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7.1 � Introduction

Whereas the usual location models locate facilities based on the wishes and objec-
tives of a single decision maker, competitive location models consider the loca-
tion of facilities that are under the jurisdiction of more than one decision maker. 
The economist Hotelling (1929) was the first to introduce competition into loca-
tion models. His results stood unchallenged for fifty years, until d’Aspremont et al. 
(1979) corrected an inconsistency that invalidated Hotelling’s main result. Nonethe-
less, this has not diminished the originality and importance of the original contribu-
tion, and it is also the reason why the present paper reviews Hotelling’s contribution 
and its impact on location models with multiple decision makers.

Arguably, the best way to deal with competitive location models is to assess their 
components. Most prominent among them are the number of decision makers in-
volved, the pricing policy, the rules of the game, and the behavior of the customers. 
Eiselt et al. (1993) provide a taxonomy and annotated bibliography that includes 
these features. Rather than restating their description, I will only very briefly sum-
marize the main features. The most prominent pricing policies include mill pricing, 
where the price at each branch is fixed by the decision maker and customers provide 
for their own transportation, spatial price discrimination, where the firm sets the 
price a customer will be charged for the goods that are delivered to his place, and 
uniform delivered pricing, in which case all customers will receive the good for the 
same price (which typically means that customers located closer to a branch of the 
firm will subsidize those farther away). Other policies such as zone pricing may 
also be investigated.

The rules of the game are more complex. They essentially include rules that 
govern the process of decision making. In particular, they specify whether the firms’ 
decisions are made sequentially or simultaneously. In case of pure location competi-
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tion, i.e., the case in which all firms compete only in terms of locations, a sequential 
process would indicate that, say, firm A locates first, followed by firm B, then firm 
C, and so forth. This location with foresight is discussed in Chap. 8 of this volume. 
The distinguishing feature of the sequential location process is its asymmetry. The 
first firm, being aware of the fact that other firms will locate after it has chosen 
locations for its own branches, will take this knowledge into account and use what 
Teitz (1968) called “conservative maximization.” Subsequent firms will also at-
tempt to guard themselves against firms that follow but, at the same time, will take 
the locations of already existing firms into account. This chapter deals exclusively 
with simultaneous location.

The situation becomes more complex when variables other than location exist. 
Many authors, including Hotelling (1929) in his seminal work, allow the firms to 
not only choose locations for their branches, but also to determine their prices. 
One possibility is to require that all firms make their choices simultaneously. Most 
authors, however (including Hotelling) use a two-stage process: in the first stage, 
all firms simultaneously choose their respective locations. Once these choices have 
been made, they are revealed to all firms. In the second stage, all firms then simulta-
neously determine the prices they want to charge. This sequence has been chosen as 
the much more permanent location decision comes first, followed by the price deci-
sion, which can easily be adjusted or modified later on. Furthermore, when making 
a decision in Stage 1, firms will anticipate the price competition in Stage 2. Such a 
game will be solved by backward recursion: for each pair of locations, the two firms 
will independently determine their optimal prices. Given those prices, firms will 
then—again independently—determine their optimal locations.

One question that arises rather naturally in all of these models is whether or 
not the set of locations that arises from such a process is stable. The concept ap-
plied here is the Nash (sometimes also referred to as Cournot-Nash) equilibrium. 
Loosely speaking, a Nash equilibrium is a situation in which none of the firms has 
an incentive (meaning can improve its objective) by unilaterally changing any of 
its parameters, be it location, price, quantity, or any of the other variables in the 
model. Most papers, especially in the economic literature, investigate whether such 
an equilibrium exists in the model under considerations, and, if so, if it is unique. 
While simple Nash equilibria can be determined in pure location competition, the 
two-stage “first location, then price” game requires a refinement of the equilibrium 
concept. The optimality concept that applies in such a procedure is Selten’s (1975) 
subgame perfect Nash equilibrium.

In addition to locating facilities such as warehouses, retail stores, fast food out-
lets, gas stations, or other facilities of this nature, it has also been suggested to use 
location models for seemingly unrelated problems such as the design of brands, 
the determination of positions for political candidates, or the allocation of tasks to 
employees. The main features of these nonphysical location models are described 
below.

First consider the design of products, which is typically referred to as the brand 
positioning problem. In this application, we first define a continuous “feature 
space,” in which each dimension represents a specific feature of the class of prod-
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ucts under consideration. For example, in the case of automobiles these features 
could include horsepower, maximal speed (or, alternatively, acceleration), and gas 
mileage. Clearly, it is required that each feature under consideration be quantitative. 
Also note the correlation between some of the factors, e.g., horsepower and gas 
mileage. The products are then also mapped into space according to their features. 
This is followed by the mapping of (potential) customers, who are also mapped 
into the feature space by their respective ideal points, i.e., the product features they 
would like best. It then stands to reason that a customer will evaluate a product 
based on the distance between his own ideal point and the location of the product. 
The reason is that, just like physical distances, the distance between potential cus-
tomer and product in a feature space expresses the disutility of a customer for that 
product. And, continuing that line of argument, a potential customer will choose 
the product that is closest to his own ideal point. One problem associated with this 
model is the existence of features such as price and gas consumption, which have 
an ideal point that is zero (or, if you will, negative infinity). Anderson et al. (1982) 
suggest an “outside game,” a construct that allows the meaningful inclusion of such 
features in the model.

Another somewhat similar application is found in the area of political science. 
While the spatial analysis of political scenarios is not at all new—consider the clas-
sical contributions by Downs (1957) and Black (1958)—advances in location anal-
ysis helped tremendously to improve modeling and the solution of political models. 
Models of this nature first construct an “issue space,” an n-dimensional space in 
which each dimension represents a political issue that is deemed relevant in an elec-
tion. One of the key problems of the analysis is the quantification and measurability 
of issues, such as domestic policies, economic policies, etc. Candidates and likely 
voters are then mapped into this space by way of their ideal point (for the voters) 
and their stand on the issues (for the candidates) respectively, and assuming that—
following some metric—voters will vote for the candidate closest to their own ideal 
point. That way, it is possible to determine the number of voters that will vote for 
each of the candidates and, more importantly, how each of the candidates should 
redefine his stand on the issues so as to maximize the number of votes he will ob-
tain. In addition to the aforementioned difficulty of measurability there is also the 
determination of the ideal points of millions of voters. In their seminal contribution 
on the subject, Rusk and Weisberg (1976) used more or less well-defined groups 
such as “policemen,” “urban rioters,” “Republicans,” “Democrats,” and others to 
determine their average ideal point and, with the help of the variance determined by 
a sample, define a “cloud” around this ideal point that will then represent the voters 
in this group. The authors get around the problem of measurability of the axes by 
applying a multidimensional scaling technique (see, for example, Kruskal 1964). 
Additional contributions can be found in the other papers in the edited volume by 
Niemi and Weisberg (1976). It is also worth pointing out that one of the few features 
of this model that makes the political positioning simpler than the Hotelling’s origi-
nal scenario is the absence of prices in the model.

