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13.1 � Introduction

In 1960, Land and Doig published a paper that most scholars recognize as the first 
description of a now well-known technique for solving difficult optimization prob-
lems by solving a sequence of easier, restricted subproblems (Land and Doig 1960). 
Little et al. (1963) named this technique “Branch-and-Bound” ( B&B), and used it to 
solve the traveling salesman problem. Although the method is described and used in 
several papers in the 1960s (see for example, Lawler and Wood 1966), the descrip-
tion below, provided by Hillier and Lieberman (1980), succinctly captures the idea.

The basic idea of the branch-and-bound technique is the following: suppose (to be specific) 
that the objective function is to be minimized. Assume that an upper bound on the optimal 
value of the objective function is available. (This is usually the value of the objective func-
tion for the best feasible solution identified thus far.) The first step is to partition the set of 
all feasible solutions into several subsets, and for each one, a lower bound is obtained for 
the value of the objective function of the solutions within that subset. Those subsets whose 
lower bounds exceed the current upper bound on the objective value are then excluded from 
further consideration. (A subset that is excluded for this or other legitimate reasons is said 
to be fathomed.) One of the remaining subsets, say, the one with the smallest lower bound, 
is then partitioned further into several subsets. Their lower bounds are obtained in turn and 
used as before to exclude some of these subsets from further consideration. From all the 
remaining subsets, another one is selected for further partitioning and so on. This process is 
repeated again and again until a feasible solution is found such that the corresponding value 
of the objective function is no greater than the lower bound for any subset. Such a feasible 
solution must be optimal since none of the subsets can contain a better solution.

The method of partitioning the set of feasible solutions into subsets (branching) is 
relatively straightforward for integer variables, particularly when these can take on 
only one of two values, zero or one. Thus, a partition is created when one of these 
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variables is set to zero in one subset, and set to one in the other subset. An easy way 
to envision the partitioning process is through what is called the branch-and-bound 
tree. The top node of the tree represents the original problem. Two branches can be 
created from this node by selecting one of the variables, and setting it equal to zero in 
one branch and to one in the other branch. Each of the resulting nodes can be further 
partitioned via the selection of another variable and a repetition of the above process.

To create bounds at each node, early implementers of the branch-and-bound 
method solved “relaxed” problems by treating integer variables as continuous. By 
doing this, the resulting relaxed problem was often a linear program that could be 
solved by existing codes. The key to branch-and-bound efficiency is to reduce the 
number of subsets that must be visited and to be able to create “strong” bounds. 
Early adopters realized this and those same issues are faced today by current users 
of the method. We will have more to say on this issue later in the chapter.

In spite of the fact that branch-and-bound can be painfully slow as a solution 
method for discrete optimization problems, it is still often applied as the technique 
of choice for these problems. Discrete optimization problems generally have locally 
optimal solutions and so sensible search methods are necessary to explore the solu-
tion space for a globally optimal solution. Branch-and-bound is such a method since 
it provides a means of exploring various subregions of the feasible set of solutions 
in an organized manner.

In this chapter, we give an overview of the use of branch-and-bound to solve 
two prototypical location problems: the quadratic assignment problem QAP and 
the uncapacitated facility location problem UFLP. Our focus will be on the early 
applications of branch-and-bound to these problems via a critical review of two pa-
pers from the 1960s. In providing these reviews we attempt to replicate the authors’ 
thought process in the development of the reported solution method.

The remainder of this chapter is organized as follows. Section 13.2 discusses 
the work of Gavett and Plyter (1966) on the quadratic assignment problem, fol-
lowing which we discuss advancements in the application of branch-and-bound to 
the problem as well as special cases of the problem solvable in polynomial time. 
Section 13.3 is dedicated to the uncapacitated facility location problems where we 
first review the work of Efroymson and Ray (1966) on this problem. We then fol-
low this review with a discussion of further work on the problem, and special cases 
solvable in polynomial time. Branching strategies for branch-and-bound methods 
are discussed in Sect. 13.4, and concluding remarks are offered in Sect. 13.5.

13.2 � Gavett and Plyter (1966): The Quadratic Assignment 
Problem

The Quadratic Assignment Problem was formulated by Koopmans and Beckman 
(1957) over 50 years ago. The motivating and most popular application of the qua-
dratic assignment problem is the facility layout problem of assigning n facilities to 
n locations where one and only one facility can be assigned to each location. Thus, 
there are n! possible assignments. The cost of an assignment depends on both the 
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distance between each pair of locations, and the traffic intensity between facilities 
assigned to those locations. The objective is to find a minimal-cost solution among 
the n! possible assignments. One of the earliest exact methods for solving it was the 
branch–and-bound approach given in the paper of Gavett and Plyter (1966). Herein 
we review their approach.

13.2.1  �Solving the Quadratic Assignment Problem via 
Branch-and-Bound

To formally pose the quadratic assignment problem as an optimization problem, let 
A =  [aj�]denote a matrix of distances between locations j and �  for j, � = 1, …, n. 
Also, let B = [bik] denote a matrix of rates at which material is transferred (traffic 
intensity) between facilities i and k where i, k = 1, …, n. Letting p = ( p1, p2, …, pn) 
denote a permutation of 1, 2, …, n and letting Pn denote the set of all permutations 
on {1, 2, …, n}, we can state the quadratic assignment problem as follows:

� (13.1)

In addition to facility location, there are many applications of the quadratic assign-
ment problem in the literature. These include backboard wiring, economic prob-
lems, scheduling, the design of typewriter keyboards and control panels, archeol-
ogy, statistical analysis, and reaction chemistry. For a further discussion see, for 
example, Loiola et al. (2007).

Consider the following simple example from Gavett and Plyter of 4 facilities to 
be assigned to 4 locations:

Assigning the facilities 3, 1, 2 and 4 to the respective locations 1, 2, 3, 4 results in a 
total cost of 523. A better solution is assigning the facilities 2, 4, 3, 1 to the respec-
tive locations 1, 2, 3, 4 for a total cost of 403. With only 4 facilities/locations in 
this example, there are only 4! = 24 possible assignments and hence the problem is 
readily solvable (indeed, it is easy to verify that 403 is the minimal cost). However, 
with even modest values of n (e.g., n = 25) the number of permutations quickly be-
comes disturbingly large. The challenge is how to efficiently find an optimal solu-
tion to such problems. Following up on the work of Little et al. (1963) on applying 
branch-and-bound to the traveling salesman problem, Gavett and Plyter showed 
how branch-and-bound could be used to solve this problem.

