2√
n(1 + t)

(
cos
( 1
t2

)
+

2
t

sin
( 1
t2

))
± 1√

n
,

wn(0+) = 0, ∆wn

(
t− 2n− 1

2n

)
= ± 1√

n
, n ∈ N,

(7.32)

in HLloc((0, 2), c0) are

(wn±(t))∞n=1 =
(

1
2
√
n(1 + t)

(
± 4n− 1

n
H
(
t− 2n− 1

2n

)
+2t2 cos

( 1
t2

)
± 2t± t2

))∞
n=1

. (7.33)

Thus Theorem 7.18 can be applied to show that the smallest and greatest
solutions u∗ = (u∗n)∞n=1 and u∗ = (u∗n)

∞
n=1 of infinite system of problems

u′n(t) +
1

1 + t
un(t) =

1√
n(1 + t)

(
cos
( 1
t2

)
+

2
t

sin
( 1
t2

))
+

1√
n
gn(u),

wn(0+) = 0, ∆wn

(
t− 2n− 1

2n

)
=

1√
n
Dn(u), n ∈ N,

(7.34)
exist inHLloc((0, 2), c0) and belong to its order interval [w−, w+], if we assume
that all the functions Dn, gn : HLloc([0, 2), c0) → R, are increasing, and if
−1 ≤ Dn(u), gn(u) ≤ 1 for all u ∈ HLloc((0, 2), c0) and n = 1, 2, . . . .

Example 7.21. Choose J = [0, 1], and define functions hi : J → R and qi :
R → R, i = 1, 2, . . . , by hi(0) = 0,

hi(t) =
1
2i

i∑
m=1

∞∑
k=1

2 + [k
1
m t]− k

1
m t

(km)2
1
t

sin
1
t
, t ∈ (0, 1], i = 1, 2, . . . ,

where [x] denotes the greatest integer ≤ x, and
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qi(s) =
1
2i

i∑
m=1

∞∑
k=1

π
2 + arctan(k

1
m t)

(km)2
, s ∈ R, i = 1, 2, . . . .

Let E = l1 be ordered by the cone l1+ of those elements of l1 with nonnegative
coordinates. For x = (x1, x2, . . . ) ∈ l1, define

g = (g1, g2, . . . ), where gi(t, x) = hi(t) + qi

( i∑
j=1

xj

)
for i = 1, 2, . . . , t ∈ J . Then one can easily verify that f(t, u) = g(t, u(t))
satisfies hypotheses (f0)–(f2).

It can be shown (cf. [133, Example 1.1.1]) that the set

W =


1− 2−m−1 −

m∑
k=0

2−k−m−2
k∏
j=0

2−nj − 2−2m−2
m∏
j=0

2−nj :

m,n0, . . . , nm ∈ N0


is a well-ordered subset of J . Define a mapping Γ : R → J by

Γ (s) =
{

min{t ∈W ∪ {1} : s < t}, s < 1,
1, s ≥ 1.

Denoting

c(λ) = (c1(λ), c2(λ), . . . ), where ci(λ) = 2−i(Γ (λ)− λ), λ ∈W, i = 1, 2, . . . ,

the series
∑
λ∈Λ c(λ) is seen to be absolutely convergent. Thus the function

D(·, u) ≡ c has the properties assumed in (D0). With c and g defined before,
consider the problem{

u′(t) = g(t, u(t)) a.e. on [0, 1],
u(t0) = x0, ∆u(λ) = c(λ), λ ∈W.

(7.35)

The above proof shows that the hypotheses of Theorem 7.18 are valid, when
f(t, u) = g(t, u(t)) and D(λ, u) = c(λ). Thus problem (7.35) has smallest and
greatest solutions for each x0 ∈ l1.

Remark 7.22. The functional dependence of h, f , and D on u may be given,
e.g., in terms of bounded, linear, and positive operators, such as integral
operators of Volterra and/or Fredholm type with nonnegative kernels. Thus
the results derived in this section can be applied also to integro-differential
equations.
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7.1.4 A Volterra Equation Containing HL Integrable Functions

In this subsection we assume that E is a weakly sequentially complete Ba-
nach lattice. We shall prove existence and comparison results for the Volterra
integral equation

u(t) = h(t, u) + K

∫ t

a

g(s, u(s), u)ds, t ∈ J := [a, b], (7.36)

where h : J × L1(J,E) → E and g : J × E × L1(J,E) → E. In the proof we
apply the following special case of Proposition 2.40.

Lemma 7.23. Let G : L1(J,E) → L1(J,E) be increasing with respect to
the a.e. pointwise ordering, and assume that G maps monotone sequences to
convergent sequences in (L1(J,E), ‖ · ‖1). Then G has

(a) minimal and maximal fixed points;
(b) the smallest and greatest fixed points u∗ and u∗, respectively, within the

order interval [u, u] of L1(J,E), where u is the greatest solution of u =
−(−Gu)+ and u is the smallest solution of u = (Gu)+.

(c) All the solutions u, u, u∗ and u∗ are increasing with respect to G.

Proof: As shown in Lemma 6.8, the mappings E 3 x 7→ x± are continu-
ous. Hence, if u ∈ L1(J,E), then the mappings u± := t 7→ u(t)± belong to
L1(J,E). Consequently, the zero function is an order center of L1(J,E). More-
over, L1(J,E) is an ordered normed space. Noticing also that sup{0, u} = u+

and inf{0, u} = −(−u)+, the conclusions follow from Proposition 2.40. ut

On the functions h and g of (7.36) we impose the following hypotheses:

(h) The function (t, u) 7→ h(t, u) is increasing in u for a.e. t ∈ J , and strongly
measurable in t for all u ∈ L1(J,E). There exists an α ∈ L1(J,R+) such
that ‖h(t, u)‖ ≤ α(t) for a.e. t ∈ J and for all u ∈ L1(J,E).

(ga) g(·, u(·), u) is HL integrable for all u ∈ L1(J,E).
(gb) If u ≤ v in L1(J,E), then g(s, u(s), u) ≤ g(s, v(s), v) for a.e. s ∈ J .
(gc) The sequence (K

∫ b
a
g(s, un(s), un) ds)∞n=0 is bounded whenever (un)∞n=0

is a monotone sequence in L1(J,E).

Theorem 7.24. Under hypotheses (h), (ga), (gb), and (gc), the equation
(7.36) has

(a) minimal and maximal solutions;
(b) the smallest and greatest solutions u∗ and u∗, respectively, within the order

interval [u, u] of L1(J,E), where u is the greatest solution of the equation

u(t) = −
(
−h(t, u)− K

∫ t

a

g(s, u(s), u)ds
)+

, t ∈ J,

and u is the smallest solution of the equation
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u(t) =
(
h(t, u) + K

∫ t

a

g(s, u(s), u)ds
)+

, t ∈ J.

(c) All the solutions u, u, u∗ and u∗ are increasing with respect to g and h.

Proof: According to hypotheses (h), (ga), and (gb), the relation

Gu(t) = h(t, u) + K

∫ t

a

g(s, u(s), u)ds, t ∈ J, (7.37)

defines a mapping G : L1(J,E) → L1(J,E), which is increasing by Lemma
9.11. To prove that G maps monotone sequences to convergent sequences, let
(un)∞n=0 be an increasing sequence in L1(J,E). Denoting

vn(t) = g(t, un(t), un), wn(t) = K

∫ t

a

vn(s) ds, t ∈ J, n ∈ N, (7.38)

we get increasing sequences of HL integrable functions vn : J → E, and
continuous functions wn : J → E. Thus

0 ≤ wm(t)− wn(t) = K

∫ t

a

(
vm(s)− vn(s)

)
ds ≤ K

∫ b

a

(
vm(s)− vn(s)

)
ds

whenever t ∈ J , and n ≤ m. This result and (6.23) imply the estimate

‖wm(t)− wn(t)‖ ≤

∥∥∥∥∥K
∫ b

a

(
vm(s)− vn(s)

)
ds

∥∥∥∥∥ , n ≤ m. (7.39)

Hypothesis (gc) implies that the sequence (K
∫ b
a
vn(s) ds)∞n=0 is bounded in E.

This sequence is also increasing in view of Lemma 9.11. Moreover, the order
cone of E is normal by (6.23), and hence fully regular due to Lemma 9.3. Thus
the sequence (K

∫ b
a
vn(s) ds)∞n=0 converges, whence it is a Cauchy sequence in E.

This result and (7.39) imply that (wn)∞n=0 converges uniformly on J , and hence
also in (L1(J,E), ‖ · ‖1). In view of hypothesis (h), the sequence (h(·, un))∞n=0

is increasing and a.e. pointwise bounded by α ∈ L1(J,R+). Thus (h(·, un))∞n=0

converges a.e. pointwise, since the order cone of E is fully regular. These re-
sults and the dominated convergence theorem ensure that (h(·, un))∞n=0 con-
verges in (L1(J,E), ‖ · ‖1). Since Gun(t) = h(t, un) + wn(t) for all t ∈ J
and n ∈ N, the above proof shows that the sequence (Gun)∞n=0 converges in
(L1(J,E), ‖ · ‖1) whenever (un)∞n=0 is an increasing sequence in L1(J,E).

The proof that (Gun)∞n=0 converges in (L1(J,E), ‖ · ‖1) whenever (un)∞n=0

is a decreasing sequence in L1(J,E) is similar.
The above proof shows that G satisfies the hypotheses of Lemma 7.23.

Since solutions of the equation (7.36) and the fixed points of G are the same,
and since G given by (7.37) is increasing with respect to h and g, the conclu-
sions of the theorem follow from Lemma 7.23. ut
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Remark 7.25. The result of Theorem 7.24 can be applied, for instance, to the
following impulsive initial value problem{

u′(t) = g(t, u(t), u) a.e. on J = [a, b],
u(a) = x0, ∆u(λ) = D(λ, u), λ ∈W,

(7.40)

where g : J × E × L1(J,E) → E, x0 ∈ E, ∆u(λ) = u(λ + 0) − u(λ), D :
W × L1(J,E) → E, and W is a well-ordered subset of (a, b).

7.2 Integral Equations in Lp-Spaces

In this section we derive existence and comparison results for functional in-
tegral equations of Urysohn, Fredholm, and Volterra type in Lp-spaces. The
obtained results are applied to initial and boundary value problems of first and
second order impulsive functional differential equations. We also study cases
where ordinary iterative methods are applicable, and use them to solve con-
crete impulsive boundary value problems involving discontinuities and func-
tional dependencies. The main features of this section are:

– The functions in the considered integral equations may be discontinuous in
all their arguments.

– The usual hypotheses dealing with equations in ordered Banach spaces,
such as normality, (full) regularity and/or solidity of their order cones,
are not assumed in our main theorems.

– Neither subsolutions nor supersolutions are required in our study.

7.2.1 Preliminaries

Let Ω = (Ω,A, µ) be a σ-finite measure space, and let E be a lattice-ordered
Banach space that has the following properties.

(E0) Bounded and increasing sequences of E have weak limits.
(E1) The mapping E 3 x 7→ x+ := sup{0, x} is demicontinuous, and ‖x+‖ ≤

‖x‖, x ∈ E.

Recall that since E is lattice-ordered, then x− := sup{0,−x} can be rep-
resented in the form x− = x+ − x. Consequently, if E has property (E1),
then also the mapping x 7→ x− is demicontinuous. Applying Proposition 9.2,
property (E1), and the definitions of the p-norms, we obtain the following
result.

Lemma 7.26. Let E be a lattice-ordered Banach space with property (E1). If
u ∈ Lp(Ω,E), 1 ≤ p ≤ ∞, then the mappings u± := t 7→ u(t)± are also in
Lp(Ω,E). Moreover, ‖u±‖p ≤ ‖u‖p.
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Assume that Lp(Ω,E) is ordered a.e. pointwise, i.e.,

u ≤ v if and only if u(t) ≤ v(t) for a.e. t ∈ Ω. (7.41)

Given w ∈ Lp(Ω,R+), denote

P = {u ∈ Lp(Ω,E) : ‖u(t)‖ ≤ w(t) for a.e. t ∈ Ω}. (7.42)

Our main existence and comparison results are based on the following fixed
point result.

Proposition 7.27. Let E be a lattice-ordered Banach space with properties
(E0) and (E1), let P be given by (7.42) with w ∈ Lp(Ω,R+) and p ∈ [1,∞],
and assume that G : P → P is an increasing mapping. Then

(a) G has minimal and maximal fixed points;
(b) Equation u = inf{0, Gu} has the greatest solution u, and equation u =

sup{0, Gu} has the smallest solution u.
(c) G has the smallest and greatest fixed points u∗ and u∗ in [u, u] ∩ P .

Moreover, u, u, u∗, and u∗ are increasing with respect to G.

Proof: If C is a well-ordered subset of G[P ], then C is norm-bounded and
a.e. pointwise bounded subset of P . Thus C contains by Proposition 9.34 a
sequence (un) that converges a.e. pointwise weakly to u = supC. Moreover,

‖u(t)‖ ≤ lim inf
n→∞

‖un(t)‖ ≤ w(t) for a.e. t ∈ Ω,

whence u = supC ∈ P . Because inf C = minC, then inf C ∈ P . If D is a
nonempty and inversely well-ordered subset of P , then C = −D is nonempty,
well-ordered, norm-bounded and a.e. pointwise bounded subset of −P = P ,
whence supC exists in P by the above proof. Thus infD = − supC exists
and belongs to P . Moreover, supD = maxD ∈ P . If u ∈ P , then u+ = t 7→
sup{0, u(t)} belongs to Lp(Ω,E) by Lemma 7.26. Property (E1) and (7.42)
imply that

‖u+(t)‖ = ‖u(t)+‖ ≤ ‖u(t)‖ ≤ w(t) for a.e. t ∈ Ω.

Thus u+ = sup{0, u} ∈ P . The proof that inf{0, u} exists in Lp(Ω,E) and
belongs to P is similar, whence 0 is an order center of P . The assertions follow
then from Theorem 2.17. ut

7.2.2 Urysohn Equations

Let E be an ordered Banach space, and let Ω = (Ω,A, µ) be a σ-finite mea-
sure space. In this section we derive existence and comparison results for the
functional integral equation
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u(t) = h(t, u) + λ

∫
Ω

f(t, s, u(s), u) dµ(s), t ∈ Ω, (7.43)

where h : Ω × Lp(Ω,E) → E, f : Ω × Ω × E × Lp(Ω,E) → E, 1 ≤ p ≤ ∞,
and λ ≥ 0. Assuming that Lp(Ω,E) is equipped with a.e. pointwise ordering
(7.41), we impose the following hypotheses on the functions h and f .

(f0) f(t, ·, u(·), u) is integrable for each t ∈ Ω and
∫
Ω
f(·, s, u(s), u) dµ(s) is

µ-measurable whenever u ∈ Lp(Ω,E).
(f1) f(t, s, z, u) is increasing with respect to z and u for a.e. (t, s) ∈ Ω ×Ω.
(f2) There exists a β ∈ Lp(Ω,R+) such that ‖

∫
Ω
f(t, s, u(s), u) dµ(s)‖ ≤ β(t)

for all u ∈ Lp(Ω,E) and for a.e. t ∈ Ω.
(h0) h(t, ·) is increasing for a.e. t ∈ Ω, and h(·, u) is µ-measurable for all

u ∈ Lp(Ω,E).
(h1) There exists an α ∈ Lp(Ω,R+) such that ‖h(t, u)‖ ≤ α(t) for all u ∈

Lp(Ω,E) and for a.e. t ∈ Ω.

As a consequence of Proposition 7.27 we get the following results.

Theorem 7.28. Let E be a lattice-ordered Banach space with properties (E0)
and (E1), and assume that the hypotheses (f0)–(f2), (h0), and (h1) are satis-
fied. Then the equation (7.43) has minimal and maximal solutions for every
λ ≥ 0. It has also the smallest and greatest solutions u− and u+ in [u, u],
where u is the greatest solution of the integral equation

u(t) = −(h(t, u) + λ

∫
Ω

f(t, s, u(s), u) dµ(s))−, t ∈ Ω, (7.44)

and u is the smallest solution of the integral equation

u(t) = (h(t, u) + λ

∫
Ω

f(t, s, u(s), u) dµ(s))+, t ∈ Ω. (7.45)

Moreover, the solutions u, u, u−, and u+ are increasing with respect to h and
f .

Proof: Let λ ≥ 0 be given, and let P be defined by (7.42), with w = α+ λβ,
where α and β are as in (f2) and (h1). The given hypotheses imply that the
relation

Gu(t) = h(t, u) + λ

∫
Ω

f(t, s, u(s), u) dµ(s), t ∈ Ω, (7.46)

defines a mapping G : Lp(Ω,E) → P . Because λ ≥ 0, the hypotheses (f1) and
(h0) and Lemma 9.4 imply that if u, v ∈ P and u ≤ v, then

Gu(t) =h(t, u) + λ

∫
Ω

f(t, s, u(s), u) dµ(s)

≤ h(t, v) + λ

∫
Ω

f(t, s, v(s), v) dµ(s) = Gv(t)
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for a.e. t ∈ Ω. This proves that G is increasing. Thus the hypotheses of
Proposition 7.27 are valid. Since G[Lp(Ω,E)] ⊆ P , then the following results
hold:

(a) G has minimal and maximal fixed points.
(b) Equation u = inf{0, Gu} has the greatest solution u, and equation u =

sup{0, Gu} has the smallest solution u in P .
(c) G has the smallest and greatest fixed points u− and u+ in [u, u].
(d) The solutions u, u, u−, and u+ are increasing with respect to G.

From (7.46), (7.44), and (7.45), it follows that minimal and maximal fixed
points of G are minimal and maximal solutions of (7.43) in P , that u is the
greatest solution of (7.44) in P , that u is the smallest solution of (7.45) in
P , and that u− and u+ are the smallest and greatest solutions of (7.43) in
[u, u] ∩ P . Moreover, by the hypotheses (f1) and (h0) and Lemma 9.4, the
operator G is increasing with respect to the functions h and f . This result
along with (d) imply that the solutions u, u, u−, and u+ of (7.43) are increasing
with respect to h and f . ut

Next we consider the cases when the extremal solutions of the integral
equation (7.43) can be obtained by successive approximations.

Proposition 7.29. Let E be a lattice-ordered Banach space with properties
(E0) and (E1), assume that the hypotheses (f0)–(f2), (h0), and (h1) are sat-
isfied, and that the following hypothesis holds:

(D) h(t, un) ⇀ h(t, u) and f(t, s, un(s), un) ⇀ f(t, s, u(s), u) for a.e. t, s ∈ Ω
if (un) is a bounded and monotone sequence in P and un(s) ⇀ u(s) for
a.e. s ∈ Ω.

Then the successive approximations:

(a) an+1(t) = −(h(t, an) + λ
∫
Ω
f(t, s, an(s), an) dµ(s))−, t ∈ Ω, a0 = 0,

converge weakly a.e. pointwise to the greatest solution u of (7.44);
(b) bn+1(t) = (h(t, bn) + λ

∫
Ω
f(t, s, bn(s), bn) dµ(s))+, t ∈ Ω, b0 = 0,

converge weakly a.e. pointwise to the smallest solution u of (7.45);
(c) un+1(t) = h(t, un) + λ

∫
Ω
f(t, s, un(s), un) dµ(s), t ∈ Ω, u0 = u,

converge weakly a.e. pointwise to the smallest solution u− of (7.43) in
[u, u];

(d) vn+1(t) = h(t, vn) + λ
∫
Ω
f(t, s, vn(s), vn) dµ(s), t ∈ Ω, v0 = u,

converge weakly a.e. pointwise to the greatest solution u+ of (7.43) in
[u, u].

Proof: Let us prove assertion (b). It follows from (7.45) and (b) that bn(t) =
sup{0, Gn0(t)} for each n ∈ N0, where G : Lp(Ω,E) → P is defined by (7.46).
Since G is increasing, then

0 ≡ b0(t) ≤ b1(t) ≤ · · · ≤ bn(t)
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for a.e. t ∈ Ω. In particular, (bn) is increasing, bounded, and a.e. pointwise
bounded. Thus the a.e. pointwise weak limit u of (bn) exists. Moreover, u =
supn bn belongs to P . The hypothesis (D) implies that

ϕ(f(t, s, bn(s), bn)) → ϕ(f(t, s, u(s), u)) for a.e. t, s ∈ Ω and for all ϕ ∈ E′.

This result and the Dominated Convergence Theorem yield∫
Ω

ϕ(f(t, s, bn(s), bn) dµ(s)) →
∫
Ω

ϕ(f(t, s, u(s), u)) dµ(s),

or equivalently,

ϕ
(∫

Ω

f(t, s, bn(s), bn) dµ(s)
)
→ ϕ

(∫
Ω

f(t, s, u(s), u) dµ(s)
)

for a.e. t ∈ Ω and for all ϕ ∈ E′. In view of this result and the hypothesis (D)
we have h(t, bn) ⇀ h(t, u) and∫

Ω

f(t, s, bn(s), bn) dµ(s) ⇀
∫
Ω

f(t, s, u(s), u) dµ(s)

for a.e. t ∈ Ω. By property (E1), and passing to the limit as n → ∞ in (b),
it then follows that u is a solution of (7.45). By standard arguments one can
show that u is the smallest solution of (7.45). Similar arguments apply to
show the following results:

– The sequence (an) defined in (a) is decreasing, equals to (inf{0, Gn0}),
where G : Lp(Ω,E) → P is defined by (7.46), and converges weakly a.e.
pointwise to the greatest solution u of (7.44);

– The sequence (un) defined in (c) is increasing, equals to (Gnu), where G :
Lp(Ω,E) → P is defined by (7.46), and converges weakly a.e. pointwise
to the smallest solution u∗ of (7.43) in [u, u];

– The sequence (vn) defined in (d) is decreasing, equals to (Gnu), where G :
Lp(Ω,E) → P is defined by (7.46), and converges weakly a.e. pointwise
to the greatest solution u∗ of (7.43) in [u, u].

ut

7.2.3 Fredholm Integral Equations

In this section we derive existence and comparison result for the functional
Fredholm integral equation

u(t) = h(t, u) + λ

∫
Ω

k(t, s)g(s, u(s), u) dµ(s), t ∈ Ω, (7.47)

where h : Ω × Lp(Ω,E) → E, g : Ω × E × Lp(Ω,E) → E, 1 ≤ p ≤ ∞,
k : Ω × Ω → R+, and λ ≥ 0. Assuming that Lp(Ω,E) is equipped with a.e.
pointwise ordering (7.41), we impose the following hypotheses on the functions
g, h, and k.
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(g0) g(·, u(·), u) is µ-measurable for each u ∈ Lp(Ω,E).
(g1) g(s, x, u) is increasing with respect to x and u for a.e. s ∈ Ω.
(g2) There exists an m ∈ Lp(Ω,R) such that ‖g(s, x, u)‖ ≤ ‖x‖ + m(s) for

a.e. s ∈ Ω ×Ω and all x ∈ E, u ∈ Lp(Ω,E),
(h0) h(t, ·) is increasing for a.e. t ∈ Ω, and h(·, u) is µ-measurable for all

u ∈ Lp(Ω,E).
(h1) There exists an α ∈ Lp(Ω,R+) such that ‖h(t, u)‖ ≤ α(t) for a.e. t ∈ Ω

and all u ∈ Lp(Ω,E).
(k0) k : Ω × Ω → R+ is product measurable, and there exists a K ≥ 0 such

that
∫
Ω
k(t, s) dµ(s) ≤ K for each t ∈ Ω and

∫
Ω
k(t, s) dµ(t) ≤ K for

each s ∈ Ω.

Lemma 7.30. Assume that 0 ≤ λ ρ(T ) < 1, where ρ(T ) is the spectral radius
of the operator T : Lp(Ω,R) → Lp(Ω,R) defined by

Tw(t) =
∫
Ω

k(t, s)w(s) dµ(s), t ∈ Ω. (7.48)

Then the integral equation

w(t) = α(t) + λ

∫
Ω

k(t, s)(w(s) +m(s)) dµ(s) (7.49)

has a unique solution w ∈ Lp(Ω,R+).

Proof: The hypothesis (k0) implies by [164, VII, Theorem 5.6] that (7.48)
defines an operator T : Lp(Ω,R) → Lp(Ω,R), and that

‖Tw‖p ≤ K ‖w‖p for each w ∈ Lp(Ω,R).

Thus T is a bounded and linear operator. If 0 ≤ λ ρ(T ) < 1, where ρ(T )
is the spectral radius of T , then for each v ∈ Lp(Ω,R) the function w =∑∞
n=0(λT )nv is the unique solution of equation

w = v + λTw.

This result and (7.48) imply, by choosing

v(t) = α(t) + λ

∫
Ω

k(t, s)m(s) dµ(s),

where α and m are as in (h1) and (g2), that w is the unique solution of the
integral equation (7.49). ut

As an application of Proposition 7.27 and Lemma 7.30 we prove the fol-
lowing existence and comparison result for the integral equation (7.47).

Proposition 7.31. Assume that E is a lattice-ordered Banach space with
properties (E0) and (E1), and that g, h, and k satisfy the hypotheses (g0)–
(g2), (h0), (h1), and (k0). Assume that 0 ≤ λ ρ(T ) < 1, where ρ(T ) is the
spectral radius of the operator T : Lp(Ω,R) → Lp(Ω,R), defined by (7.48).
Then the equation (7.47) has
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(a) minimal and maximal solutions,
(b) the smallest and greatest solutions u− and u+ in [u, u], where u is the

greatest solution of the integral equation

u(t) = −(h(t, u) + λ

∫
Ω

k(t, s)g(s, u(s), u) dµ(s))−, t ∈ Ω,

and u is the smallest solution of the integral equation

u(t) = (h(t, u) + λ

∫
Ω

k(t, s)g(s, u(s), u) dµ(s))+, t ∈ Ω.

Moreover, the solutions u− and u+ are increasing with respect to h and f .

Proof: Let w ∈ Lp(Ω,R) be the unique solution of the integral equation
(7.49), and let P ⊂ Lp(Ω,E) be defined by (7.49). If u ∈ P , the hypotheses
(h1) and (g2) imply that

‖h(t, u‖ ≤ α(t), for a.e. t ∈ Ω, and
‖g(s, u(s), u)‖ ≤ ‖u(s)‖+m(s) ≤ w(s) +m(s) for a.e. s ∈ Ω.

The above inequalities and the hypotheses (g0), (h0), and (k0) imply that the
relation

Gu(t) = h(t, u) + λ

∫
Ω

k(t, s)g(s, u(s), u) dµ(s) (7.50)

defines a mapping G : P → Lp(Ω,E), and the following estimate holds:

‖Gu(t)‖ ≤ ‖h(t, u‖+ λ

∫
Ω

k(t, s)‖g(s, u(s), u)‖ dµ(s)

≤ α(t) + λ

∫
Ω

k(t, s)(‖u(s)‖+m(s)) dµ(s)

≤ α(t) + λ

∫
Ω

k(t, s)(w(s) +m(s)) dµ(s) = w(t)

for a.e. t ∈ Ω. This proves that G[P ] ⊂ P . Because λ ≥ 0 and k is nonnegative-
valued, the hypotheses (g1) and (h0) and Lemma 9.4 imply that if u, v ∈ P
and u ≤ v, then

Gu(t) =h(t, u) + λ

∫
Ω

k(t, s)g(s, u(s), u) dµ(s)

≤ h(t, v) + λ

∫
Ω

k(t, s)g(s, v(s), v) dµ(s) = Gv(t)

for a.e. t ∈ Ω, which shows that G is increasing. Thus the hypotheses of
Proposition 7.27 are valid. Hence it is enough to show that

– all the solutions of (7.48) are contained in P .
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So, let u ∈ Lp(Ω,E) be a solution of (7.47). Applying (h1) and (f2) we get

‖u(t)‖ ≤ ‖h(t, u‖+ λ

∫
Ω

k(t, s)‖g(s, u(s), u)‖ dµ(s)

≤ α(t) + λ

∫
Ω

k(t, s)(‖u(s)‖+m(s)) dµ(s)

for a.e. t ∈ Ω. Thus the function q = t 7→ ‖u(t)‖ satisfies the inequality

q(t) ≤ α(t) + λ

∫
Ω

k(t, s)(q(s) +m(s)) dµ(s)

for a.e. t ∈ Ω. Denoting v(t) = α(t) + λ
∫
Ω
k(t, s)m(s) dµ(s), then the above

inequality can be rewritten as

q ≤ v + λTq,

where T is defined by (7.48). Since k is nonnegative-valued, then the operator
T is positive. Thus the above inequality and the Abstract Gronwall Lemma
(cf. [228, Proposition 7.15]) imply that q ≤ w. Thus ‖u(t)‖ ≤ w(t) for a.e.
t ∈ Ω, so that u ∈ P . The assertions follow now from Proposition 7.27 and
from (7.50). ut

Assume next that E is a weakly sequentially complete Banach lattice, i.e.,
E is lattice-ordered, its weak Cauchy sequences posses weak limits, and the
norm ‖ · ‖ of E and its valuation E 3 x 7→ |x| = sup{x,−x} satisfy

(E) ‖x‖ ≤ ‖y‖ whenever x, y ∈ E and |x| ≤ |y|.

As an application of Proposition 2.18 we shall prove that the integral equation
(7.47) has the smallest and greatest solution when the hypotheses (f2) and
(h1) in Proposition 7.31 are replaced by the following hypotheses.

(f3) There exists an m ∈ Lp(Ω,E) such that |g(s, x, u)| ≤ |x|+m(s) for a.e.
s ∈ Ω and all x ∈ E, u ∈ Lp(Ω,E).

(h2) There exists an α ∈ Lp(Ω,E) such that |h(t, u)| ≤ α(t) for a.e. t ∈ Ω
and all u ∈ Lp(Ω,E).

Proposition 7.32. Assume that E is a weakly sequentially complete Banach
lattice, and that g, h, and k satisfy the hypotheses (g0), (g1), (g3), (h0),
(h2), and (k0). Then the integral equation (7.43) has the smallest and greatest
solutions in Lp(Ω,E) whenever 0 ≤ λ ρ(T ) < 1, where ρ(T ) is the spectral
radius of the operator T : Lp(Ω,E) → Lp(Ω,E), defined by

Tw(t) =
∫
Ω

k(t, s)w(s) dµ(s), t ∈ Ω. (7.51)

Moreover, these extremal solutions of (7.43) are increasing with respect to h
and f .
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Proof: As in the proof of Lemma 7.30 one can show that the following results
hold.

– The equation (7.51) defines a bounded and linear operator T : Lp(Ω,E) →
Lp(Ω,E).

If 0 ≤ λ ρ(T ) < 1, then for each v ∈ Lp(Ω,E) the function b =
∑∞
n=0(λT )nv

is the unique solution of the integral equation

u(t) = α(t) + λ

∫
Ω

k(t, s)(u(s) +m(s)) dµ(s) (7.52)

in Lp(Ω,E+). If u ∈ [−b, b], or equivalently, if |u(t)| ≤ b(t) for a.e t ∈ Ω, the
hypothesis (g3) implies that

|g(s, u(s), u)| ≤ |u(s)|+m(s) ≤ b(s) +m(s) for a.e. s ∈ Ω.

By means of the last inequality, and hypothesis (h2) as well as (E), we get

‖h(t, u‖ ≤ ‖α(t)‖, for a.e. t ∈ Ω, and
‖g(s, u(s), u)‖ ≤ ‖u(s)‖+ ‖m(s)‖ ≤ ‖b(s)‖+ ‖m(s)‖ for a.e. s ∈ Ω.

By the last inequalities along with hypotheses (g0), (h0), and (k0), we infer
that the relation (7.50) defines a mapping G : [−b, b] → Lp(Ω,E). If u ∈
[−b, b], then

|Gu(t)| ≤|h(t, u|+ λ

∫
Ω

k(t, s)|g(s, u(s), u)| dµ(s)

≤ α(t) + λ

∫
Ω

k(t, s)(|u(s)|+m(s)) dµ(s)

≤ α(t) + λ

∫
Ω

k(t, s)(b(s) +m(s)) dµ(s) = b(t)

for a.e. t ∈ Ω. This proves that G[−b, b] ⊂ [−b, b]. Moreover, if u ∈ [−b, b],
then |Gu(t)| ≤ b(t) by the above proof, and hence ‖Gu(t)‖ ≤ ‖b(t)‖ for a.e.
t ∈ Ω by (E). This result implies that ‖Gu‖p ≤ ‖b‖p for each u ∈ [−b, b],
so that G[−b, b] is a bounded subset of [−b, b]. The order cone of a weakly
sequentially complete Banach lattice is regular by Lemma 9.3. Thus all chains
of [−b, b] have supremums and infimums in [−b, b] by [133, Propositions 1.3.2,
5.8.7, and 5.8.8]. The above proof shows that all the hypotheses of Proposition
2.18 hold when P = [−b, b]. Thus G has the smallest and greatest fixed points
u∗ and u∗, which by (7.50) are the smallest and greatest solutions of the
integral equation (7.47) in [−b, b]. To prove that u∗ and u∗ are the smallest
and greatest of all the solutions of (7.47) in Lp(Ω,E), it is enough to show
that all the solutions of (7.47) are contained in [−b, b]. So, let u ∈ Lp(Ω,E)
be a solution of (7.47). Applying (h2) and (g3) we get
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|u(t)| ≤|h(t, u|+ λ

∫
Ω

k(t, s)|g(s, u(s), u)| dµ(s)

≤ α(t) + λ

∫
Ω

k(t, s)(|u(s)|+m(s)) dµ(s)

for a.e. t ∈ Ω. Thus the function q = t 7→ |u(t)| satisfies the inequality

q(t) ≤ α(t) + λ

∫
Ω

k(t, s)(q(s) +m(s)) dµ(s)

for a.e. t ∈ Ω. Denoting v(t) = α(t) + λ
∫
Ω
k(t, s)m(s) dµ(s), then the above

inequality can be rewritten as

q ≤ v + λTq,

where T is defined by (7.51). Since λ ≥ 0 and k is nonnegative-valued, then the
operator T is positive. Thus the above inequality and the Abstract Gronwall
Lemma (cf. [228, Proposition 7.15]) imply that q ≤ b. Thus |u(t)| ≤ b(t) for
a.e. t ∈ Ω, so that u ∈ [−b, b].

The last assertion follows from the definition (7.50) of G since the fixed
points u∗ and u∗ of G are increasing with respect to G by Proposition 2.18.

ut

Proposition 7.33. If the hypotheses of Proposition 7.32 and the hypothesis

(D’) h(t, un) ⇀ h(t, u) and g(s, un(s), un) ⇀ g(s, u(s), u) for a.e. t, s ∈ Ω if
(un) is a bounded and monotone sequence in P and un(s) ⇀ u(s) for
a.e. s ∈ Ω.

hold, and if 0 ≤ λ ρ(T ) < 1, where ρ(T ) is the spectral radius of the operator T
defined by (7.51), then the smallest solution u∗ and the greatest solution u∗ of
the integral equation (7.47) are strong limits of the successive approximations
(un) and (vn) defined by

un+1(t) = h(t, un) + λ

∫
Ω

k(t, s)g(s, un(s), un) dµ(s), t ∈ Ω, u0 = −b,

vn+1(t) = h(t, vn) + λ

∫
Ω

k(t, s)g(s, vn(s), vn) dµ(s), t ∈ Ω, v0 = b,

where b ∈ Lp(Ω,E) is the solution of the integral equation (7.52).

Remark 7.34. Propositions 7.31 and 7.32 imply existence and comparison re-
sults for the ordinary Fredholm integral equation

u(t) = h(t) +
∫
Ω

k(t, s)q(s, u(s)) dµ(s), t ∈ Ω.

When λ = 0 we obtain existence and comparison results for the functional
equation
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u(t) = h(t, u).

The hypothesis 0 ≤ λ ρ(T ) < 1, where ρ(T ) is the spectral radius of T ,
defined by (7.51), cannot be improved, in general. For instance, if E = R,
Ω = J = [0, 1], and

Tr(t) =
∫
J

k(t, s)r(s) ds, t ∈ J, where k(t, s) =
{

(1− t)s, 0 ≤ s ≤ t,
t(1− s), t ≤ s ≤ 1,

then the integral equation

r(t) = t+ λ

∫
J

k(t, s)r(s) ds, t ∈ J,

or equivalently, the BVP

−r′′(t)) = λ r(t) a.e. on J = [0, 1], r(0) = 0, r(1) = 1,

has no solutions when λ = π2 = 1
ρ(T ) .

The following example illustrates the applicability of the above results
when E = R, Ω = J = [0, 1] and µ is Lebesgue measure.

Example 7.35. Let H be the Heaviside function, and let [z] denote the greatest
integer ≤ z. Consider the following impulsive boundary value problem in
J = [0, 1]:

− u′′(t) = H(1− 2t) +
1
2
[1 + t+ 2u(t)] +

[5
∫ 1

0
u(s)ds]

5 + 5 |[5
∫ 1

0
u(s)ds]|)

a.e. on J,

u(0) = 0, u(1) = u(
1
2
+)− u(

1
2
),

u(
1
2
+)− u(

1
2
) =

1
100

+
[5
∫ 1

0
u(s)ds]

5 + 5 |[5
∫ 1

0
u(s)ds]|

,

(7.53)
where s 7→ [s] again denotes the integer function. The BVP (7.53) can be
converted to the integral equation

u(t) = h(t, u) +
∫
J

k(t, s)g(s, u(s), u) ds, t ∈ J = [0, 1], (7.54)

where
h(t, u) = (1−H(2t− 1))

(
1

100 + [5
R 1
0 u(s)ds]

5+5 |[5
R 1
0 u(s)ds]|

)
,

g(t, x, u) = H(1− 2t) + 1
2 [1 + t+ 2x] + [5

R 1
0 u(s)ds]

5+5 |[5
R 1
0 u(s)ds]|) ,

k(t, s) =
{

(1− t)s, 0 ≤ s ≤ t,
t(1− s), t ≤ s ≤ 1,

(7.55)
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in the sense that (7.53) and (7.54) have the same solutions in the set

Y = {u ∈ L∞(J,R) : t 7→ u(t)− h(t, u) ∈W},

where
W = {w : J → R : w′ is absolutely continuous}.

It is easy to see that the functions g : J × R × L∞(J,R) → R, h : J ×
L∞(J,R) → R and k : J × J → R+, defined by (7.55), satisfy the hypotheses
(g0), (g1), and (g3) with m(s) ≡ 4, (h0), (h1), and (k0). If T is defined by
(7.51), with k defined by (7.55), then ρ(T ) = 1

π2 < 1. Thus the integral
equation (7.54), and hence also the BVP (7.53), has by Proposition 7.32 the
smallest and greatest solutions, and they belong to the order interval [−b, b],
where b is the solution of the integral equation (7.52) with α(t) ≡ 1 and k
given by (7.55), or equivalently, the solution of the BVP

−u′′(t) = u(t) + 4 t ∈ J = [0, 1], u(0) = u(1) = 1.

Thus
b(t) = 5

1− cos 1
sin 1

sin t+ 5 cos t− 4, t ∈ J. (7.56)

Because the Heaviside function H and the greatest integer function [·] are
right-continuous, then also the hypothesis (D′) of Proposition 7.33, restricted
to decreasing sequences (un) of L∞(J,R), holds for the functions h and g
defined by (7.55). Thus the greatest solution u∗ of (7.53) can be obtained as the
limit of the sequence of successive approximations vn defined in Proposition
7.33. In the current case these approximations can be rewritten as

vn+1(t) = h(t, vn)+(1−t)
∫ t

0

s g(s, vn(s), vn) ds+t
∫ 1

t

(1−s)g(s, vn(s), vn) ds,

t ∈ J , v0 = b, where g, h, and b are given by (7.55) and (7.56). Calculat-
ing these approximations numerically by the Simpson rule, one obtains the
following estimates:

∫ 1

0
u∗(s) ds ≈ .2008 and

(u∗)′′(t) ≈
{
−2, 0 < t < .5,
−1.5, .5 < t < 1.

In view of these estimates and (7.53), one can infer that the greatest solution
of (7.53) is of the form

u∗(t) =
{
u1(t) = −t2 + b1 t, 0 ≤ t ≤ 1

2 ,
u2(t) = − 3

4 t
2 + b2 t+ 3

4 − b2 + 1
100 + 1

10 ,
1
2 < t ≤ 1. (7.57)

It remains to determine the constants b1 and b2. Because the function t 7→
u∗(t)−h(t, u∗) and its derivative are continuous at t = 1

2 , we get two equations,
from which we get
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b1 =
15
16
, b2 =

11
16
.

Inserting these values to (7.57) we get the following exact formula for the
greatest solution of the BVP (7.53):

u∗(t) =
{
−t2 + 15

16 t, 0 ≤ t ≤ 1
2 ,

− 3
4 t

2 + 11
16 t+ 69

400 ,
1
2 < t ≤ 1. (7.58)

In this case also the smallest solution u∗ of (7.53) can be obtained as the limit
of successive approximations

un+1(t) = h(t, un)+(1−t)
∫ t

0

s g(s, un(s), un) ds+t
∫ 1

t

(1−s)g(s, un(s), un) ds,

t ∈ J , u0 = −w, where g, h, and w are given by (7.55) and (7.56). In this case
we get the following estimates:

∫ 1

0
u∗(s) ds ≈ −.0033 and

(u∗)′′(t) ≈
{
−1, 0 < t < .5,
0 .5 < t < 1.

From these estimates we can infer, as above, the following exact formula for
u∗ :

u∗(t) =
{
− 1

2 t
2 + 3

8 t, 0 ≤ x ≤ 1
2 ,

− 1
8 t+ 7

200 ,
1
2 < t ≤ 1. (7.59)

7.2.4 Volterra Integral Equations

Let E be a lattice-ordered Banach space that has properties (E0) and (E1),
and let J be a real interval with t0 its left endpoint. In this subsection we
study the functional Volterra integral equation

u(t) = h(t, u) +
∫ t

t0

f(t, s, u(s), u) ds, t ∈ J, (7.60)

where h : J × Lp(J,E) → E, f : Λ × E × Lp(J,E) → E, 1 ≤ p ≤ ∞, and
Λ = {(t, s) ∈ J × J : a ≤ s ≤ t}. For given w ∈ Lp(J,R+), we introduce P by

P = {u ∈ Lp(J,E) : ‖u(t)‖ ≤ w(t) for a.e. t ∈ J}. (7.61)

Hypothesis (E1) implies that the mapping v+ = sup{0, v} = t 7→ sup{0, v(t)}
belongs to Lp(J,E) for each v ∈ Lp(J,E), and ‖v+(t)‖ ≤ ‖v(t)‖ for all t ∈ J .
These properties ensure that v+ = sup{0, v}, and hence also v− = sup{0,−v}
as well as inf{0, v} = −v− belong to P for each v ∈ P .

Assuming that Lp(J,E) is equipped with the a.e. pointwise ordering, we
impose the following hypotheses on the functions h and f .

(h0) h(t, ·) is increasing for a.e. t ∈ J , h(·, u) is strongly measurable for all
u ∈ Lp(J,E), and there exists an α ∈ Lp(J,R) such that ‖h(t, u)‖ ≤ α(t)
for a.e. t ∈ J and all u ∈ Lp(J,E).
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(f0) The mappings f(t, ·, u(·), u), t ∈ J , and t 7→
∫ t
t0
f(t, s, u(s), u) ds are

strongly measurable for each u ∈ Lp(J,E).
(f1) f(t, s, z, u) is increasing with respect to z and u for a.e. (t, s) ∈ Λ.
(f2) ‖f(t, s, x, u)‖ ≤ g(t, s, ‖x‖) for a.e. (t, s) ∈ Λ and all x ∈ E, u ∈ Lp(J,E),

where g : Λ×R+ → R+, g(t, s, r) is increasing in r for a.e. (t, s) ∈ Λ, the
functions g(t, ·, w(·)) and t 7→

∫ t
t0
g(t, s, w(s)) ds are Lebesgue integrable

for each w ∈ Lp(J,R), and the integral equation

w(t) = β(t) +
∫ t

t0

g(t, s, w(s)) ds, t ∈ J (7.62)

has for each β ∈ Lp(J,R+) the greatest solution in Lp(J,R+).

As an application of Proposition 7.27 we shall first prove an existence and
comparison result for the integral equation (7.60) under the hypotheses given
above.

Theorem 7.36. Let E be a lattice-ordered Banach space with properties (E0)
and (E1), and assume that the hypotheses (f0), (f1), (f2), and (h0) are satis-
fied. Then the equation (7.60) has

(a) minimal and maximal solutions in Lp(J,E);
(b) the smallest and greatest solutions u∗ and u∗ in [u, u], where u is the

greatest solution of the integral equation

u(t) = −
(
h(t, u) +

∫ t

t0

f(t, s, u(s), u) ds
)−
, t ∈ J, (7.63)

and u is the smallest solution of the integral equation

u(t) =
(
h(t, u) +

∫ t

t0

f(t, s, u(s), u) ds
)+

, t ∈ J (7.64)

in Lp(J,E).

Moreover, the solutions u∗ and u∗ are increasing with respect to h and f .

Proof: Let P be given by (7.61), where w ∈ Lp(J,R+) is the greatest solution
of (7.62) with β = α. We shall first show that the relation

Gu(t) = h(t, u) +
∫ t

t0

f(t, s, u(s), u) ds, t ∈ J, (7.65)

defines a mapping G : P → P . If u ∈ P , then ‖u(t)‖ ≤ w(t) for a.e. t ∈ J .
Applying the hypotheses (h0) and (f2) we obtain

‖Gu(t)‖ ≤ ‖h(t, u)‖+
∫ t

t0

‖f(t, s, u(s), u)‖ ds

≤ α(t) +
∫ t

t0

g(t, s, w(s)) ds = w(t)
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for a.e. t ∈ J . This result implies that G maps P into P . If u, v ∈ Lp(J,E)
and u ≤ v, then by means of hypotheses (f1) and (h0) we get

Gu(t) = h(t, u) +
∫ t

t0

f(t, s, u(s), u) ds

≤ h(t, v) +
∫ t

t0

f(t, s, v(s), v) ds = Gv(t)

for a.e. t ∈ J . This proves that G is increasing. Thus the hypotheses of Propo-
sition 7.27 hold for G : P → P defined by (7.65). Assume next that u is a
solution of (7.60) in Lp(J,E), and let w denote the greatest solution of (7.62)
with β(t) = max{‖u(t)‖, α(t)}. Then for t ∈ J we obtain

‖u(t)‖ ≤ ‖h(t, u)‖+
∫ t

t0

‖f(t, s, u(s), u)‖ ds ≤ α(t) +
∫ t

t0

g(t, s, ‖u(s)‖) ds

≤ α(t) +
∫ t

t0

g(t, s, w(s)) ds ≤ β(t) +
∫ t

t0

g(t, s, w(s)) ds = w(t).

Thus, denoting w = t 7→ ‖u(t)‖, the relation

Qv(t) = α(t) +
∫ t

t0

g(t, s, v(s)) ds, t ∈ J (7.66)

defines an increasing mapping Q from the order interval [w,w] of Lp(J,R) into
itself. From [133, Theorem 1.2.3 and Proposition 5.8.9] it follows that Q has a
fixed point in [w,w]. But w, as the greatest solution of (7.62), is the greatest
fixed point of Q, whence ‖u(t)‖ = w(t) ≤ w(t) for a.e. t ∈ J . This proves
that all the solutions of (7.60) are contained in P . Because of the property
(E1) of E, by a similar reasoning one shows that all the solutions of (7.63)
and (7.64) belong to P . Noticing also that fixed points of G defined by (7.65)
are solutions of (7.60) and vice versa, the assertions follow from Proposition
7.27. ut

Next we consider situations in which the extremal solutions of the integral
equation (7.60) can be obtained by successive approximations.

Proposition 7.37. Let E be a lattice-ordered Banach space with properties
(E0) and (E1). Assume that the hypotheses (f0), (f1), (f2), and (h0) hold,
and, moreover, that the following hypothesis is fulfilled:

(B) h(t, un) ⇀ h(t, u) for a.e. t ∈ J and f(t, s, un(s), un) ⇀ f(t, s, u(s), u)
for a.e. (t, s) ∈ Λ provided that (un) is a monotone sequence in Lp(J,E)
and un(s) ⇀ u(s) for a.e. s ∈ J .

Then the successive approximations:

(a) an+1(t) = −(h(t, an) +
∫ t
t0
f(t, s, an(s), an) ds)−, t ∈ J, a0 = 0,

converge weakly a.e. pointwise to the greatest solution u of (7.63);
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(b) bn+1(t) = (h(t, bn) +
∫ t
t0
f(t, s, bn(s), bn) ds)+, t ∈ J, b0 = 0,

converge weakly a.e. pointwise to the smallest solution u of (7.64);
(c) un+1(t) = h(t, un) +

∫ t
t0
f(t, s, un(s), un) ds, t ∈ J, u0 = u,

converge weakly a.e. pointwise to the smallest solution u∗ of (7.60) in
[u, u];

(d) vn+1(t) = h(t, vn) +
∫ t
t0
f(t, s, vn(s), vn) ds, t ∈ J, v0 = u,

converge weakly a.e. pointwise to the greatest solution u∗ of (7.60) in [u, u].

Proof: The hypotheses (h0) and (f1) imply that the sequences (bn) and (un)
are increasing, and that the sequences (an) and (vn) are decreasing. Moreover,
all these sequences are contained in P , defined by (7.61), whence they are a.e.
pointwise bounded. Thus it follows from the hypothesis (E0) that all these
sequences possess the asserted a.e. pointwise weak limits a, u∗, b, and u∗. It
is easy to see that these limits belong to P . The hypothesis (B) implies that
for a.e. (t, s) ∈ Λ

ϕ(f(t, s, un(s), un)) → ϕ(f(t, s, u∗(s), u∗)) for all ϕ ∈ E′.

This result and the Dominated Convergence Theorem imply that

ϕ
(∫ t

t0

f(t, s, un(s), un) ds
)

=
∫ t

t0

ϕ(f(t, s, un(s), un)) ds

→
∫ t

t0

ϕ(f(t, s, u∗(s), u∗)) ds = ϕ
(∫ t

t0

f(t, s, u∗(s), u∗) ds
)

for all t ∈ J and ϕ ∈ E′. From this result and the hypothesis (B) we obtain

h(t, un) ⇀ h(t, u∗) and
∫ t

t0

f(t, s, un(s), un) ds ⇀
∫ t

t0

f(t, s, u∗(s), u∗) ds

for a.e. t ∈ J. It then follows from (c) as n → ∞ that u∗ is a solution of
(7.60). Similar reasoning shows that u∗ is also a solution of (7.60), that u is a
solution of (7.63), and that u is a solution of (7.64). By standard arguments
one can show that u is the greatest solution of (7.63), that u is the smallest
solution of (7.64), and that u∗ and u∗ are the smallest and greatest solutions
of (7.60) in [u, u]. ut

Remark 7.38. (i) The hypothesis (B) is required to hold only for those iteration
sequences that are defined in Proposition 7.37.

(ii) If the values of h and f are contained in the order cone E+ of E, then
in Theorem 7.36 and in Proposition 7.37, u∗ = u is the smallest solution of
(7.60). Similarly, if the values of h and f are in −E+, then u∗ = u is the
greatest solution of (7.60). Thus the lower and upper bounds u and u of the
solutions u∗ and u∗ cannot be improved, in general.
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7.2.5 Application to Impulsive IVP

The results of Theorem 7.36 will now be applied to the following impulsive
initial value problem{

u′(t) + p(t)u(t) = F (t, u(t), u) a.e. on J = [t0, t1],
u(t0) = x0, ∆u(λ) = H(λ, u), λ ∈W,

(7.67)

where p ∈ L1(J,R), F : J × E × L1(J,E) → E, x0 ∈ E, ∆u(λ) = u(λ +
0) − u(λ), H : W × L1(J,E) → E, and W is a well-ordered (and hence
countable) subset of (t0, t1). Denoting by W<t = {λ ∈ W : λ < t}, t ∈ J ,
and by W 1,1(J,E) the set of all absolutely continuous and a.e. differentiable
functions v : J → E, we say that u : J → E is a solution of problem (7.67) if
it satisfies the equations of (7.67), and if it is contained in the set

V =
{
u : J → E :

∑
λ∈W ‖∆u(λ)‖ <∞, and

t 7→ u(t)−
∑
λ∈W<t ∆u(λ) ∈W 1,1(J,E)

}
.

It is easy to verify that V is a subset of L1(J,E).

We impose the following hypotheses on the functions H and F .

(H0) H(λ, ·) is increasing for all λ ∈W , and there exists an M > 0 such that∑
λ∈W ‖H(λ, u)‖ ≤M for all u ∈ L1(J,E).

(F0) The mapping F (·, u(·), u) is Bochner integrable for each u ∈ L1(J,E).
(F1) F (s, z, u) is increasing with respect to z and u for a.e. s ∈ J .
(F2) ‖F (s, x, u)‖ ≤ q(s)ψ(‖x‖) for a.e. s ∈ J and all x ∈ E, u ∈ L1(J,E),

where q ∈ L1(J,R+), ψ : R+ → (0,∞) is increasing, and
∫∞
0

dx
ψ(x) = ∞.

Theorem 7.39. Let E be a lattice-ordered Banach space with properties (E0)
and (E1), and assume that the hypotheses (F0), (F1), (F2), and (H0) are
satisfied. Then problem (7.67) has for each x0 ∈ E and p ∈ L1(J,R),

(a) minimal and maximal solutions;
(b) the smallest and greatest solutions u∗ and u∗ in [u, u], where u is the

greatest solution of the integral equation

u(t) = −
(
e
−
R t

t0
p(s)ds

x0 +
∑

λ∈W<t

e−
R t

λ
p(s)dsH(λ, u)

+
∫ t

t0

e−
R t

s
p(τ)dτF (s, u(s), u)ds

)−
, (7.68)

and u is the smallest solution of the integral equation

u(t) =
(
e
−
R t

t0
p(s)ds

x0 +
∑

λ∈W<t

e−
R t

λ
p(s)dsH(λ, u)

+
∫ t

t0

e−
R t

s
p(τ)dτF (s, u(s), u)ds

)+

. (7.69)
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Moreover, the solutions u∗ and u∗ are increasing with respect to x0, H, and
F .

Proof: The given hypotheses ensure that for each x0 ∈ E the relations

h(t, u) = e
−
R t

t0
p(s)ds

x0 +
∑

λ∈W<t

e−
R t

λ
p(s)dsH(λ, u), t ∈ J, u ∈ L1(J,E),

f(t, s, x, u) = e−
R t

s
p(τ)dτF (s, x, u), (t, s) ∈ Λ, u ∈ L1(J,E)

(7.70)
define mappings h : J × L1(J,E) → E and f : Λ× E × L1(J,E). Denoting

K = e
R t1

t0
|p(s)|ds, α(t) = (‖x0‖+M)K, t ∈ J,

g(t, s, r) = Kq(s)ψ(r), (t, s) ∈ Λ, r ≥ 0,
(7.71)

it follows that the hypotheses (h0), (f0), (f1), and also (f2) hold with the
exception that β ∈ L1(J,R+) is now replaced in (7.61) by a constant w0 ≥ 0.
By this replacement along with (7.71) we can rewrite (7.66) as

w(t) = w0 +
∫ t

t0

Kq(s)ψ(w(s)) ds, t ∈ J. (7.72)

Hypothesis (F2) in conjunction with [44, Lemma B.7.1] ensure that (7.72)
has a unique absolutely continuous solution. In the proof of Theorem 7.36
we used the functions β = α which is now constant (see (7.71)), and β(t) =
max{α(t), ‖u(t)‖}, t ∈ J , where u is a fixed point of G, i.e., a solution of
(7.60), which in view of (7.70) can be rewritten as

u(t) =e−
R t

t0
p(s)ds

x0 +
∑

λ∈W<t

e−
R t

λ
p(s)dsH(λ, u)

+
∫ t

t0

e−
R t

s
p(τ)dτF (s, u(s), u)ds.

(7.73)

Thus we get

‖u(t)‖ ≤ w0 := (‖x0‖+M)K +
∫ t1

t0

K‖F (s, u(s), u)‖ds, t ∈ J,

and so we can replace the function β(t) = max{α(t), ‖u(t)‖}, t ∈ J in the
proof of Theorem 7.36 by w0. Consequently, the results of Theorem 7.36 hold
for (7.60), or equivalently, for (7.73), which implies the assertions, because the
solutions of problem (7.67) and the solutions of the integral equation (7.73)
are the same due to Lemma 7.17. ut

Remark 7.40. (i) The result of Proposition 7.37 implies that some solutions
of problem (7.67) can be obtained via successive approximations provided H
and F satisfy also the following hypothesis.
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(A) H(λ, un) ⇀ H(λ, u) for all λ ∈W and F (s, un(s), un) ⇀ F (s, u(s), u) for
a.e. s ∈ J if (un) is a monotone sequence in L1(J,E) and un(s) ⇀ u(s)
for a.e. s ∈ J .

(ii) The functional dependence of h, f , H, and F on u may occur, e.g., in
the form of bounded, linear, and positive operators, such as integral operators
of Volterra and/or Fredholm type with nonnegative kernels. Thus the results
derived in this section can be applied also to integro-differential equations.

7.3 Evolution Equations

Let J = [a, b], a < b, be a real interval and E a Banach space. Denote by L(E)
the set of all bounded linear operators on E. Given mappings f : J ×E → E
and T : J × J → L(E), we derive in Sects. 7.3.1–7.3.3 well-posedness results
for continuous solutions of the evolution type integral equation

u(t) = T (t, a)x0 + K

∫ t

a

T (t, s)f(s, u(s))ds, t ∈ J. (7.74)

The obtained results are applied in Sect. 7.3.5 to a Cauchy problem. In Sect.
7.3.6 we study the nonlocal integral equation

u(t) = T (t, a)x0 + K

∫ t

a

T (t, s)g(s, u(s), u)ds, t ∈ J, (7.75)

where g : J × E × Y → E with Y = C(J,E) and E an ordered Banach
space. Our main goal here is to show the existence of continuous extremal
solutions of (7.75) and their dependence on the data of the problem. Section
7.3.7 deals with equation (7.75) in case that Y = L1(J,E) where the integral
is understood as Bochner integral, and T is defined in the set Λ = {(t, s) ∈
J × J : s ≤ t}. As an application we obtain in Sect. 7.3.8 an existence result
for an initial value problem of a second order partial differential equation
involving discontinuous nonlinearities.

7.3.1 Well-Posedness Results

We are going to study first the integral equation (7.74).

Preliminaries

Assume that T : J × J → L(E) satisfies the following conditions.

(T0) T (t, t) = I, and T (t, r) = T (t, s)T (s, r) whenever a ≤ r ≤ s ≤ t ≤ b.
(T1) (t, s) 7→ T (t, s)x is continuous for each x ∈ E.
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From (T1) and the uniform boundedness principle it follows that

M = sup{‖T (t, s)‖ : a ≤ s ≤ t ≤ b} <∞. (7.76)

The following result ensures continuity of the solutions of (7.74) and (7.75).

Lemma 7.41. Let the hypotheses (T0) and (T1) be satisfied. If h : J → E,
if s 7→ T (t, s)h(s) is HL integrable on J for every t ∈ J , and if the function
t 7→ K

∫ t
a
T (t, s)h(s)ds is bounded, then for each x0 ∈ E the equation

u(t) = T (t, a)x0 + K

∫ t

a

T (t, s)h(s)ds, t ∈ J, (7.77)

defines a continuous function u : J → E.

Proof: If a ≤ t ≤ t ≤ b, from (7.77) it follows that

‖u(t)− u(t)‖ ≤ ‖T (t, a)x0 − T (t, a)x0‖+
∥∥∥∥K∫ t

a

(T (t, s)− T (t, s))h(s) ds
∥∥∥∥

+
∥∥∥∥K∫ t

t

T (t, s)h(s) ds
∥∥∥∥

= I1 + I2 + I3, (7.78)

where

I1 = ‖T (t, a)x0 − T (t, a)x0‖,

I2 =
∥∥∥∥K∫ t

a

(T (t, s)− T (t, s))h(s) ds
∥∥∥∥ ≤ ‖T (t, t)− I‖

∥∥∥∥K∫ t

a

T (t, s)h(s) ds
∥∥∥∥

≤ c‖T (t, t)− I‖, (7.79)

I3 =
∥∥∥∥K∫ t

t

T (t, s)h(s) ds
∥∥∥∥.

