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10.1 � Introduction

Undesirable facilities are those facilities that have adverse effects on people or the 
environment. They generate some form of pollution, nuisance, potential health haz-
ard, or danger to nearby residents; they also may harm nearby ecosystems. Ex-
amples are incinerators, landfills or sewage plants, airports, stadia, repositories of 
hazardous wastes, nuclear or chemical plants, prisons, and military installations. 
Although they provide some disservice to nearby residents, these facilities are nec-
essary to society. In addition, there is often some travel involved to and from these 
facilities and an associated transportation cost that increases with distance from the 
population, which in turn suggests that they should be placed away but not very far 
away. The terms semi-obnoxious and semi-desirable have also been used for some 
of these facilities, but the undesirable features (perceived or real) of these facilities 
dominate the desirable ones. Since the analytical models used for locating these 
facilities do not change much with their degree of undesirability, as Erkut and Neu-
man (1989) suggested, we will use the term undesirable for all of them.

Since its inception, location theory has been dominated by models and meth-
ods for locating desirable facilities, such as warehouses, hospitals, and firehouses, 
which need to be placed close to the population centers receiving their services. This 
changed in the 1970s with the launching of undesirable facility location research. 
Several reasons are attributed to this late entry in the location literature, notably that 
most of the aforementioned undesirable facilities, such as airports, mega-stadia, 
and sewage, chemical, and nuclear plants, are the byproducts of the technological 
advances and industrialization of the second half of the twentieth century. In ad-
dition, both industrial waste and municipal waste increase with world population 
and economic development while the waste generated by some of these facilities is 
toxic and has to be disposed of safely.
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In the early 1970s, public environmental concerns triggered federal legislation in 
the United States, which, in turn, enhanced awareness of the potential hazards and 
generated a need for the systematic placement of these facilities to minimize their 
undesirable effects. Prior to the 1970s, the protection of basic air and water supplies 
was a matter mainly left to each state. During the 1970s, responsibility for clean air 
and water shifted to the federal government. The Environmental Protection Agency 
was created in 1970, and during the ensuing decade several regulatory laws were 
passed to protect human health and the environment from potential hazards of pol-
lution and waste disposal. These included the Clean Air Act of 1970 and the Safe 
Drinking Water Act of 1974 for enforcing clean air and drinking water standards, 
the Resource Conservation and Recovery Act of 1976 for regulating the disposal of 
solid and hazardous wastes, the Clean Water Act of 1977 for eliminating releases of 
toxic substances into the water, and the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980 for protecting people from abandoned 
heavily contaminated toxic waste sites.

A suitable location objective for locating an undesirable facility is the maximi-
zation of some increasing function of the distance between the facility and the af-
fected customers. Analogous to the minisum and minimax objectives, most popular 
for locating desirable facilities, the maxisum and maximin objectives are estab-
lished for locating undesirable facilities; see, e.g., Eiselt and Laporte (1995). The 
maxisum objective maximizes the sum of distances (or average distance) between 
the facility and the customers, while the maximin objective maximizes the distance 
between the facility and the closest customer to it. Sometimes weights are assigned 
to customers to represent the relative incompatibility between a customer and the 
facility and weighted distances are used. The objectives for undesirable facilities 
are frequently referred to as push objectives, since they push the undesirable facili-
ty away from the customers, while the objectives for desirable (attractive) facilities 
are referred to as pull objectives, since they pull the facility closer to the customers. 
To avoid pushing the undesirable facility to an infinite distance from the custom-
ers, which does not make sense in a real life problem, the objectives for undesir-
able facilities have to be optimized within a bounded region, a distinct difference 
from the desirable facilities objectives. In addition, the optimization models for 
undesirable facility location are more difficult to solve. Unlike the desirable facil-
ity location models, undesirable facility location models are nonconvex, typically 
having many local optima.

Although Goldman and Dearing (1975) are credited with first discussing the 
concept of optimally locating “semi-desirable” or “partially noxious facilities” in 
a conference paper, Church and Garfinkel’s (1978) paper was the first published 
work on undesirable facility location. Their paper dealt with the maxisum location 
problem on a general network: they found a point of the network such that the 
sum of weighted shortest path distances from the nodes is maximized. They re-
duced the network solution space to a finite set of candidate points for optimality, 
consisting of the set of bottleneck points of the network and the leaf nodes of the 
network. Church and Garfinkel first showed that the maxisum objective renders 
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a nonconvex problem having many local optima, and that Hakimi’s principle of 
optimality at a node does not hold. Exploiting the structure of the problem and 
utilizing bounds, their algorithm found the global optimum by partially enumerat-
ing local maxima. Their algorithm was adapted later for other undesirable facil-
ity location problems. This pioneering work stimulated a large body of research 
in undesirable facility location that complemented the desirable facility location 
literature.

The maximin location problem first appeared in the works of Shamos (1975) and 
Shamos and Hoey (1975) who studied the complexity of several fundamental prob-
lems in computational geometry. One of these problems is finding the largest empty 
circle of a given set of points in the plane, i.e., the circle that contains no points of 
the set, yet whose center is in the convex hull of the given points. The center of that 
circle is the maximin point as it maximizes the Euclidean distance to the closest 
point in the set. The solution is found by constructing the Voronoi diagram for the 
set of points. The first papers on the maximin location problem were published five 
years later by Dasarathy and White (1980) and Drezner and Wesolowsky (1980).

Building on their earlier work on pattern recognition, Dasarathy and White 
(1980) first formulated and solved the maximin problem with Euclidean distances 
for a feasible region, which is a convex polyhedron in k-dimensional space. They 
delineated their general algorithm for a 3-dimensional space. For the 2-dimensional 
space, they expanded Shamos and Hoey’s Voronoi construction to account for op-
timality at the boundary of the feasible region. Their principal contributions are the 
characterization of the problem as nonlinear and nonconvex, the establishment of 
the properties of local optima using the Karush-Kuhn-Tucker optimality conditions, 
and the development of a general algorithm for solving the problem.

Drezner and Wesolowsky (1980) considered the same problem but with custom-
er weights and a convex planar region defined by maximum distance constraints, 
one for each point (customer). Equivalently, the customers want the facility as far 
away as possible but within certain distance from them, which in turn signifies the 
semi-obnoxious character of the facility. Their optimization procedure was different 
from the one in Dasarathy and White (1980). They used a bisection search based on 
a graphical approach to approximate the optimal solution.

The above classical contributions, which cast the foundation of undesirable facil-
ity location theory during the late 1970s, are presented in this chapter. The detail and 
illustrative examples are helpful to introduce a beginner into the basic concepts of 
undesirable facility location research but also there is sufficient depth for the vet-
eran researcher in the field to review and appreciate the classical contributions. An 
effort has been made to include major theoretical results, the thought process of the 
authors at the time, and the impact their work had on location literature. Although 
this is not a survey paper, major works that followed the classical contributions are 
surveyed.

This chapter is organized as follows: The classical contributions are presented in 
Sect. 10.2 and their impact is assessed in Sect. 10.3. The chapter ends with a sum-
mary and outlook of undesirable facility location research in Sect. 10.4.

10  The Location of Undesirable Facilities
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10.2 � The Classical Contributions

The classical contributions on the location of undesirable facilities can be classified 
according to the objective functions used in the respective optimization problems: 
maxisum and maximin. In an effort to minimize the adverse effects of the facility to 
be located, both of these objectives maximize some increasing function of the dis-
tance between the facility and the affected customers, namely the sum of distances 
and the minimum distance. The original papers appeared within a five-year period 
in the second half of the 1970s. We first present the classical contribution of Church 
and Garfinkel (1978) that utilizes the maxisum objective on a network. This work is 
followed by contributions that consider the maximin objective in continuous space: 
Shamos (1975) and Shamos and Hoey (1975), Dasarathy and White (1980), and 
Drezner and Wesolowsky (1980).