The authors assume that the matrix A is symmetric (so that the distance from 
location j to �  equals the distance from �  to j ). In this case (13.1) can be simplified 
as follows:

QAP : Min
{∑

aj�bpjp�
: p ∈ Pn for j, � = 1, 2, . . . , n

}

A =





0 6 7 2
6 0 5 6
7 5 0 1
2 6 1 0



 and B =





0 10 20 5
18 0 9 4
5 6 0 8
8 0 15 0



 .
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� (13.2)

For a given permutation, observe that the objective in (13.2) is simply the sum of 
the products of distances aj�  between pairs of locations and the total traffic inten-
sity (bpj p�

+ bp�pj
)  between facilities assigned to them. Clearly, an ideal solution 

would match high intensities with small distances and low intensities with high 
distances. Doing this among permutations Pn can be difficult. However, as Gavett 
and Plyter noticed, the problem is easy to solve by expanding the permutations to 
match pairs of locations with pairs of intensities. Observe that the number of pairs 
of n locations is simply the combination of n locations taken 2 at a time, namely 
N = n( n − 1)/2.

Let {α1, α2, …, αN} be the set of distances between pairs of locations. Thus 
αr =  aj�  for some pair ( j, � ) of locations. Also let {1, 2, …, N} be the set of 
traffic intensities between pairs of facilities so that t = bik + bki for some pair ( i, k) 
of facilities. Finally, let PN be the set of permutations on {1, 2, …, N}. With this 
notation, Gavett and Plyter’s relaxed problem is

� (13.3)

The matching in (13.3) of location pairs with facility pairs is sometimes referred to 
as “pair-assignment;” see, e.g., Pierce and Crowston (1971).

As suggested by Conway and Maxwell (1961) and independently established by 
Gilmore (1962), Gavett and Plyter prove that given two vectors of the same size, if 
the objective is to sort entries of the vectors so that the dot product is minimized, 
the solution is found by sorting one vector in nonincreasing order and the other in 
nondecreasing order. Thus, a permutation minimizes (13.3) when it corresponds to 
matching sorted elements of {α1, α2, …, αN} with reversely sorted elements of {1, 
2, …, N}. In the example this corresponds to matching location pairs (1,3), (1,2), 
(2,4), (2,3), (1,4), and (3,5) respectively with traffic intensities of facility pairs (2,4), 
(1,4), (2,3), (3,4), (1,3), and (1,2) for an optimal value of 389 in (13.3). Note that 
this is not a feasible solution to (13.2) since matching the location pairs (1,3) and 
(1,2) respectively with the facility pairs (2,4) and (1,4) means that location 1 must 
correspond to facility 4. However, the location pair (1,4) matching with the facil-
ity pair (1,3) is inconsistent with location 1 corresponding to facility 4. This is not 
surprising since PN is generally much larger than Pn. In the example, the number 
of permutations in Pn is 24 while the number in PN is 720. While each permutation 
in Pn corresponds to one in PN, the converse is not true. Thus, as we have seen, an 
optimal solution to (13.3) may not be admissible in that it may not correspond to a 
feasible solution in (13.2).

Given an efficient way to solve the relaxed problem (13.3), Gavett and Plyter 
turn their attention to using the branch-and-bound approach from Little et  al.  
(1963) to solve (13.2). To relate the problem to this approach, they first define an 

Min
{ ∑

aj�(bpjp�
+ bp�pj ) : p ∈ Pn

for j = 1, 2, . . . , n and l = j + 1, . . ., n
}

Min

{
N∑

r=1

αrβp(r) : p ∈ PN

}
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[N × N]-dimensional cost matrix C of elements αrt whose rows correspond to loca-
tion pairs {α1, α2, …, αN} sorted by decreasing distances and whose columns cor-
respond to facility pairs {1, 2, …, N} sorted by increasing intensities. Thus, in the 
example, the [6 × 6]-dimensional matrix C is shown in Table 13.1.

By construction, observe that the elements of C are nondecreasing across each 
row and are nonincreasing down each column. Also, observe that the optimal solu-
tion to (13.3) above corresponds to the diagonal of C with the sum of the diagonal 
elements being the optimal value of (13.3).

A primary difference between the matrix C in the quadratic assignment problem 
vs. the matrix considered by Little et al. is its interpretation. In Little et al., the ele-
ment cij denotes the cost from i to j, whereas in Gavett and Plyter the element is the 
cost of assigning a location pair with a traffic intensity pair. In both cases, the re-
laxed problem is an assignment problem where each row will be assigned to exactly 
one column and where each column will be assigned to exactly one row. Little et al. 
point out that one could solve the assignment problem for the original cost matrix C 
and reduce the matrix by the cost of the optimal assignment. However, rather than 
doing this, they present a simple reduction technique to give a nonoptimal bound: 
reduce C by subtracting the smallest element in each row from the elements in the 
row, and then subtract the smallest element in each column from the elements in 
the column in the resulting matrix. All elements of the reduced matrix will be non-
negative. Thus, the sum of the reducing constants is a lower bound, since the cost of 
any permutation in C will differ from the cost under the reduced C by the sum and 
since the reduced matrix is nonnegative. Applying this technique to the quadratic 
assignment problem, the reducing constant (minimal element) of each row is simply 
its first element (which respectively are 28, 24, 24, 20, 8, 4). After subtracting these 
from their respective rows, we obtain the matrix





0 63 77 133 147 168
0 54 66 114 126 144
0 54 66 114 126 144
0 45 55 95 105 120
0 18 22 38 42 48
0 9 11 19 21 24





Table 13.1   The cost matrix C
Sorted intensities 4 13 15 23 25 28
Facility pairs 2 to 4 1 to 4 2 to 3 3 to 4 1 to 3 1 to 2
Sorted distance Location pairs
7 1 to 3 28 91 105 161 175 196
6 1 to 2 24 78 90 138 150 168
6 2 to 4 24 78 90 138 150 168
5 2 to 3 20 65 75 115 125 140
2 1 to 4 8 26 30 46 50 56
1 3 to 4 4 13 15 23 25 28
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Now, the reducing constants for each column are simply the minimal element in the 
column (which respectively are 0, 9, 11, 19, 21, 24). After subtracting these from 
their respective columns, we obtain the reduced matrix

Since by construction all elements of this reduced matrix are nonnegative, the sum 
of the reduced constants (namely, 192) is a lower bound. Of course, this lower 
bound is not nearly as good as the lower bound of 389, which as noted previously 
is the optimal cost value for the assignment problem. In the case of the traveling 
salesman problem Little et al. observed that the advantage of finding an optimal so-
lution to the assignment problem in comparison to their simple reduction technique 
was mixed in terms of their computational results. The challenge tackled by Gavett 
and Plyter was to find for the case of the relaxed quadratic assignment problem an 
efficient method of obtaining an optimal basic feasible solution to the assignment 
problem (namely having zeroes along the diagonal of the reduced matrix and hav-
ing nonnegative elements everywhere else). Their approach for doing this, which 
they called successive reduction, can be viewed as the primary technical contribu-
tion of their paper.

