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15.1 � Introduction

Location-allocation problems, due to their mathematical complexity, resist exact so-
lutions for problems of more than moderate size. For this and other reasons, heuristic 
(approximative) approaches are widely used in solving them. This chapter considers 
the two seminal streams of heuristic solution procedures, both of which remain in 
use today often in a somewhat altered form. We begin by outlining the location-
allocation problem that originally attracted the development of these approaches.

Consider the following basic scenario: a set of n points is given, either in the 
continuous plane or serving as nodes in a network, with each expressing a demand 
for some service. These demands can be met through travel to or from facilities also 
located at points. The objective is to determine a specified number of facility loca-
tion points that provide the best possible service to these demand points. The stud-
ies considered here explicitly define this problem as determining that set of facility 
locations that minimizes a sum of demand-weighted distances between the demand 
points (customers) and their nearest facility. This problem is known as the multi-
median or generalized median problem. Commonly, the number of facility locations 
sought is denoted by p, leading to the alternate and more popular title of p-median 
problem. Some researchers make a distinction between the continuous space mul-
tisource Weber problem (Brimberg et al. 2000) and the discrete or network space 
p-median problem; here, we do not.

Classic location problems including the location-allocation type occur in two-di-
mensional space, which may in turn be depicted in three ways: continuous, discrete, 
and network space. In the continuous case, referred to as site-generating models 
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(see, e.g., Love et al. 1988), locations are given by Euclidean coordinates, distances 
are calculated endogenously from these coordinates, and facility locations are deter-
mined by solving for the p best pairs of ( x, y) coordinates in the plane. In the discrete 
case, facility locations are selected from a set of potential sites (site selection mod-
els) and the distances, or more specifically, the shipping costs between demand 
points and potential sites are provided exogenously. In the network case, demands 
are expressed at the vertices of networks, facility locations (in the case of medians) 
are selected from network vertices, and distances are calculated over the shortest 
paths in the network. The classic papers of focus in this chapter were presented in 
continuous and network space; in the context of the p-median model, network and 
discrete space are identical in all practical terms.

Regardless of the space considered, the p-median problem is computationally 
difficult, having been shown to be NP-hard by Kariv and Hakimi (1979) for net-
works and Megiddo and Supowit (1984) for the continuous case. Thus, heuristic ap-
proaches are required to solve problems of reasonable size. This difficulty occurred 
to early researchers in location-allocation analysis, and seminal papers considered 
in this chapter presented the model formulations along with heuristic algorithms to 
solve them. They presented heuristic algorithms of two types. Cooper’s early work 
with the continuous space problem gave rise to the alternating locate/allocate heu-
ristic, which Maranzana adapted to the network space problem. Teitz and Bart dealt 
with the network problem using a vertex substitution heuristic in which vertices are 
systematically shifted in and out of a trial solution set.

The remainder of the chapter is organized as follows. Section 15.2 of this chap-
ter reviews the pioneering papers of Cooper (1963, 1964) and Maranzana (1964) 
including their well-known alternating locate/allocate heuristics; we then proceed 
to the classical vertex substitution heuristic of Teitz and Bart (1968). Section 15.3 
examines the impact of these seminal works on later developments. Section 15.4 
provides a short discussion of the future direction of research on the p-median prob-
lem. Finally, Sect. 15.5 offers some concluding remarks.

15.2 � The Classical Contributions

This section will follow the developments of ideas of four seminal papers in the 
field of location analysis. Each of these papers includes some heuristic methods that 
have had an impact on the way location problems are solved.

15.2.1  �Cooper (1963, 1964)

Cooper (1963) posed the problem of locating a set of sources (facilities) in some op-
timal fashion in order to serve a set of destinations (customers) at fixed and known 
locations. The problem was described in the following general terms: given the 
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location of each destination, the requirements at each destination, and a set of ship-
ping costs for the region of interest, determine the number of sources, the location 
of each source, and the capacity of each source.

Alluding to the theoretical difficulties of this problem, Cooper then added two 
important assumptions: there are no capacity restrictions on the facilities, and unit 
shipping costs are independent of facility output.

To put the new problem in context, Cooper (1963) reviewed the background lit-
erature on single facility problems, touching on the work of Cavalieri, Steiner, and 
others. Today, we know that this brief review overlooked two papers of major im-
portance, those of Weiszfeld (1937) and Kuhn and Kuenne (1962), which provided 
a solution method for the single facility problem.

Cooper stated the problem formally, but we have changed the notation for overall 
consistency. The known customer locations are defined by their Cartesian coordi-
nates

and the coordinates of the p facilities to be determined are

Note that although p is now given, we may repeat the analysis for various values of 
this parameter in order to ultimately determine the ‘best’ number of facilities.

Cooper also indicated that “in addition to not knowing the location of each of 
the p sources in the minimum cost solution, we also do not know which source is to 
serve which subset of destinations.” We now term this allocations. He introduced a 
binary variable to deal with these allocations:

He further introduced a weighting factor wij relating to the multiplicity of supply 
trips or service calls, a measure of demand for the service.

Cooper framed the problem mathematically in general terms and then introduced 
the notion of optimal service being the minimization of a weighted sum of Euclid-
ean distances between the customers and the facilities that serve them. This leads to 
the following formulation:

� (15.1)

Setting the first-order partial derivatives of (15.1) to zero with respect to each xj and 
yj provides conditions for a minimum. Thus, after replacing the Euclidean distance 
terms in (15.1) with

(ai , bi) , i = 1, 2, . . . , n,

(
xj , yj

)
, j = 1, 2, . . . , p.

αij = 1 if customer i is served by facility j , 0 if not.

Min : ϕ =
p∑

j=1

n∑

i=1

αijwij
[
(ai − xj)

2 + (bi − yj)
2]1/2

.

