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12.1 � Introduction

O’Kelly’s (1986) classical paper started a new research stream by identifying a 
connection between spatial interaction models and location theory. The traditional 
spatial interaction theory applies models of travel behavior to investigate demand 
patterns between fixed locations. Location theory, on the other hand, takes demand 
as given, assumes a simple view of travel behavior, and focuses on finding the best 
location for facilities.

Spatial interaction theory focuses on the problem of locating centers of special 
interest, and observes that the selected locations have an effect on the evolution of the 
associated network. O’Kelly’s self-identified contribution in this context relates to the 
interaction effects between facility locations and spatial flows. He makes a distinc-
tion between endogenous and exogenous effects. In particular, he considers the given 
problem parameters as exogenous data, which are endogenously affected by the loca-
tion of the hubs as well as the allocations. Hubs are special facilities acting as con-
solidation and dissemination points for the flows. Flows from the same origin with 
different destinations are consolidated enroute at a hub node where they are combined 
with flows from different origins with a common destination. The main idea is to keep 
the flow interactions in perspective at the design stage of the hub network. That is, the 
hubs need to be strategically located in view of their effects on the intensity and cost 
of the flow data. In general, the hub location problems are defined as analogous coun-
terparts of the classical location problems with the addition of allocation decisions.

This chapter reviews and outlines the research on hub location problems that 
emerged as a new research stream led by O’Kelly’s (1986) seminal paper. Sec-
tion  12.2 discusses the geographical applications leading the way to the ideas 
proposed by O’Kelly. Section  12.3 summarizes the major findings presented in 
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O’Kelly’s original paper. Prominent theoretical developments that emerged from 
these findings are discussed in Sect. 12.4. Section 12.5 reviews some related ap-
plication oriented studies. Finally, Sect. 12.6 concludes the chapter with highlights 
of the current and future trends for research in the area.

12.2 � Before Hub Location

The identification of the importance of consolidation and dissemination points as 
well as their endogenous effects was well known in spatial interaction theory be-
fore O’Kelly’s work. For instance, the classical paper by Taaffe et al. (1963) dis-
cusses the issue in the context of formation of transportation infrastructure in third 
world countries. They observe that consolidation-dissemination points are located 
in administrative centers, political and military control centers, mineral exploita-
tion areas, and areas of agricultural export production. Lines of penetration emerge 
between these points of demand concentration. Figure 12.1 illustrates a line of pen-
etration between two fictitious centers of critical importance (centers A and B), 
resulting in indirect connections between the points previously connected to either 
one of these centers (i.e., points a1, a2, …, an, b1, b2, …, bm). Once such penetration 
lines are formed, they have an impact on both the surrounding area along these lines 
and the initial centers in terms of local development. These local developments 
are analogous to the endogenous attraction proposed by O’Kelly, and they in turn 
manifest themselves as a factor that further supports the structure of the penetration 
lines. Once the development in the centers and along the penetration lines stabilizes, 
the formation of the backbone is completed.

In classical spatial theory, there are also examples of active strategic develop-
ment of the transportation backbones. For instance, Miehle (1958) constructs a me-
chanical model to simulate alternative backbone structures enforcing the passage of 
flows through certain designated locations functioning as hubs. Goodchild (1978) 
mathematically considers the role of endogenous attraction. He assumes fixed loca-
tions and solves only the allocation problem, where attraction to a facility is mod-
eled as a function of both distance and usage. Distance is an exogenously given 

Fig. 12.1   Lines of penetra-
tion between centers A and B
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factor, whereas attraction due to usage is endogenously or voluntarily determined 
based on the actual level of service that a facility provides.

Ducca and Wilson (1976) consider a similar problem in the context of the planned 
positioning of shopping centers. In their model, demand intensity is expressed as 
a simultaneous function of existing retail density, employment, and distances trav-
eled. Allen and Sanglier (1979) develop a model of dynamically interacting urban 
centers. Each center has an associated attraction parameter, and once a center is 
located, the parameters of the original problem in terms of the demands generated 
at different locations are affected through immigration and emigration. In particu-
lar, there is a positive feedback loop due to the employment opportunities gener-
ated by a located center. In a subsequent paper, Allen and Sanglier (1981) improve 
their original model by also considering the negative feedback loop that reflects the 
crowding effect.