The successive reduction technique works as follows. Starting with the matrix 
C, the diagonal element in each column is subtracted from all other elements in its 
respective column. Then the smallest element in each row is subtracted from other 
elements in its row. After at most N repetitions of these two reductions, the desired 
reduced matrix is obtained.

We illustrate with the example. In the first iteration, the column reducing con-
stants (namely 28, 78, 90, 115, 50, 28) are the diagonal elements of the original 
matrix C. Subtracting these from its respective column yields the matrix

The row reducing constants are the respectively minimal elements in the rows 
(namely 0, −4, −4, −15, −69, −92). Subtracting these from the corresponding rows 
yields the matrix





0 54 66 114 126 144
0 45 55 95 105 120
0 45 55 95 105 120
0 36 44 76 84 96
0 9 11 19 21 24
0 0 0 0 0 0









0 13 15 46 125 168
−4 0 0 23 100 140
−4 0 0 23 100 140
−8 −13 −15 0 75 112
−20 −52 −60 −69 0 28
−24 −65 −75 −92 −25 0




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Observe that the matrix above is nonnegative and the sum of the reducing constants 
give a lower bound of 205.

In the second iteration, the column reducing constants are (0, 4, 4, 15, 69, 92), 
yielding the matrix

and the row reducing constants are (0, 0, 0, −4, −15, −15), yielding the matrix

The sum of all reducing constants from the first and second iterations yields a new 
lower bound of 355. Subsequent iterations proceed similarly with a nonnegative 
matrix at each iteration (as given in Gavett and Plyter) and with a lower bound given 
by the sum of the new and previous reducing constants. The reducing constants and 
lower bounds are given in Table 13.2.

Why does successive reduction work? At a technical level, the method iteratively 
reduces C in a way that adds zeroes in the diagonal and sub-diagonal elements, 





0 13 15 46 125 168
0 4 4 27 104 144
0 4 4 27 104 144
7 2 0 15 90 127
49 17 9 0 69 97
68 27 17 0 67 92









0 9 11 31 56 76
0 0 0 12 35 52
0 0 0 12 35 52
7 −2 −4 0 21 35
49 13 5 −15 0 5
68 23 13 −15 −2 0









0 9 11 31 56 76
0 0 0 12 35 52
0 0 0 12 35 52
11 2 0 4 25 39
64 28 20 0 15 20
83 38 28 0 13 15





Table 13.2   Gavett and Plyter’s reduction constants and lower bounds for each iteration
Iteration Column-reducing constant Row reducing constant Lower bound
1 28, 78, 90, 115, 50, 28 0, −4, −4, −15, −69, −92 205
2 0, 4, 4, 15, 69, 92 0, 0, 0, −4, −15, −15 355
3 0, 0, 0, 4, 15, 15 0, 0, 0, 0, −4, −4 381
4 0, 0, 0, 0, 4, 4 0, 0, 0, 0, 0, −2 387
5 0, 0, 0, 0, 0, 2 0, 0, 0, 0, 0, 0 389
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increases the sum of the reducing constants, and ends each iteration with a nonnega-
tive matrix (so that the sum of the reducing constants is a lower bound).

At a broader level, a key to understanding successive reduction (as well as the 
simple reduction proposed by Little et al.) is the dual to the assignment problem. To 
illustrate, we now consider the dual to the example assignment problem; see, e.g., 
Bazaraa and Jarvis (1977):

s.t.

Observe that Little et al.’s simple reduction technique solves the first column and 
the last row of inequalities above as equations with v1 = 0. This gives the dual solu-
tion u = (28, 24, 24, 20, 8, 4) and v = (0, 9, 11, 19, 21, 24). Using the fact that the 
coefficients of C result from products of increasing intensities across the columns 
and decreasing distances across the rows, it is straightforward to see that the solu-
tion is dual feasible and therefore by duality gives a lower bound (namely, 192). 
Thus, Little et al.’s technique is simply one way to find a dual feasible solution, and 
hence a lower bound.

Gavett and Plyter’s method essentially generates a sequence of at most N dual 
feasible solutions where each component of a solution is the sum of the correspond-
ing reducing constants at its iteration. In particular, for our example it yields the 
dual solutions given in Table 13.3.

Hence, Gavett and Plyter’s technique is a way of optimally solving the dual 
problem in at most N iterations. It is just one of a number of possible ways of solv-
ing the dual problem of the relaxation of the quadratic assignment problem. Indeed, 

Max u1 + u2 + u3 + u4 + u5 + u6 + v1 + v2 + v3 + v4 + v5 + v6

Table 13.3   Dual feasible solutions and lower bounds for each iteration
Iteration ( v1, v2, v3, v4, v5, v6) ( u1, u2, u3, u4, u5, u6) Lower 

bound
1 28, 78, 90, 115, 50, 28 0, −4, −4, −15, −69, −92 205
2 28, 82, 94, 130, 119, 120 0, −4, −4, −19, −84, −107 355
3 28, 82, 94, 134, 134, 135 0, −4, −4, −19, −88, −111 381
4 28, 82, 94, 134, 138, 139 0, −4, −4, −19, −88, −113 387
5 28, 82, 94, 134, 138, 141 0, −4, −4, −19, −88, −113 389

T. J. Lowe and R. E. Wendell
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a simpler method than the successive reduction technique is to solve the inequalities 
along the diagonal and sub-diagonal (denoted above with a border) as equations 
and get the dual solution (with u1 = 0) in just one iteration. Using the monotonic 
properties of C, it is straightforward to show that the solution obtained by doing this 
is dual optimal.