Dij = [(ai − xj )2 + (bi − yj )2]
1/2
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and re-arranging, we obtain

� (15.2)

Each pair of simultaneous equations provides the optimal solution for the single 
median problem defined for a known subset of customers who are allocated to a 
particular source. Where p facilities are sought, there will be p allocation groups; 
hence, p separate single facility problems must be solved for any given set of al-
locations (or partition of the customer set). Cooper presented an iterative scheme 
for solving (15.2) with fixed allocations, which is now commonly termed the 
Weiszfeld procedure, having rediscovered the same iterative scheme first proposed 
by Weiszfeld (1937) for the single median problem. The procedure simply updates 
the coordinates of each facility by substituting the values from the latest iteration 
in the right-hand side of (15.2), and continuing in this fashion until convergence is 
detected. (The interested reader is referred to Kuhn 1973, and Katz 1974, for con-
vergence studies of the Weiszfeld procedure.) As a starting point for the iterations, 
Cooper recommended the weighted mean center of the customer points:

� (15.3)

(Cooper presents these values incorrectly in both the 1963 and 1964 papers, by 
neglecting the wij  factor in the denominators. His case studies survive this error 
because all weights are assumed equal to unity.)

Cooper’s initial solution approach is straightforward, based on his observation 
of the crux of the location-allocation relationship: “If, for a set of n destinations and 
p sources, the location of the sources is known, the determination of the optimal al-
locations is trivial. It is merely the set of weighted distances […] that is a minimum. 
Conversely, if the allocation is fixed, the determination of the optimum location of 
the sources is merely the exact calculation, with known αij that has been previously 
described” (Cooper 1964). The problem can thus be solved exactly by examining all 
possible allocation sets, {αij}, and choosing the solution that minimizes (15.1). He 
presented a test problem, but acknowledged that this approach would not be com-
putationally attractive for what in the 1963 computing environment was quaintly 
considered to be a large set of customers (>10). Cooper determined that the number 
of such allocations is the Stirling number of the second kind S( n, p), a number that 
remains “formidably large” for problems that are considered of modest size today.

Cooper observed that a method for generating a “reasonable” number of facil-
ity location sets was required. He suggested considering the n customer sites as 
potential facility locations, thus reducing the problem to the discrete space form. 

xj =

n∑
i=1

αijwij ai

Dij

n∑
i=1

αijwij

Dij

and yj =

n∑
i=1

αijwij bi

Dij

n∑
i=1

αijwij

Dij

, j = 1, 2, . . . , p.

x0
j =

n∑
i=1

αijwij ai

n∑
i=1

αijwij

, and y0
j =

n∑
i=1

αijwij bi

n∑
i=1

αijwij

, j = 1, 2, . . . , p.
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The problem is thereby reduced to size nCp, but he acknowledged that the method 
remained “inadequate for many problems of industrial importance because of the 
excessive amount of calculation involved”. Moreover, he recognized that limiting 
facilities to a base set of customer sites might not yield correct allocations.

Having introduced the continuous location-allocation problem and discussed the 
issues in solving this problem in his 1963 paper, Cooper (1964) turned to the de-
velopment of heuristics to solve it effectively. He surmised that the problem had no 
sharp minimum, but rather many alternative or close optima, which “makes fea-
sible the use of heuristic algorithms with a reasonably high probability that a well 
constructed heuristic will find one of these near optimal solutions.” (Here, we see 
an interesting distinction between classical and modern viewpoints: today, the exis-
tence of multiple local minima is considered to be regrettable, and the goal of heu-
ristics is to come as close as possible to the optimal solution rather than to identify a 
good one. This goal is facilitated, of course, by the enormous increase in computing 
power available today.) The paper revisits the definition of the problem, the iterative 
procedure for the single facility problem (which he terms the “exact” procedure), 
and the suggestion that a direct solution to the multi-source problem is to minimize 
φ for all possible sets of αij. In order to treat the problem of very large customer sets 
( n ≤ 500) and situations of nonlinear costs (an idea he did not pursue further), Coo-
per developed several heuristic algorithms. He began by proposing lower bounds 
for limited cases of the problem, which he used to rank the results of the heuristics, 
and also determined an obvious upper bound for the problem.

Cooper (1964) presented four basic heuristics that are summarized below. Three 
of the heuristics assume that the “destination set is a very favored set,” and thus, use 
subsets of the customer set for locating facilities. The first two of these, upon termi-
nation, use the exact (Weiszfeld) procedure to determine the (optimal) continuous 
space origins with respect to the selected allocation.

A: The Destination Subset Algorithm.  This considers all possible subsets of p cus-
tomers as “sites” at which to locate facilities. This is the method of the 1963 paper 
and basically involves complete enumeration of all nCp discrete space solutions to 
the problem, a reduction from the S( n, p) possible continuous space solutions. Upon 
termination, a continuous adjustment is applied by using the exact procedure on the 
best discrete solution. Cooper again states that this procedure does not guarantee an 
optimal solution (the correct allocation may not be found), and warns that computa-
tion time for large problems is prohibitive.

B: The Random Destination Algorithm.  Here, p random customers are selected 
to be facility locations. The algorithm is repeated a number of times and the best 
solution is retained. Cooper suggests a statistical approach to determine when the 
algorithm might reasonably be terminated. The procedure provides a continuous 
adjustment on the final solution as before.

C: The Successive Approximation Algorithm.  The destination subset algorithm is 
run for p = 2 facilities. The best location for a third facility among the remaining 
customer sites is determined and then locked into the solution. Additional facilities 
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are similarly added. This is, after the initial two facilities are located, a greedy con-
structive algorithm of customer sites. It is unclear why Cooper does not apply the 
exact algorithm after termination.