From (7.79) and applying (T0) and (T1) and the assumption that t 7→
K
∫ t
a
T (t, s)h(s)ds is bounded, it follows that I1 + I2 + I3 → 0 as t → t−.

This implies by (7.78) that ‖u(t) − u(t)‖ → 0 as t → t−. Thus u is left-
continuous. To prove right-continuity of u, notice that I3 can be estimated
by

I3 =
∥∥∥∥K∫ t

t

T (t, s)h(s) ds
∥∥∥∥ =

∥∥∥∥T (t, t)K
∫ t

t

T (t, s)h(s) ds
∥∥∥∥

≤M
∥∥∥∥K∫ t

t

T (t, s)h(s) ds
∥∥∥∥. (7.80)

Thus I1 + I2 + I3 → 0 as t→ t+, so that u is also right-continuous. ut

The following hypotheses are imposed on the function f : J × E → E.
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(fa) f(·, x) is strongly measurable for all x ∈ E.
(fb) There exists an r > 0 such that

‖f(t, y)− f(t, z)‖ ≤ q(t, ‖y − z‖)

for all y, z ∈ E with ‖y − z‖ ≤ r and for a.e. t ∈ J , where
(q) q : J × [0, r] → R+, q(·, x) is measurable for all x ∈ [0, r], q(·, r) ∈

L1(J,R+), q(t, ·) is increasing and right-continuous for a.e. t ∈ J , and
the zero-function is for w0 = 0 the only absolutely continuous (a.c.)
solution of the Cauchy problem

w′(t) = Mq(t, w(t)) a.e. on J, w(a) = w0. (7.81)

(Tf) There exists a z ∈ J such that s 7→ T (t, s)f(s, z) is HL integrable on J

for every t ∈ J , and t 7→ K
∫ t
a
T (t, s)f(s, z)ds is bounded.

The following result is a consequence of Lemma 6.11 with q replaced by
Mq.

Lemma 7.42. Let the hypothesis (q) hold. Then there exists an r0 > 0 such
that for every u0 ∈ [0, r0] the Cauchy problem (7.81) has the smallest a.c.
solution w = w(·, w0), which is increasing with respect to w0. Moreover,
w(t, w0) → 0 uniformly in t ∈ J as w0 → 0+.

7.3.2 Existence and Uniqueness Result

Our main existence and uniqueness result for the integral equation (7.74)
reads as follows.

Theorem 7.43. If the hypotheses (T0), (T1), (Tf), (fa), and (fb) hold, then
for each x0 ∈ E the integral equation (7.74) has a unique solution u in
C(J,E). Moreover, u is the uniform limit of the sequence (un)∞n=0 of the
successive approximations

un+1(t) = T (t, a)x0 + K

∫ t

a

T (t, s)f(s, un(s)) ds, t ∈ J, n ∈ N0, (7.82)

for any choice of u0 ∈ C(J,E).

Proof: The hypothesis (q) imposed on q in (fb) implies by Lemma 7.42 that
the Cauchy problem (7.81) has for some w0 = r0 > 0 the smallest a.c. solution
v = w(·, r0), and r0 ≤ v(t) ≤ r for each t ∈ J . Since q(s, ·) is increasing
and right-continuous in [0, r] for a.e. s ∈ J , and q(·, x) is measurable for all
x ∈ [0, r] as well as q(·, r) is Lebesgue integrable, then q(·, w(·)) is Lebesgue
integrable whenever w belongs to the order interval [0, v] = {w ∈ C(J,R) :
0 ≤ w(t) ≤ v(t), t ∈ J}. Thus the equation



7.3 Evolution Equations 301

Qw(t) =
∫ t

a

Mq(s, w(s)) ds, t ∈ J (7.83)

defines a mapping Q : [0, v] → C(J,R+). Condition (q) ensures that Q is
increasing, and the choice of r0 and v shows that the equation

r0 +Qv = v (7.84)

is valid. Thus Qv(t) < v(t) for every t ∈ J . The sequence (Qnv)∞n=0 is decreas-
ing because q(t, ·) is increasing for a.e. t ∈ J . The reasoning similar to that
used in the proof of Lemma 6.11 shows that (Qnv)∞n=0 converges uniformly
in J to the zero function. Since this function satisfies by (q) the equation
w′(t) = Mq(t, w(t)) for a.e. t ∈ J , then q(t, a) = 0 for a.e. t ∈ J . This result
and hypotheses (fa) and (fb) imply that f is a Carathéodory function. Thus
f(·, u(·)) is strongly measurable in J for all u ∈ C(J,E) due to [133, Theorem
1.4.3]. Let u ∈ C(J,E) and t ∈ J be fixed, and choose by (fa) a z ∈ E so that
s 7→ T (t, s)f(s, z) is HL integrable on J . Defining

yi(s) = z +
i

m
(u(s)− z), i = 0, . . . ,m ≥ max{‖u(t)− z‖ : t ∈ J}

r0
,

we have ‖yi(s)− yi−1(s)‖ ≤ r0 ≤ v(s) in J for each i = 1, . . . ,m, whence

‖f(s, u(s))− f(s, z)‖ ≤
m∑
i=1

‖f(s, yi(s))− f(s, yi−1(s))‖

≤
m∑
i=1

q(s, ‖yi(s)− yi−1(s)‖) ≤
m∑
i=1

q(t, v(s)) =
m

M
v′(s)

for a.e. s ∈ J . This result and the strong measurability of f(·, u(·)) and f(·, z)
imply that f(·, u(·)) − f(·, z) is Bochner integrable. Thus T (t, ·)f(·, u(·)) =
T (t, ·)f(·, z) + T (t, ·)f(·, u(·))− T (t, ·)f(·, z) is HL integrable on J . Moreover,
for each u ∈ C(J,E) and t ∈ J ,∥∥∥∥K∫ t

a

T (t, s)f(s, u(s))ds
∥∥∥∥≤∥∥∥∥K∫ t

a

T (t, s)f(s, z)ds
∥∥∥∥

+M K

∫ b

a

‖f(s, u(s))− f(s, z)‖ds.

This result and the hypothesis (Tf) imply that t 7→ K
∫ t
a
T (t, s)f(s, u(s)) ds is

bounded, and hence continuous by Lemma 7.41. Consequently, for each fixed
x0 ∈ E, the equation

Fu(t) = T (t, a)x0 + K

∫ t

a

T (t, s)f(s, u(s))ds, t ∈ J, (7.85)

defines a mapping F : C(J,E) → C(J,E).
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Next we shall show that denoting |u| = ‖u(·)‖, u ∈ C(J,E), the mappings
Q and F defined by (7.83) and (7.85), respectively, satisfy the hypotheses
of Proposition 6.12. To show that (6.31) holds, let u, ȳ ∈ C(J,E) be given.
The functions T (t, ·)f(·, u(·)) − T (t, ·)f(·, z) and T (t, ·)f(·, ū(·)) − f(·, z) are
Bochner integrable over J for every t ∈ J , see the above proof. Thus the
function T (t, ·)f(·, u(·))− T (t, ·)f(·, ū(·)) is Bochner integrable on J , for each
t ∈ J . This result implies that the function ‖T (t, ·)f(·, ū(·))− T (t, ·)f(·, z)‖ is
Lebesgue integrable on J for every t ∈ J . Moreover, for each t ∈ J we have
the following estimate∥∥∥∥K∫ t

a

T (t, s)f(s, u(s)) ds− K

∫ t

a

T (t, s)f(s, ū(s)) ds
∥∥∥∥

=
∥∥∥∥∫ t

a

T (t, s)(f(s, u(s)) ds− f(s, ū(s))) ds
∥∥∥∥

≤M

∫ t

a

‖f(s, u(s)) ds− f(s, ū(s))‖ ds.

Applying this result and the hypotheses (fa) and (fb) as well as taking into
account the definitions (7.83) and (7.85), we see that

|Fu− Fū| ≤ Q|u− ū| for u, ū ∈ C(J,E), |y − ȳ| ≤ v.

The above proof shows that the operators F and Q satisfy all hypotheses of
Proposition 6.12. Therefore, the iteration sequence (Fnu0)∞n=0, which equals
to the sequence (un)∞n=0 of successive approximations (7.82), converges for
every choice of u0 ∈ C(J,E) uniformly in J to a unique fixed point u of F .
This result and the definition of F imply that u is the uniquely determined
solution of the integral equation (7.74) in C(J,E). ut

7.3.3 Continuous Dependence on x0

We are going to prove that under the hypotheses (T0), (T1), (Tf), (fa), and
(fb), the dependence of the solution u of (7.74) upon the initial value x0 can
be estimated in terms of the smallest solution of the Cauchy problem (7.81).
In view of Lemma 7.42, this estimate implies the continuous dependence of u
on x0.

Proposition 7.44. Let the hypotheses (T0), (T1), (Tf), (fa), and (fb) be
satisfied. If u = u(·, x0) denotes the solution of the integral equation (7.74)
and w = w(·, w0) the smallest solution of the Cauchy problem (7.81), then for
all x0, x̂0 ∈ E with ‖x0 − x̂0‖ small enough, the following estimate holds:

‖u(t, x0)− u(t, x̂0))‖ ≤ w(t,M‖x0 − x̂0‖), t ∈ J. (7.86)

In particular, u(·, x0) depends continuously on x0 in the sense that u(t, x̂0) →
u(t, x0) uniformly in t ∈ J as x̂0 → x0.
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Proof: Assume that x0, x̂0 ∈ E, and that ‖x0−x̂0‖ ≤ r0, where r0 is chosen as
in Lemma 7.42. The solutions u = u(·, x0) and û = u(·, x̂0) exist by Theorem
7.43, and they satisfy

u(t) = Fu(t) = T (t, a)x0 + K

∫ t

a

T (t, s)f(s, u(s)) ds, t ∈ J,

û(t) = F̂ û(t) = T (t, a)x̂0 + K

∫ t

a

T (t, s)f(s, û(s)) ds, t ∈ J.

Moreover, F satisfies the hypotheses of Proposition 6.12 with Q defined by

Qw(t) =
∫ t

a

Mq(s, w(s)) ds, t ∈ J,

and w = w(·,M‖x0 − x̂0‖) is the smallest solution of

w = M‖x0 − x̂0‖+Qw.

Denote
W = {u ∈ C(J,E) : |u− û| ≤ w}.

Since Q is increasing, and since

Fû(t)− û(t) = Fû(t)− F̂ û(t) = T (t, a)(x0 − x̂0)

for all t ∈ J , we have for every u ∈W ,

|Fu− û| ≤ |Fû− û|+ |Fu− Fû| ≤ |Fû− û|+Q|u− û|
≤M‖x0 − x̂0‖+Qw = w.

Thus F [W ] ⊆ W . Since û ∈ W , then (Fnû) ∈ W for every n ∈ N0. The
uniform limit u = limn F

nû exists by Theorem 7.43 and is the solution of
(7.74). Because W is closed, then u ∈ W , so that |u − û| ≤ w. This proves
(7.86). According to Lemma 6.11, w(t,M‖x0− x̂0‖) → 0 uniformly over t ∈ J
as ‖x0 − x̂0‖ → 0. This result and (7.86) imply that the last assertion of the
proposition is true. ut

Remark 7.45. If the Cauchy problem (7.81) has for some positive value of
M the zero function as the only solution when w0 = 0, the same does not
necessarily hold for all positive M , as we see from the following example (cf.
[37], p. 676):

Define q ∈ C(J × R+,R+), J = [0, 1], by

q(t, r) =

{
2t, for r ≥ t2, t ∈ J,
2r
t , for 0 ≤ r < t2, 0 < t ≤ 1.

It is easy to show that w(t) ≡ 0 is the only solution of (7.81) when M = 1
2

and w0 = 0, whereas w(t) = γ t2, t ∈ J is for each γ ∈ [0, 1] a solution of
(7.81) when M = 1 and w0 = 0.
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7.3.4 Special Cases

The following result shows that the above kind of counter-example (see Re-
mark 7.45) does not exist if q is of Osgood type.

Proposition 7.46. Let the hypotheses (T0), (T1), (Tf), and (fa) hold, and
assume that there is r > 0 and p ∈ L1(J,R+) such that for all x, y ∈ E with
‖x− y‖ < r and for a.e. t ∈ J ,

‖g(t, x)− g(t, y)‖ ≤ p(t)φ(‖x− y‖),

where φ : [0, r] → R+ is increasing and right-continuous, and
∫ r
0

dv
φ(v) = ∞.

Then the integral equation (7.74) has for each x0 ∈ E a unique solution
u = u(·, x0), and it depends continuously on x0.

Proof: It is easy to verify that condition (q) of hypothesis (fb) holds when
the function q : J × R+ → R+ is defined by

q(t, v) = p(t)φ(v), t ∈ J, v ∈ R+.

Thus the hypotheses of Theorem 7.43 are satisfied with q given above. ut

Each of the functions φm, m ∈ N, defined in Remark 6.17 satisfy the
hypotheses given for φ in Proposition 7.46. In particular, when φ(u) = u, we
obtain the following corollary.

Corollary 7.47. Let the hypotheses (T0), (T1), (Tf), and (fa) be fulfilled.
Assume there is a p1 ∈ L1(J,R+) such that

‖f(t, x)− f(t, y)‖ ≤ p1(t)‖x− y‖

for all x, y ∈ E and for a.e. t ∈ J . Then the integral equation (7.74) has for
each x0 ∈ E exactly one solution u. Moreover, u depends continuously on x0.

Corollary 7.48. The results of Theorem 7.43 and Proposition 7.44 remain
true for solutions of the following Volterra integral equation

u(t) = k(t, a)x0 + K

∫ t

a

k(t, s)f(s, u(s)) ds, t ∈ J = [a, b], (7.87)

where f : J×E → E satisfies the hypotheses (fa) and (fb), and k : J×J → R+

has the following properties:

(ka) k is continuous, k(t, t) = 1, and k(t, r) = k(t, s)k(s, r) whenever a ≤ r ≤
s ≤ t ≤ b.

(kf) There exists a z ∈ J such that s 7→ k(t, s)f(s, z) is HL integrable on J

for every t ∈ J , and the function t 7→ K
∫ t
a
k(t, s)f(s, z)ds is bounded.

Proof: The hypotheses (ka) and (kf) imply that the equation

T (t, s)x = k(t, s)x, t, s ∈ J, x ∈ E,

defines a mapping T : J × J → L(E), and that the hypotheses (T0), (T1),
(T2), and (Tf) are valid. ut
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7.3.5 Application to a Cauchy Problem

The result of Corollary 7.48 are now be applied to the Cauchy problem

u′(t) = p(t)u(t) + f(t, u(t)) a.e. on J = [a, b], u(a) = x0, (7.88)

where p ∈ L1(J,R), f : J × E → E, and x0 ∈ E.

Proposition 7.49. Assume that f : J×E → E satisfies (fb) and the following
hypothesis.

(fc) f(·, z) is strongly measurable for all z ∈ E and HL integrable for some
z ∈ E.

Then for each x0 ∈ E the Cauchy problem (7.88) has exactly one solution
u ∈W 1

SL(J,E). Moreover, u depends continuously on x0.

Proof: Applying Proposition 9.10, Lemma 9.22, and Lemma 9.24, one can
show that a function u ∈ W 1

SL(J,E) is a solution of the Cauchy problem
(7.88) if and only if u is a continuous solution of the integral equation (7.87),
where

k(t, s) = exp(
t

∫
a
p(x) dx) exp(−

s

∫
a
p(x) dx) t, s ∈ J. (7.89)

The so defined function k : J × J → R+ satisfies hypothesis (ka) of Corol-
lary 7.48. Hypothesis (fc) ensures that the hypothesis (fa) holds. In view of
Proposition 9.10 it ensures also that the hypothesis (kf) of Corollary 7.48
holds when k is defined by (7.89). Thus the integral equation (7.86), with k
defined by (7.89), has a unique continuous solution u : J → E by Corollary
7.48, which depends continuously on x0. This concludes the proof. ut

7.3.6 Extremal Solutions of Evolution Equations

Let J = [a, b], a < b be a real interval, and E a Banach space ordered by
a regular order cone E+. Given mappings g : J × E × C(J,E) → E and
T : J × J → L(E), we consider the integral equation

u(t) = T (t, a)x0 + K

∫ t

a

T (t, s)g(s, u(s), u)ds, t ∈ J. (7.90)

We assume that T has the following properties.

(T0) T (t, t) = I, and T (t, r) = T (t, s)T (s, r) whenever a ≤ r ≤ s ≤ t ≤ b.
(T1) (t, s) 7→ T (t, s)x is continuous for each x ∈ E.
(T2) T (t, s)E+ ⊆ E+ for all (t, s) in the domain of T .

Condition (T2) ensures that the mapping x 7→ T (t, s)x is increasing, that
is, T (t, s)x ≤ T (t, s)y whenever a ≤ s ≤ t ≤ b, x, y ∈ E and x ≤ y.
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Definition 7.50. We say that a function u ∈ C(J,E) is a subsolution of
the integral equation (7.90) if s 7→ T (t, s)g(s, u(s), u) is HL integrable on [a, t]
for every t ∈ J , and if

u(t) ≤ T (t, a)x0 + K

∫ t

a

T (t, s)g(s, u(s), u)ds, t ∈ J. (7.91)

A supersolution of (7.90) is defined similarly by reversing the inequality sign
in (7.91). If equality holds in (7.91), we say that u is a solution of (7.90).

We are going to show that the integral equation (7.90) has the smallest and
greatest solutions within an order interval of C(J,E) if T : J ×J → L(E) has
properties (T0)–(T2), and if g : J × E × C(J,E) → E satisfies the following
hypotheses.

(g0) For every x0 ∈ E the integral equation (7.90) has a subsolution u and a
supersolution u, and u(t) ≤ u(t) for all t ∈ J .

(g1) g(·, u(·), u) is strongly measurable for each u ∈ C(J,E).
(g2) g(t, x, u) is increasing in x and u for a.e. t ∈ J .

Theorem 7.51. Under the hypotheses (T0)–(T2) and (g0)–(g2), the integral
equation (7.90) has the smallest and greatest solutions in [u, u]. Moreover,
they are increasing with respect to x0 and g.

Proof: Let x0 ∈ E be given. By definition, u and u are continuous. If u
belongs to the order interval [u, u] of C(J,E), then (g1) and (T1) imply by
[133, Corollary 1.4.4] that s 7→ T (t, s)g(s, u(s), u) is strongly measurable on
[a, t] for each t ∈ J . By conditions (T2) and (g2) we have

T (t, s)g(s, u(s), u) ≤ T (t, s)g(s, u(s), u) ≤ T (t, s)g(s, u(s), u) (7.92)

for all t ∈ J and for a.e. s ∈ [a, t]. Because the functions s 7→ T (t, s)g(s, u(s), u)
and s 7→ T (t, s)g(s, u(s), u) are HL integrable on [a, t] for every t ∈ J , it then
follows from (7.92) that s 7→ T (t, s)g(s, u(s), u) is HL integrable on [a, t] for
every t ∈ J due to Proposition 9.14. Thus the equation

Gu(t) = T (t, a)x0 + K

∫ t

a

T (t, s)g(s, u(s), u) ds, t ∈ J, (7.93)

defines a functionGu : J → E. In view of conditions (T2) and (g2), from (7.92)
and by Lemma 9.11 it follows that Gu(t) ≤ Gv(t) for all t ∈ J whenever
u, v ∈ [u, u] and u ≤ v. Moreover, (7.93) and the definition of sub- and
supersolutions of (7.90) imply that u(t) ≤ Gu(t) and Gu(t) ≤ u(t) for all
t ∈ J . In particular, for all u ∈ [u, u]

u(t) ≤ T (t, a)x0 + K

∫ t

a

T (t, s)g(s, u(s), u) ds ≤ u(t), t ∈ J. (7.94)
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Since the order cone of E is also normal, from (7.94) we get the estimate∥∥∥∥K∫ t

a

T (t, s)g(s, u(s), u) ds
∥∥∥∥ ≤M‖x0‖+ (λ+ 1)‖u(t)‖+ λ‖u(t)‖, (7.95)

where λ ≥ 1. In particular, K = supt∈J ‖K
∫ t
a
T (t, s)g(s, u(s), u) ds‖ < ∞.

Thus the hypotheses of Lemma 7.41 hold true for s 7→ T (t, s)g(s, u(s), u) for
all u ∈ [u, u], whence Gu ∈ C(J,E) for every u ∈ [u, u]. The above proof
shows that (7.93) defines an increasing mapping G from [u, u] to [u, u]. In
order to apply Proposition 2.39, we show that the functions Gu, u ∈ [u, u],
form an equicontinuous set. Let u ∈ [u, u] be fixed. Denote

h(s) = g(s, u(s), u), h−(s) = g(s, u(s), u), h+(s) = g(s, u(s), u), s ∈ J.
(7.96)

By Lemma 9.11 from (7.92) it follows that if t, t ∈ J and t ≤ t, then

K

∫ t

t

T (t, s)h−(s) ds ≤ K

∫ t

t

T (t, s)h(s) ds ≤ K

∫ t

t

T (t, s)h+(s) ds,

K

∫ t

t

T (t, s)h−(s) ds ≤ K

∫ t

t

T (t, s)h(s) ds ≤ K

∫ t

t

T (t, s)h+(s) ds.
(7.97)

Since the order cone of E is normal, from (7.97) we obtain the estimates∥∥∥∥K∫ t

t

T (t, s)h(s) ds
∥∥∥∥ ≤(λ+ 1)

∥∥∥∥K∫ t

t

T (t, s)h−(s) ds
∥∥∥∥

+ λ

∥∥∥∥K∫ t

t

T (t, s)h+(s) ds
∥∥∥∥,∥∥∥∥K∫ t

t

T (t, s)h(s) ds
∥∥∥∥ ≤(λ+ 1)

∥∥∥∥K∫ t

t

T (t, s)h−(s) ds
∥∥∥∥

+ λ

∥∥∥∥K∫ t

t

T (t, s)h+(s) ds
∥∥∥∥.

(7.98)

In view of (7.78), (7.79), and (7.80), we have

‖Gu(t)−Gu(t)‖ ≤ ‖T (t, a)x0 − T (t, a)x0‖+K‖T (t, t)− I‖

+max{‖K
∫ t

t

T (t, s)h(s) ds‖,M‖K
∫ t

t

T (t, s)h(s) ds‖}. (7.99)

It then follows from (7.96), (7.98), and (7.99) that the set {Gu : u ∈ [u, u]}
is equicontinuous. Let (un) be a monotone sequence in [u, u]. Then for every
t ∈ J , (Gun(t)) is a monotone sequence within the order interval [u(t), u(t)]
of E. Since the order cone of E is regular, then (Gun(t)) converges in E for
every t ∈ J . Moreover, it follows from the above proof that the sequence (Gun)
is equicontinuous. This result implies by Lemma 9.44 that (Gun) converges
uniformly on J , and hence with respect to the uniform norm of C(J,E).
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The above proof shows that the hypotheses of Proposition 2.39 are valid
for the mapping G defined by (7.93), when X is replaced by C(J,E) equipped
with the pointwise ordering and the uniform norm, and the functions u, u of
C(J,E) are sub- and supersolutions of (7.90) in the sense of Definition 7.50.
Thus by Proposition 2.39, G has the smallest fixed point u∗ and the greatest
fixed point u∗. Because they belong to C(J,E) and satisfy (7.90), they are
solutions of (7.90) in the sense of Definition 7.50.

If u ∈ [u, u] is a solution of (7.90), it is also a fixed point of G, whence
u∗ ≤ u ≤ u∗. Thus u∗ and u∗ are the smallest and greatest solutions of
(7.90). Moreover, they are increasing with respect to G due to Proposition
2.39. This result, the hypotheses (T2), (g2), and (7.93) imply that u∗ and u∗

are increasing with respect to x0 and g in view of Lemma 9.11. ut

As for the existence of the smallest and greatest solutions of (7.90) in the
entire space C(J,E), we have the following result.

Proposition 7.52. Assume that g : J × E × C(J,E) → E satisfies the hy-
potheses (g1), (g2), and that T : J × J → L(E) has properties (T0)–(T2).
Further suppose that

f1(·, x) ≤ g(·, x, u) ≤ f2(·, x) for all x ∈ E, u ∈ C(J,E) and t ∈ J, (7.100)

where fi : J × E → E, i = 1, 2, satisfy conditions (fa), (fb), and (Tf) given
in Sect. 7.3.1, and the following condition.

(fc) fi(s, ·) is increasing for a.e. s ∈ J .

Then for each choice of x0 ∈ E, the integral equation (7.90) has the smallest
and greatest solutions, and they are increasing with respect to x0.

Proof: Let x0 ∈ E be given. Theorem 7.43 implies that the integral equation

u(t) = T (t, a)x0 + K

∫ t

a

T (t, s)fi(t, u(s)) ds (7.101)

has a unique solution u when i = 1 and u when i = 2. From (7.100) and (7.101)
it follows that u is a subsolution of (7.101), and u is its supersolution for both
values of i. Moreover, the functions gi(t, x, u) = fi(t, x), i = 1, 2 satisfy the
hypotheses (g1) and (g2). Thus the monotone dependence result of Theorem
7.51 can be applied to ensure that u ≤ u. Both functions T (t, ·)fi(·, u(·)) and
T (t, ·)f2(·, u(·)) are HL integrable on J for every t ∈ J , and

T (t, ·)f1(·, x) ≤ T (t, ·)g(·, x, u) ≤ T (t, ·)f2(·, x), x ∈ E, u ∈ C(J,E).

These results and (g1) imply that the functions T (t, ·)g(·, u(·), u) and
T (t, ·)g(·, u(·), u) are HL integrable.

Since
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u(t) ≤ T (t, a)x0 + K

∫ t

a

T (t, s)g(s, u(s), u) ds for a.e. t ∈ J,

then u is a subsolution of (7.90). Similarly, it can be shown that u is a su-
persolution of (7.90). Thus g satisfies also condition (g0). By Theorem 7.51
the integral equation (7.90) has for each x0 ∈ E the smallest solution u∗ and
greatest solution u∗ in [u, u].

If u is a solution of (7.90), from (7.100) and (7.101) it follows that u is
a supersolution of (7.101) for i = 1 and a subsolution of (7.101) for i = 2,
whence u ≤ u ≤ u. Thus all the solutions of (7.90) lie between u and u,
whence u∗ is the smallest and u∗ the greatest of all the solutions of (7.90). ut

Corollary 7.53. Assume that g : J × E × C(J,E) → E satisfies (g1) and
(g2), that T : J × J → L(E) satisfy (T0)–(T2), and that for all x ∈ E and
u ∈ HL(J,E) and for a.e. t ∈ J ,

h1(t) ≤ g(t, x, u) ≤ h2(t), (7.102)

where hi : J → E and T (t, ·)hi(·) ∈ HL([a, t], E) for every t ∈ J , and

sup
{∥∥∥∥K∫ t

a

T (t, s)hi(s) ds
∥∥∥∥ : t ∈ J

}
<∞, i = 1, 2.

Then the integral equation (7.90) has for each choice of x0 ∈ E the smallest
and greatest solutions, both of which are increasing with respect to x0 and g.

Proof: It is easy to see that the hypotheses of Proposition 7.52 hold when
fi(t, x) = hi(t), i = 1, 2. ut

7.3.7 Evolution Equations Containing Bochner Integrable
Functions

Let J = [a, b], a < b be a real interval, and E a lattice-ordered Banach space.
In this subsection we consider nonlocal integral equations of the form

u(t) = T (t, a)x0 +
∫ t

a

T (t, s)g(s, u(s), u)ds, t ∈ J, (7.103)

where the integral on the right-hand side stands for the Bochner integral.
We assume that g : J × J × L1(J,E) → E, that T : Λ → L(E), where
Λ = {(t, s) ∈ J × J : s ≤ t}.

Denoting by E+ the order cone of E, we assume that T : Λ → L(E) has
properties (T0)–(T2). By the uniform boundedness principle it follows from
(T1) that (7.76) holds. Condition (T2) ensures that the mapping x 7→ T (t, s)x
is increasing, that is, T (t, s)x ≤ T (t, s)y whenever (t, s) ∈ Λ, x, y ∈ E and
x ≤ y.
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Let {A(t) : t ∈ J}, J = [a, b], be a family of closed linear operators from a
dense subspace D(A) of E into E satisfying

−A(t)x = lim
∆t→0+

T (t+∆t, t)x− x

∆t
for a.e. t ∈ J and for all x ∈ D(A).

(7.104)
It can be shown that if u is a solution of the integral equation (7.90), and if
x0 ∈ D(A), then u is a solution of the initial value problem

u′(t) +A(t)u(t) = g(t, u(t), u) for a.e. t ∈ J, u(0) = x0, (7.105)

provided that
∫ t
a
T (t, s)g(s, u(s), u)ds and T (t, a)x0 belong to D(A) for each

t ∈ J , and that u′(t) in (7.105) is considered as the right derivative of u at
t. In general, when D(A) 6= E, the validity of these extra conditions requires
certain smoothness properties for T and g (cf., e.g., [163]). On the other hand,
as we shall see, the integral equation (7.90) may have continuous solutions also
when g is not continuous. Therefore we say that u ∈ C(J,E) is a mild solution
of the IVP (7.105) if u is a solution of the integral equation (7.90).

Assuming that L1(J,E) is ordered a.e. pointwise, and that the positive
constant M is defined by (7.76), we shall impose the following hypotheses on
the function g : J × E × L1(J,E) → E.

(g0) g(·, u(·), u) is strongly measurable for each u ∈ L1(J,E).
(g1) g(t, x, u) is increasing in x and u for a.e. t ∈ J .
(g2) ‖g(t, x, u)‖ ≤ h(t, ‖x‖) for a.e. t ∈ J and all x ∈ E, u ∈ L1(J,E), where

h : J × R+ → R+ is sup-measurable, h(t, ·) is increasing for a.e. t ∈ J ,
and the IVP

w′(t) = M h(t, w(t) for a.e. t ∈ J, w(t0) = w0 (7.106)

has for each w0 ≥ 0 the greatest absolutely continuous solution.

In the proof of our main existence result for the integral equation (7.90),
we make use of the following auxiliary result.

Lemma 7.54. Let the hypotheses given for h in (g2) be satisfied, and let w0 ≥
0 be given. If v ∈ C(J,R) satisfies the inequality

v(t) ≤ w0 +
∫ t

a

M h(s, v(s)) ds, t ∈ J, (7.107)

then v(t) ≤ w(t) for each t ∈ J , where w is the greatest solution of (7.106).

Proof: The space C(J,R) is an ordered metric space with respect to the sup-
norm ‖·‖0 and the pointwise ordering. Let w be the greatest solution of (7.106)
with w0 replaced by w0 = max{w0, ‖v‖0}. Denoting [v, w] = {w ∈ C(J,R) :
v ≤ w ≤ w}, the hypotheses given for h in (g2) imply that the relation
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Qw(t) = w0 +
∫ t

a

M h(s, w(s)) ds, t ∈ J (7.108)

defines an increasing mapping Q : [v, w] → [v, w]. Moreover, the range of Q is
equicontinuous because

Qw(t)−Qw(t̄) ≤
∫ t

t̄

M h(s, w(s)) ds =
∫ t

t̄

w′(s) ds = w(t)− w(t̄)

for all t, t̄ ∈ J , t̄ ≤ t and for all w ∈ [v, w]. Thus (Qwn) converges in C(J,R)
whenever (wn) is a monotone sequence in [v, w]. This implies by Proposition
2.39 that Q has fixed points, or equivalently, (7.106) has solutions in [v, w].
But w was the greatest solution of (7.106), whence v ≤ w. ut

The space E is assumed to posses the following properties.

(E0) Bounded and monotone sequences of E converge weakly.
(E1) The mapping E 3 x 7→ x+ := sup{0, x} is demicontinuous, and ‖x+‖ ≤

‖x‖ for all x ∈ E.

As an application of Proposition 7.27 and Lemma 7.54, we are now able to
prove existence results for continuous solutions of the integral equation (7.90).

Theorem 7.55. Let E be a lattice-ordered Banach space with properties (E0)
and (E1). Assume that T : Λ → L(E) and g : J × E × L1(J,E) → E satisfy
the hypotheses (T0)–(T2) and (g0)–(g2), respectively. Then for each x0 ∈ E
all the solutions of (7.90) are continuous. Moreover,

(a) (7.90) has maximal and minimal solutions;
(b) the equation

u(t) = −
(
T (t, a)x0 +

∫ t

a

T (t, s)g(s, u(s), u)ds
)−

, t ∈ J (7.109)

has the greatest solution u, and the equation

u(t) =
(
T (t, a)x0 +

∫ t

a

T (t, s)g(s, u(s), u)ds
)+

, t ∈ J (7.110)

has the smallest solution u;
(c) (7.90) has the smallest and greatest solutions in [u, u].

Proof: Let x0 ∈ E be given, and let P be defined by

P = {u ∈ Lp(J,E) : ‖u(t)‖ ≤ w(t) for a.e. t ∈ J}, (7.111)

where w is the greatest solution of (7.106) with w0 = M ‖x0‖. If u ∈ P , then
from (7.76), (7.106), (7.111), and (g2) it follows that for all t ∈ J ,
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‖T (t, s)g(s, u(s), u)‖ ≤ M ‖g(s, u(s), u)‖
≤ M h(s, ‖u(s)‖) ≤M h(s, w(s)) = w′(s) (7.112)

for a.e. s ∈ [a, t]. In particular, when t = s, we obtain

‖g(s, u(s), u)‖ ≤ w′(s)
M

for a.e. s ∈ J. (7.113)

This result and the hypothesis (g0) imply that the function

q(s) = g(s, u(s), u), s ∈ J (7.114)

is Bochner integrable. By hypothesis (T1) we infer that for each t ∈ J the
function f(s, x) = T (t, s)x, a ≤ s ≤ t, x ∈ E, is a Carathéodory function.
Thus the function s 7→ T (t, s)q(s) is strongly measurable on [a, t] for each
t ∈ J . In view of (7.76), the function s 7→ T (t, s)q(s) is also norm-bounded on
[a, t] by the Lebesgue integrable function s 7→M‖q(s)‖, whence it is Bochner-
integrable on [a, t]. Thus the equation

Gu(t) = T (t, a)x0 +
∫ t

a

T (t, s)g(s, u(s), u) ds, t ∈ J, (7.115)

defines a function Gu : J → E. If a ≤ t ≤ t ≤ b, then from (7.115) it follows
by applying (T0), (7.111), and (7.114) that

‖Gu(t)−Gu(t)‖ ≤ ‖T (t, a)x0 − T (t, a)x0‖+
∥∥∥∥∫ t

a

(T (t, s)− T (t, s))q(s) ds
∥∥∥∥

+
∫ t

t

‖T (t, s)q(s)‖ds

≤ ‖(T (t, t)− I)T (t, a)x0‖+
∥∥∥∥(T (t, t)− I)

∫ t

a

T (t, s)q(s) ds
∥∥∥∥

+
∫ t

t

M‖q(s)‖ ds

≤ M‖T (t, t)− I‖‖x0‖+M‖T (t, t)− I‖
∫ b

a

‖q(s)‖ ds

+M
∫ t

t

‖q(s)‖ ds.

This implies by (T0) and (T1) that Gu ∈ C(J,E). Moreover, from (7.111),
(7.112), and (7.115) it follows that

‖Gu(t)‖ ≤ ‖T (t, a)x0‖+
∫ t

a

‖T (t, s)g(s, u(s), u)‖ ds

≤ M ‖x0‖+
∫ t

a

w′(s) ds

= w0 + w(t)− w(a) = w(t), t ∈ J,
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whence Gu ∈ P . By hypotheses (T2) and (g2) we have Gu ≤ Gv whenever
u, v ∈ P and u ≤ v.

The above proof shows that (7.115) defines an increasing mapping G from
P to P . To show that all the solutions of (7.90) belong to P , let u ∈ C(J,E)
satisfy (7.90). Because w0 = M ‖x0‖, from (7.76), (7.103), and (g2) it follows
that

‖u(t)‖ ≤ ‖T (t, a)x0‖+
∫ t

a

‖T (t, s)g(s, u(s), u)‖ ds

≤ M ‖x0‖+
∫ t

a

M h(s, ‖u(s)‖) ds

= w0 +
∫ t

a

M h(s, ‖u(s)‖) ds, t ∈ J.

Denoting v(t) = ‖u(t)‖, t ∈ J , we then have

v(t) ≤ w0 +
∫ t

t0

M h(s, v(s)) ds, t ∈ J.

By Lemma 7.54, the last inequality implies that v(t) ≤ w(t), i.e., ‖u(t)‖ ≤ w(t)
for all t ∈ J . Thus u ∈ P . The above result shows that u is a solution of (7.90)
if and only if u is a fixed point of an increasing mapping G : P → P , defined
by (7.115). Thus the assertions follow from Proposition 7.27. ut

Corollary 7.56. The results of Theorem 7.55 remain true if T : Λ → L(E)
and g : J × L1(J,E) × E → E satisfy conditions (T0)–(T2) and (g0), (g1),
respectively, and g, in addition, fulfills

(g3) ‖g(t, u, v)‖ ≤ p(t)ψ(‖v‖) for a.e. t ∈ J and all v ∈ E, u ∈ L1(J,E),
where p ∈ L1(J,R+), ψ : R+ → (0,∞) is increasing, and

∫∞
0

dx
ψ(x) = ∞.

Proof: The properties given for q and ψ in the hypothesis (g3) ensure by [44,
Lemma B.7.1] that the IVP

w′(t) = M p(t)ψ(w(t)) for a.e. t ∈ J, w(t0) = w0 (7.116)

has for each w0 ≥ 0 a unique absolutely continuous solution. Thus the hy-
pothesis (g2) holds with h(t, x) = p(t)ψ(x)), and the conclusion follows. ut

7.3.8 Application

Consider the n-dimensional problem

yt(x, t)−∆y(x, t) = f(x, t, y(x, t)) in Rn, y(x, 0) = y0(x). (7.117)

The next result follows from [89, Theorems 2.3.1 and 2.3.2].
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Lemma 7.57. Assume that x0 ∈ C(Rn)∩L∞(Rn), and that q ∈ C2
1 (Rn×R+)

has a compact support. Then the IVP

yt(x, t)−∆y(x, t) = q(x, t) in Rn, y(x, 0) = y0(x), (7.118)

has the solution

y(x, t) =
∫

Rn

K(x−z, t)y0(z) dz+
∫ t

0

∫
Rn

K(x−z, t−s)q(z, s) dz ds, (7.119)

where
K(z, t) =

1
(4πt)

n
2
e
−‖z‖2

4t , z ∈ Rn, t > 0. (7.120)

Moreover, defining

S(t)y0(x) =
∫

Rn

K(x− z, t)y0(z) dz, x ∈ Rn, t > 0, S(0)y0 = y0,

we obtain a contraction semigroup {S(t)}t≥0 on L2(Rn) (cf. [89, p.427]). In
particular, when Λ = {(t, s) : 0 ≤ s ≤ t ≤ 1}, the relation

T (t, s)u = S(t− s)u, u ∈ L2(Rn), (t, s) ∈ Λ

defines a family of operators T (t, s) that has properties (T0)–(T2). Thus we
get the following result as a consequence of Corollary 7.56.

Proposition 7.58. Let K be defined by (7.120), and assume that the function
f : Q× R → R, Q = Rn × [0, 1], has the following properties:

(f0) f(·, ·, y(·, ·)) is measurable on Q whenever y : Q→ R is measurable.
(f1) f(x, t, ·) is increasing for a.e. (x, t) ∈ Q.
(f2) ‖f(·, t, v(·))‖2 ≤ p(t)ψ(‖v‖2) for all t ∈ J = [0, 1] and v ∈ L2(Rn), where

p ∈ L1(J,R+), ψ : R+ → (0,∞) is increasing, and
∫∞
0

dx
ψ(x) = ∞.

Then for each u0 ∈ L2(Rn) the integral equation

y(x, t) =
∫

Rn

K(x− z, t)y0(z) dz +
∫ t

0

∫
Rn

K(x− z, t− s)f(z, s, y(z, s)) dz ds,

(7.121)
has solutions, which are also mild solution of the IVP (7.117) in the set of
those measurable functions y : Rn×J → R for which y(·, t) ∈ L2(Rn) for each
t ∈ J and limt→t0

∫
Rn |y(x, t)− y(x, t0)|2dx = 0 for each t0 ∈ J .

Remark 7.59. (i) The functional dependence on the second argument of g can
be formed, e.g., by bounded, linear, and positive operators, such as integral
operators of Volterra and/or Fredholm type with nonnegative kernels. Thus
the results of this section can be applied also to integro-differential equations.
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(ii) Weakly complete Banach lattices have properties (E0) and (E1) (cf.
[170]). Examples of such spaces are, for instance, Banach-lattices with uni-
formly monotone norm (UMB-lattices) defined in [22, XV,14], the spaces Rm,
m = 1, 2, . . . , and lp, p ∈ [1,∞), ordered coordinatewise and normed by
p-norm, and spaces Lp(Ω), where p ∈ [1,∞) and Ω = (Ω,A, µ) is a mea-
sure space, equipped with p-norm and a.e. pointwise ordering. Moreover, the
Sobolev spaces W 1,p(Ω) and W 1,p(Ω), p ∈ (1,∞) ordered a.e. pointwise,
where Ω is a bounded domain in Rm, posses properties (E0) and (E1) (cf.
[44]). In particular, we can choose E to be one of these spaces in the above
considerations.

7.4 Notes and Comments

In this chapter we have studied integral equations in ordered Banach spaces.
The results presented in Sect. 7.1.4 are new, whereas all the other material of
Sect. 7.1 dealing with Fredholm and Volterra integral equations in HL spaces
is a slight generalization to that presented in [132] and [141]. Related results
for improper integral equations are derived in [129] and [131]. As for other pa-
pers dealing with functional Volterra integral equations and differential equa-
tions via non-absolute integrals, see, e.g., [93, 92, 201]. Non-absolute integral
equations in Banach spaces are considered also in [91, 211]. The results pre-
sented in Sect. 7.2 for integral equations in Lp-spaces and impulsive differential
equations in abstract spaces are from [120] and [134]. The material of Sects.
7.3.1–7.3.6, where well-posedness and extremality results are derived for dis-
continuous integral equations containing non-absolutely integrable functions,
is new. Sections 7.3.7 and 7.3.8, adopted from [50], deal with discontinuous
evolution integral equations containing Bochner integrable functions, and an
application to a second order partial differential equation of parabolic type.
As for other existence results for integral equations in abstract spaces, see,
e.g., [105, 107, 156, 170, 188, 189].



8

Game Theory

The main goal of this chapter is to study the existence of extremal Nash equi-
libria for normal-form games. Our interest is focused on games with strategic
complementarities, which means roughly speaking that the best responses
of players are increasing in actions of the other players. Properties, known
as ‘increasing differences,’ ‘(quasi)supermodular,’ and ‘single crossing prop-
erty,’ are used to formalize, or even to define strategic complementarities, cf.
[9, 12, 74, 75, 146, 179, 218]. In the last section of this chapter we consider
the existence of winning strategies in a pursuit and evasion game. In addition
we obtain new fixed point results for set-valued and single-valued mappings.

In Sect. 8.1 we prove existence results for the smallest and greatest pure
Nash equilibria of a normal-form game Γ = {Si, ui}Ni=1 of N players whose
strategy spaces Si are finite sets of real numbers, and whose utility functions
ui are real-valued. We also present conditions that ensure that the utilities of
the obtained greatest or smallest pure Nash equilibria majorize the utilities
of all pure Nash equilibria. An application to a pricing game is given.

In Sect. 8.2 we derive existence and comparison results for Nash equilibria
of normal-form games when strategy spaces are finite posets and the utility
functions are vector-valued. In the case when the game is supermodular and
its strategy spaces are one-dimensional, in [86] extremal pure Nash equilibria
are shown to exist and to be lower and upper bounds to all mixed Nash
equilibria when they are ordered by the first-order stochastic dominance. The
difficulties that the author of [86] encountered when the strategy spaces are
multidimensional gave rise to the following conclusion by this author (see [87,
p.16]):

“It may be desirable to order both pure and mixed strategies in a way
that is consistent (for example by using the first-order stochastic domi-
nance order on mixed strategies) but unless all strategy spaces are chains,
this is incompatible with strategic complementarities.”

In spite of this, we are able to show by assuming very weak forms of
strategic complementarities that all mixed Nash equilibria of a finite normal-
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form game, ordered by the first-order stochastic dominance order, lie between
the extremal pure Nash equilibria. In particular, this result is shown to hold
for a supermodular normal-form game Γ = {Si, ui}Ni=1 when strategy spaces
Si are finite lattices and the ranges of the functions ui(·, s−i) are upward di-
rected sets in ordered vector spaces for every s−i = (s1, . . . , si−1, si+1, . . . , sN ).
Moreover, we show that if the utility functions ui(si, s−i) are monotone with
respect to s−i, then one of the extremal Nash equilibria gives the best util-
ities. The proofs are constructive and provide finite algorithms to determine
those equilibria and their corresponding utilities. These algorithms and Maple
programming are applied to concrete games. The obtained results are applied
also to a multiproduct pricing game.

In Sect. 8.3 we derive existence results for smallest, greatest, minimal, and
maximal pure Nash equilibria of normal-form games with strategic comple-
ments. A novel feature is that the ranges of utility functions are posets. This
allows us to evaluate the utilities of different players in different ordinal scales.
In the real-valued case we obtain generalizations to some results derived in
[180, 218]. In Sect. 8.3.4 the obtained results are applied to a multiproduct
version of Bertrand oligopoly pricing game. Algorithmic methods and concrete
examples are also presented.

To ensure the existence of required maximums of utility functions, we
prove new extreme value theorems in Sect. 8.3.1. It is well-known that an up-
per semicontinuous real-valued function attains its maximum if its domain is a
compact topological space (cf., e.g., [29]). On the other hand, monotone func-
tions defined on compact lattices and piecewise strictly monotone functions
defined on compact chains have maximums, although they are not necessarily
upper semicontinuous. One purpose is to find such a hypothesis that ensures
the existence of maximums for all types of functions presented above. An-
other purpose is to formulate this hypothesis in such a way that, in addition
to topological properties of the domains, it depends only on the orderings of
the ranges of functions in question. Such a hypothesis allows us to find max-
imums for functions having ranges in posets. Noticing also that a lattice is
complete if and only if it is compact in the order interval topology (cf. [23]), we
obtain extreme value results under hypotheses that depend only on orderings
of the domains and ranges of the considered functions.

The results of Sect. 8.2 are generalized in Sect. 8.4 to normal-form games
whose strategy spaces are complete, separable, and ordered metric spaces.
For instance, those results of Sect. 8.2 dealing with the existence of most
profitable pure Nash equilibria of supermodular games have extensions when
the utility functions are real-valued. These results are obtained as special cases
of the corresponding results proved for normal-form games with vector-valued
utilities having quasisupermodular mixed extensions. The results of Theorems
2.20 and 2.21 and their duals provide tools to overcome the difficulties caused
by the existence of unordered pure strategies.

In Sect. 8.5 we derive necessary and sufficient conditions for the existence of
undominated strategies, weakly dominating strategies, and weakly dominating
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pure Nash equilibria for normal-form games whose strategy spaces as well as
ranges of utility functions are posets.

Finally, in Sect. 8.6 the Chain Generating Recursion Principle and general-
ized iteration methods presented in Chap. 2 are applied to prove the existence
of winning strategies for a pursuit and evasion game. The obtained results are
used to study the solvability of equations and inclusions in ordered spaces.
The monotonicity hypotheses are weaker than those assumed in Chap. 2.

8.1 Pure Nash Equilibria for Finite Simple Normal-Form
Games

As an introduction to the subject we study in this section a normal-form game
Γ = {Si, ui}Ni=1 of N players whose strategy spaces Si are finite sets of real
numbers, and the utility functions ui are real-valued. We present conditions
that ensure the existence of the smallest and greatest pure Nash equilibria for
Γ . If the utilities ui(s1, . . . , sN ) are also increasing (respectively decreasing)
in sj , j 6= i, the utilities of the obtained greatest (respectively the smallest)
pure Nash equilibrium are shown to majorize the utilities of all pure Nash
equilibria. The obtained results are then applied to a Bertrand oligopoly
model for firms that compete in prices.

8.1.1 Preliminaries

Definition 8.1. We say that Γ = {Si, ui}Ni=1 is a finite simple normal-
form game of players i = 1, . . . , N , if for each i the strategy space Si
for player i is a finite nonempty set of real numbers, and ui is a real-valued
utility function of player i, defined on S = S1 × · · · × SN .

We use the following notations: s−i = (s1, . . . , si−1, si+1, . . . , sN ),
ui(s1, . . . , sN ) = ui(si, s−i), and S−i = S1 × · · · × Si−1 × Si+1 × · · · × SN .

Definition 8.2. Let Γ = {Si, ui}Ni=1 be a finite simple normal-form game.
We say that strategies s∗1, . . . , s

∗
N form a pure Nash equilibrium for Γ if

ui(s∗i , s
∗
−i) = max

si∈Si

ui(si, s∗−i) for all i = 1, . . . , N.

This definition implies that the strategies of players form a pure Nash
equilibrium if and only if no player can improve his/her utility by changing
the strategy when all the other players keep their strategies fixed.

In what follows we assume that Γ = {Si, ui}Ni=1 is a finite simple normal-
form game. All products of sets of real numbers are assumed to be ordered
coordinatewise. Since the strategy spaces Si are finite, the functions si 7→
ui(si, s−i), s−i ∈ S−i, have only a finite number of values. Thus the sets of
their maximum points
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Fi(s−i) = {xi ∈ Si : ui(xi, s−i) = max
si∈Si

ui(si, s−i)}, i = 1, . . . , N, (8.1)

are nonempty. These sets are in turn subsets of Si, and thus finite sets of real
numbers, whence they have maxima and minima.

8.1.2 Existence and Comparison Results

We shall first prove that a pure Nash equilibrium exists for a finite simple
normal-form game Γ = {Si, ui}Ni=1 if the following hypothesis is valid:

(h0) maxFi(s−i) ≤ maxFi(ŝ−i) whenever s−i ≤ ŝ−i in S−i, i = 1, . . . , N .

Theorem 8.3. Assume that (h0) is satisfied. Then there exist strategies
s∗1, . . . , s

∗
N such that for every i = 1, . . . , N the strategy s∗i is the greatest

among all the strategies of player i that maximizes its utility when the strate-
gies of the other players are s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . s

∗
N . In particular, the strate-

gies s∗1, . . . , s
∗
N form a pure Nash equilibrium for Γ .

Proof: In the proof we use a method of successive approximations. The max-
ima bi = maxSi, i = 1, . . . , N , exist because the sets Si are finite. Denote

s0i := bi and s0−i := (b1, . . . , bi−1, bi+1, . . . , bN ), i = 1, . . . , N.

The above notations imply that

s1i := maxFi(s0−i) ≤ bi = s0i for all i = 1, . . . , N.

By this result we also have s1−i := (s11, . . . , s
1
i−1, s

1
i+1, . . . , s

1
N ) ≤ s0−i for all

i = 1, . . . N , which by (h0) implies that

s2i := maxFi(s1−i) ≤ maxFi(s0−i) = s1i for all i = 1, . . . , N , etc.

Because the set {maxFi(s−i) : s−i ∈ S−i} is finite for each i = 1, . . . , N , then
continuing the above reasoning a finite number of times, say k times, we get

sk+1
i := maxFi(sk−i) = maxFi(sk−1

−i ) = ski for all i = 1, . . . , N.

Denoting s∗i := ski and s∗−i := sk−i := (sk1 , . . . , s
k
i−1, s

k
i+1, . . . , s

k
N ), i = 1, . . . , N ,

we then have
s∗i = maxFi(s∗−i) for all i = 1, . . . , N. (8.2)

According to this result the strategies s∗i are the greatest strategies that max-
imize the utility ui(si, s−i) when s−i = s∗−i. In particular,

ui(s∗i , s
∗
−i) = max

si∈Si

ui(si, s∗−i), i = 1, . . . , N,

so that the strategies s∗1, . . . , s
∗
N form a pure Nash equilibrium for Γ . ut

Next we show that the pure Nash equilibrium constructed in Theorem 8.3
majorizes all pure Nash equilibria for Γ , and that it gives best utilities if each
ui(s1, . . . , sN ) is increasing in sj , j 6= i.
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Theorem 8.4. Assume that (h0) is valid, and let s∗1, . . . , s
∗
N be the pure Nash

equilibrium constructed in Theorem 8.3. If s∗1, . . . , s
∗
N is a pure Nash equilib-

rium for Γ , then s∗i ≤ s∗i for each i = 1, . . . , N . Assume moreover that each
ui(s1, . . . , sN ) is increasing in sj, j 6= i, i.e.,

(h1) ui(si, s−i) ≤ ui(si, ŝ−i) whenever s−i ≤ ŝ−i, si ∈ Si and i = 1, . . . , N .

Then ui(s∗i , s
∗
−i) ≤ ui(s∗i , s

∗
−i) for all i = 1, . . . , N .

Proof: Let s∗1, . . . , s
∗
N be a pure Nash equilibrium for Γ . Then s∗i ∈ Fi(s∗−i),

whence s∗i ≤ maxFi(s∗−i) for each i = 1, . . . N . According to the notations
used in the proof of Theorem 8.3 we have

s∗i ≤ maxFi(s∗−i) ≤ bi = s0i for all i = 1, . . . , N.

By this result we have also s∗−i ≤ s0−i for all i = 1, . . . N , which by the above
result and (h0) implies that

s∗i ≤ maxFi(s∗−i) ≤ maxFi(s0−i) = s1i for all i = 1, . . . , N.

The preceding inequalities imply that s∗−i ≤ s1−i for all i = 1, . . . N , which in
view of (h0) yields

s∗i ≤ maxFi(s∗−i) ≤ maxFi(s1−i) = s2i for all = 1, . . . , N , etc.

Repeating the above process k times, where k is as in the proof of Theorem
8.3, we get

s∗i ≤ maxFi(s∗−i) ≤ maxFi(sk−i) = ski = s∗i for all i = 1, . . . , N,

which proves the first assertion.
Assume next that (h1) holds. Since s∗i ≤ s∗i for all i = 1, . . . , N , then also

s∗−i ≤ s∗−i in s−i for all i = 1, . . . , N . From (h1) and from Definition 8.2 it
then follows that for all i = 1, . . . , N ,

ui(s∗i , s
∗
−i) ≤ ui(s∗i , s

∗
−i) ≤ ui(s∗i , s

∗
−i),

which proves the last assertion. ut

Replacing in the above proof maxima by minima we get the following dual
results to Theorems 8.3 and 8.4.

Theorem 8.5. Assume that condition

(h2) minFi(s−i) ≤ minFi(ŝ−i) whenever s−i ≤ ŝ−i in S−i, i = 1, . . . , N

is satisfied. Then there exist strategies s∗1, . . . , s
∗
N such that for every i =

1, . . . , N the strategy s∗i is the smallest among all the strategies of player
i that maximizes its utility when the strategies of the other players are
s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . s

∗
N . In particular, the strategies s∗1, . . . , s

∗
N form a pure

Nash equilibrium for Γ .
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Proof: The minima ai = minSi, i = 1, . . . , N , exist because the sets Si are
finite. The notations

s0i := ai and s0−i := (a1, . . . , ai−1, ai+1, . . . , aN ), i = 1, . . . , N

imply that

ai = s0i ≤ s1i := minFi(s0−i) for all i = 1, . . . , N.

By this result we also have s0−i ≤ s1−i := (s11, . . . , s
1
i−1, s

1
i+1, . . . , s

1
N ) for all

i = 1, . . . N , which due to (h2) implies that

s1i = minFi(s0−i) ≤ s2i := minFi(s1−i) for all i = 1, . . . , N , etc.

After a finite number of steps, say j steps, we get

sji := minFi(s
j−1
−i ) = minFi(s

j
−i) = sj+1

i for all i = 1, . . . , N.

Denoting s∗i := sji and s∗−i := sj−i := (sj1, . . . , s
j
i−1, s

j
i+1, . . . , s

j
N ), i = 1, . . . , N ,

we then have
s∗i = minFi(s∗−i) for all i = 1, . . . , N. (8.3)

Thus the strategies s∗i are the smallest strategies that maximize the utility
ui(si, s−i) when s−i = s∗−i. In particular,

ui(s∗i , s
∗
−i) = max

si∈Si

ui(si, s∗−i), i = 1, . . . , N.

Consequently, the strategies s∗1, . . . , s
∗
N form a pure Nash equilibrium for Γ .

ut

The proof of the following theorem is dual to that of Theorem 8.4.

Theorem 8.6. Assume that (h2) holds, and let s∗1, . . . , s
∗
N be the pure Nash

equilibrium constructed in Theorem 8.5. If s∗1, . . . , s
∗
N is a pure Nash equilib-

rium for Γ , then s∗i ≤ s∗i for each i = 1, . . . , N . Assume, moreover, that each
ui(s1, . . . , sN ) is decreasing in sj, j 6= i, i.e.,

(h3) ui(si, ŝ−i) ≤ ui(si, s−i) whenever s−i ≤ ŝ−i, si ∈ Si and i = 1, . . . , N .

Then ui(s∗i , s
∗
−i) ≤ ui(s∗i , s

∗
−i) for all i = 1, . . . , N .

To study the validity of hypotheses (h0) and (h2) we introduce the follow-
ing definition.

Definition 8.7. We say that a function f : Si × S−i → R has increas-
ing differences in (si, s−i) if f(yi, s−i)− f(xi, s−i) ≤ f(yi, ŝ−i)− f(xi, ŝ−i)
whenever xi < yi and s−i < ŝ−i.
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Proposition 8.8. Let Γ = {Si, ui}Ni=1 be a finite simple normal-form game.
Assume that each ui(si, s−i) has increasing differences in (si, s−i). Then Γ
has the smallest and greatest pure Nash equilibria. Moreover, the greatest (re-
spectively the smallest) one gives the best utilities for the players provided (h1)
(respectively (h3)) is satisfied.

Proof: Denoting xi = maxF (s−i) and yi = maxF (ŝ−i) and applying (8.1)
and Definition 8.7 we obtain

0 ≤ ui(xi, s−i)− ui(min{xi, yi}, s−i) = ui(max{xi, yi}, s−i)− ui(yi, s−i)
≤ ui(max{xi, yi}, ŝ−i)− ui(yi, ŝ−i) ≤ 0 whenever s−i ≤ ŝ−i in S−i.

Thus all the inequalities above are equalities. In particular,

ui(max{xi, yi}, ŝ−i) = ui(yi, ŝ−i),

so that max{xi, yi} ∈ F (ŝ−i). Since yi = maxFi(ŝ−i), then max{xi, yi} = yi,
whence xi ≤ yi. This proves that (h0) is valid. Similarly one can show that
condition (h2) holds. The assertions follow then from Theorems 8.4, 8.5, and
8.6. ut

8.1.3 An Application to a Pricing Game

To present an application, assume that ci ≥ 0, i = 1, . . . , N , and that

ui(si, s−i) = di(si, s−i)(si − ci), where di : Si × S−i → R+, i = 1, . . . , N.
(8.4)

Players i are considered to stand for firms, each of which sell the substitute
products ei. The feasible selling prices si per unit of ei are assumed to form
a finite subset Si of R, which is bounded from below by ci, the ‘unit cost’ of
ei. The functions di stand for demands of products ei, which tell how many
units of ei the firm i sells during a fixed time period. The real-valued utilities
ui defined by (8.4) are considered as profits of firms i.

As a consequence of Proposition 8.8 we obtain the following result.

Corollary 8.9. Let Γ be a pricing game in which profits satisfy (8.4), and
the demand functions di(si, s−i) have increasing differences in (si, s−i) and
are increasing in s−i. Then Γ has the smallest and greatest price equilibria,
and the greatest one gives best profits among all price equilibria for Γ .