This brief discussion on inter-facility attraction shows that the fundamentals of 
the notion of endogenous attraction observed by O’Kelly date back to late 1950s. 
The formal definition of the problem in the context of location theory led to the 
development of a new field. The remainder of this chapter discusses this new field 
and ties its evolution back to O’Kelly’s paper.

12.3 � O’Kelly’s Seminal Contribution

Genesis of location of interacting facilities as a new research area within location 
theory dates back to O’Kelly’s paper, which was significantly impacted by the pop-
ular trend of simultaneous consideration of location and transportation decisions in 
spatial theory. In this paper, O’Kelly focuses on the interaction between hubs serv-
ing the United States inter-city air passenger streams, and studies the relevant data 
recorded in a Civil Aeronautics Board sample survey of 1970. He observes that, 
although airline companies in practice carefully consider the location of the hub 
facilities in view of their collective ability to efficiently connect the cities in their 
network, classical location research completely ignores these interactions. This per-
spective helps O’Kelly to identify a novel version of a location-allocation problem, 
in which the located facilities lie along the route between demand points.

O’Kelly studies both a single- and a two-hub version of this new problem in 
the 2-dimensional plane. The single-hub version is shown to be equivalent to the 
classical Weber least cost location problem. Regarding the economic advantages of 
building a single-hub network, O’Kelly points out that the only rational reason to 
justify such a system would be the potential savings in link costs due to the scale 
effects of routing the traffic through the hub. This issue in a problem with n demand 
points is mathematically expressed as

∑

i

∑

j

Wij

(
C(pi , Q) + C(Q, pj )

)
+ Kn <

∑

i

∑

j

WijC(pi , pj ) + 1/2n(n − 1)K ,
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where the notation is defined as follows.

pi:	� Demand point i, i = 1, 2, …, n
Wij:	� Flow between demand points pi and pj, i = 1, 2, ..., n,  j = 1, 2, …, n
Q:	� Hub to be located at ( x, y)
C( pi, pj ):	� Cost per unit flow between points pi and pj measured in terms of the 

Euclidean distance
K:	� Cost of intercity linkage (which may include the cost of using the trans-

portation mode and the operational expenses such as fuel cost, driver 
wages, etc.)

Observe that if function C satisfies the triangular inequality, the savings result from 
the fewer links to operate when the hub is utilized. The expression indicates that the 
total transfer cost is greater when the traffic is routed through the hub. However, 
this difference is compensated by the smaller cost of operating fewer flow links in 
the hub version, i.e., n vs. ½n( n − 1) in the hub and non-hub versions, respectively.

O’Kelly acknowledges the need for using multiple hubs to accommodate a large 
area and discusses also multiple-hub problems. In such a network, the inter-hub 
linkages can be specially designed to efficiently handle bulk flow. In this way, the 
unit transportation costs between hubs can be significantly reduced. The reduced 
cost of these flows in turn appears as an endogenous function of the hub locations.

O’Kelly proposes a simple approximation, and discounts the inter-hub costs by 
a factor , such that 0 ≤  < 1,  ∈ R.  Because of the special structure of the cost 
function, the multiple-hub problems involve a two-fold decision in the sense that 
both the location of the hubs and the assignment of the demand points to the hubs 
must be decided upon.

The paper particularly focuses on solving the two-hub version of the problem, 
which is significantly easier than the more general p-hub version. Using decision 
variables

the cost function to be minimized is characterized as

where Rij is the routing and transportation cost between points i and j condition-
al upon the corresponding hub location decision. This cost is mathematically ex-
pressed as follows.