D: The Alternate Location and Allocation Algorithm.  This elegant heuristic by 
Cooper continues to be popular to this day. It is based on the simple observation 
alluded to earlier that the two components of the problem, locate and allocate, are 
easy to solve in isolation. That is, given the locations of the p facilities, and the fact 
that there are no capacity restrictions on them, the customers are simply allocated in 
turn to the facility that provides the lowest cost service. For homogeneous facilities 
( wij = wi, for all i, j), this translates to assigning each customer to the closest facility. 
If the allocations are given, the problem reduces to p independent single facility 
problems that may be readily solved with the Weiszfeld procedure. The heuristic 
simply alternates between the two phases until no further improvement is possible. 
The steps provided by Cooper are summarized in Algorithm 1.

Cooper identifies the algorithm as a monotonic-decreasing convergent process 
that may not converge to the globally optimal solution. In fact, the process only 
guarantees a local minimum.

Cooper then uses solutions to the destination subset algorithm to demonstrate the 
lack of a sharp minimum, and reiterates that “it is this relative insensitivity to source 
location with correct or near-correct allocations which makes the use of heuristics 
feasible in this problem.”

Algorithm 1: Alternating Locate/Allocate (ALT-1) 

Step 1:	� Divide the customer set into p subsets of approximately equal size.
Step 2:	� For each subset, apply the exact procedure to determine the optimal 

facility location.
Step 3:	� Allocate all customers to the closest facility.
Step 4:	� Continue alternating between steps 2 and 3 until there is no alloca-

tion change.

 
Cooper tabulated results for 10 problems of size, n = 30, p = 3. For the first time in 
his experience, the destination subset algorithm arrived at an incorrect allocation. 
He also used 400 iterations of the random destination algorithm. As expected, the 
destination subset algorithm generally found the best solutions, but was by far the 
most computationally demanding of the methods. The random destination approach 
was next in quality, and much less costly. The successive approximation approach 
was not satisfactory―it is unfortunate that Cooper did not apply the exact solution 
procedure to its results for a fairer comparison with approaches A and B. The al-
ternate location and allocation algorithm (ALT-1) was deemed to be “satisfactory.” 
Cooper neglected to note that this algorithm actually performed best in three of the 
trials, even though its statistics were troubled by three spectacular failures.

He further tested the heuristics with 100 problems of size n = 40, p = 3, and con-
cluded that: “it is apparent that the best practical method of solving large location-
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allocation problems is with the use of the random destination algorithm and subse-
quent improvement by a single calculation of the exact location method.” Again, he 
does not credit the alternate location and allocation approach, the solution statistics 
for which were almost identical to the random destination approach.

One questions why Cooper downplayed the abilities of the alternating location 
and allocation algorithm, which has been passed down as the major contribution of 
his early work. One further questions why Cooper did not think to combine algo-
rithms B and D to apply the alternating algorithm to the random solutions. Cooper 
started the alternating heuristic with a rather messy selection of an initial allocation. 
Scott (1971) modified the algorithm by starting with a random selection of trial 
facility locations. Later work discovered that the influence of a single poor solu-
tion could be overcome by using several such random starts. This has become the 
common procedure for using the alternating heuristic today. The random multi-start 
version of the alternating heuristic allows us to obtain several local minima in dif-
ferent regions of the solution space, and thus improves the chances of obtaining a 
“good” solution.

Cooper’s 1963 and 1964 papers first identified the location-allocation problem 
in mainstream literature. Moreover, they identify the computational characteristics 
of the problem, while the second paper provides solution techniques for what is 
otherwise a very difficult class of problems. The alternate location and allocation 
algorithm is still often used today. For several years, this popular approach has been 
dubbed “The Cooper Algorithm” (Scott 1971).

15.2.2  �Maranzana (1964)

Maranzana (1964) defined the location-allocation problem on a network space as 
follows: given, in a network, a set V of n points (referred to as “sinks”) v1, …, vn, 
with associated nonnegative weights w1, …, wn, and a nonnegative, n-dimensional, 
symmetric distance matrix [dij], find p sources vx1 , ..., vxp

 among the points in V, 
and a partition of V into p subsets of sinks Vx1 , ., Vxp

 served respectively by the p 
sources so that

� (15.4)

is a minimum, where Dij is the minimum path length from vi to vj. (Again we have 
changed notation for consistency.) The total transport cost is assumed to be propor-
tional to the weighted sum of shortest-path distances given in (15.4).

Maranzana concluded that direct enumeration would be impractical for “the 
typical problem,” and proposed instead an iterative procedure to solve the prob-
lem heuristically. The method alternates between location and allocation phases 
as in Cooper’s algorithm, except that since we are dealing with a network, the 
shortest paths between all pairs of nodes must be determined first in a prepro-
cessing step. Maranzana adapted a dynamic programming approach attributed to 

p∑

j=1

∑

vi∈Vxj

Di,xj
wi
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Bellman (1958) to accomplish this. The shortest path between a given pair of 
nodes is determined recursively as the shortest path that uses at most j edges, for 
j = 1, 2, …, n − 1. By using a fixed sequence and constant updates of the shortest 
paths between all pairs of nodes, Maranzana actually improved the efficiency of 
Bellman’s algorithm.

Maranzana also noted that a separate routine was required to find the “center of 
gravity” of any subset Q of nodes, which he defined as a vertex vj of V that provides 
the minimum weighted sum of shortest path lengths between itself, acting as a facil-
ity, and the vertices of Q, acting as its customers. (This should not be confused with 
the median of set Q, since vj is not restricted to Q.) To find the center of gravity, 
Maranzana simply evaluated each vertex and chose the best one. The steps of his 
heuristic may be outlined as shown in Algorithm 2.

Algorithm 2: Alternating Locate/Allocate (ALT-2) 

Step 1:	� Select p trial facility sites arbitrarily from the n vertices of V to 
specify the current location set.

Step 2:	� Partition the n vertices by assigning each customer to its nearest 
facility in the current location set.