The workload allocation problem follows a similar logic. Here, tasks and em-
ployees are mapped into an ability space that expresses their requirements and abili-
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ties, respectively. The idea is to allocate tasks to employees so as to minimize the 
distance between employee and task, matching the requirements of the tasks and 
the employees’ abilities as closely as possible. A close match may be desired to 
increase job satisfaction and hence avoid high job turnovers, absenteeism, and other 
work-related problems. Again, some of the main problems related to these applica-
tions are the quantifications of the abilities and the determination of an appropriate 
distance function. Readers are referred to Schmalensee and Thisse (1988) for their 
survey on applications in feature spaces and ability spaces. For a recent reference, 
see Eiselt and Marianov (2008a).

The contributions surveyed in this paper all have one feature in common: they all 
emphasize the analysis of equilibria in competitive location models. Other aspects 
of competitive location models are dealt with in Chaps. 8 and 9 of this volume.

7.2 � Hotelling (1929): Competitive Location on a Linear 
Market

Hotelling starts his paper with a critical evaluation of past contributions. Of interest 
are particularly the embedding of his own work into the framework provided by 
Bertrand and Cournot. The discussion of a duopoly dates back to Cournot (1838). 
In his model, Cournot considers a duopoly with both firms competing on the same 
market with the same product. The variable costs have been normalized to zero (we 
may assume that they have been deducted from the price that the firms charge), and 
the two firms face a common demand function. The duopolists compete in quanti-
ties and the resulting solution is a Cournot-Nash equilibrium. Bertrand (1883), on 
the other hand, has duopolists competing in prices. Such competition is very in-
tense, as even a slight undercutting will revert the entire market to the cheaper firm. 
While Hotelling’s contribution is in the footsteps of these two (and other) predeces-
sors, its novelty is that he includes competition in space, while his predecessors’ 
models were set in a spaceless economy.

Hotelling’s basic model includes a space in the form of a closed line segment of 
length ℓ. It is worth noting that Hotelling justified the choice of a line segment by 
referring to it as “main street” or a stretch of a transcontinental railroad. Later au-
thors have claimed that Hotelling’s “justification” of the “linear market” was based 
on “two ice cream vendors on a beach,” an example never envisaged by Hotelling 
but put forth by later contributors.

Customer demand is distributed uniformly along the line at a unit density, so 
that the total demand equals ℓ. The demand is assumed to be completely inelastic. 
Two competing firms face the task of simultaneously locating one facility each 
and setting the price for a homogeneous product. Both firms use mill pricing, so 
that customers have to drive to the facility of their choice, pay for the product at 
the facility, and then ship it home: their full price includes the mill price charged 
at the facility and the transportation costs for shipping the good from the facility to 
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their home. Given a homogeneous (standardized) good, customers are indifferent 
between purchasing the good from either facility, so that they will choose the facil-
ity from which they can obtain the good for the lower full price, regardless of how 
distant the closest facility is. The transportation costs are assumed to be linear in the 
distance. The two firms are assumed to have equal cost functions, which have been 
normalized to zero.

Formally, define the market as a line segment of length ℓ and assume that firm 
A is located a units from the left end of the market, while firm B is located at a 
distance of b from the right end of the market. The only condition is that firm A is 
located to the left of firm B (which does not restrict generality, as this situation, if 
violated, can always been achieved by exchanging the names of the facilities). The 
facilities charge mill prices of pA and pB, respectively, and the unit transportation 
costs are c. Figure 7.1 shows the present situation. Each of the Y-shaped functions 
shows the full price (the mill price plus transportation costs) customers have to pay 
if they purchase from the facility in question: the stem of the “Y” is the mill price, 
and the slope of the two branches of the “Y” is the unit transportation cost c. Given 
that the good is homogeneous, customers will purchase from the source with the 
lower full price, i.e., the lower envelope of the branches of the two “Ys.” This re-
sults in a marginal customer X (Hotelling did not use the expression), who is defined 
as a customer indifferent between purchasing from firm A or from firm B. Clearly, 
all customers to the left of the marginal customer can buy the good more cheaply 
from firm A, while those to the right of X can purchase the good more cheaply from 
firm B. This will define firm A’s market area from the left end of the market to the 
marginal customer, while firm B’s market area extends from the marginal customer 
to the right end of the market.

Authors who followed Hotelling usually refer to the region to the left of A as “A’s 
hinterland,” the region to the right of B as “B’s hinterland,” and the area between 
firms A and B as the “competitive region.” (It appears that Smithies (1941) was the 
first author to use these terms.) The two hinterlands are of length a and b, and the 
competitive region is divided by the marginal customer X into pieces of lengths x 
and y, respectively. Formally, we have

� (7.1)a + x + y + b = �,

Fig. 7.1   Price functions of 
duopolists on a line segment
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and the marginal customer X is defined as a place at which prices are equal, i.e., 
pA + cx = pB + cy with unit transportation costs c. Solving this system of two equa-
tions for x and y, we obtain

� (7.2)

and

� (7.3)

so that the profits are

� (7.4)

and

� (7.5)

For any given values of ℓ, a, b, and πi, i = A, B, iso-profit lines can be plotted in 
pA, pB space as hyperbolas. Since each duopolist will adjust his own price so as to 
maximize his profit, we can take partial derivatives

� (7.6a)

or

� (7.6b)

and

� (7.7a)

or

� (7.7b)

(Note that ∂2πA

∂p2
A

< 0  and ∂2πB

∂p2
B

< 0,  so that these conditions determine a local maxi-

mum).
The expressions (7.6b) and (7.7b) are usually (although not by Hotelling) re-

ferred to as reaction functions of the two firms. In particular, if firm B were to set 
any price pB, then firm A would react by setting its price to a level specified by rela-
tion (7.6b). Similarly, firm B will react by using relation (7.7b) to any price pA set 
by its competitor A.

x = 1/2[� − a − b + 1
c
(pB − pA)]

y = 1/2[� − a − b + 1
c
(pA − pB)],

πA = pAqA = pA(a + x) = 1/2(� + a − b)pA + pB

2c
pA − 1

2c
p2

A

πB = pBqB = pB(b + y) = 1/2(� − a + b)pB + pA

2c
pB − 1

2c
p2

B.