Xik =
{

1, if demand point pi is assigned to hub Qk , k = 1, 2
0, otherwise

Min
Q1,Q2

∑

i

∑

j

WijRij ,

Rij = Xi1Xj1(C(pi, Q1) + C(pj , Q1))

+ Xi2Xj2(C(pi, Q2) + C(pj , Q2))

+ Xi1Xj2(C(pi, Q1) + αC(Q1, Q2) + C(pj , Q2))

+ Xi2Xj1(C(pi, Q2) + αC(Q2, Q1) + C(pj , Q1))
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Due to the binary nature of the decision variables, for each origin destination 
pair only one of the four possible components of the objective function will take 
on a positive value. The possibilities involved are the cost of flow from origin to 
destination via the same hub (either hub 1 or hub 2), and the transfer cost from 
origin to destination via both hubs (either from hub 1 to hub 2 or the reverse). 
Obviously, when both hubs are used, the cost of inter-hub transfer is discounted 
by factor .

O’Kelly observes that due to the quadratic term and the discounting effect, as-
signment to the nearest hub may turn out to be suboptimal. We develop an example 
to illustrate this phenomenon in Fig. 12.2. The network configuration and corre-
sponding distance matrix are shown in Fig. 12.2a and b, respectively. The magni-
tude of symmetric flows between point 4 and points 5 and 6 are equal to 10. Flow 
densities between all other pairs have a much smaller value of 1. The discount factor 
 is set equal to 0.60. Figure 12.2c shows allocation scheme 1, in which all points 
are allocated to their nearest hub. This scheme results in a total cost value of 353.60. 
On the other hand, allocation scheme 2, shown in Fig. 12.2d, assigns point 4 to the 
more distant hub, and gives a smaller total cost value of 308.40.

The proposed approach to solving the two-hub problem is to minimize the dis-
counted cost function by simply taking the first order derivatives with respect to the 
location coordinates and setting them equal to zero. In this problem, however, the 
cost function is minimized for different partitions of demand points corresponding 
to the hubs. A partition refers to the set of demand points assigned to a given hub. 
The partitions whose convex hulls are non-overlapping are defined as non-overlap-

Fig. 12.2   Two different allocation schemes on an example network. a Network configuration. 
b Distance matrix. c Allocation scheme 1. d Allocation scheme 2
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ping partitions. Figure 12.3 shows two non-overlapping partitions on the previous 
example network. Partitions 1 and 2 correspond to allocation schemes 1 and 2, re-
spectively. Motivated by the fact that consideration of only the non-overlapping par-
titions yields the optimum solution for the two-center location-allocation problem 
(Ostresh 1975), O’Kelly relies on the simplifying assumption that the assignment 
of demand points can be considered only for non-overlapping partitions, though he 
acknowledges that this approach may not necessarily yield the true optimum solu-
tion in the current problem.

Another of O’Kelly’s observations relates to the effect of the hub network struc-
ture on the intensity of flow between demand points. He proposes the following 
function that updates the revised flow.

Recall that the Rij values are the routing and transportation costs considering all 
hub assignment possibilities. This function revises the flow density between each 
pair as a decreasing function of the relevant transportation costs. The sensitivity 
of the flow volume to the cost is governed by coefficient  ≥ 0, where a larger 
value of this coefficient leads to a more significant effect. O’Kelly presents some 
computational analysis on the Civil Aeronautics Board data in which the effects 
of using different parameters (  and ) for modeling endogenous attraction are 
investigated.

The most significant contribution of this classical paper remains the identifica-
tion of the hub location problem as a version of the p-median location-allocation 
problem involving interactions. The solution techniques for the multiple-hub 
problems are later improved by various researchers including O’Kelly himself 
(e.g. 1987, 1992). In addition, a multitude of studies focusing on hub-location 
counterparts of different classical location problems emerged, and the next sec-
tion presents an overview of these studies within the framework of a new pro-
posed taxonomy.

Wij =
OiDj exp (−βRij )
n∑

k=1
Dk exp (−βRik)

Fig. 12.3   Two different non-overlapping partitions of the example network of Fig. 12.2. a Parti-
tion 1. b Partition 2
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12.4 � Theoretical Developments in the Hub Location 
Literature

This section starts out by identifying the connections between hub location prob-
lems with their counterparts in the classical location literature. After observing the 
factors that result in different types of hub location problems, the authors propose 
a new taxonomy that serves for a convenient classification of the relevant develop-
ments. These developments are presented for the cost minimization and minmax 
type of objectives in Sects. 12.4.3 and 12.4.4, respectively.