Step 3:	� Determine a “center of gravity” for each subset in the partition.
Step 4:	� If the center of gravity is the same as the current location of the 

facility for each subset, stop (the current location set with associated 
partition is the final solution); else update the current locations to 
the new centers of gravity and return to Step 2.

 
Maranzana proved that the sequence of solutions generated by the algorithm is 
monotone non-increasing by showing that the allocation and location phases (Steps 
2 and 3) may only improve the current solution. He then provided a simple numeri-
cal example to show that the procedure can converge to a non-optimal (local) mini-
mum. Using a second simple example, he demonstrated the difficulty that may arise 
when the center of gravity (Step 3) is non-unique; that is, different decision rules for 
breaking ties may lead to very different solutions. To circumvent the above difficul-
ties, Maranzana, unlike Cooper, who treated the alternating heuristic as being suited 
to a single application, suggested that “with a computer it is feasible to carry out 
the procedure on a number of initial selections so that one can be assured of arriv-
ing at a good solution.” Finally, the algorithm was applied to problems of two and 
three facilities in a case study of 158 Italian cities, each given a hypothetical weight 
that appears to have been related roughly to city size. It is interesting that computa-
tion time was mainly devoted to the calculation of shortest path distances on the 
network, a problem that would be magnified later on for practical applications on 
much larger networks. Finally, we note that Maranzana seems to have assumed in 
his procedure that the optimal facility sites are located at the vertices of the network, 
a result that would be proven coincidentally by Hakimi (1964).
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15.2.3  �Teitz and Bart (1968)

Teitz and Bart (1968) addressed the problem of solving what they called the “gener-
alized vertex median of a weighted graph,” which today we call the “uncapacitated 
p-median problem on a network.” Specifically, they considered “the problem of 
choice of location of p sources of unconstrained capacity from among n destina-
tions having fixed demands and located at nodes of a network.” They acknowledged 
that their problem was essentially the same as that investigated by Hakimi (1964) 
and Maranzana (1964), stating that their concern was with alternative methods of 
solution.

The problem is thus defined on an edge and vertex weighted graph, G. Each ver-
tex vi is weighted by a weight wi and each i–j edge by the shortest path distance Dij. 
The distance matrix D of G is an [n × n] symmetric matrix of shortest path distances 
between all pairs of vertices vi, vj. The weighted distance matrix R, asymmetric for 
differentially weighted vertices, is defined as

� (15.5)

The single vertex median solves

� (15.6)

where

� (15.7)

The generalized vertex median problem can be developed as follows: let Vp be some 

subset containing exactly p vertices of G. In an n-vertex graph there will be 
(

n

p

)
 

possible such subsets, indexed V m
p ; m = 1, 2, ...,

(
n

p

)
. For each such subset, we 

may construct a submatrix Rm
p  of R by adjoining all columns of R for which the 

corresponding column vertices are contained in V m
p . If facilities are limited to ver-

tices in V m
p ,, each customer vi will be served by that facility in V m

p
 for which rik is a 

minimum. The total weighted distance rm for the V m
p  set of facilities is

� (15.8)

where in each row of Rm
p ,  k (=k( i)) is the facility for which rij is minimized. The 

general vertex p-median of G is defined as some V m∗
p  such that

[
rij

]
=

[
wiDij

]
.

rk = min {r1, r2, . . . , rn} ,

rj =
n∑

i=1

rij , j = 1, . . . , n.

rm =
n∑

i=1

rik ,
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�
(15.9)

so that rm* ≤ rm, m = 1, 2, . . . ,
(

n

p

)
.  Teitz and Bart acknowledge that the p-me-

dian is not necessarily unique. They then addressed the task of finding it.
Teitz and Bart begin by outlining the direct enumeration method and Maran-

zana’s alternating algorithm, termed the partition method for obvious reasons. The 
former was deemed too computationally demanding and the latter of suspect robust-
ness. This is followed by the main contribution, their vertex substitution method, 
which in their words “concentrates upon the formal definition of the generalized 
vertex median and its associated weighted distance matrix.”

The method proceeds as follows: for each possible subset of facility sites V m
p , we 

may construct a submatrix Rm
p

by combining the relevant p columns as described 
above. Consider what happens when one vertex vj in the facility subset is replaced 
by another vertex vb outside this set; that is, the vb column takes the place of the vj 
column in Rm

p .  If rij is the i-th row minimum of Rm
p ,  then its replacement by rib 

could have one of several outcomes:
If rib  ≤ rij, the increment to the i-th row contribution to sum r would be

� (15.10)

If rij ≤ rib ≤ ris (where ris is the second-smallest i-th row element in Rm
p ),

� (15.11)

If rij ≤ ris ≤ rib,

� (15.12)

In the Teitz and Bart paper, the differences in these expressions are incorrectly re-
versed. For example, rib − rij is incorrectly written rij − rib. The authors also seem to 
make a fundamental error by concluding that “if rij were not the i-th row minimum 
of Rm

p ,  then no change in the i-th row contribution to r would result.” This is not 
generally true, as implied by the analysis above. There can be no increase in the 
objective value r, but vb may still become the new closest facility to vi, resulting in 
a reduction in r.

It is worth substituting vertex vb for vj only if the net effect of all increments

� (15.13)

is less than zero, i.e., if it reduces the total weighted distance. An iterative process 
of single vertex substitutions as suggested by Teitz and Bart may now be employed 
to obtain a monotone decreasing sequence of solutions that ends when a local mini-
mum is reached. 

rm∗ = min{r1, r2, ..., r

 n
p




},

i�bj = rib − rij ≤ 0.

i�bj = rib − rij ≥ 0.

i�bj = ris − rij ≥ 0.

�bj =
n∑

i=1

i�bj
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Algorithm 3: Vertex Substitution (VS-1) 

Step 1:	� Choose some initial facility subset V1 containing p (randomly-
selected) vertices.