10.2.1  �The Maxisum Problem on a Network: Church and 
Garfinkel (1978)

Let G = ( N, A) be a connected and undirected graph with no loops or multiple arcs, 
where N is the set of n nodes and A is the set of m arcs. The nodes represent custom-
ers that exhibit some adverse interaction with the new facility. We want to find a 
point x, x ∈ G, for locating the facility that maximizes

� (10.1)

where wi ≥ 0 is the weight of node i and d( i, x) is the length of the shortest path 
between node i and x ∈ G.

Church and Garfinkel first formulated the above problem and named it maxian 
as it is identical to the median problem except that the objective is maximizing in-
stead of minimizing. Thus, the solutions of these two problems find the two extreme 
values of T( x). As they remark, this may help in evaluating how bad a given solution 
is with respect to any one of the two objectives.

Whereas the median problem attempts to find a location that is close to a given 
set of points, the maxian problem attempts to find a location that is as far as possible 
from these points. It should be noted that in the maxian problem, which is more 
often called maxisum problem, the type of facility to be located is not as important 
as is the adverse interaction between the given points and the new facility. In fact, 
Church and Garfinkel gave as an example of application the location of a house or 
a business—by no means undesirable—in a city among pockets of high crime inci-
dence concentrated at the nodes of the network. The interaction between the nodes 
and the facility results in danger or potential harm to the facility that decreases with 
its distance from the nodes. In this example, the weight wi represents the relative 
danger of node i to the facility.

T (x) =
∑

i∈N

wid(i, x),
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For median problems, Hakimi (1964) proved that there exists a node which is 
optimal. This suggests a straightforward procedure for finding the optimal solution: 
evaluate objective function (10.1) at all nodes of the network and select the node(s) 
with the minimum value. Changing the optimization operator to “max” results in a 
surprisingly more complicated problem, in which the optimal point cannot be only 
at the nodes but also on the arcs of the network. Moreover, the maxisum is a non-
convex problem, thus possessing many local optima. One of the key results of this 
work is that the search for the optimal solution is reduced from the infinite number 
of points of network G to a finite set of candidate points, often referred to as a Finite 
Dominating Set of points ( FDS). After a brief notation, the points of interest are 
introduced below and optimality properties are established.

An interior point x on an arc ( i, j) divides it into two arc segments ( i, x) and 
( j, x). Denote the lengths of the two segments c( i, x) and c( j, x), respectively, and 
denote point x by the arc ( i, j) is on and its distance from node i: [( i, j); c( i, x)]. 
For example, in Fig. 10.1 (slightly modified from Church and Garfinkel 1978), 
x1 = [(3, 4); 12)].

It is assumed that the shortest path distances between nodes are known. Ahuja 
et al. (1993) demonstrated that they can be effectively computed by several algo-
rithms. Table 10.1 contains the shortest path distances between the nodes of the 
above network, d( i, k), and the sum of distances from a node k to all nodes,

Let x be an interior point of arc ( i, j). If there exists a node k such that

� (10.2)

x is called arc bottleneck point with respect to node k and BA( k) denotes the set of 
bottleneck points generated by node k on A. This is illustrated in Fig. 10.2a, where 
the shortest paths from node k to i and j are shown as broken lines. Since c( i, x), 
c( j, x) > 0 and c( i, x) + c( j, x) = c( i, j), it follows from (10.2) that arc ( i, j) contains 
an arc bottleneck point with respect to node k if and only if |d( k, i) − d( k, j)| < c( i, j). 
By letting

� (10.3)

T (k) =
∑

i∈N

d(i, k).

d(k, i) + c(i, x) = d(k, j) + c(j , x),

p(k) = d(i, k) − d(j , k),

Fig. 10.1   A nine node 
network
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the condition for arc ( i, j) to contain an arc bottleneck point generated by node k 
can be written as

� (10.4)

Note that p( k) measures how much farther away node i is from k than from j. The 
range of values of p( k) can be found by the triangle inequality for shortest path 
distances. Since d( i, k) ≤ d( i, j) + d( j, k) and d( j, k) ≤ d( j, i) + d( i, k), substituting in 
(10.3) we obtain −d( i, j) ≤ p( k) ≤ d( i, j), or

� (10.5)

If d( i, j) < c( i, j), (10.4) and (10.5) imply that every node k ∈ N has an arc bottleneck 
point on arc ( i, j). This is later illustrated for arc (1, 2) of Fig. 10.1.

Inequality (10.4) implies that no shortest path from k to i or from k to j contains 
arc ( i, j). Clearly, a bottleneck point on arc ( i, j), with respect to node k, is associ-
ated with a cycle formed by the shortest path from node k to node i, arc ( i, j), and 
the shortest path from node j back to node k, as shown in Fig. 10.2a. The bottleneck 
point is the point in a cycle that is the farthest away from node k. For example, 
x1 ∈ BA( 6) in Fig. 10.1 as node 6 and point x1 are the endpoints of two equidistant 
paths, {(6, 3), (3, x1)} and {( x1, 4), (4, 5), (5, 6)}, and inequality (10.4) is satis-
fied as |5 − 12| < 17. By considering all cycles that contain node 6, in Fig. 10.1, 
and identifying arcs on those cycles containing bottleneck points using inequality 

|p(k)| < c(i, j).

|p (k)| ≤ d(i, j).

Table 10.1   Node-to-node shortest path distance matrix d( i, k) and T( k)
Node i Node k T( k)

1 2 3 4 5 6 7 8 9

1 0 14 21 7 15 19 11 20 22 129
2 14 0 9 7 15 14 11 20 17 107
3 21 9 0 14 6 5 18 11 8 92
4 7 7 14 0 8 12 4 13 15 80
5 15 15 6 8 0 4 12 5 7 72
6 19 14 5 12 4 0 16 9 3 82
7 11 11 18 4 12 16 0 17 19 108
8 20 20 11 13 5 9 17 0 12 107
9 22 17 8 15 7 3 19 12 0 103

Fig. 10.2   Bottleneck points
c (  j, x)
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(10.4), the complete set BA(6) can be derived: BA(6) = {[(3, 5); 2.5], [(3, 4); 12], 
[(2, 4); 2.5], [(1, 2); 5]}. Since there is a unique path between leaf node 9 and 
node 6, BA(9) = BA(6). Note that it is possible for arc ( i, j) to contain a bottleneck 
point with respect to each one of its vertices i and j. This happens if and only if 
d( i, j) < c( i, j), i.e., the shortest path between the end nodes of an arc is not that same 
arc. In Fig. 10.1, arc (1, 2) satisfies that condition, as d(1, 2) = 14 < c(1, 2) = 15 and 
the associated cycle is {(1, 2), (2, 4), (4, 1)}. Therefore, point [(1, 2); 14.5] is in 
BA(1) and point [(1, 2); 0.5] is in BA(2).

Bottleneck points can also appear on nodes. If there exist distinct arcs ( i, j) and 
( i, k) incident to node i and a node ℓ ≠ i such that d( ℓ, j) + c( j, i) = d( ℓ, k) + c( k, i), 
then node i is a node bottleneck point with respect to node ℓ, denoted by i∈BN( ℓ), 
and illustrated in Fig. 10.2b. For example, node 2 is in BN( 5) in Fig. 10.1. There are 
two equidistant paths from node 5 to node 2, one containing arc (2, 3) and the other 
(2, 4), whose union forms a cycle. Each arc or node bottleneck point is associated 
with a cycle in G that contains the point. Conversely, Church and Garfinkel show 
that every cycle in G contains a bottleneck point with respect to every node in the 
cycle. This result suggests a method for finding all bottleneck points of a network: 
find all cycles in G and for every node in a cycle identify the corresponding bottle-
neck point.