12.4.1  �Analogies with Location Theory

Having identified hub-location problems involving interacting facilities, O’Kelly 
(1987) formulates a general version of the problem where flow between demand 
points is to be transferred via p hubs to be cited at a subset of the nodes correspond-
ing to origins and/or destinations. The following additional notation is needed.

N:	� Set of nodes
Cij:	� Transportation cost for a unit flow between nodes i and j

Note that the transportation cost is redefined to highlight its correspondence to the 
network distance of the shortest path linking the two nodes. Although this cost is 
defined here as related in some way only to the distances involved, it is important 
to acknowledge that there may be a multitude of different factors affecting the mag-
nitude of the cost and the discount factor. The only decision variable Xik is now 
redefined for i, k = 1, 2,…, n. Note that if i = k and Xii = 1, node i is a hub.

The proposed formulation is as follows.

�

(12.1)

� (12.2)

� (12.3)

� (12.4)

� (12.5)

Min z =
∑

i

∑

j

Wij

(
∑

k

CikXik + α
∑

k

∑

m

CkmXikXjm +
∑

m

CjmXjm

)

s.t. (n − p + 1)Xjj −
∑

i

Xij ≥ 0 ∀ j

∑

j

Xij = 1 ∀ i

∑

j

Xjj = p ∀

xij ε {0,1} ∀ i, j
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The objective function, shown in (12.1), minimizes the total cost comprising the origin-
to-hub, discounted inter-hub transportation, and hub-to-destination cost components. 
The inter-hub transportation cost in this basic formulation includes a quadratic term to 
account for the origin-destination pairs connected through their designated hubs. Note 
that the discount factor works on the transportation costs, not the distances. Constraint 
set (12.2) ensures that no switching is allowed through a non-hub node. Constraint sets 
(12.3) and (12.5) enforce allocation of each node to exactly one hub. Finally constraint 
(12.4) sets the number of hubs equal to p. Note that this initial formulation is subse-
quently considered as the “basic formulation” in the hub location literature.

O’Kelly (1987) reiterates that interaction is the factor differentiating this new 
problem from the p-median and multi-facility Weber problems, both of which are 
widely considered in the classical location literature. The novelty is that the loca-
tions of the hubs have a direct effect on the magnitude of the inter-hub flows and 
the associated linkage costs.

An immediate consequence of this endogenous effect is in the allocation of nodes 
to hubs. In classical location theory with uncapacitated facilities, once the locations are 
given, the allocation subproblem can be optimally solved by assigning a node to its near-
est facility. In hub location problems, on the other hand, the assignment of a node to a 
facility is impacted also by that facility’s ability to service the interaction pattern. There-
fore, proximity of the hub to a node ceases to be the sole factor dictating the allocation.

The logical connections between hub location problems and the location theory 
literature were outlined by Campbell (1994a). Campbell defines location analogous 
versions of the hub-location problem, namely the p-hub median, hub location with 
fixed costs, p-hub center, and hub covering problems. The basic problem defined in 
O’Kelly (1987) is a p-hub median problem. A detailed discussion of the other prob-
lems defined by Campbell (1994a) will follow below. Campbell’s principle contri-
bution to the expansion of the hub location literature relates to the consideration of 
alternative criteria for objectives. On the constraint side, researchers identified the 
following three major factors to produce alternative versions of this basic problem:

1.	 Single- vs. multi-allocation (Campbell 1990),
2.	 Full vs. partial hub network (Chou 1990), and
3.	 Presence/absence of direct connectivity between non-hub nodes (Aykin 1995).

Recall that the basic model assumes each node is served by exactly one hub, all 
hubs are connected to each other, and any transfer between two non-hub nodes must 
be via at least one hub. O’Kelly and Miller (1994) suggest that different combina-
tions of these three factors result in eight alternative versions of the basic problem.