Step 2:	� For each vertex vj ∈ V1, find its associated customer subset of verti-
ces for which it is the closest facility (no rules are given for break-
ing ties as in Maranzana); compute the total weighted distance r1 for 
the resulting solution.

Step 3:	� Select some vertex vb not in the facility subset, i.e., vb ∈ V \V1.

Step 4:	� Substitute vb in turn for each vertex vj ∈ V1, and compute Δbj each 
time.

Step 5:	� Find that vertex vk ∈ V1 that, when replaced by vb, most reduces the 
total weighted distance, that is,

	
� (15.14)

Step 6:	� If such a vertex vk can be found, substitute vb for vk in the facility 
subset; label the new subset V2 and compute r2(=r1 + Δbk). If no ver-
tex vk satisfies relation (15.14), simply retain the facility subset V1.

Step 7:	� Select another vertex, not previously tried, in the complement of V1, 
and repeat Steps 4 through 6.

Step 8:	� When all vertices in the complement of V1 have been tried, define 
the resulting facility subset Vt as a new V1 and repeat Steps 2 through 
7. Call each such complete repetition a cycle.

Step 9:	� When one complete cycle results in no reduction in r, terminate the 
procedure. The output is the last solution obtained.

 
Note: It appears to be unclear in Step 7 whether the authors intended that the new 
subset V2 replace the original subset V1 in the repetition of Steps 4–6. However, this 
would only affect the type of improvement strategy utilized, and not the gist of the 
procedure. We interpret the authors’ intention as using the original V1 in each such 
repetition of Steps 4–6, giving rise to what is termed today a “best” improvement 
strategy; i.e., look at all solutions in the one-interchange neighborhood of V1 and 
select the best one. It is also unclear how they intend us to perform Step 6 in suc-
cessive iterations; their use of Vt in Step 8 suggests that they would label further 
subsets V3, V4, …, Vt. This is not necessary, since we need only maintain a current 
“best” substitution at this step, which we could label Vt throughout. Moreover, the 
total weighted distance need not be calculated each time.

Teitz and Bart acknowledge that a situation could arise in which a single ver-
tex substitution produces no further improvement, whereas pairwise or higher sub-
stitutions would further reduce the total weighted distance. However, they do not 
characterize this case or give examples. In their experiments on random graphs 
with 25 vertices, they observe that the procedure always terminated (i.e., reached a 

�bk < 0 and �bk = min
j

{�bj }
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local minimum) within four cycles. Most important—they note a very significant 
improvement in solution quality using vertex substitution compared to the partition 
method. The partition method furthermore exhibits considerable variation in perfor-
mance. They conclude that vertex substitution is the preferable heuristic.

15.3 � Impact of the Early Heuristics

This section investigates what further developments have been made on the basis of 
the heuristic methods described in the previous section. We first examine work that 
considers generalization of distance measurements, followed by a variety of loca-
tion—allocation models and modern heuristics in continuous and discrete spaces.

15.3.1  �Generalization of Distance Measurements

The Maranzana and Teitz and Bart approaches were defined in network space, but 
it is not necessary to have a network structure to define the p-median or to solve it 
using their procedures. Many examples in the literature do not rely on an underlying 
network structure. Both discrete and network spaces are defined with reference to a 
matrix of shortest distances, and operate through consideration of these internodal 
distances. This is possible because the Hakimi (1964) finding ensures that optimal 
locations can be limited to the vertices—hence the internodal distance matrix is all 
the information required. It follows that the relevant distance matrix among pairs 
of “vertices” can be defined other than within a network or if, within a network, 
without specifying the network structure. We can apply the partition and vertex 
substitution methods to any system where a matrix [Dij ] is provided. Given a set 
of nodes in space, these distances might be specified for example as Euclidean dis-
tances, airline travel times, psychologically perceived travel costs, or in many other 
different ways.

The Teitz and Bart and Maranzana papers work on the assumption that the cus-
tomer set represents the potential facility locations from which trial sites can be 
selected. In modern practice it is recognized that this is often not realistic. Some 
customer sites may be unsuited to facilities; some ideal facility locations may not 
express demand. Thus, we recommend that a separate set of potential facility loca-
tions be maintained in working with network and discrete space models. The dis-
tance matrix would be constructed and used in a similar fashion as before. In some 
realistic problems, facilities may already exist in some locations, and the heuristics 
above are easily adapted to deal with this situation.

The Cooper papers (1963, 1964) assumed that distances are measured by the Eu-
clidean norm. Since that time more general distance functions, such as the lp norm, 
have been incorporated in location models to provide more accurate measures of 
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travel distance. Given any two points, X1 = ( x1, y1), X2 = ( x2, y2) in the plane, the �p  
distance between them is given by:

where the parameter p ≥ 1. When p = 1, we have the well-known rectangular (or 
Manhattan) norm; the Euclidean norm occurs with p = 2. The Cooper algorithm 
is readily extended to the median problem with �p  distances after modifying the 
Weiszfeld formulas appropriately; see, e.g., Love et al. (1988). The use of “block 
norms” allows the location step to be solved by linear programming techniques. 
In fact the problem may now be reduced from continuous space to a finite set of 
intersection points, thus allowing a vertex substitution heuristic to be used as well.

The distance function may be raised to some power in order to model more ef-
fectively the transportation costs or times; an example is the fire engine travel time 
study in Kolesar et al. (1975). Geodesic distances are typically used for location on 
a sphere as in the case of air travel. In cluster analysis, which has important applica-
tions, for example, in data mining, the fixed points (vertices) are located in higher-
dimensional space according to the number of attributes involved. The well-known 
k-means model from the data mining literature is simply a version of the p-median 
model ( p = k) with squared Euclidean distances.