As for branching, Gavett and Plyter use the same framework (and even the same 
notation) as Little et al. with some minor modifications. Like Little et al., at each 
step “certain assignments are eliminated corresponding to pattern restrictions on the 
cost matrix. In the traveling salesman problem, this restriction involves eliminating 
subtours conflicting with already selected cities. In the facility-location problem 
QAP, this restriction means applying the labels associated with a selected element 
to eliminate other elements in the C matrix that would produce an unacceptable as-
signment at a future branch.”

13.2.2  �Alternative Branch-and-Bound Approaches to the 
Quadratic Assignment Problem

As previously noted, Gavett and Plyter (1966) used a pair-assignment for-
mulation together with a row and column reduction technique to compute 
lower bounds at nodes of the branch-and-bound tree. A similar approach using 
only a column-reduced matrix was proposed independently by Land (1963); 
see, e.g., Pierce and Crowston (1971) for further discussion. While Gavett 
and Plyter’s reduction technique gave an easy-to-compute optimal solution to 
the pair-assignment problem, this solution is often infeasible to the original 
quadratic assignment problem, resulting in a relatively weak bound; see, e.g., 
Christofides and Gerrard (1981). In their branching strategy, Gavett and Plyter 
implemented restrictions on branching variables in order to prevent multiple 
assignments, etc. These restrictions were computationally advantageous since 
the number of nodes in the branch-and-bound tree could be reduced through 
their use. Nevertheless, according to Burkard and Cela (1998), numerical re-
sults show that pair-assignment algorithms are outperformed by single-assign-
ment algorithms.

Single-assignment strategies relate facilities directly to locations. The ear-
liest strategies of this type were introduced by Gilmore (1962) and Lawler 
(1963). In his paper, Gilmore outlines an enumeration algorithm to solve the 
quadratic assignment problem, making use of lower bounds on the objective 
function. Also, he suggests two methods for computing lower bounds on partial 
permutations. As previously noted, one method uses the fact that a lower bound 
on the product of two given vectors of the same size can easily be determined 
by sorting them in opposite orders of magnitude and then taking the product 
of these sorted vectors. The other suggested method involves solving a linear 
assignment problem LAP. Lawler, on the other hand, used an integer linear 
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program to compute lower bounds with n4 + n2 variables {yijkl} and {xij} and 
2n + n4 + 1 constraints:

where cijkl is the joint cost of assigning entity i to location j and entity k to location �.  
Lower bounds are created at partial assignment nodes by solving O( n2) linear assign-
ment problems and then using the resulting objective function values as coefficients 
in a master LAP. Lawler acknowledges that his bounding technique is similar to that 
of Gilmore. The resulting bounds created are often cited as benchmarks in other 
research efforts regarding the quadratic assignment problem. As stated by Loiola 
et al. (2007), “the QAP lower bound presented by Gilmore and Lawler is one of the 
best known. Its importance is due to its simplicity and its low computational cost.”

However, researchers have realized that the simplicity of computing the Gilmore 
and Lawler bound comes at a cost, as the bound is often not very tight for large in-
stances of the quadratic assignment problem. Since the publication of the Gilmore-
Lawler bound, research efforts have been directed toward finding improved bounds.

An obvious approach for obtaining lower bounds is to make use of the linear 
programming relaxation of the mixed integer linear program and its dual linear 
program (see for example, Assad and Xu (1985), Adams and Johnson (1994), Ram-
achandran and Pekny (1998), and Karisch et al. (1999). Using ideas from Drezner 
(1995), Resende et al. (1995) implemented an interior point algorithm to solve a 
relaxation of the mixed integer program.

A different formulation of the quadratic assignment problem has led to the gen-
eration of other bounding methods. Often, as in Gavett and Plyter, the coefficient 
cijkl is the product of bik (the flow or traffic between entity i, and entity k) and ajl (the 
distance between locations j and l). With B the [n × n]-dimensional flow matrix and 
A the [n × n]-dimensional matrix, a trace formulation of the problem is

MILP: Min
∑

i,j,k ,l

cijk�yijk�

s.t.
∑

j

xij = 1, i = 1, . . . , n xij = 1, i = 1, . . . , n

∑

i

xij = 1, j = 1, . . . , n

∑

i,j ,k,�

yijk� = n2

xij + xk l − 2yijk l ≥ 0; i, j , k, l = 1, 2, . . . , n

xij = 0 or 1, i, j = 1, . . . , n

yijkl = 0 or 1, i, j , k, l = 1, . . . , n,

T. J. Lowe and R. E. Wendell
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where tr(M) is the trace of matrix M and Sn is the set of permutation matrices. Let-
ting On represent the set of orthogonal matrices, it follows (since every permutation 
matrix is an orthogonal matrix) that a relaxation of the problem TF is

The solution to the relaxation TFR is found by computing the eigenvalues of both 
matrices B and A, sorting one vector in nondecreasing order, the other in nonincreas-
ing order, and then taking the product of the two resulting vectors. Unfortunately, the 
resulting eigenvalue bound has proven to be somewhat weak, but has been improved 
by enforcing additional constraints. For example, Hadley et al. (1992) enforce con-
straints on row and column sums resulting in a projected eigenvalue bound. Some-
times their bound was better than that by Gilmore and Lawler, and sometimes not.

Anstreicher and Brixius (2001) take a different approach by convexifying the 
quadratic objective function while making use of the derivation of the projected 
eigenvalue bound. Their formulation also makes use of optimal solutions of a sem-
definite programming ( SDP) problem related to the eigenvalue bound. They show 
that their bound is at least as good as the projected eigenvalue bound. Also, they 
have found that the value of their bound appears to increase much faster in com-
parison as branching occurs. This latter attribute is obviously very important in a 
branch-and-bound framework.

Use of this bound led to the first solution of several large benchmark problems, 
including the notorious “Nug 30” problem from Nugent et al. (1986). A nice sum-
mary of advances in quadratic assignment problem research as of the early 2000s 
can be found in Anstreicher (2003).