Based on the alternative objective functions and possible variations in the con-
straint set, the present authors propose a taxonomy in the next section to facilitate a 
convenient and systematic discussion of the emerging literature.

12.4.2  �A Taxonomy of Hub Location Problems

We observe that the factors that determine the nature of the problem can be consid-
ered in four categories. To also accommodate other problem-specific restrictions, 
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we propose a five-fold taxonomy in the following form ////. The fields in this 
short-hand notation correspond to the following specific factors.

:	� Objective criterion
:	� Allocation structure
:	� Capacity
:	� Inter-hub connectivity
:	� Other restrictions.

The alternative objective criteria corresponding to the p-hub median, hub location 
with fixed cost, p-hub center and hub covering problems will be denoted shortly as 
pH-median, fixH-cost, pH-center and H-cover, respectively. The allocation struc-
ture refers to the degree of flexibility in terms of the number of hubs to which a 
node can be assigned. The corresponding parameter  thus in turn may be either 
single or multi. Various types of capacities may be imposed upon the flow handled 
by the hubs and the transportation lines. The uncapacitated version of the problem 
is denoted by U, whereas the presence of node and arc capacities is indicated by 
node and arc, respectively. Finally, the underlying network topology appearing in 
the  field may range from full to different partial structures such as path, tree, 
ring, and star. Since the other restrictions are expected to vary depending on the 
circumstances of a specific problem, the notation to be used in the  field is left to 
the discretion of other authors. Note that the basic problem can be denoted as pH-
median/single/U/full.

We remark here that Campbell et  al. (2002) also provide a taxonomy to help 
classify the hub location problems. The alternative proposed herein is based on the 
review and synthesis provided in O’Kelly and Miller (1994) as well as the objective 
criteria discussed in Campbell (1994a).

After the basic problem was identified by O’Kelly (1986), for almost a decade 
researchers worked on mathematical formulations that would efficiently solve it. 
The initial formulation provided in O’Kelly (1987) was quadratic. Linear formu-
lations were given in Aykin (1990), Campbell (1996), and Skorin-Kapov et  al. 
(1996), among others. In these formulations, single- and/or multiple-allocation 
versions of the problem were considered under the cost objective. For the pH-
median problems, the objective is the minimization of the total transportation cost. 
Conversely, in the fixH-cost problem a fixed cost associated with opening a new 
hub was considered alongside the transportation cost. We first discuss several im-
portant studies on the pH-median and fixH-cost problems. Then we proceed with 
the pH-center and H-cover versions of the problem investigated in the more recent 
literature.

12.4.3  �Minisum Objectives

In the early 1990s, due to the quadratic nature of the formulation, researchers at-
tempted to solve the single allocation version of the pH-median problem with 
heuristic approaches. Three important examples of such attempts can be found in 
Klincewicz (1991 and 1992), as well as Skorin-Kapov and Skorin-Kapov (1994).

12  Hub Location Problems: The Location of Interacting Facilities
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The first solvable exact formulation dates to back to Campbell (1996), who 
studies pH-median/single/U/full and pH-median/multi/U/full. Campbell gives lin-
ear mathematical programming formulations for the two problems by defining a 
four-indexed binary variable Xijkm, which takes on a value of 1 only if the flow 
between nodes i and j is routed via hubs k and m. He observes that the integrality of 
these variables can be conveniently relaxed when solving pH-median/multi/U/full 
without forgoing optimality. He also remarks that solution to the multiple alloca-
tion version of the problem constitutes a lower bound for the single allocation 
version.

The single allocation version of the problem with the Civil Aeronautics 
Board data was optimally solved for the first time in Skorin-Kapov et al. (1996) 
by using a branch-and-bound algorithm utilizing a tight lower bound obtained 
from the linear programming relaxation of their original formulation. Ernst and 
Krishnamoorthy (1996) provide an efficient network flow formulation to solve 
the same problem. This formulation relies on modeling flows generated by each 
node as a different commodity which results O( n3) binary integer variables 
as opposed to O( n4) in the previous formulations. Ernst and Krishnamoorthy 
(1998a) embed this notion in a branch-and-bound algorithm, which to the best 
knowledge of the present authors is the most efficient solution algorithm for 
this problem to date. Ernst and Krishnamoorthy (1998b) apply the network flow 
notion also to the multi-allocation version of the problem and obtain optimum 
solutions to large instances. In the same paper, they observe that the problem 
can be solved polynomially by an all-pairs shortest path algorithm when the hub 
locations are fixed.

