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6.1 � Introduction

The mail-order DVD rental company Netflix chooses distribution center locations 
so that most of its customers receive their DVDs within one business day via first-
class U.S. Mail. Similarly, many municipalities aim to have fire crews reach 911 
callers within a specified time, such as four minutes. Both of these are examples of 
the notion of coverage, a concept central to several classes of facility location mod-
els; it indicates whether a demand location is within a pre-specified radius (mea-
sured by distance, travel time, cost, or another metric) of its assigned facility. Hom-
eowners are covered if they are within four minutes of the nearest fire station, and 
Netflix customers are covered if they are within one mailing day of a distribution 
center. Note that in the fire-station example, municipalities typically want to cover 
all residents (while minimizing the number of service stations to open), whereas 
Netflix wants to cover as many customers as possible (subject to a limit on the num-
ber of warehouses it may operate at any time, as specified by its capital budget). The 
fire-station problem is an example of the set covering location problem ( SCLP), 
while Netflix’s problem is an example of the maximal covering location problem 
( MCLP). This chapter discusses both problems.

The set covering location problem was first introduced by Hakimi (1965) and 
was later formulated as an integer programming problem by Toregas et al. (1971). 
The maximal covering location problem was introduced by Church and ReVelle 
(1974). Both models, and their variants, have been applied extensively to public-
sector facility location problems, such as the location of emergency medical service 
vehicles (Eaton et al. 1985), fire stations (Schilling et al. 1980), bus stops (Gleason 
1975), wildlife reserves (Church et al. 1996), and emergency air services (Flynn and 
Ratick 1988). They have been applied in a much more limited extent in the private 
sector; see, e.g., Nozick and Turnquist (2001).
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The set covering location problem and the maximal covering location problem 
are closely related to the p-center problem, which aims to locate at most p facilities 
to minimize the maximum distance, among all customers, between the customer 
and its assigned facility. In the p-center problem, the coverage radius itself consti-
tutes the objective function. The Introduction of this book provides a more thorough 
discussion of the relationships among these classical models.

Like most location problems, the SCLP and MCLP may be defined as continuous 
problems (in which facilities may be located anywhere on the plane) or as discrete 
problems (in which they may be located only at the nodes of a network). In this 
chapter we consider the latter approach.

The remainder of this chapter is organized as follows. In Sect. 6.2, we discuss 
classical papers on the set covering location problem (in Sect. 6.2.1) and the maxi-
mal covering location problem (in Sect. 6.2.2), present the results of computational 
experiments, and discuss more recent variations. Section 6.3 discusses the impact 
that these models have had and the bodies of research they have inspired, focusing 
on generalized notions of coverage. Finally, we conclude with Sect. 6.4, suggesting 
some possible future research directions.

6.2 � Historical Contributions

This section first presents the classical models for the set covering location prob-
lem by Hakimi (1965) and Toregas et al. (1971). It then continues with a discus-
sion of the maximal covering location problem by Church and ReVelle (1974) in 
Sect. 6.2.2.

6.2.1  �The Set Covering Location Problem

Although the generic (non-location) set-covering problem had been formulated pri-
or to Hakimi’s (1965) seminal paper on the set covering location problem, Hakimi’s 
work is important for, among other things, introducing the notion of coverage into 
facility location models. Hakimi’s proposed solution method, which involved the 
use of Boolean functions, never proved to be efficient enough to warrant its use in 
practice; rather, the set covering location problem is generally solved using inte-
ger programming techniques, first proposed by Toregas et al. (1971). We discuss 
Hakimi’s model and briefly outline the Boolean-function approach in Sect. 6.2.1.1. 
Section 6.2.1.2 presents the integer programming method of Toregas et al.

6.2.1.1 � The Contribution by Hakimi (1965)

We consider a graph G = ( V, A) and assume that every node in V is both a customer 
(demand) node and a potential site for a facility. (However, one can easily extend 
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the models below to handle the cases in which some customers are not facilities or 
some facilities are not customers and therefore do not need to be covered. Below, we 
use terms like “customer i” and “facility j” as shorthand for “the customer located at 
node i” and “the facility located at node j.”) Let n = |V |. The distance between nodes 
i and j is given by dij, and the maximum allowable distance between a customer and 
its nearest opened facility—the “coverage distance”—is given by s. If ( i, j) ∈ A, 
then dij is the length of the arc ( i, j), and otherwise it is the shortest distance from i 
to j on the graph. (We use the term “distance” throughout, but the parameters dij and 
s may just as well represent travel times, costs, or another measure of proximity.) 
Therefore, facility j covers customer i if dji ≤ s. We define

that is, Vi is the set of nodes that cover customer i. Note that every Vi is nonempty, 
assuming that dii = 0 for all i.

The objective of the set covering location problem is to find the minimum-cost 
(or minimum-cardinality) set of locations such that every node in V is covered by 
some node in the set. The application that Hakimi cites for the set covering location 
problem is that of locating policemen along a highway network so that every inter-
section (vertex of the graph) is within one distance unit of a policeman. Subsequent-
ly, the problem has found a much broader range of applications, as discussed earlier.

We will assume that facilities may be located only at the nodes of the network, 
not along the edges. Note that it may be optimal to locate along edges, since the 
well known “Hakimi property”—which states that an optimal solution always exists 
in which facilities are located at the nodes, rather than along the edges, of the net-
work—does not apply to the set covering location problem. (Hakimi introduced his 
famous property in an earlier paper (Hakimi 1964) in the context of the p-median 
problem, not of the SCLP.) A very simple counterexample consists of two nodes 
connected by a single edge of length 1 and a coverage distance of 0.5. If facilities 
are allowed on the edges, the unique optimal solution consists of one facility (lo-
cated in the middle of the edge), whereas the optimal nodal solution consists of two 
facilities, one at each node. On the other hand, a problem in which facilities may 
be located on edges may be converted to a node-only problem by inserting dummy 
nodes onto the edges, taking advantage of the fact that there are only a finite num-
ber of possible optimal locations along edges. Readers are referred to Church and 
Meadows (1979) for details.

In some applications, it is desirable to use a different coverage distance for each 
customer—for example, if customers have service agreements that specify different 
response times. In this case, the coverage distance is customer dependent, si, and 
the set Vi is given by Vi = {j ∈ V: dji ≤ si}. The analysis below changes in only minor 
ways.