The partition and vertex substitution methods have been readily adapted to such 
generalizations of the original continuous and discrete (network) problems.

15.3.2  �Other Location-Allocation Models

The general principles of partition and vertex substitution may be extended to other 
forms of the location-allocation problem as introduced elsewhere in this book. With 
the vertex substitution method, we simply revise the procedure for calculating the 
incremental change in objective function associated with each swap move of vertex 
entering and vertex leaving the solution. The generation of a monotone sequence 
and convergence to a ‘local’ optimum are guaranteed. With the partition method, 
the location step is adjusted according to the type of objective function under con-
sideration. For problems that are separable into location and allocation phases, we 
may show again that the sequence generated is monotone, which is essential for 
convergence of the heuristic. However, the partition method may not converge in 
more general cases. Consider, as an example, a form of the covering problem where 
the goal is to locate sensors on a grid in order to maximize the mean probability 
of detection measured at the grid points. The location step is no longer separable 
into p independent single facility problems due to additional interactions that exist 
with facilities (sensors) other than the closest one, and thus the partition method 
breaks down. A similar situation may occur in location-allocation models involving 
noxious facilities. It therefore appears that the partition method is not as universally 

�p (X1, X2) = [|x1 − x2|p + |y1 − y2|p]1/p
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useful as the vertex substitution method for problems occurring on networks or in 
discrete space.

15.3.3  �Modern-Day Heuristics

The partition and vertex substitution methods both fall in the category of local 
search; that is, the procedure finds a better solution in a local neighborhood of the 
current solution and iterates in this fashion until a local optimum is reached. It is 
interesting to note that in network (or discrete) space, any local optimum obtained 
by the vertex substitution method must also be a local optimum in the partition 
method, but the converse is not necessarily true. This is due to the fact that the loca-
tion step in the partition method is equivalent to a “restricted” set of vertex swap 
moves. Thus, starting from some local optimum, a better partition of the customer 
set may be found by examining all possible swap moves as in the vertex substitution 
method. This may explain the superiority observed by Teitz and Bart of their heu-
ristic, as well as the higher variability of results obtained by the partition method. 
It is also interesting to note that comparative studies of the two methods appear to 
be limited to the experiment of Teitz and Bart on a few small random instances, and 
some further testing by Rosing et al. (1979). Yet the vertex substitution method is 
widely used to this day, while Maranzana’s work in comparison has been largely 
ignored. There may be computational advantages, for example, in using a two-stage 
approach where the fast partition method is applied first on a random initial solu-
tion, followed by vertex substitution with the solution from the first stage as the 
starting point.

The Cooper algorithm is still widely used on problems posed in continuous 
space. A few variants that seem to work better have been suggested including, as 
noted, Scott (1971) who starts with an initial random set of facility locations instead 
of an initial allocation. Care must be taken, since the Cooper algorithm may lead to 
a degenerate solution (Brimberg and Mladenovic 1999) where some facilities end 
up having no customers assigned to them. The shortcoming is easily remedied by 
inserting such facilities at unoccupied vertex locations (those customers that do not 
have coinciding facilities) whenever the situation arises within the solution process.

As problem size defined by n and p increases, an exponential growth in the num-
ber of local optima is observed. Thus, local search methods become inefficient. We 
will see next that the partition and vertex substitution methods still play an impor-
tant role in the more advanced techniques used today.

15.3.3.1 � The Continuous p-Median Problem

The random multi-start version of Cooper’s algorithm remained the state-of-the-art 
for many years despite a number of other competing heuristics. Notable among 
these is a heuristic developed by Love and Juel (1982) that is the first method to 
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impose a set of neighborhood structures on the problem. A given neighborhood of 
a solution is defined here as the set of points around that solution that are obtained 
by exchanging a specified number of assignments of customers from their current 
facilities to new ones. The authors consider up to two exchanges, and show that 
the two-exchange neighborhood may be used (at a computational cost, of course) 
to ‘jump out’ of a local optimum trap in the one-exchange neighborhood. In their 
procedure the facilities are always optimally located with respect to any given allo-
cation of the customers. Other heuristics include gradient-based methods (Murtagh 
and Niwattisyawong 1982, and Chen 1983) and a projection method by Bongartz 
et al. (1994). For further details, see, for example, the survey paper by Brimberg 
et al. (2008a).

Recall that one of Cooper’s initial ideas was to solve a discrete version of the 
problem where the facility locations are restricted to the set of fixed points given 
by the customers and the shortest-path distance is simply the Euclidean distance 
between each pair of vertices. Hansen et al. (1998) revisit this idea several years 
later while taking advantage of an efficient code by Hanjoul and Peeters (1985) to 
solve the discrete problem exactly. A second stage involves a continuous improve-
ment where p single facility problems resulting from the partition of the customer 
set by the discrete solution are solved. Excellent results are reported, but computa-
tion times become excessive. Brimberg et al. (2000) propose a new neighborhood 
structure based on the vertex substitution idea of Teitz and Bart (1968); that is, 
facilities are relocated one at a time to an unoccupied fixed point (a customer that 
does not have a coincident facility). The one-interchange neighborhood contains 
all such possible single moves. A local search using Cooper’s algorithm is then 
conducted from all or selected points in this neighborhood. The authors investigate 
various “drop and add” strategies in the selection process, which allow a reduction 
in the size of the neighborhood from O( np) to O( n + p), and as a result, a much faster 
local search. When the full one-interchange neighborhood is verified, an efficient 
updating procedure by Whitaker (1983) is used. The relocation heuristics are able to 
obtain better results than the multi-start Cooper algorithm in a fraction of the time.