Proof: Assume that si < ŝi and s−i < ŝ−i. Since each di(si, s−i) has increas-
ing differences in (si, s−i), we obtain

ui(ŝi, ŝ−i)− ui(si, ŝ−i)− (ui(ŝi, s−i)− ui(si, s−i))
= di(ŝi, ŝ−i)(ŝi − ci)− di(si, ŝ−i)(si − ci)− di(ŝi, s−i)(ŝi − ci)

+ di(si, s−i)(si − ci) = (di(ŝi, ŝ−i)− di(ŝi, s−i))(ŝi − si)
+ (di(ŝi, ŝ−i)− di(si, ŝ−i)− (di(ŝi, s−i)− di(si, s−i)))(si − ci) ≥ 0.
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This proves that each ui(si, s−i) has increasing differences in (si, s−i). Since
each di(si, s−i) is increasing in s−i, it follows from (8.4) that each ui(si, s−i)
is increasing in s−i. Thus the assertions follow from Proposition 8.8. ut

Remark 8.10. The model considered above is a Bertrand oligopoly model,
where firms compete in prices. It is adopted from [218], which is an excellent
source to the subject. The condition that the demand functions di(si, s−i)
are increasing in s−i means that the product of firm i is equally or more
competitive when one or several other firms raise their prices. In Example
8.11 the demands di(si, s−i) are decreasing in si, meaning that the demand
of any product is not increasing if its price is raised. If this condition holds,
the assumption that demands di(si, s−i) have increasing differences in (si, s−i)
means that (cf. [218]) “the demand of any product is more sensitive to its price
when any other product is more competitive by virtue of its lower price.”

If the functions di are positive-valued, and if the functions log di(si, s−i)
have increasing differences in (si, s−i), it follows from Proposition 8.60 that
the hypotheses (h0) and (h2) are valid for profit functions ui. In fact, these hy-
potheses present one formulation to strategic complementarities: either max-
imums or minimums of best responses of any player are increasing in actions
of the other players.

Example 8.11. Assume that N = 3, and that the demands di, i = 1, 2, 3 are
of the form

d1(s1, (s2, s3)) = 370 + 213(s2 + s3) + 60s1 − 230s21,
d2(s2, (s1, s3)) = 360 + 233(s1 + s3) + 55s2 − 220s22,
d3(s3, (s1, s2)) = 375 + 226(s1 + s2) + 50s3 − 200s23.

(8.5)

Assume moreover that c1 := 1.10, c2 := 1.2, c3 := 1.25, ai = 1.30 and
bi := 2.10, i = 1, 2, 3, that the smallest price shift is five cents, and that
profits are counted by whole euros. Show that the smallest and greatest Nash
equilibria for prices exist. Calculate these equilibria and the corresponding
profits.

Solution. Convert the problem into a pricing game {S1, S2, S3, u1, u2, u3},
where the utilities are

ui = di(si, s−i)(si − ci), i = 1, 2, 3,

and strategy sets are

S1 = S2 = S3 = { j
20
, 26 ≤ j ≤ 42}.

From (8.5) it follows that the di’s are of the form

di(si, s−i) = fi(si) + gi(s−i), i = 1, 2, 3,
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where every fi : Si → R+ is decreasing and every gi : S−i → R+ is increasing.
Thus the demand functions di(si, s−i) are increasing in s−i. Since for each
i = 1, 2, 3,

di(yi, s−i)− di(xi, s−i) = fi(yi)− fi(xi),

then the demand functions di(si, s−i) have increasing differences in (si, s−i).
In view of Corollary 8.9 the pricing game Γ = {S1, S2, S3, u1, u2, u3} has the
smallest pure Nash equilibrium s1, s2, s3 and the greatest pure Nash equilib-
rium s1, s2, s3.

Applying successive approximations used in the proofs of Theorems 8.3
and 8.5, one can calculate the smallest and greatest pure Nash equilibria for
product prices:

s∗1 = 1.80, s∗2 = 1.90 and s∗3 = 1.95,

s∗1 = 1.80, s∗2 = 1.90, and s∗3 = 2.00.

The corresponding profits are:

u∗1 = 386, u∗2 = 380, u∗3 = 383,

u∗1 = 394, u∗2 = 388, u∗3 = 383.

By Corollary 8.9 the profits u∗1 and u∗2 majorize the profits of all other pure
Nash equilibria of Γ . Calculations are carried out by making use of simple
Maple-programming.

8.2 Pure and Mixed Nash Equilibria for Finite
Normal-Form Games

In this section we derive existence and comparison results for Nash equilibria
of normal-form games Γ = {Si, ui}Ni=1 of N players whose strategy spaces Si
are finite posets and the utility functions ui are vector-valued. In particular,
any supermodular game in which strategy spaces are finite lattices and the
ranges of the functions ui(·, s−i) are upward directed sets in ordered vector
spaces is shown to posses the smallest and greatest Nash equilibria formed
by pure strategies. Moreover, if the utilities ui(s1, . . . , sN ) are also increasing
(respectively decreasing) in sj , j 6= i, the utilities of the greatest (respectively
the smallest) pure Nash equilibrium are shown to be best in the sense that
they majorize both the utilities of all pure Nash equilibria and the expected
utilities of all mixed Nash equilibria. The proofs are constructive and pro-
vide finite algorithms to determine the extremal pure Nash equilibria for Γ .
These algorithms and Maple programming are applied to calculate such Nash
equilibria and the corresponding utilities for concrete games.
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8.2.1 Preliminaries

A real vector space E equipped with a partial ordering ≤ satisfying: x ≤ y
implies x + z ≤ y + z for all z ∈ E, and cx ≤ cy for all c ≥ 0, is called an
ordered vector space, and denoted by E = (E,≤).

Definition 8.12. We say that Γ = {Si, ui}Ni=1 is a finite normal-form
game of players i, i = 1, . . . , N , if each strategy set Si is a finite non-
empty subset of a poset Xi = (Xi,≤i), and ui is a utility function of player
i defined on S = S1 × · · · × SN and having values in an ordered vector space
Ei = (Ei,≤i).

Mixed strategies are obtained when every player i is allowed to choose in-
dependently any randomization of strategies of Si. The mixed strategy σi
of player i is thus a probability measure over Si. Denote by Σi the space
of all mixed strategies of player i. The expected utilities Ui(σ1, . . . , σN ),
i = 1, . . . , N , are defined by:

Ui(σ1, . . . , σN ) =
∑

(s1,...,sN )∈S

σ1({s1}) · · ·σN ({sN})ui(s1, . . . , sN ). (8.6)

Strategies of the form δsi
(xi) =

{
1, xi = si

0, xi 6= si
, si ∈ Si, are called pure

strategies. The set of these pure strategies is denoted by Pi. In the fol-
lowing we use notations: s−i = (s1, . . . , si−1, si+1, . . . , sN ), ui(s1, . . . , sN ) =
ui(si, s−i), σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ), Ui(σ1, . . . , σN ) = Ui(σi, σ−i),
S−i = S1×· · ·×Si−1×Si+1×· · ·×SN , Σ−i = Σ1×· · ·×Σi−1×Σi+1×· · ·×ΣN ,
and P−i = P1 × · · · × Pi−1 × Pi+1 × · · · × PN .

Definition 8.13. Let Γ = {Si, ui}Ni=1 be a finite normal-form game. We say
that mixed strategies σ∗1 , . . . , σ

∗
N form a Nash equilibrium for Γ if

Ui(σ∗i , σ∗−i) = max
σi∈Σi

Ui(σi, σ∗−i) for all i = 1, . . . , N.

8.2.2 Existence Result for the Greatest Nash Equilibrium

In what follows we assume that Γ = {Si, ui}Ni=1 is a finite normal-form game.
All products of posets are assumed to be ordered by componentwise ordering.
Assume also that for each fixed i = 1, . . . , N , the set Σi of probability mea-
sures on Si is ordered by first order stochastic dominance �i, defined as
follows:

(SD) σi �i τi if σi(A) ≤ τi(A) whenever A ⊆ Si is increasing, i.e., xi ∈ A and
xi ≤i yi imply yi ∈ A.
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It follows from (8.6) that

Ui(σi, σ−i) =
∑
si∈Si

σi({si})Ui(si, σ−i), i = 1, . . . , N, where

Ui(si, σ−i) =
∑

s−i∈S−i

∏
j 6=i

σj({sj})ui(si, s−i).
(8.7)

Since each Si is finite, and hence each function si 7→ Ui(si, σ−i) has only a
finite number of values, then the hypothesis

(H0) For every fixed i = 1, . . . , N and σ−i ∈ Σ−i, the set {Ui(si, σ−i) : si ∈
Si} is directed upward;

ensures that the sets

Fi(σ−i) = {xi ∈ Si : Ui(xi, σ−i) = max
si∈Si

Ui(si, σ−i)}, i = 1, . . . , N, (8.8)

are nonempty. The following hypothesis

(H1) For every fixed i = 1, . . . , N and σ−i ∈ Σ−i, the set Fi(σ−i) is directed
upward;

implies that the maxima of Fi(σ−i) exist. Assume that these maxima have
the following properties.

(H2) The set {maxFi(σ−i) : σ−i ∈ Σ−i} has an upper bound in Si, i =
1, . . . , N .

(H3) If σ−i ≤ τ−i in Σ−i and τ−i ∈ P−i, then maxFi(σ−i) ≤i maxFi(τ−i),
i = 1, . . . , N .

Lemma 8.14. Let the hypothesis (H0) hold. Then for all fixed i ∈ {1, . . . , N}
and σ−i ∈ Σ−i the set

Fi(σ−i) = {τi ∈ Σi : Ui(τi, σ−i) = max
σi∈Σi

Ui(σi, σ−i)} (8.9)

is nonempty. If the hypotheses (H0) and (H1) are fulfilled, then

maxFi(σ−i) = δsi(σ−i), (8.10)

where si(σ−i) = maxFi(σ−i), i = 1, . . . , N, σ−i ∈ Σ−i.

Proof: Let the hypothesis (H0) be satisfied, and let i ∈ {1, . . . , N} and σ−i ∈
Σ−i be fixed. Denoting ci = max

si∈Si

Ui(si, σ−i), it follows from (8.7) and (8.8)

that for each τi ∈ Σi,

Ui(τi, σ−i) = ci · τi(Fi(σ−i)) +
∑

si∈Si\Fi(σ−i)

τi({si})Ui(si, σ−i).
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This result implies that Ui(τi, σ−i) ≤i ci, and equality holds if and only if
τi(Fi(σ−i)) = 1. Thus

Fi(σ−i) = {τi ∈ Σi : τi(Fi(σ−i)) = 1}, i = 1, . . . , N, σ−i ∈ Σ−i. (8.11)

The latter implies that each Fi(σ−i) is nonempty. Assuming also hypothesis
(H1), then from (8.11), (H1), and from the definition (SD) of �i it follows
that (8.10) holds. ut

Denote Σ = Σ1× · · ·×ΣN , and equip Σ with componentwise ordering �.

Definition 8.15. Let σ∗1, . . . , σ
∗
N be a Nash equilibrium for a normal-form

game Γ . It is called the greatest Nash equilibrium for Γ if σ∗i �i σ∗i
for each i = 1, . . . , N whenever σ∗1 , . . . , σ

∗
N is a Nash equilibrium for Γ . The

smallest Nash equilibrium for Γ is defined similarly by reversing the in-
equalities.

Now we are ready to prove our main existence result.

Theorem 8.16. Under the hypotheses (H0)–(H3) a finite normal-form game
has the greatest Nash equilibrium, and it is pure one.

Proof: The hypothesis (H3), the definition (SD) of �i, and (8.10) imply that
for each i = 1, . . . , N ,

maxFi(σ−i) �i maxFi(σ̂−i) whenever Σ−i 3 σ−i ≤ σ̂−i ∈ P−i. (8.12)

By the hypothesis (H2) we can choose upper bounds bi ∈ Si for the sets
{maxFi(σ−i) : σ−i ∈ Σ−i}, i = 1, . . . , N . Then the elements δbi

∈ Pi are
upper bounds of the sets {maxFi(σ−i) : σ−i ∈ Σ−i}, i = 1, . . . , N . Defining
G+ by

G+(σ) := (maxF1(σ−1), . . . ,maxFN (σ−N )), σ = (σ1, . . . , σN ) ∈ Σ,
(8.13)

we obtain a mapping G+ : Σ → P = P1 × · · · × PN that has the following
properties: G+(σ) � G+(σ̂) if Σ 3 σ � σ̂ ∈ P , and σ = (δb1 , . . . , δbN

) is an
upper bound of G+[Σ]. Thus the iteration sequence (Gn+(σ)) is decreasing.

Because the set {maxFi(σ−i) : σ−i ∈ P−i} is a subset of a finite set Si
for each i = 1, . . . , N , then the set {δsi(σ−i) = maxF(σ−i) : σ−i ∈ P−i}
is finite. It then follows from (8.13) that G+[P ] is finite. In particular, the
iteration sequence (Gn+(σ)) is finite. Because it is also decreasing, then σ∗ :=
Gk+(σ) = Gk+1

+ (σ) = G+(σ∗) for some k ∈ N0. In particular, σ∗ = G+(σ∗).
This result, definition (8.13) of G+ and notations σ∗ = (σ∗1, . . . , σ

∗
N ) and

σ∗−i := (σk1 , . . . , σ
k
i−1, σ

k
i+1, . . . , σ

k
N ), i = 1, . . . , N , imply that

σ∗i = maxFi(σ∗−i) for all i = 1, . . . , N. (8.14)

According to this result the strategies σ∗i are the greatest strategies that
maximize the utility Ui(σi, σ−i) when σ−i = σ∗−i. In particular,
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Ui(σ∗i , σ∗−i) = max
σi∈Σi

Ui(σi, σ∗−i), i = 1, . . . , N,

so that the strategies σ∗1, . . . , σ
∗
N satisfy the Nash equilibrium condition. More-

over, they are pure strategies by (8.10) and (8.14).
To prove that σ∗1, . . . , σ

∗
N is the greatest Nash equilibrium for Γ , let σ =

(σ∗1 , . . . , σ
∗
N ) be an element of Σ whose components form a Nash equilibrium

for Γ . Then σ∗i ∈ Fi(σ∗−i), whence σ∗i �i maxFi(σ∗−i) for each i = 1, . . . N .
This result implies by (8.13) and by the choice of σ that

σ � G+(σ) � σ.

When we map all the elements of the preceding inequality k times and notice
that G+(σ) � G+(σ̂) if Σ 3 σ � σ̂ ∈ P , we obtain

σ � G+(σ) � · · · � Gk+1
+ (σ) � Gk+(σ) = σ∗.

Thus σ = (σ1, . . . , σN ) � σ = (σ∗1, . . . , σ
∗
N ), i.e., σ∗i �i σ∗i for each i =

1, . . . , N . This proves that σ∗1, . . . , σ
∗
N is the greatest Nash equilibrium for Γ .

ut

8.2.3 Comparison Result for Utilities

In the proof of our main comparison results of this section we make use of the
following lemma.

Lemma 8.17. Let the hypotheses (H0)–(H3) be satisfied. Assume also that

(H4) ui(si, s−i) ≤i ui(si, ŝ−i) whenever s−i ≤ ŝ−i in S−i, si ∈ Si and i =
1, . . . , N .

Let σ∗1, . . . , σ
∗
N be the pure Nash equilibrium constructed in Theorem 8.16. If

σ1, . . . , σN is any Nash equilibrium for Γ , then

Ui(si, σ−i) ≤i Ui(si, σ∗−i) for all i = 1, . . . , N and si ∈ Si. (8.15)

Proof: Let σ1, . . . , σN be a Nash equilibrium for Γ . By Lemma 8.14 and
(8.14) we have

σ∗i = maxFi(σ∗−i) = δsi
, where si = maxFi(σ∗−i), i = 1, . . . , N. (8.16)

Since σi �j σ∗i , i = 1, . . . , N by Theorem 8.16, then σj �j δsj
for j 6= i. If

sj ∈ Sj and sj 6≤j sj , then sj 6∈ Aj = {xj ∈ Sj : sj ≤j xj}. Because Aj is
increasing, from the definition (SD) of �j it follows that σj({sj}) ≤ σj(Aj) ≤
δsj (Aj) = 0. Thus sj ≤j sj for all sj ∈ Sj for which σj({sj}) > 0. This result
and the hypothesis (H4) imply that



330 8 Game Theory

Ui(si, σ−i) =
∑

s−i∈S−i

∏
j 6=i

σj({sj})ui(si, s−i)

≤i
∑

s−i∈S−i

∏
j 6=i

σj({sj})ui(si, s−i) = ui(si, s−i)

=
∑

s−i∈S−i

∏
j 6=i

σ∗j ({sj})ui(si, s−i) = Ui(si, σ∗−i).

This proves the validity of (8.15). ut

As a consequence of Lemma 8.17 we get our main comparison result.

Theorem 8.18. Assume hypotheses (H0)–(H4), and let σ∗1, . . . , σ
∗
N be the

Nash equilibrium constructed in Theorem 8.16. If σ∗1 , . . . , σ
∗
N is a Nash equi-

librium for Γ , then Ui(σ∗i , σ∗−i) ≤i Ui(σ∗i , σ∗−i) for all i = 1, . . . , N .

Proof: Let σ∗1 , . . . , σ
∗
N be a Nash equilibrium for Γ . Since σ∗i �i σ∗i for all

i = 1, . . . , N , by Theorem 8.16, then also σ∗−i ≤ σ∗−i inΣ−i for all i = 1, . . . , N .
Then from (8.7), (8.15), and Definition 8.13 it follows that

Ui(σ∗i , σ∗−i) =
∑
si∈Si

σ∗i ({si})Ui(si, σ∗−i) ≤i
∑
si∈Si

σ∗i ({si})Ui(si, σ∗−i)

= Ui(σ∗i , σ∗−i) ≤i Ui(σ∗i , σ∗−i) for all i = 1, . . . , N.

This proves the assertion. ut

8.2.4 Dual Results

Here we present an existence and comparison result for the smallest Nash
equilibrium of a finite normal-form game Γ = {Si, ui}Ni=1. The hypotheses
(H1)–(H3) will be replaced by the following hypotheses.

(Ha) For every fixed i = 1, . . . , N the sets Fi(σ−i), σ−i ∈ Σ−i, are directed
downward.

(Hb) The set {minFi(σ−i) : σ−i ∈ Σ−i} has a lower bound in Si, i =
1, . . . , N .

(Hc) If σ−i ≤ τ−i in Σ−i and σ−i ∈ P−i, then minFi(σ−i) ≤i minFi(τ−i),
i = 1, . . . , N .

The following existence and comparison results are dual to those of The-
orems 8.16 and 8.18. Their proofs are similar and can be omitted.

Theorem 8.19. Under the hypotheses (H0), (Ha), (Hb), and (Hc), Γ has the
smallest Nash equilibrium {σ∗1, . . . , σ∗N}, and it is pure. Assume, moreover,
that

(Hd) ui(si, ŝ−i) ≤i ui(si, s−i) whenever s−i ≤ ŝ−i in S−i, si ∈ Si and i =
1, . . . , N .
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If σ∗1 , . . . , σ
∗
N is any Nash equilibrium for Γ , then Ui(σ∗i , σ∗−i) ≤i Ui(σ∗i , σ∗−i)

for all i = 1, . . . , N .

Remark 8.20. (i) The comparison results of Theorems 8.18 and 8.19 cannot
be obtained by the methods used, e.g., in [86, 180, 217, 218, 222, 223], be-
cause the mixed strategies need not form complete lattices, not even lattices,
and because the utility mappings ui need not be chain-valued. The strategic
complementarity properties contained in conditions (H3) and (Hc) are also
weaker than those assumed in the above cited papers. Moreover, the strategy
spaces Si are not assumed to be lattice-ordered.

(ii) If σi = δsi and σ̂i = δŝi , i = 1, . . . , N , then σi �i σ̂i in Pi if and
only if si ≤i ŝi in Si, so that the spaces Pi of pure strategies, ordered by first
order stochastic dominance, are order isomorphic with the strategy spaces Si.
Moreover, if σi = δsi

, i = 1, . . . , N , from (8.6) and (8.7) it follows that

Ui(σ1, . . . , σN ) = ui(s1, . . . , sN ) and Ui(si, σ−i) = ui(si, s−i)

for i = 1, . . . , N. Thus we can equalize δsi ’s with si’s, Pi’s with Si’s, and Ui’s
and Ui’s with ui’s. The iteration sequence (Gn+(σ)), σ = (δb1 , . . . , δbN

), used
in the proof of Theorem 8.16, can be rewritten as finite strictly decreasing
sequences of successive approximations:

sn+1
i = maxFi(sn−i), n = 0, 1, . . . , s0i = bi, i = 1, . . . , N, (8.17)

where

Fi(s−i) = {x ∈ Si : ui(x, s−i) = max
t∈Si

ui(t, s−i)}, i = 1 = 1, . . . , N. (8.18)

Hence, if the hypotheses (H0)–(H3) are valid, then the greatest pure Nash
equilibrium of Γ is (sk1 , . . . , s

k
N ), where k is the smallest integer for which

ski = sk+1
i for every i = 1, . . . , N . Similarly, under the hypotheses (H0), (Ha),

(Hb), and (Hc), the components of the smallest pure Nash equilibrium of Γ
are the last elements of finite strictly increasing sequences of the successive
approximations:

sn+1
i = minFi(sn−i), n = 0, 1, . . . , s0i = ai, i = 1, . . . , N. (8.19)

8.2.5 Applications to Finite Supermodular Games

In this subsection we apply the results of the previous subsections to finite
supermodular normal-form games that have vector-valued utility functions.
A subset S of a poset X is called a sublattice if x ∨ y := sup{x, y} and
x ∧ y := inf{x, y} exist in X and belong to S for all x, y ∈ S. Every chain is
a sublattice and every sublattice is directed.

Definition 8.21. A normal-form game Γ = {Si, ui}Ni=1 is a finite super-
modular normal-form game if for all i = 1, . . . , N ,
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(h1) Si is a finite sublattice of a poset Xi = (Xi,≤i), and the values of ui are
in an ordered vector space Ei = (Ei,≤i);

(h2) ui(si, s−i) is supermodular in si, i.e., if xi, yi ∈ Si and s−i ∈ S−i,
then ui(xi, s−i) + ui(yi, s−i) ≤i ui(xi ∧ yi, s−i) + ui(xi ∨ yi, s−i);

(h3) ui(si, s−i) has increasing differences in (si, s−i), i.e., if xi <i yi ∈ Si
and s−i < ŝ−i in S−i, then ui(yi, s−i) − ui(xi, s−i) ≤i ui(yi, ŝ−i) −
ui(xi, ŝ−i).

Lemma 8.22. The hypotheses (H1)–(H3), (Ha), (Hb), and (Hc) are valid for
any finite supermodular normal-form game that satisfies the hypothesis (H0).

Proof: Let Γ = {Si, ui}Ni=1 be a finite supermodular normal-form game, and
assume that the hypothesis (H0) holds. To prove the validity of (H1) and
(Ha), let i ∈ {1, . . . , N}, σ−i ∈ Σ−i and xi, yi ∈ Fi(σ−i) be given. Applying
(8.7), (8.8), and condition (h2) we obtain

0 ≤ Ui(xi, σ−i)− Ui(xi ∧ yi, σ−i)

=
∑

s−i∈S−i

∏
j 6=i

σj({sj})(ui(xi, s−i)− ui(xi ∧ yi, s−i))

≤i
∑

s−i∈S−i

∏
j 6=i

σj({sj})(ui(xi ∨ yi, s−i)− ui(yi, s−i))

= Ui(xi ∨ yi, σ−i)− Ui(yi, σ−i) ≤ 0.

The above result, (8.8), and the choice of xi and yi from Fi(σ−i) imply that xi∧
yi and xi∨yi belong to Fi(σ−i). Thus Fi(σ−i) is a sublattice. In particular, the
hypotheses (H1) and (Ha) are verified. Because each Si is a finite sublattice,
then ai = minSi and bi = maxSi exist; bi is an upper bound of {maxFi(σ−i) :
σ−i ∈ Σ−i} in Si, and ai is a lower bound of {minFi(σ−i) : σ−i ∈ Σ−i} in Si.
This proves that the hypotheses (H2) and (Hb) are valid.

To prove that (H3) holds, let i ∈ {1, . . . , N} be given, and assume that
σ−i ≤ τ−i in Σ−i, and that τ−i = (δŝ1 , . . . , δŝi−1 , δŝi+1 , . . . , δŝN

) ∈ P−i. Since
σ−i ≤ τ−i in Σ−i, then σj �j δŝj

for j 6= i. As in the proof of Lemma 8.17
one can show that sj ≤j ŝj for all sj ∈ Sj for which σj({sj}) > 0. Denoting
xi = maxF (σ−i) and yi = maxF (τ−i), applying conditions (h2) and (h3) of
Definition 8.21, and noticing that σ−i({s−i}) > 0 only if s−i ≤ ŝ−i, we get

0 ≤i Ui(xi, σ−i)− Ui(xi ∧ yi, σ−i)

=
∑

s−i∈S−i

∏
j 6=i

σj({sj})(ui(xi, s−i)− ui(xi ∧ yi, s−i))

≤i
∑

s−i∈S−i

∏
j 6=i

σj({sj})(ui(xi, ŝ−i)− ui(xi ∧ yi, ŝ−i))

= ui(xi, ŝ−i)− ui(xi ∧ yi, ŝ−i) ≤i ui(xi ∨ yi, ŝ−i)− ui(yi, ŝ−i)

=
∑

s−i∈S−i

∏
j 6=i

τj({sj})(ui(xi ∨ yi, s−i)− ui(yi, s−i))

= Ui(xi ∨ yi, τ−i)− Ui(yi, τ−i) ≤ 0.
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Thus all the inequalities above are equalities. In particular, Ui(xi ∨ yi, τ−i) =
Ui(yi, τ−i), so that xi∨yi ∈ F (τ−i). Since yi = maxFi(τ−i), then xi∨yi = yi,
whence xi ≤ yi. This proves that the hypothesis (H3) is valid. The proof for
(Hc) to hold can be done in a similar way. ut

The following proposition is a consequence of Lemma 8.22 and Theorems
8.16–8.19.

Proposition 8.23. Let Γ = {Si, ui}Ni=1 be a finite supermodular normal-form
game. If the hypothesis (H0) holds, then Γ has the smallest and greatest Nash
equilibria formed by pure strategies. If, in addition, hypothesis (H4) (respec-
tively (Hd)) is satisfied, then the utilities of the greatest (respectively the small-
est) Nash equilibrium majorize the utilities of all other Nash equilibria for Γ .

The hypothesis (H0) holds if ui’s are real-valued, whence we obtain the
results stated in Chap. 1.

Corollary 8.24. A supermodular normal-form game, where strategy spaces
are finite lattices, and utilities ui(si, s−i) are real-valued and increasing (re-
spectively decreasing) in s−i, has the smallest and greatest Nash equilibria
formed by pure strategies, and the greatest (respectively the smallest) one gives
the best utilities among all mixed Nash equilibria.

Remark 8.25. (i) The proof of Lemma 8.22 shows that each Fi(σ−i) is a sub-
lattice. However, this does not imply that Fi(σ−i) is a sublattice. As for the
definition of Fi(σ−i) see (8.9).

(ii) Log-supermodularity (cf., e.g., [218]) is not available because the utility
functions ui are vector-valued.

Consider next the case where the utility functions are of the form
ui(si, s−i) = (ui1(si1, s−i), . . . , uimi

(simi
, s−i)),

si = (si1, . . . , simi
) ∈ Si = ×mi

j=1Sij , s−i ∈ S−i, where
uij(sij , s−i) = dij(sij , s−i)qij(sij), i = 1, . . . , N, j = 1, . . . ,mi,

dij : Sij × S−i → R, and qij : Sij → R+.

(8.20)

The following hypotheses are imposed.

(ha) Each Sij is a finite subset of R.
(hb) Each dij(sij , s−i) has increasing differences in (sij , s−i).

Proposition 8.26. Let Γ = {Si, ui}Ni=1) be a normal-form game whose utili-
ties are given by (8.20). Assume that the hypotheses (ha) and (hb) hold, and
that all the functions qij and dij(sij , ·) are increasing (respectively decreasing).
Then Γ has extremal Nash equilibria formed by pure strategies, and the great-
est (respectively the smallest) Nash equilibrium gives the best utilities among
all Nash equilibria for Γ .
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Proof: We are going to show that Γ is a supermodular game. Let i ∈
{1, . . . , N} be fixed. The hypothesis (ha) and the definitions of ui imply that
condition (h1) of Definition 8.21 is satisfied for Xi = Ei = Rmi , ordered co-
ordinatewise. Because each function is supermodular in its real variable, the
components uij(sij , s−i) of ui(si, s−i) = (ui1(si1, s−i), . . . , uimi(simi , s−i)) are
supermodular in sij . Thus ui(si, s−i) is supermodular in si = (si1, . . . , simi).

Assume next that the functions qij and dij(sij , ·) are all increasing or all
decreasing, and that sij < ŝij and s−i < ŝ−i. Since each dij(sij , s−i) has
increasing differences in (sij , s−i), we have the following estimate

uij(ŝij , ŝ−i)− uij(sij , ŝ−i)− (uij(ŝij , s−i)− uij(sij , s−i))
= dij(ŝij , ŝ−i)qij(ŝij)− dij(sij , ŝ−i)qij(sij)− dij(ŝij , s−i)qij(ŝij)

+ dij(sij , s−i)qij(sij)
= (dij(ŝij , ŝ−i)− dij(ŝij , s−i))(qij(ŝij)− qij(sij))

+ (dij(ŝij , ŝ−i)− dij(sij , ŝ−i)− (dij(ŝij , s−i)− dij(sij , s−i)))qij(sij) ≥ 0.

This proves that each uij(sij , s−i) has increasing differences in (sij , s−i). Con-
sequently, each ui(si, s−i) has increasing differences in (si, s−i). The above
proof shows that conditions (h2) and (h3) of Definition 8.21 hold true. The
given hypotheses and the definition of ui ensure that also the hypothesis (H0)
is valid. Thus the assertions follow from Proposition 8.23. ut

Assume that cij ≥ 0, i = 1, . . . , N , and that
ui(si, s−i) = (ui1(si1, s−i), . . . , uimi

(simi
, s−i)), where

uij(sij , s−i) = dij(sij , s−i)kij(sij)(sij − cij),
dij : Sij × S−i → R+, kij : Sij → R+, i = 1, . . . , N, j = 1, . . . ,mi.

(8.21)
The following corollary is a consequence of Proposition 8.26.

Corollary 8.27. Let Γ be a finite normal-form game with utilities given by
(8.21), and let the hypotheses (ha) and (hb) be satisfied. Assume also that all
the functions qij given by (8.25) and all the functions dij(sij , ·) are increasing.
Then Γ has the smallest and greatest Nash equilibria formed by pure strategies.
Moreover, the utilities of the greatest Nash equilibrium majorize the utilities
of all mixed Nash equilibria for Γ .

Let us consider the following special case: For i = 1, . . . , N, j = 1, . . . ,mi,
define

dij(sij , s−i) = fij(sij) + gij(s−i), sij ∈ Sij , s−i ∈ S−i, (8.22)

where fij : Sij → R, and gij : S−i → R. In this case we have

dij(ŝij , ŝ−i)− dij(sij , ŝ−i) = fij(ŝij)− fij(sij) = dij(ŝij , s−i)− dij(sij , s−i)

for all fixed i = 1, . . . , N and j = 1, . . . ,mi. Thus the hypotheses given for dij
in Corollary 8.27 are satisfied if each gij is increasing.
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Example 8.28. Consider a two-person normal form game Γ = {S1, S2, u1, u2}.
Assume that the strategy spaces are Si = (Si1, Si2), where Sij = { 3

2 + k
1031 :

0 ≤ k ≤ 1031}, i, j = 1, 2, and that the utility functions are ui = (ui1, ui2),
where the components uij , i, j = 1, 2, are defined by (sgn denotes the sign
function)

u11(s11, s−1) =(52− 22s11 + s21 + 4s22 + sgn(s21 · s22 − 4))(s11 − 1),

u12(s12, s−1) =(51− 21s12 − sgn(s12 −
11
10

) + 2s21)(s12 −
11
10

)

+ (3s22 + sgn(s21 + s22 − 4)))(s12 −
11
10

),

u21(s21, s−2) =(50− 20s21 − sgn(s21 −
11
10

) + 3s11)(s12 −
11
10

)

+ (2s12 + sgn(s11 + s12 − 4))(s21 − 1),

u22(s22, s−2) =(49− 19s22 + 4s11 + s12 + sgn(s11 · s12 − 4))(s22 −
11
10

),

for sij ∈ Sij , i, j = 1, 2.
(8.23)

Show that the smallest and greatest Nash equilibria for Γ exist. Calculate
them along with the corresponding utilities.

Solution. The utilities uij are of the form (8.21), where kij(sij) ≡ 1 and
dij ’s are of the form (8.22), where the functions gij are increasing. Thus the
hypotheses given for dij in Corollary 8.27 hold, which ensures the existence
of the smallest and greatest Nash equilibria for Γ . Moreover, they are pure.
It remains to calculate them. The sets Smij = { 3

2 + k
10m : 0 ≤ k ≤ 10m},

m = 1, . . . , 30 form partitions of the sets Sij , i, j = 1, 2. The games Γm =
{Sm1 , Sm2 , um1 , um2 }, where Smi = (Smi1 , S

m
i2 ) and components of umij equal to uij

at points of Smij . Thus every game Γm has the smallest and greatest Nash
equilibria. Denote

Fmij (s−i) = {x ∈ Smij : uij(x, s−i) = max{umij (t, s−i) : t ∈ Smij }}, s−i ∈ S−i.

Since the functions uij(·, s−i) are strictly convex, they are strictly increasing
(resp. strictly decreasing) on all intervals [k−1

10m ,
k

10m ] that are on the left (resp.
right) hand side of the interval [maxFmij (s−i) − 1

10m ,maxFmij (s−i) + 1
10m ].

Thus maxFm+1
ij (s−i) ∈ [maxFmij (s−i) − 1

10m ,maxFmij (s−i) + 1
10m ]. Conse-

quently, if ((sm11, s
m
12, (s

m
21, s

m
22)) denotes the greatest Nash equilibrium of Γm,

then the components sm+1
ij of the greatest Nash equilibrium of Γm+1 are in

[smij − 1
10m , s

m
ij + 1

10m ]. Thus to find it we can shorten calculations restricting
partitions Sm+1

ij to intervals [smij − 1
10m , s

m
ij + 1

10m ]. Successive approximations
(8.17), rewritten as

sij(n+ 1) = maxFm+1
ij (s−i(n)), n = 0, 1, . . . , sij(0) = smij +

1
10m

, i, j = 1, 2,

(8.24)
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can be used to calculate the components sm+1
ij of the greatest Nash equilibrium

of Γm+1.
Carrying out calculations when m takes values from 1 to 30, we obtain

the greatest Nash equilibrium (s311 , s
31
2 ) = ((s3111, s

31
12), (s

31
21, s

31
22)) of Γ 31 = Γ .

Using a simple Maple programming we obtain:

s3111 = 1.958955488077635047149564123733,
s3112 = 2.075807646702097999203717143840,
s3121 = 2.150712043940927528496403166472,
s3122 = 2.260832357868753636521104569441.

The approximations of components corresponding utilities are:

u31
11 = 19.99621183060801667265191583457,
u31

12 = 20.23110381851273556724198243551,
u31

21 = 22.07991598565043242896275184546,
u31

22 = 30.20426645832873596245449581063.

By similar calculations one obtains the smallest Nash equilibrium (s311 , s
31
2 )

= ((s3111, s
31
12), (s

31
21, s

31
22)) of Γ :

s3111 = 1.826740313790411264545632395766,
s3112 = 1.869184540540814197412333850086,
s3121 = 1.937158528634179627960159820695,
s3122 = 1.939393761872371263084695638778.

The components of the corresponding utilities have the following components:

u31
11 = 12.98649138247908596033916270233,
u31

12 = 14.01668804129889104127227753592,
u31

21 = 14.79621963687527336835895565230,
u31

22 = 16.62059884133321814018013777847.

These utilities majorize the utilities of all pure and mixed Nash equilibria for
Γ .

8.2.6 Application to a Multiproduct Pricing Game

The values of utilities ui defined by (8.21) can be considered as profit vectors
of firms i that sell products eij , j = 1, . . . ,mi. The selling prices sij per unit
of eij are assumed to form a subset Sij of R, which is bounded from below by
a unit purchase price cij of eij . The values of utilities ui defined by (8.21) are
considered as profit vectors of firms i. The functions

Dij(sij , s−i) = dij(sij , s−i)kij(sij)

stand for demands of products eij . The utilities ui defined in (8.21) are of the
form (8.20), where
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qij(sij) = kij(sij)(sij − cij), i = 1, . . . , N, j = 1, . . . ,mi. (8.25)

The result of Corollary 8.27 can be applied to find the greatest and smallest
equilibria for the above described pricing game.

Example 8.29. Consider a pricing game, where firms 1 and 2 sell two different
products. Costs per item in euros are (c11, c12) = (1, 1.10) for firm 1, and
(c21, c22) = (1.10, 1) for firm 2. Prices sij may vary from 1.20, with five cents
differences, to 2.40. Profits per day are calculated in whole euros. Assume that
demands are di = (di1, di2), where the components dij , i, j = 1, 2, are defined
by

d11(s11, s−1) = 30(53− 22s11 + 4s21 + s22),
d12(s12, s−1) = 31(52− 21s12 + 3s21 + 2s22),
d21(s21, s−2) = 32(48− 19s21 + 2s11 + 3s12),
d22(s22, s−2) = 30(49− 20s22 + s11 + 4s12).

(8.26)

Show that the smallest and greatest Nash equilibria for prices exist. Calculate
these equilibria and the corresponding profits.

Solution. Convert the problem to a normal-form game {S1, S2, u1, u2}, where
utilities are

ui = (di1(si1, s−i)(si1 − ci1), di2(si2, s−2)(si2 − ci2)), i = 1, 2,

with c11 = c22 = 1, c12 = c21 = 11
10 , and strategy sets are Si = Si1×Si2, where

S11 = S22 = S12 = S21 = { j
20
, 24 ≤ j ≤ 48}.

In this case Xi = Ei = R2, i = 1, 2. From (8.26) it follows that the de-
mands are of the form (8.22), where every gij is increasing on S−i. Thus Γ
has by Corollary 8.27 the smallest and greatest Nash equilibria formed by
pure strategies. In view of Remark 8.20 the components of the greatest price
equilibrium (s∗1, s

∗
2) are the last elements of finite strictly decreasing sequences

of successive approximations:

sn+1
i = maxFi(sn−i), n = 1, . . . , k − 1, s0i = 2.40, i = 1, 2,

where

Fi(s−i) = {xi ∈ Si : ui(xi, s−i) = max
si∈Si

ui(si, s−i)}, i = 1, 2.

The smallest price equilibrium can be obtained as the last element (s∗1, s
∗
2) =

(sj1, s
j
2) of the following finite and strictly increasing sequences of successive

approximations:

sn+1
i = minFi(sn−i), n = 1, . . . , j − 1, s0i = 1.20, i = 1, 2.

Using a simple Maple programming we obtain:
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s∗1 = (1.95, 2.05), s∗2 = (2.10, 2.00), s∗1 = (1.95, 2.00), s∗2 = (2.05, 1.95).

Corresponding profits are

u∗1 = (584, 566), u∗2 = (580, 574), u∗1 = (577, 559), u∗2 = (576, 568).

Since the demand functions dij are increasing with respect to s−i, then the
profits (u∗i , u

∗
2) majorize by Corollary 8.27 the profits obtained by all pure and

mixed Nash equilibria of prices.

Example 8.30. Assume that N = 3, and that the demands di, i = 1, 2, 3 are
of the form

d1(s1, (s2, s3)) = 370 + 213(s2 + s3) + 60s1 − 230s21,
d2(s2, (s1, s3)) = 360 + 233(s1 + s3) + 55s2 − 220s22,
d3(s3, (s1, s2)) = 375 + 226(s1 + s2) + 50s3 − 200s23.

(8.27)

Assume moreover that c1 := 1.10, c2 := 1.2, c3 := 1.25, ai = 1.30 and
bi := 2.10, i = 1, 2, 3, that the smallest price shift is five cents, and that
profits are counted by whole euros. Show that the smallest and greatest Nash
equilibria for prices exist. Calculate these equilibria and the corresponding
profits.

Solution. Transform the problem to a pricing game {S1, S2, S3, u1, u2, u3},
where the utilities are given by

ui = di(si, s−i)(si − ci), i = 1, 2, 3,

and strategy sets are given by

S1 = S2 = S3 = { j
20
, 26 ≤ j ≤ 42}.

From (8.27) we see that di’s are of the form di(x, y) = fi(x)+gi(y), where every
fi : Si → (0,∞) is decreasing and every gi : S−i → (0,∞) is increasing. Then
from Corollary 8.27 it follows that the pricing game {S1, S2, S3, u1, u2, u3} has
the smallest and greatest Nash equilibria, and that they are formed by pure
strategies. These extremal Nash equilibria for prices and the corresponding
profits are presented in Example 8.11.

Remark 8.31. In the special case where kij(sij) ≡ 1 and mi = 1 in (8.21) we
obtain the Bertrand oligopoly model considered in [218, Subsection 4.4.1].

8.3 Pure Nash Equilibria for Normal-Form Games

In this section we study the existence of pure Nash equilibria for a normal-
form game Γ = {Si, ui}Ni=1 in a more general setting as in preceding sections.
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Both the strategy spaces Si and the ranges of the utility functions ui may be
nonempty posets.

The existence of the smallest and greatest pure Nash equilibria is studied
in Sect. 8.3.2. For instance, our main results imply that Γ has the smallest
and greatest pure Nash equilibria s1, . . . , sN and s1, . . . , sN , respectively, if Γ
has (ordinal) strategic complementarities defined in [180]. Moreover, utilities
at the smallest (greatest) pure Nash equilibrium majorize the utilities at each
other Nash equilibrium of Γ when ui(s1, . . . , sN ) is decreasing (increasing) in
sj , j 6= i. Monotone comparative statics, i.e., monotone dependence on the
parameter, is also studied. The poset-valued functions sj 7→ ui(s1, . . . , sN ),
j 6= i, are not necessarily continuous, as assumed in the real-valued case
in [180]. New extreme value results are proved in Sect. 8.3.1 to ensure the
existence of maximum points of the functions si 7→ ui(s1, . . . , sN ).

In Sect. 8.3.5 we present sufficient conditions for the existence of mini-
mal and maximal pure Nash equilibria for normal-form games whose strategy
spaces and the ranges of utility functions are posets. Applications and concrete
examples are presented.

8.3.1 Extreme Value Results

For a normal-form game Γ = {Si, ui}Ni=1 the existence of a Nash equilibrium
requires that the functions ui(·, , s−i) have maximum points. In this subsection
we prove extreme value results that are applied to ensure the existence of these
maximum points when the values of the utility functions are in posets. If y
and z are elements of a poset Y = (Y,�), denote

[y) = {x ∈ Y : y � x}, (z] = {x ∈ Y : x � z} and [y, z] = [y) ∩ (z].

Definition 8.32. Let S be a topological space, and let Y be a poset. A mapping
f : S → Y is called upper closed if f−1[[y)] is closed for all y ∈ f [S], and
directedly upper closed if every element pair w, z of the range f [S] of f
has such an upper bound y in f [S] that the set f−1[[y)] is closed.

The next lemma presents conditions that ensure that an upper closed
function is directedly upper closed.

Lemma 8.33. An upper closed function f from a topological space S to a
poset Y is directedly upper closed if the range f [S] of f is directed upward.
In particular, if Y is a chain, then every upper closed function is directedly
upper closed.

A function f from a topological space S to R is upper semicontinuous if
the set f−1[[y)] is closed for every y ∈ R. Since R is also a chain, then Lemma
8.33 implies following result.

Corollary 8.34. If S is a topological space, then every upper semicontinuous
function from S to R is upper closed and directedly upper closed.
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In [111] the above defined concept of upper closeness was called upper
semicontinuity. However, there exist upper closed real functions that are not
upper semicontinuous.

Example 8.35. Define f : [−1, 1] → R by f(x) = 1 − x2, for 0 < |x| < 1,
f(0) = 2, and f(±1) = −1. Both f and −f are upper closed but neither of
them is upper semicontinuous. Notice also that f : [−1, 1] → R is continuous
if and only if both f and −f are upper semicontinuous.

Given posets S = (S,≤), and Y = (Y,�), recall that a function f : S → Y
is increasing, strictly increasing, decreasing, or strictly decreasing in a subset
B of S if x < y in B implies that f(x) � f(y), f(x) ≺ f(y), f(y) � f(x), or
f(y) ≺ f(x), respectively. If f is (strictly) increasing or (strictly) decreasing in
B, then f is called (strictly) monotone in B. If S is a chain having maximum
and minimum, we say that f is piecewise (strictly) monotone if there is
such a partition minS = t0 < t1 < · · · < tm = maxS of S that the restriction
of f to any order interval [tk−1, tk] of S is (strictly) monotone.

Remark 8.36. (i) Piecewise strictly monotone functions are not necessarily
upper closed (define f(1) = 0 in Example 8.35).

(ii) Piecewise monotone functions are not necessarily directedly upper
closed (define f(0) = −1 and f(x) = 0 for 0 < |x| ≤ 1).

(iii) Every piecewise strictly monotone function from a chain S having
smallest and greatest elements to a chain is directedly upper closed in every
T1-topology of S.

Our main extreme value theorem reads as follows.

Theorem 8.37. Assume that S is a compact topological space, that Y is a
poset, and that f : S → Y is directedly upper closed. Then the set of maximum
points of f is nonempty and compact.

Proof. Let B be the set of those y ∈ f [S] for which the set f−1[[y)] is closed.
The sets f−1[[y)], y ∈ B form a nonempty family of closed subsets of S.
The intersection of every finite subfamily is nonempty because f is directedly
upper closed. Since S is compact, then the intersection of the whole family
contains at least one point x. In particular, x ∈ f−1[[y)], i.e., y � f(x) for
every y ∈ B. Denoting w = f(x), then w is an upper bound of B. Since
w ∈ f [S], there exists by Definition 8.32 such a z in f [S] that the set f−1[[z)]
is closed and w � z. On the other hand, since z ∈ B, and w is an upper
bound of B, then z � w. Thus z = w, so that w = maxB. Since every
element of f [S] is majorized by an element of B due to Definition 8.32, we
infer w = max f [S], so that f−1[[w)] is the set of all maximum points of f .
Because w ∈ B, it follows that f−1[[w)] is closed, and hence also compact
because S is compact. ut

The converse holds true in case that S is a Hausdorff space.
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Proposition 8.38. Assume that S is a compact Hausdorff space, and that Y
is a poset. Then a function f : S → Y has a nonempty and compact set of
maximum points if and only if f is directedly upper closed.

Proof: The sufficiency part follows from Theorem 8.37. Conversely, assume
that the set A of maximum points of f is nonempty and compact. Because
S is a Hausdorff space, then A is also nonempty and closed. Moreover, A =
f−1[[w)], where w = max f [S], and w is an upper bound for every element
pair y, z of f [S]. Thus f is directedly upper closed. ut

In case that S is a subset of a Euclidean space we have the following result.

Corollary 8.39. Let S be a nonempty subset of a Euclidean space. A function
f from S to a poset has a nonempty and compact set of maximum points if
and only if f is directedly upper closed and the set f−1[[y)] is bounded for
some y ∈ f [S].

Proof: The hypotheses imposed on f imply that the set f−1[[y)] is closed and
bounded, and hence compact for some y ∈ f [S]. Thus the restriction of f to
f−1[[y)] satisfies the hypotheses of Theorem 8.37. This proves the sufficiency
part. Necessity part follows from Proposition 8.38. ut

By an order interval topology of a poset S we mean a topology whose
subbasis is formed by order intervals [x) and (x], x ∈ S. In Euclidean spaces
the order interval topology coincides with the topology induced by the Euclid-
ean metric. A poset S, equipped with a topology that is finer than the order
interval topology, is called an ordered topological space.

The next results are also consequences of Theorem 8.37.

Corollary 8.40. Let S be a compact ordered topological space. Then the fol-
lowing holds.

(a) maxS exists if and only if S is directed upward.
(b) minS exists if and only if S is directed downward.

Proof: Ad (a) If S is directed upward, then the hypotheses of Theorem 8.37
hold when Y = S and f(x) ≡ x. Thus max f [S] = maxS exists. Conversely,
if maxS exists, then S is directed upward.

Ad (b) The assertion of (b) follows from (a) when the partial ordering of
S is replaced by its dual ordering. ut

Definition 8.41. A function f from a lattice S to a poset Y is called quasi-
supermodular if for all x, x̂ ∈ S, f(x ∧ x̂) � f(x) implies f(x̂) � f(x ∨ x̂),
and f(x ∧ x̂) ≺ f(x) implies f(x̂) ≺ f(x ∨ x̂).

The following lemma is a useful tool to prove that the set of maximum
points of f is directed.
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Lemma 8.42. Assume that S is a compact lattice in an ordered topological
space, that Y is a poset, and that f : S → Y is directedly upper closed and
quasisupermodular. Then the set A of maximum points of f is a nonempty
compact sublattice of S.

Proof: According to Theorem 8.37, A is nonempty and compact. To prove
that A is a sublattice of S, let x and x̂ be in A. Then f(x∧ x̂) � f(x). If f(x∧
x̂) ≺ f(x), then f(x̂) ≺ f(x ∨ x̂) because f is quasisupermodular. However,
this is impossible, because x̂ is a maximum point of f . Thus f(x∧ x̂) = f(x),
so that x ∧ x̂ is in A. Because f(x ∧ x̂) = f(x) and f is quasisupermodular,
then f(x̂) � f(x ∨ x̂), whence x ∨ x̂ is in A. Thus A is a sublattice of S. ut

According to [218] a sublattice S of a lattice X is subcomplete if and only
if S is compact with respect to the order interval topology of X. Thus the
following result is a consequence of Lemma 8.42.

Lemma 8.43. Given a poset Y , a complete lattice S that is equipped with the
order interval topology, and a function f : S → Y that is quasisupermodular
and directedly upper closed, then the set of maximum points of f is a nonempty
and subcomplete sublattice of S.

As an application of Lemma 8.43 we obtain the following result.

Proposition 8.44. Given posets Yj, complete chains Sj, and functions fj :
Sj → Yj, j = 1, . . . , n, denote S = S1 × · · ·Sn and Y = Y1 × · · · × Yn. Define
a mapping f : S → Y by

f(s1, . . . , sn) = (f1(s1), . . . , fn(sn)), (s1, . . . , sn) ∈ S. (8.28)

Assume that both S and Y are ordered componentwise, and that for each
j = 1, . . . , n the function fj is directedly upper closed in the order interval
topology. Then the set of maximum points of f is a nonempty and subcomplete
sublattice of S.

Proof: Every fj is also quasisupermodular because Sj is a chain. Thus for
every j = 1, . . . , n the set M(fj) of the maximum points of fj is by Lemma
8.43 nonempty and compact, and hence also a subcomplete subchain of Sj .
The product set M(f) = M(f1)×· · ·×M(fn) is a nonempty and subcomplete
sublattice in S and is the set of maximum points of f . ut

In view of [180], Theorem A3 (see also [158]), an order upper semicontin-
uous function from a lattice S to R is upper semicontinuous with respect to
the order interval topology of S. Thus the following result is a consequence of
Corollary 8.34 and Lemma 8.43.

Corollary 8.45. Let S be a complete lattice. If a function f : S → R is qua-
sisupermodular and (order) upper semicontinuous, then the set of maximum
points of f is a nonempty and subcomplete sublattice of S.
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8.3.2 Smallest and Greatest Pure Nash Equilibria

Consider a normal-form game Γ = {Si, ui}Ni=1, where the utility functions ui
map the product space S1 × · · · × SN to posets Yi = (Yi,�i). We impose the
following hypotheses on the strategy spaces Si and on utility functions ui,
i = 1, . . . , N .

(HI) Si is a nonempty compact and directed subset of an ordered topological
space Xi.

(HII) For all fixed s−i the function ui(·, s−i) is directedly upper closed.

These hypotheses imply by Theorem 8.37 that the sets

Fi(s−i) = {ti ∈ Si : ui(ti, s−i) = max
si∈Si

ui(si, s−i)}, i = 1, . . . , N,

are nonempty and compact. The following hypothesis:

(HIII) The sets Fi(s−i), s−i ∈ S−i are directed;

ensures by Corollary 8.40 the existence of maxFi(s−i) and minF (s−i) for
each i = 1, . . . , N . Denote S = S1 × · · · × SN , and define

G+(s) = (maxF1(s−1), . . . ,maxFN (s−N )), s ∈ S,
G−(s) = (minF1(s−1), . . . ,minFN (s−N )), s ∈ S.

(8.29)

The strategic complementarity hypothesis:

(HIV) The functions s−i 7→ maxFi(s−i) and s−i 7→ minFi(s−i) are increas-
ing for each i = 1, . . . , N ;

and (8.29) imply that the mappings G± : S → S are increasing with respect
to the componentwise ordering of S.

Given a poset S and a function G : S → S, we say that x ∈ S is a fixed
point of G if x = G(x). If the set of all fixed points of G has a smallest and
a greatest element, then they are called smallest and greatest fixed points
of G, respectively. Definition 8.2, extended to all normal-form games implies
that (s∗1, . . . , s

∗
N ) is a pure Nash equilibrium for Γ if and only if s∗i ∈ Fi(s∗−i)

for all i = 1, . . . , N . From (8.29) it follows that s∗ = (s∗1, . . . , s
∗
N ) is a pure

Nash equilibrium for Γ if s∗ is a fixed point of one of the mappings G±. The
following fixed point theorem is an immediate consequence of Theorem 2.16.

Theorem 8.46. Let S be a poset and let G : S → S be an increasing mapping.

(a) If a ≤ G(a), and if supG[C] exists whenever C is a nonempty chain in
[a), then G has the smallest fixed point x∗ in [a), and

x∗ = min{y ∈ [a) : G(y) ≤ y}. (8.30)
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(b) If G(b) ≤ b, and if inf G[D] exists whenever D is a nonempty chain in (b],
then G has the greatest fixed point x∗ in (b], and

x∗ = max{y ∈ (b] : y ≤ G(y)}. (8.31)

Now we are ready to prove the existence of extreme pure Nash equilibria
of a normal-form game.

Theorem 8.47. If hypotheses (HI)–(HIV) are valid, then the smallest and
greatest pure Nash equilibria exist for the normal-form game Γ = {Si, ui}Ni=1.

Proof: The hypothesis (HIV) implies that the mappings G± : S → S, defined
by (8.29) are increasing. The hypothesis (HI) ensures by Corollary 8.40 that
ai = minSi and bi = maxSi exist. Denoting a = (a1, . . . , aN ) and b =
(b1, . . . , bN ), then a ≤ G±(s) ≤ b for each s ∈ S. In particular, a ≤ G±(a)
and G±(b) ≤ b. Assume next that C is a nonempty chain in S. Since G− is
increasing, then G−[C] is a chain. Because S is ordered componentwise, then
the set Ci = {si ∈ Fi[S−i] : (s1, . . . , sN ) ∈ G−[C]} is a nonempty chain in
Fi[S−i]. It then follows from the hypothesis (HI) and [133, Proposition 1.1.4]
that zi = supCi exists for each i = 1, . . . , N . The definitions of Ci and (8.29)
imply that (zi, . . . , zN ) = supG−[C].

The above proof shows that G− satisfies the hypotheses of Theorem
8.46 (a), whence we conclude that G− has the smallest fixed point s∗ =
(s∗1, . . . , s

∗
N ). Similar reasoning proves that G+ satisfies the hypotheses of

Theorem 8.46 (b), whence G+ has the greatest fixed point s∗ = (s∗1, . . . , s
∗
N ).

According to the definition (8.29) of G±, s∗i ∈ Fi(s∗−i) and s∗i ∈ Fi(s∗−i) for
each i = 1, . . . , N , whence both (s∗1, . . . , s

∗
N ) and (s∗1, . . . , s

∗
N ) are pure Nash

equilibria for Γ . If s∗ = (s∗1, . . . , s
∗
N ) is a pure Nash equilibrium for Γ , then

s∗i ∈ Fi(s∗−i) for each i = 1, . . . , N . Thus minFi(s∗−i) ≤ s∗i ≤ maxF−i(s∗−i)
for each i = i, . . . , N , so that G−(s∗) ≤ s∗ ≤ G+(s∗) by (8.29). This result
implies by (8.30) and (8.31) that s∗ ≤ s∗ ≤ s∗. ut

Definition 8.48. Given posets X, Y , and T , and a function f : X × T → Y ,
we say that f(x, t) satisfies the single crossing property in (x, t) if f(x, t) ≤
f(x̂, t) implies f(x, t̂) ≤ f(x̂, t̂), and f(x, t) < f(x̂, t) implies f(x, t̂) < f(x̂, t̂)
whenever x < x̂ in X and t < t̂ in T .

Applying Lemma 8.42 and Corollary 8.34, one obtains the following special
case of Theorem 8.47.

Proposition 8.49. Let Γ = {Si, ui}Ni=1 be a normal-form game. Assume that
every Si is a compact lattice in an ordered topological space Xi and that the
values of utility functions ui are in a poset Yi = (Yi,≤i). Assume moreover
that the following hypotheses are valid for every i = 1, . . . , N .

(i) ui(·, s−i) is for each s−i ∈ S−i directedly upper closed and quasisupermod-
ular.
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(ii) Each ui(si, s−i) has the single crossing property in (si, s−i).

Then Γ has the smallest and greatest pure Nash equilibria.

Proof: Let i ∈ {1, . . . , N} and s−i ∈ S−i be fixed. The hypothesis (i) implies
by Lemma 8.42 that the set Fi(s−i) of all the maximum points of ui(·, s−i) is
a nonempty and compact sublattice of Si. In particular, Fi(s−i) is directed,
whence maxFi(s−i) and minFi(s−i) exist by Corollary 8.34. It remains to
show that mappings s−i 7→ maxFi(s−i) and s−i 7→ minFi(s−i) are increasing.

Assume that s−i < ŝ−i in S−i, and let x ∈ Fi(s−i) and y ∈ Fi(ŝ−i) be
given. The definition of Fi(s−i) implies that ui(x ∧ y, s−i) �i ui(x, s−i). If
strict inequality holds, it follows from the quasisupermodularity hypothesis
that ui(y, s−i) ≺i ui(x ∨ y, s−i). This result and the hypothesis (ii) imply
that ui(y, ŝ−i) ≺i ui(x ∨ y, ŝ−i). But this is impossible, since y ∈ Fi(ŝ−i).
Thus ui(x ∧ y, s−i) = ui(x, s−i), so that x ∧ y ∈ Fi(s−i) and ui(y, s−i) �i
ui(x ∨ y, s−i) by quasisupermodularity. Thus ui(y, ŝ−i) �i ui(x ∨ y, ŝ−i) by
(ii). Equality must hold since y ∈ Fi(ŝ−i), whence also x ∨ y ∈ Fi(ŝ−i).

The above proof shows that if s−i < ŝ−i in S−i, and if x ∈ Fi(s−i)
and y ∈ Fi(ŝ−i), then x ∧ y ∈ Fi(s−i) and x ∨ y ∈ Fi(ŝ−i). In particular,
when x = minFi(s−i) and y = minFi(ŝ−i), then x ∧ y = x. Thus x =
minFi(s−i) ≤i y = minFi(ŝ−i), whence s−i 7→ minFi(s−i) is increasing.
Choosing x = maxFi(s−i) and y = maxFi(ŝ−i) then x ∨ y = y, so that
x = maxFi(s−i) ≤i y = maxFi(ŝ−i). This proves that s−i 7→ maxFi(s−i) is
increasing.

The above proof implies that all the hypotheses (HI)–(HIV) are valid,
whence the conclusion follows from Theorem 8.47. ut

Remark 8.50. In view of Lemma 8.42 and Corollary 8.45, condition (i) is a
generalization to condition

(i)’ ui(·, s−i) is for each s−i ∈ S−i (order) upper semicontinuous, real-valued,
and quasisupermodular.