The set covering location problem is closely related to the graph-theoretic vertex 
cover problem, whose objective is to find a subset of nodes in the graph such that 
every node in the graph is adjacent to some node in the set and such that no strict 
subset of the set has the same property. Such a set of nodes is called a cover. The 
optimization version of the vertex cover problem seeks the minimum-cardinality 
cover, and this problem is a special case of the SCLP in which s = 1 and dij = 1 for 

Vi = {j ∈ V : dji ≤ s},

6  Covering Problems
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all ( i, j) ∈ A. Indeed, although he is usually credited for introducing the more gen-
eral SCLP, this special case is the problem considered by Hakimi (1965), since he 
presented the problem explicitly in a facility location context. In this section we will 
assume, following Hakimi, that s = dij = 1, though in subsequent sections we will 
allow s and dij to be arbitrary. Hakimi notes that the assumption that dij = 1 is not 
too restrictive, since if the arc lengths are greater than 1, one could simply introduce 
dummy nodes along the arcs one unit apart, assuming that the arc lengths are inte-
gers. Of course, this modeling trick comes at considerable computational expense, 
especially since Hakimi’s method relies on an enumerative approach whose compu-
tational complexity increases exponentially with the number of nodes.

In the remainder of this section, we describe Hakimi’s (1965) approach to solv-
ing the set covering location problem. As noted earlier, this method is not com-
monly used today and is discussed here primarily for its historical interest.

Recall that Vi is the set of nodes that cover node i; given the assumption of unit 
arc-lengths and unit coverage distance, Vi is simply the set of nodes that are adja-
cent to i, plus i itself. Let S be a subset of the node set V. For each node i, we define 
a Boolean (binary) variable xi that equals 1 if i ∈ S and 0 otherwise. With a slight 
abuse of notation, we can write

where xii is taken to equal the set {i} if xi = 1 and the null set otherwise. We also 
define Xi as the sum of the Boolean variables for the nodes in Vi; that is,

Here, ∑ represents Boolean summation, analogous to the “or” operator, in which 
1 + 1 = 1. Then Xi = 1 if and only if S contains a node that covers node i. Finally, we 
define the Boolean function f, which takes as inputs the vector of Boolean variables 
for the nodes and returns a single Boolean value:

Since node i is covered if and only if Xi = 1, we have the following theorem:

Theorem 1:  S contains a covering of V if and only if f ( x1,…, xn) = 1.
The advantage of using the function f is that it allows us to use Boolean algebra 

to construct coverings of V. Although this approach still involves enumerating all 
coverings, it allows us to do so without enumerating all subsets of V to identify 
them. In particular, we will create a “minimum sum of products,” i.e., the smallest 
possible sum of products of xi variables that is logically equivalent to f ( x1,…, xn). 
This method involves eliminating terms that are implied by others, then using Bool-
ean algebra to simplify the resulting formula until we have an expression consisting 

S =
⋃

i∈V

xii,

Xi =
∑

j∈Vi

xj .

f (x1, . . . , xn) =
∏

i∈V

Xi.
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of the sum of simple products of variables such that no product is implied by (con-
tains) any other. The method is best explained by use of an example.

Example 1:  We illustrate the method using the sample network in Fig. 6.1.
Using the adjacencies depicted in Fig. 6.1, X1 = x1 + x3, X2 = x2 + x4, and so on. 

Therefore,

Using Theorem 1 to find all coverings of the graph, we need to find all possible 
values of {x1,…, x5} that make f ( x1,…, xn) = 1, meaning that all terms in the above 
product equal 1.

To begin, note that the first term is contained in the third. Since we need each 
term to equal 1, the third term equals 1 if the first does; we can therefore eliminate 
the third term. Similarly, the fourth term contains the fifth, so we can eliminate the 
fourth term. The resulting expression is

Boolean algebra contains two distributive laws. One says that, for any Boolean 
variables x, y, and z,

Applying this law to the last two terms, we get

The other Boolean distributive law says that

Applying this law to multiply the two terms, and repeatedly applying both Boolean 
identity laws (which say that x + x = x and that xx = x), we obtain

f (x1, . . . , xn) = (x1 + x3)(x2 + x4)(x3 + x1 + x2 + x4 + x5)

(x4 + x2 + x3 + x5)(x5 + x3 + x4).

f (x1, . . . , xn) = (x1 + x3)(x2 + x4)(x3 + x4 + x5).

x + (yz) = (x + y)(x + z).

f (x1, . . . , xn) = (x1 + x3)(x4 + x2x3 + x2x5).

x(y + z) = xy + xz.

f (x1, . . . , xn) = x1x4 + x1x2x3 + x1x2x5 + x3x4 + x2x3 + x2x3x5.

Fig. 6.1   Sample network
1

2

3

4

5
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Finally, by the Boolean redundancy law ( x + xy = x), we can remove the second and 
last terms:

Therefore, the covers for the graph in Fig. 6.1 are

All but {1, 2, 5} are minimum covers.
Hakimi was optimistic that this enumerative approach would prove to be practi-

cal: “…since the subject of simplification of Boolean functions has been widely 
studied and there are efficient digital computer programs for such a purpose, the 
above formulation is feasible.” Twenty-first century readers, however, will recog-
nize that the enumerative approach is impractical for large instances. Moreover, 
since the vertex cover problem is NP-complete (Garey and Johnson 1979), no poly-
nomial-time exact algorithm for the set covering location problem is known to exist. 
However, more efficient approaches than Hakimi’s exist; we discuss a mathemati-
cal-programming-based approach in the next section.

6.2.1.2 � The Contribution by Toregas et al. (1971)

Toregas et al. (1971) formulate the set covering location problem as an integer pro-
gramming problem and use standard mathematical programming methods to solve 
it. We discuss their approach next.

The integer programming problem has one set of decision variables:

for j ∈ V. Note that variable xj has no relation to the Boolean variables xi defined in 
Sect. 6.2.1.1.

The integer programming problem is formulated as follows:

� (6.1)

�
(6.2)

� (6.3)

The objective function (6.1) computes the total number of facilities opened. Con-
straints (6.2) require at least one node from the coverage set Vi to be opened for 

f (x1, . . . , xn) = x1x4 + x1x2x5 + x3x4 + x2x3.

{1, 4}, {1, 2, 5}, {3, 4}, {2, 3}.

xj =
{

1, if a facility is opened at node j
0, otherwise

SCLP: min z =
∑

j∈V

xj

s.t.
∑

j∈Vi

xj ≥ 1 ∀i ∈ V

xj ∈ {0, 1} ∀j ∈ J
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each node i. Constraints (6.3) are standard integrality constraints. Here, we do not 
assume that s = dij = 1 (as we did in Sect. 6.2.1.1); any values for these parameters 
may be used in determining the coverage sets Vi.