Let BA =
⋃

k∈N

BA(k)  denote the set of all arc bottleneck points, BN =
⋃

k∈N

BN (k) 

the set of all node bottleneck points, and B = BA ∪ BN the set of all bottleneck points 
of G. Let D denote the set of dangling (leaf) nodes of G. In the network of Fig. 10.1, 
for example, D = {7, 8, 9}. Since bottleneck points are defined by cycles, D and B 
have no elements in common. The following theorem reduces the solution space 
from an infinite set (network G) to a finite set of candidate points for optimality 
consisting of the set of leaf nodes and the set of bottleneck points of G.

Theorem 1:  There exists a point x̂  which maximizes (10.1) such that x̂  ∈ X* = 
D ∪ B.

Proof:  Church and Garfinkel show that for every point x ∈G, x ∉ D ∪ B, there 
exists an x ∈ D ∪ B with a better objective value. Consider first an interior point x 
of arc ( i, j), x ∉ BA. Then, within the ε-neighborhood of x, the sum in (10.1) can be 
decomposed into two, one over nodes k ∈ Ni( x) and one over k ∈ Nj( x), where Ni( x) 
and Nj( x) are nodes k ∈ N whose shortest path to x includes segment ( i, x) and ( j, 
x), respectively:

For a point xe in the interior of arc ( i, j), such that c( j, xe) = c( j, x) + ε, for ε > 0 and 
infinitesimal, Ni( x) and Nj( x) remain unchanged and therefore,

T (x) =
∑

k∈Ni(x)

wk d(k , x) +
∑

k∈Nj(x)

wk d(k , x).

T (xe) − T (x) =




∑

k∈Nj(x)

wk −
∑

k∈Ni(x)

wk



 ε = q(x)ε.
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Assuming without loss of generality that q( x) ≥ 0, it follows that T( xe) − T( x) in-
creases with ε until xe reaches an arc bottleneck point or node i.

Consider now a point x that is on a node and x ∉ D ∪ BN. Similarly, in this case 
a path from x can be found on G of increasing objective value until a point of D ∪ 
B is encountered. � □

On a given arc ( i, j) ∈ G, there exist at most n bottleneck points identified by cycles 
containing arc ( i, j) and each node k ∈ G. Therefore, there exist at most mn bottle-
neck points. Since the number of leaves in a network is at most n, the size of the set 
containing the optimal solution is O( mn).

Since bottleneck points occur only on cycles of G and a tree network has no 
cycles, the following corollary follows from Theorem 1.

Corollary 1:  If the network is a tree, there exists an optimal point which is a leaf 
node.

A straightforward approach for solving (10.1) is to find the best point on each 
edge, and then compare these points and select the optimal point in G.

The shortest path distance between a node k ∈ N and a point y ∈ ( i, j), is d( k, y) = 
min{d( i, k) + c( i, y), d( j, k) + c( j, y)}. It is maximized when d( i, k) + c( i, y) = 
d( j, k) + c( j, y). Substituting c( i, y) = c( i, j) − c( j, y), the point on arc ( i, j) with 
the maximum distance from node k, denoted by y( k), is at a distance from node j, 
c( j, y) = ½[d( i, k) − d( j, k) + c( i, j)]. After it is simplified using (10.3), it becomes:

� (10.6)

In other words, for a given arc ( i, j) the length of ( j, y) is increasing with p( k). The 
greater the value of p( k), the further y( k) is from node j. If p( k) = c( i, j), y( k) = i, 
while if p( k) = − c( i, j), y( k) = j. Therefore, if we reorder nodes k ∈ N in increasing 
magnitude of p( k) they will map to y( k) points in the same order on arc ( j, i), ac-
cording to (10.6). To reorder the nodes k ∈ N for arc ( i, j) we re-index them by r( k) 
in terms of increasing p( k), i.e., r( k2) > r( k1) → p( k2) ≥ p( k1). Clearly, p( i) = −d( i, j) 
and p( j) = d( i, j), and we can let r( i) = 1 and r( j) = n.

Table 10.2 contains p( k) and r( k), k ∈ N, for arc ( i, j) = (1, 2) of Fig. 10.1. The 
distance of point y( k) from node 2, c(2, y), is also computed according to (10.6). 
Note that d(1, 2) < c(1, 2) and therefore |p( k)| < c(1, 2) = 15 for every k ∈ N. Based 
on an earlier observation, every node has a bottleneck point on arc (1, 2) although 
not all of them are distinct.

We want to express the objective function (10.1) at some point y ∈ ( i, j). Consid-
er two consecutive y( k1) and y( k2) points, i.e., r( k1) = t and r( k2) = t + 1, t = 0, …, n, 

c (j , y) = 1/2
[
p(k) + c (i, j )

]
.

Table 10.2   Bottleneck points on arc (1, 2)
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where r( k) = 0 and r( k) = n + 1 are associated with  node j and i, respectively. For 
notational simplicity, use y = c( j, y). In other words, y represents both a point y ∈ ( i, j) 
and its distance from j on arc ( i, j). For y ∈ ( y( k1), y( k2)),

� (10.7)

and the objective function T( y) can now be expressed as

� (10.8)

where

� (10.9)

is the gradient of T( y). When y( k1) and y( k2) are distinct points, T( y) is a line segment 
with slope W( t). When y( k1) = y( k2), the line segment becomes a degenerate point. 
The number of different line segments of T( y) for y ∈ ( i, j) depends on the number 
of distinct numbers y( k). It can be as low as 1 (whole arc), when |p( k)| = c( i, j) 
for all k ∈ N, and as high as n + 1, when all values y( k) are distinct bottleneck points. 
The former happens for arc (4, 5) of Fig. 10.1. Clearly, the slope W( t) is nonincreas-
ing with increasing t, as one scans consecutive arc segments ( y( k1), y( k2)) from 
node j to node i on arc ( j, i). Since it is also continuous, T( y) is piecewise linear and 
concave, and the theorem below follows.

Theorem 2:  A best point y*( k) on arc ( i, j) satisfies r*( k) = min{r( k)|W( r( k)) ≤ 0, 
r( k) = 1, …, n}, and its distance from node j is given by (10.6).

It is possible that W( r( k)) = 0 at the best point y*( k). Then every point on the arc 
segment between y( k*) and {y( ℓ)|r( ℓ) = r*( k) + 1} maximizes T( y) on arc ( i, j).

Although Church and Garfinkel allude to the concavity property of the objective 
function on an arc, they do not explicitly state it. To illustrate the “piecewise linear 
and concave” property of the objective function T( y) over an arc, objective values 
at all y( k) ∈ (2, 1) are calculated using (10.8) and (10.9). Equal weights, wk = 1, 
k ∈ N, are assumed. The objective values T( y( k)) are displayed in the last row of 
Table 10.2. In Fig. 10.3, T( y) is plotted for arc (1, 2) using the data of Table 10.2. 
Point y = 0 and point y = 15 correspond to nodes 2 and 1, respectively. The objec-
tive value at node 2 and 1 is 107 and 129, respectively, taken from the last column 
of Table 10.1.

The unweighted maxian problem is the maxian problem in which all weights wi 
are equal to 1. As is shown below, the procedure for finding the best point on an arc 
can be greatly simplified when weights are equal.