The recent application of metaheuristics to the continuous p-median problem 
has resulted in a significant advance in the state-of-the-art. Unlike local search 
that examines a narrow region of the solution space and terminates at a local op-
timum, metaheuristics are general frameworks that allow the search to expand to 
different regions of the solution space, and thus escape the “local optimum trap.” 
A comparative study (Brimberg et al. 2000) shows that as problem size increases 
(and the number of local minima explodes), the performance of the multi-start 
Cooper algorithm deteriorates significantly relative to new heuristics based on 
Tabu search, variable neighborhood search, and the genetic algorithm. It is in-
teresting to note, however, that these newer methods usually have Cooper’s al-
gorithm embedded within them. For example, the various versions of variable 
neighborhood search in the above comparative study use Cooper’s algorithm in 
the local search step. The initial population in the genetic algorithm of Houck 
et al. (1996) is obtained by repeating Cooper’s algorithm from random starting 
points until an adequate number of local minima is found, and after the crossover 
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operation, the new solution is improved (mutation operation) using the Cooper 
algorithm. For a further update on metaheuristic-based methods for solving the 
continuous p-median problem, see Brimberg et al. (2008a).

15.3.3.2 � The Discrete p-Median Problem

As noted in Mladenovic et al. (2007), the vertex substitution method by Teitz and 
Bart, which they refer to as the Interchange procedure, is still “commonly used as 
a standard to compare with other methods.” Both Maranzana’s partition method, 
aptly named the Alternate heuristic, and the Interchange procedure have been used 
in composite type heuristics. For example, Captivo (1991) adds facilities one at a 
time in a greedy fashion that reduces total cost as much as possible, and then uses 
the Alternate procedure in each step to further improve the solution. Another com-
posite method first constructs a greedy solution and then applies the Interchange 
procedure to that solution; it is often used for comparison with other new methods 
(see Voss 1996, and Hansen and Mladenovic 1997). Lagrangian-based procedures 
that “alternate” between solving for the primal variables and adjusting the Lagrange 
multipliers typically use a local search as above to improve the obtained solution 
(as in Beasley 1993).

The concept of neighborhood structure is intimately related to the vertex sub-
stitution method. We may view this method as a local search in the 1-interchange 
neighborhood. Generalizations are now possible. For example, Kochetov et  al. 
(2005) propose a new neighborhood structure, termed LK (Lin-Kernigham), which 
employs a depth parameter k that counts the number of interchange moves within 
one step of local search. The LK( k) neighborhood may be described as follows: 
( i) find two vertices vadd and vdrop that give the best solution in the 1-interchange 
neighborhood; ( ii) exchange these two vertices to get a new solution; ( iii) repeat 
the above steps k times, not allowing any facility that has been dropped to re-enter 
the solution. The process is repeated until a local minimum in the LK neighborhood 
is reached. This type of local search has been used within Lagrangian relaxation, 
random rounding (after linear relaxation), and ant colony optimization (Dorigo and 
Di Caro 1999). The 1-interchange neighborhood can be modified in a straightfor-
ward way to handle the related simple plant location problem. In this case a fixed 
cost fi is charged to open a facility at vertex vi, and the number of facilities to open 
is unknown. Brimberg et al. (2008b) examine an extended version of the simple 
plant location problem with nonlinear objective function representing the return on 
investment. They use an expanded local search neighborhood that allows all single 
moves where either a vertex is opened ( vadd), a vertex is closed ( vdrop), or an inter-
change is made ( vadd and vdrop).

Mladenovic et al. (2007) note that “the Interchange method is one of the most 
often used classical heuristics either alone or as a subroutine of other more complex 
methods or within metaheuristics.” In large scale applications it is therefore critical 
that the procedure be implemented in an efficient manner. The popular CLARANS 
(Clustering Large Applications based on RANdomized Search) method in data min-
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ing (Ng and Han 2002) conducts a local search using a small random sample of 
points in the 1-interchange neighborhood. Efficient implementations that can evalu-
ate in reasonable time the entire neighborhood for very large instances, including 
the fast interchange of Whitaker (1983) mentioned previously, are summarized in 
Mladenovic et al. (2007).

Several modern heuristics that derive from metaheuristic rules use the vertex 
substitution method in some form. In the Tabu search procedure of Mladenovic 
et al. (1996), the 1-interchange move is extended to what they term the 1-chain-
substitution move. In Rolland et al. (1996), the 1-interchange move is divided into 
add and drop moves that do not necessarily follow each other in an approach within 
Tabu search known as strategic oscillation. Note that this procedure allows the 
trajectory that is generated to oscillate between feasible and infeasible solutions. 
Kochetov (2001) proposes a simple probabilistic Tabu search in which a restricted 
(random) 1-interchange neighborhood is used. The simulated annealing heuristic 
of Chiyoshi and Galvao (2000) combines the 1-interchange neighborhood with the 
general methodology of simulated annealing. The scatter search method of Garcia-
Lopez et al. (2003) uses the Interchange procedure in a final step to improve the 
combined solutions that are obtained.

The Variable Neighborhood Search methodology imposes a set of neighborhood 
structures on the solution space in order to conduct a systematic search at different 
distances from the current solution. The movement to different neighborhoods is 
accomplished by a ‘shaking’ operation. In the standard approach for the p-median 
problem (e.g., Hansen and Mladenovic 1997), the neighborhood structures are de-
fined by moving 1, 2, …, kmax facilities from their currently occupied vertices to 
new unoccupied ones. The shaking operator thus selects a random point in the k-
neighborhood by randomly moving k facilities in this manner. A local search from 
this point is conducted using the Interchange procedure.