∂πA

∂pA

= 1/2(� + a − b) +
pB

2c
− 1

c
pA = 0

p∗
A = 1/2c(� + a − b) + 1/2pB

∂πB

∂pB

= 1/2(� − a + b) +
pA

2c
− 1

c
pB = 0

p∗
B = 1/2c(� − a + b) + 1/2pA.
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Solving for the prices pA and pB results in the equilibrium prices

� (7.8a)

and

� (7.8b)

and the quantities at equilibrium are

� (7.9a)

and

� (7.9b)

This can best be explained graphically. Hotelling’s original example involves val-
ues of ℓ = 35, a = 4, b = 1, c = 1, and it is shown in Fig. 7.2. Given his numerical 
example, the optimality conditions result in the reaction functions p∗

A = 19 + 1/2pB

and p∗
B = 16 + 1/2pA, respectively. Solving the two linear equations results in the 

equilibrium prices p̄A = 36 and p̄B = 34.

p̄A = c

(
� +

a − b

3

)

p̄B = c

(
� −

a − b

3

)
,

q̄A = a + x = 1/2

(
� +

a − b

3

)

q̄B = b + y = 1/2

(
� −

a − b

3

)
.
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The lines with short dashes define a “corridor” between the lines pB ≤ pA + 30 and 
pB ≥ pA − 30. This corridor is the set of price combinations in which the price differ-
ence is no larger than the cost of shipping one unit from one facility to the other. In 
other words, it is the area within which neither competitor cuts out its opponent. The 
solid lines represent the reaction functions that result from the optimality condi-
tions. The steeper line is firm A’s reaction function, while the flatter line is firm B’s 
reaction function. The broken line with long dashes denotes the set of price combi-
nations that result in πA = 648 (the profit that results from the equilibrium prices at 
point E, viz., pA = 36 and pB = 34). Finally, the broken and dotted line is the set of 
price combinations that result in πB = 578.

Hotelling then describes a procedure in which the two firms start with non-equi-
librium prices that they subsequently adjust in sequential fashion. For simplicity, 
the two reaction functions are shown again in Fig. 7.3, where E again denotes the 
equilibrium point. Suppose now that the two firms charge prices so as to realize 
point Q. Given this combination of (below equilibrium) prices, either of the firms 
has an incentive to change (here: raise) its price. Suppose that firm A will react first. 
Firm A will assume that, at least for some time, its competitor will not react. This 
assumption was later referred to as “zero conjectural variation” by Eaton and Lipsey 
(1975). Furthermore, firm A will act without any foresight and consequently move 
from point Q to the point on firm A’s reaction function, which is point R. Once this 
has been accomplished, firm B will react and move to the point on its reaction func-
tion, viz., point S. Then firm A reacts again by moving to point T, and so on. The 
price adjustment from points in any of the three other cones is similar. Note also 
the similarity of the adjustment process here to that in the famed cobweb theorem 
in economic theory.

At this point, Hotelling remarks in a footnote that the above conclusions are true 
only as long as the difference in price does not exceed the cost of shipping one unit 
from A to B or vice versa. Formally, the condition is

� (7.10)

If this condition is not satisfied, the equilibrium is not point E but some other point. 
It is important to note that Hotelling does indeed realize that his computations are 

|pA − pB | ≤ c(� − a − b).

Fig. 7.3   Price adjustments 
over time
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valid only for a certain range of prices (price differences, to be exact). However, he 
does not elaborate. Hotelling’s result, the clustering of the duopolists at the center 
of the market has also been referred to as the principle of minimal differentiation (in 
reference to product design and the political model introduced in the beginning of 
this paper) or Hotelling’s law.

An interesting case of cooperation results. Starting again at the equilibrium point 
E in Fig. 7.2, assume that firm A is willing to forego profits in the near future and 
moves out of point E by raising its price, and moving to the right. Behaving optimal-
ly, firm B will again move towards its point on its reaction function by increasing 
its price as well. As long as firm A’s price increase was modest, the point that will 
be realized will be located on firm B’s reaction function to the left of point K. This 
point does provide both firm A and firm B with higher profits than at equilibrium. 
However, the solution is inherently unstable (similar to the well-known Prisoner’s 
dilemma), as firm A has an incentive to increase its profit even more by moving 
onto its own reaction function. Such a move will, however, result in sequential price 
adjustments that ultimately lead back to the equilibrium solution E.

Part II of Hotelling’s paper deals with a variety of extensions of his basic model, 
as well as alternative explanations. He first notes that the profits at equilibrium are

� (7.11a)

and

� (7.11b)

Given that, it is apparent that the profit of both firms increases with increasing 
unit transportation costs c. In other words, rather than promoting better means of 
transportation, the two firms would fare better if transportation were to be made 
more difficult. The reason is that if transportation were very difficult, each firm 
could behave as a local monopolist and charge monopolist’s prices. It is important 
to point out that while higher transportation costs as applied to shipments from the 
firms to their customers do, in fact, increase profits, they will have a detrimental 
effect on the variable costs as they also apply to shipments from the firms’ suppliers 
to the firms. These costs were neglected in the model. This means that the argument 
regarding the parameter c is better explained by the existence of tariffs.

The paper then examines the case in which one firm’s location (without loss of 
generality assume this is firm A) has fixed its location and firm B now chooses its 
own location. Given its profit at equilibrium as shown in relation (7.11b), it is ap-
parent that firm B’s profit increases with increasing value of b. In other words, it 
will pay firm B to locate as close to its competitor as possible. This is again the “ag-
glomeration result” (or “principle of minimum differentiation” as it became known 
later). However, Hotelling again notes the problem that occurs when the two facili-
ties are sufficiently close so that one firm can cut out its opponent.

π̄A = 1/2c

(
� +

a − b

3

)2

π̄B = 1/2c

(
� −

a − b

3

)2

.
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Another interesting result relates to the total profit of the two firms, which are, 
say, governed by a central planner. Formally, we have

� (7.12)

indicating that it would benefit the planner to have the two facilities locate at sites 
that are as different from each other as possible, i.e., maximizing a − b.