Recently, reformulation-linearization ( RL) has been applied to the quadratic as-
signment problem to compute lower bounds. This technique involves multiplying 
equality constraints and nonnegativity constraints by product factors of the vari-
ables (reformulation). Then, each nonlinear term is replaced by a single variable, 
resulting in a mixed zero-one linear integer program (linearization). Reformulation 
creates redundant constraints, and different formulations are possible depending 
upon the product factors chosen in this step. As described by Adams et al. (2007) a 
level-1 reformulation ( RLT-1) of the quadratic assignment problem is developed by 
multiplying each equality constraint and each nonnegativity constraint by each of 
the n2 variables. For a level-2 reformulation ( RLT-2), each constraint is multiplied 
by the product of two variables again creating redundant constraints. As before, re-
formulation is followed by linearization through substitution. Even higher levels of 
reformulation and linearization are possible through the use of higher level product 
forms, resulting in improved bounds, but at the cost of even larger zero-one linear 
programs. The resulting optimization problems can be quite large, but have been 
shown to provide relatively tight bounds. Adams et  al. (2007) used Lagrangean 

TF : min tr(BXAXt ),

s.t. X ∈ Sn,

TFR : min tr(BXAXt ),

s.t. X ∈ On.
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relaxation and dual ascent in a branch-and-bound framework to solve problems 
up to size n = 30 from Nugent et al. (1986) Although they found that their method 
required lower bound calculations at fewer nodes than competitive methods, com-
puting each bound required a large amount of RAM. They cite a future research 
challenge as one of finding ways to reduce the RAM requirement.

Also recently, additional attention has focused on a semidefinite programming 
relaxation of the quadratic assignment problem, see Zhao et al. (1998) and Rendl 
and Sotirov (2007), as well as a reformulation-linearization semidefinite program-
ming relaxation (also called a lift-and-project relaxation), see Burer and Vanden-
bussche (2006) and Lovasz and Schrijver (1991) for details. Interestingly, the 
equivalence between these two relaxations for the quadratic assignment problem 
was recently shown by Povh and Rendl (2009). Using a bundle method to solve the 
resulting problem, Rendl and Sotirov in 2003 obtained the tightest lower bounds at 
that time for a large number of test problems. More recently, Burer and Vandenbuss-
che (2006) used an augmented Lagrangian method and derived even tighter bounds 
on a number of test problems. Exploiting a special structure in the data matrices of 
certain quadratic assignment problems, de Klerk and Sotirov (2008) have found 
even tighter lower bounds than Burer and Vandenbussche on some problems.

Loiola et al. (2007) provide a recent survey on the quadratic assignment problem, 
including a discussion on different approaches used to solve the problem. In particular, 
the paper includes data on lower bound values found and run times of several com-
peting methods, including those mentioned above, applied to classical test problems.

13.2.3  �Special Cases of the Quadratic Assignment Problem 
that are Solvable in Polynomial Time

We now briefly review some of the work that considers special cases of the quadratic 
assignment problem with particular emphasis on cases that can be solved in polyno-
mial time. Burkard et al. (1997) considered the special case, in which cijkl is the prod-
uct of the flow between facilities i and k, and the distance between locations j and l. 
They showed that if 2n numbers bi

r, bi
c, i = 1, …, n exist and can be associated with 

the rows and columns of the flow matrix such that bik = bi
r + bk

c for all i and k, then 
the problem is reducible to the linear assignment problem and therefore is solvable 
in polynomial time. The result is also true if the distance matrix can be decomposed 
in a similar manner. Ergodan (2006) shows that this result can be generalized to a 
broader class of quadratic assignment problems that are “additively decomposed.”

Ergodan also considers “multiplicative decomposition” and has the following 
result. Suppose there exists {vij: i, j = 1, …, n} where cijk� = vij  vk�,  for all i, j, k, �. 
Then if the optimal objective function value of the linear assignment problem with 
coefficients {vij} is nonnegative, then the linear assignment problem solves the cor-
responding quadratic assignment problem.

Ergodan and Tansel (2006) consider the case where the n-node flow graph has a 
path structure (it has no cycles and every node has a degree of 0, 1, or 2) and the n by 
n distance matrix is induced by a grid graph in the following sense. With rc = n for 
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two positive integers r and c, let Grc be the undirected grid graph with rc nodes, where 
the nodes are arranged in r rows and c columns, and where the arc set consists of arcs 
connecting adjacent nodes in the same row, or adjacent nodes in the same column. De-
fine Dab as the [n × n]-dimensional matrix of shortest path distances in Gab. Then if the 
distance matrix A of the quadratic assignment problem is identical to hDab for some 
positive h, D is said to be induced by a grid graph. For this special structure, Erdogan 
and Tansel show that the quadratic assignment problem is solvable in O( n) time.

For information on other special structures that lead to polynomial-time solv-
ability, see Erdogan (2006).

13.3 � Efroymson and Ray (1966): The Uncapacitated 
Facility Location Problem

Also in the early 1960s there was considerable research interest in another problem 
known today as the Uncapacitated Facility Location Problem ( UFLP). Our purpose 
here is to report on perhaps the earliest published use of the branch-and-bound 
technique to solve the problem exactly. We will explain how branch-and-bound 
was used in the paper by Efroymson and Ray (1966). The problem setting involves 
several “demand points” (customers) requiring service from one or more potential 
“plant sites.” There is a given supply cost between a given demand point and poten-
tial plant site that will be incurred if the plant is opened and the demand is serviced 
from the plant. In addition, there is a fixed cost to open each plant.

13.3.1  �Solving the Uncapacitated Facility Location Problem 
via Branch-and-Bound

To formally pose the uncapacitated facility location problem as an optimization 
problem, suppose there are n customer locations j = 1, …, n and m potential plants 
i = 1, …, m. The following mixed integer program is a prototypical formulation of 
the problem:

� (13.4)

� (13.5)

� (13.6)

� (13.7)

� (13.8)

UFLP : Min Z =
∑

i,j

cij xij +
∑

i

fiyi

s.t.
∑

i

xij = 1, j = 1, . . . , n

xij ≤ yi ∀i, j

xij ≥ 0 ∀i, j

yi = 0 or 1 ∀i

13  Exact Solution of Two Location Problems via Branch-and-Bound



304

where we define the parameters

cij:	� the cost to service all of customer j’s demand from plant i
fi:	� the nonnegative cost of opening plant i

and the variables

xij:	� the fraction of customer j’s demand satisfied by plant i, and
yi =	� 1 if plant i is open, and 0 otherwise.

Thus, the decision problem is to decide which plants to open (which yi values to set 
to one) and which open plant(s) will service each customer. The overall objective 
is to minimize total cost. Note that the allocation variables xij are continuous and 
take on values between zero and one. This is why cij represents the cost of servicing 
all demand and so cij xij denotes proportional costing. In many applications, cij is 
determined by a transportation cost per unit multiplied by total demand of customer 
j. Finally, constraint (13.6) forces plant i to be open whenever xij > 0 for some j. 
There are many applications of this classical location problem and we outline two 
of these in what follows.