Note in (10.9) that as point y on arc ( i, j) moves from one interval [y( k1), y( k2)] to 
the next [y( k2), y( k3)], such that r( k1) = t, r( k2) = t + 1 and r( k3) = t + 2, the gradient 

d(k , y) =
{

d(k , i) + c(i, j) − y, for {k|r(k) ≤ t}
d(k , j) + y, for {k|r(k) ≥ t + 1}

T (y) =
∑

k|r(k)≥t+1

wkd(k, j ) +
∑

k|r(k)≤t

wk[d(k, i) + c(i, j )] + W (t)y,

W (t) =
∑

k|r(k)≥t+1

wk −
∑

k|r(k)≤t

wk , t = 0, . . . , n

10  The Location of Undesirable Facilities
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W( t) decreases by 2wk2.  If all weights are equal to 1 the gradient decreases by 2. For 
our 9-node example, W( t) = 9 − 2t, t = 0, …, 9. The following corollary simplifies 
the procedure for finding the best point on an arc.

Corollary 2:  A best point y*( k) on arc ( i, j) satisfies

and its distance from node j is given by (10.6).
The best point on an arc can be found in O( n log n) time by sorting the n points 

with respect to increasing values of p( k). Therefore, the total time required to find 
the optimal maxisum point in an unweighted network is O( mn log n).

Consider again arc (1, 2) of the network of Fig. 10.1. Since n is odd, the best 
point y*( k) on arc (1, 2) is associated with r*( k) = ½( n + 1) = 5. From Table 10.2 we 
find that the arc bottleneck point y*( k) is generated by node k = 8 and is at distance 
y = 7.5 units from node 2 (see also Fig. 10.3). Note that, in addition to node 8, the 
best point on arc (1, 2) is the bottleneck point of nodes 4, 5 and 7.

Bounds of the objective function over an arc can be found as follows. Since T( y) 
is concave over each arc ( i, j), its minimum occurs at an endpoint, i.e., at one of the 
two nodes, i or j, or both. Therefore, a lower bound of T( y) over arc ( i, j), T (i, j),  
is specified in the following relation

� (10.10)

A good lower bound of the optimal objective value over G is T .  It is obtained by 
comparing the objective values of the nodes of G:

� (10.11)

r∗(k) =
{

1/2n, if n is even
1/2(n + 1), if n is odd

T (i, j ) = min

{
∑

k∈N

wkd(k, i),
∑

k∈N

wkd(k, j )

}
.

T = max
i∈N

∑

k∈N

wkd(k, i)

Fig. 10.3   Objective function value over arc (2, 1)
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To find an upper bound of T( y) over an arc ( i, j), T (i, j ),  we consider the upper 
bound of d( k, y), y ∈ ( i, j). The maximum distance point on arc ( i, j) from node k is 
point y( k), found earlier. Its distance from node k is d( k, j) + c( j, y), where c( j, y) is 
given by (10.6), such that

Multiplying both sides of this expression by wk, and taking the summation for all 
k ∈ N, we obtain

�

(10.12)

For the unweighted maxian problem (with wk = 1, k ∈ N), the upper bound reduces 
to

� (10.13)

The search for the optimal solution starts with the node x̂  associated with T .  This 
is the incumbent solution. Upper bounds on all arcs, T (i, j),  are used to eliminate at 
the outset as many arcs as possible. After finding the best point on an arc, the lower 
bound is updated and is used to eliminate additional arcs. When all remaining arcs 
have been considered, the incumbent is the optimal solution.

Algorithm 1: Maxisum Problem on a Network 

Step 1:	� Compute a lower bound on T( x*), T ,  using (10.11) and identify 
the point x̂ ∈ G  at which it occurs.

Step 2:	� Compute the upper bounds on all arcs ( i, j) ∈ A, T (i, j) ,  using 
(10.12).

Step 3:	� Eliminate every arc ( i, j) ∈ A for which T (i, j)< T  from further 
consideration. Let the set of remaining arcs be A′.

Step 4:	� Until A′ = ∅, repeat.
Step 4.1:	� Let the arc ( i, j) ∈ A′ with the largest T̄ (i, j) be ( u, v). Find the 

best point on arc ( u, v) and denote it by y* and its objective value 
by T( y*). Set A′ ← A ′− ( u, v).

Step 4.2:	� If T( y*) > T , update T ←T( y*) and x̂ ← y*, and eliminate remain-
ing arcs ( i, j) ∈ A′ for which T (i, j )< T .

Step 5:	� The optimal solution is x* =  x̂  and T( x*) =  T .

d(k, y) ≤ 1/2[c(i, j ) + d(k, i) + d(k, j )].

T (y) ≤ T (i, j ) = 1/2

[
c(i, j )

∑

k∈N

wk +
∑

k∈N

wkd(k, i) +
∑

k∈N

wkd(k, j )

]

= 1/2

[
c(i, j )

∑

k∈N

wk + T (i) + T (j )

]
.

T (i, j ) = 1/2
[
nc(i, j ) + T (i) + T (j )

]
.
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Algorithm 1 is illustrated for the unweighted maxian of the network of Fig. 10.1. 
Node 1 provides a lower bound T = T (1) = 129  from the last column of Ta-
ble  10.1. Upper bounds on the arcs T (i, j) have been calculated according to 
(10.13) and are shown in Table 10.3. According to Step 3 of the algorithm, all arcs 
except A′ = {(1, 2), (1, 4), (2, 3), (3, 4)} are eliminated. Of the remaining, arc (1, 2) 
is selected for its largest upper bound (185.5). The best point on arc (1, 2) was found 
earlier at its midpoint with objective value 160.5. The new T = 160.5  allows us to 
eliminate all remaining arcs except (3, 4).

To find the best point on arc (3, 4) we construct Table 10.4, from which r*( k) = 5 
occurs for k = 8. The best point is [(4, 3); 7.5] with objective value 125.5, calculated 
directly from (10.8) and (10.9). This is inferior to the incumbent point, which is op-
timal because there are no other remaining arcs to consider. Therefore, the optimal 
point is [(1, 2); 7.5] with objective value 160.5.

10.2.2  �The Maximin Location Problem in Continuous Space 
with Euclidean Distances

Analogous to minimax problem, the maximin objective attempts to find a location 
for an undesirable facility that minimizes the adverse impact on the most affected 
customer, which is the one closest to the facility. The maximin objective was first 
used in continuous space with Euclidean distances. Three original contributions for 
undesirable facility location are analyzed in this subsection. The earliest work by 
Shamos (1975) and Shamos and Hoey (1975) characterized the unweighted maxi-
min problem in the plane as an interesting problem of computational geometry, 
whose solution is the byproduct of the construction of a Voronoi diagram. Although 
they suggested the use of the maximin objective for undesirable facility location, 
Dasarathy and White (1980) and Drezner and Wesolowsky (1980) first formulated 
the maximin problem with practical feasible regions making it a suitable location 
model for undesirable facilities.

Table 10.3   Objective value upper bounds on arcs
Arc ( i, j) (1, 2) (1, 4) (2, 3) (2, 4) (3, 4) (3, 5)
T (i, j ) 185.5 136 140 125 162.5 109

Arc ( i, j) (3, 6) (4, 5) (4, 7) (5, 6) (5, 8) (6, 9)
T (i, j ) 109.5 112 112 95 112 106

Table 10.4   Bottleneck points on arc (3, 4)

E. Melachrinoudis

                  



219

10.2.2.1 � Shamos (1975) and Shamos and Hoey (1975): 
The Origins of the Maximin Problem

The maximin location problem first appeared in the works of Shamos and Hoey, 
who studied the complexity of several fundamental problems in computational ge-
ometry. The maximin problem is stated as follows: Given a set N of n points ai in 
R2, find the largest empty circle that contains no points of the set yet whose center 
x is interior to the convex hull of the points, CH( N). Equivalently,

� (10.14)

where d(i, x) = ‖ai − x‖  is the Euclidean distance between point ai and x. The cen-
ter of such a circle is the unweighted maximin point. Since such a point is farthest 
away from the closest customer point, it is suitable for the location of an undesir-
able facility, such as a source of pollution. For the same reason, the maximin point 
is suitable for locating a new business—albeit a desirable facility—that does not 
wish to compete for territory with established outlets represented by existing points. 
The solution point is restricted to a bounded feasible region, CH( N), because other-
wise it is going to be at an infinite distance from the customers. Moreover, Shamos 
and Hoey characterized the new problem as the dual of the (unweighted) minimax 
problem, posed much earlier by Sylvester (1857), which found the smallest circle 
enclosing all points of set N. The minimax objective was thoroughly investigated 
during the 1970s as an alternative to the minisum objective for the location of “de-
sirable” facilities. Shamos and Hoey solved the maximin problem by constructing 
the Voronoi diagram of the ai points.