The next few paragraphs of the paper examine the relationship between the so-
lution arrived at by profit maximization as opposed to the solution that optimizes 
some social objective. The social objective chosen is the minimization of total trans-
portation costs. For simplicity, consider the left end of the market between 0 and 
A an interval of length a. The transportation costs in this interval for all shipments 
to the facility at point A are

∫ a

t =0 ctdt = 1/2ca
2. Applying this result to all intervals, 

viz., those from 0 to A (an interval of length a), from A to the marginal customer X 
(an interval of length x), from the marginal customer X to facility B (an interval of 
length y), and finally the interval from facility B to the end of the market (an interval 
of length b), results in total transportation costs

� (7.13)

Given fixed locations of the facilities A and B, the values of a and b are fixed as 
well, and so is x + y. Then x2 + y2 is minimized, if x = y. This, in turn, is only sat-
isfied, if pA = pB, which, while entirely possible under the direction of a central 
planner or commissar, is an outcome that is highly unlikely under competition. It 
does, however, indicate that social planners will prefer equal prices charged at the 
facilities. Assume now that a ≠ b. Without loss of generality, let a > b, which, given 
individual profit maximization, implies that at equilibrium, p̄A > p̄B , see relation 
(7.8a). This means that some customers in the competitive region, although they 
are located closer to facility A, will make their purchases and resulting shipments 
from facility B. This results in higher transportation costs as if they were to make 
their purchases at facility A, which renders this solution not “socially optimal.” In 
fact, Hotelling states, “Consequently some buyers will ship their purchases from 
B’s store, though they are closer to A’s and socially it would be more economical 
for them to buy from A.” This clearly indicates Hotelling’s allocation rule assumes 
that customers purchase their goods from the source that offers the lowest full price 
(even though he may not advocate this practice). This is worth pointing out since 
some authors use the term “Hotelling’s allocation” to mean the allocation of a cus-
tomer to his closest facility, which is not correct.

If the facilities can be moved at will, the social optimum again minimizes the 
function shown in (7.13) with a, b, x, and y all variable and the single constraint 
that a + b + x + y = ℓ plus the nonnegativity constraints. At optimum, all variables 
assume equal values ( a = b = x = y = ¼ℓ), so that the two facilities are located at the 
quartiles of the market. The highest transportation cost paid by any customer in this 

πA + πB = c

[
�2

(
a − b

3

)2
]

,

T T C = 1/2c
(
a2 + b2 + x2 + y2) .
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arrangement is then ¼ℓ. In contrast, competition will have the two facilities cluster 
at the center of the market (Hotelling again notes the “unimportant qualification” 
that deals with the possibility of one competitor cutting out its opponent), so the 
highest possible full price is ½ℓ. The author uses this as an example of “wasteful-
ness of private profit-seeking management.”

Another extension deals with additional firms. In the case of individual profit 
maximization, Hotelling notes that the third firm will locate “close to A and B, but 
not between them.” In some sense, this anticipates the analyses performed later by 
Lerner and Singer (1937) and subsequently by Eaton and Lipsey (1975). For more 
facilities, Hotelling asserts that clustering will occur, but no specifics are given. The 
case of social optimization for three facilities is again easy: the facilities locate sym-
metrically at 16�, 3

6�, and 56�, respectively.
Hotelling then extends the range of applicability of his model from scenarios 

that involve the physical transportation of items to multidimensional spaces (today 
referred to as feature spaces), in which each dimension symbolizes a (quantifiable) 
feature of (a class of) products. He uses one dimension to distinguish between dif-
ferent brands of cider, and the attribute of the cider that identifies the particular 
brand is its sweetness. What used to be facilities in the competitive location model 
discussed above now represents brands of cider. Customers are again distributed 
along the line segment, such that each customer is represented by its “most preferred 
point” (or “ideal point”) on the line, such as the point that represents the sweetness 
of cider that this customer desires most. The distance between a customer’s ideal 
point and a brand is then a measure that expresses the customer’s disutility associ-
ated with buying and consuming that particular brand of cider.

The results of the preceding analysis, viz., the clustering in case of individual 
profit maximization, then imply “excessive sameness.” Hotelling credits this in part 
to standardization and economies-of-scale in the production process, but also to 
the results derived in this study. The main lesson for a firm that intends to enter the 
market with a new product is not to make the product identical to existing products 
(in which case Bertrand price competition would ensue, driving down prices), but 
design a product that differs slightly from existing products by locating the brand in 
feature space close, but not too close, to existing brands. Hotelling’s assertion that 
the similarities of political platforms of Republican and Democratic parties (which 
are again represented by their main issues in issue space) can also be attributed 
to the effects studied here are not valid per se, as political models do not involve 
prices, thus reducing the model to a much simpler version. Some remarks regarding 
political models are provided in the next section in this chapter as well as Chap. 19 
in this volume.

Some further generalization and extensions are discussed. First, Hotelling af-
firms that demand densities other than the uniform demand distribution used in his 
analysis provide “no essential change in conclusion.” In the case of buyers being 
located in a two-dimensional plane, the market areas of the two firms are divided by 
a hyperbola. In case of more than two facilities, the market areas will be bounded by 
arcs of hyperbolas. In multidimensional spaces (such as feature spaces), the demand 
density is typically not uniform and it occurs within a finite bounded region. Here, 
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not all facilities need to belong to the same firm. There is a general tendency among 
outsiders to move inward and approach the cluster, which is again the agglomera-
tion result of this paper. This result is asserted, but not proven. For more on market 
areas and their use in location planning, see the Chaps. 18 and 19 in this volume.

An important extension concerns the elasticity of demand. So far, it has been 
assumed that firms offer a product for which the demand is fixed, i.e., completely 
inelastic. While this may occur in the case of essential goods, it is highly unlikely 
for most products. One of the central questions is whether the price or the quantity 
should be a variable. So far in the analysis, the quantities have been restricted to 
the constant ℓ. Given elastic demand, this limitation no longer applies and prices 
or quantities can be used as independent variables. Hotelling asserts that even with 
elastic demand, the results derived above will remain “qualitatively true,” even 
though there will be less of a tendency to cluster.

7.3 � The Impact of Hotelling’s Contribution

Hotelling’s original paper has sparked controversy, as well as a flurry of papers 
written about his model and similar scenarios. In their survey and taxonomy, Eiselt 
et al. (1993) already list about a hundred papers on the subject. Since then, at least 
another hundred contributions have been published. It is possible to broadly distin-
guish between two types of contributions: those that deal with the existence of Nash 
equilibria, and those that examine von Stackelberg solutions. There is no doubt that 
the impact of Hotelling’s paper has been felt by both streams. However, this chap-
ter will only survey those papers that deal with Nash equilibria; von Stackelberg 
solutions are examined in detail in Chaps. 8 and 9 of this volume. This chapter will 
follow the developments of those works that can be considered continuations and 
refinements of Hotelling’s work. Most contributions in this area are made by econo-
mists, and their tool of choice is game theory.