Conditions (i’) and (ii) are the same as the corresponding properties of quasi-
supermodularity and of single crossing property in the definition of a normal-
form game with (ordinal) strategic complementarities (cf. [180]). Another gen-
eralization is obtained in that real-valued utility functions are replaced by
poset-valued ones.

Assuming monotonicity for the functions ui(si, ·) we obtain comparison
results for utilities of pure Nash equilibria.

Proposition 8.51. Let Γ = {Si, ui}Ni=1 be a normal-form game that satisfies
the hypotheses of Theorem 8.47 or Proposition 8.49.

(a) If each ui(si, s−i) is increasing in s−i, then the utilities of the greatest pure
Nash equilibrium for Γ majorize the utilities of all its pure Nash equilibria.
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(b) If each ui(si, s−i) is decreasing in s−i, then the utilities of the smallest
pure Nash equilibrium for Γ majorize the utilities of all its pure Nash
equilibria.

Proof: The greatest pure Nash equilibrium s∗ = (s∗1, . . . , s
∗
N ) exists by The-

orem 8.47 or Proposition 8.49. Let s∗ = (s∗1, . . . , s
∗
N ) be any pure Nash equi-

librium for Γ . Then s∗ ≤ s∗ in S. Because S is ordered componentwise, then
s∗−i ≤ s∗−i in S−i for every i = 1, . . . , N . Hence, if each ui(si, s−i) is increasing
in s−i, then the first inequality of

ui(s∗i , s
∗
−i) �i ui(s∗i , s∗−i) �i ui(s∗i , s∗−i)

holds for every i = 1, . . . , N . This is true also for the second inequality because
s∗ is a pure Nash equilibrium for Γ . This proves (a). The proof of (b) is similar.

ut

Next we present a result dealing with monotone comparative statics of
normal-form games.

Proposition 8.52. Let {Γ t = {Si, uti}Ni=1 : t ∈ T}, where T is a poset, be
a family of normal-form games satisfying the hypotheses of Theorem 8.47 or
Proposition 8.49 and the following hypothesis.

(iii) Each uti(si, s−i) has the single crossing property in (si, t).

Then each Γ t has the smallest and greatest pure Nash equilibria, which are
increasing in t.

Proof: The existence of the smallest and greatest pure Nash equilibria for
every Γ t follows from Theorem 8.47 or Proposition 8.49. Define

Gt+(s) = (maxF t1(s−1), . . . ,maxF tN (s−N )), s ∈ S,
Gt−(s) = (minF t1(s−1), . . . ,minF tN (s−N )), s ∈ S, where

F ti (s−i) = {ti ∈ Si : uti(ti, s−i) = max
si∈Si

uti(si, s−i)}, i = 1, . . . , N.
(8.32)

The monotonicity of mappings t 7→ maxF ti (s−i) and t 7→ minF ti (s−i) can
be proved similarly as the monotonicity of mappings s−i 7→ maxFi(s−i) and
s−i 7→ minFi(s−i) in the proof of Proposition 8.49, by using the hypothesis
(iii) instead of (ii). Thus the mappings Gt± are increasing in t. It then follows
from (8.30) that the smallest fixed point of Gt−, which is the smallest pure
Nash equilibrium for Γ t, is increasing in t. Similarly the greatest fixed point of
Gt+, which is the greatest pure Nash equilibrium of Γ t, is by (8.31) increasing
in t. This proves the last conclusion. ut

Example 8.53. Consider a two-person normal form game Γ = {S1, S2, u1, u2},
where the strategy spaces are Si = [ 32 ,

5
2 ] × [ 32 ,

5
2 ]. The utility functions are
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of the form ui((si1, si2), s−i) = (ui1(si1, s−i), ui2(si2, s−i)), where the compo-
nents uij : [32 ,

5
2 ]× [ 32 ,

5
2 ]2 → R, i, j = 1, 2, are defined as follows (‘sgn’ denotes

the sign function):

u11(s, s−1) = (52− 21s+ s21 + 4s22 + 8sgn(s21s22 − 4))(s− 1),

u12(s, s−1) =

{
(51− 21s− sgn(s− 11

5 ) + 2s21 + 3s22)(s− 11
10 )

+4sgn(s21 + s22 − 4))(s− 11
10 ),

u21(s, s−2) =

{
(50− 20s− sgn(s− 11

5 ) + 3s11 + 2s12)(s− 11
10 )

+2sgn(s11 + s21 − 4))(s− 11
10 ),

u22(s, s−2) = (49− 20s+ 4s11 + s12 + sgn(s11s12 − 4))(s− 1).

Show that the smallest and greatest Nash equilibria for Γ exist and calculate
them and the corresponding utilities.

Solution. The spaces Si are compact and directed subsets of R2, whence the
hypothesis (HI) holds. It is also easy to show that the hypothesis (HII) is valid.
Moreover, the functions uij(·, s−i) have unique maximum points fij(s−i),
which are solutions of equations d

dsuij(s, s−i) = 0:

f11(s−1) =
73
42

+
1
42
s21 +

2
21
s22 +

4
21
sgn(s21s22 − 4),

f12(s−1) =
247
140

+
1
21
s21 +

1
14
s22 +

2
21
sgn(s21 + s22 − 4),

f21(s−2) =
9
5

+
3
40
s11 +

1
20
s12 +

1
20
sgn(s11 + s21 − 4),

f22(s−2) =
69
40

+
1
10
s11 +

1
40
s12 +

1
40
sgn(s11s12 − 4).

(8.33)

Thus Fi(s−i) = {(fi1(s−i), fi2(s−i)}, i = 1, 2, whence the hypothesis (HIII) is
valid. It follows from (8.33) that the functions s−i 7→ fij(s−i) are increasing,
which implies that the hypothesis (HIV) holds. Thus all the hypotheses of
Theorem 8.47 are valid, so that Γ has the smallest and greatest pure Nash
equilibria. Since minFi(s−i) = maxFi(s−i) = Fi(s−i), the mappings G±,
defined by (8.29), are equal to the function G : [ 32 ,

5
2 ]2 × [ 32 ,

5
2 ]2 → R2 × R2,

defined as follows:

G((s11, s12), (s21, s22)) = ((f11(s−1), f12(s−1)), (f21(s−2), f22(s−2))). (8.34)

According to the proof of Theorem 8.47, the components of the smallest
(respectively the greatest) fixed point of G form the smallest (respectively
the greatest) Nash equilibrium for Γ . It follows from (8.33) and (8.34) that
((s11, s12), (s21, s22)) is a fixed point of G if and only if (s11, s12, s21, s22) is a
solution of the following system of four equations:
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s11 =
73
42

+
1
42
s21 +

2
21
s22 +

4
21
sgn(s21s22 − 4),

s12 =
247
140

+
1
21
s21 +

1
14
s22 +

2
21
sgn(s21 + s22 − 4),

s21 =
9
5

+
3
40
s11 +

1
20
s12 +

1
20
sgn(s11 + s21 − 4),

s22 =
69
40

+
1
10
s11 +

1
40
s12 +

1
40
sgn(s11s12 − 4).

(8.35)

To determine the smallest solution of (8.35), notice that if sij < 2, i, j = 1, 2,
then all the sign functions in (8.35) attain the value −1. Inserting these values
in (8.35), the obtained system has the unique solution:

s11 =
4940854
2778745

≈ 1.77808830965057966815954684579,

s12 =
5281784
2778745

≈ 1.90078038826880480216788514239,

s21 =
5497457
2778745

≈ 1.97839564263723371522036027055,

s22 =
10699993
5557490

≈ 1.92532834067177808687015181314.

Since sij < 2, i, j = 1, 2, the smallest solution of (8.35) is (s11, s12, s21, s22).
Thus the smallest Nash equilibrium for Γ is ((s11, s12), (s21, s22)). The corre-
sponding utilities are ui = (ui1, ui2), where

u11 =
98169021885501
7721423775025

≈ 12.7138497699128233323461357898,

u12 =
415913992373061
30885695100100

≈ 13.4662338349546932041203932846,

u21 =
4766150161125
308856951001

≈ 15.4315781000815760235226774092,

u22 =
26445337105009
1544284755005

≈ 17.1246507610077240879030508720.

If sij > 2, i, j = 1, 2, then all the sign functions in (8.35) attain the value 1.
Inserting these values in (8.35), the obtained system has the unique solution:

s11 =
6033654
2778745

≈ 2.17135937266643754644632738880,

s12 =
5848294
2778745

≈ 2.10465299982546077455829880036,

s21 =
5885617
2778745

≈ 2.11808460294125585471138949418,

s22 =
11224753
5557490

≈ 2.01975226226228027400859020889.

Because every sij is > 2, then the greatest Nash equilibrium for Γ is
((s11, s12), (s21, s22)). The corresponding utilities are ui = (ui1, ui2), where
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u11 =
222483084563901
7721423775025

≈ 28.8137383786037124403957361075,

u12 =
654649507171821
30885695100100

≈ 21.1958806512242430294171224820,

u21 =
6402581484005
308856951001

≈ 20.7299251749210917866798436025,

u22 =
32117869911169
1544284755005

≈ 20.7978935277807689893054057605.

The functions uij(s, s−i) are increasing with respect to s−i, whence the utility
functions ui satisfy also the hypotheses of Proposition 8.51. Thus the utilities
u1 = (u11, u12) and u2 = (u21, u22) majorize the utilities of all other pure
Nash equilibria of Γ .

8.3.3 Special Cases

Consider next the special case when the strategy spaces are the product of
chains.

Proposition 8.54. Let Γ = {Si, ui}Ni=1 be a normal-form game, which satis-
fies the following hypotheses.

(S0) Each strategy set Si is the product of nonempty compact chains Sij of
ordered topological spaces Xij, j = 1, . . . ,mi.

(u0) The utility functions are of the form ui = (ui1, . . . , uimi
), where uij is a

mapping from Sij ×S−i to a poset Yij, and every uij(·, s−i) is directedly
upper closed.

(u1) Every uij(x, y) satisfies the single crossing property in (x, y).

Then the smallest and greatest pure Nash equilibria exist for Γ .

Proof: The products Si = Si1 × · · · × Simi of compact chains are compact
lattices in the product spaces Xi = Xi1 × · · · × Ximi . Thus the hypothesis
(HI) of Theorem 8.47 is valid. From the hypothesis (u0) it follows that for all
fixed s−i the function ui(·, s−i) is directedly upper closed. Thus the hypothe-
sis (HII) of Theorem 8.47 is also valid. To prove the validity of the hypotheses
(HIII) and (HIV), let i ∈ {1, . . . , N}, j ∈ {1, . . . ,mi} and s−i ∈ S−i be fixed.
Noticing that Sij is a compact chain, then it is also a compact lattice, and
uij(·, s−i) is quasisupermodular. It then follows from the proof of Proposition
8.49 that the set Fij(s−i) of all the maximum points of uij(·, s−i) is non-
empty and compact subset of a chain Sij , that maxFij(s−i) and minFij(s−i)
exist, and that the mappings s−i 7→ maxFij(s−i) and s−i 7→ minFij(s−i) are
increasing. The above proof is valid for all i = 1, . . . , N and j = 1, . . .mi.
Thus the sets Fi(s−i) = Fi1(s−i)× · · · × Fimi(s−i) of maximum points of the
functions ui(·, s−i) are compact and directed. This proves the validity of the
hypothesis (HIII). Moreover, the above proof implies that the mappings

s−i 7→ maxFi(s−i) = (maxFi1(s−i), . . . ,maxFimi
(s−i))
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and
s−i 7→ minFi(s−i) = (minFi1(s−i), . . . ,minFimi

(s−i))

are increasing in S−i. Thus the hypothesis (HIV) is valid. The conclusion
follows then from Theorem 8.47. ut

The next result is a consequence of Proposition 8.54 and Remark 8.36.

Corollary 8.55. Let Γ = {Si, ui}Ni=1 be a normal-form game, which satisfies
the hypotheses (S0) and (u1) of Proposition 8.54 and the following hypothesis.

(u2) The utility functions are of the form ui = (ui1, . . . , uimi
), where uij is a

mapping from Sij ×S−i to a chain Yij, and every uij(·, s−i) is piecewise
strictly monotone.

Then Γ has the smallest and greatest pure Nash equilibria.

Consider next the following special case of Proposition 8.54.

Proposition 8.56. Assume that condition (S0) of Proposition 8.54 is satis-
fied, and let the components of the utility functions ui = (ui1, . . . , uimi

) have
the following form:

uij(sij , s−i) = vij(sij , s−i)hij(s−i)qij(sij), i = 1, . . . , N, j = 1, . . . ,mi,
(8.36)

where vij : Sij × S−i → R+, hij : S−i → (0,∞), and qij : Sij → R+. The
hypotheses

(v0) For every y ∈ S−i the function vij(·, y)qij(·) is directedly upper closed;
(v1) vij(x, y)qij(x) satisfies the single crossing property in (x, y);

imply that Γ = {Si, ui}Ni=1 has the smallest and greatest pure Nash equilibria.

Proof: It suffices to verify hypotheses (u0) and (u1) of Proposition 8.54.
The hypothesis (v0) implies that the hypothesis (u0) is valid. To prove that
hypothesis (u1) holds, suppose that y < ŷ in S−i and x <ij x̂ in Sij , and that

uij(x, y) ≤ uij(x̂, y), (8.37)

or, by (8.36),

vij(x, y)hij(y)qij(x) ≤ vij(x̂, y)hij(y)qij(x̂).

Multiplying both sides of the last inequality by 1/hij(y), which is positive, we
obtain

vij(x, y)qij(x) ≤ vij(x̂, y)qij(x̂).

This inequality, the hypothesis (v1), and the choices y < ŷ and x <ij x̂ imply
that

vij(x, ŷ)qij(x) ≤ vij(x̂, ŷ)qij(x̂).
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Multiplying both sides of the last inequality by hij(ŷ), we get in view of (8.36)

uij(x, ŷ) ≤ uij(x̂, ŷ). (8.38)

If strict inequality holds in (8.37), then the above reasoning can be used to
show that the inequality (8.38) is also strict. Thus uij(x, y) satisfies the single
crossing property in (x, y), whence (u1) holds. ut

As a consequence of Propositions 8.54 and 8.56 we obtain the following
proposition.

Proposition 8.57. Assume that Γ = {Si, ui}Ni=1 is a normal form game,
where strategy spaces Si satisfy condition (S0) of Proposition 8.54, and that
the components uij of the utility functions ui = (ui1, . . . , uimi) are given by
(8.36), with

vij(sij , s−i) = fij(sij) + gij(s−i), sij ∈ Sij , s−i ∈ S−i (8.39)

for i = 1, . . . , N, j = 1, . . . ,mi, where fij : Sij → R+, gij : S−i → R+,
and every gij is increasing. If the functions qij in (8.36) are increasing, and
if the hypothesis (v0) holds, then Γ has the smallest and greatest pure Nash
equilibria. Moreover, the utilities of the greatest pure Nash equilibrium for Γ
majorize the utilities of its all pure Nash equilibria.

Proof: By the proof of Proposition 8.56, hypothesis (v0) implies that hypoth-
esis (u0) of Proposition 8.54 is fulfilled for the functions uij defined by (8.36).
To show that the hypothesis (u1) is valid, assume that x < x̂ in Sij and y < ŷ
in S−i, and that

uij(x, y) < uij(x̂, y).

The last inequality, (8.36), and (8.39) shows that

(fij(x) + gij(y))qij(x) < (fij(x̂) + gij(y))qij(x̂),

which is equivalent to

fij(x)qij(x)− fij(x̂)qij(x̂) < gij(y)(qij(x̂)− qij(x)).

Since each gij : S−i → R+ is increasing and qij(x̂)− qij(x) ≥ 0, from the last
inequality we get

fij(x)qij(x)− fij(x̂)qij(x̂) < gij(ŷ)(qij(x̂)− qij(x))

which is equivalent to

(fij(x) + gij(ŷ))qij(x) < (fij(x̂) + gij(ŷ))qij(x̂).

Multiplying both sides of the last inequality by hij(ŷ), and applying (8.36)
and (8.39), we obtain
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uij(x, ŷ) < uij(x̂, ŷ).

The above reasoning can be applied to show that uij(x, y) ≤ uij(x̂, y) implies
uij(x, ŷ) ≤ uij(x̂, ŷ). Thus uij(x, y) satisfies the single crossing property in
(x, y), whence (u1) holds. The existence of the smallest and greatest Nash
equilibria for Γ follows then from Proposition 8.54. Since the functions gij are
increasing, then the functions ui(si, s−i) are increasing in s−i. Thus the last
conclusion follows from Proposition 8.51. ut

According to the proof of Theorem 8.47, the smallest Nash equilibrium of Γ
is the smallest fixed point of G− and the greatest Nash equilibrium of Γ is the
greatest fixed point ofG+, where the mappings G± : S → S, S = S1×· · ·×SN ,
are defined by (8.29). By Theorem 2.16 the smallest fixed point of G− is the
maximum of a well-ordered chain C of aG−-iterations. The smallest elements
of C are the elements of the iteration sequence (Gn−(a))∞n=0, as long as this
sequence is strictly increasing. In particular, if Gn−(a) = Gn+1

− (a) for some
n ∈ N0, then s∗ = Gn−(a) is the smallest fixed point of G−, and hence the
smallest pure Nash equilibrium for Γ . Dually, the greatest fixed point of G+

is the minimum of an inversely well-ordered chain D of bG+-iterations. The
greatest elements of D are the elements of the iteration sequences (Gn+(b))∞n=0,
as long as this sequence is strictly decreasing. If Gn+(b) = Gn+1

+ (b) for some
n ∈ N0, then s∗ = Gn+(b) is the greatest fixed point of G+, and thus the
greatest pure Nash equilibrium for Γ . In particular, if chains of G±[S] are
finite, the smallest and greatest pure Nash equilibria for Γ are obtained by
finite number of iterations.

Example 8.58. Consider the normal form game Γ = {S1, S2, u1, u2}. Assume
that the strategy spaces are Si = Si1 × Si2, where Sij = [ 32 ,

5
2 ], i, j = 1, 2,

and that the utility functions are ui = (ui1, ui2), where the components uij ,
i, j = 1, 2, are defined by (‘sgn’ denotes the sign function and [·] the greatest
integer function)

u11(s, s−1) =

{
(52− 21s+ 10−30[1030s21] + 4 · 10−30[1030s22])(s− 1)
+8sgn(s21s22 − 4)(s− 1),

u12(s, s−1) =

{
(51− 21s− sgn(s− 11

5 ) + 2 · 10−30[1030s21])(s− 11
10 )

+(3 · 10−30[1030s22] + 4sgn(s21 + s22 − 4)(s− 11
10 ),

u21(s, s−2) =

{
(50− 20s− sgn(s− 11

5 ) + 3 · 10−30[1030s11])(s− 11
10 )

+(2 · 10−30[1030s12] + 2sgn(s11 + s21 − 4)(s− 11
10 ),

u22(s, s−2) =

{
(49− 20s+ 4 · 10−30[1030s11] + 10−30[1030s12])(s− 1)
+sgn(s11s12 − 4)(s− 1).

Show that the smallest and greatest Nash equilibria for Γ exist and calculate
them along with the corresponding utilities.
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Solution. The hypotheses of Proposition 8.57 are valid, which ensures the
existence of the smallest and greatest Nash equilibria for Γ . The functions
uij(·, s−i) have unique maximum points fij(s−i), which are solutions of equa-
tions d

dsuij(s, s−i) = 0:

f11(s−1) =
73
42

+
1
42

10−30[1030s21] +
2
21

10−30[1030s22] +
4
21
sgn(s21s22 − 4),

f12(s−1) =
247
140

+
1
21

10−30[1030s21] +
1
14

10−30[1030s22]

+
2
21
sgn(s21 + s22 − 4),

f21(s−2) =
9
5

+
3
40

10−30[1030s11] +
1
20

10−30[1030s12]

+
1
20
sgn(s11 + s21 − 4),

f22(s−2) =
69
40

+
1
10

10−30[1030s11] +
1
40

10−30[1030s12] +
1
40
sgn(s11s12 − 4).

(8.40)
These solutions can be used to define function G = G− = G+, where G :
[ 32 ,

5
2 ]2 × [ 32 ,

5
2 ]2 → R2 × R2, as follows:

G((s11, s12), (s21, s22)) = ((f11(s−1), f12(s−1)), (f21(s−2), f22(s−2))).

It follows from (8.40) that G is increasing, and that the range of G is finite.
In particular, choosing a = (( 3

2 ,
3
2 ), ( 3

2 ,
3
2 )), then Gn(a) = Gn+1(a) for some

n, and the components of Gn(a) form the smallest pure Nash equilibrium
(s11, s12), (s21, s22) of Γ . The components of Gn(a), n = 1, 2, . . . , can be
calculated by the following algorithm, written as a Maple program, where sij
= sij and fij = fij(s−i):

s11 := 3/2: s12 := 3/2: s21 := 3/2: s22 := 3/2: for n while s11 < f11 or
s12 < f12 or s21 < f21 or s22 < f22 do: if s11 < f11 then s11 := f11 end if: if
s12 < f12 then s12 := f12 end if: if s21 < f21 then s21 := f21 end if: if s22 <
f22 then s22 := f22 end if: end do:

It turns out that G18(a) = G19(a). The components of the smallest pure
Nash equilibrium of Γ are:

s11 =
4978647267021623070846731168207
2800000000000000000000000000000

= 1.7780883096505796681595468457882142857,

s12 =
285117058240320720325182771359
150000000000000000000000000000

= 1.900780388268804802167885142393,

s21 =
1582716514109786972176288216443
800000000000000000000000000000

= 1.97839564263723371522036027055375,
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s22 =
15402626725374224694961214505109
8000000000000000000000000000000

= 1.925328340671778086870151813138625.

The components of the corresponding utilities are:

u11 =

{
14239511742302362132227672084565915307692791426579572782784547
1120000000000000000000000000000000000000000000000000000000000

≈ 12.71384976991282333235,

u12 =

{
100996753762160199030902949634319394672470462241037694948167
7500000000000000000000000000000000000000000000000000000000

≈ 13.46623383495469320412,

u21 =

{
493810499202610432752725677095841962400192696448654015572249
32000000000000000000000000000000000000000000000000000000000

≈ 15.43157810008157602352,

u22 =

{
54798882435224717081289762790273878921059487248123939787101881
3200000000000000000000000000000000000000000000000000000000000

≈ 17.12465076100772408790.

Choosing b = (( 5
2 ,

5
2 ), ( 5

2 ,
5
2 )), the components of Gn(b), n = 1, 2, . . . , can be

calculated by the above algorithm replacing 3
2 by 5

2 and reversing inequalities.
Also in this case 18 iterations suffice, and the components of G18(b), which
form the greatest pure Nash equilibrium ((s11, s12), (s21, s22)) of Γ , are:

s11 =

{
45598546825995188475372875164867
21000000000000000000000000000000

= 2.1713593726664375464463273888031904761,

s12 =

{
88395425992669352531448549615023
42000000000000000000000000000000

= 2.1046529998254607745582988003576904761,

s21 =

{
84723384117650234188455579767123
40000000000000000000000000000000

= 2.118084602941255854711389494178075,

s22 =

{
80790090490491210960343608355569
40000000000000000000000000000000

= 2.019752262262280274008590208889225.

The components of the corresponding utilities are:

u11 =

{
605088505950677961248310458257235976553067762504224592431127689
21000000000000000000000000000000000000000000000000000000000000

≈ 28.81373837860371244040,

u12 =

{
1780453974702836414471038288484242757357022638103563281507290529
84000000000000000000000000000000000000000000000000000000000000

≈ 21.19588065122424302942,

u21 =

{
1658394013993687342934387488196803160394878458926459846911697129
80000000000000000000000000000000000000000000000000000000000000

≈ 20.72992517492109178668,

u22 =

{
1663831482222461519144432460841120900858144206374496832333313761
80000000000000000000000000000000000000000000000000000000000000

≈ 20.79789352778076898931.
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The functions uij(s, s−i) are increasing with respect to s−i, whence the
utility functions ui satisfy also the hypotheses of Proposition 8.57. Thus the
utilities u1 = (u11, u12) and u2 = (u21, u22) majorize the utilities of all other
pure Nash equilibria of Γ .

Remark 8.59. The functions ui(·, s−i) in Examples 8.53 and 8.58 are neither
upper semicontinuous nor upper closed because the functions u12 and u21

contain the term −sgn(s− 11
5 ).

8.3.4 Applications to a Multiproduct Pricing Game

Consider a normal-form game, where players i, i = 1, . . . , N , stand for firms
that compete in prices. Assume that firm i sell products eij , j = 1, . . . ,mi.
Some of the products can be the same or substitutes in different firms. The
feasible set Sij of prices sij of eij per unit is assumed to be a finite subset of R,
bounded from below by cij , which stands for a purchase price of eij per unit
for firm i. Denote si = (si1, . . . , simi) and Si = ×mi

i=1Sij , i = 1, . . . , N , and
let a function dij : Sij × S−i → R+ denote the demand of product eij (values
dij(sij , s−i) represent the amounts of products eij sold by firms during a fixed
time period when the prices are sij). Since no dij depends on sin, n 6= j, the
demands of different products are assumed to be independent in every fixed
firm i. The profit that the firm gets from the sale of eij is

uij(sij , s−i) = dij(sij , s−i)(sij − cij). (8.41)

The utility functions ui = (ui1, . . . , uimi
), whose components satisfy (8.41),

are considered as profit functions of firms i. The above described pricing
game and the one considered in Sect. 8.2.6 are generalizations to a Bertrand
oligopoly model in the sense that, instead of a single product, they can include
all the products that are for sale in every firm i.

The results of the next two propositions can be applied to the above de-
scribed pricing game. The first proposition is a special case of Proposition
8.56.

Proposition 8.60. Assume that Si = ×mi
i=1Sij, i = 1, . . . , N , where every

Sij is a finite subset of [cij ,∞), and that the components of utility functions
ui = (ui1, . . . , uimi

) are given by

uij(sij , s−i) = vij(sij , s−i)hij(s−i)kij(sij)(sij − cij), (8.42)

where vij : Sij × S−i → (0,∞), hij : S−i → (0,∞), and kij : Sij → R+. If for
all i = 1, . . . , N , j = 1, . . . ,mi,

(v) log vij(x, y) has increasing differences in (x, y);

then the normal-form game Γ = {Si, ui}Ni=1 has the smallest and greatest pure
Nash equilibria.
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Proof: It suffices tho show that the hypotheses of Proposition 8.56 are valid
when qij(x) = kij(x)(x− cij), since then (8.42) is of the form (8.36). Because
every Sij is a finite chain, hypotheses (S0) and (v0) of Proposition 8.56 are
valid. To prove that hypothesis (v1) holds, suppose that y < ŷ in S−i and
x <ij x̂ in Sij , and that

vij(x, y)kij(x)(x− cij) ≤ (<)vij(x̂, y)kij(x̂)(x̂− cij).

We may also suppose that kij(x)(x − cij) > 0. Thus both sides of the above
inequality are positive. Taking logarithms, we obtain

log vij(x, y) + log(kij(x)(x− cij)) ≤ (<) log vij(x̂, y) + log(kij(x̂)(x̂− cij)).

This inequality, the hypothesis (v), and the choices y < ŷ and x <ij x̂ imply
that

log vij(x, ŷ) + log(kij(x)(x− cij)) ≤ (<) log vij(x̂, ŷ) + log(kij(x̂)(x− cij)),

or
vij(x, ŷ)kij(x)(x− cij) ≤ (<)vij(x̂, ŷ)kij(x̂)(x− cij).

This proves that the hypothesis (v1) holds. The assertions follow then from
Proposition 8.56. ut

The next result is a consequence of Proposition 8.57.

Proposition 8.61. Assume that Si = ×mi
i=1Sij, i = 1, . . . , N , where every

Sij is a finite subset of [cij ,∞), and that the components of utility functions
ui = (ui1, . . . , uimi

) are given by

uij(sij , s−i) = (fij(sij) + gij(s−i))hij(s−i)kij(sij)(sij − cij), (8.43)

where fij : Sij → R+, gij : S−i → R+, hij : S−i → (0,∞), and kij : Sij →
R+. If the functions gij and sij 7→ kij(sij)(sij − cij) are increasing, then the
normal-form game Γ = {Si, ui}Ni=1 has the smallest and greatest pure Nash
equilibria. Moreover, the utilities of the greatest pure Nash equilibrium for Γ
majorize the utilities of its all pure Nash equilibria.

Proof: Because every Sij is a finite chain and the functions vij are R+-valued,
it is easy to see that the hypothesis (v0) of Proposition 8.57 holds when
vij(sij , s−i) = (fij(sij) + gij(s−i)) and qij(x) = kij(x)(x − cij). Moreover,
every gij is increasing and every qij is increasing. The conclusions follow then
from Proposition 8.57. ut

Remark 8.62. In Proposition 8.61 the sets Sij are finite. This implies that
the smallest and greatest pure Nash equilibria for Γ are of the form Gn−(a)
and Gm+ (b), where G± are defined by (8.29), a = minS1 × · · · × SN , and
b = maxS1×· · ·×SN . This result and simple Maple programming are applied
to solve the following concrete pricing problems.
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Example 8.63. Assume that in the pricing game {S1, S2, u1, u2}, the utilities
are given by

ui = (di1(si1, s−i)(si1 − ci1), di2(si2, s−2)(si2 − ci2)), i = 1, 2,

with c11 = c22 = 1, c12 = c21 = 11
10 , and the strategy sets are Si = Si1 × Si2,

where
S11 = S22 = S12 = S21 = { j

20
, 24 ≤ j ≤ 48}.

The demands are assumed to be of the form

d11(s11, s−1) =

{
(53− 22s11 + 4s21 + s22)(2 + 1

4 [4 sin( s112 )])×
(8 + [4 sin( 1

22 (5s21 + 6s22))]),

d12(s12, s−1) =

{
(52− 21s12 + 3s21 + 2s22)(2 + 1

5 [5 sin( s122 )])×
(8 + [4 sin( 1

22 (6s21 + 5s22))]),

d21(s21, s−2) =

{
(48− 19s21 + 2s11 + 3s12)(2 + 1

6 [6 sin( s212 )])×
(8 + [4 sin( 1

22 (7s11 + 4s12))]),

d22(s22, s−2) =

{
(49− 20s22 + s11 + 4s12)(2 + 1

7 [7 sin( s222 )])×
(8 + [4 sin( 1

22 (8s11 + 3s12))]).

Note, s 7→ [s] denotes the integer function. Show that the maximal and min-
imal pure Nash equilibria for prices exist. Calculate these equilibria and the
corresponding profits.

Solution. From (8.44) it follows that dij = vijhijkij , where

v11(s11, s−1) = 53− 22s11 + 4s21 + s22,

v12(s12, s−1) = 52− 21s12 + 3s21 + 2s22,
v21(s21, s−2) = 48− 19s21 + 2s11 + 3s12,
v22(s22, s−2) = 49− 20s22 + s11 + 4s12,

h11(s21, s22) = 8 + [4 sin(
1
22

(5s21 + 6s22))],

h12(s21, s22) = 8 + [4 sin(
1
22

(6s21 + 5s22))],

h21(s11, s12) = 8 + [4 sin(
1
22

(7s11 + 4s12))],

h22(s11, s12) = 8 + [4 sin(
1
22

(8s11 + 3s12))],

k11(s11) = 2 +
1
4
[4 sin(s11/2)], k12(s12) = 2 +

1
5
[5 sin(s12/2)],

k21(s21) = 2 +
1
6
[6 sin(s21/2)], k22(s22) = 2 +

1
7
[7 sin(s22/2)].
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It is easy to show that the hypotheses of Proposition 8.61 are valid, whence the
prices have the smallest and greatest pure Nash equilibria. These equilibria
are:

s∗1 = (1.95, 2.05), s∗2 = (2.1, 2.1), s∗1 = (1.90, 2), s∗2 = (2.05, 2.1).

Corresponding profits are

u∗1 = (591, 569), u∗2 = (565, 662), u∗1 = (586, 564), u∗2 = (561, 655).

By the last conclusion of Proposition 8.61, the profits u∗1 and u∗2 majorize the
profits of all other Nash equilibria of prices.

Example 8.64. Assume that N = 3, and that the demands di, i = 1, 2, 3 are
of the form

d1(s1, (s2, s3)) = v1(s1, (s2, s3))(
1
2

+
1
16

[4 sin(
5s2 + 6s3

22
)]),

d2(s2, (s1, s3)) = v2(s2, (s1, s3))(
1
2

+
1
16

[4 sin(
6s1 + 5s3

22
)]),

d3(s3, (s1, s2)) = v3(s3, (s1, s2))(
1
2

+
1
16

[4 sin(
7s1 + 4s2

22
)]),

(8.44)

where again s 7→ [s] denotes the integer function, and the functions vi are
defined by

v1(s1, (s2, s3)) = 370 + 213(s2 + s3) + 60s1 − 230s21,

v2(s2, (s1, s3)) = 360 + 233(s1 + s3) + 55s2 − 220s22,

v3(s3, (s1, s2)) = 375 + 226(s1 + s2) + 50s3 − 200s23.

(8.45)

Assume that c1 := 1.10, c2 := 1.2, c3 := 1.25, ai = 1.30 and bi := 2.10,
i = 1, 2, 3, that the smallest price shift is five cents, and that profits are
counted in euros. Show that the smallest and greatest pure Nash equilibria
for prices exist. Calculate these equilibria and the corresponding profits.

Solution. The problem equals to the pricing game {S1, S2, S3, u1, u2, u3},
where

Si = { j
20
, 26 ≤ j ≤ 42} and ui = di(si, s−i)(si − ci), i = 1, 2, 3.

The demands are of the form di = vihi, where the functions vi are as in (8.45),
and

h1(s2, s3) =
1
2

+
1
16

[4 sin(
5s2 + 6s3

22
))],

h2(s1, s3) =
1
2

+
1
16

[4 sin(
6s1 + 5s3

22
)],

h3(s1, s2) =
1
2

+
1
16

[4 sin(
7s1 + 4s2

22
)].
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The hypotheses of Proposition 8.61 are valid, whence we conclude that the
prices have the smallest and greatest pure Nash equilibria. The components
of the greatest pure Nash equilibrium are

s∗1 = 1.80, s∗2 = 1.90, and s∗3 = 2.00,

and the corresponding profits are:

u∗1 = 271, u∗2 = 267, u∗3 = 263.

The components of the smallest pure Nash equilibrium result in

s∗1 = 1.80, s∗2 = 1.90 and s∗3 = 1.95,

and for its corresponding profits one gets

u∗1 = 266, u∗2 = 261, u∗3 = 263.

The profits u∗1 and u∗2 majorize by the last conclusion of Proposition 8.61 the
profits of all other Nash equilibria of prices.

8.3.5 Minimal and Maximal Pure Nash Equilibria

In this subsection we study the existence of minimal and maximal pure Nash
equilibria for normal-form games. Recall that a nonempty subset A of a subset
Y of a poset P is order compact upward in Y if for every chain C of Y that has
a supremum in P the intersection

⋂
{[y) ∩A : y ∈ C} is nonempty whenever

[y) ∩ A is nonempty for every y ∈ C. If for every chain C of Y that has
the infimum in P the intersection of all the sets (y] ∩ A, y ∈ C is nonempty
whenever (y] ∩ A is nonempty for every y ∈ C, then A is order compact
downward in Y . If both these properties hold, then A is order compact in Y .
If Y = A, the phrase ‘in Y ’ is omitted.

Lemma 8.65. Let A be a nonempty subset of a poset P .

(a) If A is order compact upward, and if chains of A have supremums in P ,
then A has a maximal element. If A is also directed upward, then maxA
exists.

(b) If A is order compact downward, and if chains of A have infimums in P ,
then A has a minimal element. If A is also directed downward, then minA
exists.

Proof: Ad (a) Let C be a nonempty chain in A. supC exists in P by a
hypothesis. Every element y of C is in [y) ∩ A. Since A is order compact
upward, then

⋂
{[y)∩A : y ∈ C} contains at least one element x. Thus x ∈ A

and y ≤ x for every y ∈ C, so that x is an upper bound of C in A. This
holds for every nonempty chain C of A, whence A has a maximal element z
by Zorn’s Lemma. If A is directed upward, then z = maxA.



360 8 Game Theory

Ad (b) The proof of (b) is similar. ut

Given posets X and P , recall that F : X → 2P \ ∅ is increasing upward if
x ≤ y in X and z ∈ F(x) imply that [z) ∩ F(y) is nonempty. F is increasing
downward if x ≤ y in X and w ∈ F(y) imply that (w] ∩F(x) is nonempty. If
F is increasing upward and downward, then F is increasing.

In the next study, we apply the following fixed point theorem for set-valued
functions, which is a consequence of Propositions 2.8 and 2.9 and Theorem
2.12.

Theorem 8.66. Given a poset P , and assume that the values of F : P →
2P \ ∅ are order compact in F [P ].

(a) If F is increasing upward, if the set S+ = {x ∈ P : [x) ∩ F(x) 6= ∅} is
nonempty, and if well-ordered chains of F [S+] have supremums in P , then
F has a maximal fixed point, which is also a maximal element of S+.

(b) If F is increasing downward, if the set S− = {x ∈ P : (x] ∩ F(x) 6= ∅} is
nonempty, and if inversely well-ordered chains of F [S−] have infimums in
P , then F has a minimal fixed point, which is also a minimal element of
S−.

(c) If F is increasing, if chains of F [P ] have supremums and infimums in P ,
and if the set of these supremums and infimums has a sup-center or an
inf-center in P , then F has minimal and maximal fixed points.

Let Γ = {Si, ui}Ni=1 be a normal-form game. Assume that every strategy
set Si is a nonempty subset of a poset Xi = (Xi,≤i), and that every ui is a
mapping from S1×· · ·×SN to a poset Yi = (Yi,�i). Denote P = S1×· · ·×SN
and S−i = S1 · · · × Si−1 × Si+1 × · · · × SN , and assume that all these sets are
ordered componentwise. If each mapping ui(·, s−i), s−i ∈ S−i, i = 1, . . . , N ,
has the maximum value, one can define a mapping F : P → 2P \ ∅ by

F(s) := F1(s−1)× · · · × FN (s−N ), s = (s1, . . . , sN ) ∈ P, (8.46)

where

Fi(s−i) := {ti ∈ Si : ui(ti, s−i) = max
si∈Si

ui(si, s−i)}, 1 ≤ i ≤ N.

The components of s∗ = (s∗1, . . . , s
∗
N ) form a pure Nash equilibrium for Γ if

and only if s∗ ∈ F(s∗), i.e., s∗ is a fixed point of F .
As an application of Theorem 8.66 we obtain the following result.

Theorem 8.67. Let Γ = {Si, ui}Ni=1 be a normal-form game with the follow-
ing property.

(H0) For every i = 1, . . . , N the sets Fi(s−i), s−i ∈ S−i, are nonempty and
order compact in Fi[S−i], and chains of Fi[S−i] have supremums and
infimums in Si.
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Then the following assertions hold:

(a) If for every i = 1, . . . , N the mapping s−i 7→ Fi(s−i) is increasing upward,
and if the sets Fi[S−i] have lower bounds in Si, then Γ has a maximal
pure Nash equilibrium.

(b) If for every i = 1, . . . , N the mapping s−i 7→ Fi(s−i) is increasing down-
ward, and if the sets Fi[S−i] have upper bounds in Si, then Γ has a minimal
pure Nash equilibrium.

(c) For every i = 1, . . . , N the mapping s−i 7→ Fi(s−i) is increasing, and if
every Si has a sup-center (respectively an inf-center), then Γ has minimal
and maximal pure Nash equilibria.

Proof: Ad (a) We are going to show that the mapping F : P → 2P \ ∅
defined by (8.46) satisfies the hypotheses of Theorem 8.66(a). Assume that
s = (s1, . . . , sN ) ≤ s = (s1, . . . , sN ) in P , and let y = (y1, . . . , yN ) be chosen
from F (s). Given i ∈ {1, . . . , N}, we have yi ∈ Fi(s−i), and s−i ≤ s−i in
S−i. Since s−i 7→ Fi(s−i) is increasing upward by hypothesis, there exists a
yi ∈ Fi(s−i) such that yi ≤ yi in Si. This holds for every i = 1, . . . , N , whence
y = (y1, . . . , yN ) ∈ F(s), and y ≤ y in P . This proves that F is increasing
upward. Because of the componentwise orderings, the hypotheses imposed on
Fi, and the definition (8.46) of F , it follows from (H0) that the values of F
are order compact upward in F [P ], and that chains of F [P ] have supremums
in P . Since every Fi[S−i] has a lower bound si ∈ Si, then [s)∩F [P ] 6= ∅ when
s = (s1, . . . , sN ). The above proof shows that F satisfies the hypotheses of
Theorem 8.66(a), whence F has a maximal fixed point. Its components form
a maximal pure Nash equilibrium for Γ .

Ad (b) If the hypotheses of (b) hold, one can show by dual reasoning that
F , defined by (8.46), satisfies the hypotheses of Theorem 8.66(b). Thus F has
a minimal fixed point. Its components form a minimal pure Nash equilibrium
for Γ .

Ad (c) If every Si has a sup-center (respectively an inf-center) ci, then c =
(c1, . . . , cN ) is a sup-center (respectively an inf-center) of P . This result and
the above proof show that F satisfies the hypotheses of Theorem 8.66(c),
whence F has a minimal and maximal fixed points. Their components form
minimal and maximal pure Nash equilibria for Γ . ut

To obtain more concrete results, we impose the following hypotheses on
the strategy spaces Si and on the utilities ui of a normal-form game Γ =
{Si, ui}Ni=1.

(S) Every strategy space Si is a compact ordered topological space.
(u) For every s−i ∈ S−i, ui(·, s−i) is a directedly upper closed function from

Si to a poset Yi = (Yi,�i).
(h1) If y < ŷ in S−i, and x 6>i x̂ in Si, then ui(x, y) �i ui(x̂, y) implies

ui(x, ŷ) �i ui(x̂, ŷ).
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(h2) If y < ŷ in S−i, and x 6<i x̂ in Si, then ui(x, ŷ) �i ui(x̂, ŷ) implies
ui(x, y) �i ui(x̂, y).

As a consequence of Theorem 8.67(a) and Theorem 8.37 we obtain the
following result.

Theorem 8.68. Let Γ = {Si, ui}Ni=1 be a normal-form game.

(a) If (S), (u), and (h1) hold, and if every Si is directed downward, then Γ
has a maximal pure Nash equilibrium.

(b) If (S), (u), and (h2) hold, and if every Si is directed upward, then Γ has
a minimal pure Nash equilibrium.

(c) If (S), (u), (h1), and (h2) hold, and if every Si has a sup-center or every Si
has an inf-center, then Γ has minimal and maximal pure Nash equilibria.

Proof: Ad (a) Assume that (S), (u), and (h1) hold. Let i ∈ {1, . . . , N} and
s−i ∈ S−i be fixed. The hypotheses (S) and (u) imply by Theorem 8.37 that
the set Fi(s−i) of all the maximum points of ui(·, s−i) is nonempty and com-
pact, and hence also order compact in Fi[S−i]. Moreover, it follows from (S)
by [133, Proposition 1.1.4] and its dual that every chain of Fi[S−i] has supre-
mums and infimums in Si. Thus the hypothesis (H0) of Theorem 8.67 holds.
To show that the set-valued mapping s−i 7→ Fi(s−i) is increasing upward,
assume that s−i < ŝ−i in S−i. If ŝi ∈ Fi(s−i), then ŝi maximizes ui(·, s−i).
Thus

ui(si, s−i) �i ui(ŝi, s−i) whenever si 6>i ŝi.

This result implies by hypothesis (h1) that

ui(si, ŝ−i) �i ui(ŝi, ŝ−i) whenever si 6>i ŝi. (8.47)

If ŝi maximizes ui(·, ŝ−i), then ŝi ∈ Fi(ŝ−i). Otherwise, it follows from (8.47)
that ŝi <i s̄i for every s̄i ∈ Fi(ŝ−i). Consequently, there is s̄i ∈ Fi(ŝ−i) such
that ŝi ≤i s̄i. This proves that s−i 7→ Fi(s−i) is increasing upward. Since the
chains of Si have lower bounds by (S), then S has a minimal element. If Si
is directed downward, then Si has the smallest element si, which is a lower
bound of Fi[S−i]. The above proof shows that if the hypotheses of (a) hold,
then the hypotheses of Theorem 8.67(a) are valid, whence Γ has a maximal
pure Nash equilibrium.

Ad (b) Applying hypothesis (h2) one can show similarly that s−i 7→ Fi(s−i)
is increasing downward. Nonempty chains of Si have upper bounds by (S),
whence Si has a maximal element si. It is the greatest element if Si is directed
upward, in which case si is an upper bound of Fi[S−i]. Thus the hypotheses
of (b) imply that the hypotheses of Theorem 8.67(b) are valid, whence Γ has
a minimal pure Nash equilibrium.

Ad (c) Assume that the hypotheses (S), (u), (h1), and (h2) hold. The above
proofs show that the hypothesis (H0) of Theorem 8.67 holds, and that every
mapping s−i 7→ Fi(s−i) is increasing. Hence, if every Si has a sup-center or
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every Si has an inf-center, then the hypotheses of Theorem 8.67(c) are valid,
whence Γ has minimal and maximal pure Nash equilibria. ut

If all strictly increasing sequences of the values of every ui(·, s−i) and
all strictly monotone sequences of every Si are finite, we can drop from the
hypotheses (S) and (u) all the conditions that refer to topology or to order
convergence. This leads, in particular, to the following proposition.

Proposition 8.69. Assume that for all i = 1, . . . , N and s−i ∈ S−i the range
of ui(·, s−i) is directed upward and its strictly increasing sequences are finite,
that strictly monotone sequences of every Si are finite, and that the hypotheses
(h1) and (h2) of Theorem 8.68 hold. If every Si has a sup-center or every Si
has an inf-center, then Γ has minimal and maximal pure Nash equilibria.

Remark 8.70. (i) No lattice properties are imposed on the strategy sets Si.
However, if Si is a lattice, then each point of Si is both a sup-center and an
inf-center of Si. If each Fi(s−i) is a lattice or directed, then maximal and
minimal pure Nash equilibria for Γ are its smallest and greatest pure Nash
equilibria.

(ii) In the above considerations the ranges of utility functions are posets,
which generalizes the usual assumption that the utility functions are real-
valued.

(iii) Results corresponding to those derived above can be obtained also for
games of more general types, for instance, for those considered in [135, 222].

Example 8.71. Assume that for every i = 1, . . . , N the strategy spaces Si
are closed and bounded balls in lattice-ordered reflexive Banach spaces Xi

equipped with weak topologies. Given ordered vector spaces Yi, i = 1, . . . , N ,
assume that the utilities are of the form

ui(si, s−i) = fi(si)gi(s−i) + hi(s−i), si ∈ Si, s−i ∈ S−i, (8.48)

where fi : Si → R+ is upper semicontinuous, gi, hi : S−i → Yi, and 0 ≺i
gi(s−i) for all s−i ∈ S−i. The hypotheses imposed on Si imply that every Si
is compact. Every fi is directedly upper closed by Corollary 8.34. Moreover,
0 ≺i gi(s−i) for all s−i ∈ S−i. From (8.48) then it follows that every ui(·, s−i)
satisfies the hypothesis (u). Since ui(·, s−i) has same maximum points for
every s−i, the hypotheses (h1) and (h2) are valid.

Assume moreover that the spaces Xi have the property

(I0) ‖ sup{0, xi}‖ ≤ ‖xi‖ for all xi ∈ Xi, i = 1, . . . , N .

The geometrical center of every Si is both a sup-center and an inf-center of
Si. Therefore, from Theorem 8.68 it follows that Γ = {Si, ui}Ni=1 has minimal
and maximal pure Nash equilibria.

Remark 8.72. (i) In Example 8.71 the balls Si can be replaced by the following
nonconvex sets:
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Si = {(x1, . . . , xmi
) ∈ Rmi :

mi∑
j=1

|xi − cij |pi ≤ rpi

i },

where cij ∈ R, pi ∈ (0, 1) and ri > 0, and the spaces Rmi are ordered coordi-
natewise and equipped by any norm.

(ii) All reflexive Banach lattices are lattice-ordered and possess property
(I0), which was required in Example 8.71. Each of the following spaces have
also these properties when 1 < p <∞.

– Function spaces Lp(Ω), ordered a.e. pointwise, where (Ω,A, µ) is a σ-finite
measure space.

– Sobolev spaces W 1,p(Ω), and W 1,p
0 (Ω), ordered a.e. pointwise, where Ω is

a domain in RN .
– Sequence spaces lp, ordered coordinatewise and normed by the p-norm.
– RN , ordered coordinatewise and normed by the p-norm.

8.4 Pure and Mixed Nash Equilibria of Normal-Form
Games

Here we extend the results of Sect. 8.2 to the normal-form game Γ =
{Si, ui}Ni=1 of N players whose strategy spaces Si are compact sublattices of
ordered Polish spaces, and the utility functions ui defined on S = S1×· · ·×SN
are vector-valued.

We first prove that if Γ has a quasisupermodular mixed extension, then
among all possible Nash equilibria of Γ formed by mixed strategies, i.e., prob-
ability measures on Si ordered by first order stochastic dominance, there
exist the smallest and greatest Nash equilibrium. Moreover, their strategies
are pure, that is, they are indicator functions of singletons {s1}, . . . , {sN}
and {s1}, . . . , {sN}. Conditions are provided under which one of the utilities
ui(s1, . . . , sN ) and ui(s1, . . . , sN ) majorize the expected utilities at each mixed
Nash equilibrium of Γ . In addition, we prove monotone comparative statics
results for normal-form games whose utility functions depend on a parameter.

Next we present special cases of the above results. First we consider the
case where the utility functions ui(si, s−i) are real-valued, supermodular in
si, and have increasing differences in (si, s−i). We show that the smallest and
greatest Nash equilibria of such a game exist, and that they are pure. The
dependence of Nash equilibria on a parameter is studied as well, and the above
stated comparison results for expected utilities are shown in case that each
ui(si, s−i) is increasing or decreasing in s−i.

The results obtained here and in Sect. 8.2 justify the conclusion that deal-
ing with extremal Nash equilibria and their utilities, there exist general classes
of normal-form games with strategic complementarities for which randomiza-
tion of strategies does not give any benefit. The main difficulty in the proofs
of these results is that the space of probability measures on Si ordered by
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first order stochastic dominance is not a lattice if Si is not a chain. As stated
in [86]: “This implies that we lack the mathematical structure needed for the
theory of complementarities.” The results of Theorems 2.20 and 2.21 and their
duals provide tools to overcome this difficulty. These results present conditions
under which fixed points of set-valued functions can be bounded by smallest
and greatest fixed points of a single-valued increasing function.

8.4.1 Definitions and Auxiliary Results

We say that an ordered metric space X = (X, d,≤) is an ordered Polish
space if X is complete and separable, and if the partial ordering ≤ is closed
in the sense that d(xn, x) → 0, d(yn, y) → 0 and xn ≤ yn for each n imply
x ≤ y. For instance, nonempty and closed subsets of separable ordered Banach
spaces are ordered Polish spaces.

Let Γ = {Si, ui}Ni=1 be a normal-form game of N players whose strategy
spaces Si are nonempty closed subsets of ordered Polish spaces Xi, and the
utility functions ui defined on S = S1×· · ·×SN have values in ordered Banach
spaces Ei. Let Bi denote the family of all Borel sets of Si. According to [149,
Theorem 2], the first order stochastic dominance �i, defined by

(SD) σi �i σ̂i if and only if σi(A) ≤ σ̂i(A) for each A ∈ Bi which is increasing,
i.e., [x) ⊂ A whenever x ∈ A,

is a partial ordering on the space Σi of probability measures on Si, i.e., on the
space of all countably additive functions σi : Bi → [0, 1] for which σi(Si) = 1.
Given σi ∈ Σi, i = 1, . . . , N , denote by σ−i the product measure of σj , j 6= i
on S−i, i = i, . . . , N (recall notations x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) and
(x1, . . . , xN ) = (xi, x−i) forN -tuples and Y−i = Y1×· · ·×Yi−1× Yi+1×· · ·×YN
for products of sets).

As for the integration theory needed in the sequel, see, e.g., Chap. 9 and
[164, Chapter VI].

Definition 8.73. We say that σi ∈ Σi, i = 1, . . . , N form a mixed strategy
for a normal-form game Γ = {Si, ui}Ni=1 if for each i = 1, . . . , N and for all
si ∈ Si the integral

Ui(si, σ−i) :=
∫
S−i

ui(si, s−i)dσ−i(s−i) (8.49)

exists, and if si 7→ Ui(si, σ−i) is σi-integrable on Si. The integral

Ui(σ1, σ−i) :=
∫
Si

(∫
S−i

ui(si, s−i)dσ−i(s−i)

)
dσi(si) (8.50)

is called the expected utility of player i. Γ is said to admit a mixed ex-
tension if all probability measures σi over Si, i = 1, . . . , N , form a mixed
strategy for Γ .
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Strategies of the form δsi
(xi) =

{
1, xi = si
0, xi 6= si

, si ∈ Si, are called pure

strategies for player i. The set of pure strategies for i is denoted by Pi.

Definition 8.74. We say that mixed strategies σ1, . . . , σN form a Nash equi-
librium for Γ if for each i = 1, . . . , N , σi belongs to the set

F(σ−i) := {σi ∈ Σi : Ui(σi, σ−i) = max
τi∈Σi

Ui(τi, σ−i)}. (8.51)

A Nash equilibrium for Γ is called pure if all its strategies are pure.

Definition 8.75. A normal-form game Γ = {Si, ui}Ni=1 is said to have a
quasisupermodular mixed extension if Γ admits a mixed extension, and
if for every i = 1, . . . , N ,

(I) Si is a compact sublattice of an ordered Polish space Xi, and ui has
values in an ordered Banach space Ei.

(II) Ui(·, σ−i) is for each σ−i ∈ Σ−i directedly upper closed and quasisu-
permodular, i.e., for all x, x̂ ∈ Si, Ui(x∧ x̂, σ−i) ≤i Ui(x, σ−i) implies
Ui(x̂, σ−i) ≤i Ui(x ∨ x̂, σ−i), and Ui(x ∧ x̂, σ−i) <i Ui(x, σ−i) implies
Ui(x̂, σ−i) <i Ui(x ∨ x̂, σ−i).

(III) Ui(x, σ−i) has a partial single crossing property in (x, σ−i), i.e.,
if x <i y in Si, σ−i < σ̂−i in Σ−i, and if σ−i or σ̂−i belongs to P−i,
then Ui(x, σ−i) ≤i Ui(y, σ−i) implies that Ui(x, σ̂−i) ≤i Ui(y, σ̂−i), and
Ui(x, σ−i) <i Ui(y, σ−i) implies that Ui(x, σ̂−i) <i Ui(y, σ̂−i).

In what follows we assume that the set Σi of probability measures on Si is
ordered by the first order stochastic dominance �i, i = 1, . . . , N . We assume
also that products of posets are ordered by componentwise ordering.

The following auxiliary result plays an important role in the proof of our
main results.

Lemma 8.76. Let Γ = {Si, ui}Ni=1 be a normal-form game that has a quasi-
supermodular mixed extension. Then for each i = 1, . . . , N , the sets

Fi(σ−i) := {si ∈ Si : Ui(si, σ−i) = max
ti∈Si

Ui(ti, σ−i)}, σ−i ∈ Σ−i, (8.52)

are nonempty and compact sublattices of Si. Moreover, for every σ−i ∈ Σ−i,

Fi(σ−i) = {τi ∈ Σi : τi(Fi(σ−i)) = 1} (8.53)

and

minFi(σ−i) = δminFi(σ−i), maxFi(σ−i) = δmaxFi(σ−i). (8.54)
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Proof: Let i ∈ {1, . . . , N} and σ−i ∈ Σ−i be fixed. In view of Theorem
8.37, conditions (I) and (II) imply that Fi(σ−i) is nonempty and compact. To
prove that Fi(σ−i) is a sublattice of Si, let x and x̂ be in Fi(σ−i). Then Ui(x∧
x̂, σ−i) ≤i Ui(x, σ−i). If Ui(x∧x̂, σ−i) <i Ui(x, σ−i), then Ui(x̂, σ−i) <i Ui(x∨
x̂, σ−i) because Ui(·, σ−i) is quasisupermodular. But this is impossible, since
x̂ is in Fi(σ−i). Thus Ui(x ∧ x̂, σ−i) = Ui(x, σ−i), so that x ∧ x̂ is in Fi(σ−i).
Because Ui(x∧ x̂, σ−i) = Ui(x, σ−i) and Ui(·, σ−i) is quasisupermodular, then
Ui(x̂, σ−i) ≤i Ui(x ∨ x̂, σ−i), whence x ∨ x̂ is in Fi(σ−i). Thus Fi(σ−i) is a
sublattice of Si. From (8.49) and (8.50) it follows that

Ui(τi, σ−i) =
∫
Si

Ui(si, σ−i)dτi(si). (8.55)

Denoting ci = max
si∈Si

Ui(si, σ−i), we obtain

Ui(τi, σ−i) = ci · τi(Fi(σ−i)) +
∫
Si\Fi(σ−i)

Ui(si, σ−i)dτi(si),

which by the definition of ci and Lemma 9.4 yields Ui(τi, σ−i) ≤i ci. Equality
holds if τi(Fi(σ−i)) = 1. Thus ci = max

τi∈Σi

Ui(τi, σ−i), and if τi(Fi(σ−i)) = 1,

then τi ∈ Fi(σ−i). Conversely, if τi ∈ Fi(σ−i), then

0 = ci − Ui(τi, σ−i) =
∫
Si

(ci − Ui(si, σ−i))dτi(si).

This result, the definition of ci, and [133, Proposition 1.4.3] imply that if A
is a Borel measurable subset of Si, then

0 ≤i
∫
A

(ci − Ui(si, σ−i))dτi(si) ≤i
∫
Si

(ci − Ui(si, σ−i))dτi(si) = 0.

In view of this result and [164, Chapter VI, Corollary 5.16], we have Ui(·, σ−i) =
ci, τi-a.e. on Si, which proves that τi(Fi(σ−i)) = 1.

The above proof shows that if τi ∈ Σi, then τi ∈ Fi(σ−i) if and only if
τi(Fi(σ−i)) = 1. Thus (8.53) holds. Because Fi(σ−i) is a compact sublattice of
Si, then minFi(σ−i) and maxFi(σ−i) exist. According to the definition (SD)
we then have

δminFi(σ−i) = min{τi ∈ Σi : τi(Fi(σ−i)) = 1} and

δmaxFi(σ−i) = max{τi ∈ Σi : τi(Fi(σ−i)) = 1}.

This result and (8.53) imply that (8.54) holds true. ut

Let Γ = {Si, ui}Ni=1 be a normal-form game that admits a mixed extension.
Denote Σ = Σ1 × · · · ×ΣN , and define a mapping F : Σ → 2Σ by

F(p) := (F1(σ−1), . . . ,FN (σ−N )), p = (σ1, . . . , σN ) ∈ Σ. (8.56)
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An element p∗ = (σ∗1 , . . . , σ
∗
N ) of Σ is a fixed point of F , i.e., p∗ ∈ F(p∗) =

(F1(σ∗−1), . . . ,FN (σ∗−N )) if and only if σ∗i belongs to the set

Fi(σ∗−i) = {σi ∈ Σi : Ui(σi, σ∗−i) = max
τi∈Σi

Ui(τi, σ∗−i)}

for every i = 1, . . . , N . As a consequence of this result and Definition 8.74 we
obtain the following result.

Lemma 8.77. Mixed strategies σ∗1 , . . . , σ
∗
N form a Nash equilibrium for a

normal-form game Γ that admits a mixed extension if and only if p∗ =
(σ∗1 , . . . , σ

∗
N ) is a fixed point of F defined by (8.56).

The following result is a consequence of Theorem 2.21 and its dual.

Theorem 8.78. Given a nonempty subset P of a poset X, assume that F :
X → 2X has the following properties:

(H0) F [X] is an order-bounded subset of X.
(H1) If p ∈ P , then both maxF(p) and minF(p) exist in X, they belong to

P , maxF(p) is an upper bound of F [X ∩ (p]], and minF(p) is a lower
bound of F [X ∩ [p)].