This formulation is virtually identical to that of the classical set covering prob-
lem; here it is discussed in the context of location theory in particular. It is well 
known that the set-covering problem typically has a small integrality gap; that is, 
the optimal objective value of the linear programming relaxation (denoted by zLP) is 
close to that of the integer program itself (Bramel and Simchi-Levi 1997), and often 
the linear programming relaxation even has all-integer solutions. In fact, ReVelle 
(1993) argues that many facility location problems have this property and discusses 
“integer-friendly programming” techniques for several classical problems. How-
ever, there do exist instances of the set covering location problem whose linear 
programming relaxations do not have all-integer optimal solutions (otherwise the 
problem would not be NP-hard). An example follows.

Example 2:  Consider the network depicted in Fig.  6.2. In this example, s  =  1. 
An optimal solution to the linear programming relaxation of SCLP is given by 
x1 = x2 = x3 = 0.5, x4 = 0, with an objective value of zLP = 1.5.

Since the coefficient of each xj is 1 in the objective function of SCLP, it is clear 
that the objective function value is integer for any solution to the integer program. 
Since zLP is a lower bound on z*, the optimal objective function value for the integer 
program, and since z* must be integer, we can assert that

where �a�  denotes the smallest integer greater than or equal to a. Therefore, Tore-
gas et al. propose adding the following cut to SCLP:

� (6.4)

We denote the resulting problem SCLP-C. The new cut may eliminate some frac-
tional solutions, and the linear programming relaxation to SCLP-C may have an 
all-integer solution as a result.

z∗ ≥ �zLP� ,

∑

j∈J

x ≥ �zLP� .

Fig. 6.2   Network for 
Example 2
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For the example in Fig. 6.2, the problem SCLP-C does indeed have an integer so-
lution: x1 = x2 = 1, x3 = x4 = 0, for example, with z* = 2. (It also has optimal fractional 
solutions, e.g., xj = 0.5 for all j, but the simplex method would find integer solutions 
since these represent extreme points of the feasible region.)

Toregas et al. therefore propose a two-step solution procedure for the set cover-
ing location problem.

Step 1:	� Solve the linear programming relaxation of SCLP. If the optimal solution 
is integer, STOP.

Step 2:	� Otherwise, solve the linear programming relaxation of SCLP-C using the 
optimal objective value from step 1 in the right-hand side of (6.4).

Even with constraint (6.4), the linear programming relaxation may not have an inte-
ger solution. Toregas et al. report that they found no such instance in their computa-
tional experiments, though we found several such instances in ours, see Sect. 6.2.1.3 
“Computational Experiment”. In fact, Rao (1974) gives two counterexamples: in 
one, the addition of cut (6.4) results in a fractional solution; in the other, the addi-
tion of cut (6.4) results in an integer but non-optimal solution. (See also the reply to 
Rao’s note by Toregas et al. 1974).

Toregas et  al. also discuss the relationship between the set covering location 
problem and a variant of the p-median problem in which each customer may only 
be served by facilities that are within a distance of s. The formulation is obtained 
simply by forcing the assignment variable to be 0 for facility–customer pairs that 
are more than s units apart, or, alternately, by indexing the assignment variables for 
each customer i over facilities j in Vi, as opposed to all facilities j in V. (We omit the 
formulation here.)

The optimal objective value of this p-median variant changes with s. For suf-
ficiently large s, the objective function value is no different from the p-median 
without distance constraints; as s decreases, the objective function value increases 
as a step function; and for sufficiently small s, the problem is infeasible. Toregas 
et al. argue that the solution to the set covering location problem provides some 
information about the feasibility of this problem. In particular, for a given value 
of p, the smallest value of s for which the p-median variant is feasible is equal to 
the smallest value of s for which SCLP has an optimal objective value of p. On the 
other hand, the solution to a set covering location problem does not provide any 
information about the breakpoints of the step function that relates the p-median 
objective to s.

6.2.1.3 � Experiments and Variants

In the “Computational Experiment” section below, we discuss the results of our 
computational experiment related to SCLP. In “Row and Column Reduction”, we 
discuss a technique for reducing the problem size of the set covering location prob-
lem, and in “Facility Fixed Costs”, we discuss a variant involving fixed costs.

L. V. Snyder
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Computational Experiment

We performed a computational experiment to confirm the results reported by Tore-
gas et al.—namely, that the linear programming gap for SCLP is small, and that cut 
(6.4) produces integer solutions. For each value of n = 50, 100, 200, 400, 800, we 
generated 100 random instances of the set covering location problem. Parameters 
were generated as follows:

•	 x- and y-coordinates were drawn from U[0,100],
•	 distances were calculated using the Euclidean metric, and
•	 the coverage distance s was drawn from U[0,140] (140 ≈ maximum possible dis-

tance between two points in 100 × 100 grid).

For each instance, we solved the linear programming relaxation of SCLP using 
CPLEX v. 10.2.0 to obtain zLP. If the optimal solution to the linear program was 
not integer, we added cut (6.4) and solved the linear programming relaxation to 
SCLP-C to obtain zLP - C. If the optimal solution was still not integer, we solved 
SCLP as an integer program to obtain z*. (If either of the linear programming relax-
ations resulted in integer solutions, their objective values give us z*.)

The results are shown in Table 6.1. The columns labeled “% Integer” list the 
percentage of instances for which the linear programming relaxation produced an 
integer optimal solution. The columns labeled “Avg LP Gap” and “Max LP Gap” 
list the average and maximum, respectively, of the linear programming gap, mea-
sured as ( zLP − z*)/z* for SCLP and ( zLP - C − z*)/z* for SCLP-C.

The linear programming gap for SCLP is small and tends to decrease with low- 
er values of n. The largest gap we found was 33.5% for a problem with n = 800. 
The addition of cut (6.4) reduces the linear programming gap substantially (from 
0.0132 to 0.0004, on average), but does not guarantee integer solutions—even 
with the cut, 11.2% of instances had fractional optimal solutions. Several of these 
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n % Integer Avg LP Gap Max LP Gap

SCLP
50 94.0 0.0068 0.2500
100 87.0 0.0104 0.1667
200 88.0 0.0074 0.2500
400 73.0 0.0217 0.3350
800 76.0 0.0195 0.2500
Total 83.6 0.0132 0.3350
SCLP-C
50 98.0 0.0000 0.0000
100 92.0 0.0000 0.0000
200 90.0 0.0000 0.0000
400 82.0 0.0003 0.0250
800 82.0 0.0017 0.0714
Total 88.8 0.0004 0.0714

Table 6.1   Performance of 
linear programming relax-
ations of SCLP and SCLP-C
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instances also had integer optimal solutions, though CPLEX did not find these. In 
general, CPLEX solved the integer programming problem in well under one minute 
on a laptop computer, even for the largest problems.