Those who followed in Hotelling’s footsteps generalized his model in various 
directions. These directions include (but are by no means limited to)

•	 different spaces
•	 n > 2 facilities,
•	 different assumptions about competitors’ behavior
•	 different transport cost functions and different pricing policies,
•	 different assumptions concerning customer behavior,

and other generalizations. A few of the many milestones are highlighted below.
Probably the earliest contribution to deal with Hotelling models is put forward 

by Lerner and Singer (1937). The authors point to Hotelling’s assumption of fixed 
demand and the customers’ willingness to pay any amount to satisfy their demand as 
one of the main deficiencies of his model, particularly when applying his argument 
to favor a social/socialist solution as more efficient than a capitalist solution. The 
authors thus introduce a “demand price,” defined as the highest amount customers 
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are prepared to pay to satisfy their demand. The authors also criticize Hotelling’s 
assumption that stipulates that a facility planner uses more information when choos-
ing a location than when setting a price. The reason is that the location decision in 
stage 1 of the two-stage “first location, then price” game is made with the assump-
tion that the opponent’s price will be what results from a long line of price adapta-
tions. However, in stage 2 this knowledge is no longer assumed to exist. In contrast, 
Lerner and Singer assumed that a firm’s planner will not react when his opponent 
moves closer and takes a part of his customers, but he will react when undercut so 
that all of his customers are not supplied by his opponent. This is a concept, a vari-
ant of which Eaton and Lipsey (1975) referred to as “zero conjectural variation.” 
This assumption leads to locations at about 3/8 away from the respective ends of the 
market. A further analysis in the paper assumed again that a firm, whose competitor 
is in the process of relocating, does not react except if undercut. The last part of the 
paper dealt with a Hotelling model with fixed and equal prices, resulting in pure 
location competition. The authors identified a large number of equilibrium locations 
for n ≥ 2 facilities. Two competing firms will have a unique equilibrium solution by 
clustering at the center of the market; this is the “minimum differentiation” result 
Hotelling envisaged for his own model. The case of three firms is interesting: the 
two peripheral firms crowd in on the firm between them in order to gain a higher 
market share until the central firm has no market share left. It then “leapfrogs” to 
the outside, becomes a peripheral facility itself, and starts moving inwards as well. 
Teitz (1968) referred to this later as “dancing equilibria,” which really means that 
this case has no equilibrium. For four or more firms locating on the linear market, 
their locations are at 1

2�n� , 3
2�n� , . . . , 2�n�−1

2�n� .Finally, in their analysis of the model 
with price discrimination, the equilibrium locations are at 1

2n
, 3

2n
, . . . , 2n−1

2n
, which 

happens to be socially optimal in that it minimizes the total transportation costs. An 
interesting feature of this result is that a customer closer to a facility will have to 
pay more than one that is more remote from a firm. The reason is that the level of 
competition close to a firm is fairly low, which increases the price.

Smithies (1941) continued where Lerner and Singer (1937) left off. His particu-
lar interest were the assumptions concerning the behavior of the competitors. In 
particular, Smithies did not believe that competitive price cutting was a reasonable 
policy, as it would lead to an all-out price war. Given a price-quantity relation, his 
model included three cases that exhibited different levels of cooperation. In the 
first case, facilities would charge the same price and would locate symmetrically. 
This “full quasi-cooperation,” as the author called it. This case includes little, if any 
competition, and it is not surprising that the results would be the same as if a mo-
nopolist were to locate two plants. The second behavioral assumption was for both 
firms to charge identical prices but compete in locations. Finally, case 3 exhibited 
“full competition” in the sense that both firms independently optimized their prices 
and locations. The results were examined according to their dependence on freight 
rates and changes in marginal costs. Kohlberg and Novshek’s (1982) contribution 
followed Smithies in many respects in that each relocating facility would assume 
that its competitors would keep their locations and prices at the present level, except 
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if undercutting occurred, in which case the firm that was undercut would reduce its 
price to its marginal cost. The main result was that there exists a certain length of 
market below which there is no equilibrium, while in case of longer markets, there 
exists a unique location-price Nash equilibrium for which the authors provide a 
necessary and sufficient condition. Along similar lines is the analysis by Stevens 
(1961), who was probably the first author to use matrix games for a discretized ver-
sion of Hotelling’s game. Given elastic demand similar to Smithies, the result was 
still central agglomeration.

Another generalization concerns locations on a circle. While the space may ap-
pear somewhat contrived, the results indicated not only the fragility of Hotelling 
equilibria, but also some of the special features of the linear market that are lost on 
a circle: hinterlands, for instance, are specific to linear markets (and tree networks, 
for that matter), but they do not exist on circles or on general networks. On a circle, 
multiple equilibria exist for all cases with two or more facilities, given rectangular 
demand density functions. Finally, some locational patterns on a disk were investi-
gated regarding their equilibrium status. Based on simulation attempts, the authors 
conjectured that there is no equilibrium for n > 2 facilities.

The aforementioned contribution by Eaton and Lipsey is one of the papers most 
frequently referred to in the context of Hotelling’s result, even though their model 
is quite different from Hotelling’s contribution. Their work first restated the results 
obtained by Lerner and Singer (1937) before performing a variety of sensitivity 
analyses on the problem. Their first model was Hotelling’s linear market with uni-
form demand density and the zero conjectural variation, i.e., no foresight. Model 2 
was the same as Model 1, but with no zero conjectural variation. It results in mini-
max strategies, and as such anticipates the results by Prescott and Visscher (1977) 
that are presented in Chap.  8 of this volume. Finally, their third model is again 
similar to Model 1, but with the assumption of uniform demand density relaxed. 
The result for two firms was similar (the facilities will cluster at the median of the 
density function), and there was no equilibrium for three firms, and there may not 
be equilibria for more than three firms either, given a condition on the demand func-
tion. In particular, the authors proved that for an equilibrium to exist, it is necessary 
that the number of firms on the market is no more than twice the number of modes 
in the demand distribution.

The authors then tackled the much more complex problem of equilibria in two-
dimensional space. Again, they avoided boundary problems by considering a disk. 
Due to the difficulty of the problem even with fixed and equal prices, they investi-
gated a number of patterns that are potential candidates for equilibria and determine 
whether or not they are indeed equilibria. The first pattern has facilities located on 
a circle around the center of the disk. This pattern self-destructs immediately as 
soon as individual firms (re-) optimize their location. Pattern 2 is similar, except 
with one facility at the center of the disk. This pattern also turn out to be unstable. 
Finally, pattern 3 is the Löschian honeycomb pattern that consists of hexagons. (De-
tails concerning Lösch’s work are found in Chap. 20 of this volume.) This pattern 
also self-destructs immediately as individual firms optimize their locations, thus 
the authors conjectured that there exists no equilibrium pattern on a disk with n > 2 
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facilities. (The case of n = 2 facilities is easily dispensed of: the two facilities cluster 
at the center of the market, a simple pairing observed on the linear market for n ≥ 4 
facilities.) For a discussion of the case of competition in bounded two-dimensional 
space, readers are referred to Chap. 19 of this volume.