Krarup and Bilde (1977) describe an application in manufacturing called the 
dynamic economic lot size problem. A manufacturer of a single product needs to 
develop a production plan for the next n months in order to satisfy demand for the 
product in each of these months. Producing the product in month i incurs a fixed 
setup cost fi as well as a per-unit manufacturing cost pi. Demand for the product 
in month j is denoted as dj, and dj can be satisfied by production in month j and/or 
some earlier month. However, units produced earlier than needed incur a holding 
cost, where ri is the per unit cost of holding one unit from month i to month i + 1. 
Define cij as the cost of manufacturing and (if necessary) holding all of month j’s 
demand when production occurs in month i ≤  j. Thus,

Note that if i = j, then no holding cost is incurred. Also units produced in month i 
cannot be used to satisfy demand in some earlier month. However, if it is possible 
to backorder demand, then cij for j < i could be finite, but most likely would involve 
a per-unit (and per-period) backorder cost. Letting yi = 1 if and only if production 
occurs in month i, and xij as the fraction of month j’s demand produced in month i, 
the uncapacitated facility location problem is solved to minimize total setup, manu-
facturing, and holding cost over the n-month planning horizon.

In the days before electronic funds transfer, the time to clear a check often de-
pended on which bank the check was drawn on, and the location of the recipient 
of the check. After all, checks were often delivered by the postal service. Thus, a 
company might want to maximize the total funds that are in transit. However, main-
taining an account at a given bank is not costless. With cij as the “dollar days” (float) 

cij =






dj (pi +
j∑

t=i

rt ), for i < j

djpi for i = j

∞ for i > j
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in transit from bank i to customer j and fi the cost to maintain an account at bank 
i, the firm is faced with the problem of maximizing 

∑
i,j cij xij −

∑
i fiyi  subject 

to the constraints (13.5)–(13.8). Note that we are maximizing a modified version 
of (13.4), but structurally the problems are the same. Cornuejols et al. (1990) call 
this problem the Bank Account Location Problem. A mirror image of this problem 
is called the Lock Box Problem, where a firm collecting funds wishes to minimize 
“float.” For more on the above problem see also Cornuejols et al. (1977).

Efroymson and Ray recognized that practical instances of the uncapacitated fa-
cility location problem might have several thousand rows and columns and that 
contemporary integer programming techniques could not hope to solve such large 
problems in a reasonable amount of time. They therefore sought methods to solve 
the overall problem via a sequence of smaller subproblems.

Note that for fixed values of the yi variables { y ′
i , i = 1, …, n}, where at least 

one y ′
i  = 1, an optimal x-vector can be found easily by setting, for each value of 

j , xij = 1if cij = min{cij : y ′
i = 1}.  In other words, for each j, find the smallest cij 

over those plants i for which the corresponding y variable is set to one. An efficient 
solution method is to find a means of computing good y-vectors that will eventually 
lead to an optimal y-vector. Combining the above observation with the fact that the 
solution to a linear programming relaxation of an mixed integer program creates a 
lower bound to it (given a minimization objective), Efroymson and Ray made ex-
tensive use of the linear program LPR defined below.

Let Nk be the set of indices of those plants that can supply customer k and Pi be 
the set of indices of those customers that can be supplied from plant i, where ni is 
the number of elements in Pi. Note that Nk might be all plants and Pi might be all 
customers, but practical considerations often prohibit some links. With these defini-
tions, consider the following linear program:

� (13.9)

� (13.10)

� (13.11)

� (13.12)

� (13.13)

Efroymson and Ray made use of the LPR formulation in their branch-and-bound 
method. Since UFLP has both continuous and integer variables, it is natural to 

LPR : MinZL =
∑

i,j

cij xij +
∑

i

fiyi

s.t.
∑

i∈Nj

xij = 1, j = 1, . . . , n

∑

j∈Pi

xij ≤ niyi,, i = 1, . . . , m

xij ≥ 0 ∀i, j

yi = 0 or 1 ∀i = 1, . . . , m
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branch on the zero-one variables y. Thus, at some node in the branch-and-bound 
tree, some of the y variables may be set to zero (their indices collected in a set la-
beled K0), some may be set to one (their indices are included in a set labeled K1), 
while the status of some of the remaining variables y has not yet been decided. We 
denote this latter set of indices as K2.

A simple procedure can be used to solve the problem LPR without the use of 
an linear programming solver. The authors observed that the optimal allocation 
variables {x∗

ij }  and corresponding allocation costs {ACj
*} could be constructed as 

shown in Algorithm 1.

Algorithm 1: Solution Algorithm for the LPR Problem 

Step 1:	� Find ACj
* ≡ min{min {cij: i ∈ K1}, min{cij + fi/ni: i ∈ K2} for j = 1, 

…, n.
Step 2:	� Set xij

* = 1 for that value of i that attains ACj
* in Step 1, and x∗

ij  = 0 
otherwise.

The optimal y variables for those plants with indices in K2 are then computed as 

yi∗ = (1/ni)
∑

j∈Pi

x∗
ij

. The optimal objective function value at the node, accounting 

for those plants i ∈ K1 that are fixed open is then Z∗
L =

∑
i∈K1

fi +
m∑

j=1
AC∗

j
.

The above procedure solves LPR because relation (13.11) will hold as an equa-
tion at an optimal solution. Thus, those yi variables i ∈ K2 can be removed from 
(13.9) by substitution. Using the above ideas, LPR can be solved by finding the 
minimum entry in each column of a [(|K1| +  |K2|) × m]-dimensional matrix. Note 
that the value Z∗

L  can often be a fairly weak lower bound on UFLP at the current 
node. This is especially true when the number of customers actually served by plant 
i, i ∈ K2, is considerably smaller than ni. When this occurs, only a fraction of the full 
cost fi of opening the plant is accounted for. Realizing this fact, Efroymson and Ray 
developed “simplification rules,” i.e., conditions that can be used to either optimally 
fix the values of some members of K2 in all solutions that emanate from the current 
node, or to reduce ni.

The first rule is to set yi = 1, i ∈ K2 if it is known that the net savings in allocation 
costs with this plant open is at least as large as the fixed cost to open the plant. For 
any j, if plant i, i ∈ K2 is not open, then c~j ≡ min{ckj: k ∈ K1 ∪ K2, k ≠ i} is the mini-
mum possible cost to serve demand j by either a plant k, k ∈ K1 that is fixed open, 
or some other plant k ∈ K2 that might be opened. But then if c~j − cij > 0, opening 
plant i would certainly provide an allocation cost savings to serve demand j. If the 
sum of these savings over all demands is at least as large as fi, it is optimal to open 
plant i. More formally, let

� (13.14)�o
ij ≡ max{(min{ckj : k ∈ K1 ∪ K2, k �= i} − cij ), 0}
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Rule 1: If 
∑
j

�o
ij > fi , set yi = 1.