(H2) Every well-ordered chain of the set {minF(p) : p ∈ P} has a supremum
in P , and every inversely well-ordered chain of the set {maxF(p) : p ∈
P} has an infimum in P .

Then F has the smallest and greatest fixed points, and they belong to P .

The next comparison result is a useful tool in monotone comparative sta-
tics studies.

Proposition 8.79. Assume that F , F̂ : X → 2X satisfy the hypotheses of
Theorem 8.78.

(a) If max F̂(p) ≤ maxF(p) for all p ∈ P , then the greatest fixed point of F
is an upper bound for all the fixed points of F̂ .

(b) If min F̂(p) ≤ minF(p) for all p ∈ P , then the smallest fixed point of F̂
is a lower bound for all the fixed points of F .

Proof: By the proof of Theorem 2.21, the greatest fixed points of F and F̂
are the greatest fixed points of the mappings G, Ĝ : P → P defined by

G(p) = maxF(p), Ĝ(p) = max F̂(p), p ∈ P.

If p∗ denotes the greatest fixed point of G and p̂∗ the greatest fixed point of
Ĝ, then

p̂∗ = Ĝ(p̂∗) = max F̂(p̂∗) ≤ maxF(p̂∗) = G(p̂∗).

This result implies by (8.31) that p̂∗ ≤ p∗, which proves (a), since p̂∗ is the
greatest fixed point of F̂ and p∗ is the greatest fixed point of F .

The proof of (b) is done similarly by applying (8.30) and replacing maxi-
mums by minimums. ut
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8.4.2 Existence and Comparison Results

Now we are ready to prove our main existence and comparison result.

Theorem 8.80. Let Γ = {Si, ui}Ni=1 be a normal-form game that has a
quasisupermodular mixed extension. Then Γ has the smallest and greatest
pure Nash equilibrium δs1 , . . . , δsN

and δs1 , . . . , δsN
, respectively. Moreover, if

σ∗1 , . . . , σ
∗
N is any mixed Nash equilibrium for Γ , then δsi

� σ∗i �i δsi for each
i = 1, . . . , N .

Proof: We are going to show that F , defined by (8.56), satisfies the hy-
potheses (H0)–(H2) of Theorem 8.78. Since a = (δa1 , . . . , δaN

), ai = minSi,
i = 1, . . . , N and b = (δb1 , . . . , δbN

), bi = maxSi, i = 1, . . . , N belong to P
and are lower and upper bounds of F [Σ], then the hypothesis (H0) is valid.
To prove that (H1) holds, assume that p = (σ1, . . . , σN ) ∈ P = P1×· · ·×PN ,
p̂ = (σ̂1, . . . , σ̂N ) ∈ Σ, and that p � p̂ in Σ. Then σ−i ≤ σ̂−i in Σ−i
for each i = 1, . . . , N . From Lemma 8.76 it follows that xi = minFi(σ−i)
and yi = minFi(σ̂−i) exist. To prove that xi ∧ yi ∈ Fi(σ−i), assume that
this is not true. Then Ui(xi ∧ yi, σ−i) <i Ui(xi, σ−i) by (8.52), which im-
plies by (II) that Ui(yi, σ−i) <i Ui(xi ∨ yi, σ−i). Applying this inequality
and (III) we obtain Ui(yi, σ̂−i) <i Ui(xi ∨ yi, σ̂−i), which contradicts the
choice of yi. Thus xi ∧ yi ∈ Fi(σ̂−i), and hence xi = xi ∧ yi, by the choice
of xi. This implies that minFi(σ−i) = xi ≤i yi = minFi(σ̂−i), so that
minFi(σ−i) = δxi

�i δyi
= minFi(σ̂−i) by (8.54) and (SD). This holds

for each i = 1, . . . , N , whence minF(p) � minF(p̂) if p � p̂ in Σ and p ∈ P .
The latter shows that minF(p), which belongs to P by (8.54) and (8.56), is
for each p ∈ P a lower bound of ∪{F(p̂) : p̂ ∈ Σ, p � p̂}. Assume next that
p � p̂ in Σ, and that p̂ ∈ P . Then σ−i ≤ σ̂−i in Σ−i for each i = 1, . . . , N .
From Lemma 8.76 it follows that xi = maxFi(σ−i) and yi = maxFi(σ̂−i)
exist, and Ui(xi ∧ yi, σ−i) ≤i Ui(xi, σ−i) by (8.52). This implies by (II) that
Ui(yi, σ−i) ≤i Ui(xi∨yi, σ−i). Applying the last inequality and (III) we obtain
Ui(yi, σ̂−i) ≤i Ui(xi ∨ yi, σ̂−i). Thus xi ∨ yi ∈ Fi(σ̂−i), and hence yi = xi ∨ yi,
by the choice of yi. Therefore we have maxFi(σ−i) = xi ≤i yi = maxFi(σ̂−i),
so that maxFi(σ−i) = δxi �i δyi = maxFi(σ̂−i) by (8.54) and (SD). This
holds for each i = 1, . . . , N , whence maxF(p) � maxF(p̂) if p � p̂ in Σ and
p̂ ∈ P . Consequently, maxF(p̂), which belongs to P by (8.54) and (8.56), is for
each p̂ ∈ P an upper bound of ∪{F(p) : p ∈ Σ, p � p̂}. Thus the hypothesis
(H1) of Theorem 8.78 is valid.

If σi = δsi , i = 1, . . . , N , it follows from (8.50) and (8.49) that

Ui(σi, σ−i) = Ui(si, σ−i) = ui(si, s−i), i = 1, . . . , N.

Moreover, if σi = δsi
and σ̂i = δŝi

, i = 1, . . . , N , then σi �i σ̂i in Pi if
and only if si ≤i ŝi in Si. Let C be a nonempty well-ordered chain in P .
The elements of C are of the form p = (δs1 , . . . , δsN

), where the elements
(s1, . . . , sN ) form a well-ordered chain C in S. Since S = S1 × · · · × SN is a
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finite product of compact subsets Si of ordered metric spaces Xi, then S is a
compact subset of the ordered metric space X = X1×· · ·×XN equipped with
product metric and componentwise ordering. Thus all monotone sequences of
C converge in S. This property along with [133, Proposition 1.1.5] prove that
(s∗1, . . . , s∗N ) = supC exists in S, whence σ∗ = (δs∗1 , . . . , δs∗N

) = sup C in Σ,
and σ∗ belongs to P .

Finally, if D is a nonempty inversely well-ordered chain in P , one can
show similarly that p∗ = (δs∗1 , . . . , δs∗N ) = inf D exists in Σ, and p∗ belongs to
P . This proves that the hypothesis (H2) of Theorem 8.78 is fulfilled. Then by
applying Theorem 8.78 we see that F , defined by (8.56), has the smallest fixed
point p = (δs1 , . . . , δsN

) and the greatest fixed point p = (δs1 , . . . , δsN
), and

they belong to P . According to Lemma 8.77 this result means that δs1 , . . . , δsN

is the smallest Nash equilibrium for Γ and δs1 , . . . , δsN
is the greatest Nash

equilibrium for Γ in Σ, and both are pure. ut

The next result, dealing with monotone comparative statics, provides suffi-
cient conditions for the monotone dependence of extremal pure Nash equilibria
on a parameter that belongs to a poset. As a consequence of Proposition 8.79
we obtain the following result.

Proposition 8.81. Let T be a poset, and assume that {Γ t = {Si, uti}Ni=1 :
t ∈ T} is a family of normal-form games that have quasisupermodular mixed
extensions. Then each Γ t has the smallest pure Nash equilibrium δst

1
, . . . , δst

N

and the greatest pure Nash equilibrium δst
1
, . . . , δst

N
. Assume, in addition, that

each uti(si, s−i) has the single crossing property in (si, t):

(IV) If xi <i yi, s−i ∈ S−i and t̂ < t in T , then ut̂i(xi, s−i) ≤i ut̂i(yi, s−i) im-
plies that uti(xi, s−i) ≤i uti(yi, s−i), and ut̂i(xi, s−i) <i u

t̂
i(yi, s−i) implies

that uti(xi, s−i) <i u
t
i(yi, s−i).

If t̂ < t then δst̂
i
�i δst

i
and δst̂

i
�i δst

i
for each i = 1, . . . , N .

Proof: The existence of the smallest and greatest Nash equilibria for each Γ t

follows from Theorem 8.80. Define for each i = 1, . . . , N , for each t ∈ T and
for each σ−i ∈ Σ−i,

U ti (si, σ−i) :=
∫
S−i

uti(si, s−i)dσ
−i(s−i), U ti (τi, σ−i) =

∫
Si

U ti (si, σ−i)dτi(si).

(8.57)
It follows from Lemma 8.77 that the smallest and greatest Nash equilibria
of Γ t are the components of the smallest and greatest fixed points of the
set-valued function F t : Σ → 2Σ , defined by

F t(p) :=(F t1(σ−1), . . . ,F tN (σ−N )), p = (σ1, . . . , σN ) ∈ Σ,
F ti (σ−i) :={σi ∈ Σi : U ti (σi, σ−i) = max

τi∈Σi

U ti (τi, σ−i)},
(8.58)
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where σ−i ∈ Σ−i, i = 1, . . . , N . Moreover, these extremal Nash equilibria are
pure, i.e., they are of the form δst

1
, . . . , δst

N
and δst

1
, . . . , δst

N
. Given t̂ < t and

i ∈ {1, . . . , N} and δs−i
∈ P−i, we introduce

F ti (δs−i
) = {si ∈ Si : U ti (si, σ−i) = max

ti∈Si

U ti (ti, σ−i)},

F t̂i (δs−i) = {si ∈ Si : U t̂i (si, σ−i) = max
ti∈Si

U t̂i (ti, σ−i)}.

If xi = minF t̂i (δs−i
) and yi = minF ti (δs−i

), then U t̂i (xi ∧ yi, δs−i
) ≤i

U t̂i (xi, δs−i). Equality must hold, for otherwise U t̂i (xi∧yi, δs−i) <i U
t̂
i (xi, δs−i).

By condition (II), this implies that U t̂i (yi, δs−i
) <i U t̂i (xi∨yi, δs−i

), or equiva-
lently, ut̂i(yi, s−i) <i u

t̂
i(xi ∨ yi, s−i). Applying condition (IV), we then obtain

uti(yi, s−i) <i u
t
i(xi ∨ yi, s−i), or equivalently, U ti (yi, δs−i

) <i U ti (xi ∨ yi, δs−i
).

But this contradicts the choice of yi. Thus U t̂i (xi ∧ yi, δs−i) = U t̂i (xi, δs−i), so
that xi ∧ yi ∈ F t̂(δs−i

). Since xi = minF t̂i (δs−i
), then xi ∧ yi = xi, whence

xi ≤i yi, i.e., minF t̂i (δs−i
) ≤i minF ti (δs−i

). This result, (8.54), and (SD) im-
ply that minF t̂i (δs−i) �i minF ti (δs−i). The latter holds for all i = 1, . . . , N
and δs−i

∈ P−i, whence minF t̂(p) � minF t(p) for all p ∈ P . Consequently,
the hypothesis of Proposition 8.79(b) holds true when F = F t and F̂ = F t̂.
Thus pt̂ � pt, where pt̂ = (δst̂

1
, . . . , δst̂

N
) and pt = (δst

1
, . . . , δst

N
) are the

smallest fixed points of F̂ and F . In other words, if t̂ < t, then for each
i = 1, . . . , N , δst̂

i
�i δst

i
, where δst

1
, . . . , δst

N
is the smallest Nash equilibrium

Γ t and δst̂
1
, . . . , δst̂

N
is the smallest Nash equilibrium for Γ t̂.

To prove the similar comparison result for greatest Nash equilibria of Γ t,
choose xi = maxF t̂i (δs−i

) and yi = maxF ti (δs−i
). Then U t̂i (xi ∧ yi, δs−i

) ≤i
U t̂i (xi, δs−i

). This implies by condition (II) that U t̂i (yi, δs−i
) ≤i U t̂i (xi ∨

yi, δs−i), or equivalently, ut̂i(yi, s−i) ≤i ut̂i(xi ∨ yi, s−i). Applying condition
(IV) we obtain uti(yi, s−i) ≤i uti(xi ∨ yi, s−i), or equivalently, U ti (yi, δs−i) ≤i
U ti (xi ∨ yi, δs−i

). Equality must hold because of the choice of yi, whence
xi∨yi ∈ F t(δs−i

). Since yi = maxF ti (δs−i
), then xi∨yi = yi, whence xi ≤i yi,

i.e., maxF t̂i (δs−i
) ≤i maxF ti (δs−i

). This result allows us to replace min by max
in the above reasoning and apply Proposition 8.79(a) to obtain the asserted
comparison result for greatest Nash equilibria of Γ t. ut

Next we derive a comparison result for expected utilities of mixed Nash
equilibria. The following hypotheses are used.

(V) Ui(si, σ̂−i) ≤i Ui(si, σ−i) if σ−i ≤ σ̂−i in Σ−i, σ−i ∈ P−i and si ∈ Si.
(VI) Ui(si, σ−i) ≤i Ui(si, σ̂−i) if σ−i ≤ σ̂−i in Σ−i, σ̂−i ∈ P−i and si ∈ Si.
Proposition 8.82. Assume that a normal-form game Γ has a quasisuper-
modular mixed extension. Denote by δs1 , . . . , δsN

and δs1 , . . . , δsN
the smallest

and greatest pure Nash equilibria of Γ , respectively, and let σ∗1 , . . . , σ
∗
N be a

mixed Nash equilibrium for Γ .
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(a) If (V) holds for each i = 1, . . . , N , then Ui(σ∗i , σ∗−i) ≤i ui(s1, . . . , sN ) for
each i = 1, . . . , N .

(b) If (VI) holds for each i = 1, . . . , N , then Ui(σ∗i , σ∗−i) ≤i ui(s1, . . . , sN ) for
each i = 1, . . . , N .

Proof: Ad (a) Since δs−i
� σ∗−i for each i = 1, . . . , N , from (V) and (8.51)

and by applying Lemma 9.4 it follows that for all i = 1, . . . , N ,

Ui(σ∗i , σ∗−i) =
∫
Si

Ui(si, σ∗−i)dσ
∗
i (si) ≤i

∫
Si

Ui(si, δs−i
)dσ∗i (si)

= Ui(σ∗i , δs−i
) ≤i Ui(δsi

, δs−i
) = ui(si, s−i).

This implies the assertion of (a).

Ad (b) Because σ∗−i ≤ δs−i in Σ−i for all i = 1, . . . , N , from (VI) and
from the equilibrium condition (8.51) and by Lemma 9.4 it follows that for
all i = 1, . . . , N ,

Ui(σ∗i , σ∗−i) =
∫
Si

Ui(si, σ∗−i)dσ
∗
i (si) ≤i

∫
Si

Ui(si, δs−i)dσ
∗
i (si)

= Ui(σ∗i , δs−i) ≤i Ui(δsi , δs−i) = ui(si, s−i).

This proves the assertion of (b). ut

Remark 8.83. (i) The results of this section cannot be obtained by the methods
used, e.g., in [86, 180, 217, 218, 222, 223, 232], because the first order stochastic
dominance is not a lattice ordering for Σi if Si is not a chain, and since the
utility mappings ui need not be chain-valued.

(ii) If each Si is only a join sublattice of Xi, i.e., if x∨ y := sup{x, y} exist
in Xi and belongs to Si for all x, y ∈ Si then quasisupermodularity condition
(II) is not available. The results derived above for greatest Nash equilibria
can be obtained when conditions (II) and (III) are replaced by the following
conditions:

(II’) Ui(·, σ−i) is for each σ−i ∈ Σ−i directedly upper closed, and if xi, yi ∈ Si
and σ−i ∈ Σ−i, then Ui(yi, σ−i) ≤i Ui(xi, σ−i) implies that Ui(yi, σ−i) ≤i
Ui(xi ∨ yi, σ−i).

(III’) If xi <i yi in Si, σ−i < σ̂−i in Σ−i and σ̂−i belongs to P−i then
Ui(xi, σ−i) ≤i Ui(yi, σ−i) implies that Ui(xi, σ̂−i) ≤i Ui(yi, σ̂−i).

These conditions correspond to concepts of weak quasisupermodularity and
weak single crossing property defined in [197, Section 4.1] for player i’s interim
payoff function Vi in a Bayesian game. Notice however the restriction σ̂−i ∈
P−i in condition (III’).

(iii) Because of the partial monotonicity hypothesis (H1) on F in Theo-
rem 8.78 and in Proposition 8.79, the partial single crossing property (III) is
sufficient.
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8.4.3 Applications to Supermodular Games

We apply the results of Sect. 8.4.2 to supermodular normal-form games. As
for examples of such games, see, e.g., [218, Section 4.4].

Definition 8.84. A normal-form game Γ = {Si, ui}Ni=1 is called supermod-
ular, if for every i = 1, . . . , N the following conditions are satisfied:

(1) Si is a compact sublattice of an ordered Polish space, ui is real-valued and
bounded, ui(·, s−i) is upper semicontinuous in Si, uniformly over s−i ∈
S−i, and ui(si, ·) is Borel measurable in S−i for each si ∈ Si;

(2) ui(·, s−i) is supermodular, i.e., if xi, yi ∈ Si and s−i ∈ S−i, then
ui(xi, s−i) + ui(yi, s−i) ≤ ui(xi ∧ yi, s−i) + ui(xi ∨ yi, s−i);

(3) ui has increasing differences in (si, s−i), i.e., if xi <i yi in Si and
s−i < ŝ−i in S−i, then ui(yi, s−i)− ui(xi, s−i) ≤ ui(yi, ŝ−i)− ui(xi, ŝ−i).

In the proof of the main theorem of this subsection we make use of the
following auxiliary result.

Lemma 8.85. A supermodular game Γ = {Si, ui}Ni=1 admits a mixed exten-
sion.

Proof: Let i ∈ {1, . . . , N} and (σ1, . . . , σN ) ∈ Σ be fixed. Since ui(si, ·) is
bounded and Borel measurable in S−i for each si ∈ Si, then (8.49) defines
a function Ui(·, σ−i) on Si. Because ui(·, s−i) is upper semicontinuous in Si,
uniformly over s−i ∈ S−i, then for any ε > 0, each x ∈ Si has a neighborhood
V (x) in Si such that ui(y, s−i) ≤ ui(x, s−i)+ε for all y ∈ V (x) and s−i ∈ S−i.
Thus

Ui(y, σ−i) ≤
∫
S−i

(ui(x, s−i) + ε)dσ−i(s−i) = Ui(x, σ−i) + ε

for all y ∈ V (x), which proves that Ui(·, σ−i) is upper semicontinuous, and
hence also Borel measurable. This ensures that Ui(·, σ−i) is σi-integrable on
Si. The assertion of the lemma follows now from the above results and from
the definition 8.73. ut

The following theorem can be derived from Theorem 8.80 as a special case.

Theorem 8.86. Let Γ = {Si, ui}Ni=1 be a supermodular normal-form game.
Then Γ has the smallest pure Nash equilibrium δs1 , . . . , δsN

and the great-
est pure Nash equilibrium δs1 , . . . , δsN

, and, if σ∗1 , . . . , σ
∗
N is any mixed Nash

equilibrium for Γ , then δsi
� σ∗i �i δsi for each i = 1, . . . , N .

Proof: It suffices to show that the conditions (I), (II), and (III) of Definition
8.75 are valid. Condition (I) is a consequence of condition (1) of Definition
8.84. Because the functions Ui(·, σ−i) are upper semicontinuous by the proof
of Lemma 8.85, they are also directedly upper closed due to Corollary 8.34.
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To prove quasisupermodularity of Ui(·, σ−i), assume that xi, yi ∈ Si and
σ−i ∈ Σi. Applying condition (2) and Lemma 9.4 we get

Ui(xi, σ−i)− Ui(xi ∧ yi, σ−i) =
∫
S−i

(ui(xi, s−i)− ui(xi ∧ yi, s−i))dσ−i(s−i)

≤
∫
S−i

(ui(xi ∨ yi, s−i)− ui(yi, s−i))dσ−i(s−i)

= Ui(xi ∨ yi, σ−i)− Ui(yi, σ−i).

This result implies quasisupermodularity of Ui(·, σ−i), so that the condition
(II) is satisfied.

Next we shall show that condition (III) holds. Given i ∈ {1, . . . , N}, as-
sume first that σ−i ≤ σ̂−i in Σ−i and that

σ−i = (δz1 , . . . , δzi−1 , δzi+1 , . . . , δzN
) ∈ P−i.

If j 6= i, then δzj
�j σ̂j . The order interval [zj) is an increasing Borel set that

contains zj . Thus 1 = δzj
([zj)) ≤ σ̂j([zj)) by the definition (SD). This result

holds for each j 6= i, whence σ̂−i([z−i)) = 1. Hence, if xi <i yi in Si, then
applying condition (3) and Lemma 9.4 we obtain

Ui(yi, σ−i)− Ui(xi, σ−i) =
∫
S−i

(ui(yi, s−i)− ui(xi, s−i))dσ−i(s−i)

= ui(yi, z−i)− ui(xi, z−i) =
∫

[z−i)

(ui(yi, z−i)− ui(xi, z−i))dσ̂−i(s−i)

≤
∫

[z−i)

(ui(yi, s−i)− ui(xi, s−i))dσ̂−i(s−i)

=
∫
S−i

ui(yi, s−i)− ui(xi, s−i))dσ̂−i(s−i) = Ui(yi, σ̂−i)− Ui(xi, σ̂−i).

Assume next that σ−i ≤ σ̂−i in Σ−i, and that

σ̂−i = (δŝ1 , . . . , δŝi−1 , δŝi+1 , . . . , δŝN
) ∈ P−i.

If j 6= i, then σj �j δŝj
. Since the set Sj \ (ŝj ] is an increasing Borel set, then

σj(Sj \ (ŝj ]) ≤ δŝj
(Sj \ (ŝj ]) = 0 by the definition (SD). This holds for each

j 6= i, whence σ−i((ŝ−i]) = 1. If xi <i yi in Si, then applying condition (3),
the above result, and Lemma 9.4, we obtain

Ui(yi, σ−i)− Ui(xi, σ−i) =
∫
S−i

(ui(yi, s−i)− ui(xi, s−i))dσ−i(s−i)

=
∫

(ŝ−i]

(ui(yi, s−i)− ui(xi, s−i))dσ−i(s−i)

≤
∫

(ŝ−i]

(ui(yi, ŝ−i)− ui(xi, ŝ−i))dσ−i(s−i) = ui(yi, ŝ−i)− ui(xi, ŝ−i)

=
∫
S−i

(ui(yi, s−i)− ui(xi, s−i))dσ̂−i(s−i) = Ui(yi, σ̂−i)− Ui(xi, σ̂−i).



8.4 Pure and Mixed Nash Equilibria of Normal-Form Games 375

The above proof shows that if xi <i yi in Si, σ−i ≤ σ̂−i in Σ−i, and σ−i or
σ̂−i is in P−i, then Ui(yi, σ−i) − Ui(xi, σ−i) ≤ Ui(yi, σ̂−i) − Ui(xi, σ̂−i). This
result implies that condition (III) is valid. Thus all the conditions (I), (II),
and (III) of Definition 8.75 hold true. The above proof and Lemma 8.85 imply
that Γ is a normal-form game that has a quasisupermodular mixed extension.
Thus the assertions follow from Theorem 8.80. ut

The proof of Theorem 8.86 shows that if Γ is a supermodular normal-
form game, then it has a quasisupermodular mixed extension. Therefore, the
following comparison result is a special case of Proposition 8.81.

Proposition 8.87. Let T be a poset, and let {Γ t = {Si, uti}Ni=1 : t ∈ T} be
a family of supermodular normal-form games. Then each Γ t has the small-
est pure Nash equilibrium δst

1
, . . . , δst

N
and the greatest pure Nash equilibrium

δst
1
, . . . , δst

N
. Moreover, if each uti(si, s−i) has the single crossing property (IV)

in (si, t), then δst̂
i
�i δst

i
and δst̂

i
�i δst

i
whenever t̂ < t and i ∈ {1, . . . , N}.

As a consequence of Proposition 8.82 we obtain a comparison result for
the expected utilities of mixed Nash equilibria of Γ .

Proposition 8.88. Let Γ = {Si, ui}Ni=1 be a supermodular normal-form
game, let δs1 , . . . , δsN

and δs1 , . . . , δsN
denote the smallest and greatest Nash

equilibria of Γ in Σ, and let σ∗1 , . . . , σ
∗
N be any mixed Nash equilibrium for Γ .

Then we have:

(a) If ui(si, ·) is decreasing in S−i for all si ∈ Si, then Ui(σ∗i , σ∗−i) ≤
ui(si, . . . , sN ).

(b) If ui(si, ·) is increasing in S−i for all si ∈ Si, then Ui(σ∗i , σ∗−i) ≤
ui(s1, . . . , sN ).

Proof: By the proof of Theorem 8.86, Γ has a quasisupermodular mixed
extension. Therefore, in view of Proposition 8.82 it suffices to prove that the
hypotheses (V) and (VI) of Proposition 8.82 hold true.

Ad (a) To prove the validity of (V), let i ∈ {1, . . . , N} and si ∈ Si be
given, and assume that σ−i ≤ σ̂−i in Σ−i, and that σ−i = δx−i ∈ P−i. As
in the proof of Theorem 8.86, one can show that σ̂−i([x−i)) = 1. This result
and taking into account Lemma 9.4 as well as the hypothesis that ui(si, ·) is
decreasing in S−i imply that

Ui(si, σ−i) =
∫
S−i

ui(si, s−i)dσ−i(s−i) = ui(si, x−i)

=
∫

[x−i)

ui(si, x−i)dσ̂−i(s−i) ≥
∫

[x−i)

ui(si, s−i)dσ̂−i(s−i)

=
∫
S−i

ui(si, s−i)dσ̂−i(s−i) = Ui(si, σ̂−i).

Thus condition (V) of Proposition 8.82 is fulfilled.
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Ad (b) Next we shall show that condition (VI) of Proposition 8.82 holds
true. Assume that si ∈ Si, σ−i ≤ σ̂−i in Σ−i and σ̂−i = δŝ−i

∈ P−i for each
i = 1, . . . , N . Let i ∈ {1, . . . , N} be given. One can show as in the proof of
Theorem 8.86 that σ−i((ŝ−i]) = 1. Applying this result, the hypothesis that
ui(si, ·) is increasing in S−i, and Lemma 9.4, we get

Ui(si, σ−i) =
∫
S−i

ui(si, s−i)dσ−i(s−i) =
∫

(ŝ−i]

ui(si, s−i)dσ−i(s−i)

≤
∫

(ŝ−i]

ui(si, ŝ−i)dσ−i(s−i) = ui(si, ŝ−i) = Ui(si, σ̂−i).

This implies that condition (VI) of Proposition 8.82is fulfilled. ut

The following special case includes also monotone comparative statics re-
sults.

Corollary 8.89. Let T be a poset, and let {Γ t = {Si, uti}Ni=1 : t ∈ T} be a
family of normal-form games with the following properties:

(A) Strategy spaces are products Si = ×mi

k=1Sik, 1 ≤ mi ≤ ∞, of compact
chains Sik of ordered Polish spaces (Xik, dik).

(B) Each uti(s1, . . . , sN ) is bounded, real-valued, upper semicontinuous in si,
uniformly over sj, j 6= i, and continuous in each sj, j 6= i with respect to
product topologies of Xi = ×mi

k=1Xik.
(C) Each uti(si, s−i) is supermodular in si and has increasing differences in

(si, s−i) and in (si, t) with respect to componentwise orderings of Xi and
X−i.

Then the following assertions hold:

(a) If each uti(s1, . . . , sN ) is decreasing in each sj, j 6= i, then each Γ t has the
smallest pure Nash equilibrium δst

1
, . . . , δst

N
, it is a lower bound of all mixed

Nash equilibria for Γ t̂, t̂ ≤ t, and the utilities uti(s
t
1, . . . , s

t
N ) majorize the

expected utilities of all mixed Nash equilibria for Γ t.
(b) If each uti(s1, . . . , sN ) is increasing in each sj, j 6= i, then each Γ t has the

greatest pure Nash equilibrium δst
1
, . . . , δst

N
, it majorizes all mixed Nash

equilibria for Γ t̂, t̂ ≤ t, and the utilities uti(s
t
1, . . . , s

t
N ) majorize the ex-

pected utilities of all mixed Nash equilibria for Γ t.

Proof: Since each Sik is compact, it follows from Tychonoff’s Theorem ([85,
Theorem 2.2.8]) that Si is a compact subset of the product Xi = ×mi

k=1Xik.
According to [85, Proposition 2.4.4], the product topology of Xi is metrizable
by the metric

di(si, ŝi) :=
mi∑
k=1

dik(sik, ŝik)
2k(1 + dik(sik, ŝik))

, si = (sik)mi

k=1, ŝi = (ŝik)mi

k=1 ∈ Si.

(8.59)
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As noticed in [85, p. 388], the countable product Xi of Polish spaces Xik

is a Polish space with respect to the metric di. Moreover, the products Si
of chains Sik of Xik, k = 1, . . . ,mi are sublattices of Xi with respect to
the componentwise ordering, and each uti is bounded and real-valued by (B).
Since each uti(s1, . . . , sN ) is by (B) upper semicontinuous in si, uniformly
over sj , j 6= i, and continuous in each sj , j 6= i, then each uti(si, s−i) is Borel
measurable in s−i by [35] and upper semicontinuous in si, uniformly over
s−i. Because each uti(si, s−i) is by (C) supermodular in si and has increasing
differences in (si, s−i) and in (si, t), then conditions of Definition 8.84 are valid
for each t ∈ T . Thus the assertions follow from Theorem 8.86, Propositions
8.87 and 8.88. ut

As a consequence of Theorem 8.86 and Proposition 8.88, we obtain the
following corollary.

Corollary 8.90. Let Γ = {Si, ui}Ni=1 be a normal-form game in which strat-
egy spaces Si are products of compact subsets Sij of [cij ,∞), j = 1, . . . ,mi,
ordered coordinatewise, and utilities are of the form

ui(si, s−i) =
mj∑
j=1

(fij(sij) + gij(s−i))(sij − cij), i = 1, . . . , N. (8.60)

If each fij : Sij → R+ is bounded from below and upper semicontinuous, and
each gij : S−i → R+ is increasing and upper semicontinuous, then Γ has the
smallest pure Nash equilibrium δs1 , . . . , δsN

and the greatest pure Nash equi-
librium δs1 , . . . , δsN

. If σ∗1 , . . . , σ
∗
N is any mixed Nash equilibrium for Γ , then

δsi
� σ∗i �i δsi

for each i = 1, . . . , N . The utilities ui(s1, . . . , sN ) majorize
the expected utilities of all mixed Nash equilibria for Γ .

Proof: The given hypotheses imply that condition (1) of Definition 8.84 is
valid. Since every Sij is a compact chain in R, then every function fij is
supermodular. This implies that condition (2) of Definition 8.84 holds. Assume
next that si <i ŝi in Si and s−i < ŝ−i in S−i. Since every gij is increasing,
then every ui(si, s−i) is increasing in s−i, and

ui(ŝi, ŝ−i)− ui(si, ŝ−i)− (ui(ŝi, s−i)− ui(si, s−i))

=
mj∑
j=1

(gij(ŝ−i)− gij(s−i))(ŝij − sij) ≥ 0.

Thus every ui(si, s−i) has increasing differences in (si, s−i). The above proof
shows that Γ is a supermodular normal-form game, and that the functions
ui(si, s−i) are increasing in s−i. Thus the assertions follow from Theorem 8.86
and Proposition 8.88(b). ut
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Example 8.91. Consider a two-person normal form game Γ = {S1, S2, u1, u2},
where the strategy spaces are Si = [32 ,

5
2 ]× [32 ,

5
2 ]. The utility functions are of

the form ui((si1, s12), s−i) = ui1(si1, s−i) + ui2(si2, s−i), where the functions
uij : [ 32 ,

5
2 ] → R, i, j = 1, 2, are defined as follows:

u11(s, s−1) = (52− 21s+ s21 + 4s22)(s− 1),

u12(s, s−1) = (51− 21s+ 2s21 + 3s22)(s−
11
10

),

u21(s, s−2) = (50− 20s+ 3s11 + 2s12)(s−
11
10

),

u22(s, s−2) = (49− 20s+ 4s11 + s12)(s− 1).

Show that Γ has exactly one Nash equilibrium. Calculate it and the corre-
sponding utilities.

Solution. The hypotheses of Corollary 8.90 are valid, whence Γ has the small-
est and the greatest pure Nash equilibria. Moreover, the functions ui(·, s−i)
have unique maximum points (fi1(s−i), fi2(s−i)), whose coordinates fij(s−i)
are solutions of equations d

dsuij(s, s−i) = 0:

f11(s−1) =
73
42

+
1
42
s21 +

2
21
s22,

f12(s−1) =
247
140

+
1
21
s21 +

1
14
s22,

f21(s−2) =
9
5

+
3
40
s11 +

1
20
s12,

f22(s−2) =
69
40

+
1
10
s11 +

1
40
s12.

(8.61)

Equalizing points si of Si and corresponding pure strategies δsi
, it follows

that ((s11, s12), (s21, s22)) is a pure Nash equilibrium of Γ if and only if
(s11, s12, s21, s22) is a solution of the following system of linear equations:

s11 =
73
42

+
1
42
s21 +

2
21
s22,

s12 =
247
140

+
1
21
s21 +

1
14
s22,

s21 =
9
5

+
3
40
s11 +

1
20
s12,

s22 =
69
40

+
1
10
s11 +

1
40
s12.

(8.62)

The obtained system has the unique solution:

s∗11 =
54992649
27757240

≈ 1.98120018416816657563936472070,

s∗12 =
28539271
13878620

≈ 2.02708082647986615383950277477,
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s∗21 =
29174031
13878620

≈ 2.05634789337844828952734493775,

s∗22 =
56266169
27757240

≈ 2.10208442914353156149530717031.

Thus the only pure Nash equilibrium for Γ is ((s∗11, s
∗
12), (s

∗
21, s

∗
22)). The values

of the corresponding utilities ui = ui1 + ui2 are

u1 =
867861128850819
22013267783360

≈ 39.4244569862018379774764101105,

u2 =
317287741895329
7704643724176

≈ 41.1813645450896490849943708262.

Since Γ has only one pure Nash equilibrium, and since every Nash equilibrium
of Γ is bounded from above and from below by its smallest and greatest pure
Nash equilibria, then Γ has no properly mixed Nash equilibria.

8.5 Undominated and Weakly Dominating Strategies
and Weakly Dominating Pure Nash Equilibria for
Normal-Form Games

The main goal of this section is to present necessary and sufficient condi-
tions for the existence of undominated strategies, weakly dominating strate-
gies, and weakly dominating pure Nash equilibria for a normal-form game
Γ = {Si, ui}Ni=1. The strategy spaces Si are assumed to be nonempty sets,
topological spaces, or pseudometric spaces. The utilities ui are functions from
S1× · · ·×SN to nonempty posets Yi = (Yi,�i), i ∈ {1, . . . , N}. The obtained
results are illustrated by examples and remarks. Unless otherwise stated, we
assume that each strategy set Si is partially ordered by the weak dominance
relation <i, defined as follows.

(wd) si <i ti if ui(si, s−i) �i ui(ti, s−i) for all s−i ∈ S−i, and
ui(si, t−i) ≺i ui(ti, t−i) for some t−i ∈ S−i.

8.5.1 Existence of Undominated Strategies

Strategy si ∈ Si is said to be undominated if si 6<i ti for all ti ∈ Si. We
say that ti ∈ Si is a weak majorant of a subset W of Si if ui(si, s−i) �i
ui(ti, s−i) for all s−i ∈ S−i and si ∈ W . Given ti ∈ Si, denote by D(ti) the
set of all weak dominants of ti, i.e.,

D(ti) = {si ∈ Si : ti <i si}. (8.63)

We are going to derive necessary and sufficient conditions for the existence of
undominated strategies for player i. The proof of our main result is based on
the Chain Generating Recursion Principle presented in Lemma 2.1.
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Proposition 8.92. Player i in a game Γ = {Si, ui}Ni=1 has undominated
strategies if and only if there is a ti ∈ Si such that each nonempty well-ordered
set in D(ti) has a weak majorant.

Proof: Assume first that each nonempty well-ordered set in D(ti) has a weak
majorant for some ti ∈ S. IfD(ti) is empty, then ti is an undominated strategy
of player i. Otherwise, denote by D the set of all those well-ordered subsets
of D(ti) which have strict upper bounds in Si, or equivalently, in D(ti). Let
f : D → D(ti) be a function that assigns to each W ∈ D a strict upper
bound f(W ) of W in D(ti). By Lemma 2.1 there is a unique well-ordered
set C in D(ti) so that x ∈ C if and only if x = f({y ∈ C : y <i x}). By
hypothesis, C has a weak majorant, say z. To show that z is undominated,
assume there is y ∈ Si such that z <i y. Let x ∈ C be given. Because z is
a weak majorant of C, and z <i y, then ui(x, s−i) �i ui(z, s−i) �i ui(y, s−i)
for each s−i ∈ S−i, and there is t−i ∈ S−i such that ui(z, t−i) ≺ ui(y, t−i).
Thus x <i y. This holds for each x ∈ C, whence y is a strict upper bound of
C in D(ti). In particular, C ∈ D, so that f(C) exists and is, by definition, a
strict upper bound of C. But this contradicts the last conclusion of Lemma
2.1, and proves that z is undominated.

If player i has an undominated strategy ti, it is not weakly dominated by
any other strategy in Si, whence D(ti) = ∅. Thus each nonempty well-ordered
set in D(ti) has a weak majorant. ut

Consider next the case when Si is a topological space. Recall that a func-
tion f : Si → Yi is upper closed if the set f−1[[y)] is closed for all y ∈ f [Si].

Proposition 8.93. Assume that Si is a topological space, and that ui(·, s−i)
is upper closed for each s−i ∈ S−i. Then player i has undominated strategies
if and only if there is a ti in Si such that the closure of each nonempty well-
ordered subset of D(ti) is compact.

Proof: Assume that the closure of each nonempty well-ordered subset ofD(ti)
is compact. Let C be a nonempty well-ordered set in D(ti). By Proposition
8.92 it suffices to show that C has a weak majorant. By hypothesis, the closure
C of C is a compact subset of Si. For each x ∈ C and s−i ∈ S−i denote

R(x, s−i) = {z ∈ Si : ui(x, s−i) �i ui(z, s−i)}.

The sets R(x, s−i) are closed because the functions ui(·, s−i) are upper closed.
Thus the set R(x) =

⋂
{R(x, s−i) : s−i ∈ S−i} is closed for every x ∈ C. Since

x ∈ R(x), then R(x) is nonempty. Moreover, R(z) ⊂ R(x) whenever x <i z.
Because C is well-ordered, then {R(x) ∩ C : x ∈ C} is a family of nested
nonempty closed subsets of C. Clearly, every finite subfamily of these sets has
a nonempty intersection. Since C is compact, then

⋂
{R(x) ∩ C : x ∈ C} is

nonempty. It is easy to see that each element of this set is a weak majorant of
C. This result implies that the sufficiency part follows from Proposition 8.92.



8.5 Weakly Dominating Pure Nash Equilibria 381

If player i has an undominated strategy ti, then D(ti) = ∅, whence there is
no nonempty well-ordered subset in D(ti). This proves the necessity part. ut

Corollary 8.94. If Si is a compact topological space, and if ui(·, s−i) is upper
closed for every s−i ∈ S−i, then player i has undominated strategies.

In the special case that Yi = R and the functions ui(·, s−i) are upper
semicontinuous, Corollary 8.94 is reduced to [199, Proposition 0].

Assume next that Si is a pseudometric space. For y ∈ Si and r > 0, denote
B(y, r) = {x ∈ Si : d(x, y) ≤ r}, where d is the pseudometric of Si.

Lemma 8.95. Let Si be a pseudometric space, ti ∈ Si, and assume that each
increasing sequence of D(ti) has a convergent subsequence. If C is a nonempty
well-ordered subset of D(ti), then for each n ∈ N there is a finite number of
points xn0 , . . . , x

n
mn

∈ C such that C ⊆
⋃mn

k=0B(xnk ,
1
2n ).

Proof: Assume that C is a nonempty well-ordered subset of D(ti). Given
n ∈ N, denote xn0 = minC, and when xn0 , . . . , x

n
m are chosen, let xnm+1 be the

smallest element in C, if such an element exists, such that d(xnk , x
n
m+1) >

1
2n

for each k = 0, . . . ,m. The so constructed sequence (xnk ) is finite, for otherwise
it is an increasing sequence of C that has no convergent subsequence. The
points xnk form a finite subset {xn0 , . . . , xnmn

} of C, and C ⊆
⋃mn

k=0B(xnk ,
1
2n ).
ut

Proposition 8.96. Let Si be a pseudometric space, and let ui(·, s−i) be upper
closed for each s−i ∈ S−i. Then player i has undominated strategies if and
only if there is a ti ∈ Si such that each increasing sequence of D(ti) has a
convergent subsequence.

Proof: Assume there is a ti ∈ Si such that each increasing sequence of D(ti)
has a convergent subsequence. To prove that the closure of each well-ordered
subset of D(ti) is compact, make a counter-hypothesis: There is a well-ordered
subset C of D(ti) and an open covering {Uα}α∈Γ of C such that no finite
subfamily of {Uα}α∈Γ covers C. For each n ∈ N, let Bn be the first of the balls
B(xn0 ,

1
2n ), . . . , B(xnmn

, 1
2n ), constructed in Lemma 8.95, such that no finite

subfamily of {Uα}α∈Γ covers Bn ∩ C. Let yn be the center of Bn. Defining
inductively n0 = min{j : yj = min{yn : n ∈ N}} and nk+1 = min{j :
yj = min{yn : n > nk}} when k ∈ N0, we obtain an increasing subsequence
(ynk

)∞k=0 of (yn)∞n=1. By hypothesis the sequence (ynk
)∞k=0 has a convergent

subsequence (ynki
)∞i=0. Denote y = limi ynki

. Since y ∈ C, there is Uα such
that y ∈ Uα. Because Uα is open, there is r > 0 such that B(y, r) ⊂ Uα.
Since limi d(ynki

, y) = 0, there is nki
such that d(ynki

, y) < r
2 and 1

2
nki

< r
2 .

But then Bnki
⊂ B(y, r) ⊂ Uα, which is a contradiction, since no finite

subfamily of {Uα}α∈Γ covers Bnki
. The above proof shows that the closure of

each well-ordered subset of D(ti) is compact, whence Proposition 8.93 implies
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that player i has undominated strategies. The proof of the necessity part is
obvious. ut

Remark 8.97. (i) The function f defined in the proof of Proposition 8.92 is
a choice function over a set of subsets of Si. If the set D(ti) has a subset B
equipped with a well-ordering relation ≺ such that each element of D(ti) has
a weak majorant in B, one can choose f(W ), W ∈ D, to be that element
of B that is the smallest with respect to ≺ of the strict upper bounds (with
respect to <i) of W . In particular, if the set B is countable, it has a natural
well-ordering through its sequence representation. In these cases all the proofs
of this subsection are independent on the axiom of choice. This is the case
also when D(ti) = ∅ for all ti ∈ Si. In such a case each strategy of Si is
undominated.

(ii) The smallest elements of well-ordered subset C of D(ti), constructed
in the proof of Proposition 8.92 are of the form: x0 = f(∅), x1 = f({x0}), . . . ,
xn = f({x0, . . . , xn−1}), as long as xn is defined. If xω = f({xn}∞n=0) exists,
then xω is the next element of C, and so on.

(iii) The existence of smallest and greatest undominated Nash equilibria
in games of strategic complementarities is studied in [159, 160].

8.5.2 Existence of Weakly Dominating Strategies and Pure Nash
Equilibria

Strategy ti ∈ Si is called weakly dominating if si <i ti for every si ∈ Si \
{ti}, where <i is defined by (wd). In this subsection we first derive necessary
and sufficient conditions for the existence of the weakly dominating strategy
of a player in a normal-form game.

Proposition 8.98. Player i in a game Γ = {Si, ui}Ni=1 has the weakly domi-
nating strategy if and only if Si is directed upward (with respect to ‘<i’), and
there is a ti ∈ Si such that each nonempty well-ordered subset of D(ti) has a
weak majorant.

Proof: Assume first that Si is directed upward and there is a ti ∈ Si such that
each nonempty well-ordered subset of D(ti) has a weak majorant. By Propo-
sition 8.92 these hypotheses imply that player i has at least one undominated
strategy, say z, in Si. To prove that z is the weakly dominating strategy in Si,
assume there is y ∈ Si \ {z} such that y 6<i z. Because Si is directed upward,
there is x ∈ Si such that y ≤i x and z ≤i x. Since y 6≤i z, it follows that x 6= z,
so that z <i x. However, the latter is impossible because z is undominated.
Hence, z is the weakly dominating strategy in Si. If player i has the weakly
dominating strategy x in Si, then for all y, z ∈ Si we have y ≤i x and z ≤i x,
whence Si is directed upward. Moreover, since x is undominated, by the proof
of Proposition 8.92 it follows that each nonempty well-ordered subset of D(ti)
has a weak majorant when ti = x. ut
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The following proposition is a consequence of Propositions 8.93 and 8.98.

Proposition 8.99. Assume that Si is a topological space, and that ui(·, s−i)
is upper closed for each s−i ∈ S−i. Then player i has the weakly dominating
strategy if and only if Si is directed upward and there is a ti ∈ Si such that
the closure of each well-ordered subset of D(ti) is compact.

Proof: In view of the proof of Proposition 8.93, the hypotheses imply that
each nonempty well-ordered subset of D(ti) has a weak majorant. Thus the
sufficiency part follows from Proposition 8.98. If player i has the weakly dom-
inating strategy ti, then the upward directness of Si can be proved as in
Proposition 8.98. Since ti is undominated, then D(ti) = ∅, whence the upper
closeness and compactness hypotheses are trivially satisfied. This proves the
necessity part of the assertion. ut

As an easy consequence of Propositions 8.96 and 8.99 we obtain the fol-
lowing result.

Proposition 8.100. Let Si be a pseudometric space, and let ui(·, s−i) be up-
per closed for each s−i ∈ S−i. Then player i has the weakly dominating strat-
egy if and only if Si is directed upward, and there is a ti ∈ Si such that each
increasing sequence of D(ti) has a convergent subsequence.

Recall that s∗1, . . . , s
∗
N is a pure Nash equilibrium for Γ if ui(si, s∗−i) �i

ui(s∗i , s
∗
−i) for all si ∈ Si, and i = 1, . . . , N . We say that a pure Nash equilib-

rium s∗1, . . . , s
∗
N for Γ is weakly dominating if each s∗i is weakly dominating.

Proposition 8.98 and the definition of pure Nash equilibrium imply the fol-
lowing theorem.

Theorem 8.101. A normal-form game Γ = {Si, ui}Ni=1 has the weakly domi-
nating pure Nash equilibrium if and only if for each i = 1, . . . , N , Si is directed
upward, and there is a ti ∈ Si such that each nonempty well-ordered subset of
D(ti) has a weak majorant.

Proof: By Proposition 8.98, the given hypotheses are necessary and sufficient
for the existence of the weakly dominating strategy s∗i for each i = 1, . . . , N .
Obviously, (s∗1, . . . , s

∗
N ) is the only weakly dominating pure Nash equilibrium

for game Γ . ut

By similar reasoning, one can derive the following consequences of Propo-
sitions 8.99 and 8.100 and Corollary 8.94.

Theorem 8.102. Let Γ = {Si, ui}Ni=1 be a normal-form game, and as-
sume that each Si is a topological (respectively pseudometric) space, and that
ui(·, s−i) is upper closed for each s−i ∈ S−i, and for each i = 1, . . . , N . Then
Γ has the weakly dominating pure Nash equilibrium if and only if for each
i = 1, . . . , N , Si is directed upward, and there is a ti in Si such that each
nonempty well-ordered subset of D(ti) has compact closure (respectively each
increasing sequence of D(ti) has a convergent subsequence).
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Corollary 8.103. Let Γ = {Si, ui}Ni=1 be a normal-form game, and assume
that the strategy spaces Si are compact and directed upward, and that ui(·, s−i)
is upper closed for all s−i ∈ S−i and i = 1, . . . , N . Then Γ has the weakly
dominating pure Nash equilibrium.

Remark 8.104. (i) The above results have obvious extensions to the game of
the form Γ = ({Si}i∈Λ, {ui}i∈Λ), where Λ is any nonempty index set. Thus
no quantitative limitations are required for the set of players or their strategy
sets.

(ii) In Propositions 8.92–8.100 no hypotheses are imposed on the strategy
sets Sj or on the utility functions uj for j 6= i. In particular, Propositions
8.98–8.100 give necessary and sufficient conditions for the existence of exactly
one s∗i that maximizes ui(·, s−i), no matter what is the ‘state of nature’ s−i.
Existence of such a choice s∗i would be especially useful in situations where
the decision maker is uncertain about the true state of the world, and cannot
formulate even a probability distribution over the possible states (so that the
maximization of expected utility is out of question).

(iii) In the case when the utility functions ui are real-valued, the above
results, as well as the examples in the next subsection, are introduced in [136].
Our assumption that the values of ui are in posets allows us to evaluate the
utilities of different players in different ordinal scales.

8.5.3 Examples

The purpose of the following examples is to illustrate the applicability of the
results derived in the above subsections. The first four examples deal with
two-person games.

Example 8.105. Let Γ = {S1, S2, u1, u2} be a two-person game with S1 =
S2 = N0 = {0, 1, 2, . . . }, and ui, i = 1, 2, given by

ui(si, s−i) =

{
s−i if s−i ≤ si,

0 otherwise,

where ≤ is the standard ordering of N0. The partial ordering <i of the sets Si
defined by the weak dominance relation equals to the standard strict ordering
< of N0 for both i = 1, 2. In particular, the strategy sets Si are well-ordered,
and hence also directed upward. However, D(ti) does not have a weak majo-
rant for any ti ∈ Si. Therefore neither undominated nor weakly dominating
strategies exist by Propositions 8.92 and 8.98. The set of pure Nash equilibria
is an infinite and well-ordered set NE(Γ ) = {(s1, s2) : s1 = s2}. The utility
functions are not bounded above in NE(Γ ).

Example 8.106. Let Γ = {S1, S2, u1, u2} be a two-person game, where S1 =
S2 = Z = {0,±1,±2, . . . }, and ui(si, s−i) = −max{|s−i|, |si|}, i = 1, 2, with
|x| denoting the absolute value of x. It is easy to see that si weakly dominates
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ti, i.e., ti <i si iff |si| < |ti|, where < is as in Example 8.105. Therefore Si is
directed upward and the strategy s∗i = 0 is the weak majorant of Si, i = 1, 2.
The set of pure Nash equilibria is NE(Γ ) = {(s1, s2) ∈ S : |s1| = |s2|}, so
there is an infinite number of pure Nash equilibria. Utility functions are not
bounded from below in NE(Γ ).

Example 8.107. Let Γ = {S1, S2, u1, u2} be a two-person game with

Si = { n
n+1 : n ∈ N0} ∪ {1}, and ui(si, s−i) =

{
1− si if s−i < si

0 otherwise,
i = 1, 2, where < is the standard strict ordering of R. In this case ti <i si iff
ti ∈ {0, 1} and si ∈ Si \ {0, 1}. Thus

D(ti) =

{
∅ if ti ∈ Si \ {0, 1},
Si \ {0, 1} if ti = 0 or ti = 1.

In particular, for any given ti ∈ Si, each well-ordered subset C of D(ti) con-
tains at most one element. Thus Proposition 8.92 implies that Si contains
undominated strategies. In fact, for each i = 1, 2, the set of all the undom-
inated strategies is Si \ {0, 1}, which contains more than one element, and
therefore Si cannot be directed upward. Thus no weakly dominating strate-
gies exist (Proposition 8.98). Note that the unique pure Nash equilibrium is
(1, 1), so there is no equilibria in undominated strategies.

Example 8.108. Let Γ = {S1, S2, u1, u2} be a two-person game with Si =
[0, 1], and

ui(si, s−i) =


s−i if si ≤ s−i,

1 if s−i < si < 1,
s2−i if si = 1,

i = 1, 2, where < is the standard strict ordering of R. In this example ti <i si
iff ti < si or ti = 1 6= si, i = 1, 2. There is no ti ∈ Si such that ui(·, s−i)
is upper semicontinuous for each s−i ∈ S−i. Therefore both Proposition 8.93
and Proposition 8.96 as well as Corollary 8.94 imply that no undominated
strategies exist. The unique pure Nash equilibrium is (1, 1).

Given a vector p = (σ1, . . . , σm) ∈ Rm and a positive number α, define an
α-norm of p by ‖p‖α = (

∑m
i=1 |σi|α)

1
α .

Example 8.109. Assume that Γ = {Si, ui}Ni=1 is a normal form game, where to
each i = 1, . . . , N there corresponds a positive integer mi, numbers αi, βi ∈
(0, 1), and a function ϕ : S−i → R such that

Si = {si ∈ Rmi
+ :

1
2
< ‖si‖αi ≤ 1}, ui(si, s−i) = ‖si‖βi + ϕ(s−i).

If βi = αi, i = 1, . . . , N , it is easy to show that the hypotheses of Proposition
8.96 are satisfied for each ti ∈ Si, and that each strategy of the set Ti = {si ∈
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Rmi
+ : ‖si‖αi

= 1} is undominated. Thus player i has no weakly dominating
strategies if mi > 1. Obviously, NE(Γ ) = T1 × · · · × TN . The strategy sets Si
are neither compact nor convex in Rmi .

8.6 Pursuit and Evasion Game

In this section the Chain Generating Recursion Principle and generalized
iteration methods presented in Chap. 2 are applied to prove the existence of
winning strategies for a pursuit and evasion game. The obtained results are
used to study the solvability of equations and inclusions in ordered spaces.

In Sect. 8.6.2 we generalize the results stated in Chap. 1 for finite pursuit
and evasion games to games of ordinal length. These generalizations are then
applied in Sect. 8.6.3 to prove fixed point results for a set-valued mapping
F : P → 2P \ ∅ and for a single-valued mapping G : P → P . Monotonicity
hypotheses imposed on F and G are weaker than those assumed in Chap.
2. We study also the solvability of the equation Lu = Nu as well as the
inclusion Lu ∈ Nu, where L and N are mappings from a set V to a poset P
and N : V → 2P \ ∅, respectively. Moreover, special cases and examples are
considered.

8.6.1 Preliminaries

Let P = (P,≤) be a nonempty poset. We say that a mapping β 7→ zβ from an
ordinal ν to P is a (transfinite) sequence in P , and denote it by (zβ)β<ν . The
sequence is called increasing if zα ≤ zβ whenever α < β < ν, decreasing if zβ ≤
zα whenever α < β < ν, and monotone if it is increasing or decreasing. If the
above inequalities are strict, the sequence (zβ)β<ν is called strictly increasing,
strictly decreasing, or strictly monotone, respectively. If (zβ)β<ν is increasing
and z = sup{zβ}β<ν exists, or if (zβ)β<ν is decreasing and z = inf{zβ}β<ν
exists, we say that (zβ)β<ν order converges, and that z is its order limit.
A sequence (xβ)β<µ is called an initial sequence of (zβ)β<ν if xβ = zβ for
every β < µ, and if µ ≤ ν. If µ < ν, we say that the initial sequence is proper.
The next result follows from [169, Chapter II, Theorem 3.23].

Lemma 8.110. A nonempty subset W of P is well-ordered if and only if there
is a unique strictly increasing sequence (zβ)β<µ whose range is W .

Applying Lemma 8.110, we can reformulate Lemma 2.2 as follows.

Lemma 8.111. Given a poset P , a function G : P → P , and c ∈ P , then
there exists a unique strictly increasing sequence (xGβ )β<µ(G) in P , called an
increasing sequence of cG-iterations, satisfying

xGα = sup{c,G[{xGβ }β<α]} for every α < µ(G). (8.64)
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The following result is dual to that of Lemma 8.111.

Lemma 8.112. Given a mapping G : P → P and b ∈ P , then there exists
exactly one strictly decreasing sequence (zβ)β<ν(G) in P , called a decreasing
sequence of bG-iterations, such that

zα = inf{b,G[{zβ}β<α]} for every α < ν(G). (8.65)

8.6.2 Winning Strategy

In this subsection we study in a more general setting the pursuit and evasion
game considered in Chap. 1. The game board is now a nonempty poset P =
(P,≤). Assume that to every position x ∈ P of player p there corresponds in
P a nonempty subset F(x) of possible positions of player q. Instead of a finite
game, we assume now that the game is of ordinal length, i.e., the positions
of the players in a play of the game form sequences (xβ)β<µ and (yβ)β<µ in
P , where µ is an ordinal. Next we present rules for an ordered pursuit and
evasion (o.p-e) game.

Definition 8.113. A sequence ((xβ , yβ))β<µ of P × P is a play of the o.p-e
game if the following conditions hold:

(r1) If γ < α < µ, and if (xβ)γ≤β≤α is increasing (respectively decreasing),
then (yβ)γ≤β≤α is increasing (respectively decreasing).

(r2) µ is the smallest ordinal for which µ-th position does not exist for p or
for q, or µ is a successor and p does not move further from xµ−1.

Our purpose is to derive conditions under which p has a winning strategy
in the o.p-e game defined as follows.

Definition 8.114. Player p wins a play ((xβ , yβ))β<µ of the o.p-e game if µ
is a successor, and xµ−1 = yµ−1. A strategy for player p is a rule that tells
p what move to make at each of its turns depending on the moves played by
player q previously. If a strategy of player p has the property that p always
wins, it is called a winning strategy.

Consider a play ((xβ , yβ))β<µ of the o.p-e game where the positions of p
are determined by the following strategy, c ∈ P being fixed:

xα = sup{c, {yβ}β<α} for every α < µ. (8.66)

Consider first moves of such a play. Player p starts from x0 = sup{c, ∅} = c,
and player q starts from a point y0 of F(x0). If y0 ≤ c, then x1 = sup{c, y0} =
c = x0, so that by rule (r2), (x0, y0) is the only position pair of the play. After
a finite number of move pairs, say, ((xn, yn))mn=0, m ∈ N0, p can proceed to
apply strategy (8.66) if and only if sup{c, {yn}mn=0} = sup{c, ym} exists and
xm < sup{c, ym}, in which case p moves to xm+1 = sup{c, ym}. Otherwise the
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play stops. According to rule (r1), all the possible responds ym+1 of q belong
to the set [ym) ∩ F(xm+1). If this set is empty, then the play stops. If play
has proceeded to state ((xn, yn))n<ω, where ω is the smallest infinite ordinal,
p can further apply strategy (8.66) if and only if sup{c, {yn}∞n=0} exists. In
such a case p moves to xω = sup{c, {yn}∞n=0}}. According to (r1), q responds
by an element yω that belongs to the set {y ∈ F(xω) : yn ≤ y for all n < ω}
if such an element exists. If (xω, yω) exists, proceed as above when (x0, y0) is
replaced by (xω, yω), and so on.

The next lemma deals with monotonicity properties of a play ((xβ , yβ))β<µ
where p follows strategy (8.66).

Lemma 8.115. Given c ∈ P . Let ((xβ , yβ))β<µ be a play of the o.p-e game
where p uses strategy (8.66). Then (xβ)β<µ is strictly increasing, and (yβ)β<µ
is strictly increasing, except in the case when µ and α = µ− 1 are successors,
in which case (yβ)β<α is strictly increasing and equality yα = yα−1 may hold.

Proof: If µ = 1, then (x0, y0) is the only element of the sequence ((xβ , yβ))β<µ,
whence the assertions hold trivially. Assume that 1 < µ. By (8.66) the se-
quence (xβ)β<µ is increasing. Rule (r1) implies that also (yβ)β<µ is increas-
ing. To prove that (xβ)β<µ is strictly increasing, assume first that α < µ,
and that α is a successor. Then xα−1 < xα, because otherwise xα = xα−1,
and then µ = α by rule (r2), which is impossible because α < µ. If α is a
limit ordinal, then xβ < xα for every β < α, for otherwise xβ = xα for some
β < α. Since β + 1 is a successor and β + 1 < α, then xα = xβ ≤ xβ+1 ≤ xα.
Thus xβ = xβ+1, whence rule (r2) implies that µ = β + 1, a contradiction.
Consequently, xα is a strict upper bound of (xβ)β<α. The above proof implies
that (xβ)β<µ is strictly increasing.