Probably the most important contribution following Hotelling’s work is the short 
paper by d’Aspremont et al. (1979), published fifty years after the original work 
appeared. It first pointed out an error in Hotelling’s original work that resulted in 
the wrong conclusion: not only does the duopoly model described by Hotelling not 
have an equilibrium at the center of the market (central agglomeration), but the 
model does not have an equilibrium anywhere. Hotelling was aware that his results 
would need some refinements (see his footnote referred to above), but he was not 
aware of the severity of the consequences. Actually, the equilibrium he computed 
for facilities that are located closely together is wrong. However, d’Aspremont et al. 
(1979) were not the first to recognize that there were problems with Hotelling’s 
analysis. To quote the earlier work by Prescott and Visscher (1977):

The difficulty with this solution concept, as others have noted (Smithies 1941, Eaton 1976, 
and Salop 1979) is that when locations in Nash are sufficiently close, Nash equilibrium 
prices will not exist.

Without resorting to formalities, the lack of an equilibrium can readily be seen by the 
following arguments. Consider any locational arrangement that has the two facilities 
not clustered together. First of all, there is an incentive for firm A to move closer to 
its opponent until the right branch of its Y-shaped full price function coincides with 
that of firm B. Similarly, firm B has an incentive to move to the left until the left arm 
of its Y-shaped full price function coincides with that of firm A. Once that has been 
achieved (note that there is no clustering of the facilities yet), the firm with the lower 
mill price could lower its price by an arbitrarily small amount and, in doing so, be 
cheaper on the entire market. In doing so, its profit would jump up, meaning that the 
cheaper facility certainly has an incentive to undercut its opponent. The more ex-
pensive facility could now react by lowering its price so as to undercut its opponent 
(which is Bertrand’s price competition). Once prices have reached a very low level, 
it would benefit either of the two facilities to move significantly far away from its 
opponent so as to enjoy a local monopoly and the associated positive profits.

D’Aspremont et al. (1979) used a more formal argument. The authors first proved 
that any equilibrium if it exists at all, it either has a + b = ℓ (both facilities locate at 
the center at the market), in which case both prices are equal to zero (the Bertrand 
solution), or a + b < ℓ, in which case the price difference must satisfy

� (7.14)

Condition (7.14) expresses the requirement that the difference in prices is less than 
the cost required to ship one unit from one facility to another. If this condition were 
violated, it would imply that the lower-price facility is able to cut out its opponent 
and capture the entire market. Clearly, this cannot be an equilibrium solution as the 
higher-priced facility would be left without a zero profit that it could increase by 
undercutting its opponent in turn.

|p̄A − p̄B | < c(� − a − b).
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We are now able to present a formal expression for the existence of an equilib-
rium. Recall that the equilibrium profits were determined in relations (7.11a) and 
(7.11b) as

An equilibrium can then only exist if and only if a firm’s equilibrium profit is larger 
than the profit it would obtain if it were to slightly undercut its opponent by some 
small value ε. If for instance, firm A were to undercut firm B, then its profit would 
be pAℓ, as it captures the entire market. Assuming that firm A undercuts firm B 
by setting its price to pA = pB − c( ℓ − a − b) − ε with some ε > 0, while firm B 
charges its equilibrium price p̄B specified in relation (7.8b), firm A’s profit would 
be πA = [p̄B − c(� − a − b) − ε]�.Clearly, an equilibrium can only exist if under-
cutting does not result in a higher profit than the equilibrium profit. Formally, an 
equilibrium will exist, if π̄A ≥ πA, or, equivalently,

Applying some standard algebraic transformations and repeating the process for 
firm B, undercutting firm A, we obtain the necessary and sufficient existence condi-
tions for equilibria as

� (7.15a)

and

� (7.15b)

Note that for symmetric equilibria a = b, so that the conditions (7.15a) and (7.15b) 
reduce to a = b ≤ ¼ℓ. This means that the condition requires the two facilities be-
ing located outside the first and third quartiles, which is, of course, not satisfied by 
Hotelling’s “central agglomeration” result.

The authors continued to examine a model that is identical to that investigated by 
Hotelling, except that it uses quadratic transportation costs of the type c(distance)2. 
While physical transportation is unlikely to exhibit such cost function, models with 
nonphysical spaces very well may. The result is not only that this model does have 
a unique equilibrium, but that at equilibrium, we have maximum (rather than mini-
mum) differentiation with both firms locating at the respective ends of the mar-
ket. This is but one indication of the instability of Hotelling models in general. 
This point was driven home even further by Anderson (1988), who considered a 
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Hotelling model with a linear quadratic transportation cost function of the type 
c1(distance) + c2(distance)2. This type of cost function was first introduced by Gab-
szewicz and Thisse (1986). With this cost function, there exists an equilibrium only 
if c1 = 0, i.e., the function has no linear part at all, regardless how small. However, 
for certain pairs of locations with the duopolists located close together, there is a 
price equilibrium. In case only pure strategies are allowed in stage 1 but mixed 
strategies are permitted in stage 2, an equilibrium exists only if the transport costs 
are “sufficiently” convex as expressed by the relation of parameters a and b. The 
Hotelling model with linear-quadratic transportation costs was picked up again by 
Hamoudi and Moral (2005).

Shaked (1982) considered a mixed strategy version the Hotelling model with 
fixed and equal prices and three competitors. Customers were uniformly distrib-
uted on the line. Following the result by Dasgupta and Maskin (1986), the solution 
would be doubly symmetric: both firms use the same mixed strategies, and the 
strategy is symmetric about ½ℓ. In particular, firms avoid locations in the extreme 
quartiles and choose locations instead in the central half of the market with equal 
probability. Osborne and Pitchik (1986) followed this line of investigation. Their 
model has fixed and equal prices, allows nonuniform demand distributions, and let 
the firms use mixed strategies. The authors first noted the well-known sensitivity of 
the model. For instance, for n ≥ 5 facilities, the model does not have an equilibrium 
if the customer distribution is either strictly convex or strictly concave, regardless 
how close the distribution is to uniformity. The main results are: for n  ≥  3, the 
game has a symmetric mixed strategy equilibrium and if the customer distribution 
is symmetric about the center of the market, so is the mixed strategy equilibrium; 
for n = 3, a unique equilibrium exists with one firm at the center of the market and 
the other two firms using mixed strategies for their locations.