On the other hand, if the net savings in allocation costs with plant i open is known 
to be no more that the cost to open the plant, then set yi = 0. To implement this 
rule, restrict k to be in K1 in (13.14) and define �c

ij  to be the computed value. 
Then,

Rule 2: If 
∑
j

�c
ij ≤ fi , set yi = 0.

The final simplification provided by Efroymson and Ray involves the reduction of 
ni. Note that reducing ni. can provide a stronger lower bound at the node. Suppose 
that j is currently in the set Pi. If for some open plant k we find that ckj ≤ cij, then 
demand j will be no worse off by eliminating plant i as a potential server of j’s de-
mand, i.e., we can safely eliminate index j from the set Pi, thereby reducing |Pi| by 
1. More formally,

Rule 3: Let J( i) ≡ {j ∈ Pi: min {ckj : k ∈ K1} − cij ≤ 0}. Eliminate J( i) from Pi and 
reduce ni by |J( i)|.

13.3.2  �Alternative Branch-and-Bound Approaches to the 
Uncapacitated Facility Location Problem

Perhaps the best-known contribution to solution methods for the uncapacitated fa-
cility location problem is by Erlenkotter (1978). His approach involves working 
with the dual problem, solving a reduced nonlinear form of the dual heuristically 
through ascent and adjustment of the dual variables. The result of this method is 
the DUALOC algorithm that is frequently cited in the literature. Bilde and Krarup’s 
(1977) method is similar to Erlenkotter’s and was developed at approximately the 
same time. The ascent/adjustment method often produces an optimal dual solution 
that can possibly be used to construct an optimal primal solution. If not, the dual 
objective function value can be effectively used in a branch-and-bound algorithm to 
solve the uncapacitated facility location problem.

Another approach is to strengthen the lower bounds created by the linear pro-
gramming relaxation of UFLP. One way to do this is to find inequalities to add as 
constraints to the linear program which cut off portions of the linear programming 
polyhedron that are known to not contain an optimal solution to the problem. These 
added constraints are often called valid inequalities and have been studied by many 
researchers. In particular, it is of value to eliminate extreme points that correspond 
to fractional solutions, since such solutions are infeasible to the uncapacitated facil-
ity location problem.

Cho et al. (1983a) study the issue of generating so-called facet inequalities that de-
scribe the integer polyhedron of UFLP. Such an approach has great value since the in-
teger polyhedron is contained in the linear programming polyhedron. The authors state:
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This approach deserves attention since facets are the “strongest cutting planes.” One can 
thus reasonably expect to improve computational results for any solution method which is 
based on linear programming even if one can identify only a subset of these facets.

They make use of a node-packing reformulation of the uncapacitated facility lo-
cation problem, and are able to characterize all facets for the case of three plants 
( m = 3) and several destinations. In a companion paper, Cho et al. (1983b) identify 
all facets for the case of three customers ( n = 3) and several plants.

Goldengorin et al. (2003) use a pseudo-Boolean polynomial-based representa-
tion of UFLP to solve the problem. Their algorithm, called branch-and-peg, uses 
rules to determine (before branching) whether a plant will (or will not) be located 
at certain sites in the current subproblem under examination. This “pegging” op-
eration is applied to each subproblem and reduces its size. The authors report that 
on a number of problems solved, branch-and-peg took on average less than 10% 
of the execution time of branch-and-bound when the transportation matrix was 
dense.

Beltran-Royo et  al. (2007) apply a concept called Semi-Lagrangean Relax-
ation to UFLP. The idea is to dualize the equality constraints (13.5) to form the 
dual function, but then add the constraints 

∑
i xij ≤ 1, j = 1, . . . , n  to the dual 

problem. Adding the constraints increases the lower bound when the subproblem 
is solved to optimality. Unfortunately, the resulting subproblem is NP-hard, but 
the authors found that often the subproblems are smaller in dimension that the 
original primal problem. In those instances, they used CPLEX to solve the dual 
problem.

Algorithm 2: Variable Neighborhood Search: A Generic Algorithm 

	  Step 1:	� Identify a (perturbed) solution in the k-th neighborhood of an 
incumbent. This step is frequently referred to as “shaking”).

	  Step 2:	� Perform a local search from the perturbed solution.
	  Step 3:	� Move to an improved solution.

In a recent paper, Hansen et al. (2007) use a three-phase approach to solve large 
instances of UFLP. A key feature of their method is the use of variable neighbor-
hood search ( VNS). The idea of variable neighborhood search is to explore the 
neighborhood of a current solution. Once a neighborhood structure is defined, a dis-
tance function must be developed that describes the dissimilarity of two solutions. 
Then, for a given solution, points in the k-th neighborhood can be identified. Vari-
able neighborhood search consists of the repetitive sequence of three basic steps 
that are shown in Algorithm 2.

There are three phases to their overall approach to solving unconstrained facility 
location problems. These phases integrate variable neighborhood search as a key 
ingredient. The procedure can be described as shown in Algorithm 3.
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Algorithm 3: Solving UFLP with Variable Neighborhood Search 

Phase 1:	� Apply variable neighborhood search directly to UFLP to find a 
good primal solution. This step provides an upper bound of the 
problem.

Phase 2:	� Find an exact solution to the dual of the linear programming 
relaxation of UFLP. Variable neighborhood search is also used 
in this phase of this approach. The dual solution provides a lower 
bound.

Phase 3:	� A branch-and-bound procedure is then implemented making use 
of the upper and lower bounds from Phases 1 and 2. With their 
method, the authors reported success in solving very large prob-
lem instances.

13.3.3  �Special Cases of the Uncapacitated Facility Location 
Problem that are Solvable in Polynomial Time

In addition to research efforts to improve bounds for the uncapacitated facility loca-
tion problem, another research focus on the problem has been to identify special 
cases that can be solved to optimality in polynomial time. Kolen (1982) observed 
that UFLP could be transformed to an equivalent covering problem. Then, if the 
covering matrix of the resulting problem is totally balanced, it can be transformed 
through row and column operations into standard greedy form. (A totally balanced 
zero-one matrix contains no square submatrix with row and column sums equal to 
two, and such a matrix is in standard greedy form if it does not contain a submatrix 

of the form 
[

1 1
1 0

]
. Hoffman et al. (1985) give a polynomial time algorithm for 

this transformation.) When this can be done, Kolen shows that this covering prob-
lem can be solved in polynomial time, see also Kolen and Tamir (1990).