Associated with each point ai, 1  ≤  i  ≤  n, there exists a polygon Vi, 
called a Voronoi polygon, with the following property: if x ∈ Vi ,  then 
‖ai − x‖ ≤

∥∥aj − x
∥∥ , 1 ≤ j ≤ n. The polygon Vi is the intersection of halfplanes 

containing ai, where the halfplanes are determined by the perpendicular bisectors of 
the line segments joining ai and aj,  j ≠ i. The edges of the Voronoi polygons, some of 
which are unbounded halflines, are called Voronoi edges and their vertices Voronoi 
vertices. A Voronoi vertex is the common point of at least three Voronoi polygons, 
i.e., is equidistant from at least three ai points. The circle drawn with its center at 
a Voronoi vertex and its radius the distance to its equidistant points contains no ai 
points in its interior; it is an empty circle. The Voronoi vertex associated with the 
largest empty circle is the optimal solution to (10.14). The interior points of a Vo-
ronoi edge are equidistant from exactly two (neighboring) points ai. The union of 
the boundaries of the Voronoi polygons is called a Voronoi diagram. The union of 
the Voronoi diagram and the interior sets of all Voronoi polygons constitute R2. The 
Voronoi diagram uses all relevant proximity information and is constructed very 
efficiently in O( n log n) time. The maximin problem in one dimension reduces to 
finding a pair of two consecutive points on a line that are farthest apart. Shamos and 
Hoey observe that this problem is also solved in O( n log n) time.

max
x∈CH (N )

min
i∈N

d(i, x),
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10.2.2.2 � Dasarathy and White (1980): The Unweighted Maximin Problem in 
a Bounded Convex Region

Dasarathy and White (1980) first formulated the unweighted maximin problem for 
a general feasible region S that is a bounded and convex polyhedron in Rk ,

� (10.15)

where d(i, x) = ‖ai − x‖  is the Euclidean distance between point ai and x in Rk 
and S is described by a set of m linear constraints, so that S = {x|cjx ≤ bj, 1 ≤ j ≤ m}.

The authors described a number of applications of this problem, not necessarily 
all in location. Viewing (10.15) as the problem of finding the largest hypersphere 
centered in S, whose interior is free of points ai, they put forward some applications 
in information theory and in pattern recognition. It appears that these applications 
influenced the authors to cast the maximin problem in a higher dimensional space 
and not in the 2-dimensional space where most location applications are found. 
Needless to say, the location application of the maximin problem (10.15) had the 
greatest impact in future undesirable location literature. If the ai points represent 
n cities in a region S and a highly polluting industry is to be located within S, the 
maximin problem will find its location such that the amount of pollutants reaching 
any city is minimized. It is assumed that the pollutant dispersion is uniform in all 
directions and the amount of pollutants reaching each city is a monotonically de-
creasing function of the distance between the city and that industry. Modeling the 
spread of pollutants in conjunction with the facility that generates them was studied 
later by Karkazis and Papadimitriou (1992) and Karkazis and Boffey (1994). Note 
that unlike the maxisum objective, which attempts to minimize the unpleasant col-
lective impact to all customers, the maximin objective attempts to minimize the 
impact to the most adversely affected customer, making it an equity measure rela-
tive to that customer.

Dasarathy and White view the maximin problem also as a covering problem. 
Consider, for example, the ai points being the locations of n radar stations and the 
convex set S the region monitored by these stations. Then (10.15) finds the mini-
mum (of the maximum) power required by the stations such that each point in S is 
monitored by one or more of the stations. It is assumed that the required power of 
a station is a monotonically increasing function of the distance over which it can 
receive or send signals.

Letting z represent the square of the objective function in (10.15), the maximin 
problem can be converted to a standard nonlinear programming formulation:

� (10.16)

� (10.17)

� (10.18)

max
x∈S

min
i∈N

d(i, x),

Max z

s.t. z − ‖ai − x‖2 ≤ 0, 1 ≤ i ≤ n

cjx ≤ bj , 1 ≤ j ≤ m
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The above problem described by (10.16)–(10.18) is clearly not a convex program-
ming problem due to constraints (10.17). Therefore, it may have several local 
optima one has to enumerate explicitly or implicitly to find the global optimum. 
The properties of a local optimum can be explored by constructing the necessary 
Karush-Kuhn-Tucker conditions for a local optimum at ( x*, z*). Let the Lagrang-
ian multipliers for constraints (10.17) and (10.18) be vi

* ≥ 0, 1 ≤ i ≤ n, and uj
* ≥ 0, 

1 ≤ j ≤ m, respectively. Then, in addition to the feasibility conditions (10.17) and 
(10.18) the following conditions should be satisfied at ( x*, z*):

� (10.19)

� (10.20)

� (10.21)

� (10.22)

In addition, a local optimum either lies on the boundary of the feasible region (Case 
b) or not (Case a). These two cases are analyzed below to reveal the properties of 
local optima of (10.15).

Case a:  If x* does not lie on the boundary of S, none of constraints (10.18) are bind-
ing at x*, which in turn forces all u∗

j  = 0 by (10.22). In that case, (10.19) and (10.20) 
indicate that x* lies in the convex hull of the ai points, CH(N). Furthermore, in 
expressing the convex combination, only the multipliers vi

* that are associated with 
points that are equidistant from x* need to be positive, due to (10.21). Equivalently, 
x* can be expressed as a convex combination of the points ai that lie on the surface 
of the optimal hypersphere. Since k + 1 or fewer points suffice to express the con-
vex combination of more than k points in Rk ( Caratheodory’s theorem restated in 
Hadley 1964), a local optimum in CH( N) is equidistant from at least k + 1 points ai.

Case b:  If x* lies on the boundary of S, one or more (ignoring degenerate cases, up 
to k) of constraints (10.18) are binding at x*. Let d, 0 ≤ d ≤ k − 1, be the dimension 
of the smallest facet F , F ⊂ S,  on which x* lies. Assume now that at most d of 
constraints (10.17) are binding at (x*, z*), or equivalently, at most d of the points ai 
are equidistant from x*. Draw the projections of these equidistant points ai on the 
affine space A of F (a hyperplane of the same dimension that includes F ). Since the 
number of such projections on F results in at most d points in A, there exists a hy-
perplane H of A of a dimension lower than d that passes through them. If point x* is 
moved away from H by an infinitesimal distance, still lying on F, the distance from 
the equidistant points increases and therefore the objective function z* increases, 

n∑

i=1

v∗
i = 1,

s.t.
n∑

i=1

2v∗
i (ai − x∗) −

m∑

j=1

u∗
j cj = 0,

v∗
i

(∥∥ai − x∗∥∥2 − z∗
)

= 0, 1 ≤ i ≤ n,

u∗
j (cjx

∗ − bj ) = 0, 1 ≤ j ≤ m.
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thus contradicting the optimality of (x*, z*). Therefore x* should be equidistant from 
at least d + 1 nearest ai points.