Following O’Kelly (1986), all research until O’Kelly (1992) considered sole-
ly the transportation costs in the objective function. O’Kelly (1992) incorporates 
this fixed cost into the problem and addresses the capacitated version of the prob-
lem, fixH-cost/single/node/full. He uses a modified version of his basic formula-
tion with the addition of the total hub cost, 

∑
j

FjXjj , in the quadratic objective 

function. The multi-allocation version of this problem with additional arc costs, 
fixH-cost/multi/node/full/{direct, arc-costs} was studied by Aykin (1994). Recall 
that the term “direct,” in this context, implies that a non-stop connection between 
non-hub nodes is permissible. He proposed a branch and bound algorithm utiliz-
ing a Lagrangian-based lower bound. This problem, with the only difference of 
not allowing direct connections, was studied by Ernst and Krishnamoorthy (1999), 
who proposed efficient integer programming formulations. Recent exact solution 
approaches exploit the polyhedral structure of the hub location problems. Labbé 
and Yaman (2004) derive facet-defining inequalities for fixH-cost/single/U/full. For 
the multiple allocation version of the problem, Hamacher et al. (2004) propose valid 
inequalities by modifying the facet defining inequalities for the uncapacitated facil-
ity location problem. Similarly, Marin (2005) exploits the polyhedral structure of 
the set packing problem to develop valid inequalities for fixH-cost/multi/U/full with 
Euclidian distances.
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12.4.4  �Minmax Objectives

An inherently different class of hub location problems is of the minmax type. The 
1-hub center problem was originally defined by O’Kelly and Miller (1991) to mini-
mize the maximum cost incurred by any origin-destination pair. This problem was 
motivated by a desire to achieve equity between user nodes in terms of the transpor-
tation costs incurred. Following the remarks made in O’Kelly and Miller’s (1991) 
conclusion, the minmax objectives in later studies focus on the service time con-
cerns rather than the cost issues. In the p-hub center problem, the objective is to 
minimize the worst service time between any origin destination pair. Alternatively, 
the objective of the hub cover problem is to serve all node pairs with the minimum 
possible number of hubs while keeping the travel times below a predetermined 
threshold level. These problems received attention in the literature partly due to 
their practical applications in such systems as perishable goods transfer and over-
night delivery.

The first paper which fully defines and classifies different versions of these prob-
lems is Campbell (1994a). In addition to providing integer programming formula-
tions for pH-center/single/U/full, pH-center/multi/U/full, H-cover/single/U/full, H-
cover/multi/U/full, Campbell identifies different types of service time restrictions. 
In particular, he additionally defines separate service times for the segments consti-
tuting a path between origin-destination pairs. He also proposes integer program-
ming formulations for the pH-center and H-cover problems based on these new 
service time definitions. These alternative versions of the two problems are still 
open areas that require further investigation.

After being defined by Campbell (1994a), the pH-center and H-cover problems 
were not studied until Kara and Tansel (2000). They provide a proof of NP-hardness 
for pH-center/single/U/full and develop an efficient integer programming formula-
tion with n2 binary variables. Ernst et al. (2002) give a more efficient formulation 
for the same problem by using auxiliary variables. They also show that the multiple 
allocation version of the problem is NP-hard, and propose a modification of their 
original formulation for its solution. Baumgartner (2003) analyzes these two formu-
lations, develops facet defining valid inequalities, and proposes a branch-and-cut 
algorithm based on these inequalities.

For the covering version of the problem with single allocation, Kara and Tansel 
(2003) provide an NP-hardness proof along with an efficient integer programming 
formulation. Ernst et al. (2005) present formulations for both the single and mul-
tiple allocation versions of this problem. Their formulation for the single allocation 
case outperforms that of Kara and Tansel (2003). Polyhedral properties of these 
H-cover problems are studied by Hamacher and Meyer (2006).