Jones et  al. (1995) identified another class of uncapacitated facility location 
problems, where not every instance fits the Kolen framework but that can still be 
solved to optimality in polynomial time. An instance is in this class if facility and 
demand point indices can be ordered so that the following holds:

(a)	 Continuity: If j, � ∈Pi, then k ∈Pi where j < k << �.
(b)	 Cascading: For all i < t, min{j: j ∈ Pi} ≤  min{j: j ∈ Pt}, and max{j: 

j ∈ Pi} ≤ max{j: j ∈ Pt}.
(c)	 Monotonicity: For all j, if i, t ∈ Nj, and if cij ≤ ctj, then cik ≤ ctk for all k where i, 

t ∈ Nk.

In addition to giving an O( nm) algorithm for such instances, the authors identify 
several problems that satisfy the conditions (a), (b) and (c). These problems in-
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clude the tool selection problem of Daskin et al. (1990), a substitutable inventory 
problem, a stochastic demand problem, the discrete lot sizing problem discussed by 
Wagner and Whitin (1958), and a facility location problem on the line.

13.4 � Branching Strategies in Branch-and-Bound 
Procedures

For the most part, in this chapter we have focused on the “bound” part of branch-
and-bound methods for the two location problems considered, because bounding 
techniques by their very nature need to be problem dependent. Nevertheless, our 
chapter would not be complete without at least a brief discussion of what seem 
to be some promising areas of research in the “branch” part of branch-and-bound 
procedures. These ideas can be applied to any mixed integer programming problem 
and thus are not restricted to location problems. Two key references for these ideas 
are Linderoth and Savelsberg (1999), and Achterberg et al. (2005).

As mentioned in the introduction to this chapter, the branch-and-bound process 
is most easily envisioned via a tree, where the top node of the tree is the original 
problem, and various branches are created through partitioning the set of feasible 
solutions to the problem. The “deeper” one is in the tree, the more options there 
are for selecting the next node for partitioning of the subset of solutions repre-
sented by that node. A significant amount of research has taken place regarding 
the node to be selected for partitioning, as well as how to perform the partition. 
In what follows, we will continue to assume that the original problem is one of 
minimization.

Regarding node selection, a popular method is to choose the node that has the 
smallest lower bound, where this bound is often found via linear programming re-
laxation. This method, when applied in its purest sense, is often called best-bound 
(or breadth-first) search. Another method, called depth-first search, is to continue 
searching down the tree until a feasible solution is found. Other methods include 
estimating the value of the best feasible integer solution obtainable from a given 
node in the tree, or combining depth first search early in the process and breadth-
first search methods later in the process.

As described by Linderoth and Savelsberg, one way to partition the feasible re-
gion represented by a given node is to select a single variable that does not take on 
an integer value in the linear programming relaxation solution, but must be integer 
in an over-all optimal solution; then create two subregions by constraining this vari-
able with an upper bound and a lower bound (they call this variable dichotomy). 
Below we discuss some methods for determining the variable to be “dichotomized.” 
Another method is applicable when certain generalized upper bounding constraints 
are present in the original problem. The generalized upper bounding dichotomy is 
a means of partitioning by bounding the sum of different subsets of the variables to 
create different subregions.
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Returning to variable dichotomy, there remains the issue of variable selection. 
Some authors have tested the use of “pseudocosts,” i.e., estimates of changes in the 
objective function value when a variable is rounded up or rounded down. The esti-
mates are usually created by using the objective function values of the correspond-
ing linear programming relaxations. Average pseudocosts for a given variable can 
also be determined by gathering “local” pseudocosts at several nodes and comput-
ing the mean of the set. However they are computed, these pseudocosts can be used 
to help select the partitioning variable.

Another promising approach is called “strong branching,” which involves test-
ing the set (or a subset of) the fractional variable candidates to find those that appear 
to give the best progress before actually branching on any of them. “Full strong 
branching” involves all fractional variables and thus it may be computationally pro-
hibitive to solve all the corresponding linear programming problems to optimality. 
Thus, some authors have considered testing just a subset of these variables and not 
solving the linear programs to optimality, instead performing a limited number of 
dual simplex pivots. Hybridized versions of these techniques are also possible.

Both Linderoth and Savelsberg (1999), and Achterberg et al. (2005) provide re-
sults on computational testing of the above ideas applied to a number of mixed 
integer programming problems as well as references to the work of others.

13.5 � Conclusions

Herein we reviewed the use of branch-and-bound in solving exactly two important 
location problems, the quadratic assignment problem and the uncapacitated facility 
location problem. Our focus was on the early application of branch-and-bound to 
these problems via a critical review of two classical papers from the 1960s, namely 
Gavett and Plyter (1966) on the quadratic assignment problem and Efroymson and 
Ray (1966) on the uncapacitated facility location problem. In providing these re-
views we attempted to replicate the authors’ thought processes in the development 
of the reported solution method and to discuss how these papers set the stage for 
subsequent research.

The quadratic assignment problem is generally recognized as one of the most dif-
ficult combinatorial optimization problems. After an initial lull of research activity 
in this problem (until the mid-1970s), research on this topic has exploded. In spite 
of this activity, however, an exact solution to the problem has remained elusive for 
modest and large size problems. Yet recently, significant results have been obtained; 
see, e.g., Adams et al. (2007), Anstreicher (2003), Burer and Vandenbussche (2006), 
De Klerk and Sotirov (2008, 2009), and Rendl and Sotirov (2007). The research 
activity and the results are nicely summarized in the comprehensive review paper of 
Loiola et al. (2007). The result of this research has been better lower bounds and an 
approximate doubling in the size of problems that can be solved exactly in the last 
10 years (from about n = 15 to about 30). Unfortunately, n = 30 is still a relatively 
small problem. In practice, this means that heuristic and metaheuristic approaches 
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are needed to attempt to solve the problem. Again, see Loiola et al. (2007) for an 
excellent review.

In contrast, much progress has been made in solving the uncapacitated facility 
location problem. As noted herein, large instances of the UFLP can now be solved; 
see, e.g., Beltran-Royo et al. (2007) and Hansen et al. (2007).
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