Next we prove the asserted strict monotonicity properties for (yβ)β<µ.
Assume first that 0 < α < µ, and that α is a successor. Because (yβ)β<µ is
increasing, then yα−1 = max{yβ}β<α. If yα = yα−1, then

xα = sup{c, {yβ}β<α} = sup{c, yα−1} = sup{c, yα} = xα+1.

Applying rule (r2), this implies that µ = α + 1. Hence, µ is also a successor.
Assume next that α is a limit ordinal. To show that yβ < yα for every β < α,
assume on the contrary that yβ = yα for some β < α. Since β + 1 is a
successor and β + 1 < α, the above proof implies that yβ < yβ+1 = yα,
which is impossible. Thus yα is a strict upper bound of (yβ)β<α. The above
proof shows that (yβ)β<µ is strictly increasing, except in the case when µ and
α = µ − 1 are successors, in which case (yβ)β<α is strictly increasing and
equality yα = yα−1 may hold. ut

The axiom of choice is needed to formulate and prove our next results.
Denote by

G := {G : P → P : G(x) ∈ F(x) for all x ∈ P} (8.67)

the set of all single-valued selection mappings G : P → P of the multi-function
x 7→ F(x).
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Lemma 8.116. Given c ∈ P , then ((xβ , yβ))β<µ is a play of the o.p-e game,
where p uses strategy (8.66), if and only if there is a selection G ∈ G such that
xβ = xGβ and yβ = G(xGβ ) for every β < µ, and (G(xGβ ))β<µ is increasing.
Here, (xGβ )β<µ(G) is the sequence of cG-iterations defined by (8.64).

Proof: Let ((xβ , yβ))β<µ be a play of the o.p-e game where p uses strategy
(8.66). Equation

g(xβ) := yβ , β < µ,

defines a function g from W = {xβ}β<µ to P , and g(x) ∈ F(x) for each
x ∈ W . Because (xβ)β<µ is strictly increasing, rule (r1) implies that g is
increasing. Let G : P → P be any selection from F such that G|W = g. From
(8.66) it follows that

xα = sup{c,G[{xβ}β<α]} for every α < µ,

which in view of Lemma 8.111 implies that xβ = xGβ for every β < µ. Moreover,
(G(xGβ ))β<µ is increasing and yβ = G(xGβ ), β < µ.

Conversely, let G : P → P be any selection from F , and let (xGβ )β<µ
be such an initial sequence of the sequence (xGβ )β<µ(G) of cG-iterations that
(G(xGβ ))β<µ is increasing. Denoting xβ = xGβ , and yβ = G(xGβ ), β < µ, from
(8.64) and (8.66) it follows that ((xβ , yβ))β<µ is a play of the o.-p-e game
where p uses strategy (8.66). ut

We are going to prove that among the plays of the o.p-e game, where p
uses strategy (8.66), there exists at least one play that cannot be extended.
In that proof we apply Lemma 2.1 in G equipped with the following partial
ordering: For every G ∈ G denote by (xGβ )β<µG

the longest initial sequence of
the sequence (xGβ )β<µ(G) of cG-iterations such that (G(xGβ ))β<µG

is increasing.
Define a partial ordering ≺ on G as follows.

(O) G ≺ G if and only if ((xGβ , G(xGβ )))β<µG
is a proper initial sequence of

((xGβ , G(xGβ )))β<µG
.

Lemma 8.117. Given c ∈ P , there is a play ((xβ , yβ))β<µ of the o.p-e game
where p uses strategy (8.66), and which is not a proper initial sequence of any
such a play.

Proof: Choosing x0 = c and y0 ∈ F(x0), then ((xβ , yβ))β<1 is a play of
the o.p-e game where p uses strategy (8.66). By Lemma 8.116 there ex-
ists a selection G0 ∈ G such that ((xβ , yβ))β<1 is an initial sequence of
((xG0

β , G0(xG0
β )))β<µG0

. Let D contain the empty set and all those well-ordered
subsets of W of (G,�) for which G0 = minW, and which have strict upper
bounds in (G,�). Let f : D → G be a mapping that assigns to each nonempty
element W of D one of its strict upper bounds, and f(∅) = G0. By Lemma
2.1 there exists a unique well-ordered chain C in G such that G ∈ C if and
only if G = f(C≺G). Denote µ := ∪{µG : G ∈ C}, and define
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(xβ , yβ) = (xGβ , G(xGβ )), β < µ, where (8.68)

G is the smallest element of C such that β < µG.

The definition (O) of ≺ implies that the sequence ((xβ , yβ))β<µ is well-defined,
and that sequences ((xGβ , G(xGβ )))β<µG

, G ∈ C, are its initial sequences. More-
over, (xβ)β<µ is strictly increasing, (yβ)β<µ is increasing, and yβ ∈ F(xβ) for
every β < µ. If α < µ, then xα = xGα for some G ∈ C. The definitions of C and
the partial ordering ≺ imply that (xβ , yβ) = (xGβ , G(xGβ )) for every β ≤ α.
Thus we obtain

xα = xGα = sup{c,G[{xGβ }β<α]} = sup{c, {yβ}β<α]}. (8.69)

Consequently, ((xβ , yβ))β<µ is a play of the o.p-e game where p uses strategy
(8.66). To show that it is not a proper initial sequence of any such a play,
assume on the contrary that it can be extended by (xµ, yµ), where

xµ = sup{c, {yβ}β<µ}, (8.70)

is a strict upper bound of (xβ)β<µ and yµ is an upper bound of (yβ)β<µ. By
Lemma 8.116 there is a selection G from F such that ((xβ , yβ))β<µ+1 is an
initial sequence of ((xGβ , G(xGβ )))β<µG

. But then G would be a strict upper
bound of C, so that f(C) would exist and would be a strict upper bound of C,
contradicting the last conclusion of Lemma 2.1. Consequently, ((xβ , yβ))β<µ
is not a proper initial sequence of any play of the o.p-e game where p uses
strategy (8.66). ut

Recall that a subset A of P has a sup-center c in P if c ∈ P and sup{c, x}
exists in P for every x ∈ A. If inf{c, x} exists in P for every x ∈ A, we say
that c is an inf-center of A in P .

In the proof of our main result of this subsection we make use of the
following auxiliary results.

Proposition 8.118. Assume that the following conditions hold whenever
(xβ)β<µ and (yβ)β<µ are increasing in P and yβ ∈ F(xβ) for every β < µ.

(Fa) (yβ)β<µ has an order limit in P .
(Fb) If x is an upper bound of both (xβ)β<µ and (yβ)β<µ, then (yβ)β<µ has

an upper bound in F(x).

Let ((xβ , yβ))β<µ be a maximally extended play of the o.p-e game where p uses
strategy (8.66). Then the following assertions hold.

(a) If c in (8.66) is a sup-center of the set of order limits of increasing and
order convergent sequences of F [P ] in P , then xµ−1 = sup{c, yµ−1}.

(b) If x0 ≤ y0, if c = x0 in (8.66), and if conditions (Fa) and (Fb) hold
whenever (xβ)β<µ and (yβ)β<µ are increasing in P and xβ ≤ yβ ∈ F(xβ)
for every β < µ, then xµ−1 = yµ−1, whence p wins the play.
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Proof: Ad (a) In the play ((xβ , yβ))β<µ, the sequence (xβ)β<µ is strictly
increasing, and (yβ)β<µ is an increasing sequence of F [P ]. The order limit
y = sup{yβ}β<µ exists by condition (Fa), and xµ := sup{c, y} exists by as-
sumption. It is easy to see that (8.70) holds. Since (yβ)β<µ is increasing, it
follows from (8.66) and (8.70) that xµ is an upper bound of (xβ)β<µ. To show
that xµ is not a strict upper bound of (xβ)β<µ, assume on the contrary that
xβ < xµ for each β < µ. Now xµ is an upper bound of both increasing se-
quences (xβ)β<µ and (yβ)β<µ, and each yβ belongs to F(xβ). It then follows
from condition (Fb) that (yβ)β<µ has an upper bound in F(xµ). When q
chooses such an upper bound yµ as the response to xµ, then ((xβ , yβ))β<µ
has a proper extension to a play ((xβ , yβ))β≤µ of the o.p-e game where p
uses strategy (8.66). This contradicts the choice of ((xβ , yβ))β<µ, whence
xµ = xβ for some β < µ. If µ would be a limit ordinal, then β + 1 < µ and
xµ = xβ < xβ+1 ≤ xµ, a contradiction. Thus µ is a successor, and xµ−1 = xµ.
Because (yβ)β<µ is increasing, then yµ−1 = max{yβ}β<µ, and hence it follows

xµ−1 = xµ = sup{c, {yβ}β<µ} = sup{c, yµ−1}.

This concludes the proof of (a).

Ad (b) Assume next that x0 ≤ y0. Choosing c = x0, then c ≤ y0. We
show that under the hypotheses of (b) the positions of the play in question
satisfy xα ≤ yα for every α < µ. Since (yβ)β<µ is increasing, then c ≤ yβ for
every β < µ. It then follows from (8.66) that

xα = sup{yβ : β < α} for every α < µ. (8.71)

Because (yβ)β<µ is increasing, then yα is an upper bound of (yβ)β<α for every
α < µ. This result along with (8.71) imply that xα ≤ yα for every α < µ.
As in the proof of part (a), one can show that µ is a successor, and that
xµ−1 = sup{c, yµ−1}. Since c ≤ yµ−1, then xµ−1 = yµ−1, whence p wins the
play. ut

The next results are duals to those proved in Proposition 8.118.

Proposition 8.119. Assume that the following conditions hold whenever
(zβ)β<µ and (wβ)β<µ are decreasing in P and wβ ∈ F(zβ) for every β < µ.

(Fc) (wβ)β<µ has an order limit in P .
(Fd) If z is a lower bound of both (zβ)β<µ and (wβ)β<µ, then (wβ)β<µ has a

lower bound in F(z).

Let ((zβ , wβ))β<ν be a maximally extended play of the o.p-e game where p
uses the following strategy, b ∈ P being fixed:

zα = inf{b, {wβ}β<α} for every α < ν. (8.72)

Then the following assertions hold true:
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(a) If b is an inf-center of the set of order limits of decreasing and order
convergent sequences of F [P ] in P , then zν−1 = inf{b, wν−1}.

(b) If w0 ≤ z0, b = z0 in (8.72), and conditions (Fc) and (Fd) are fulfilled
whenever (zβ)β<µ and (wβ)β<µ are decreasing in P and F(zβ) 3 wβ ≤ zβ
for every β < µ, then zν−1 = wν−1, so that p wins the play.

By means of Propositions 8.118 and 8.119, we are now in the position to
prove our main result, which reads as follows.

Theorem 8.120. Assume that the following conditions hold for sequences
(xβ)β<µ and (yβ)β<µ where yβ ∈ F(xβ) for every β < µ.

(F0) (yβ)β<µ has an order limit in P if both (xβ)β<µ and (yβ)β<µ are in-
creasing or decreasing.

(F1) If (xβ)β<µ and (yβ)β<µ are increasing and have a common upper bound
x in P , then (yβ)β<µ has an upper bound in F(x).

(F2) If (xβ)β<µ and (yβ)β<µ are decreasing and have a common lower bound
x in P , then (yβ)β<µ has a lower bound in F(x).

Then player p has a winning strategy for maximally extended plays of the o.p-e
game if the set of order limits of increasing and order convergent sequences
of F [P ] has a sup-center in P , or if the set of order limits of decreasing and
order convergent sequences of F [P ] has an inf-center in P .

Proof: We prove the assertion in the case when the set of order limits of
increasing and order convergent sequences of F [P ] has a sup-center in P .
The hypotheses of Proposition 8.118(a) are valid, whence every maximally
extended play of the o.p-e game, where p uses strategy (8.66), stops at posi-
tion (xµ−1, yµ−1), where xµ−1 = sup{c, yµ−1}. In particular, yµ−1 ≤ xµ−1. If
equality holds, then p has won.

If yµ−1 < xµ−1, choose z0 = xµ−1 and w0 = yµ−1, and consider maximally
extended plays ((zβ , wβ))β<ν of the o.p-e game where the positions of p are
determined by strategy (8.72) with b = z0. The given hypotheses imply that
the hypotheses of Proposition 8.119(b) are valid. Thus p wins. Consequently,
the above described combination of strategies (8.66) and (8.72) is a winning
strategy for p.

Applying first Proposition 8.119(a), and then Proposition 8.118(b), one
can prove the assertion when the set of order limits of decreasing and order
convergent sequences of F [P ] has an inf-center in P . ut

The next consequence of Theorem 8.120 contains the result stated in Chap.
1.

Corollary 8.121. Let P be a poset that has a sup-center or an inf-center,
and whose monotone sequences are order convergent. Then p has a winning
strategy in the o.p-e game where F(x) = P for all x ∈ P .
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Proof: The hypotheses (F1) and (F2) of Theorem 8.120 are trivially valid,
since F(x) = P , and (F0) follows from a hypothesis. Because P has a sup-
center or an inf-center, it follows that p has the asserted winning strategy due
to Theorem 8.120. ut

8.6.3 Applications and Special Cases

In this subsection we apply the results of Sect. 8.6.2 to solve fixed point
problems, operator equations, and inclusion problems. In what follows, P =
(P,≤) is a nonempty poset and F : P → 2P \∅ is a set-valued mapping. When
we refer to results derived in Sect. 8.6.2 for o.p-e games, the values F(x) of
F are assumed to be sets of possible response positions y of q to positions x
of p. If p wins such a play, it ends at a position pair (x, y) where x = y. Thus
x ∈ F(x), i.e., x is a fixed point of F .

Definition 8.122. We say that a mapping F : P → 2P \ ∅ is semi-
increasing upward if x ≤ y, z ∈ F(x), and z ≤ y imply that [z) ∩ F(y)
is nonempty, and semi-increasing downward if x ≤ y, w ∈ F(y), and
x ≤ w imply that (w] ∩ F(x) is nonempty. F is semi-increasing if F is
semi-increasing upward and downward.

Recall that F is said to be increasing upward if x ≤ y in P and z ∈ F(x)
imply that [z)∩F(y) is nonempty, increasing downward if x ≤ y in P and
w ∈ F(y) imply that (w]∩F(x) is nonempty, and increasing if F is increasing
upward and downward.

According to Definition 2.5 and Lemma 8.110, a nonempty subset A of a
subset Y of P is order compact upward in Y if for every increasing and
order convergent sequence (yβ)β<µ of Y , the intersection ∩{[yβ)∩A : β < µ}
is nonempty whenever [yβ) ∩ A is nonempty for every β < µ. If for every
decreasing and order convergent sequence (yβ)β<µ of Y the intersection of
the sets (yβ ] ∩ A, β < µ is nonempty whenever all these sets are nonempty,
then A is order compact downward in Y . If both these properties hold,
then A is order compact in Y . If Y = A, then A is order compact.

If A has the greatest element (respectively the smallest element), then A is
order compact upward (respectively downward) in any subset of P that con-
tains A. Thus an order compact set is not necessarily topologically compact,
not even closed. On the other hand, every compact subset A of an ordered
topological space P (the sets [a) and (a] are closed for each a ∈ P ) is order
compact in every subset of P containing A. Every poset is order compact in
itself.

The following lemma is an easy consequence of above definitions.

Lemma 8.123. (a) If F is increasing (upward and/or downward), then it is
semi-increasing (upward and/or downward).

(b) If [x) ∩F(x) 6= ∅ (respectively (x] ∩F(x) 6= ∅) for every x ∈ P , then F is
semi-increasing upward (respectively semi-increasing downward).



394 8 Game Theory

(c) If maxF(x) (respectively minF(x)) exists for every x ∈ P , or if increasing
(respectively decreasing) sequences of F [P ] are finite, then every F(x) is
order compact upward (respectively downward) in F [P ].

Our first fixed point result is a consequence of Proposition 8.118(b).

Proposition 8.124. Assume that a mapping F : P → 2P \ ∅ is semi-
increasing upward, that its values are order compact upward in F [P ], that
[c) ∩ F(c) 6= ∅ for some c ∈ P , and that (yβ) has an order limit whenever
xβ ≤ yβ ∈ F(xβ) for every β, and both (xβ) and (yβ) are increasing. Then F
has a fixed point.

Proof: Assume that xβ ≤ yβ ∈ F(xβ) for every β, and that (xβ) and (yβ)
are increasing. By assumption, hypothesis (Fa) of Proposition 8.118 holds.
To show that the hypothesis (Fb) of Proposition 8.118 is satisfied, assume
that (xβ)β<µ and (yβ)β<µ have a common upper bound x in P . To show that
(yβ)β<µ has an upper bound in F(x), let β < µ be given. Since yβ ∈ F(xβ),
xβ ≤ x and yβ ≤ x, it follows that [yβ) ∩ F(x) is nonempty due to the fact
that F is semi-increasing upward. This holds for every β < µ, and since F(x)
is order compact upward in F [P ], then the intersection ∩{[yβ)∩F(x) : β < µ}
is nonempty. Any element of that intersection is an upper bound of (yβ)β<µ
in F(x). By hypothesis, [c) ∩ F(c) 6= ∅ for some c ∈ P . Choosing x0 = c and
y0 ∈ [c)∩F(c), then x0 ≤ y0. By Proposition 8.118(b), a maximally extended
play of the o.p-e game having (x0, y0) as its initial position ends at a position
xµ−1 = yµ−1 ∈ F(xµ−1). Thus xµ−1 is a fixed point of F . ut

As a consequence of Proposition 8.119 we obtain the following result.

Proposition 8.125. Assume that a mapping F : P → 2P \ ∅ is semi-
increasing downward, that its values are order compact downward in F [P ],
that (b]∩F(b) 6= ∅ for some b ∈ P , and that (yβ) has an order limit whenever
F(xβ) 3 yβ ≤ xβ for every β and both (xβ) and (yβ) are decreasing. Then F
has a fixed point.

The following result is a consequence of Theorem 8.120.

Theorem 8.126. A semi-increasing mapping F : P → 2P \ ∅ whose values
are order compact in F [P ] has a fixed point if (yβ) has an order limit whenever
yβ ∈ F(xβ) for every β, and both (xβ) and (yβ) are increasing or decreasing,
and if the set of order limits of such sequences (yβ) has a sup-center or an
inf-center in P .

As an application of Theorem 8.126 we obtain an existence result for the
inclusion problem Lu ∈ Nu, where L is a mapping from a set V to a poset P
and N : V → 2P \ ∅.

Proposition 8.127. Assume that L : V → P is a bijection, that the values of
N : V → 2P \∅ are order compact in N [V ], that monotone sequences of N [V ]
have order limits in P , that N ◦ L−1 is semi-increasing, and that P has a
sup-center or an inf-center. Then the inclusion problem Lu ∈ Nu is solvable.
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Proof: We shall show that the set-valued mapping F := N ◦ L−1 from
P to 2P \ ∅ satisfies the hypotheses of Theorem 8.126. Notice first that
F [P ] = NL−1[P ] = N [V ]. Hence, if x ∈ P and u = L−1x, then F(x) =
NL−1x = Nu. Thus F(x) is order compact in F [P ] = N [V ] because Nu
is order compact. Since by hypothesis monotone sequences of N [V ] = F [P ]
have order limits in P , and since P has a sup-center or an inf-center, then F
satisfies the hypotheses of Theorem 8.126. Thus F has a fixed point x. With
u = L−1x we get Lu = x ∈ F(x) = NL−1x = Nu, whence u is a solution of
the inclusion problem Lu ∈ Nu. ut

In case that P is an ordered topological space we obtain the following
results.

Corollary 8.128. Let P be a second countable or metrizable ordered topolog-
ical space. Then a mapping F : P → 2P \ ∅ whose values are compact has a
fixed point in the following cases.

(a) F is semi-increasing upward, (yn) converges whenever both (xn) and (yn)
are increasing ordinary sequences, xn ≤ yn ∈ F(xn) for every n, and
[c) ∩ F(c) 6= ∅ for some c ∈ P .

(b) F is semi-increasing downward, (yn) converges whenever (xn) and (yn) are
decreasing ordinary sequences, yn ∈ F(xn) for every n, and (b]∩F(b) 6= ∅
for some b ∈ P .

(c) F is semi-increasing, (yn) converges whenever yn ∈ F(xn) for every n,
(xn) and (yn) are increasing or decreasing ordinary sequences, and the set
of limits of such sequences (yn) has a sup-center or an inf-center in P .

Proof: Ad (a) Let x ∈ P be given. To prove that F(x) is order compact
upward, assume that (yβ)β<µ is an increasing sequence in F [P ], and that the
sets [yβ) ∩ F(x), β < µ, are nonempty. Because (yβ)β<µ is increasing, then
the sets [yβ)∩F(x), β < µ, satisfy the finite intersection property. Thus their
intersection is nonempty if F(x) is compact, and every element from that
intersection is an upper bound of (yβ)β<µ in F(x). This proves that F(x) is
order compact upward.

Assume next that yβ ∈ F(xβ) for every β, and both (xβ) and (yβ) are
increasing. Thus C = {xβ} is well-ordered. If (yn) is an increasing sequence
in W = {yβ}, then yn ∈ F(xn), where xn = min{xβ ∈ C : yβ = yn} for
every n, and (xn) is increasing. Hence it follows that (yn) converges by a
hypothesis (b). By means of [133, Lemma 1.1.7 and Proposition 1.1.5] we
infer that W contains an increasing sequence that converges to supW . This
result and Lemma 8.110 imply that (yβ) has an order limit. The above proof
shows that the hypotheses of Proposition 8.124 hold true, which completes
the proof (a).

Ad (b) and (c) The assertions (b) and (c) are consequences of Proposition
8.125 and Theorem 8.126, respectively. ut
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A single-valued mapping G : P → P is semi-increasing upward if x ≤ y
and G(x) ≤ y imply G(x) ≤ G(y), and semi-increasing downward if x ≤ y and
x ≤ G(y) imply G(x) ≤ G(y). G is semi-increasing if it is semi-increasing up-
ward and downward. If G is increasing, i.e., if G(x) ≤ G(y) whenever x ≤ y,
then G is semi-increasing. If x ≤ G(x) for every x ∈ P , then G is semi-
increasing upward by Lemma 8.123. Thus, for example, the absolute-value
function G(x) = |x|, x ∈ [0, 1] ⊂ R, is semi-increasing upward, but not in-
creasing.

The following results are special cases of Propositions 8.124 and 8.125 and
Theorem 8.126.

Proposition 8.129. A mapping G : P → P has a fixed point in the following
cases.

(a) The set S+ = {x ∈ P : x ≤ G(x)} is nonempty, G is semi-increasing
upward, and (G(xβ)) has an order limit whenever both (xβ) and (G(xβ))
are increasing sequences in S+.

(b) The set S− = {x ∈ P : G(x) ≤ x} is nonempty, G is semi-increasing
downward, and (G(xβ)) has an order limit whenever both (xβ) and (G(xβ))
are decreasing sequences in S−.

(c) G is semi-increasing, (Gxβ) has an order limit whenever both (xβ) and
(Gxβ) are increasing or decreasing sequences, and the set of order limits
of such sequences (Gxβ) has a sup-center or an inf-center in P .

The following examples are adopted from [124].

Example 8.130. Assume that P = {x, y, z} is equipped with a partial ordering
< such that x < y, x < z, and y, z are unordered. There exist 27 different
self-mappings of P ; 11 of them are increasing. The mappings

{(x, y), (y, y), (z, x)}, {(x, z), (y, x), (z, z)}, {(x, y), (y, y), (z, z)}, and
{(x, z), (y, y), (z, z)}

are semi-increasing upward, but not increasing. The first two of them are nei-
ther maximalizing nor minimalizing. All these mappings satisfy the hypotheses
of Proposition 8.129(a).

Example 8.131. Let [x] denote the greatest integer ≤ x. The real function

G(x) =

{
D(x) + x, x < 0,
[x]+1

2 , 0 ≤ x,
where D(x) =

{
1, x is irrational,
0, x is rational,

(8.73)

satisfies the hypotheses of Proposition 8.129(a) when P = R. The mapping
G, defined by (8.73), is non-increasing, non-extensive, non-ascending, non-
maximalizing, non-minimalizing, non-bounded, and non-continuous, and P is
not strictly inductive. The greatest fixed point of G is x = 1. Every negative
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rational number and x = 1
2 are also fixed points of G, whence G does not

have the smallest fixed point. The real function

G(x) =

{
[x]−1

2 x ≤ 0,
D(x) + x− 1, 0 < x,

where D is defined in (8.73), satisfies the hypotheses of Proposition 8.129(b)
when P = R. The function G is neither semi-increasing upward nor bounded.
The smallest fixed point of G is x = − 3

2 . Every positive irrational number is
also a fixed point of G, whence G does not have the greatest fixed point.

As a consequence of Proposition 8.129 and Theorem 8.126 we get existence
results for the equation Lu = Nu.

Proposition 8.132. Given a nonempty set V , a poset P and mappings L, N :
V → P , assume that L is a bijection, and that monotone sequences of N [V ]
have order limits in P . Then the equation Lu = Nu is solvable in the following
cases.

(a) Lu ≤ Nu for some u ∈ V , and if Lu ≤ Lv and Nu ≤ Lv, then Nu ≤ Nv.
(b) Nu ≤ Lu for some u ∈ V , and if Lu ≤ Lv and Lu ≤ Nv, then Nu ≤ Nv.
(c) N ◦ L−1 is semi-increasing, and P has a sup-center or an inf-center.

Proof: Ad (a) We shall show that the mapping G = N ◦ L−1 satisfies the
hypotheses of Proposition 8.129(a). Let u ∈ V satisfy Lu ≤ Nu. Denoting
u = L−1x we have x = Lu ≤ Nu = NL−1x = G(x). Thus the set S+ =
{x ∈ P : x ≤ G(x)} is nonempty. To prove that G is semi-increasing upward,
assume that x ≤ y and G(x) ≤ y. Denoting u = L−1x and v = L−1y, we have
Lu = x ≤ y = Lv and Nu = G(x) ≤ y = Nv. Thus, by hypothesis, Nu ≤ Nv,
or equivalently, G(x) ≤ G(y). This proves that G is semi-increasing upward.
Moreover, increasing sequences of G[P ] have order limits in P since G[P ] =
NL−1[P ] = N [V ], and since monotone sequences of N [V ] have order limits in
P . Thus G satisfies the hypotheses of of Proposition 8.129(a), so that it has
a fixed point x. Denoting u = L−1x, then Lu = x ∈ G(x) = NL−1x = Nu,
whence u is a solution of the operator equation Lu = Nu.

Ad (b) The conclusion of (b), a consequence of Proposition 8.129(b), and
the proof is similar to that of (a).

Ad (c) The hypotheses of Theorem 8.126 are valid when N = N . ut

The following corollary is a consequence of Corollary 8.121 and Proposition
8.129.

Corollary 8.133. Let P be a subset of an ordered normed space with the
properties:

(P0) Every monotone ordinary sequence (xn)∞n=0 of P has a weak or a strong
limit in P .
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(P1) P has a sup-center or an inf-center.

Then the following results are valid.

(a) p has a winning strategy in the o.p-e game if F(x) = P for every x ∈ P .
(b) Every semi-increasing mapping G : P → P has a fixed point.

Proof: By Lemma 9.31, property (P0) implies that well-ordered and in-
versely well-ordered chains of P have a supremums and infimums in P . Thus
monotone transfinite sequences have order limits in P , since their ranges are
well-ordered or inversely well-ordered chains. ut

Next we present subsets P of ordered normed spaces that satisfy the hy-
potheses (P0) and (P1) of Corollary 8.133.

Example 8.134. The ball P = {x ∈ E : ‖x − c‖ ≤ r} has for every r > 0
and c ∈ E properties (P0) and (P1) assumed in Corollary 8.133 if E is any
of the following spaces (cf. [119, Remark 1.1], [152] and the references given
therein):

– RN , ordered coordinatewise and normed by any norm.
– lp, 1 ≤ p <∞, normed by p-norm and ordered coordinatewise.
– A weakly complete Banach lattice or a UMB-lattice.
– Lp(Ω, Y ), 1 ≤ p <∞, normed by p-norm and ordered a.e. pointwise, where

Ω is a σ-finite measure space and Y is any of the spaces given above.
– A Sobolev space W 1,p(Ω) or W 1,p

0 (Ω), 1 < p <∞, ordered a.e. pointwise,
where Ω is a bounded domain in RN .

– An Orlicz space LM (Ω), ordered a.e. pointwise and normed by the Luxem-
burg norm, where M satisfies the ∆2-condition.

– An Orlicz–Sobolev space W 1LM (Ω), ordered a.e. pointwise and normed
by the Luxemburg norm, where M and its conjugate M satisfy the ∆2-
condition.

– A Newtonian space N1,p(Y ), 1 < p <∞, ordered a.e. pointwise, where Y is
a metric space with the doubling measure that supports a (1, Y )-Poincaré
inequality.

From Corollary 8.133, we deduce that if such a ball P is a game board for the
o.p-e game, and if F(x) = P for every x ∈ P , then p has a winning strategy.
Moreover, each semi-increasing mapping G : P → P has a fixed point. These
results hold also when P is the subset of R2 illustrated by Figure 1.1, or if P
is a subset of RN , defined by

P = {(x1, . . . , xN ) ∈ RN :
N∑
j=1

|xj − cj |p ≤ rp},

where p ∈ (0, 1) and r > 0 and c = (c1, . . . , cN ) ∈ RN .
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As noticed in Chap. 1, the existence of the assumed sup-center or inf-center
is needed, in general, to ensure the validity of Theorems 8.120 and 8.126. The
following counterexample shows that neither the hypothesis (F0) nor (F1) can
be dropped, in general.

Example 8.135. Let P be a compact real interval [a, b], a < b, ordered by the
usual ordering of reals. Define

F(x) = [a, b) \ {x}, x ∈ P. (8.74)

It is easy to see that the hypotheses of Theorem 8.120 except (F1) are valid,
and that a is a sup-center of P . Since x 6∈ F(x) for all x ∈ P , then F has no
fixed point. Consequently, if (8.74) defines the set of possible positions of q
for each x ∈ P , then p has no winning strategy.

If P = [a, b), and F is defined by (8.74), then all the other hypotheses of
Theorem 8.120 except (F0) hold, and a is a sup-center of P . Also in this case
the results of Theorems 8.120 and 8.126 are not valid.

Remark 8.136. (i) As for other pursuit and evasion games in RN , see, e.g.,
[154] and the references therein. In [203] an evasion problem is considered on
the unit disc of R2.

(ii) The proofs of classical fixed point theorems in ordered spaces (see,
for instance, [1, 145, 176, 209, 214, 215, 228]) do not provide tools to prove
Theorem 8.126.

(iii) Semi-monotonicity hypotheses imposed on F are weaker than the
monotonicity hypotheses used so far to prove fixed point results for set-valued
mapping in posets. As for a more detailed study of the single-valued case, see
[124].

8.7 Notes and Comments

Sections 8.1 and 8.2 were devoted to finite normal-form games. The material
was adopted from [218] and from lecture notes of the second author. The main
purpose of Sects. 8.2 and 8.4 was to derive conditions under which the extremal
Nash equilibria are pure also in case of randomized normal-form games. The
major part of the material of Sect. 8.4 is based on [122]. In Sect. 8.3 we studied
the existence of extremal pure Nash equilibria for a normal-form game of N
players. Some of the results are based on lecture notes of the second author
and on the papers [121] and [123]. The extreme value results proved in Sect.
8.3.1 are new. The results of Sect. 8.5 for the existence of undominated and
weakly dominating strategies of normal-form games are presented in [136] in
the special case when the utility functions are real-valued. In Sect. 8.5 the
values of the utility functions are allowed to be in posets. The results of Sect.
8.6 are new. As by-products of the results dealing with the existence of winning
strategies in a pursuit and evasion game, we obtain new fixed point results
for set-valued functions in posets, as well as new existence results for operator
equations and inclusions in posets.
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Appendix

In this chapter we provide basic facts of the theory of operators of monotone
type, as well as the calculus of Clarke’s generalized gradient as it is used in
Chaps. 3, 4, and 5. The focus, however, is on the basic analysis of vector-
valued, HL integrable functions used in the theory of differential and integral
equations and inclusions presented in Chaps. 6–7, which represents in itself a
new development that is of interest in its own. With the tools provided by that
theory we are able to convert the problems under consideration into operator
equations and inclusions that then can be solved by means of the results
derived in Chap. 2, see Chaps. 6–7. The application of the order-theoretic
results of Chap. 2 to the problems studied in Chaps. 6–7 requires a detailed
analysis about the existence of supremums and infimums of chains, as well
as the existence of order centers of sets in ordered function spaces, which is
provided in Sect. 9.2.

9.1 Analysis of Vector-Valued Functions

9.1.1 µ-Measurability and µ-Integrability of Banach-Valued
Functions

Our first goal is the foundation of µ-measurability and µ-integrability of
Banach-valued functions.

Let Ω = (Ω,A, µ) be a measure space, i.e., Ω is a nonempty set, A is a
σ-algebra of so-called measurable subsets of Ω, and µ : A → [0,∞], called
(positive) measure, is countably additive and µ(∅) = 0. A measurable subset
Z of Ω is called µ-null set if µ(Z) = 0. We say that a property P holds for
almost every (a.e.) t ∈ Ω, or a.e. on Ω, if there is a µ-null set Z in Ω such
that P holds for all t ∈ Ω \ Z. A measure µ is called complete if each subset
of a µ-null set is µ-null set. µ is said to be σ-finite if Ω can be represented as
a countable union of sets with finite measure.
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Let Ω = (Ω,A, µ) be a measure space and E = (E, ‖ · ‖) a Banach space.
We say that a function u : Ω → E is µ-measurable if u is a.e. pointwise limit
of a sequence of step functions of the form t 7→

∑n
i=1 χAi

(t)ui, where χAi

denotes the characteristic function of Ai ∈ A with µ(Ai) < ∞, and ui ∈ E,
i = 1, . . . , n. By a result due to Pettis (cf., e.g., [227]), a function u : Ω → E
is µ-measurable if and only if it is weakly µ-measurable and a.e. separably-
valued. Applying this property we get the following result.

Lemma 9.1. If (un) is a sequence of µ-measurable functions un from Ω to E,
and if un(t) converges weakly to u(t) for a.e. t ∈ Ω, then u is µ-measurable.

Proof: Since each un is weakly µ-measurable, then the limit u is also weakly
µ-measurable. Moreover, for each n ∈ N0 there is a µ-null set Zn in Ω such
that a set {un(t) : t ∈ Ω \ Zn} is separable. Denoting Z =

⋃∞
n=0 Zn, then Z

is a µ-null set and the set D = co
⋃∞
n=0{un(t) : t ∈ Ω \ Z} is separable. As a

closed and convex set D is weakly closed, so that u(t) ∈ D for a.e. t ∈ Ω. Thus
u is also a.e. separably-valued, and hence µ-measurable by Pettis Theorem.

ut

Recall that a µ-measurable function u : Ω → E is µ-integrable if and only
if the function t 7→ ‖u(t)‖ is µ-integrable. The integral of a step function
u =

∑n
i=1 χAi(t)ui over Ω is defined by∫

Ω

u(s) dµ(s) =
n∑
i=1

µ(Ai)ui.

If u is µ-integrable, define∫
Ω

u(s) dµ(s) = lim
n→∞

∫
Ω

un(s) dµ(s), (9.1)

where (un)∞n=1 is any sequence step functions satisfying lim
n→∞

un(t) = u(t) for
a.e. t ∈ Ω. It is easy to see that∥∥∥∥∫

Ω

u(s) dµ(s)
∥∥∥∥ ≤ ∫

Ω

‖u(s)‖ dµ(s).

If A ∈ A, define ∫
A

u(s) dµ(s) =
∫
Ω

χA(s)u(s) dµ(s).

Let E and V be Banach spaces. We say that a function g : V → E is demi-
continuous if xn → x in V implies g(xn) ⇀ g(x) in E.

Proposition 9.2. Let E and V be Banach spaces. If g : V → E is demi-
continuous, and if u : Ω → V is µ-measurable, then g ◦ u : Ω → E is
µ-measurable.
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Proof: Let u : Ω → V be µ-measurable, and let (un)∞n=0 be a sequence of
step functions that converges pointwise a.e. on Ω to u. If g : V → E, then
the function g ◦ un : Ω → E is for each n ∈ N0 a step function, and hence µ-
measurable. Assuming that g is demicontinuous, then g(un(t)) ⇀ g(u(t)) for
a.e. t ∈ Ω. This implies by Lemma 9.1 that g ◦ u is µ-measurable. ut

Recall that a closed subset E+ of a normed space E is an order cone if
E+ + E+ ⊆ E+, E+ ∩ (−E+) = {0} and cE+ ⊆ E+ for each c ≥ 0. It is easy
to see that the order relation ≤, defined by

x ≤ y if and only if y − x ∈ E+,

is a partial ordering in E, and that E+ = {y ∈ E : 0 ≤ y}. The space E,
equipped with this partial ordering, is called an ordered normed space. The
order interval [y, z] = {x ∈ E : y ≤ x ≤ z} is a closed subset of E for all
y, z ∈ E. A sequence (subset) of E is called order bounded if it is contained
in an order interval [y, z] of E.

We say that an order cone E+ of a normed space is normal if there is such
a constant λ ≥ 1 that

0 ≤ x ≤ y in E implies ‖x‖ ≤ λ‖y‖. (9.2)

The order cone E+ is called regular if all increasing and order bounded se-
quences of E+ converge. If all norm-bounded and increasing sequences of E+

converge, we say that E+ is fully regular. As for the proof of the following
result, see, e.g., [106, Theorems 2.2.1 and 2.4.5].

Lemma 9.3. Let E+ be an order cone of a Banach space E. If E+ is fully
regular, it is also regular, and if E+ is regular, it is also normal. The converse
holds if E is weakly sequentially complete.

The following lemma has been proved in [133].

Lemma 9.4. Let E be an ordered Banach space. If u, v : Ω → E are µ-
integrable and u(t) ≤ v(t) for a.e. t ∈ Ω, then∫

Ω

u(s) dµ(s) ≤
∫
Ω

v(s) dµ(s). (9.3)

The set L1(Ω,E) of all the µ-integrable functions from Ω to E is a vector
space with respect to usual additions and scalar multiplications of functions.
Moreover, L1(Ω,E) is complete with respect to the seminorm ‖ · ‖1 defined
by

‖u‖1 =
∫
Ω

‖u(s)‖dµ(s).

Because ‖u‖1 = 0 if and only if u(t) = 0 for a.e. t ∈ Ω, the factor space
L1(Ω,E) = L1(Ω,E)/N 1(Ω,E), where N 1(Ω,E) = {u ∈ L1(Ω,E) : u(t) =
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0 for a.e. t ∈ Ω}, is a Banach space. Unless otherwise stated we identify
from now on the a.e. equal functions. Denote by Lp(Ω,E), 1 ≤ p ≤ ∞, the
space of all µ-measurable functions u : Ω → E for which t 7→ ‖u(t)‖p belongs
to L1(Ω,R). If E is an ordered Banach space, then Lp(Ω,E) is an ordered
Banach space with respect to the p-norm:

‖u‖p =
(∫

Ω

‖u(t)‖p dµ(t)
) 1

p

, 1 ≤ p <∞, ‖u‖∞ = essup{‖u(t)‖ : t ∈ Ω},

and the partial ordering

u ≤ v if and only if u(t) ≤ v(t) for a.e. t ∈ Ω. (9.4)

Recall (cf., e.g., [227]) that a sequence (xn) of E that converges weakly to x
is bounded, i.e., supn ‖xn‖ <∞, and

‖x‖ ≤ lim inf
n→∞

‖xn‖. (9.5)

The next result is a kind of weak monotone convergence theorem.

Proposition 9.5. Given an ordered Banach space E and 1 ≤ p <∞, assume
that a monotone and bounded sequence (un)∞n=0 of Lp(Ω,E) converges weakly
a.e. pointwise to u : Ω → E. Then u ∈ Lp(Ω,E), and u = supn un if (un)∞n=0

is increasing, and u = infn un if (un)∞n=0 is decreasing.

Proof: Let (un)∞n=0 be an increasing and bounded sequence in Lp(Ω,E), and
assume that it converges weakly a.e. pointwise to u : Ω → E. Then

u(t) = sup
n
un(t) for a.e. t ∈ Ω. (9.6)

The function u is measurable by Lemma 9.1. In view of (9.5) we obtain

‖u(t)‖p ≤ lim inf
n→∞

‖un(t)‖p <∞ for a.e. t ∈ Ω.

The above inequality, Fatou’s Lemma, and the boundedness of (un) in
Lp(Ω,E) imply that∫
Ω

‖u(t)‖pdµ(t) ≤
∫
Ω

lim inf
n→∞

‖un(t)‖pdµ(t) ≤ lim inf
n→∞

∫
Ω

‖un(t)‖pdµ(t) <∞.

This proves that t 7→ ‖u(t)‖ ∈ Lp(Ω,R), so that u ∈ Lp(Ω,E). Moreover, it
follows from (9.6) that u = supn un. ut

Definition 9.6. Let E be a Banach space, and let µ be the Lebesgue measure
on Rm. A µ-measurable mapping u from a Lebesgue measurable subset Ω to a
Banach space E is called strongly measurable on Ω. If u is also µ-integrable
it is called Bochner integrable on on Ω. The µ-integral of u over Ω is called
the Bochner integral, and is denoted by

∫
Ω
u(s) ds.
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If Ω is a closed real interval [a, b], denote∫
Ω

u(s) ds =
∫ b

a

u(s)ds = −
∫ a

b

u(s)ds.

The next result has been proved in [133].

Lemma 9.7. Let E be an ordered Banach space, let u, v : [a, b] → E be
Bochner integrable, and assume 0 ≤ u(s) ≤ v(s) for a.e. s ∈ [a, b]. If A, B
are Lebesgue measurable subsets of [a, b] and A ⊆ B, then

0 ≤
∫
A

u(s) ds ≤
∫
B

v(s) ds. (9.7)

9.1.2 HL Integrability

In this subsection we study properties of the so-called Henstock–Lebesgue
(shortly HL) integrable functions u : [a, b] → E, where E is a Banach space
and [a, b] a nonempty closed interval of R.

We say that D = {(ξi, Ii)} is a K-partition of [a, b] if {Ii} is a finite
collection of closed subintervals Ii of [a, b] that are non-overlapping, i.e., their
interiors are pairwise disjoint, whose union is [a, b], and if every tag ξi belongs
to Ii. A partition D is called a partial K-partition if ∪iIi is a proper subset of
[a, b]. Given a function δ : [a, b] → (0,∞) (called a gauge of [a, b]), we say that
a K-partition D = {(ξi, Ii)} is δ-fine if Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for every i.
Such a partition exists due to Cousin’s Lemma (cf., e.g., [168, Lemma 6.2.6]).
The length of Ii is denoted by |Ii|.

A function u : [a, b] → E is HL integrable if there is an E-valued function
I 7→ F (I) of closed subintervals I of [a, b] that is additive on non-overlapping
intervals and has the following property: If ε > 0, there is a gauge δ of [a, b]
such that for every δ-fine K-partition D = {(ξi, Ii)},∑

i

‖u(ξi)|Ii| − F (Ii)‖ < ε. (9.8)

If u is HL integrable on [a, b], it is HL integrable on every closed subinterval
I = [c, d] of [a, b], and F (I) is the Henstock–Kurzweil integral of u over I, i.e.,

F (I) = K

∫
I

u(s) ds = K

∫ d

c

u(s) ds. (9.9)

If u : [a, b] → E is HL integrable and c ∈ E, then the relation

f(t) = c+ K

∫ t

a

u(s) ds, t ∈ [a, b], (9.10)

defines a function f ∈ C([a, b], E), which is called a primitive of u. Denoting
in (9.8) Ii = [ti−1, ti], then |Ii| = ti − ti−1. Moreover, (9.9) and (9.10) imply
that F (Ii) = f(ti)− f(ti−1). Thus (9.8) can be rewritten as
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i

‖f(ti)− f(ti−1)− u(ξi)(ti − ti−1)‖ < ε. (9.11)

This shows that the above definition and that given in Chap. 1 for HL inte-
grability are equivalent.

The proofs for the results of the next lemma can be found, e.g., in [207].

Lemma 9.8. (a) Every HL integrable function is strongly measurable.
(b) A Bochner integrable function u : [a, b] → E is HL integrable, and∫

I

u(s) ds = K

∫
I

u(s) ds

whenever I is a closed subinterval of [a, b].

The following variant of Saks–Henstock Lemma is a consequence of [207,
Lemma 3.4.1 and Lemma 3.6.15].

Lemma 9.9. If u : [a, b] → E is HL integrable, then for every ε > 0 there
exists a gauge δ : [a, b] → (0,∞) such that if D = {(ξi, Ii)} is any δ-fine
K-partition or partial K-partition of [a, b], then∑

i

∥∥∥u(ξi)|Ii| − K

∫
Ii

u(s) ds
∥∥∥ ≤ ε.

The following result is adapted from [192] and from [201].

Proposition 9.10. If v : I → E is HL integrable and ϕ : I → R is of bounded
variation, then ϕ · v is HL integrable.

The following lemma plays a central role in both the theory and application
of HL integrability in ordered Banach spaces.

Lemma 9.11. Let E be an ordered Banach space, and let u± : [a, b] → E
be HL integrable. If u−(s) ≤ u+(s) for a.e. s ∈ [a, b], and if I is a closed
subinterval of [a, b], then

K

∫
I

u−(s) ds ≤ K

∫
I

u+(s) ds. (9.12)

Proof: It suffices to prove the assertion when I = [a, b]. In view of [207,
Theorems 3.3.7 and 3.6.4] we may assume that u−(s) ≤ u+(s) for all s ∈ [a, b].
Denoting u = u+ − u−, then u(s) belongs to the order cone E+ of E for all
s ∈ [a, b]. Let I 7→ F (I) be as in the definition of HL integrability. Choose for
each n ∈ N a gauge δn of [a, b] and a δn-fine K-partition Dn = {(ξni , Ini )} so
that ∑

i

‖u(ξni )|Ini | − F (Ini )‖ < 1
n
.
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Denoting yn =
∑
i u(ξ

n
i )|Ini |, we obtain for all n ∈ N

‖yn −F [a, b]‖ = ‖
∑
i

u(ξni )|Ini | −
∑
i

F (Ini )‖ ≤
∑
i

‖u(ξni )|Ini | −F (Ini )‖ < 1
n
.

Thus F [a, b] = lim
n→∞

yn ∈ E+, since E+ is closed, and since yn ∈ E+ for every
n ∈ N. Consequently,

0 ≤ F [a, b] = K

∫ b

a

u(s) ds = K

∫ b

a

u+(s) ds− K

∫ b

a

u−(s) ds.

This proves (9.12) when I = [a, b]. ut

Denote by I the set of all closed subintervals of [a, b]. The proof of the next
lemma exploits ideas of the proof of [191, Theorem 4.1], and the normality
hypothesis of E+.

Lemma 9.12. Let E be a Banach space ordered by a normal order cone E+,
and let u : [a, b] → E+ be HL integrable. Then there exist Lebesgue measurable
sets Bj, j ∈ N such that Bj ⊆ Bj+1 for every j ∈ N, ∪jBj = [a, b], and u is
Bochner integrable on every Bj satisfying

lim
j→∞

∫
I

χBj
(s)u(s) ds = K

∫
I

u(s) ds uniformly with respect to I ∈ I.

(9.13)

Proof: Since u is strongly measurable by Lemma 9.8, it can be shown (cf.
[207, Proposition 1.1.3] and Remark after it) that the sets

Bj := {t ∈ [a, b] : ‖u(t)‖ ≤ j}, j ∈ N (9.14)

are Lebesgue measurable. Obviously, Bj ⊆ Bj+1 for every j ∈ N, and ∪jBj =
[a, b]. Because every restriction u|Bj is bounded and strongly measurable,
then u is Bochner integrable on every Bj . Thus the functions uj : [a, b] → E+,
j ∈ N, defined by

uj(t) := χBj
(t)u(t), t ∈ [a, b], (9.15)

are Bochner integrable, and hence also HL integrable on [a, b]. The definitions
(9.14) and (9.15) imply that

0 ≤ uj(t) ≤ uj+1(t) ≤ u(t), t ∈ [a, b], j ∈ N, (9.16)

Define

FBj
(I) :=

∫
I

χBj
(s)u(s) ds, j ∈ N, I ∈ I, F (I) := K

∫
I

u(s) ds, I ∈ I.

(9.17)
From Lemma 9.11, (9.16) and (9.17) it follows that if 0 < j < k, then for all
I ∈ I,
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0 ≤ FBj
(I) ≤ FBk

(I) ≤ F (I), and hence 0 ≤ F (I)−FBk
(I) ≤ F (I)−FBj

(I).

Since E+ is normal, we obtain

‖F (I)− FBk
(I)‖ ≤ λ‖F (I)− FBj

(I)‖, 0 < j < k, I ∈ I. (9.18)

Let ε > 0 be given. By Lemma 9.9 there exist δj : [a, b] → (0,∞), j ∈ N, such
that if Dj = {(ξi, Ii)} is a δj-fine partial K-partition of [a, b] with {ξi} ⊂ Bj ,
then∑
i

‖FBj
(Ii)− uj(ξi)|Ii|‖ ≤ 2−j−1ε, and

∑
i

‖F (Ii)− u(ξi)|Ii|‖ ≤ 2−j−1ε.

These results imply, since uj(ξ) = u(ξ) for every ξ ∈ Bj , that∑
i

‖FBj
(Ii)− F (Ii)‖ ≤ 2−jε (9.19)

for every δj-fine partial K-partition Dj = {(ξi, Ii)} of [a, b] with {ξi} ⊂ Bj .
Define δ : [a, b] → (0,∞) by

δ(ξ) := δj(ξ)(ξ), ξ ∈ [a, b], where j(ξ) = min{j ∈ N : ‖u(ξ)‖ ≤ j}.

Let D = {(ξi, Ii)} be a δ-fine K-partition of [a, b]. Denoting

m = min{j(ξi) : ξi ∈ D}, n = max{j(ξi) : ξi ∈ D}, and B0 = ∅,

it follows that partitions

Dj = {(ξi, Ii) ∈ D : ξi ∈ Bj \Bj−1}, m ≤ j ≤ n,

are δj-fine partial K-partitions of [a, b] with {ξi} ⊂ Bj . Thus the results (9.18)
and (9.19) imply that

‖F ([a, b])− FBn
([a, b])‖ ≤

∑
i

‖F (Ii)− FBn
(Ii)‖

=
n∑

j=m

∑
Ii∈Dj

‖F (Ii)− FBn
(Ii)‖

≤
n∑

j=m

∑
Ii∈Dj

λ‖F (Ii)− FBj (Ii)‖ < λε.

In view of the above result and (9.18) we then have

‖F ([a, b])− FBk
([a, b])‖ < λ2ε whenever n < k. (9.20)

For every j ∈ N, u − uj is E+-valued and HL integrable on [a, b]. Applying
Lemma 9.11, (9.15), (9.16), (9.17), and the additivity property of interval
functions, it is easy to show that



9.1 Analysis of Vector-Valued Functions 409

0 ≤ F (I)− FBj
(I) ≤ F ([a, b])− FBj

([a, b]), j ∈ N,

for every I ∈ I. Thus

‖F (I)− FBj
(I)‖ ≤ λ‖F ([a, b])− FBj

([a, b])‖ whenever j ∈ N and I ∈ I.

This result and (9.20) imply that

‖F (I)− FBj (I)‖ ≤ λ3ε whenever n < j and I ∈ I.

The above proof shows that lim
j→∞

FBj (I) = F (I) uniformly with respect to

I ∈ I. In view of notations (9.17), this result is equivalent to (9.13). ut

The next lemma is used in the proof of the Dominated Convergence The-
orem for HL integrable functions.

Lemma 9.13. Let E be an ordered Banach space with a normal order cone,
let v, v+ : [a.b] → E be strongly measurable, and assume that 0 ≤ v(s) ≤ v+(s)
for a.e. s ∈ [a, b]. If v+ is HL integrable, then v is HL integrable.

Proof: Assume that v+ is HL integrable. By Lemma 9.12, there exist Lebesgue
measurable sets Bj , j ∈ N such that Bj ⊆ Bj+1 for every j ∈ N, ∪jBj = [a, b],
v+ is Bochner integrable on every Bj , and

lim
j→∞

∫
I

χBj (s)v+(s) ds = K

∫
I

v+(s) ds (9.21)

for every closed subinterval I of [a, b]. Since the order cone of E is normal, it
follows

‖v(s‖ ≤ λ‖v+(s)‖ for a.e. s ∈ [a, b]. (9.22)

This result implies that v is Bochner integrable on every Bj because v+ is
Bochner integrable. For every closed subinterval I of [a, b] denote

F+(I) = K

∫
I

v+(s) ds, F+
j (I) =

∫
I

χBj
(s)v+(s) ds, Fj(I) =

∫
I

χBj
(s)v(s) ds.

(9.23)
From Lemma 9.7 it follows that; if j < i, then

0 ≤ Fi(I)− Fj(I) =
∫
I

χBi\Bj
(s)v(s) ds ≤

∫
I

χBi\Bj
(s)v+(s) ds

= F+
i (I)− F+

j (I). (9.24)

From (9.24) and (9.2) we obtain

‖Fi(I)− Fj(I)‖ ≤ λ‖F+
i (I)− F+

j (I)‖ whenever j < i. (9.25)

In view of (9.21) and (9.23) the sequence (F+
j (I))j∈N converges, and hence

it is a Cauchy sequence. Thus (Fj(I))j∈N is, by (9.25), a Cauchy sequence,
whence it converges. It is easy to see that the limit relation
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F (I) := lim
j→∞

Fj(I) = sup
j
Fj(I) (9.26)

defines an additive E-valued interval function. Passing to the limit in (9.25)
as i→∞, it follows that

‖F (I)− Fj(I)‖ ≤ λ‖F+(I)− F+
j (I)‖ for all j ∈ N. (9.27)

Denote

uj(s) = χBj
(s)v(s), u+

j (s) = χBj
(s)v+(s), s ∈ [a, b], j ∈ N. (9.28)

For each ξ ∈ [a, b], there exists a j(ξ) ∈ N such that ξ ∈ Bj for every j ≥ j(ξ).
Thus

uj(ξ) = v(ξ) and u+
j (ξ) = v+(ξ) whenever ξ ∈ [a, b] and j ≥ j(ξ). (9.29)

Given any point ξi of [a, b], any closed subinterval Ii of [a, b], and any integer
j ≥ j(ξi), then from (9.27), (9.28), and (9.29) it follows that

‖v(ξi)|Ii| − F (Ii)‖ = ‖uj(ξi)|Ii| − F (Ii)‖
≤ ‖uj(ξi)|Ii| − Fj(Ii)‖+ ‖Fj(Ii)− F (Ii)‖
≤ ‖uj(ξi)|Ii| − Fj(Ii)‖+ λ‖F+

j (Ii)− F+(Ii)‖
≤ ‖uj(ξi)|Ii| − Fj(Ii)‖+ λ‖v+(ξi)|Ii| − F+

j (Ii)‖+ λ‖v+(ξi)|Ii| − F+(Ii)‖
= ‖uj(ξi)|Ii| − Fj(Ii)‖+ λ‖u+

j (ξi)|Ii| − F+
j (Ii)‖+ λ‖v+(ξi)|Ii| − F+(Ii)‖.

(9.30)

Let ε > 0 be given. Since the functions uj and u+
j are Bochner integrable,

they are HL integrable in view of Lemma 9.8. Thus, by Lemma 9.9, there
exist gauges δj : [a, b] → (0,∞), j ∈ N, for which∑

i

‖uj(ξi)|Ii| − Fj(Ii)‖ <
ε

2j
and

∑
i

‖u+
j (ξi)|Ii| − F+

j (Ii)‖ <
ε

2j
(9.31)

whenever D = {(ξi, Ii)} is a δj-fine K-partition or partial K-partition of [a, b].
Choose also a gauge δ+ : [a, b] → (0,∞) such that∑

i

‖v+(ξi)|Ii| − F+(Ii)‖ < ε (9.32)

whenever D = {(ξi, Ii)} is a δ+-fine K-partition of [a, b], and define a gauge
δ : [a, b] → (0,∞) by

δ(ξ) = min{δ+(ξ), δj(ξ)(ξ)}, ξ ∈ [a, b].

Let D = {(ξi, Ii)} be a δ-fine K-partition of [a, b]. By (9.30) we have, for each
i,
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‖v(ξi)|Ii| − F (Ii)‖ ≤‖uj(ξi)(ξi)|Ii| − Fj(ξi)(Ii)‖+ λ‖u+
j(ξi)

(ξi)|Ii| − F+
j(ξi)

(Ii)‖

+ λ‖v+(ξi)|Ii| − F+(Ii)‖. (9.33)

Summing both sides of (9.33) over i, and denoting m = min{j(ξi)} and n =
max{j(ξi)}, we obtain

∑
i

‖v(ξi)|Ii| − F (Ii)‖ ≤
n∑

j=m

∑
{‖uj(ξi)|Ii| − Fj(Ii)‖ : j(ξi) = j}

+ λ
n∑

j=m

∑
{‖u+

j (ξi)|Ii| − F+
j (Ii)‖ : j(ξi) = j}

+ λ
∑
i

‖v+(ξi)|Ii| − F+(Ii)‖. (9.34)

The inner sums on the right-hand side of (9.34) correspond to δj-fine partial
K-partitions of [a, b], whence they are ≤ ε

2j , since (9.31) is valid also for partial
K-partitions of [a, b]. The last sum on the right-hand side of (9.34) is ≤ ε by
(9.32). It then follows from (9.34) that

∑
i

‖v(ξi)|Ii| − F (Ii)‖ ≤
n∑

j=m

ε

2j
+ λ

n∑
j=m

ε

2j
+ λε < (3λ+ 2)ε.

This proves that v is HL integrable over [a, b], and F (I) = K
∫
I
v(s) ds for each

closed subinterval I of [a, b]. ut

As a consequence of Lemma 9.13 we obtain the following result.

Proposition 9.14. Suppose E is an ordered Banach space with a normal or-
der cone, and u : [a, b] → E is a function that is a.e. pointwise order bounded
by HL integrable functions. Then u is HL integrable if and only if u is strongly
measurable.

Proof: If u is HL integrable, it is strongly measurable by Lemma 9.8. Con-
versely, assume that u is strongly measurable, and let u± : [a, b] → E be such
HL integrable functions that u−(s) ≤ u(s) ≤ u+(s) for a.e. s ∈ [a, b]. Then
u+ − u− is HL integrable, u− u− is strongly measurable, and

0 ≤ u(s)− u−(s) ≤ u+(s)− u−(s) for a.e. s ∈ [a, b]. (9.35)

Then u − u− is HL integrable by Lemma 9.13, so that u = u− + (u − u−) is
HL integrable. ut

Remark 9.15. Henstok–Kurzweil integral is considered, e.g., in the books [18,
24, 95, 143, 162, 166, 168, 178, 194, 207].
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9.1.3 Integrals of Derivatives of Vector-Valued Functions

in Banach spaces.
Let E = (E, ‖ · ‖) be a Banach space and J = [a, b], a < b. We say that

a mapping u : J → E is absolutely continuous (shortly AC), if for each ε > 0
there exists a δ > 0 such that for any sequence [aj , bj ], j = 1, . . . , n of disjoint
subintervals of J with

∑n
j=1(bj − aj) < δ we have

∑n
j=1 ‖u(bj)− u(aj)‖ < ε.

If u : J → E is absolutely continuous, it is also of bounded variation, i.e.,

VJ(x) = sup{
∑
P

‖u(tk)− u(tk−1‖ : P = {tk} is a partition of J} <∞.