A variant of this problem is motivated by real life applications based on the 
observation that trucks are synchronized at the hub nodes by occasionally delaying 
their departures. Kara and Tansel (2001) call this variant the latest arrival hub loca-
tion problem, defining the pH-median, pH-center and H-cover versions of the prob-
lem. They propose a formulation for pH-center/single/U/full/latest-arrival which 
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can efficiently solve all Civil Aeronautics Board instances. The H-cover version 
of this problem was investigated in a similar way by Tan and Kara (2007) who test 
the performance of their formulation based on a new data set of Turkish highway 
travel times.

Special cases of the pH-center problems with fixed hubs are investigated by 
Iyer and Ratliff (1990) and Campbell et  al. (2007). Iyer and Ratliff (1990) con-
sider a “guaranteed time distribution” problem, which is in fact equivalent to the 
uncapacitated p-hub center problem with a tree type network structure. They pro-
pose a polynomial time exact algorithm to solve this problem. Their algorithm was 
later modified by Campbell et  al. (2007) to solve the 2H-center/single/U/path, 
pH-center/single/U/tree, 2H-center/single/U/full, pH-center/multi/U/full problems. 
Campbell et al. prove additionally that problems pH-center/single/arc/full and pH-
center/single/node/full are NP-hard.

12.5 � Application-Oriented Studies

In addition to the theoretical investigations discussed in the previous section, the hub 
location problem identified by O’Kelly (1986) has been widely studied in the past 
two decades regarding other practical applications than airline passenger streams. 
These different practical applications, which occasionally lead to alternative ver-
sions of the problem, can be broadly classified as telecommunication networks and 
cargo delivery practices. This section discusses major findings in these two areas.

In the context of telecommunication networks, data packets are transferred 
between user nodes through concentrators (servers, switches, multiplexers, etc.) 
which function as hubs. The user nodes are connected to the concentrators via ac-
cess networks, whereas the concentrators are connected to each other and/or to a 
central root node through a backbone network. Different topologies of backbone/
access networks such as clique, star, tree, path, ring, and their hybrids, are possible. 
Objectives considered in the design of telecommunication networks include equip-
ment installation and routing cost as well as reliability (survivability), capacity, and 
expandability concerns. Klincewicz (1998) provides an extensive review of the lit-
erature in this area. More recent works on telecommunication network design are 
discussed in Gourdin et al. (2002) and Labbé et al. (2005). Motivated by ongoing 
technological developments, there has been extensive research in this area in the 
past few years, and this trend is expected to continue for the foreseeable future.

As discussed in the theoretical aspects presented in Sect. 12.4.2, in cargo delivery 
practice time issues overshadow the cost concerns, resulting in minimax objectives. 
Cargo delivery networks are designed and managed mostly either with a constraint 
on the delivery times or with the objective of minimizing the delivery times. Hall 
(1989) identifies the issues of critical concern in the design of cargo networks as the 
number of hub terminals, the routing strategies of the transportation modes serving 
these terminals, and the synchronization of the inflow and outflow at a terminal.

An application to the postal delivery systems was described by Ernst and Krish-
namoorthy (1996) based on a data set obtained from the Australian Post. Due to the 
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possibility of having different modes of transfer in the collection and distribution 
segments, the cost structure in postal delivery services is different from that in the 
airline data. To model these differences, Ernst and Krishnamoorthy (1996) propose 
the use of two additional parameters apart from . In particular, parameters  and 
 ≥  correspond to differences in transportation costs in collection and distribution 
processes, respectively. Use of different factor coefficients allows for the consider-
ation of possible differences in the collection, transportation, and distribution costs 
that may result due to the use of different transportation modes. Note that this prob-
lem is equivalent to the basic problem when  =  = 1.