Heuristic concentration (Rosing and ReVelle 1997) is a metaheuristic of special 
interest to this chapter as it was developed specifically for the p-median problem 
and is based straightforwardly on the Teitz and Bart algorithm. The local minima 
arising in repeated runs of the Teitz and Bart algorithm are identified as two-, three-, 
and so on “traps” by Rosing and Hodgson (2002); these identify clusters of nodes 
that cannot be avoided by single interchanges. The main idea behind heuristic con-
centration is to then create a concentration set of desirable facility sites (open facil-
ity sites that most often appeared in the solutions from the first stage), and use this 
concentration set as the set of potential facility locations, thus reducing the solution 
space of the problem. Nodes that occur in all solutions may be assumed to be in the 
optimal solution if so desired. The much smaller problem defined by the demand 
nodes and the concentration set may be solved optimally or approximately. Heuris-
tic concentration has been shown to provide very good, usually optimal, solutions to 
problems of several hundred nodes, although these are considered relatively small 
instances by today’s standards. Since the number of customers remains at its origi-
nal size, computation times may become unmanageable for larger problems. This 
shortcoming may be addressed in the future by applying neighborhood approaches 
to the traps identified in the concentration set.
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Thus we see that several of the new methods have at their hearts the fundamen-
tal interchange notion of Teitz and Bart (1968). Mladenovic et al. (2007) conclude 
that the more recent heuristics outperform Teitz and Bart, but due to the number of 
different data structures and implementations, they are unable to conclude “what 
metaheuristic dominates others.” Another useful source to note is Reese (2006).

15.4 � Future Research

We believe that interest in heuristics will continue to grow in the coming years in 
studies of combinatorial and global optimization problems including, of course, the 
p-median problem. Here are some reasons why.

Networks are getting increasingly larger in real applications. For example, Brim-
berg et al. (2000) motivate their work by citing two actual case studies, a transship-
ment center location problem and a districting problem with ( p, n) = (20, 1,700) and 
(170, 1,400), respectively. A very large-scale study dealing with spare parts logistics 
for a Japanese manufacturing company with 6,000 customers and 380,000 potential 
warehouse sites is cited in Brimberg et al. (2008a). With such trends as globaliza-
tion of business, we can expect the size and complexity of location and distribution 
problems to only increase. Given the limiting assumptions inherent in mathematical 
models, finding the “optimal” solution, even if it were possible, may be of ques-
tionable importance in practice. It seems a more sensible approach would be to use 
heuristics to find a set of alternative “good” solutions in a way that strikes a proper 
balance between quality of solution and computing time.

New important applications of the p-median model are materializing that are 
outside the original scope of locating physical assets such as warehouses. We men-
tion as an example the importance of the p-median model and other related models 
in the field of data mining. One objective in data mining is to detect useful patterns 
within databases by using models such as the p-median that are able to partition the 
dataset into meaningful clusters. These databases generally contain several thou-
sand entries, and thus the use of heuristics becomes a practical necessity.

New developments within the field of heuristics are extending the usefulness 
of these methods. For example, using decomposition to solve a series of smaller 
(decomposed) problems is proving to be a highly effective and efficient approach 
to handle large problem instances. In Hansen et al. (2001), a decomposition variant 
of variable neighborhood search, referred to as variable neighborhood decomposi-
tion search, obtains notably better results than basic variable neighborhood search 
in less computing time. In fact, the method finds much better results than fast-
interchange in the same time fast-interchange takes for a single descent. Another 
example is the recent development of primal-dual heuristics that are able to obtain 
tight lower bounds on the optimal solution of the p-median and related simple plant 
location problems by solving exactly or approximately a relaxed version of the dual, 
see Hansen et al. (2007). Thus, a guaranteed bound on the quality of the solution 
obtained by the primal heuristic is now provided. Heuristics are also used in con-
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junction with exact solution methods. Since these exact methods are generally very 
sensitive to the starting point, it is important to use a good heuristic initially. Brim-
berg et al. (2000) note that the improved solution quality from the newer heuristics 
available has enabled the exact solution of much larger instances of the continuous 
p-median problem than before.

We have seen a tremendous growth in the field of heuristics in recent years. 
Empirical studies have shown consistently that the new metaheuristics at our dis-
posal work better than the older methods, but aside from this we do not understand 
much of what transpires. Research into the theoretical underpinnings of meta-
heuristics is still in its infancy, but judging from the recent Seventh Metaheuristics 
International Conference (June 2007), this is becoming a very hot area indeed. It 
seems a safe bet to predict that the field of metaheuristics will be subject to rigor-
ous theoretical analysis in the years to come. We believe that statistical studies of 
the landscapes derived from various local search operators will play a useful role 
here. The ultimate goal, aside from designing better heuristics, will be a deeper 
understanding of the fundamental nature of combinatorial and global optimization 
problems.

15.5 � Conclusions

We have reviewed the classical heuristics introduced by Cooper (1963, 1964), Ma-
ranzana (1964), and Teitz and Bart (1968). Maranzana’s paper, although important 
also for its formulation of the network model and some fundamental results, may 
be considered less significant as its partition method was quickly superseded by the 
vertex substitution method of Teitz and Bart. The contributions of these original 
papers were timely and important, as they introduced a wide audience to some fun-
damental location problems and showed how they could be solved. They stand out 
as important way posts in location science and are truly deserving of their celebrity 
status.

Rather than review derivative work in detail, we have guided readers to the de-
tailed reviews by Brimberg et al. (2000), Reese (2006), Mladenovic et al. (2007), 
and Brimberg et  al. (2008a). These reviews indicate that the performance of the 
classical heuristics suffers in the face of the explosive number of local minima that 
arise in large problems. None of these classic approaches is ready for retirement, 
however.

The Cooper algorithm, accompanied by graphical illustration, is an excellent 
tool for teaching a fundamental lesson of location modeling and optimization in the 
classroom, as aptly demonstrated in Scott (1971). 

The vertex substitution method of Teitz and Bart lies at the heart of all the inter-
change-based heuristics developed to solve the p-median problem more effectively. 
Although much progress has been made in recent years in the development of me-
taheuristics, much work still remains to understand the underlying theory, and in 
consequence, to design heuristics in a more intelligent fashion.
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