Row and Column Reduction

The size of SCLP can often be reduced substantially by using row- and column-
reduction techniques. These methods exploit the coverage structure by eliminating 
rows and columns that are dominated by others. In particular:

•	 A facility j1 dominates another facility j2 if it covers all of the customers that j2 
does; that is, if j2 ∈ Vi implies j1 ∈ Vi for all i ∈ V. In this case, there is no rea-
son to open facility j2 since j1 covers all the same customers and possibly more. 
Therefore we can set xj2 = 0, or equivalently, eliminate the column correspond-
ing to j2.

•	 A customer i1 dominates another customer i2 if every facility that covers i1 also 
covers i2; that is, if Vi1 ⊆ Vi2

. In this case, if constraint (6.2) holds for i1 it also 
holds for i2, and therefore we can eliminate the row corresponding to i2.

Row and column reduction techniques are appropriate for the SCLP because of the 
binary nature of coverage. Most facility location problems with distance objectives 
cannot generally accommodate these techniques, except heuristically, since under 
most metrics it is impossible for a facility to dominate another, i.e., to be closer to 
every customer than another facility is.

These techniques were proposed by Toregas and ReVelle (1972). See also Daskin 
(1995) and Eiselt and Sandblom (2004) for thorough discussions and examples of 
row- and column-reduction techniques.

Facility Fixed Costs

If the facilities each have a different fixed cost fj, then the problem becomes 
choosing facilities to cover all demands at minimum possible cost. This problem 
can be formulated simply by replacing the objective function (6.1) with the ob-
jective

The set covering location problem as formulated above is a special case in which fj = 1 
for all j. The linear-programming-based solution methods described in Sect. 6.2.3 
can easily accommodate this variation. So can the Boolean-function approach: at the 
final step, we simply choose the cover that has the smallest total fixed cost.

Minimize z =
∑

j∈V

fjxj .
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6.2.2  �The Maximal Covering Location Problem

Whereas the set covering location problem has the form

SCLP:	   � minimize the number of facilities opened, 
	    s.t. cover all demand,

the Maximal Covering Location Problem MCLP has the inverse form:

MCLP:	� maximize the demand covered, 
	 s.t. a limit on number of facilities opened.

The set covering location problem treats all demand nodes as equivalent since the 
coverage constraint applies equally to all. In contrast, in the maximal covering loca-
tion problem nodes are weighted by the demand that they generate, and the objective 
favors coverage of larger demands over smaller ones. As the number of allowable 
facilities increases, the demand covered naturally increases as well. The modeler can 
plot a tradeoff curve depicting the performance of a range of solutions along these 
two dimensions; the decision maker can then choose a solution based on this tradeoff.

In Sect. 6.2.2.1, we discuss the maximal covering location problem as formu-
lated by Church and ReVelle (1974). Section 6.2.2.2 then describes some computa-
tional experiments and several variants of the model.

6.2.2.1 � Church and ReVelle (1974)

This section commences with a formal statement of the maximal covering location 
problem as a mathematical programming model. The next section discusses heuris-
tics, followed by an exact algorithm in “Linear Programming Approach”. “Manda-
tory Closeness Constraints” investigates the effects of a constraint that enforces an 
additional level of coverage.

Introduction and Formulation

Our notation in this section is identical to that in Sect. 6.2.1, with the addition of 
two new parameters: ai is the demand at node i per unit time, and p is the maximum 
allowable number of facilities. We also introduce a new set of decision variables:

The maximal covering location problem is formulated by Church and ReVelle 
(1974) as follows:

� (6.5)

yi =
{

1, if customer i is covered by some facility
0, otherwise

MCLP: Max z =
∑

i∈V

aiyi

6  Covering Problems
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� (6.6)

�
(6.7)

�
(6.8)

�
(6.9)

The objective function (6.5) computes the total demand covered. Constraints (6.6) 
prohibit a customer from counting as “covered” unless some facility that covers it 
has been opened. Constraint (6.7) requires exactly p facilities to be opened. Con-
straints (6.8) and (6.9) are standard integrality constraints. (In fact, it suffices to 
relax constraints (6.9) to 0 ≤ yi ≤ 1, since integer values for the yi are optimal if the 
xj are integer.)

Church and ReVelle cite White and Case (1973) as formulating a similar model 
to MCLP that maximizes the number of demand nodes covered, rather than the total 
demand. Case and White’s model is therefore a special case of the maximal cover-
ing location problem in which ai = 1 for all i.

Church and ReVelle also present an alternate formulation that uses a new deci-
sion variable ȳi  defined as ȳi = 1 − yi ; that is,

In the alternate formulation, constraints (6.6) are replaced by

The revised constraints state that if node i is not covered by any facility (i.e., ∑
j∈Vi

xj = 0 ), then ȳi  must equal 1. The objective function (6.5) can be rewritten 
as

� (6.10)

or equivalently,

� (6.11)

since the first term in (6.10) is a constant. The revised objective (6.11) minimizes 
the uncovered demand. The revised formulation is then given by

s.t.
∑

j∈Vi

xj ≥ yi ∀i ∈ V

∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V

ȳi =
{

1, if customer i is not covered by any facility
0, otherwise

∑

j∈Vi

xj + ȳi ≥ 1 ∀i ∈ V.

maximize
∑

i∈V

ai(1 − ȳi) =
∑

i∈V

ai −
∑

i∈V

aiȳi,

minimize
∑

i∈V

ai ȳi ,
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�
(6.12)

� (6.13)

� (6.14)

� (6.15)

� (6.16)

The two formulations are mathematically equivalent, as are their linear program-
ming relaxations.

Megiddo et al. (1983) proved that the maximal covering location problem is NP-
hard. The next two sections describe heuristic and exact approaches to solving the 
problem, all of which are discussed by Church and ReVelle (1974).

Heuristic Solution Methods

Like many facility location problems, the maximal covering location problem 
lends itself nicely to greedy heuristics such as the Greedy Adding heuristic, which 
Church and ReVelle (1974) credit to Church’s (1974) doctoral dissertation. The 
Greedy Adding heuristic begins with all facilities closed, then opens p facilities in 
sequence, choosing at each iteration the facility that increases coverage the most. 
For a discussion of greedy and other heuristics for facility location problems, see 
Current et al. (2002).