The results of the above two cases are summarized in the following theorem:

Theorem 3:  The optimal solution x* of the maximin problem (10.15) either lies 
on the boundary of the convex polyhedron S or in the convex hull of the ai points 
CH(N). If it lies in CH( N), x* is equidistant from at least ( k + 1) nearest ai. If it lies 
on the boundary of S, x* is equidistant from at least ( d + 1) nearest ai, where d is the 
dimension of the smallest facet on which x* lies.

Similar to the case of the maxisum problem on a network as formulated in rela-
tion (10.1), the above theorem reduces the feasible region to a finite candidate set 
of solutions containing the optimal point of the maximin problem. These candidate 
points are either within CH( N), analogous to Church and Garfinkel’s bottleneck 
points, or remote points of the boundary of the feasible region, analogous to the 
leaves of a network.

The above theorem suggests a method for identifying candidate points on CH( N) 
and on the boundary of S as follows:

1.	 The point that is equidistant from every combination of k + 1 points ai is found 
and checked for feasibility using (10.17) and (10.18). Similarly, the center and 
radius of the hypersphere that passes through these k + 1 points is found and 
checked if the center is in S and there are no points in the interior of the hyper-

sphere. 
(

n
k + 1

)
 combinations of points ai are considered and for each one of 

them a system of k simultaneous linear equations is solved for the k components 
of x.

2.	 The point of each facet F of the boundary of S that is equidistant from every 
combination of d + 1 points ai is found, where d is the dimensionality of F. For 

each facet F of dimensionality d, 
(

n
d + 1

)
 combinations of points ai are con-

sidered, and for each one of them a system of k simultaneous linear equations 
are solved, of which d linear equations stipulate that x is equidistant from d + 1 
points ai and k − d equations define the facet F.

As in the algorithm for the maxisum problem, bounds are used so that not all 
candidate points are explicitly generated. Dasarathy and White used a lower 
bound L and an upper bound U on the global z* to eliminate facets from further 
consideration and to forgo the feasibility test if a generated point in CH( N) 
has an objective value z that falls outside these bounds. As lower bound on the 
global value of the objective z*, the objective value of the current best solution 
is used. A good initial lower bound L0 can be obtained by evaluating all extreme 
points ej of S, and at the same time taking care of the examination of 0-dimen-
sionality facets:

� (10.23)L0 = max
j

min
i

∥∥ai − ej

∥∥2
.
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Dasarathy and White computed an upper bound U on the global z* by maximizing 
the Lagrangian of the problem for any nonnegative multipliers vi,

� (10.24)

By letting 
∑

i

vi = 1, they developed an efficient algorithm for computing U. They 
also used upper bounds on the objective value z on facets in an effort to eliminate 
them. A facet F is eliminated from further consideration if the square distances 
between some ai and all the extreme points of F are smaller than the current best 
objective value L. Similarly, an upper bound on the objective value z on facet F is

� (10.25)

Although Dasarathy and White provided an algorithm for a convex polyhedron S in 
three dimensions ( k = 3), a general algorithm is presented below for any k ≥ 2. This 
maximin algorithm below can be easily modified for other distance metrics and for 
weighted distances.

Algorithm 2: Maximin Problem in a Convex Polyhedron 

Step 1:	� Find the lower bound L0 with the corresponding extreme point 
el of S and the upper bound U on the global z* using (10.23) and 
(10.24), respectively. L ← L0, x* ← el. ( L keeps track of the cur-
rent best local optimum, L ≤ z* ≤ U).

Step 2:	� (Search for the best local optimum interior to CH( N).) Consider 
all combinations of the points ai taken k + 1 at a time. For each 
one of these combinations find the point x that is equidistant from 
the points ai and its square distance z. If L < z ≤ U and x is feasible 

L ← z, x* ← x. Repeat Step 2 for all 
(

n
k + 1

)
 combinations of the 

ai points.
Step 3:	� (Search for local optima on the boundary of S.) Set d ← k − 1.
Step 3.1:	� For every facet F of dimensionality d, repeat: If a point ai exists, 

1 ≤ i ≤ n, such that Ui( F) ≤ L, eliminate F from further consid-
eration. If F is not eliminated, consider all combinations of the 
ai points taken d + 1 at a time. For each one of these combina-
tions, find the point x ∈ A  ( A is the affine space of F , F ⊂ A ) 
that is equidistant from the points ai and its square distance z. If 
L < z ≤ U and x ∈ F ,  set L ← z, x* ← x.

Step 3.2:	� Set d ← d − 1. If d > 1, go to Step 3.1.
Step 4:	� The optimal solution is ( x*, L).

U = max
(x∈S,z)

{
z +

∑

i

vi

(
‖ai − x‖2 − z

)
}

.

min
i∈N

{
Ui(F ) = max

ej ∈F

∥∥ai − ej

∥∥2
}
.
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Algorithm 2 assumes that the facet structure of S is known. For a 3-dimensional 
space, Dasarathy and White described an O( m2 log m) algorithm to obtain the face 
structure. The worst-case complexity of Algorithm 2 is O( nk + 2). For a 2-dimen-
sional feasible region, there is a lower worst-case complexity algorithm that utilizes 
the Voronoi diagram of the ai points.

For S ⊂ R2  (i.e., k = 2), Algorithm 2 can be simplified as follows. Step 1 con-
siders all the 0-dimensional facets of S and selects the best extreme point of S as a 
starting solution, and its z-value as the starting lower bound on the global z*. Since 
the nearest ai point to a vertex of a convex polygon having m edges can be deter-
mined in O(log2 n) time after O( n log n) preprocessing (Shamos and Hoey 1975), 
Step 1 can be executed in O( m log2 n + n log n) time. The local optima sought in 
Step 2 are among the Voronoi vertices of the Voronoi diagram of the ai points. If a 
Voronoi vertex is in S it is a local optimum. Shamos and Hoey (1975) provided an 
O(log m) algorithm for determining if a given point is within an m-edge polygon. 
The O( n) vertices of the Voronoi diagram can be generated in O( n log n) time and 
tested for feasibility in O( n log m) time. In Step 3, only the edges of the polygon S 
( d = 1) have to be searched for local optima. The points of the edges that are equi-
distant from ai points taken two at a time are the intersections of the Voronoi edges 
with the edges of S. A Voronoi edge can intersect the boundary of S at most twice. 
Using a binary search, Dasarathy and White found the intersections of the Voronoi 
edges with the edges of S in O( n log m) time.

In summary, the optimum point of the maximin problem in a convex polygon S 
can be a vertex of S, a Voronoi vertex, or an intersection of a Voronoi edge with an 
edge of S. The required effort to solve it is O( m log2 n + n log n + n log m).

Figure 10.4 shows a set N of 10 points, a1, …, a10, within a square region S. The 
boundary of CH( N) is displayed by dotted line segments. The Voronoi diagram of 
the points consists of 10 vertices and 19 edges. There are 8 intersections of Voronoi 
edges with the edges of S. The solution to (10.14), i.e., the maximin point in CH( N), 
is vertex v of the Voronoi diagram, which is the center of the largest empty circle, 
shown in Fig.  10.4. The extreme point e4 is the maximin point in S, solution to 
(10.15), with objective value ‖a7 − e4‖ .

10.2.2.3 � Drezner and Wesolowsky (1980): Weighted Maximin Problem 
with Maximum Distance Constraints

The difference in this contribution compared to the previous work is that positive 
weights wi are assigned to customers and the solution method does not search the 
feasible region for local optima to find the best one(s), but instead progressively re-
duces the feasible space to trap the global optimum in an infinitesimal area. The fea-
sible region is a convex bounded planar area defined by the intersection of circles, 
each having at their center a customer point ai, and radius ri representing the maxi-
mum distance the facility can be from customer i with i ∈ N. Clearly, the authors had 
in mind the location of a semi-obnoxious facility, which is pushed away by each cus-
tomer to a different degree depending on its weight, but at the same time is wanted 
within certain distance from each customer. The problem can be formulated as
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� (10.26)

where d(i, x) =‖ ai − x ‖ is the Euclidean distance between point ai and x ∈ R2  
and S is a set of n maximum distance constraints, S = {x|d( i, x) ≤ ri, 1 ≤ i ≤ n}.