The contribution by Kohlberg (1983) is different, as this appears to be the first 
paper that includes factors other than price and location. In particular, Kohlberg’s 
model included not only the transportation cost (here interpreted as travel time), but 
also the time spent waiting at a facility. The waiting time is assumed to be increasing 
with the facility’s market share. The author then proved that, while there is a unique 
equilibrium in the case of duopolists with both of them locating at the center of the 
market, there exist no equilibria for n > 2 facilities. Silva and Serra (2007) picked 
up the model but solved an optimization problem in discrete space; however, they 
do not investigate equilibria.

De Palma et al. (1985) took a different route. In their analysis, they employed 
Hotelling’s original model with locations and prices variable, a linear market of 
length ℓ, and a uniform demand, but their model included n facilities and a random 
utility function that expresses the customers’ evaluation of customer preferences. 
The authors put their model in the context of product placement with n products 
to be located on a line segment that determines the products’ feature. A customer’s 
(dis-) like of a product is expressed as a function of the distance between the cus-
tomer’s ideal point on the line and the product’s location. The main assumption of 
their paper was that products and customers are heterogeneous. In particular, cus-
tomers value purchasing a product according to the function
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where  > 0 denotes the degree of heterogeneity of customer tastes (so that  = 0 
equals homogeneous tastes), and the random variable ε that has a zero mean and 
unit variance. It turns out that heterogeneity in the logit function removes disconti-
nuities in the products’ profit functions.

After first considering only the location and then only the price model, the au-
thors proved that in the location-price model, for n > 2 products and a degree of 
heterogeneity of  < ½cℓ(1–2/n), there is no agglomerated Nash equilibrium, mean-
ing an equilibrium with all facilities locating at the same point. However, if  ≥ cℓ, 
central agglomeration with equal prices is a Nash equilibrium. In other words, large 
values of /cℓ lead to clustering, whereas small values of /cℓ result in dispersion. 
There are no results regarding the existence and the nature of other equilibria. Some 
tests revealed that equilibria may exist for n = 3. In summary, if all customers have 
very similar tastes, then there exists no equilibrium with similar products, while in 
case of very diversified customer tastes, products will tend to be the same. One may 
look at the result from the following angle: if tastes are very similar, then the firms 
have to diversify the products to appeal to different segments of the customer base, 
while in case of significantly diverse tastes, all products can occupy a similar posi-
tion in feature space.

A follow-up of their 1985 paper was provided by De Palma et al. (1987a). The 
assumptions were again a linear market, fixed and equal prices, a linear transporta-
tion cost function, and the same random utility function shown above with  again 
denoting the degree of heterogeneity in customers’ tastes. Numerical computations 
reveal the following results: for /c  <  0.157, no symmetric equilibria exist; for 
/c ∈ [0.157; 1/6], only symmetric dispersed equilibria exist; for /c ∈ [1/6; 0.27], 
agglomerated and symmetric dispersed equilibria exist; for /c  ≥  0.27, only ag-
glomerated equilibria exist. As far as an interpretation goes, consider a competitive 
location model in product (or feature) space. Here, less wealthy customers tend to 
be nondiscriminating, meaning that they tend not to care that much if a product is 
not exactly as they would like it to be. This implies that the value of c is small for 
this group, implying more heterogeneity and a larger value of μ. We can therefore 
associate a large value of μ/c for less affluent groups, while wealthier groups may 
be characterized by a small value of μ/c. The results of this study then indicate that 
less affluent customers with a large μ/c value will end up with products that are very 
similar to each other, while wealthy customers will face a market segment whose 
products are significantly different. This can, for instance, be observed in the auto-
mobile market, though to a much lesser extent today than ten or twenty years ago.

De Palma et  al. (1987b) considered a competitive location model on a linear 
market that uses uniform delivered pricing. Apart from this feature, the usual Hotel-
ling assumptions apply. Given the reasonable assumption that consumers purchase 
the product from the firm that offers the lowest delivered price and assuming that 
the products are perfectly homogeneous, the analysis indicates that there is no lo-
cation—price equilibrium. The authors then changed the assumption concerning 

(random utility) = (valuation of product) − (price) − (unit disutility cost c)

× (distance) + µεi,
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customer behavior. First of all, they assumed that customer tastes are homogeneous 
with a degree μ, which is taken as the standard deviation of the distribution of con-
sumer tastes. This is the same assumption made in their earlier papers. The authors 
then proved that the model has indeed an equilibrium, as long as the degree of het-
erogeneity is sufficiently large, viz., μ ≥ cℓ/8. At that equilibrium, central agglom-
eration occurs. It was also shown that the result generalizes to n firms, in which case 
the existence condition is μ ≥ [( n−1)/n]( cℓ/4). At equilibrium, all firms are clustered 
at the center of the market and the equilibrium prices are independent of the number 
of facilities. Comparing the results with those obtained by De Palma et al. (1985) 
for mill pricing, it turns out that the mill price charged at the facility plus the trans-
portation cost equals the uniform delivered price in this model, and that customers 
close to the facilities (in particular those inside the first and third quartiles) prefer 
mill pricing over uniform delivered pricing. The firms’ profits are identical in both 
cases.

The paper by Labbé and Hakimi (1991) considered a network with customers 
located at the nodes. The delivered prices charged by the firms and paid at the nodes 
depend on the total quantity of the homogeneous good supplied by the duopolists 
at the node. The demand-price function is linear and has a negative slope. The au-
thors use a two-stage procedure: in the first stage, firms choose their locations; in 
the second stage, they determine their production quantities. This feature was quite 
distinct from other contributions that use locations and prices as variables, whereas 
this work considers competition in locations and quantities (which is thus much 
closer to Cournot’s original work, rather than Bertrand’s unstable price competi-
tion). Employing the usual recursion, the authors prove that for any fixed pair of 
locations, the quantity game has an equilibrium. Under a condition that requires that 
it is always profitable to supply any market on the graph with a positive quantity of 
goods, a locational Nash equilibrium exists at the nodes of the graph. If this condi-
tion is not satisfied, the authors provided examples demonstrating that a locational 
Nash equilibrium either does not exist at all, or may exist on the edges of the graph.

The competitive location model investigated by Eiselt and Laporte (1993) in-
cluded three firms, each attempting to maximize its own market share. The demand 
is located at the vertices of a tree. Contrary to the linear market, in which three 
market-share maximizing facilities end up without ever finding an equilibrium, the 
paper outlined under what conditions equilibria exist. In particular, there may be 
an agglomerated equilibrium with all facilities locating at the median of the tree, a 
semi-agglomerated equilibrium with two facilities locating at the median, while the 
third facility chooses an adjacent site, a dispersed equilibrium, in which the three 
facilities locate at three mutually adjacent vertices (one of which is the median), or 
no equilibrium. Loosely speaking, the more evenly the weights are distributed on 
the tree, the more likely it is that an equilibrium exists.