Definition 9.16. We say that a function u : J → E satisfies the Strong
Lusin Condition if for each null set Z of J and ε > 0 there is a gauge
δ : J → (0,∞) such that

∑
i ‖u(s2i) − u(s2i−1)‖ < ε for every δ-fine partial

K-partition D = {(ξi, [s2i−1, s2i])} of J with {ξi} ⊆ Z. A function u : J → E
is said to be a.e. differentiable, if the derivative

u′(t) = lim
∆t→0

u(t+∆t)− u(t)
∆t

exists for a.e. t ∈ J.

The following result is proved, e.g., in [133].

Theorem 9.17. If u, v : J → E and (t0, x0) ∈ J × E, then the following
conditions are equivalent.

(a) u is absolutely continuous, u′(t) = v(t) for a.e. t ∈ J and u(t0) = x0.
(b) v is Bochner integrable and u(t) = x0 +

∫ t
t0
v(s)ds for all t ∈ J .

Another version of the Fundamental Theorem of Calculus that plays an impor-
tant role in the application of HL integrability theory to differential equations
is provided by the following theorem, cf. [92, Theorem 2.4].

Theorem 9.18. Given u, v : J → E and (t0, x0) ∈ J ×E, then the following
conditions are equivalent.

(a) u satisfies the Strong Lusin Condition, u′(t) = v(t) for a.e. t ∈ J and
u(t0) = x0.

(b) v is HL integrable and u(t) = x0 + K
∫ t
t0
v(s)ds for all t ∈ J (i.e., u is a

primitive of v).

Proof: Assume that (a) holds. Denote by Z the set of those t ∈ J for which
u′(t) does not exist or u′(t) 6= v(t). Given ε > 0, there exists for every ξ ∈ J \Z
a δ1(ξ) > 0 such that

‖u(t)− u(t̄)− u′(ξ)(t− t̄)‖ ≤ ε(t− t̄)

The results of this subsection are needed in the theory of differential equations
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whenever ξ − δ1(ξ) < t̄ ≤ ξ ≤ t < ξ + δ1(ξ). Since Z is a null set, the
Strong Lusin Condition implies the existence of a δ2 : J → (0,∞) such that
if D = {(ξi, [s2i−1, s2i])} is a partial K-partition of J with {ξi} ⊆ Z, then∑

i

‖u(s2i)− u(s2i−1)‖ ≤ ε.

Define δ : J → (0,∞) and w : J → E by

δ(ξ) =

{
min{δ1(ξ), δ2(ξ)}, ξ ∈ J \ Z,
δ2(ξ), ξ ∈ Z,

w(t) =

{
u′(t), t ∈ J \ Z,
0, t ∈ Z.

Then, for every δ-fine K-partition D = {(ξi, [ti−1, ti])} of J ,∑
i

‖u(ti)− u(ti−1)− w(ξi)(ti − ti−1)‖ =
∑
ξi∈Z

‖u(ti)− u(ti−1)‖

+
∑

ξi∈J\Z

‖u(ti)− u(ti−1)− u′(ξi)(ti − ti−1)‖ ≤ ε(1 + |J |).

Thus w is HL integrable and u is its primitive. Moreover, w(t) = v(t) for a.e.
t ∈ J , whence v is HL integrable by [207, Theorem 3.6.4], and u is a primitive
of v, i.e.,

u(t) = c+ K

∫ t

a

v(s)ds = c+ K

∫ t0

a

v(s) ds+ K

∫ t

t0

v(s) ds.

Since u(t0) = x0, then c+ K
∫ t0
a
v(s) ds = x0, so that u(t) = x0 + K

∫ t
t0
v(s)ds,

whence (b) holds.
Conversely, assume that (b) holds. Then u(t0) = x0 + K

∫ t0
t0
v(s)ds = x0.

Since u is a primitive of v, from [207, Theorem 7.4.2] it follows that u is a.e.
differentiable, and that u′(t) = v(t) for a.e. t ∈ J . Moreover, the proof of [207,
Theorem 7.5.1] implies that u satisfies the Strong Lusin Condition. Thus (a)
holds. ut

If u : J → E is a.e. differentiable, define u′(t) = 0 at those points t ∈ J where
u is not differentiable. In view of Theorem 9.17 we then obtain the following
result.

Corollary 9.19. Let u : J → E be a.e. differentiable. Then u is absolutely
continuous if and only if u′ is Bochner integrable, and

u(t)− u(t0) =
∫ t

t0

u′(s)ds for all t0, t ∈ J.

Lemma 9.20. If u : J → R is absolutely continuous and v : J → E is both
absolutely continuous and a.e. differentiable, then

u(t)v(t)− u(t0)v(t0) =
∫ t

t0

(u(s)v′(s) + u′(s)v(s))ds for all t0, t ∈ J.
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Proof: For t, t+∆t ∈ J , ∆t 6= 0 we have

u(t+∆t)v(t+∆t)−u(t)v(t) = (u(t+∆t)−u(t))v(t+∆t)+u(t)(v(t+∆t)−v(t)).
(9.36)

Since u and v are absolutely continuous, they are also bounded, whence it
follows from (9.36) that

‖u(t+∆t)v(t+∆t)−u(t)v(t)‖ ≤M |u(t+∆t)−u(t)|+m ‖v(t+∆t)− v(t)‖,
(9.37)

where M = max{‖v(t)‖ : t ∈ J} and m = max{|u(t)| : t ∈ J}. Thus u · v
is also absolutely continuous. Because u and v are a.e. differentiable, an easy
application of (9.36) implies that

(u · v)′(t) = u(t)v′(t) + u′(t)v(t) for a.e. t ∈ J. (9.38)

(Note, any real-valued absolutely continuous function u : J → R is a.e. differ-
entiable.) The assertion follows then from Corollary 9.19. ut

The next result is a consequence of Theorem 9.18.

Corollary 9.21. The function u : J → E is a.e. differentiable and satisfies
the Strong Lusin Condition if and only if u′ is HL integrable, and

u(t)− u(t0) = K

∫ t

t0

u′(s)ds for all t0, t ∈ J.

Lemma 9.22. Assume that u : J → R is absolutely continuous, and that
v : J → E is a.e. differentiable and satisfies the Strong Lusin Condition.
Then

u(t)v(t)− u(t0)v(t0) = K

∫ t

t0

(u(s)v′(s) + u′(s)v(s))ds for all t0, t ∈ J.

Proof: In view of Corollary 9.21, v′ is HL integrable on J . Since u is ab-
solutely continuous, then t 7→ u(t)v′(t) is HL integrable on J by Proposition
9.10. The given hypotheses imply also that u′ is Lebesgue integrable and v
is continuous, whence t 7→ u′(t)v(t) is strongly measurable by [133, Theorem
1.4.3]. Moreover, ‖u′(t)v(t)‖ ≤ M |u′(t)|, where M = max{‖v(t)‖ : t ∈ J}.
Thus t 7→ u′(t)v(t) is Bochner integrable, and hence also HL integrable. The
above results along with (9.38) imply that (u · v)′ is HL integrable. The asser-
tion follows then from Corollary 9.21. ut

As an application of Theorem 9.18 we obtain the following result.

Lemma 9.23. Let E be a Banach space ordered by an order cone E+. Assume
that v : [a, b] → E is HL integrable, and that K

∫ d
c
v(s) ds ∈ E+ for every closed

subinterval [c, d] of [a, b]. Then v(t) ∈ E+ for a.e. t ∈ [a, b].
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Proof: It follows from Theorem 9.18, that v(t0) is the derivative of the func-
tion t 7→ K

∫ t
a
v(s) ds at t0 for a.e. t0 ∈ [a, b]. If t0 ∈ (a, b) is such a point, and

(tn)∞n=1 is a decreasing sequence in (t0, b) converging to t0, then

1
tn − t0

K

∫ tn

t0

v(s) ds→ v(t0) when n→∞. (9.39)

The given hypothesis and the positivity of tn − t0 imply that

1
tn − t0

K

∫ tn

t

v(s) ds ∈ E+, ∀ n.

Because E+ is a closed subset of E, then v(t0) ∈ E+. This holds for a.e.
t0 ∈ [a, b], which concludes the proof. ut

The next result is consequence of Lemma 9.23 and [207, Theorems 3.3.7 and
3.6.4].

Lemma 9.24. Let E be an ordered Banach space. If f, g : [a, b] → E are HL
integrable, then

K

∫ d

c

f(s) ds = K

∫ d

c

g(s) ds

for every closed subinterval [c, d] of [a, b] if and only if f(t) = g(t) for a.e.
t ∈ [a, b].

Proof: The necessity part follows from [207, Theorem 3.6.4]. To prove suf-
ficiency, assume that K

∫ d
c
f(s) ds = K

∫ d
c
g(s) ds for every closed subinter-

val [c, d] of [a, b]. Denoting v = f − g, then K
∫ d
c
v(s) ds = 0 ∈ E+ and

K
∫ d
c
(−v(s)), ds = 0 ∈ E+ for every closed subinterval [c, d] of [a, b]. This

result implies by Lemma 9.23 that v(t) ∈ −E+ ∩ E+ = {0} for a.e. t ∈ [a, b].
Thus v(t) = f(t)− g(t) = 0, for a.e. t ∈ [a, b]. ut

Remark 9.25. A function u : [a, b] → E is called Henstock–Kurzweil (shortly
HK) integrable if there is a function f : [a, b] → E, called a primitive of
u, which has the following property: For every ε > 0 there is a function
δ : [a, b] → (0,∞) such that∥∥∥∥∥∑

i

(u(ξi)(ti − ti−1)− (f(ti)− f(ti−1))

∥∥∥∥∥ < ε

whenever D = {(ξi, [ti−i, ti])} is a δ-fine K-partition of [a, b].
Some of the characteristic features of HL and HK integrability are as

follows:

• If u : [a, b] → E is HL integrable, then it is HK integrable (cf. [207,
Proposition 3.6.5]).
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• If E is finite-dimensional, then u : [a, b] → E is HK integrable if and only
if it is HL integrable (cf. [207, Proposition 3.6.6]).

• Both HK and HL integrability encompasses improper integrals on finite
intervals. For instance, if u is HK (respectively HL) integrable on every
closed subinterval [a, c] of [a, b), and if α = lim

c→b−
K
∫ c
a
u(s) ds exists, then u is

HK (respectively HL) integrable on [a, b], and K
∫ b
a
u(s) ds = α. This result,

called Hake’s Theorem, is proved in [207, Theorem 3.4.5] for HK integrable
functions. The proof for HL integrable functions is similar when Lemma
9.9 is used instead of [207, Lemma 3.4.1]. In particular, HL integrability
encompasses improper integrals of Bochner integrable functions on finite
intervals.

• In [90, Example 2.1], a HK integrable function f : [a, b] → l2[a, b] is con-
structed whose values are 6= 0 for a.e. t ∈ [a, b], and then calculated that
K
∫ b
a
f(s) ds = 0. Thus the result of Lemma 9.24 is not valid for all Banach-

valued HK integrable functions.

Further, the functions un(t) = χ[ 1
n ,1]

(t)/t, t ∈ [0, 1], n ∈ N, form an
increasing sequence of Lebesgue integrable functions from [0, 1] to R+. It con-
verges pointwise on [0, 1] to the function u(t) = χ(0,1](t)/t, t ∈ [0, 1], which
is Lebesgue measurable but not HL integrable. Note, for u(t) = χ(0,1](t)/t,
t ∈ [0, 1], the sets Bj defined by formula (9.14) have the explicit form
Bj = {0}∪[1j , 1], j ∈ N. Therefore, the following hypotheses are indispensable:

- The HL integrability of u in Lemma 9.12.
- The existence of a HL integrable upper bound v+ in Lemma 9.13.
Notice that f(t) = χ(0,1](t) ln t is differentiable on (0, 1], and f ′(t) = u(t) =

χ(0,1](t)/t, t ∈ (0, 1]. However, no extension of f on the interval [0, 1] satisfies
the Strong Lusin Condition, because otherwise u would be HL integrable on
[0, 1].

The Cantor function f (cf. [85, Proposition 4.2.1]) is increasing and con-
tinuous, and hence bounded function from [0, 1] onto itself, and f ′(t) = 0 for
a.e. t ∈ [0, 1]. Because f is not constant function, it is not a primitive of f ′.
Thus f does not satisfy the Strong Lusin Condition.

9.1.4 Convergence Theorems for HL Integrable Functions

Given a Banach space E and a closed interval [a, b] of R, we denote by
HL([a, b], E) the space of HL integrable functions from [a, b] to E (a.e. equal
functions are identified).

A dominated convergence theorem for real-valued Henstock integrable
functions has been proved in [166, Theorem 4.3]. The following result whose
proof is adopted from [132] can be considered as a generalization of [166, The-
orem 4.3], since real-valued Henstock–Kurzweil integrable functions are also
HL integrable (cf. [207, Proposition 3.6.6]).
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Theorem 9.26 (Dominated Convergence Theorem for HL integrable
functions). Let E be an ordered Banach space having a normal order cone,
let u± and un, n ∈ N, be strongly measurable functions from [a, b] to E, and
assume that u−(s) ≤ un(s) ≤ u+(s) for each n ∈ N and for a.e. s ∈ [a, b],
and that un(s) → u(s) for a.e. s ∈ [a, b]. If u± ∈ HL([a, b], E), then u, un ∈
HL([a, b], E), n ∈ N, and

K

∫ b

a

un(s) ds→ K

∫ b

a

u(s) ds.

Proof: The a.e. pointwise limit function u of the sequence (un) of strongly
measurable functions is strongly measurable. Since un(s) ∈ [u−(s), u+(s)]
for a.e. s ∈ [a, b] and the order intervals [x, y] of E are closed, then u(s) ∈
[u−(s), u+(s)] for a.e. s ∈ [a, b]. Then from Proposition 9.14 it follows that
functions u and un, n ∈ N, are HL integrable. Moreover,

u−(s)− u+(s) ≤ u(s)− un(s) ≤ u+(s)− u−(s) for a.e. s ∈ [a, b],

so that

0 ≤ u(s)−un(s)+u+(s)−u−(s) ≤ 2(u+(s)−u−(s)) for a.e. s ∈ [a, b]. (9.40)

Since the order cone of E is normal, from (9.2) and (9.40) it follows that

‖u(s)−un(s)+u+(s)−u−(s)‖ ≤ 2λ‖u+(s)−u−(s)‖ for a.e. s ∈ [a, b]. (9.41)

By Lemma 9.12, there exists a sequence of Lebesgue measurable sets (Bj)j∈N
such that Bj ⊂ Bj+1 for every j ∈ N, ∪jBj = [a, b], u+ − u− is Bochner
integrable on every Bj , and

lim
j→∞

∫
Bj

(u+(s)− u−(s)) ds = K

∫ b

a

(u+(s)− u−(s)) ds. (9.42)

Setting v = u − un + u+ − u− and v+ = 2(u+ − u−), then the hypotheses
of Lemma 9.13 are satisfied, and thus by means of Lemma 9.13 along with
(9.27) and (9.40) it follows that for every j ∈ N,∥∥∥∥K∫ b

a

(u(s)− un(s) + u+(s)− u−(s)) ds

−
∫
Bj

(u(s)− un(s) + u+(s)− u−(s)) ds
∥∥∥∥

≤ 2λ
∥∥∥∥K∫ b

a

(u+(s)− u−(s)) ds−
∫
Bj

(u+(s)− u−(s)) ds
∥∥∥∥. (9.43)

This result implies that, for all j, n ∈ N,
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a

(u(s)− un(s)) ds−
∫
Bj

(u(s)− un(s)) ds
∥∥∥∥

≤ (2λ+ 1)
∥∥∥∥K∫ b

a

(u+(s)− u−(s)) ds−
∫
Bj

(u+(s)− u−(s)) ds
∥∥∥∥. (9.44)

Let ε > 0 be given. Because of (9.42) there exists a jε ∈ N such that∥∥∥∥K∫ b

a

(u+(s)− u−(s)) ds−
∫
Bjε

(u+(s)− u−(s)) ds
∥∥∥∥ ≤ ε

4λ+ 2
. (9.45)

It follows from (9.44) and (9.45) that∥∥∥∥K∫ b

a

(u(s)− un(s)) ds−
∫
Bjε

(u(s)− un(s)) ds
∥∥∥∥ ≤ ε

2
. (9.46)

In view of (9.41) we have

‖u(s)− un(s)‖ ≤ (2λ+ 1)‖u+(s)− u−(s)‖ for a.e. s ∈ Bjε .

Thus the dominated convergence theorem in L1(Bjε , E) (cf., e.g., [164]) im-
plies the existence of an nε ∈ N such that∥∥∥∥∫

Bjε

(u(s)− un(s)) ds
∥∥∥∥ ≤ ε

2
for n ≥ nε. (9.47)

Then from (9.46) and (9.47) it follows that∥∥∥∥K∫ b

a

(u(s)− un(s)) ds
∥∥∥∥ ≤ ε for n ≥ nε.

The above proof shows that K
∫ b
a
un(s) ds→ K

∫ b
a
u(s) ds. ut

The normality of the order cone E+ of E was a sufficient assumption in Propo-
sition 9.14 and in Theorem 9.26. In the proof of the next result, which is a
generalization of the monotone convergence theorem proved in [166, Theo-
rem 4.1] for real-valued Henstock integrable functions, we need a stronger
condition; the regularity of E+.

Theorem 9.27 (Monotone Convergence Theorem for HL integrable
functions). Let E be an ordered Banach space having a regular order cone.
Given a monotone sequence (un)∞n=1 of strongly measurable functions from
[a, b] to E, assume there exist HL integrable functions u± : [a, b] → E such
that u−(s) ≤ un(s) ≤ u+(s) for each n ∈ N and for a.e. s ∈ [a, b]. Then
u(s) := limn→∞ un(s) exists for a.e. s ∈ [a, b], and

K

∫ b

a

un(s) ds→ K

∫ b

a

u(s) ds.
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Proof: The given hypotheses imply that for a.e. s ∈ [a, b], the sequence
(un(s))∞n=1 is monotone and order bounded in E. Because the order cone of E
is regular, then u(s) = limn→∞ un(s) exists for a.e. s ∈ [a, b]. Consequently,
the hypotheses of the dominated convergence theorem hold for (un)∞n=1 and
u, whence K

∫ b
a
un(s) ds→ K

∫ b
a
u(s) ds. ut

Remark 9.28. (i) Recalling the example of Remark 9.25, i.e., the increasing
sequence un(t) = χ[ 1

n ,1]
(t)/t of Lebesgue integrable functions from [0, 1] to R+

that converges pointwise on [0, 1] to the function u(t) = χ(0,1](t)/t, t ∈ [0, 1],
which is Lebesgue measurable but not HL integrable. This shows that the
existence of a HL integrable upper bound u+ in the Dominated and Monotone
Convergence Theorems (Theorems 9.26 and 9.27) is indispensable.

(ii) Further, the Dominated Convergence Theorem for HL integrable func-
tions is reduced to that for Bochner integrable functions if order boundedness
of the sequence (un) is replaced by the norm-boundedness: ‖un(t)‖ ≤ g(t) for
a.e. t ∈ [a, b], where g ∈ L1([a, b],R+).

9.1.5 Ordered Normed Spaces of HL Integrable Functions

Given a Banach space E and a closed interval [a, b] of R, define the Alexiewicz
norm on HL([a, b], E) by

‖u‖A = sup
{∥∥∥∥K∫ d

c

u(s) ds
∥∥∥∥ : [c, d] ⊆ [a, b]

}
. (9.48)

Lemma 9.29. Let E be a Banach space ordered by an order cone E+. Then
the set HL([a, b], E+) of a.e. E+-valued functions of HL([a, b], E) equipped
with the norm ‖ · ‖A is an order cone of HL([a, b], E), which induces the a.e.
pointwise ordering to HL([a, b], E).

Proof: Obviously, HL([a, b], E+) is a cone in HL([a, b], E). To prove that
HL([a, b], E+) is closed, assume that (un) is a sequence in HL([a, b], E+) that
converges to u ∈ HL([a, b], E), i.e., ‖un − u‖A → 0 as n → ∞. This implies
by (9.48) that

K

∫ d

c

un(s) ds→ K

∫ d

c

u(s) ds for all [c, d] ⊆ [a, b] as n→∞. (9.49)

Since 0 ≤ un(s) for every n and for a.e. s ∈ [a, b], it follows from Lemma
9.11 that 0 ≤ K

∫ d
c
un(s) ds, or equivalently, K

∫ d
c
un(s) ds ∈ E+, for all n and

[c, d] ⊆ [a, b]. Because E+ is closed, from (9.49) we get K
∫ d
c
u(s) ds ∈ E+, for

all n and [c, d] ⊆ [a, b]. Thus u(t) ∈ E+ for a.e. t ∈ [a, b] by Lemma 9.23, so
that u ∈ HL([a, b], E+). This proves that HL([a, b], E+) is closed. Moreover,
if u, v ∈ HL([a, b], E), then
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u(t) ≤ v(t) for a.e. t ∈ [a, b] if and only if v − u ∈ HL([a, b], E+).

Thus HL([a, b], E+) induces the a.e. pointwise ordering to HL([a, b], E). ut

The next result provides properties for the order cone HL([a, b], E+).

Theorem 9.30. Let E be an ordered Banach space and E+ its order cone.

(a) If E+ is normal, then HL([a, b], E+) is normal.
(b) If E+ is regular, then HL([a, b], E+) is regular.

Proof: Ad (a) Assume that E+ is normal, that u, v ∈ HL([a, b], E+), and
that u ≤ v. Then

0 ≤ u(s) ≤ v(s) for a.e. s ∈ [a, b].

This result and Lemma 9.11 imply that if I is a closed subinterval of [a, b],
then

0 ≤ K

∫
I

u(s) ds ≤ K

∫
I

v(s) ds.

Since E+ is normal, there exists a λ ≥ 1 such that∥∥∥∥K∫
I

u(s) ds
∥∥∥∥ ≤ λ

∥∥∥∥K∫
I

v(s) ds
∥∥∥∥.

Since this result holds for every closed subinterval I of [a, b], we then have

‖u‖A = sup
{∥∥∥∥K∫ d

c

u(s) ds
∥∥∥∥ : [c, d] ⊆ [a, b]

}
≤ λ sup

{∥∥∥∥K∫ d

c

v(s) ds
∥∥∥∥ : [c, d] ⊆ [a, b]

}
= λ‖v‖A.

This shows that HL([a, b], E+) is normal.
Ad (b) Assume that (un)∞n=1 is an increasing sequence in HL([a, b], E+),

and that it has an upper bound u+ in HL([a, b], E+). Thus

0 ≤ un(s) ≤ un+1(s) ≤ u+(s) for a.e. s ∈ [a, b]. (9.50)

According to Theorem 9.27 there exists an HL integrable function u : [a, b] →
E such that u(s) = limn un(s) for a.e. s ∈ [a, b]. Moreover, it follows from
(9.50) and [133, Proposition 1.1.3] that

0 ≤ un(s) ≤ un+1(s) ≤ u(s) for a.e. s ∈ [a, b]. (9.51)

In particular, u−un ∈ HL([a, b], E+) for every n ∈ N. This result and Lemma
9.11 imply that if I is a closed subinterval of [a, b], then

K

∫
I

(u(s)− un(s)) ds ∈ E+.
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Consequently, if [c, d] is a closed subinterval of [a, b], then

0 ≤ K

∫ d

c

(u(s)− un(s)) ds ≤
(
K

∫ c

a

+ K

∫ d

c

+ K

∫ b

d

)
(u(s)− un(s)) ds

= K

∫ b

a

(u(s)− un(s)) ds.

The last inequality and the normality of E+ result in∥∥∥∥K∫ d

c

(u(s)− un(s)) ds
∥∥∥∥ ≤ λ

∥∥∥∥K∫ b

a

(u(s)− un(s)) ds
∥∥∥∥.

This inequality is valid for every n ∈ N and for every closed subinterval [c, d]
of [a, b], whence we conclude

‖u− un‖A = sup
{∥∥∥∥K∫ d

c

(u(s)− un(s)) ds
∥∥∥∥ : [c, d] ⊆ [a, b]

}
≤ λ

∥∥∥∥K∫ b

a

(u(s)− un(s)) ds
∥∥∥∥.

Since K
∫ b
a
(u(s)− un)(s) ds→ 0 by Theorem 9.27, we see that ‖u− un‖A → 0

as n→∞. This proves that HL([a, b], E+) is regular. ut

9.2 Chains in Ordered Function Spaces

In this section we study the existence of supremums of chains in ordered
function spaces. In this study we apply the next result, which follows, e.g.,
from [44, Lemma A.3.1] and [133, Proposition 1.1.5].

Lemma 9.31. Let C be a well-ordered subset of an ordered normed space
E, and assume that each increasing sequence of C has a weak (respectively
strong) limit in E. Then C contains an increasing sequence that converges
weakly (respectively strongly) to supC.

9.2.1 Chains in Lp-Spaces

Our goal in this subsection is to study chains of the function space Lp(Ω,E),
1 ≤ p ≤ ∞, ordered a.e. pointwise, where Ω = (Ω,A, µ) is a σ-finite measure
space and E is an ordered Banach space.

As an application of Proposition 9.5 and Lemma 9.31 we prove the follow-
ing result.

Lemma 9.32. Given an ordered Banach space E whose bounded and increas-
ing sequences have weak limits, and p ∈ [1,∞), assume that C is a bounded
and well-ordered chain of Lp(Ω,E). If µ(Ω) < ∞, then C contains an in-
creasing sequence that converges weakly a.e. pointwise to supC.
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Proof: Let C be a bounded and well-ordered chain of Lp(Ω,E). Because
µ(Ω) < ∞, then Lp(Ω,E) is continuously embedded in L1(Ω,E), so that C
is a bounded and well-ordered chain in L1(Ω,E). If u, v ∈ C and u ≤ v, then∫
Ω
u ≤

∫
Ω
v by Lemma 9.4. Thus {

∫
Ω
v}v∈C is a bounded and well-ordered

subset of E whose bounded and increasing sequences have weak limits. By
Lemma 9.31 there is an increasing sequence (un)∞n=1 in C such that

w lim
n→∞

∫
Ω

un = sup
n

∫
Ω

un = sup
v∈C

∫
Ω

v. (9.52)

Moreover, for a.e. t ∈ Ω the sequence (un(t))∞n=1 is increasing and bounded,
so that

u(t) =w lim
n→∞

un(t) = sup
n
un(t) (9.53)

exists for a.e. t ∈ Ω by a hypothesis, and u ∈ Lp(Ω,E) due to Proposition
9.5.

To show that u is an upper bound of C, let w ∈ C be given. Assume first
that un ≤ w for each n ∈ N. Then u ≤ w by (9.53). It follows from (9.52) and
(9.53) that ∫

Ω

w ≤ sup
v∈C

∫
Ω

v = sup
n

∫
Ω

un ≤
∫
Ω

u. (9.54)

If A is a measurable subset of Ω, then
∫
A
u ≤

∫
A
w and

∫
Ω\A u ≤

∫
Ω\A w by

Lemma 9.4. If
∫
A
u <

∫
A
w, then∫

Ω

u =
∫
A

u+
∫
Ω\A

u <

∫
A

w +
∫
Ω\A

w =
∫
Ω

w,

which contradicts with (9.54). Thus
∫
A
u =

∫
A
w for each measurable subset

A of Ω, so that w = u by [164, VI, Corollary 5.16]. The above proof shows
that

w = u, whenever w ∈ C and un ≤ w for all n ∈ N.

If w ≤ un for some n ∈ N, then w ≤ u by (9.53). Thus w ≤ u for each w ∈ C.
To show that u = supC, let v ∈ Lp(Ω,E) be an upper bound of C. Then

un(t) ≤ v(t) for a.e. t ∈ Ω and for all n ∈ N. This result and (9.53) imply
that u(t) = supn un(t) ≤ v(t) for a.e. t ∈ Ω, i.e., u ≤ v. Thus u = supC. ut

Consider next the case when p = ∞.

Lemma 9.33. Let E be an ordered Banach space whose bounded and increas-
ing sequences have weak limits. If µ(Ω) < ∞, then each bounded and well-
ordered chain C of L∞(Ω,E) contains an increasing sequence that converges
weakly a.e. pointwise to supC.

Proof: If u ∈ L∞(Ω,E), then ‖u(t)‖ ≤ ‖u‖∞ for a.e. t ∈ Ω, which implies
that ‖u‖1 ≤ µ(Ω)‖u‖∞. This shows that L∞(Ω,E) is continuously embedded
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in L1(Ω,E). Let C be a bounded and well-ordered chain in L∞(Ω,E). Then
C is a bounded and well-ordered chain also in L1(Ω,E). If (un)∞n=1 is an
increasing sequence in C, there is M > 0 such that for each n ∈ N,

‖un(t)‖ ≤ ‖un‖∞ ≤M for a.e. t ∈ Ω.

Thus (un)∞n=1 is also a.e. pointwise bounded. Hence, C has by the proof of
Lemma 9.32 a supremum u in L1(Ω,E), and there is an increasing sequence
(un)∞n=1 in C that converges weakly a.e. pointwise in Ω to u. Moreover, (9.5)
and the above inequality imply that

‖u(t)‖ ≤ lim inf
n→∞

‖un(t)‖ ≤M for a.e. t ∈ Ω.

Therefore, u belongs to L∞(Ω,E), and it is easy to see that u = supC is also
in L∞(Ω,E). ut

The next result extends the results of Lemma 9.32 to the case when µ is
σ-finite.

Proposition 9.34. Let (Ω,A, µ) be a σ-finite measure space and E an or-
dered Banach space whose bounded and increasing sequences have weak lim-
its. Assume that C is a bounded well-ordered chain in Lp(Ω,E), 1 ≤ p <∞.
Then C contains an increasing sequence that converges weakly a.e. pointwise
to supC.

Proof: Since Ω is σ-finite, then Ω =
⋃∞
n=0Ωn, where Ωn ⊆ Ωn+1 and

µ(Ωn) < ∞ for each n ∈ N0. Let C be a well-ordered and bounded chain
in Lp(Ω,E), 1 ≤ p < ∞. The restriction C|Ωn = {u|Ωn : u ∈ C} is for
each n ∈ N0 a well-ordered and bounded chain in Lp(Ωn, E). It follows from
Lemma 9.32 that

vn = sup(C|Ωn)

exists in Lp(Ωn, E). Denoting u = minC, and defining vn(t) = u(t) for t ∈
Ω \ Ωn, we obtain a sequence of µ-measurable functions vn : Ω → E. This
sequence is increasing, since Ωn ⊆ Ωn+1. It is also a.e. pointwise bounded,
whence

u∗(t) =w lim
n→∞

vn(t) = sup
n∈N0

vn(t)

exists for a.e. t ∈ Ω. Defining u∗(t) = 0 for the remaining t ∈ Ω, we obtain by
Proposition 9.5 a function u∗ ∈ Lp(Ω,E). By the proof of Lemma 9.32, for
each n ∈ N0 there exists an increasing sequence (unk )

∞
k=0 of C and a µ-null set

Zn ⊂ Ωn such that

vn(t) =w lim
k→∞

unk (t) = sup
k∈N0

unk (t) for each t ∈ Ωn \ Zn.

Denoting
un = max{ujn : 0 ≤ j ≤ n}, n ∈ N0,
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we obtain an increasing sequence (un) of C, which satisfies

unk (t) ≤ un(t) ≤ u∗(t) for each k = 0, . . . , n and t ∈ Ωn \ Zn.

In particular (un(t))∞n=0) is increasing and bounded for each t ∈ Ω \Z, where
Z = ∪∞n=0Zn, so that

u(t) =w lim
k→∞

un(t) = sup
n∈N0

un(t)

exists for each t ∈ Ω \ Z. Moreover, the definitions of u and vn imply that

vn(t) ≤ u(t) ≤ u∗(t) for each t ∈ Ωn \ Zn.

Thus
u∗(t) =w lim

n→∞
vn(t) ≤ u(t) ≤ u∗(t)

for a.e. t ∈ Ω. This result shows that u = u∗, whence un(t) ⇀ u∗(t) for a.e.
t ∈ Ω.

It remains to prove that u∗ = supC. If w ∈ C, then w|Ωn ≤ vn, so that

w(t) ≤ vn(t) ≤ u∗(t) for a.e. t ∈ Ωn and for each n ∈ N0.

Thus w ≤ u∗ for each w ∈ C, so that u∗ is an upper bound of C. If v ∈
Lp(Ω,E) is another upper bound of C, then w(t) ≤ v(t) for a.e. t ∈ Ω and
for each w ∈ C. Thus w|Ωn ≤ v|Ωn for all n ∈ N0 and w ∈ C, whence
vn(t) ≤ v(t) for a.e. t ∈ Ω and for each n ∈ N0. This result and the definition
of u∗ imply that u∗ ≤ v, so that u∗ = supC in Lp(Ω,E). ut

9.2.2 Chains of Locally Bochner Integrable Functions

We say that a nonempty subset Ω of the space Rm is hemicompact if Ω is
a countable union of compact subsets of Rm. A strongly measurable mapping
u from a hemicompact set to a Banach space is called locally Bochner
integrable on Ω, and denote u ∈ L1

loc(Ω,E), if u is Bochner integrable on
each compact subset K of Ω.

Next we study chains in the a.e. pointwise ordered space L1
loc(Ω,E), where

E is an ordered Banach space. In this study we use the following result,
which is an immediate consequence of Proposition 1.3.2, Lemma 5.8.2, and
Proposition 5.8.7 of [133].

Lemma 9.35. Assume that C is a nonempty subset of Lp(Ω,E), 1 ≤ p <∞,
where Ω is a measure space and E is an ordered Banach space with regular
order cone. If C is well-ordered with respect to a.e. pointwise ordering, and
if there exist functions u± ∈ Lp(Ω,E) such that u−(t) ≤ u(t) ≤ u+(t) for
all u ∈ C and for a.e. t ∈ Ω, then C contains an increasing sequence that
converges a.e. pointwise to supC.
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As an application of Lemma 9.35 we obtain the following proposition.

Proposition 9.36. Let Ω be a hemicompact subset of Rm. Assume that C is
a nonempty subset of L1

loc(Ω,E), E is an ordered Banach space with regular
order cone, and that there exist functions u± ∈ L1

loc(Ω,E) such that C ⊆
[u−, u+], i.e.,

u−(t) ≤ u(t) ≤ u+(t) for all u ∈ C and for a.e. t ∈ Ω. (9.55)

If C is well-ordered with respect to the a.e. pointwise ordering, it contains an
increasing sequence that converges a.e. pointwise to supC.

Proof: Assume that C is well-ordered and (9.55) holds. Choose a sequence
of compact subsets Ωn, n ∈ N0, of Ω such that Ω = ∪∞n=0Ωn, and that
Ωn ⊂ Ωn+1 for each n ∈ N0. The given assumptions ensure that for each
n ∈ N0 the restrictions u|Ωn, u ∈ C, form a well-ordered and order-bounded
chain Cn in L1(Ωn, E), ordered a.e. pointwise. It follows from Lemma 9.35
that for each n ∈ N0

vn = supCn

exists in L1(Ωn, E), and there exists an increasing sequence (ukn)
∞
k=0 of C and

a null-set Zn ⊂ Ωn such that

vn(t) = lim
k→∞

ukn(t) = sup
k∈N0

ukn(t) for each t ∈ Ωn \ Zn. (9.56)

Denoting u = minC, and defining vn(t) = u(t) for t ∈ Ω \ Ωn, we obtain a
sequence of strongly measurable functions vn : Ω → E. The sequence (vn)
is also increasing since Ωn ⊂ Ωn+1, n ∈ N0. It is also a.e. pointwise order
bounded by (9.55) and (9.56), whence

u∗(t) = lim
n→∞

vn(t) = sup
n∈N0

vn(t) (9.57)

exists for a.e. t ∈ Ω. Defining u∗(t) = 0 for the remaining t ∈ Ω we get a
strongly measurable function u∗ : Ω → E. Denoting

un = max{unj : 0 ≤ j ≤ n}, n ∈ N0,

we obtain an increasing sequence (un) of C that satisfies

ukn(t) ≤ un(t) ≤ u∗(t)

for each k = 0, . . . , n and t ∈ Ωn \ Zn. Moreover, by (9.55) the sets Zn can
be chosen in such a way that (un(t))∞n=0 is order bounded and increasing for
each t ∈ Ω \ Z, where Z = ∪∞n=0Zn. Thus

u(t) = lim
n→∞

un(t) = sup
n∈N0

un(t)
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exists for each t ∈ Ω \ Z. The definitions of vn and u imply that

vn(t) ≤ u(t) ≤ u∗(t) for each t ∈ Ωn \ Zn.

Thus
u∗(t) = lim

n→∞
vn(t) ≤ u(t) ≤ u∗(t)

for a.e. t ∈ Ω. This result implies that u = u∗, whence un(t) → u∗(t) for a.e.
t ∈ Ω. Since (un)∞n=0 is a sequence of C, it follows from (9.55) that

u−(t) ≤ u∗(t) ≤ u+(t) for a.e t ∈ Ω.

This result and the strong measurability of u∗ imply that u∗ ∈ L1
loc(Ω,E).

The proof that u∗ = supC is similar to that presented in the proof of
Proposition 9.34. ut

Since each increasing sequence of L1
loc(Ω,E) is well-ordered and each de-

creasing sequence of L1
loc(Ω,E) is inversely well-ordered, as a consequence of

Proposition 9.36 and its dual, as well as [133, Proposition 1.1.3 and Corollary
1.1.3] we obtain the following results.

Corollary 9.37. Assume that (un) is a sequence of L1
loc(Ω,E), that the order

cone of E is regular, and that there exist functions w± ∈ L1
loc(Ω,E) such that

un ∈ [w−, w+] for each n.

(a) If (un) is increasing, it converges a.e. pointwise to u∗ = supn un in
L1
loc(Ω,E), and u∗ belongs to [w−, w+].

(b) If (un) is decreasing, it converges a.e. pointwise to u∗ = infn un in
L1
loc(Ω,E), and u∗ belongs to [w−, w+].

9.2.3 Chains of HL Integrable and Locally HL Integrable
Functions

First we study the a.e. pointwise ordered spaces HL([a, b], E) of HL integrable
functions from [a, b] to an ordered Banach space E that has a regular order
cone.

Proposition 9.38. Let C be a nonempty set of strongly measurable functions
from [a, b] to an ordered Banach space E with a regular order cone. Assume
that there exist u± ∈ HL([a, b], E) such that u−(s) ≤ u(s) ≤ u+(s) for all
u ∈ C and for a.e. s ∈ [a, b]. Then the following results hold.

(a) u ∈ HL([a, b], E), for each u ∈ C.
(b) If C is well-ordered with respect to a.e. pointwise ordering, then C con-

tains an increasing sequence that converges a.e. pointwise to supC in
HL([a, b], E).

(c) If C is inversely well-ordered with respect to a.e. pointwise ordering, then
C contains a decreasing sequence that converges a.e. pointwise to inf C in
HL([a, b], E).
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Proof: Ad (a) is a consequence of Proposition 9.14.
Ad (b) By hypothesis, C is an order bounded and well-ordered chain in the

normed space (HL([a, b], E), ‖·‖A), ordered by the cone HL([a, b], E+), which
is regular by Theorem 9.30. Thus every increasing sequence of C converges
in (HL([a, b], E), ‖ · ‖A). It then follows from Lemma 9.31 that C contains
an increasing sequence (un) that converges to supC in (HL([a, b], E), ‖ · ‖A).
Since (un) is order bounded, it satisfies also the hypotheses of Theorem 9.27.
Thus (un) converges also a.e. pointwise to supC.

Ad (c) The proof of (c) is similar to that of (b). ut

We say that a function u from a real interval J to a Banach space E
is locally HL integrable on J , if u is HL integrable on every compact
subinterval of J . Denote by HLloc(J,E) the space of such functions. In the
next proposition the interval J may be unbounded, open, or half-open.

Proposition 9.39. Let C be a nonempty set of strongly measurable functions
from a real interval J to an ordered Banach space E with a regular order cone.
Assume that there exist u± ∈ HLloc(J,E) such that u−(s) ≤ u(s) ≤ u+(s)
for all u ∈ C and for a.e. s ∈ J . Then the following results hold.

(a) u ∈ HLloc(J,E), for each u ∈ C.
(b) If C is well-ordered with respect to a.e. pointwise ordering, then C con-

tains an increasing sequence that converges a.e. pointwise to supC in
HLloc(J,E).

(c) If C is inversely well-ordered with respect to a.e. pointwise ordering, then
C contains a decreasing sequence that converges a.e. pointwise to inf C in
HLloc(J,E).

Proof: Ad (a) The conclusion follows from the definition of HLloc(J,E) and
from Proposition 9.14.

Ad (b) Assume next that C is well-ordered. Choose a sequence of compact
subintervals Jn, n ∈ N0, of J such that J = ∪∞n=0Jn, and that Jn ⊂ Jn+1

for each n ∈ N0. The given assumptions ensure that for each n ∈ N0, the
restrictions u|Jn

, u ∈ C form a well-ordered and order-bounded chain Cn in
HL(Jn, E) ordered a.e. pointwise. It follows from Proposition 9.38 that for
each n ∈ N0,

vn = supCn

exists in HL(Jn, E), and there exist an increasing sequence (ukn)
∞
k=0 of C and

a null-set Zn ⊂ Jn such that

vn(t) = lim
k→∞

ukn(t) = sup
k∈N0

ukn(t) for each t ∈ Jn \ Zn.

Defining vn(t) = u−(t) for t ∈ J \ Jn, we obtain a sequence of strongly
measurable functions vn : J → E. The sequence (vn) is also increasing since
Jn ⊂ Jn+1, n ∈ N0. By assumption it is also a.e. pointwise order bounded,
whence
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u∗(t) = lim
n→∞

vn(t) = sup
n∈N0

vn(t)

exists for a.e. t ∈ [a, b]. Defining u∗(t) = 0 for the remaining t ∈ J we get a
strongly measurable function u∗ : J → E. Denoting

un = max{ukk : 0 ≤ k ≤ n}, n ∈ N0,

we obtain an increasing sequence (un) of C that satisfies

ukn(t) ≤ un(t) ≤ u∗(t)

for each k = 0, . . . , n and t ∈ Jn \ Zn. Moreover, the sets Zn can be chosen
in such a way that (un(t))∞n=0 is order bounded and increasing for each t ∈
[a, b) \ Z, where Z = ∪∞n=0Zn. Thus

u(t) = lim
n→∞

un(t) = sup
n∈N0

un(t)

exists for each t ∈ [a, b) \ Z. The definitions of vn and u imply that

vn(t) ≤ u(t) ≤ u∗(t) for each t ∈ Jn \ Zn.

Thus
u∗(t) = lim

n→∞
vn(t) ≤ u(t) ≤ u∗(t)

for a.e. t ∈ [a, b). This result implies that u = u∗, whence un(t) → u∗(t)
for a.e. t ∈ J . Since (un)∞n=0 is a sequence of C, it belongs to the order
interval [u−, u+] of HLloc(J,X). The latter result and Theorem 9.27 imply
that u∗ ∈ HLloc([a, b), E).

It remains to prove that u∗ = supC. If w ∈ C, then w|Jn ∈ Cn, whence
w|Jn ≤ supCn = vn, so that

w(t) ≤ vn(t) ≤ u∗(t) for a.e. t ∈ Jn and for each n ∈ N0.

Thus w ≤ u∗ for each w ∈ C, so that u∗ is an upper bound of C. If v ∈
HLloc([a, b), E) is another upper bound of C, then

w(t) ≤ v(t) for a.e. t ∈ Jn and for each n ∈ N0.

Thus w|Jn ≤ v|Jn for all n ∈ N0 and w ∈ C, whence

vn(t) ≤ v(t) for a.e. t ∈ Jn and for each n ∈ N0.

This result and the definition of u∗ imply that u∗ ≤ v. Consequently, u∗ =
supC.

Ad (c) The proof of (c) is similar to that of (b). ut
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9.2.4 Chains of Continuous Functions

Consider first the existence of supremums of well-ordered chains in the space
C(X,E) of continuous functions u : X → E, where X is a topological space
and E is an ordered normed space. Define a partial ordering in C(X,E) by

u ≤ v if and only if u(t) ≤ v(t) for each t ∈ X. (9.58)

We say that a subset C of C(X,E) is equicontinuous if for each t ∈ X and for
each ε > 0 there exists a neighborhood U of t such that

‖u(s)− u(t)‖ ≤ ε for all u ∈ C and s ∈ U. (9.59)

Proposition 9.40. Let E be an ordered normed space, X a topological space,
and let C be an equicontinuous and well-ordered subset of C(X,E), whose
increasing sequences have weak pointwise limits. Then v = supC exists in
C(X,E).

Proof: The hypotheses given for C imply that for each t ∈ E the set {u(t)}u∈C
is a well-ordered subset of E whose increasing sequences have weak limits,
which in view of Lemma 9.31 implies that

v(t) = sup{u(t)}u∈C (9.60)

exists in E for each t ∈ Ω. To prove that the so obtained function v : X → E is
the supremum of C in C(X,E), it suffices to show its continuity. Let t ∈ X and
ε > 0 be given. By the equicontinuity hypothesis there is such a neighborhood
U of t that

‖u(s)− u(t)‖ ≤ ε whenever s ∈ U and u ∈ C.

Let s ∈ U be fixed. By Lemma 9.31 there exists an increasing sequence (vn)∞n=0

in C such that (vn(s))∞n=0 converges weakly in E to v(s), and an increasing
sequence (un)∞n=0 in C such that (un(t))∞n=0 converges weakly in E to v(t). De-
noting zn = max{vn, un}, n ∈ N0, we obtain an increasing sequence (zn)∞n=0 in
C. Taking into account the hypotheses it converges weakly pointwise, whence
(zn(s))∞k=0 converges weakly in E to v(s), and (zn(t))∞k=0 converges weakly in
E to v(t). Thus (zn(s) − zn(t))∞k=0 converges weakly in E to v(s) − v(t), so
that

‖v(s)− v(t)‖ ≤ lim inf
n→∞

‖zn(s)− zn(t)‖ ≤ ε.

This holds for each s ∈ U , which shows that v is continuous at t. Thus
v ∈ C(X,E), whence v is the supremum of C in C(X,E). ut

If X is a separable topological space we have the following result.

Proposition 9.41. Let E be an ordered normed space, X a separable topo-
logical space, and let C be an equicontinuous well-ordered subset of C(X,E)
whose increasing sequences have weak pointwise limits. Then v = supC exists,
and there is an increasing sequence (un) of C such that un(t) ⇀ v(t) for each
t ∈ X.
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Proof: Let D = {tj}j∈N0 be a dense subset of X. It follows from Proposition
9.40 that v = supC exists in C(X,E) and satisfies (9.60). Moreover, the proof
of Proposition 9.40 implies that the set C ∪ {v} is equicontinuous, and that
for each j ∈ N0, there is a sequence (ujk)

∞
k=0 in C that converges weakly to

v(tj). Denote
un = max{ujk : 0 ≤ j, k ≤ n}, n ∈ N0.

The so obtained sequence (un) is increasing, is contained in C, and un(t) ⇀
v(t) for each t ∈ D. To prove this convergence also when t belongs to the
complement of D, let t ∈ X \ D, ε > 0, and f ∈ E′ be given. Choose a
neighborhood U of t such that

‖u(s)− u(t)‖ ≤ ε

1 + 4‖f‖
for all u ∈ C ∪ {x} and s ∈ U. (9.61)

Since D is a dense subset of E, we can choose s in (9.61) so that it belongs
to U ∩D. The sequence (un(t)) has by hypothesis a weak limit z. We have to
prove that z = v(t). Since un(t) ⇀ z and un(s) ⇀ v(s), there is n ∈ N0 such
that

|f(un(t))− f(z)| ≤ ε

4
and |f(un(s))− f(v(s))| ≤ ε

4
. (9.62)

Applying (9.61) and (9.62) we get

|f(z − v(t))| = |f(z)− f(v(t))| ≤ |f(z)− f(un(t))|+ ‖f‖ ‖un(t)− (un(s)‖
+|f(un(s))− f(v(s))|+ ‖f‖ ‖v(s))− v(t)‖ ≤ ε.

This holds for each f ∈ E′ and for each ε > 0, whence z = v(t). Thus
un(t) ⇀ v(t) also when t ∈ X \D, which concludes the proof. ut

Remark 9.42. The results of Propositions 9.40 and 9.41 are valid also when
weak convergence is replaced by strong convergence.

Next we consider ordered topological spaces X that have the following
property.

(C) Each nonempty well-ordered chain C of X whose increasing sequences
converge contains an increasing sequence that converges to supC, and
each nonempty inversely well-ordered chain D of X whose decreasing se-
quences converge contains a decreasing sequence that converges to infD.

For instance, the following ordered topological spaces possess property (C).

- If X satisfies the second countability axiom, then each chain of X is sepa-
rable, whence property (C) follows from [133, Lemma 1.1.7] and its dual.

- Each ordered metric space has property (C) by [133, Proposition 1.1.5]
and its dual.

- Each nonempty subset X of an ordered normed space E has property (C)
with respect to the norm topology, and with respect to the weak topology
as well due to [44, Lemma A.3.1] and its dual.
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Consider next the case when X is a subset of the space C(Y,Z) of contin-
uous functions x : Y → Z, where Y is a topological space and Z is an ordered
topological space. In what follows, we assume that C(Y,Z), and all its sub-
sets are equipped with the pointwise ordering and the topology of pointwise
convergence.

Lemma 9.43. Let Y be a separable topological space and Z an ordered Haus-
dorff space that has property (C). Then each nonempty subset X of C(Y, Z)
is an ordered topological space that has property (C).

Proof: LetW be a well-ordered chain in a nonempty subsetX of C(Y,Z), and
assume that each increasing sequence of W converges pointwise to a mapping
of X. For each s ∈ Y the set W (s) = {x(s)}x∈W is a well-ordered chain of Z.
For if A is a nonempty subset of W (s), then the set B = {x ∈W : x(s) ∈ A}
is nonempty, and thus it has the smallest element y. Therefore, y(s) = minA
because of the pointwise ordering of C(Y,Z). Since Y is separable, it contains
a countable and dense subset D = {sj}, 0 ≤ j < m ≤ ∞. Let s ∈ D be
fixed, and let (znk

)∞k=0 be a subsequence of an increasing sequence (zn)∞n=0 of
W (s). If (znk

)∞k=k0 is a constant sequence for some k0 ∈ N0, then znk0
is the

limit of (znk
)∞k=0. Otherwise (znk

)∞k=0 has a strictly increasing subsequence
(znki

)∞i=0. Since the members of this subsequence belong to W (s), and since
W is well-ordered with respect to the pointwise ordering of C(Y,Z), there
exists an increasing sequence (xi)∞i=0 in W such that xi(s) = znki

for each
i ∈ N0 (take xi = min{x ∈ W : x(s) = znki

}). Because (xi)∞i=0 converges
pointwise, then (xi(s))∞i=0 = (znki

)∞i=0 converges. Consequently, each subse-
quence of (zn)∞n=0 has a convergent subsequence, whence (zn)∞n=0 converges
due to [133, Corollary 1.1.3].

The above proof shows that each increasing sequence (zn)∞n=0 of W (s) con-
verges when s ∈ D. Since W (s) is a well-ordered chain in Z that has property
(C), then for each sj ∈ D, there exists an increasing sequence (xjk(sj))

∞
k=0 in

W (sj) such that
lim
k→∞

xjk(sj) = supW (sj). (9.63)

Denote
xn = max{xjk : 0 ≤ j, k ≤ n}, n ∈ N0. (9.64)

The so obtained sequence (xn)∞n=0 is an increasing sequence of W , whence it
converges pointwise to a mapping of X by hypothesis. Denoting

x(s) = lim
n→∞

xn(s), s ∈ Y, (9.65)

it follows from (9.63), (9.64), and (9.65) that

x(sj) = supW (sj) for each sj ∈ D. (9.66)

To show that x = supW , let s ∈ Y \D be given. The above proof shows that
there exists an increasing sequence (yn)∞n=0 in W such that
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lim
n→∞

yn(s) = supW (s). (9.67)

With zn given by zn = max{xn, yn}, n ∈ N0, we obtain an increasing se-
quence (zn)∞n=0 of W . Denoting by z its limit function, which by hypothesis
is continuous, it follows from (9.66) and (9.67) that

z(sj) = supW (sj), sj ∈ D and z(s) = supW (s). (9.68)

Both x and z are continuous, their restrictions to the dense subset D of Y
are equal by (9.66) and (9.68). Since Z is a Hausdorff space, then z = x. In
particular,

x(s) = lim
n→∞

xn(s) = supW (s).

This result holds for all s ∈ Y \D. It holds by (9.65) and (9.66) also for all
s ∈ D, and hence it follows that x is the pointwise supremum of W . Obviously,
x = supW with respect to the pointwise ordering of X. Moreover, x is the
pointwise limit of an increasing sequence (xn)∞n=0 of W .

The proof that each inversely well-ordered chain W of X whose decreasing
sequences converge pointwise in X contains a decreasing sequence that con-
verges pointwise to infW in X is dual to the above proof. ut

Assume next that Y is a topological space and Z = (Z, d) is a metric
space. We say that a subset W of C(Y,Z) is equicontinuous if for each t ∈ Y
and for each ε > 0 there exists a neighborhood U of t such that

d(x(s), x(t)) ≤ ε for all x ∈W and s ∈ U.

The next result is an easy consequence of the proofs of [133, Proposition
1.3.8], and [84, (7.5.6)].

Lemma 9.44. Let Y be a topological space and Z = (Z, d) an ordered metric
space. If a pointwise monotone and equicontinuous sequence of functions from
Y to Z has a pointwise limit, this limit function is continuous. If Y is a
compact metric space, then the convergence is uniform.

9.2.5 Chains of Random Variables

Let B be a closed and bounded ball of a separable and weakly sequentially
complete ordered Banach space E whose order cone is normal. Denote by B the
σ-algebra of Borel sets of B. Let (Ω,P ) denote a probability space and X the
space of all B-valued random variables on (Ω,P ), i.e., measurable mappings
x : (Ω,P ) → (B,B). Define a Ky Fan metric α and a partial ordering ≤r in
X by

α(x, y) = inf{ε > 0 : P{ω ∈ Ω : (‖x(ω)− y(ω)‖ > ε} ≤ ε},
x ≤r y if and only if P{ω ∈ Ω : x(ω) ≤ y(ω)} = 1.

It can be shown that (X,≤r, α) is an ordered metric space.
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Lemma 9.45. Each monotone sequence of (X,≤r) converges in (X,α).

Proof: Let (xn)∞n=1 be a monotone sequence in (X,≤r). The definition of ≤r
implies that for a.e. ω ∈ Ω the sequence (xn(ω))∞n=1 of E is monotone. Since
B is bounded, it follows from Lemma 9.3 that the limit x(ω) = lim

n→∞
xn(ω)

exists for a.e. ω ∈ Ω. Thus x is (equal a.e. to) a B-valued random variable by
[85, Theorem 4.2.2], and xn → x a.e., and hence also in probability. Because
the Ky Fan metric α metrizes the convergence in probability by [85, Theorem
9.2.2], then α(xn, x) → 0. ut

Because every ordered metric space has property (C), the following result
is a consequence of Lemma 9.45.

Proposition 9.46. Let C be a chain in (X,≤r). Then the following properties
hold.

(a) C contains an increasing sequence that converges in probability a.e. point-
wise to supC in X.

(b) C contains a decreasing sequence that converges in probability a.e. point-
wise to inf C in X.

9.2.6 Properties of Order Intervals and Balls in Ordered Function
Spaces

First we consider the existence of supremums and infimums of chains in or-
dered spaces of functions whose values are in a normed space that is ordered
by a regular order cone.

Proposition 9.47. Let E be an ordered Banach space whose order cone is
regular, and assume that [u, u] is an order interval in any of the following a.e.
pointwise ordered function spaces.

(a) Lp(Ω,E), 1 ≤ p <∞, where Ω is a σ-finite measure space.
(b) L1

loc(Ω,E), where Ω is a hemicompact subset of Rm.
(c) HL(J,E), where J is a compact interval in R.
(d) HLloc(J,E), where J is an open interval in R.

Then supW and infW exist and belong to [u, u] whenever W is a chain in
[u, u]. Moreover, there exists an increasing sequence in W that converges a.e.
pointwise to supW and a decreasing sequence in W that converges a.e. point-
wise to infW .

Proof: Let W be a chain in [u, u], and let C be a well-ordered cofinal subchain
W . Since C is contained in [u, u], it follows from Lemma 9.35 and Propositions
9.36, 9.38, and 9.39 that in each of the cases (a)–(d), C contains an increasing
sequence (un) that converges a.e. pointwise to u = supC = supW , and u
belongs to [u, u]. The proof that infW exists, and belongs to [u, u], and that
it is the a.e. pointwise limit of a decreasing sequence of W is similar. ut
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The reasoning of the above proof, Remark 9.42, and the results of Propo-
sitions 9.40 and 9.41 lead to the following result.

Proposition 9.48. Given an ordered normed space E whose order cone is
regular, and an ordered topological space X. Assume that [u, u] is an order
interval in the pointwise ordered space C(X,E) of continuous functions from
X to E. Then supW and infW exist and belong to [u, u] whenever W is an
equicontinuous chain in [u, u]. Moreover, if X is separable, there exists an
increasing sequence in W that converges pointwise to supW and a decreasing
sequence in W that converges pointwise to infW .

Next we study the existence of supremums and infimums in bounded balls
and in order intervals of ordered function spaces. In what follows, E is an
ordered Banach space having the following properties.

(E0) Bounded and monotone sequences of E have weak or strong limits.
(E1) E is lattice-ordered and ‖x+‖ ≤ ‖x‖ for all x ∈ E, where x+ = sup{0, x}.
(E2) The mapping E 3 x→ x+ is continuous.

Proposition 9.49. Let Ω be a σ-finite measure space, E an ordered Banach
space that has properties (E0)–(E2), and 1 ≤ p < ∞. Assume that Lp(Ω,E)
is ordered a.e. pointwise. Given c ∈ Lp(Ω,E) and R ∈ [0,∞), we denote

Bp(c,R) := {u ∈ Lp(Ω,E) : ‖u− c‖p ≤ R}.

(a) sup{c, u} ∈ Bp(c,R) and inf{c, u} ∈ Bp(c,R) for every u ∈ Bp(c,R).
(b) supW ∈ Bp(c,R) and infW ∈ Bp(c,R) for every chain W of Bp(c,R).

Proof: Ad (a) Property (E2) and Proposition 9.2 imply that for each v ∈
Lp(Ω,E) the mapping v+ = t 7→ v(t)+ is µ-measurable. Moreover, in view
of property (E1) and the definition of the p-norm we have ‖v+‖p ≤ ‖v‖p, so
that v+ ∈ Lp(Ω,E). Thus for each u ∈ Bp(c,R) we obtain

‖ sup{c, u} − c‖p = ‖ inf{c, u} − c‖p = ‖(u− c)+‖p ≤ ‖u− c‖p ≤ R,

which proves (a).
Ad (b) Let W be a chain in Bp(c,R), and let C be a well-ordered cofinal

subchain W . Since C is a chain in Bp(c,R), it is bounded, whence there is
by Proposition 9.34 and property (E0) an increasing sequence (un) in C that
converges weakly a.e. pointwise to u = supC. Moreover, it follows from (9.5)
that

‖u(t)− c(t)‖ ≤ lim inf
n→∞

‖un(t)− c(t)‖ for a.e. t ∈ Ω. (9.69)

The above inequality, Fatou’s Lemma, and the fact that (un) is a sequence in
Bp(c,R) imply that if p ∈ [1,∞), then
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Ω

‖u(t)− c(t)‖pdµ(t) ≤
∫
Ω

lim inf
n→∞

‖un(t)− c(t)‖pdµ(t)

≤ lim inf
n→∞

∫
Ω

‖un(t)− c(t)‖pdµ(t) ≤ R.

The above proof shows that u = supC = supW ∈ Bp(c,R). Similarly one can
show that infW exists and belongs to Bp(c,R). This proves the conclusion
(b). ut

Next we prove corresponding results in the space of continuous functions.

Proposition 9.50. Let X be a topological space, and E be an ordered normed
space with properties (E0)–(E2), and assume that C(X,E) is ordered point-
wise. Given c ∈ C(X,E) and h : X → R+, denote

B(c, h) := {u ∈ C(X,E) : ‖u(t)− c(t)‖ ≤ h(t) for all t ∈ X}.