The solution methodology is graphical in nature and is speeded up by a bisec-
tion search. Consider some objective value z, z = min

i∈N
wid(i, x).  The points of the 

plane with better objective value than z are outside of the union of circles having 
centers ai and radii z/wi, or C(z) = {x|d(i, x) ≥ z

wi
}.  Starting with a relatively small 

value of z, one can solve the problem interactively by increasing z until the last 
point in S is covered, or S ∩ C( z) is an infinitesimally small area. In fact, Brady and 
Rosenthal (1980) used this interactive graphical approach on the computer to solve 
constrained minimax problems. Instead of an interactive approach, Drezner and 
Wesolowsky used an efficient bisection search as follows. At some iteration, let  be 
the objective value of the best solution found so far (lower bound on z*) and  be an 
upper bound on z*. A new objective value is generated and a procedure is used to 
find out if a point x exists in S ∩ C(z) with that z-value. If it does, ← z, otherwise, 
← z. The iterations continue until (-) becomes smaller than a small preset constant. 
The solution x associated with is close to the best point x* within an approximation. 

10.3 � Impact of the Original Papers

The above classical contributions stimulated a large body of research in undesirable 
facility location that complemented the existing (desirable) location literature. Up 
to that time, pull objective location models, such as minisum (median) and minimax 

max
x∈S

min
i∈N

wid(i, x),
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(center), dominated the location literature. The introduction of the push objective 
location models leveled the field of location science and opened it to new methods, 
applications and location problems. An outstanding example has been the launch 
of a new class of location problems that utilize a combination of push and pull ob-
jectives to find locations that best trade off the conflicting objectives. This section 
describes the immediate impact of the original papers on the location literature in 
the period of 10–15 years that followed as well as the major works that were after-
wards influenced by the classical works and contributed to the undesirable location 
literature.

10.3.1  �The Impact of Church and Garfinkel’s Contribution

The pioneering work of Church and Garfinkel initiated the field of undesirable fa-
cility location by introducing the maxisum location problem and distinguishing it 
from the existing (desirable) location problems of the time. As Goldman (2006) 
notes, such a “three letter change” (substitution of max for min) might seem innocu-
ous, but in fact substantially increases the difficulty to carry out the optimization. 
Church and Garfinkel showed that the new problem is nonconvex and thus may 
have many local optima, so that it is necessary to generate all or at least a subset 
of them by improving bounds on the optimal objective value to find the global 
optimum. In fact, many algorithms that were developed later for variations of the 
maxisum and the maximin objectives resemble Church and Garfinkel’s algorithm. 
Similarly, the “existence of a finite candidate set of points containing the global 
optimum” that resonates throughout the undesirable location literature originated in 
this paper. Among the points in that set are local optima that arise due to the non-
convex property of the undesirable facility location problem which, in turn, render 
the “Hakimi property” of a network invalid. Finally, new terms were coined in their 
paper to enrich the location lexicon: “obnoxious” and “semi-obnoxious” facilities 
and “bottleneck points” of a network. In the remainder of this subsection we will 
include early contributions that built on the work of Church and Garfinkel.

Ting (1984) dealt with the maxisum problem on trees and developed an O( n) 
algorithm by using a special data structure. This is an improvement over Church 
and Garfinkel’s O( n2) algorithm for trees. Minieka (1983) addressed the unweight-
ed maxisum problem and essentially developed the same algorithm as Church and 
Garfinkel to find the antimedian of the network, as he named the solution of the 
maxisum problem. In the same paper, Minieka studied another max-type problem, 
max
x∈G

max
i∈N

d(i, x),  whose solution named the anticenter of the network.
Hansen et al. (1981) considered a more general maxisum problem on a continu-

ous and bounded feasible region S with S ∈ R2.  By modeling the nuisance from the 
obnoxious facility located at x to a population center i as decreasing and continuous 
function of their distance, Di[d( i, x)], they actually formulated a minisum model, 
named the anti-Weber problem, as the counterpart of the Weber problem with the 
objective
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�
(10.27)

where d( i, x) can be any distance metric, of which the most commonly used are the 
Euclidean, rectilinear and Tchebycheff metrics.

Similar to Church and Garfinkel’s (1978) Theorem 1 above, Hansen et al. estab-
lished a theorem that reduces the feasible region that contains the optimal location 
to the union of two sets. The first set, analogous to the set of bottleneck points of a 
network, consists of the points of S that are in the convex hull CH( N) of the points, 
i.e., S ∩ CH( N). The second set, analogous to the leaf nodes of a network, consists 
of the points of S − CH( N) that are remote from CH( N). A point y ∈ Y  is said to be 
remote from set X if there exists x ∈ X such that the straight halfline starting from 
x and passing through y contains no point of Y beyond y. The results of this theo-
rem are used by Hansen et al. to rationalize the locational pattern of nuclear power 
plants in France. Some power plants are at interior locations while many others are 
located at the border of France with Germany and Belgium or on the Atlantic coast. 
They solved the anti-Weber problem by a branch-and-bound method, similar to the 
Big Square-Small Square algorithm developed earlier by the same authors for the 
generalized Weber problem.

For the special case where Di is a linear function of distance d( i, x), relation 
(10.27) reduces to the (ordinary) maxisum objective on the plane:

� (10.28)

For the maxisum problem (10.28), Hansen et al. reduced the set containing the op-
timal solution even further by excluding all interior points of S:

Theorem 4:  For the maxisum problem in the plane there exists an extreme point of 
the convex hull of the feasible region S that is optimal.

The proof follows directly from the convexity property of the objective function. 
When the feasible region is approximated by a nonconvex polygon S with m verti-
ces, Melachrinoudis and Cullinane (1986a) described a simple O( mn) algorithm for 
finding the weighted maxisum point by evaluating the vertices of CH( S).

Theorem 4 states that the maxisum point is at remote points of the boundary of 
the feasible region. This result is analogous to Church and Garfinkel’s result for 
trees where the optimal point is one of the leaves of the tree. The feasible region S 
therefore has to be bounded, otherwise the optimal solution of the maxisum prob-
lem is “out at infinity.” It is even possible that the optimal location is at an exist-
ing facility point as Eiselt and Laporte (1995) illustrated in the following example. 
Consider the case of a square feasible region with four equally weighted customer 
points at the corners of the square. According to Theorem 4, the optimal maxisum 
locations are at the extreme points of the feasible region which coincide with the 
customer locations. Prescribing always a boundary solution and sometimes even a 
customer’s location for the undesirable facility does not make the maxisum model 
very attractive for use in the plane. However, the maxisum objective is very useful 

min
x∈S

T (x) =
∑

i∈N

Di[d(i, x)],

max
x∈S

T (x) =
∑

i∈N

wid(i, x).
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in a multiobjective setting when it is combined with a pull objective as described 
later in this section.

10.3.2  �The Impact of the Original Maximin Location Papers

The original papers on the maximin location problem, directly or indirectly, had an 
impact on the undesirable facility location works that followed during the 1980s. 
A number of variations of the maximin problem with Euclidean distances have 
been solved using a solution approach similar to Dasarathy and White’s for gener-
ating local optima by using the Karush-Kuhn-Tucker optimality conditions. Mela-
chrinoudis (1985) and Melachrinoudis and Cullinane (1985) extend the weighted 
maximin problem to nonconvex regions and to regions that enclose forbidden areas, 
respectively. They provided an example for locating a toxic dump in the state of 
Massachusetts, which was represented by a nonconvex bounded planar region with 
forbidden areas for the facility around cities, wetlands, rivers, lakes, and ecosys-
tems. The forbidden areas were approximated by the union of circles. Weights as-
signed to the customers, such as cities and towns, reflected the population size. The 
most important customer point, the city of Boston ( i = 6), was assigned a weight of 
1, while the weight of the population center i was calculated relative to Boston by 
the formula wi = (Ni/N6)−1,  where Ni denotes the population of city i.