The focus of the contribution by Bhadury and Eiselt (1995) was the usual equi-
librium—no equilibrium dichotomy. The paper proposed a measure that indicates 
not only whether or not an equilibrium exists, but how stable or unstable the solu-
tion is. While the paper demonstrated the computation of the measure in a tree 
network, it applies to all competitive location models. There are two cases to be 
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considered. In the first case, at least one Nash equilibrium exists. The measure then 
determines the effort that is required to convince at least one of the firms to move 
out of its equilibrium location. Clearly, if it takes a large subsidy to make a firm 
move out of its present location, the situation can be considered very stable. On the 
other hand, in case no equilibria exist, a tax for any moves (or, alternatively, moving 
costs) will indicate how much it takes to stop a firm from relocating. If this amount 
is substantial, it indicates that much effort is needed to stop the firms from relocat-
ing, so that the situation is far from an equilibrium and as such is highly unstable. A 
continuous measure of this nature contains much more information than the usual 
existence/non-existence analysis.

Eiselt and Bhadury (1998) considered the problem of reachability of equilibria, 
given that they actually exist. Their space is a tree network with demand occurring 
at the nodes. Two competing firms locate one branch each at the nodes of a tree. 
They charge fixed, but not necessarily equal, mill prices. The authors developed 
necessary and sufficient criteria for the existence of equilibrium locations on a tree. 
Given that equilibrium locations exist, the paper then examined whether or not a 
sequential and repeated relocation procedure that starts at an arbitrary location will 
eventually lead to the equilibrium. The authors first demonstrated that, in general bi-
matrix games with an arbitrary starting point, a Nash equilibrium, even if its exists, 
may not be reached. They then described a “reasonable” optimization procedure. In 
this process, one of the duopolists optimizes his own location, given his opponents 
present location. The assumption is that his opponent does not react, at least not for 
some time, so that the planner can reap the benefit of his own relocation. In the next 
step, the firm that relocated is now fixed at the site it chose and its opponent opti-
mizes his location. This sequential process terminates when repeated reoptimization 
does not change the locations. The main result of the paper was that an equilibrium 
will be reached in this process, provided a proper tie-breaking rule is used. Table 7.1 
summarizes some of the highlights in the analysis of Hotelling models.

Table 7.1   Some of the major contributions to Hotelling’s model
Authors Year Major aspect of the model
Hotelling 1929 The basic model
Lerner and Singer 1937 Hotelling results for n > 2
Smithies 1941 Different behavioral assumptions
Eaton and Lipsey 1975 Equilibria with n > 2, 2-D results
d’Aspremont et al. 1979 Hotelling was wrong, quadratic cost function
Shaked 1982 Firms use mixed strategies
Kohlberg 1983 A model with waiting time
De Palma et al. 1985, 1987a Customers use probabilistic choice rule
De Palma et al. 1987b The model with uniform delivered pricing
Andersson 1988 Linear-quadratic transportation costs
Labbé and Hakimi 1991 Equilibria on networks
Eiselt and Laporte 1993 Three facilities on a tree
Bhadury and Eiselt 1995 Stability of equilibria
Eiselt and Bhadury 1998 Reachability of equilibria

H. A. Eiselt



159

In summary then, what has Hotelling’s contribution done for location science? 
First and foremost, it has alerted the location science community (by which I in-
clude all interested parties from regional scientists to mathematicians, engineers, 
and computer scientists) to the interdependencies of different factors of location 
planning, and it has provided insight into location models. While, for instance, it 
will be virtually impossible to compute Nash equilibria for any real location sce-
narios, the decision makers now know which factors are required to stabilize a solu-
tion and which will lead to instability. Similarly, decision makers know that com-
petition means having to look over their shoulders and anticipate a reaction, and 
the hundreds of contributions that have followed Hotelling’s original analysis have 
enabled decision makers to know what to look for: adaptations of prices, quantities, 
attractiveness of their facilities, and many others. Another area in which Hotell-
ing’s work has impacted the field is in the—still somewhat underdeveloped—area 
of nonphysical location. Much more work is needed to develop brand positioning 
models, the assignment of tasks to employees in ability space, and the positioning 
of political candidates in issue space to a point where they become viable tools for 
practical location problems.

7.4 � Future Work

As highlighted in the above sections, much work has been done in the field of com-
petitive location models. Below, I will list a few of the areas that appear to offer 
promising research leads.

1.	 Models with additional parameters. While in the original contributions firms 
were competing in location and price, additional factors exist that may be taken 
into consideration. One such possibility is weights that symbolize the attractive-
ness of firms or brands. In the retail context, the attractiveness of a store may be 
expressed in terms of floor space, opening hours, (perceived) friendliness of staff, 
and similar factors. Attraction functions have been used for a long time, such 
as in the original work by Huff (1964). In the locational context, models with 
attraction functions are also not new, as witnessed by the contributions by Eiselt 
and Laporte (1988, 1989), Drezner (1994), and Eiselt and Marianov (2008b). 
Another recent contribution that uses repeated optimization with a Huff-style 
attraction function is put forward by Fernández et al. (2007). However, none of 
these models discusses equilibrium issues. Another feature that may be included 
is the choice of technology.

2.	 An interesting aspect is asymmetric models, i.e., models in which competing 
firms have either different objective functions, use different pricing policies, or 
have different perceptions of existing demand structures. The paper by Thisse 
and Wildasin (1995) is a step in this direction, as it includes not only competing 
duopolists, but also a public facility. A model with different pricing policies on a 
linear market has been put forward by Eiselt (1991).
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3.	 An obvious extension concerns the discussion of competitive location in 2- or 
higher-dimensional spaces. It is questionable, though, if this is a promising 
route: experience with two-dimensional models, even if price competition is 
ignored altogether, has shown it to be very difficult. Some results with have been 
obtained by Irmen and Thisse (1998). More details concerning pure location 
competition can be found in Chap. 19 of this volume.

4.	 A different angle concerns the product with market segmentation. It refers to 
firms competing in different markets. Again, these markets could either be sepa-
rated in physical space or in abstract feature or issue spaces in nonphysical appli-
cations. Especially in the context of product design, it would be very interesting 
to see whether or not there are instances in which a firm will decide not to com-
pete in some of market.

5.	 The issue of data aggregation in the context of competitive location models has 
recently been put forward by Plastria and Vanhaverbeke (2007). The discussion is 
still in its infancy and it remains to be seen if conclusive results can be obtained.
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