Solutions obtained with the Greedy Adding heuristic are nested in the sense that 
all of the facilities in the solution to the p-facility problem are also opened in the 
solution to the ( p + 1)-facility problem. Optimal solutions to the maximal covering 
location problem are not, in general, nested in this way. Therefore, Church and 
ReVelle also suggest an alternate heuristic, called the Greedy Adding with Substitu-
tion heuristic, which attempts to rectify this problem by allowing an open facility 
to be closed and a closed facility to be opened at each iteration. Like any heuristic, 
Greedy Adding and the Greedy Adding with Substitution are not guaranteed to find 
the optimal solution. The latter, however, tends to perform well in practice, and both 
heuristics execute very quickly.

MCLP2: Min z =
∑

i∈V

aiȳi

s.t.
∑

j∈Vi

xj + ȳi ≥ 1 ∀i ∈ V

∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V.
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Linear Programming Approach

Church and ReVelle propose solving MCLP2 directly using linear programming and 
branch-and-bound. Like the set covering location problem, the linear programming 
relaxation of the maximal covering location problem often yields all-integer solu-
tions: Church and ReVelle report that approximately 80% of their test instances had 
integer solutions; we found an even higher percentage in our computational tests 
(Sect. 6.2.2.2 “Computational Experiment”). Branch-and-bound may be applied to 
resolve fractional solutions to the linear programming relaxation, but Church and 
ReVelle also suggest a method that is effective when solving the same problem for 
consecutive values of p.

The method takes as input a fractional solution to the p-facility problem and an 
integer solution to the ( p − 1)-facility problem. It is effective when the ( p − 1)-facil-
ity solution covers all but a few nodes. We illustrate the method using an example.

Example 3:  Consider an instance of the maximal covering location problem for 
which the total demand across all nodes is 100 units. Suppose we have found an 
integer solution to the 4-facility problem and that it covers all but two nodes, for a 
total of 91 demand units covered. These two uncovered nodes (we will call them 1 
and 2) have demands of 3 and 6, respectively. Suppose further that the linear pro-
gramming relaxation to the 5-facility problem is fractional and covers 98 demand 
units. Finally, suppose that the minimum ai among all nodes i is 3.

The optimal integer solution with p = 5 cannot cover all of the nodes, since the 
linear programming relaxation has an objective value of 98. In fact, the integer solu-
tion may cover at most 97 demand units, since at best it leaves the 3-demand node 
uncovered. We can create an integer solution to the p = 5 problem by adding node 
2 to the p = 4 solution. Since the p = 4 solution covered 91 demands, not including 
node 2, this new solution covers 91 + 6 = 97 demands. This solution must be optimal 
for p = 5 since 97 is an upper bound on the objective value. An optimal solution for 
the problem with p = 6 can now be found by adding node 1 to the p = 5 solution; the 
resulting solution covers all demands.

Church and ReVelle refer to this method as the “inspection” method. It can be 
summarized as follows. Let zIP( p) be the optimal p-facility objective value of MCLP, 
that is, the optimal demand covered by p facilities, and let zLP( p) be the optimal p-
facility objective value of the linear programming relaxation of MCLP. We assume 
that we know the integer optimal solution with p − 1 facilities and that the optimal 
solution to the linear programming relaxation with p facilities is not integer. Let 
amin = min{ai: i ∈ V} and  a� =

∑
i∈V ai . We summarize the inspection method in 

the following theorem. (Church and ReVelle illustrate this method with an example, 
rather than stating it formally as a theorem.)

Theorem 2:  Suppose the following conditions hold:

1.	 ZLP( p) < a�, and
2.	 ZIP( p − 1) + ai = a� − amin  for some node i that is not covered in the optimal 

solution to the ( p − 1)-facility problem,
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then an optimal solution to the p-facility problem consists of the optimal solution to 
the ( p −1)-facility problem plus node i.

Church and ReVelle report that, of the 20% of their test instances where linear pro-
gramming relaxations did not have integer solutions, half could be solved using the 
inspection method. The other half was solved via branch-and-bound.

Mandatory Closeness Constraints

Church and ReVelle discuss a variant of the maximal covering location problem 
in which we require that all customers be covered within a secondary coverage 
distance t ( t ≥ s). For example, we might want to maximize the demand covered 
within 50 miles but require all demands to be covered within 100 miles. This model, 
known as the MCLP with Mandatory Closeness Constraints, can be viewed as a 
hybrid between the maximal covering location problem and the set covering loca-
tion problem, since it has a max-coverage objective plus a hard coverage constraint.

The problem can be formulated simply by adding the following constraint to 
either formulation of the MCLP:

where Ui = {j ∈ V: dji ≤ t}. The resulting model can be solved using linear program-
ming and branch-and-bound.

Suppose we solve SCLP and find that, for a given instance, the minimum number 
of facilities that covers all demand nodes with a coverage distance of t is p*. Gener-
ally there are many optimal solutions to this problem. The maximal covering loca-
tion problem with mandatory closeness constraints gives us a mechanism for choos-
ing among these, by selecting the solution that also maximizes the demands covered 
within some distance s. In particular, we solve MCLP with mandatory closeness 
constraints using p* as the number of facilities to open and t as the secondary cover-
age distance.

6.2.2.2 � Experiments and Variants

Computational Experiment

We performed a computational experiment to verify Church and ReVelle’s claim 
that the MCLP often results in all-integer solutions. We set n = 50, 100, 200, 400, 
800. For each value of n, we generated 100 random instances and tested three differ-
ent values of p. The random instances were generated as described in Sect. 6.2.1.3 
“Computational Experiment”, with one additional parameter: Demands ai were 
drawn from U[0,100].

∑

j∈Ui

xj ≥ 1 ∀i ∈ V ,
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We solved the linear programming relaxation of MCLP2 using CPLEX v. 10.2.0 
and, if the solution was not all integer, we solved the integer program. The results 
are displayed in Table 6.2. The column labeled “p” gives the value of p in MCLP2. 
The column labeled “Avg LP Gap > 0” gives the average integrality gap among 
only those instances with a positive integrality gap, or “—” if there were no such 
instances. All other columns are interpreted as in Table 6.1.

The linear programming relaxation of MCLP seems to generate integer solutions 
even more frequently than the relaxation of SCLP (at least for our test instances): 
an average of 95.3% of the time. When it fails to do so, the integrality gap can be 
quite large, though this is partly a function of the minimization objective, which 
may have optimal values near zero and hence any suboptimal solution may have a 
large error on a percentage basis.