Nickel et  al. (2001) relax the assumption of all hubs being interconnect-
ed, and study a public transportation problem that can be denoted as fixH-
cost/multi/U/incomplete/hub-arc. The authors are the first to address the incomplete 
hub network version of the problem. They propose four-indexed mixed-integer pro-
gramming formulations for the single and multiple hub versions. Campbell et al. 
(2005a, b) exploit this same idea to address the pH-median/single/U/incomplete/hub-
arc problem. They introduce a new perspective for the solution of this problem. In 
particular, instead of locating hubs, they locate discounted hub arcs. They develop 
mixed-integer programming models and two exact algorithms for four different ver-
sions of the problem accommodating different objective criteria. They give exact 
solutions for the Civil Aeronautics Board data.

Motivated by a Federal Express application, Kuby and Gray (1993) model 
the practical case, in which feeder links consolidate local flows at a convenient 
node. In their problem, transportation media serving the regional hub are allowed 
to make multiple stops along their way. This problem can be denoted as 1H-
median/single/arc/full/stopover-feeder. Kuby and Gray considered a single, fixed 
hub air network problem, and developed a path-based mixed-integer programming 
formulation to explore the savings provided by the consideration of stopovers and 
feeders. Later, Yaman et  al. (2007) provide integer programming models for H-
cover/single/U/full/{latest-arrival, stopovers}. The authors propose a different 
mixed-integer programming formulation, which is strengthened by valid inequali-
ties and lifting. They test the performance of the model on the Turkish highway 
travel time data. Wasner and Zapfel (2004) suggest that the stopovers can be mod-
eled in the form of a vehicle routing problem.

The modeling complications necessitated by these practical observations suggest 
that the basic problem proposed by O’Kelly (1986) has implications in a variety of 
real life applications. The specific needs of these applications provide many ideas 
that continuously support the evolution of research in this area.

12.6 � Conclusion

O’Kelly’s classical 1986 paper led to the emergence of a new research area by 
identifying a connection between location theory and spatial interaction theory. This 
connection mainly manifests itself in the form of an endogenous interaction that 
has an impact on both the intensity and cost of flow to be routed through the facili-
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ties that are selected as hubs. The problem has been widely studied in the past two 
decades both from a theoretical and a practical perspective. Theoretical papers in 
this new area investigated various objectives including pH-median, fixH-cost, pH-
center and H-cover problems as well as network topologies with fully and partially 
connected structures. On the practical side, many researchers modeled and solved 
various real life applications observed in airflow streams, telecommunication net-
works, cargo delivery systems, and urban transit.

This chapter discussed the most prominent research relevant to both the theoreti-
cal and practical aspects of the problem within the framework of a proposed new 
taxonomy. The interested reader is referred to the excellent review papers written by 
Campbell (1994b), Klincewicz (1998), Bryan and O’Kelly (1999), Campbell et al. 
(2002), and Alumur and Kara (2008) for more in-depth coverage of the area.

The authors would like to note that hub location is still a very active research 
area with many potentially fruitful extensions. One of these extensions is identified 
by Marianov et al. (1999), who study a multi-allocation hub location problem in 
the presence of competitors. This interesting problem offers an avenue for further 
research, as it has not received much attention since. Another important extension 
is observed by O’Kelly and Bryan (1998) on the fundamental assumption that char-
acterizes the endogenous attraction via the constant scaling factor . They propose 
a nonlinear cost function to more accurately model this attraction. Although a few 
other researchers later improved or modified this function, further research is nec-
essary in this regard. Recall that O’Kelly (1986) proposed two different types of 
endogenous attraction. In the first type, cited hubs affect the cost of flow, whereas 
in the second category, the affected parameter is the intensity of flow. The entire 
literature stemming from this idea focused on the former type and investigated the 
hub location problem in view of the cost advantages provided by the economies of 
scale. The latter aspect, which requires modeling of the impact on the intensity of 
flow, received no attention other than O’Kelly’s original proposal.

The authors would like to conclude by emphasizing that these are just a few 
avenues for future research in this area led by O’Kelly’s classical paper (1986). 
The relevance of the problem to a number of application areas and the wide interest 
received from many researchers are expected to trigger further developments in the 
future.
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