Then the following assertions hold.

(a) sup{c, u} ∈ B(c, h) and inf{c, u} ∈ B(c, h) for every u ∈ B(c, h).
(b) If X is separable, then supW ∈ B(c, h) and infW ∈ B(c, h) for every

equicontinuous chain W of B(c, h).

Proof: Ad (a) Property (E2) implies that for each v ∈ C(X,E) the mapping
v+ = t 7→ v(t)+ is continuous. Moreover, in view of property (E1) we have
‖v+(t)‖ ≤ ‖v(t)‖ for each t ∈ X, so that

‖ sup{c, u}(t)− c(t)‖ = ‖ inf{c, u}(t)− c(t)‖p = ‖(u− c)+(t)‖
≤ ‖u(t)− c(t)‖ ≤ h(t)

for all u ∈ B(c, h) and t ∈ X, which proves conclusion (a).
Ad (b) Let W be an equicontinuous chain in B(c, h), and let C be a

well-ordered cofinal subchain of W . By Proposition 9.41 there is an increasing
sequence (un) in C that converges weakly pointwise to u = supC = supW .
Since (un) is a sequence in B(c, h), it follows from (9.5) that

‖u(t)− c(t)‖ ≤ lim inf
n→∞

‖un(t)− c(t)‖ ≤ h(t) for all t ∈ U. (9.70)

This proves that u = supW ∈ B(c, h). The proof that infW ∈ B(c, h) is
similar. ut

Remark 9.51. In the considered function spaces, excluding the spaces of con-
tinuous functions with nonseparable domain, the well-ordered chains and their
subchains whose supremums are proved to exist contain cofinal sequences.
This implies by [133, Lemma 1.1.4] and its dual that all those well-ordered
chains are countable. Similarly, all those inversely well-ordered chains of these
function spaces whose infimums are proved to exist are countable.
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9.3 Sobolev Spaces

In this section, we summarize the main properties of Sobolev spaces. These
properties include, e.g., the approximation of Sobolev functions by smooth
functions (density theorems), continuity properties and compactness condi-
tions (embedding theorems), the definition of the boundary values of Sobolev
functions (trace theorem), and calculus for Sobolev functions (chain rule).

9.3.1 Definition of Sobolev Spaces

Let α = (α1, . . . , αN ) with nonnegative integers α1, . . . , αN be a multi-index,
and denote its order by |α| = α1 + · · · + αN . Set Di = ∂/∂xi, i = 1, . . . , N,
and Dαu = Dα1

1 · · ·DαN

N u, with D0u = u. Let Ω be a domain in RN with
N ≥ 1. Then w ∈ L1

loc(Ω) is called the αth weak or generalized derivative of
u ∈ L1

loc(Ω) if and only if∫
Ω

uDαϕ dx = (−1)|α|
∫
Ω

wϕ dx, for all ϕ ∈ C∞
0 (Ω),

holds, where C∞
0 (Ω) denotes the space of infinitely differentiable functions

with compact support in Ω. The generalized derivative w denoted by w = Dαu
is unique up to a change of the values of w on a set of Lebesgue measure zero.

Definition 9.52. Let 1 ≤ p ≤ ∞ and m = 0, 1, 2, . . . . The Sobolev space
Wm,p(Ω) is the space of all functions u ∈ Lp(Ω), which have generalized
derivatives up to order m such that Dαu ∈ Lp(Ω) for all α: |α| ≤ m. For
m = 0, we set W 0,p(Ω) = Lp(Ω).

With the corresponding norms given by

‖u‖Wm,p(Ω) =
( ∑
|α|≤m

‖Dαu‖pLp(Ω)

)1/p

, 1 ≤ p <∞,

‖u‖Wm,∞(Ω) = max
|α|≤m

‖Dαu‖L∞(Ω),

Wm,p(Ω) becomes a Banach space.

Definition 9.53. Wm,p
0 (Ω) is the closure of C∞

0 (Ω) in Wm,p(Ω).

Wm,p
0 (Ω) is a Banach space with the norm ‖ · ‖Wm,p(Ω).

Theorem 9.54. Let Ω ⊂ RN be a bounded domain, N ≥ 1. Then we have
the following:

(i) Wm,p(Ω) is separable for 1 ≤ p <∞.
(ii) Wm,p(Ω) is reflexive for 1 < p <∞.
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(iii) Let 1 ≤ p <∞. Then C∞(Ω)∩Wm,p(Ω) is dense in Wm,p(Ω), and if ∂Ω
is a Lipschitz boundary then C∞(Ω) is dense in Wm,p(Ω), where C∞(Ω)
and C∞(Ω) are the spaces of infinitely differentiable functions in Ω and
Ω, respectively (cf., e.g., [99]).

As for the proofs of these properties we refer to, e.g., [99].
Now we state some Sobolev embedding theorems. Let X,Y be two normed

linear spaces with X ⊆ Y . We recall, the operator i : X → Y defined by
i(u) = u for all u ∈ X is called the embedding operator of X into Y . We say
X is continuously (compactly) embedded in Y if X ⊆ Y and the embedding
operator i : X → Y is continuous (compact).

Theorem 9.55 (Sobolev Embedding Theorem). Let Ω ⊂ RN , N ≥ 1,
be a bounded domain with Lipschitz boundary ∂Ω. Then the following holds.

(i) If mp < N, then the space Wm,p(Ω) is continuously embedded in Lp
∗
(Ω),

p∗ = Np/(N − mp), and compactly embedded in Lq(Ω) for any q with
1 ≤ q < p∗.

(ii) If 0 ≤ k < m− N
p < k + 1, then the space Wm,p(Ω) is continuously em-

bedded in Ck,λ(Ω), λ = m− N
p −k, and compactly embedded in Ck,λ

′
(Ω)

for any λ′ < λ.
(iii) Let 1 ≤ p <∞, then the embeddings

Lp(Ω) ⊃W 1,p(Ω) ⊃W 2,p(Ω) ⊃ · · ·

are compact.

Here Ck,λ(Ω) denotes the Hölder space; cf. [99]. As for the proofs we refer to,
e.g., [99, 229].

The proper definition of boundary values for Sobolev functions is based
on the following theorem.

Theorem 9.56 (Trace Theorem). Let Ω ⊂ RN be a bounded domain with
Lipschitz (C0,1) boundary ∂Ω, N ≥ 1, and 1 ≤ p < ∞. Then there exists
exactly one continuous linear operator

γ : W 1,p(Ω) → Lp(∂Ω)

such that:

(i) γ(u) = u|∂Ω if u ∈ C1(Ω).
(ii) ‖γ(u)‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω) with C depending only on p and Ω.
(iii) If u ∈W 1,p(Ω), then γ(u) = 0 in Lp(∂Ω) if and only if u ∈W 1,p

0 (Ω).

Definition 9.57 (Trace). We call γ(u) the trace (or generalized boundary
function) of u on ∂Ω.

The following compactness result of the trace operator holds, see [157].
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Theorem 9.58. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary
∂Ω, N ≥ 1.

(i) If 1 < p < N, then
γ : W 1,p(Ω) → Lq(∂Ω)

is completely continuous for any q with 1 ≤ q < (Np− p)/(N − p).
(ii) If p ≥ N, then for any q ≥ 1

γ : W 1,p(Ω) → Lq(∂Ω)

is completely continuous.

9.3.2 Chain Rule and Lattice Structure

In this section we assume that Ω ⊂ RN is a bounded domain with Lipschitz
boundary ∂Ω.

Lemma 9.59 (Chain Rule). Let f ∈ C1(R) and sups∈R |f ′(s)| < ∞. Let
1 ≤ p <∞ and u ∈ W 1,p(Ω). Then the composite function f ◦ u ∈ W 1,p(Ω),
and its generalized derivatives are given by

Di(f ◦ u) = (f ′ ◦ u)Diu, i = 1, . . . , N.

Lemma 9.60 (Generalized Chain Rule). Let f : R → R be continuous
and piecewise continuously differentiable with sups∈R |f ′(s)| < ∞, and u ∈
W 1,p(Ω), 1 ≤ p < ∞. Then f ◦ u ∈ W 1,p(Ω), and its generalized derivative
is given by

Di(f ◦ u)(x) =

{
f ′(u(x))Diu(x) if f is differentiable at u(x) ,

0 otherwise.

The chain rule may further be extended to Lipschitz continuous f ; see, e.g.,
[99, 229].

Lemma 9.61 (Generalized Chain Rule). Let f : R → R be a Lipschitz
continuous function and u ∈ W 1,p(Ω), 1 ≤ p < ∞. Then f ◦ u ∈ W 1,p(Ω),
and its generalized derivative is given by

Di(f ◦ u)(x) = fB(u(x))Diu(x) for a.e. x ∈ Ω,

where fB : R → R is a Borel-measurable function such that fB = f ′ a.e. in
R.

The generalized derivative of the following special functions are frequently
used.
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Example 9.62. Let 1 ≤ p <∞ and u ∈W 1,p(Ω). Then u+ = max{u, 0}, u− =
max{−u, 0}, and |u| are in W 1,p(Ω), and their generalized derivatives are
given by

(Diu
+)(x) =

{
Diu(x) if u(x) > 0 ,

0 if u(x) ≤ 0 ;

(Diu
−)(x) =

{
0 if u(x) ≥ 0 ,

−Diu(x) if u(x) < 0 ;

(Di|u|)(x) =


Diu(x) if u(x) > 0 ,

0 if u(x) = 0 ,
−Diu(x) if u(x) < 0 .

As for the traces of u+ and u− we have (cf., e.g., [77])

γ(u+) = (γ(u))+, γ(u−) = (γ(u))−.

Lemma 9.63 (Lattice Structure). Let u, v ∈W 1,p(Ω), 1 ≤ p <∞. Then
max{u, v} and min{u, v} are in W 1,p(Ω) with generalized derivatives

Di max{u, v}(x) =

{
Diu(x) if u(x) > v(x) ,
Div(x) if v(x) ≥ u(x) ;

Di min{u, v}(x) =

{
Diu(x) if u(x) < v(x) ,
Div(x) if v(x) ≤ u(x) .

Proof: The assertion follows easily from the above examples and the general-
ized chain rule by using max{u, v} = (u−v)++v and min{u, v} = u−(u−v)+;
see, e.g., [142, Theorem 1.20]. ut

Lemma 9.64. If (uj), ( vj) ⊂ W 1,p(Ω) (1 ≤ p < ∞) are such that uj → u
and vj → v in W 1,p(Ω), then min{uj , vj} → min{u, v} and max{uj , vj} →
max{u, v} in W 1,p(Ω) as j →∞.

For the proof see, e.g., [142, Lemma 1.22]. By means of Lemma 9.64 we readily
obtain the following result.

Lemma 9.65. Let u, ū ∈W 1,p(Ω) satisfy u ≤ ū, and let T be the truncation
operator defined by

Tu(x) =


ū(x) if u(x) > ū(x) ,
u(x) if u(x) ≤ u(x) ≤ ū(x) ,
u(x) if u(x) < u(x) .

Then T is a bounded continuous mapping from W 1,p(Ω) (respectively, Lp(Ω))
into itself.
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Proof: The truncation operator T can be represented in the form

Tu = max{u, u}+ min{u, ū} − u.

Thus the assertion easily follows from Lemma 9.64. ut

Lemma 9.66 (Lattice Structure). If u, v ∈W 1,p
0 (Ω), then max{u, v} and

min{u, v} are in W 1,p
0 (Ω).

Lemma 9.66 implies that W 1,p
0 (Ω) has a lattice structure as well; see, e.g.,

[142].
A partial ordering of traces on ∂Ω is given as follows.

Definition 9.67. Let u ∈ W 1,p(Ω), 1 ≤ p < ∞. Then u ≤ 0 on ∂Ω if
u+ ∈W 1,p

0 (Ω).

9.4 Operators of Monotone Type

In this section we provide the basic results on pseudomonotone operators from
a Banach space X into its dual space X∗.

9.4.1 Main Theorem on Pseudomonotone Operators

Let X be a real, reflexive Banach space with norm ‖ · ‖, X∗ its dual space,
and denote by 〈·, ·〉 the duality pairing between them. The norm convergence
in X and X∗ is denoted by “→” and the weak convergence by “⇀”.

Definition 9.68. Let A : X → X∗; then A is called

(i) continuous (resp. weakly continuous) iff un → u implies Aun → Au (resp.
un ⇀ u implies Aun ⇀ Au);

(ii) demicontinuous iff un → u implies Aun ⇀ Au;
(iii) hemicontinuous iff the real function t→ 〈A(u+ tv), w〉 is continuous on

[0, 1] for all u, v, w ∈ X;
(iv) strongly continuous or completely continuous iff un ⇀ u implies Aun →

Au;
(v) bounded iff A maps bounded sets into bounded sets;
(vi) coercive iff lim‖u‖→∞

〈Au,u〉
‖u‖ = +∞.

Definition 9.69 (Operators of Monotone Type). Let A : X → X∗; then
A is called

(i) monotone (resp. strictly monotone) iff 〈Au − Av, u − v〉 ≥ (resp. >) 0
for all u, v ∈ X with u 6= v;

(ii) strongly monotone iff there is a constant c > 0 such that
〈Au−Av, u− v〉 ≥ c‖u− v‖2 for all u, v ∈ X;
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(iii) uniformly monotone iff 〈Au − Av, u − v〉 ≥ a(‖u − v‖)‖u − v‖ for all
u, v ∈ X where a : [0,∞) → [0,∞) is strictly increasing with a(0) = 0
and a(s) → +∞ as s→∞;

(iv) pseudomonotone iff un ⇀ u and lim supn→∞〈Aun, un − u〉 ≤ 0 implies
〈Au, u− w〉 ≤ lim infn→∞〈Aun, un − w〉 for all w ∈ X;

(v) to satisfy (S+)-condition iff un ⇀ u and lim supn→∞〈Aun, un − u〉 ≤ 0
imply un → u.

One can show (cf., e.g., [19]) that the pseudomonotonicity according to (iv)
of Definition 9.69 is equivalent to the following definition.

Definition 9.70. The operator A : X → X∗ is pseudomonotone iff un ⇀ u
and lim supn→∞〈Aun, un − u〉 ≤ 0 implies Aun ⇀ Au and 〈Aun, un〉 →
〈Au, u〉.

For the following result see, e.g., [229, Proposition 27.6].

Lemma 9.71. Let A,B : X → X∗ be operators on the real reflexive Banach
space X. Then the following implications hold:

(i) If A is monotone and hemicontinuous, then A is pseudomonotone.
(ii) If A is strongly continuous, then A is pseudomonotone.
(iii) If A and B are pseudomonotone, then A+B is pseudomonotone.

The main theorem on pseudomonotone operators due to Brézis is given by
the next theorem (see [229, Theorem 27.A]).

Theorem 9.72 (Main Theorem on Pseudomonotone Operators). Let
X be a real, reflexive Banach space, and let A : X → X∗ be a pseudomonotone,
bounded, and coercive operator, and b ∈ X∗. Then there exists a solution of
the equation Au = b.

Remark 9.73. Theorem 9.72 contains several important surjectivity results as
special cases, such as Lax–Milgram’s theorem and the Main Theorem on
Monotone Operators. The latter will be formulated in the following corollary.

Corollary 9.74 (Main Theorem on Monotone Operators). Let X be
a real, reflexive Banach space, and let A : X → X∗ be a monotone, hemi-
continuous, bounded, and coercive operator, and b ∈ X∗. Then there exists a
solution of the equation Au = b.

For the proof of Corollary 9.74 we have only to mention that in view of Lemma
9.71, a monotone and hemicontinuous operator is pseudomonotone.
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9.4.2 Leray–Lions Operators

An important class of operators of monotone type are the so-called Leray–
Lions operators (see, e.g., [219] or [172]). These kinds of operators occur in the
functional analytical treatment of nonlinear elliptic and parabolic problems.

Definition 9.75 (Leray–Lions Operator). Let X be a real, reflexive Ba-
nach space. We say that A : X → X∗ is a Leray–Lions operator if it is bounded
and satisfies

Au = A(u, u), for u ∈ X,

where A : X ×X → X∗ has the following properties:

(i) For any u ∈ X, the mapping v 7→ A(u, v) is bounded and hemicontinuous
from X to its dual X∗, with

〈A(u, u)−A(u, v), u− v〉 ≥ 0 for v ∈ X;

(ii) For any v ∈ X, the mapping u 7→ A(u, v) is bounded and hemicontinuous
from X to its dual X∗;

(iii) For any v ∈ X, A(un, v) converges weakly to A(u, v) in X∗ if (un) ⊂ X
is such that un ⇀ u in X and

〈A(un, un)−A(un, u), un − u〉 → 0;

(iv) For any v ∈ X, 〈A(un, v), un〉 converges to 〈F, u〉 if (un) ⊂ V is such
that un ⇀ u in X, and A(un, v) ⇀ F in X∗.

As for the proof of the next theorem, see, e.g., [219].

Theorem 9.76. Every Leray–Lions operator A : X → X∗ is pseudomono-
tone.

Next we will see that quasilinear elliptic operators satisfying certain struc-
ture and growth conditions represent Leray–Lions operators. To this end we
need to study first the mapping properties of superposition operators, which
are also called Nemytskij operators.

Definition 9.77 (Nemytskij Operator). Let Ω ⊆ RN , N ≥ 1, be a non-
empty measurable set and let f : Ω × Rm → R, m ≥ 1, and u : Ω → Rm
be a given function. Then the superposition or Nemytskij operator F assigns
u 7→ f ◦ u, i.e., F is given by

F (u)(x) = (f ◦ u)(x) = f(u(x)) for x ∈ Ω.

Definition 9.78 (Carathéodory Function). Let Ω ⊆ RN , N ≥ 1, be a
nonempty measurable set and let f : Ω ×Rm → R, m ≥ 1. The function f is
called a Carathéodory function if the following two conditions are satisfied:
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(i) x 7→ f(x, s) is measurable in Ω for all s ∈ Rm;
(ii) s 7→ f(x, s) is continuous on Rm for a.e. x ∈ Ω.

Lemma 9.79. Let f : Ω ×Rm → R, m ≥ 1, be a Carathéodory function that
satisfies a growth condition of the form

|f(x, s)| ≤ k(x) + c

m∑
i=1

|si|pi/q, ∀ s = (s1, . . . , sm) ∈ Rm, a.e. x ∈ Ω,

for some positive constant c and some k ∈ Lq(Ω), and 1 ≤ q, pi < ∞ for all
i = 1, . . . ,m. Then the Nemytskij operator F defined by

F (u)(x) = f(x, u1(x), . . . , um(x))

is continuous and bounded from Lp1(Ω) × · · · × Lpm(Ω) into Lq(Ω). Here u
denotes the vector function u = (u1, . . . , um). Furthermore,

‖F (u)‖Lq(Ω) ≤ c
(
‖k‖Lq(Ω) +

m∑
i=1

‖ui‖pi/q
Lpi (Ω)

)
.

Definition 9.80. Let Ω ⊆ RN , N ≥ 1, be a nonempty measurable set. A
function f : Ω × Rm → R, m ≥ 1, is called superpositionally measurable (or
sup-measurable) if the function x 7→ F (u)(x) is measurable in Ω whenever the
component functions ui : Ω → R of u = (u1, . . . , um) are measurable.

9.4.3 Multi-Valued Pseudomonotone Operators

In this section we briefly recall the main results of the theory of pseudomono-
tone multi-valued operators developed by Browder and Hess to an extent as it
will be needed in the study of variational and hemivariational inequalities. For
the proofs and a more detailed presentation we refer, e.g., to the monographs
[229, 184].

First we present basic results about the continuity of multi-valued func-
tions (multi-functions) and provide useful equivalent descriptions of these no-
tions. Even though these notions can be defined in a much more general
context, we confine ourselves to mappings between Banach spaces, which is
sufficient for our purpose.

Definition 9.81 (Semicontinuous Multi-Functions). Let X,Y be Ba-
nach spaces, and A : X → 2Y be a multi-function.

(i) A is called upper semicontinuous at x0, if for every open subset V ⊆ Y
with A(x0) ⊆ V, there exists a neighborhood U(x0) such that A(U(x0)) ⊆
V. If A is upper semicontinuous at every x0 ∈ X, we call A upper semi-
continuous in X.
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(ii) A is called lower semicontinuous at x0 if for every neighborhood V (y) of
every y ∈ A(x0), there exists a neighborhood U(x0) such that

A(u) ∩ V (y) 6= ∅ for all u ∈ U(x0).

If A is lower semicontinuous at every x0 ∈ X, we call A lower semicon-
tinuous in X.

(iii) A is called continuous at x0 if A is both upper and lower semicontinuous
at x0. If A is continuous at every x0 ∈ X, we call A continuous in X.

Alternative equivalent continuity criteria are given in the following proposi-
tions. To this end we introduce the preimage of a multi-function.

Definition 9.82 (Preimage). Let M ⊆ Y and A : X → 2Y be a multi-
function. The preimage A−1(M) is defined by

A−1(M) = {x ∈ X : A(x) ∩M 6= ∅}.

Proposition 9.83. Let X,Y be Banach spaces, and A : X → 2Y be a multi-
function. Then the following statements are equivalent.

(i) A is upper semicontinuous.
(ii) For all closed sets C ⊆ Y, the preimage A−1(C) is closed.
(iii) If x ∈ X, (xn) is a sequence in X with xn → x as n → ∞, and V is an

open set in Y such that A(x) ⊆ V , then there exists n0 ∈ N depending
on V such that for all n ≥ n0 we have A(xn) ⊆ V.

Proposition 9.84. Let X,Y be Banach spaces, and A : X → 2Y be a multi-
function. Then the following statements are equivalent.

(i) A is lower semicontinuous.
(ii) For all open sets O ⊆ Y, the preimage A−1(O) is open.
(iii) If x ∈ X, (xn) is a sequence in X with xn → x as n→∞, and y ∈ A(x),

then for every n ∈ N one can find a yn ∈ A(xn), such that yn → y, as
n→∞.

Remark 9.85. For a single-valued operator A : X → Y , upper semicontinuous
and lower semicontinuous in the multi-valued setting is identical with conti-
nuous. For A : M → 2N having the same corresponding properties, where M
and N are subsets of the Banach spaces X and Y, respectively, then M and
N have to be equipped with the induced topology.

Next we introduce the notion of multi-valued monotone and pseudomono-
tone operators from a real, reflexive Banach space X into its dual space, and
formulate the main surjectivity result for these kinds of operators.

Definition 9.86 (Graph). Let X be a real Banach space and let A : X →
2X

∗
be a multi-valued mapping, i.e., to each u ∈ X there is assigned a subset
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A(u) of X∗, which may be empty if u /∈ D(A), where D(A) is the domain of
A given by

D(A) = {u ∈ X : A(u) 6= ∅}.

The graph of A denoted by Gr(A) is given by

Gr(A) = {(u, u∗) ∈ X ×X∗ : u∗ ∈ A(u)}.

Definition 9.87 (Monotone Operator). The mapping A : X → 2X
∗

is
called

(i) monotone iff

〈u∗ − v∗, u− v〉 ≥ 0 for all (u, u∗), (v, v∗) ∈ Gr(A);

(ii) strictly monotone iff

〈u∗ − v∗, u− v〉 > 0 for all (u, u∗), (v, v∗) ∈ Gr(A), u 6= v;

(iii) maximal monotone iff A is monotone and there is no monotone mapping
Ã : X → 2X

∗
such that Gr(A) is a proper subset of Gr(Ã), which is

equivalent to the following implication

(u, u∗) ∈ X ×X∗ : 〈u∗ − v∗, u− v〉 ≥ 0 for all (v, v∗) ∈ Gr(A)

implies (u, u∗) ∈ Gr(A).

The notions of strongly and uniformly monotone multi-valued operators are
defined in a similar way as for single-valued operators.

A single-valued operator

A : D(A) ⊆ X → X∗

is to be understood as a multi-valued operator A : X → X∗ by setting Au =
{Au} if u ∈ D(A) and Au = ∅ otherwise. Thus, A is monotone iff

〈Au−Av, u− v〉 ≥ 0 for all u, v ∈ D(A),

and A : D(A) ⊆ X → X∗ is maximal monotone iff A is monotone and the
condition

(u, u∗) ∈ X ×X∗ : 〈u∗ −Av, u− v〉 ≥ 0 for all v ∈ D(A)

implies u ∈ D(A) and u∗ = Au.

Definition 9.88 (Pseudomonotone Operator). Let X be a real reflexive
Banach space. The operator A : X → 2X

∗
is called pseudomonotone if the

following conditions hold.

(i) The set A(u) is nonempty, bounded, closed, and convex for all u ∈ X.
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(ii) A is upper semicontinuous from each finite dimensional subspace of X to
the weak topology on X∗.

(iii) If (un) ⊂ X with un ⇀ u, and if u∗n ∈ A(un) is such that

lim sup〈u∗n, un − u〉 ≤ 0,

then to each element v ∈ X there exists u∗(v) ∈ A(u) with

lim inf〈u∗n, un − v〉 ≥ 〈u∗(v), u− v〉.

Definition 9.89 (Generalized Pseudomonotone Operator). Let X be a
real reflexive Banach space. The operator A : X → 2X

∗
is called generalized

pseudomonotone if the following holds:
Let (un) ⊂ X and (u∗n) ⊂ X∗ with u∗n ∈ A(un). If un ⇀ u in X and u∗n ⇀ u∗

in X∗ and if lim sup〈u∗n, un − u〉 ≤ 0, then the element u∗ lies in A(u) and

〈u∗n, un〉 → 〈u∗, u〉.

The next two propositions provide the relation between pseudomonotone
and generalized pseudomontone operators.

Proposition 9.90. Let X be a real reflexive Banach space. If the operator
A : X → 2X

∗
is pseudomonotone, then A is generalized pseudomonotone.

Under the additional assumption of boundedness, the following converse of
Proposition 9.90 is true.

Proposition 9.91. Let X be a real reflexive Banach space, and assume that
A : X → 2X

∗
satisfies the following conditions.

(i) For each u ∈ X we have that A(u) is a nonempty, closed, and convex
subset of X∗.

(ii) A : X → 2X
∗

is bounded.
(iii) If un ⇀ u in X and u∗n ⇀ u∗ in X∗ with u∗n ∈ A(un) and if

lim sup〈u∗n, un − u〉 ≤ 0, then u∗ ∈ A(u) and 〈u∗n, un〉 → 〈u∗, u〉.
Then the operator A : X → 2X

∗
is pseudomonotone.

As for the proof of Proposition 9.91 we refer, e.g., to [184, Chap. 2]. Note that
the notion of boundedness of a multi-valued operator is exactly the same as
for single-valued operators, i.e., the image of a bounded set is again bounded.

The main theorem on pseudomonotone multi-valued operators is formu-
lated in the next theorem.

Theorem 9.92. Let X be a real reflexive Banach space, and let A : X → 2X
∗

be a pseudomonotone and bounded operator that is coercive in the sense that
there exists a real-valued function c : R+ → R with

c(r) → +∞, as r → +∞

such that for all (u, u∗) ∈ Gr(A) one has

〈u∗, u− u0〉 ≥ c(‖u‖X)‖u‖X
for some u0 ∈ X. Then A is surjective, i.e., range(A) = X.



9.5 First Order Evolution Equations 447

9.5 First Order Evolution Equations

In this section we present the basic functional analytic tools needed in the
study of first order single- and multi-valued evolution equations in the form

u ∈ X, u′ ∈ X∗ : u′ +Au 3 f in X∗, u(0) = u0, (9.71)

where X = Lp(0, τ ;V ), 1 < p < ∞, with τ > 0 is the Lp-space of vector-
valued functions u : (0, τ) → V defined on the interval (0, τ) with values in
some Banach space V, and u′ is the generalized or distributional derivative of
the function t 7→ u(t) with respect to t ∈ (0, τ). The right-hand side f ∈ X∗ is
given and A : X → 2X

∗
is some (in general) multi-valued operator. The initial

values u0 are taken from some Hilbert space H such that the embedding V ⊆
H is continuous and dense. Problem (9.71) provides an abstract framework
for the functional analytic treatment of initial-boundary value problems for
parabolic differential equations and inclusions.

9.5.1 Evolution Triple and Generalized Derivative

The material of this subsection is mainly taken from [202, 229].

Definition 9.93 (Evolution Triple). A triple (V,H, V ∗) is called an evolu-
tion triple if the following properties hold.

(i) V is a real, separable, and reflexive Banach space, and H is a real, sep-
arable Hilbert space endowed with the scalar product (·, ·).

(ii) The embedding V ⊆ H is continuous, and V is dense in H.
(iii) Identifying H with its dual H∗ by the Riesz map, we then have H ⊆ V ∗

with the equation

〈h, v〉V = (h, v) for h ∈ H ⊆ V ∗, v ∈ V,

where 〈·, ·〉V denotes the duality pairing between V and V ∗.

Example 9.94. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary
∂Ω, and let V be a closed subspace of W 1,p(Ω) with 2 ≤ p < ∞ such that
W 1,p

0 (Ω) ⊆ V ⊆ W 1,p(Ω). Then (V,H, V ∗) with H = L2(Ω) is an evolution
triple with all the embeddings being, in addition, compact.

Definition 9.95. Let Y, Z be Banach spaces, and u ∈ L1(0, τ ;Y ) and w ∈
L1(0, τ ;Z). Then, the function w is called the generalized derivative of the
function u in (0, τ) iff the following relation holds∫ τ

0

ϕ′(t)u(t) dt = −
∫ τ

0

ϕ(t)w(t) dt for all ϕ ∈ C∞
0 (0, τ).

We write w = u′.
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Theorem 9.96. Let V ⊆ H ⊆ V ∗ be an evolution triple and let 1 ≤ p, q ≤
∞, 0 < τ <∞. Let u ∈ Lp(0, τ ;V ), then there exists the generalized derivative
u′ ∈ Lq(0, τ ;V ∗) iff there is a function w ∈ Lq(0, τ ;V ∗) such that∫ τ

0

(u(t), v)Hϕ′(t) dt = −
∫ τ

0

〈w(t), v〉V ϕ(t) dt

for all v ∈ V and all ϕ ∈ C∞
0 (0, τ). The generalized derivative u′ is uniquely

defined and u′ = w.

Definition 9.97. Let V be a real, separable, and reflexive Banach space, and
let X = Lp(0, τ ;V ), 1 < p <∞. A space W is defined by

W = {u ∈ X : u′ ∈ X∗},

where u′ is the generalized derivative, and X∗ = Lq(0, τ ;V ∗), 1/p+ 1/q = 1.

Theorem 9.98 (Lions–Aubin). Let B0, B,B1 be reflexive Banach spaces
with B0 ⊆ B ⊆ B1, and assume B0 ↪→ B is compactly and B ↪→ B1 is
continuously embedded. Let 1 < p <∞, 1 < q <∞ and define W by

W = {u ∈ Lp(0, τ ;B0) : u′ ∈ Lq(0, τ ;B1)}.

Then W ↪→ Lp(0, τ ;B) is compactly embedded.

Example 9.99. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary
∂Ω. Since W 1,p(Ω) ⊂ Lp(Ω) is compactly embedded, and Lp(Ω) ⊂W 1,p(Ω)∗

is continuously embedded for 2 ≤ p < ∞, Theorem 9.98 can be applied by
setting B0 = W 1,p(Ω), B = Lp(Ω) and B1 = W 1,p(Ω)∗, 2 ≤ p <∞. Thus W
defined in Definition 9.97, i.e.,

W = {u ∈ Lp(0, τ ;W 1,p(Ω)) : u′ ∈ Lq(0, τ ;W 1,p(Ω)∗)}

is compactly embedded in Lp(0, τ ;Lp(Ω)) ≡ Lp(Q), where Q = Ω × (0, τ).

Proposition 9.100. Let Ω ⊂ RN be a bounded domain with Lipschitz bound-
ary ∂Ω, and let X = Lp(0, τ ;W 1,p(Ω)) with 2 ≤ p < ∞. Then the trace
operator γ : W → Lp(Γ ) is compact.

Proof: We apply Theorem 9.98. To this end let B0 = W 1,p(Ω), B =
W 1−ε,p(Ω), and B1 = B∗

0 . Since B0 ⊆ B is compactly embedded for any
ε ∈ (0, 1), and B ⊆ B1 is continuously embedded, from Theorem 9.98 it fol-
lows thatW ⊆ Lp(0, τ ;W 1−ε,p(Ω)) is compactly embedded. If we select ε such
that 0 < ε < 1 − 1/p, then γ : W 1−ε,p(Ω) → W 1−ε−1/p,p(∂Ω) is linear and
continuous, and thus γ : Lp(0, τ ;W 1−ε,p(Ω)) → Lp(0, τ ;W 1−ε−1/p,p(∂Ω)) ⊂
Lp(Γ ) is linear and continuous, which due to the compact embedding of
W ↪→ Lp(0, τ ;W 1−ε,p(Ω)) completes the proof. ut
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Theorem 9.101. Let V ⊆ H ⊆ V ∗ be an evolution triple, and let 1 < p <
∞, 1/p+ 1/q = 1, 0 < τ <∞. Then the following hold.

(i) The space W defined in Definition 9.97 is a real, separable, and reflexive
Banach space with the norm

‖u‖W = ‖u‖X + ‖u′‖X∗ .

(ii) The embedding W ↪→ C([0, τ ];H) is continuous.
(iii) For all u, v ∈ W and arbitrary t, s with 0 ≤ s ≤ t ≤ τ, the following

generalized integration by parts formula holds:

(u(t), v(t))H − (u(s), v(s))H =
∫ t

s

〈u′(ζ), v(ζ)〉V + 〈v′(ζ), u(ζ)〉V dζ.

Remark 9.102. The integration by parts formula is equivalent to

d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉V + 〈v′(t), u(t)〉V for a.e. t ∈ (0, τ).

In particular, for u = v we obtain

d

dt
‖u(t)‖2H = 2〈u′(t), u(t)〉V ,

which implies ∫ t

s

〈u′(ζ), u(ζ)〉V dζ =
1
2
(‖u(t)‖2H − ‖u(s)‖2H). (9.72)

In case that V = W 1,p(Ω), 2 ≤ p < ∞, and H = L2(Ω), we obtain the
following generalization of formula (9.72), which will be useful for obtaining
comparison principles in evolutionary problems.

Lemma 9.103. Let X = Lp(0, τ ;W 1,p(Ω)) with 2 ≤ p < ∞ and W = {u ∈
X : u′ ∈ X∗}, where Ω ⊂ RN is a bounded domain with Lipschitz boundary
∂Ω. Let θ : R → R be continuous and piecewise continuously differentiable
with θ′ ∈ L∞(R), and θ(0) = 0, and let Θ denote the primitive of θ defined by

Θ(r) =
∫ r

0

θ(s) ds.

Then for w ∈W the following formula holds.∫ s

r

〈w′(t), θ(w(t))〉 dt =
∫
Ω

Θ(w(s)) dx−
∫
Ω

Θ(w(r)) dx, (9.73)

for a.e. 0 ≤ r < s ≤ τ.



450 9 Appendix

Proof: The proof makes use of density arguments and the generalized chain
rule for Sobolev functions, see Lemma 9.60. Note first that in view of the
assumptions on θ and Lemma 9.60, the composed function θ(w) is in X for
w ∈ W. The space C1([0, τ ];C1(Ω)) of smooth functions is dense in W, cf.,
e.g., [229, Chap. 23]. Let w ∈ W be given. Then there is a sequence (wn) ⊂
C1([0, τ ];C1(Ω)) with wn → w as n → ∞. For the smooth functions wn we
have ∫ s

r

〈w′n(t), θ(wn(t))〉 dt =
∫ s

r

∫
Ω

w′n(x, t)θ(wn(x, t)) dxdt

=
∫ s

r

∫
Ω

∂

∂t

(
Θ(wn(x, t))

)
dxdt

=
∫
Ω

(
Θ(wn(x, s))−Θ(wn(x, r))

)
dx. (9.74)

The assumptions on θ imply that θ is Lipschitz continuous, and thus it follows
that for some subsequence of (wn) (again denoted by (wn))

θ(wn) → θ(w) in X, (9.75)

and due to the continuous embedding W ↪→ C([0, τ ];L2(Ω)) one gets for all
t ∈ [0, τ ]

Θ(wn(t)) → Θ(w(t)) in L2(Ω). (9.76)

By using (9.75), (9.76) we may pass to the limit in (9.74) for some subsequence,
which completes the proof. ut

Example 9.104. Let θ(s) = s. Then θ trivially satisfies all the assumptions
of Lemma 9.103, and the primitive Θ is given by Θ(s) = (1/2)s2, and thus
formula (9.73) becomes∫ s

r

〈w′(t), w(t)〉 dt =
1
2

∫
Ω

(w(s))2 dx− 1
2

∫
Ω

(w(r))2 dx

=
1
2

(
‖w(s)‖2H − ‖w(r)‖2H

)
, (9.77)

for all 0 ≤ r < s ≤ τ, where H = L2(Ω), which is formula (9.72.)

The following example will play a crucial rule in obtaining comparison results.

Example 9.105. If θ(s) = s+ = max{s, 0}, then its primitive can easily be seen
to be Θ(s) = (1/2)(s+)2, and thus for w ∈W we get the formula∫ s

r

〈w′(t), (w(t))+〉 dt =
1
2

(
‖(w(s))+‖2H − ‖(w(r))+‖2H

)
. (9.78)
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9.5.2 Existence Results for Evolution Equations

The material of this subsection is mainly based on results taken from [20, 21,
202]; see also [172, 229].

Let V ⊆ H ⊆ V ∗ be an evolution triple, and let X = Lp(0, τ ;V ), X∗ and
W be the spaces of vector-valued functions with 1 < p < ∞, 1/p + 1/q = 1,
and 0 < τ <∞. We provide an existence result for the evolution equation

u ∈W : u′(t) +A(t)u(t) = f(t), 0 < t < τ, u(0) = 0, (9.79)

where f ∈ X∗ is given, and A(t) : V → V ∗ is some operator specified later.
Without loss of generality, homogeneous initial values have been assumed,
since inhomogeneous initial values can be transformed to homogeneous ones
by translation. The generalized derivative Lu = u′ restricted to the subset

D(L) = {u ∈ X : u′ ∈ X∗ and u(0) = 0} = {u ∈W : u(0) = 0}

defines a linear operator L : D(L) → X∗ given by

〈Lu, v〉 =
∫ τ

0

〈u′(t), v(t)〉 dt for all v ∈ X.

The operator L has the following properties.

Lemma 9.106. Let V ⊆ H ⊆ V ∗ be an evolution triple, and let X =
Lp(0, τ ;V ), where 1 < p < ∞. Then the operator L : D(L) ⊆ X → X∗

is densely defined, closed, and maximal monotone.

Let us state the following conditions on the time-dependent operators
A(t) : V → V ∗.

(H1) ‖A(t)u‖V ∗ ≤ c0

(
‖u‖p−1

V + k0(t)
)

for all u ∈ V and t ∈ [0, τ ] with some
positive constant c0 and k0 ∈ Lq(0, τ).

(H2) A(t) : V → V ∗ is demicontinuous for each t ∈ [0, τ ].
(H3) The function t→ 〈A(t)u, v〉 is measurable on (0, τ) for all u, v ∈ V.
(H4) 〈A(t)u, u〉 ≥ c1(‖u‖pV − k1(t)) for all u ∈ V and t ∈ [0, τ ] with some

constant c1 > 0 and some function k1 ∈ L1(0, τ).

Define an operator Â related with A(t) by

Â(u)(t) = A(t)u(t), t ∈ [0, τ ], (9.80)

which may be considered as the associated Nemytskij operator generated by
the operator-valued function t 7→ A(t). Thus problem (9.79) corresponds to
the following one.

u ∈ D(L) : Lu+ Â(u) = f in X∗. (9.81)
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Definition 9.107. Let D(L) be equipped with the graph norm; that is,

‖u‖L = ‖u‖X + ‖Lu‖X∗ .

The operator Â : X → X∗ is called pseudomonotone with respect to the graph
norm topology of D(L) (or pseudomonotone w.r.t. D(L) for short), if for any
sequence (un) ∈ D(L) satisfying

un ⇀ u in X, Lun ⇀ Lu in X∗, and lim sup
n→∞

〈Â(un), un − u〉 ≤ 0,

it follows that

Â(un) ⇀ Â(u) in X∗ and 〈Â(un), un〉 → 〈Â(u), u〉.

In an obvious similar way the (S+)-condition with respect to D(L) is defined.

For the following surjectivity result, which yields the existence for problem
(9.81), we refer to [20, 172].

Theorem 9.108. Let L : D(L) ⊆ X → X∗ be as given above, and let Â :
X → X∗ defined by (9.80) be bounded, demicontinuous, and pseudomonotone
w.r.t. D(L). If Â is coercive, then (L + Â)(D(L)) = X∗, that is, L + Â is
surjective.

The next result shows that certain properties of the operators A(t) are trans-
fered to its Nemytskij operator Â; cf. [21].

Theorem 9.109. (a) Let hypotheses (H1)–(H4) be satisfied. Then we have
the following results.
(i) If A(t) : V → V ∗ is pseudomonotone for all t ∈ [0, τ ], then Â : X →

X∗ is pseudomonotone with respect to D(L) according to Definition
9.107

(ii) If A(t) : V → V ∗ has the (S+)-property for all t ∈ [0, τ ], then Â :
X → X∗ has the (S+)-property with respect to D(L).

(b) (iii) Hypotheses (H1) and (H3) imply that Â : X → X∗ is bounded.
(iv) Hypotheses (H1)–(H3) imply that Â : X → X∗ is demicontinuous.
(v) Hypothesis (H4) implies that Â : X → X∗ is coercive.

9.6 Calculus of Clarke’s Generalized Gradient

The material of this section is mainly based on [80]. Throughout this section
X stands for a real Banach space endowed with the norm ‖ ·‖. The dual space
of X is denoted X∗, and the notation 〈·, ·〉 means the duality pairing between
X∗ and X.

We recall the following well-known definition.
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Definition 9.110. A functional f : X → R is said to be locally Lipschitz if
for every point x ∈ X there exist a neighborhood V of x in X and a constant
K > 0 such that

|f(y)− f(z)| ≤ K‖y − z‖, ∀y, z ∈ V.

Example 9.111. A convex and continuous function f : X → R is locally Lip-
schitz. More generally, a convex function f : X → R, that is bounded above
on a neighborhood of some point is locally Lipschitz (see, e.g., [80, p. 34]).

The classical theory of differentiability does not work in the case of locally
Lipschitz functions. However, a suitable subdifferential calculus approach has
been developed by Clarke [80]. Here we give a brief introduction.

Definition 9.112 (Generalized Directional Derivative). Let f : X → R
be a locally Lipschitz function and fix two points u, v ∈ X. The generalized
directional derivative of f at u in the direction v is defined as follows

fo(u; v) = lim sup
x→u

t↓0

f(x+ tv)− f(x)
t

.

Since f is locally Lipschitz, it is clear that fo(u; v) ∈ R .

Proposition 9.113. If f : X → R is a locally Lipschitz function, then the
following holds.

(i) The function fo(u; ·) : X → R is subadditive, positively homogeneous,
and satisfies the inequality

|fo(u; v)| ≤ K‖v‖, ∀v ∈ X,

where K > 0 is the Lipschitz constant of f near the point u ∈ X.
(ii) fo(u;−v) = (−f)o(u; v), ∀v ∈ X.
(iii) The function (u, v) ∈ X ×X 7→ fo(u; v) ∈ R is upper semicontinuous.

Proof: The result follows directly from Definition 9.112. ut

The next definition focuses on the case where fo(u; v) reduces to the usual
directional derivative

f ′(u; v) = lim
t↓0

f(u+ tv)− f(u)
t

.

Definition 9.114. A locally Lipschitz function f : X → R is said to be regular
at a point u ∈ X if

(i) there exists the directional derivative f ′(u; v), for every v ∈ X;
(ii) fo(u; v) = f ′(u; v), ∀v ∈ X.
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Significant classes of regular functions are given in the following examples.

Example 9.115. If the function f : X → R is strictly differentiable, that is for
all u ∈ X there exists f ′(u) ∈ X∗ such that

lim
w→u

t↓0

f(w + tv)− f(w)
t

= 〈f ′(u), v〉, ∀v ∈ X,

where the convergence is uniform for v in compact sets, then f is locally
Lipschitz and regular in the sense of Definition 9.114. In particular, if f : X →
R is a continuously differentiable function, then f is strictly differentiable, so
it is locally Lipschitz and regular.

Example 9.116. A convex and continuous function f : X → R is regular.

Definition 9.117 (Clarke’s Generalized Gradient). The generalized gra-
dient of a locally Lipschitz functional f : X → R at a point u ∈ X is the subset
of X∗ defined by

∂f(u) = {ζ ∈ X∗ : fo(u; v) ≥ 〈ζ, v〉, ∀v ∈ X}.

By using the Hahn–Banach theorem (see, e.g., [30, p. 1]), it follows ∂f(u) 6=
∅.

Example 9.118. If f : X → R is a locally Lipschitz function that is Gâteaux
differentiable and regular at the point u ∈ X, then one has ∂f(u) = {DGf(u)},
where DGf(u) denotes the Gâteaux differential of f at u. Indeed, since f is
Gâteaux differentiable and regular at u, we may write

〈DGf(u), v〉 = f ′(u; v) = fo(u; v), ∀v ∈ X,

which implies DGf(u) ∈ ∂f(u). Conversely, if ζ ∈ ∂f(u), from Definitions
9.117 and 9.114 in conjunction with the assumption that f is Gâteaux differ-
entiable at u, it turns out that

〈ζ, v〉 ≤ fo(u; v) = f ′(u; v) = 〈DGf(u), v〉, ∀v ∈ X,

so ζ = DGf(u).

Example 9.119. If f : X → R is continuously differentiable, then ∂f(u) =
{f ′(u)} for all u ∈ X, where f ′(u) denotes the Fréchet differential of f at u.
This is a direct consequence of Example 9.118.

Example 9.120. If f : X → R is convex and continuous, then the generalized
gradient ∂f(u) coincides with the subdifferential of f at u in the sense of
Convex Analysis. This follows from Examples 9.111 and 9.116.
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Remark 9.121. It is seen from Definition 9.117, Example 9.120, and Proposi-
tion 9.113 (i) that the generalized gradient of a locally Lipschitz functional
f : X → R at a point u ∈ X is given by

∂f(u) = ∂(fo(u; ·))(0),

where in the right-hand side the subdifferential in the sense of convex analysis
is written.

The next proposition presents some important properties of the generalized
gradient.

Proposition 9.122. Let f : X → R be a locally Lipschitz function. Then for
any u ∈ X the below properties hold:

(i) ∂f(u) is a convex, weak∗-compact subset of X∗ and

‖ζ‖X∗ ≤ K , ∀ζ ∈ ∂f(u),

where K > 0 is the Lipschitz constant of f near u;
(ii) fo(u; v) = max{〈ζ, v〉 : ζ ∈ ∂f(u)}, ∀v ∈ X.
(iii) The mapping u 7→ ∂f(u) is weak∗-closed from X into X∗.
(iv) The mapping u 7→ ∂f(u) is upper semicontinuous from X into X∗, where

X∗ is equipped with the weak∗-topology.

Proof: As for (i) and (ii), one applies Definitions 9.112 and 9.117, and as
for (iv) see, e.g., [80]. To see (iii), let (un) ⊂ X satisfy un → u in X, and
let ζn ∈ ∂f(un) with ζn ⇀∗ ζ in X∗. We need to show that ζ ∈ ∂f(u).
By Definition 9.117 one has 〈ζn, v〉 ≤ fo(un; v) for all v ∈ X, which due to
the weak∗-convergence of (ζn) and the upper semicontinuity of the function
x 7→ fo(x; v) according to Proposition 9.113 (iii) implies

〈ζ, v〉 ≤ lim sup
n→∞

fo(un; v) ≤ fo(u; v) for all v ∈ X,

and thus ζ ∈ ∂f(u). ut

Remark 9.123. The definitions and results given here are applicable to a lo-
cally Lipschitz function f : U → R on a nonempty, open subset U of the
Banach space X.

In what follows we recall basic calculus rules for the generalized gradient.

Proposition 9.124. Let f : X → R be a locally Lipschitz function, let λ ∈ R,
and let u ∈ X. Then the following formula holds

∂(λf)(u) = λ∂f(u).

In particular, one has
∂(−f)(u) = −∂f(u).



456 9 Appendix

Proposition 9.125. Let f, g : X → R be locally Lipschitz functions. Then
for every u ∈ X the following inclusion holds

∂(f + g)(u) ⊆ ∂f(u) + ∂g(u).

If, in addition, the functions f and g are regular at the point u ∈ X, then the
above inclusion becomes an equality, and f + g is regular at u.

Remark 9.126. The inclusion of Proposition 9.125 becomes an equality also
in case that at least one of the two locally Lipschitz functions is strictly
differentiable, because, in general, one has the following rule.

Proposition 9.127 (Finite Sums). Let fi : X → R, i = 1, . . . ,m, be locally
Lipschitz functions. Then for every u ∈ X the following inclusion holds

∂

(
m∑
i=1

fi

)
(u) ⊆

m∑
i=1

∂fi(u).

If all but at most one of the locally Lipschitz functions fi are strictly differ-
entiable, then the inclusion above becomes an equality.

The result below presents the mean value property for locally Lipschitz
functionals due to Lebourg [165].

Theorem 9.128. Let f : X → R be a locally Lipschitz function. Then for all
x, y ∈ X, there exist u = x+ t0(y − x), with 0 < t0 < 1, and ζ ∈ ∂f(u) such
that

f(y)− f(x) = 〈ζ, y − x〉.

Another important result in the calculus with generalized gradients is the
chain rule.

Theorem 9.129. Let F : X → Y be a continuously differentiable mapping
between the Banach spaces X, Y , and let g : Y → R be a locally Lipschitz
function. Then the function g ◦ F : X → R is locally Lipschitz, and for any
point u ∈ X the following formula holds:

∂(g ◦ F )(u) ⊆ ∂g(F (u)) ◦DF (u) (9.82)

in the sense that every element z ∈ ∂(g ◦ F )(u) can be expressed as

z = DF (u)∗ζ, for some ζ ∈ ∂g(F (u)),

where DF (u)∗ denotes the adjoint operator associated with the Fréchet differ-
ential DF (u) of F at u. If, in addition, F maps every neighborhood of u onto
a dense subset of a neighborhood of F (u), then (9.82) becomes an equality.
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Corollary 9.130. Under the assumptions of the first part of Theorem 9.129,
if g (or −g) is regular at F (u), then g ◦ F (or −g ◦ F ) is regular at u and
equality holds in (9.82).

Corollary 9.131. If there exists a linear continuous embedding i : X → Y of
the Banach space X into a Banach space Y , then for every locally Lipschitz
function g : Y → R one has

∂(g ◦ i)(u) ⊆ i∗∂g(i(u)), ∀u ∈ X.

If, in addition, i(X) is dense in Y , then

∂(g ◦ i)(u) = i∗∂g(i(u)), ∀u ∈ X.

Finally, we give Aubin–Clarke’s Theorem [14] of subdifferentiation under the
integral sign.

Let numbers m ≥ 1, 1 < p < +∞, and let T be a complete measure space
with |T | < ∞, where |T | stands for the measure of T . Let j : T × Rm → R
be a function such that j(·, y) : T → R is measurable whenever y ∈ Rm, and
satisfies either

|j(x, y1)− j(x, y2)| ≤ k(x)‖y1 − y2‖, for a.a. x ∈ T, ∀y1, y2 ∈ Rm, (9.83)

with a function k ∈ Lq+(T ) and 1/p+ 1/q = 1, or, j(x, ·) : Rm → R is locally
Lipschitz for almost all x ∈ T and there are a constant c > 0 and a function
h ∈ Lq+(T ) such that

‖z‖ ≤ h(x) + c‖y‖p−1, a.a. x ∈ T, ∀y ∈ Rm, ∀z ∈ ∂yj(x, y). (9.84)

The notation ∂yj(x, y) in (9.84) means the generalized gradient of j with re-
spect to the second variable y ∈ Rm, i.e., ∂yj(x, y) = ∂j(x, ·)(y). We introduce
the functional J : Lp(T ; Rm) → R by

J(v) =
∫
T

j(x, v(x))dx , ∀v ∈ Lp(T ; Rm). (9.85)

Theorem 9.132 (Aubin–Clarke’s Theorem). Under assumption (9.83)
or (9.84), one has that the functional J : Lp(T ; Rm) → R in (9.85) is Lip-
schitz continuous on bounded subsets of Lp(T ; Rm) and its generalized gradient
satisfies

∂J(u) ⊆ {w ∈ Lq(T ; Rm) : w(x) ∈ ∂yj(x, u(x)) for a.e. x ∈ T}. (9.86)

Moreover, if j(x, ·) is regular at u(x) for almost all x ∈ T , then J is regular
at u and (9.86) holds with equality.
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N natural numbers
N0 N ∪ {0}
Z integer numbers
R real numbers
R+ nonnegative real numbers
RN N -dimensional Euclidean space
|E| Lebesgue-measure of a subset E ⊂ RN
X real normed linear space
X∗ or X ′ dual space of X
〈·, ·〉 duality pairing
X+ positive (or order) cone of X
x ∧ y min{x, y}
x ∨ y max{x, y}
x+ max{x, 0}
x− max{−x, 0}
supA least upper bound (or supremum) of A
inf A greatest lower bound (or infimum) of A
maxA greatest element (or maximum) of A
minA smallest element (or minimum) of A
ocl(K) order closure of a subset K of a poset X
cl(K) or K topological closure of a subset K of X

int(K) or
◦
K interior of K

X ⊆ Y X is a subset of Y including Y
X ⊂ Y X is a proper subset of Y not including Y
2X power set of the set X, i.e., the set of all subsets of X
∅ empty set
C<x the set of those elements of C ⊂ X that are < x ∈ X
[x) the set of those elements of X that are ≥ x ∈ X
(y] the set of those elements of X that are ≤ y ∈ X
[x, y] [x) ∩ (y]
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[s] greatest integer ≤ s ∈ R
|x| absolute value of x (= x+ + x−)
‖x‖ norm of a vector x
‖f‖A Alexiewicz norm of an HL integrable function f
a.a. “almost all”
a.e. “almost every”
iff “if and only if”
D(A) domain of the operator A
dom(A) effective domain of the mapping A
IK indicator function, i.e., IK(x) = 0 if x ∈ K, +∞ otherwise
χE characteristic function of the set E
Gr(A) graph of the mapping A
A∗ adjoint or dual operator to A
M(Ω,E) space of measurable functions from Ω to E
Lp(Ω,E) space of p integrable functions (whose Lp norm is finite)
‖f‖Lp(Ω)

(∫
Ω
|f |pdµ

)1/p, the Lp norm
Lploc(Ω) space of locally p integrable functions∫

Bochner (or Lebesgue) integral
K
∫

Henstock–Kurzweil integral
W 1
SL(J,E) space of a.e. differentiable functions from J to E

satisfying the Strong Lusin Condition
HL(J,E) space of HL integrable functions from J to E
HLloc(J,E) space of locally HL integrable functions from J to E
c0 space of those sequences of reals that converge to 0
lp space of such sequences (xn)∞n=1 of reals that

∑
|xn|p <∞

γ Euler constant = limn→∞
(∑n

i=1
1
i − ln(n)

)
Si(x) sine integral =

∫ x
0

sin t
t dt

Ci(x) cosine integral =
∫ x
0

cos t−1
t dt+ γ + ln(x)

FrS(x) Fresnel sine integral =
∫ x
0

sin(π2 t
2) dt

Ci(x) Fresnel cosine integral =
∫ x
0

cos(π2 t
2) dt

x−i (x1, . . . , xi−1, xi+1, . . . , xN )
(xi, x−i) (x1, . . . , xN )
X−i X1 × · · · ×Xi−1 ×Xi+1 × · · · ×XN

⇀ weak convergence
fo(u;h) generalized directional derivative
∂f subdifferential of f or Clarke’s generalized gradient of f
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∇f (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xN ), the gradient of f
∆f ∂2f/∂x2

1 + ∂2f/∂x2
2 + · · ·+ ∂2f/∂x2

N , the Laplacian of f
∆pf the p-Laplacian of f
C∞

0 (Ω) space of infinitely differentiable functions
with compact support in Ω

‖f‖Wm,p(Ω)

(∑
|β|≤m

∫
Ω
|Dβf |pdx

)1/p

, the Sobolev norm
Wm,p(Ω) space of functions with bounded Wm,p(Ω) Sobolev norm–Sobolev space
Wm,p

0 (Ω) Wm,p(Ω)-functions with generalized homogeneous boundary values
γ(u) or γu trace of u or generalized boundary values of u
Lp(0, τ ;B) space of p integrable vector-valued functions

u : (0, τ) → B
C([0, τ ];B) space of continuous vector-valued functions

u : [0, τ ] → B
C1([0, τ ];B) space of continuously differentiable vector-valued

functions u : [0, τ ] → B
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56. Carl, S., Heikkilä, S.: Nonsmooth and nonlocal implicit differential equations
in lattice-ordered Banach spaces. Nonlinear Stud. 15, 11–28 (2008)
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126. Heikkilä, S.: Well-posedness results for Cauchy problems containing non-
absolutely integrable vector-valued functions. Nonlinear Studies, to appear
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135. Heikkilä, S. Reffett, K.: Fixed point theorems and their applications to theory
of Nash equilibria. Nonlinear Anal. 64, 1415–1436 (2006)
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138. Heikkilä, S., Seikkala, S.: On singular, functional, nonsmooth and implicit phi-
Laplacian initial and boundary value problems. J. Math. Anal. Appl. 308 (2),
513–531 (2005)
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Axiom of Choice, 24
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Bochner integrable, 404
Bochner integral, 404
Borel set, 432
Brouwer’s Fixed Point Theorem, 1
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Cauchy problem, 198
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Clarke’s generalized gradient, 9, 62
coercive, 102, 440
compact operator, 3
complete measure, 401
completely continuous, 3
cosine integral, 248

demicontinuous, 402, 440
directed, 23, 77
directed set, 77, 108
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discontinuous parabolic inclusion, 179
Dominated Convergence Theorem, 417
downward directed, 23, 77
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evolution, 261
evolution equation, 447
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expected utility, 365
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Fatou’s Lemma, 404
finite normal-form game, 326
finite supermodular game, 331
first order stochastic dominance, 365
fixed point, 26
Fredholm, 261
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generalized directional derivative, 453
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multi-valued variational inequality, 65
multipoint initial value problem, 218
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Nash equilibrium, 14, 319, 326
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nonlocal and discontinuous elliptic
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normal, 403
normal-form game, 16, 319
null set, 401

obstacle problem, 127
order center, 28, 167
order closed, 28
order closure, 28
order compact downward, 26
order compact upward, 26
order cone, 44, 403
order convergence, 386
order interval topology, 341
order limit, 386
ordered metric space, 25
ordered normed space, 44
ordered Polish space, 365
ordered topological space, 25, 341
ordered vector space, 326
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S+-condition, 441
Saks–Henstock Lemma, 406
Schauder’s Fixed Point Theorem, 3
second countable, 430
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semicontinuous multi-functions, 443
semilinear, 210
seminorm, 403
separable, 429
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simple, 319
sine integral, 202
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singular, 225
smallest element, 23
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solution, 102
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strategy, 319
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strictly differentiable, 454
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Strong Lusin Condition, 412
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sub-supersolution method, 105
subsolution, 66, 98, 101, 118, 213
successor, 50
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supermodular, 373
supermodular game, 16
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supersolution, 66, 98, 101, 118, 213
supremum, 23

trace, 437
trace operator, 63
Trace Theorem, 437
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uniform norm, 198
uniformly monotone, 441
upper bound, 23
upper closed, 339
upper semicontinuous, 339, 443
upward directed, 23, 77
Urysohn, 261
utility function, 319

variational inequality, 65
variational-hemivariational inequality,
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Volterra, 261

weak derivative, 436
weak dominant, 379
weak majorant, 379
weak topology, 430
weakly dominating strategy, 382
weakly measurable, 402
weakly sequentially complete, 403
well-ordered, 23
well-posed, 210
winning strategy, 386, 387

Zorn’s Lemma, 25
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