Note that for some instances the linear programming relaxation had fractional 
solutions but an integrality gap of 0, as evidenced by the fact that some rows have 
“% Integer” <100% but an average linear programming gap of 0. For these in-
stances, an optimal integer solution exists for the linear programming relaxation but 
CPLEX returned a fractional optimal solution instead.

Tradeoff Curve

Figure 6.3 displays the optimal objective function value of MCLP2—the number of 
demand units uncovered—as p varies for a particular random instance with n = 100 
and s = 15. As expected, the uncovered demand decreases as p increases. For p ≥ 18, 
all demands are covered. The convex shape is typical of tradeoff curves for the 
maximal covering location problem, meaning that additional facilities provide de-
creasing marginal returns in terms of additional coverage.

Table 6.2   Performance of linear programming relaxation of MCLP2
n p % Integer Avg LP Gap Avg LP Gap > 0 Max LP Gap
50 2

5
8

95.0
96.0
99.0

0.0011
0.0019
0.0000

0.0542
0.0635
–

0.0646
0.1109
0.0000

100 2
5
8

100.0
98.0
98.0

0.0000
0.0002
0.0000

–
0.0232
–

0.0000
0.0232
0.0000

200 4
10
16

96.0
93.0
92.0

0.0016
0.0092
0.0028

0.0540
0.1308
0.0699

0.1293
0.3957
0.1296

400 4
10
16

98.0
92.0
92.0

0.0000
0.0006
0.0158

–
0.0190
0.5254

0.0000
0.0280
0.9632

800 4
10
16

100.0
91.0
89.0

0.0000
0.0002
0.0195

–
0.0089
0.4865

0.0000
0.0089
0.9704

Total 95.3 0.0035 0.9704
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Lagrangian Relaxation Approach

The maximal covering location problem can also be solved using Lagrangian relax-
ation. The key idea is to remove a set of constraints and add a penalty to the objec-
tive function for violating the constraints. The resulting problem is easier to solve 
but may produce solutions that are infeasible for MCLP. By adjusting the objective-
function penalties iteratively, the solutions found approach the optimal solution for 
the maximal cover location problem. The use of Lagrangian relaxation for MCLP 
was detailed by Galvão and ReVelle (1996), although Daskin et  al. (1989) also 
report computational results from a similar method without providing details. See 
Fisher (1981, 1985) for an excellent overview of Lagrangian relaxation.

We illustrate the Lagrangian relaxation method using formulation MCLP, though 
it can also be applied to MCLP2. We relax constraints (6.6) using Lagrangian mul-
tipliers λi to obtain the following Lagrangian subproblem:

� (6.17)

� (6.18)

� (6.19)

MCLP-LR: Max z =
∑

i∈V

aiyi +
∑

i∈V

λi




∑

j∈Vi

xj − yi





=
∑

i∈V

(ai − λi)yi +
∑

j∈V




∑

i∈V :j∈Vi

λi



xj

s.t.
∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

Fig. 6.3   Tradeoff curve: demands uncovered vs. p
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� (6.20)

This problem decouples by x and y since there are no constraints involving both 
sets of variables. As a result, it can be solved easily. The optimal y-values are 
given by

To find the optimal x-values, we set xj = 1 for the p facilities with the largest val-
ues of 

∑
i∈V :j∈Vi

λi . The optimal objective value of MCLP-LR provides an upper 
bound on that of MCLP. Feasible (lower bound) solutions can be found by setting 
xj = 1 for the p facilities that are opened in the upper-bound solution and setting 
yi = 1 for each customer i that is covered by some existing facility. Lagrange mul-
tipliers can be updated using subgradient optimization, and branch-and-bound can 
be used if the Lagrangian procedure fails to yield a suitably small optimality gap; 
see Daskin (1995) for more details. Daskin et al. (1989) report that the procedure 
works quite well, especially when the lower-bound heuristic is supplemented by a 
substitution heuristic.

Budget Constraints

We can incorporate fixed costs into the model in a similar manner as we did for the 
set covering location problem in “Facility Fixed Costs”. Here, the fixed cost ap-
pears in the constraints rather than the objective function. In particular, we replace 
constraint (6.7) or (6.14) with

where B is a budget imposed exogenously on the total fixed costs. This constraint 
can be easily handled by the linear programming approach discussed in Sect. 
6.2.2.1, but it somewhat complicates the Lagrangian approach in Sect. 6.2.2.2 since 
determining the optimal x values now requires us to solve the following knapsack 
problem:

yi ∈ {0, 1} ∀i ∈ V

yi =
{

1, if ai − λi > 0,
0, otherwise.

∑

j∈V

fjxj ≤ B,

Max
∑

j∈V




∑

i∈V :j∈Vi

λi



xj

s.t.
∑

j∈V

fjxj ≤ B
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Although this problem can be solved quite quickly using modern codes, it is still 
NP-hard, and it may slow the Lagrangian procedure significantly.

Relationship to p-Median Problem

The maximal covering location problem can be formulated as a special case of the 
p-median problem through a simple transformation of the distance matrix. In par-
ticular, we set

That is, we redefine the distance metric so that the distance from node j to node i is 
0 if j covers i and 1 otherwise. The p-median problem is then formulated as usual 
(see, e.g., Daskin 1995). The optimal solution will cover as many demand units as 
possible using p facilities. Any algorithm for the p-median problem can then be ap-
plied to solve the maximal covering location problem.

6.3 � Extensions

The literature contains many enhancements to the set covering and maximal cover-
ing location problems. In this section, we focus in particular on generalizations of the 
notion of coverage. One common criticism of the two types of problems is that they 
assume that all customers within a facility’s coverage radius can be served by the fa-
cility, and served equally. In practice, facilities are not always available when needed, 
especially in the public-sector arena where facilities may represent such essential ser-
vices as ambulances and fire crews. One approach to this issue is backup coverage, 
in which customers are required or encouraged to be covered by more than one open 
facility. Another approach is expected coverage, which accounts for probabilistic in-
formation. Moreover, in many cases the coverage benefit changes as the distance 
between a customer and its assigned facility changes. This dependency is captured 
by the notion of gradual coverage. We briefly discuss models for backup, expected, 
and gradual coverage in the next three subsections. For thorough reviews of backup 
and expected coverage models, see Daskin et al. (1988) or Berman and Krass (2002).

6.3.1  �Backup Coverage Models

Both the set covering location problem and the maximal covering location problem 
have been extended to consider solutions in which customers are covered by more 

xj ∈ {0, 1} ∀j ∈ V.

dji =
{

0, if j ∈ Ni

1, otherwise.
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than one facility. One may require backup coverage in order for a customer to count 
as “covered,” or one may simply reward solutions for backup coverage.

6.3.1.1 � Required Backup Coverage

It is simple to formulate a required-backup version of either covering problem. In 
the set covering location problem, we simply modify constraints (6.2) to read

where m is the desired number of times that each customer is to be covered. In the 
maximal covering location problem, we can replace constraints (6.6) with

where yi must equal 0 unless at least m facilities that cover customer i are open. 
This constraint is likely to weaken the linear programming relaxation of MCLP, 
however.

6.3.1.2 � Rewards for Backup Coverage

We focus on models in which m = 2. Extensions to these models to consider m > 2 
are straightforward but often yield weaker linear programming relaxations, as dis-
cussed above. Let

The models formulated below contain a reward in the objective function for each 
customer who is covered twice. However, the backup coverage reward is strictly a 
secondary objective; in no case should a solution with more facilities have a better 
objective than one with fewer facilities, even if it has better backup coverage.

Daskin and Stern (1981) propose the following model for the set covering loca-
tion problem with backup coverage:

� (6.21)

�
(6.22)

∑

j∈Vi

xj ≥ m ∀i ∈ V ,

∑

j∈Vi

xj ≥ myi ∀i ∈ V ,

wi =
{

1, if customer i is covered by two or more facilities
0, otherwise.

SCLP-BC: Min z = (|V | + 1)
∑

j∈V

xj −
∑

i∈V

wi

s.t.
∑

j∈Vi

xj − wi ≥ 1 ∀i ∈ V
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� (6.23)

� (6.24)

The objective function (6.21) enforces the hierarchical nature of the primary 
objective (minimizing the number of facilities) and the secondary one (maxi-
mizing twice-covered customers). It does so by multiplying the primary objec-
tive by a constant large enough that even if the primary objective is as small as 
possible (equal to 1), the secondary objective can never exceed it. Therefore, 
the solution will never open more facilities than necessary solely to improve the 
secondary objective. Constraints (6.22) require each customer to be covered at 
least once, and prohibit wi from equaling 1 unless customer i is covered at least 
twice.

Another advantage of this formulation is that its solutions avoid facilities that 
are dominated by others in the sense described in “Row and Column Reduction”. 
As a result, the linear programming relaxation to SCLP-BC is more likely to have 
all-integer solutions than that of SCLP is. Readers are referred to Daskin and Stern 
(1981) for justifications for both of these claims.

A similar hierarchical version of the maximal covering location problem was 
introduced by Storbeck (1982) and reformulated by Daskin et al. (1988). We modify 
their formulation somewhat in what follows.

� (6.25)

� (6.26)

�

(6.27)

� (6.28)

� (6.29)

� (6.30)

The objective function (6.25) maximizes a sum of the primary coverage (first term) 
and backup coverage (second term); the weight on the first term ensures that pri-
mary coverage will never be sacrificed in order to achieve backup coverage. Note 
that the secondary coverage objective considers nodes covered, rather than demand 
units covered. This is required in order for the weighting to achieve the desired 
hierarchy. Constraints (6.26) stipulate that customer i may be considered covered 
( yi = 1) only if at least one facility in Vi is open, and may be considered twice cov-
ered ( wi = 1) only if two such facilities are open. Since the objective function coef-

xj ∈ {0, 1} ∀j ∈ V

wi ∈ {0, 1} ∀i ∈ V.

MCLP-BC: Max z = (|V | + 1)
∑

i∈V

aiyi +
∑

i∈V

wi

s.t.
∑

j∈Vi

xj − yi − wi ≥ 0 ∀i ∈ V

∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

yj ∈ {0, 1} ∀i ∈ V

wj ∈ {0, 1} ∀i ∈ V.
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ficient for yi is greater than that for wi, the model will always set yi = 1 before it sets 
wi = 1, thus ensuring the desired coverage hierarchy.

6.3.2  �Expected Coverage Models

The class of expected coverage models is descended primarily from the Maximum 
Expected Covering Location Problem (MEXCLP ) introduced by Daskin (1982). 
Daskin’s primary application is in the siting of emergency medical service vehicles. 
The MEXCLP maximizes the expected coverage of each node, defined using proba-
bilistic information about facility availability, subject to a constraint on the number 
of facilities.

The MEXCLP assumes that the average system-wide probability that a given 
facility (vehicle) is busy is given by q. If a customer is covered by k facilities, then 
the probability that all those facilities are busy at a given point in time is given by 
qk, and the probability that at least one facility is available is 1 − qk. The maximum 
expected covering location problem defines new variables to keep track of the num-
ber of covering facilities for each customer. Define variables

for all i ∈ V and m = 1,…, p. Note that if customer i is covered by exactly k facilities, 
then yim = 1 for m = 1,…, k and yim = 0 for m = k + 1,…, p. Then

using a standard formula for geometric sums. In other words, the first summation 
in the equation above expresses the probability that customer i is covered by an 
available facility in terms of the decision variables yim. Using this approach, Daskin 
formulates the MEXCLP as follows:

� (6.31)

� (6.32)

� (6.33)

yim =
{

1, if customer i is covered by at least m facilities
0, otherwise

p∑

m=1

(1 − q)qm−1yim =
k−1∑

m=0

(1 − q)qm = 1 − qk

MEXCLP : Max z =
∑

i∈V

p∑

m=1

(1 − q)qm−1aiyim

s.t.
p∑

m=1

yim −
∑

j∈Vi

xj ≤ 0 ∀i ∈ V

∑

j∈V

xj = p
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� (6.34)

� (6.35)

The objective function (6.31) calculates the expected coverage. Constraints (6.32) 
allow the total number of yim variables, for fixed i, to be no more than the total 
number of opened facilities that cover i. At first it may seem that the model needs a 
constraint of the form

in order to ensure that yim is set to 1 for the correct values of m; that is, for the k 
smallest values of m, where k is the number of opened facilities that cover i. How-
ever, such a constraint is not necessary since the objective function coefficient is 
larger for smaller values of m; the model will automatically set yim = 1 for the k 
smallest values of m.

Daskin (1983) proposes a heuristic for MEXCLP based on node exchanges, and 
several metaheuristics have been proposed subsequently; see, e.g., Aytug and Say-
dam (2002), and Rajagopalan et al. (2007).

The primary criticism that has been leveled at the MEXCLP concerns the as-
sumption of a uniform system-wide availability probability, since availability might 
vary based on geographic area or on the demand assigned to each facility. ReVelle 
and Hogan (1989) address this concern in the Maximum Availability Location Prob-
lem (MALP), a chance-constrained version of MCLP. They formulate two versions 
of the model, one in which the availability probability is assumed to be the same 
throughout the system; the main difference between this model and MEXCLP is 
that MALP maximizes the number of demand units that are covered with at least 
a certain probability, whereas MEXCLP includes the expected coverage in the ob-
jective. ReVelle and Hogan’s second MALP model estimates the busy probability 
separately for each customer by assuming that facilities within the coverage radius 
of a given customer are available only to that customer. Obviously this assumption 
is not true, but it provides an easy, and fairly accurate, estimate of the availability 
probability. The two models are nearly identical once the availability probabili-
ties are calculated. Galvão et al. (2005) present a framework that attempts to unify 
MEXCLP and MALP.

Batta et al. (1989) embed Larson’s (1974, 1975) hypercube queuing model into 
MEXCLP to compute the availability probabilities endogenously. They find that 
their model disagrees substantially with MEXCLP in terms of the expected cover-
age predicted, but nevertheless results in similar sets of facilities chosen. Marianov 
and ReVelle (1996) formulate a version of the MEXCLP that endogenously calcu-
lates the availability property using a queuing model at each facility. The region 
around each customer node is treated as an M/M/s/s queue, where s is the number of 
servers located within the coverage radius. Their model implicitly assumes that that 
the call rate in the neighborhood is not substantially different from that in adjacent 
neighborhoods. The resulting model is structurally similar to the MALP but uses 
different (but pre-computable) values for the coverage radius.

xj ∈ {0, 1} ∀j ∈ V

yj ∈ {0, 1} ∀i ∈ V.

yim ≤ yi,m+1 ∀i ∈ V , m = 1, . . . , p − 1
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6.3.3  �Gradual Covering Models

The models discussed in this chapter so far all assume that coverage is a binary 
concept: either a customer is covered or it is not, and the distance from the customer 
to the covering facility is irrelevant. In practice, though, customers who are located 
very close to a facility such as a fire station may be served better than those located 
farther away, even if both customers are within the nominal coverage radius. In this 
case, the benefit from coverage decreases with the customer–facility distance, as 
illustrated in Fig. 6.4a. Moreover, some facilities such as garbage dumps are most 
beneficial when they are close (to reduce transportation costs) but not too close (to 
reduce odors and truck traffic), as illustrated in Fig. 6.4b.

Church and Roberts (1983) introduce the Weighted Benefit Maximal Coverage 
(WBMC ) Model, which extends the maximal covering location problem to accom-
modate non-binary coverage benefits. The objective is to maximize the sum of all 
customers’ coverage benefits (defined as the benefit per unit of demand times the 
demand of that customer) subject to a constraint on the number of facilities located. 
The formulation is a relatively straightforward modification of MCLP and includes 
a coverage variable ( y) and a constraint for each customer–distance pair. (Each 
“distance” is really a range of distances, as in Fig. 6.4.) The number of variables 
and constraints therefore grows linearly with the number of distance ranges. If the 
benefits are not monotonically decreasing with the distance, as in Fig. 6.4b, then an 
additional set of constraints is required to ensure that customers are assigned to their 
nearest opened facilities, a property that is automatic if benefits are monotonically 
decreasing. The resulting formulations are more complex than MCLP, but Church 
and Roberts find that they still retain their “integer-friendliness:” the linear pro-
gramming relaxation is generally very tight and often all-integer.

6.4 � Conclusions and Future Research Directions

In this chapter we have discussed two classical models for locating facilities 
to ensure coverage of customer nodes. One model, the set covering location 
problem, requires every customer to be covered and does so with the minimum 

Fig. 6.4   Benefit of coverage versus distance: a strictly decreasing, b non-monotonic
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number of facilities, while the other, the maximal covering location problem 
maximizes the demand covered subject to a limit on the number of facilities. 
Both models have garnered considerable attention in the location theory litera-
ture, and both models (and their extensions) have been widely applied in prac-
tice, especially in public-sector applications such as the location of emergency 
medical services.

Both covering problems are reasonably easy to solve, in the sense that modern 
general-purpose integer programming solvers such as CPLEX can solve problems 
with hundreds or thousands of nodes to optimality in a few minutes on a desktop 
computer. This stems in part from the fact that the linear programming relaxations 
of both problems tend to be tight, and even yield integer optimal solutions for a 
large percentage of instances. Therefore, although these problems are NP-hard, they 
are among the easiest problems in that class.

On the other hand, many of the extensions of these models are much more com-
putationally challenging. Daskin’s (1982) MEXCLP model, for example, or the 
queuing-based congestion models discussed by Berman and Krass (2002), have 
more complex structures than SCLP or MCLP and therefore cannot be solved using 
off-the-shelf solvers, except for small instances. One important direction for future 
research, therefore, is the development of effective, accurate algorithms and heuris-
tics for extensions of SCLP and MCLP.

Of particular interest are stochastic and robust variants of coverage models. Al-
though the literature on stochastic facility location models is extensive (see, e.g., 
Snyder 2006 for a review), most such models consider cost-based objectives rather 
than coverage-based ones. (Notable exceptions are the expected-coverage models 
described in Sect. 6.3.2, and their variants.) An important topic for future study is 
therefore the incorporation of stochastic elements—such as demands, travel times, 
server availabilities, and supply disruptions—into coverage models. The resulting 
models are likely to be significantly more complex than their deterministic counter-
parts, but the stochastic programming and robust optimization literatures are vast, 
and many of their more sophisticated tools have yet to be tapped by the location 
science community.

The distinction between cost- and coverage-based models made in the previ-
ous paragraph is an important one since it is often equivalent to the distinction 
between private- and public-sector applications—the former is primarily con-
cerned with cost minimization while the latter is often encouraged or mandated 
to provide adequate coverage to all demand locations (ReVelle et  al. 1970). 
Public-sector and humanitarian applications have gained increased attention in 
the operations research community in recent years—for example, the 2008 IN-
FORMS Annual Meeting featured “Doing Good with OR” as a central theme, 
as did the February 2008 issue of OR/MS Today. The application of coverage 
models to emergency medical services and other services has been a success 
story in public operations research for decades, and recent renewed interest pro-
vides an opportunity for existing and new coverage models to be applied for the 
public good.
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