Since it has not been elaborated in the location literature, it is important to note 
here that unlike the weight of a desirable facility, the maximin weight is a decreas-
ing function of the degree of incompatibility between a customer and the facility. 
For example, consider the simple case of a one-dimensional feasible region in the 
interval [0, 1], with customer A at point 0 having weight 1 and customer B at point 
1 having weight 3. The maximin point is at 0.75, meaning that the customer with 
the lower weight ( A) pushes the facility further away than the customer with the 
higher weight. By the way, the minimax point happens to be the same in this very 
small example, thus the customer with the higher weight pulls the desirable facility 
closer to it.

To explain this counterintuitive property of the maximin weights, consider the 
generalization of the weighted maximin problem of (10.26), where S ⊂ Rk, k ≥ 1. 
Let the optimal point be x* and the optimal objective value be z*. Theorem 3, gener-
alized for the weighted maximin problem, states that x* is equidistant (in a weighted 
sense) from a subset of customers, N′, and |N′| depends on the dimensionality of S 
and on whether x* lies in CH( N) or on the boundary of S. Theorem 3 and (10.26) 
imply that d( i, x) = z*/wi, i ∈ N ′ , and d( i, x) > z*/wi, i ∈ N − N ′.  Therefore, the 
distance of the maximin point from every point i ∈ N ′  is inversely proportional to 
its weight wi, while the distance from each of the remaining points i ∈ N − N ′  is 
greater than a lower bound that is inversely proportional to its weight wi.

The above property of the maximin weights is probably the reason some authors 
do not consider weights with the maximin problem. Karkazis (1988) studied an un-
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weighted Euclidean maximin problem in which the facility was to be located within 
a polygonal region S but as far away as possible from any point of the boundary 
of protected areas. These were more generally defined forbidden regions than in 
Melachrinoudis and Cullinane (1985). Although there were no apparent custom-
ers, the optimization approach—similar to the geometrical approach of Shamos and 
Hoey (1975)—suggests that the customers constitute an infinite set represented by 
the boundaries of the protected areas. The solution amounts to finding the largest 
(empty) circle that contains no points of the protected areas yet whose center is in S.

Melachrinoudis and Smith (1995) extended the Voronoi method of Dasarathy 
and White (1980) and developed an O( mn2) algorithm for the weighted maximin 
problem. For two points ak, aℓ having weights wk, wℓ such that wk > wℓ, the loci of 
weighted equidistant points is the Apollonius circle. This circle has center on the 
line connecting ak and al, at point okℓ, and radius γkℓ, both expressed in terms of the 
weights ratio, rk� = w�/wk , in (10.29). The edges of the weighted Voronoi diagram 
are therefore circular segments or whole circles.

� (10.29)

Melachrinoudis and Cullinane (1986b) developed a minimax model for undesirable 
facility location. The model seeks a facility location that minimizes the maximum 
weighted inverse square distance over all customers, or

� (10.30)

The objective is justified in many situations since the concentration of pollutants 
such as noise or radiation follows the inverse square law, see Poynting’s Theorem 
in Lipscomb and Taylor (1978). A customer weight represents the degree of incom-
patibility between the customer and the facility and unlike with the maximin objec-
tive, the higher the weight of the customer, the further away the facility is pushed. 
Similar to the one for the maximin problem, an O( n4) algorithm was developed for 
a convex polygonal region S, while for a nonconvex feasible region, composed of 
many disjointed nonconvex sets representing irregular land and islands, a graphi-
cal computer procedure was suggested as in Drezner and Wesolowsky (1980). The 
minimax problem in (10.30) was shown by Erkut and Öncü (1991) to be equiva-
lent to the maximin problem with weights wi

−1/2, implying the above mentioned 
inverse relationship between the magnitude of a maximin weight and the degree of 
incompatibility it represents. Their proof used a more general formulation with an 
arbitrary exponent, i.e., dq(i, x),  in which case the weights in the equivalent maxi-
min problem were wi

−1/q. The negative exponent explains the opposite behavior of 
weights in the two problems.

A minimax objective was also developed by Hansen et al. (1981) for the location 
of an undesirable facility in which, however, a general continuous and decreas-
ing function of distances was used. The authors named the problem the anti-Rawls 

ok� =
ak − r2

k�a�

1 − r2
k�

, and γk� =
rk� ‖ak − a�‖

1 − r2
k�

.

min
x∈S

max
i∈N

{wi/d
2(i, x)}.
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problem, since the objective can be characterized as an equity measure to the worst-
off customer. When the function of distances is linear, the minimax reduces to the 
maximin problem. The authors used a simple method called Black and White, which 
is similar to the -approximation method of Drezner and Wesolowsky (1980).

For the rectilinear maximin location problem in a convex polygon S, Mela-
chrinoudis and Cullinane (1986a) and Melachrinoudis (1988) developed optimality 
properties similar to those described by Dasarathy and White, except that the con-
vex hull CH( N) is replaced by the smallest rectangle H whose sides are parallel to 
the two coordinate directions and encases all customers. Thus, local optima exist in 
the union of two sets, the boundary of S and S ∩ H.

10.3.3  �Major Contributions on Undesirable Facility Location 
that Followed the Classical Works

Following the classical contributions, numerous papers on undesirable facility lo-
cation problems have been published in the last thirty years. A few of them, which 
built on the classical contributions and those on which the classical contributions 
had a direct or indirect impact, were reviewed in the previous two subsections. 
In this subsection, a short survey of major works that followed the classical con-
tributions is presented. This short and by no means all-inclusive survey includes 
representative works with similar distance metrics and solution spaces as well as 
multiobjective approaches. A comprehensive survey of undesirable facility location 
models, though less contemporary, can be found in Erkut and Neuman (1989) Eiselt 
and Laporte (1995) and Plastria (1996).

The classical contribution of Church and Garfinkel (1978) itself was followed 
by only an algorithmic refinement. Their algorithm requires O( mn2) time to find the 
weighted maxisum point on a general network. By making use of the observation 
that T( x) in (10.1) is a piecewise linear and concave function of x on a given arc, 
Tamir (1991) briefly suggested an improvement leading to an O( mn) algorithm. 
Colebrook et al. (2005) described a complete algorithm of this improved complex-
ity by making use of the above concavity property and by computing efficiently in 
O( n) time a new upper bound of T( x) over an arc. Their experimental results showed 
that the improved algorithm, compared to Church and Garfinkel’s, ran in about half 
the time and processed about 25% fewer arcs due to tighter upper bounds on the 
arcs.

The unweighted maximin problem on a network admits a trivial solution, in 
that the optimal is the midpoint of the longest arc of the network. The weighted 
maximin problem on a network, max

x∈G
min
i∈N

wid(i, x),  has similar properties to the 
maxisum problem. It is nonconvex and it has a unique local optimum on each arc 
(Melachrinoudis and Zhang 1999). In addition to the set of arc bottleneck points, the 
finite set of candidates includes the set of center bottleneck points. For a complete 
coverage of finite dominating sets to the maximin and other location problems on 
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networks with general monotone or non-monotone distance functions, see Hooker 
et al. (1991). The algorithm for solving the maximin problem on networks is similar 
to Algorithm 1: searching arcs for local maxima, updating the lower bound and 
eliminating arcs using upper bounds on arcs. For each unfathomed arc, a linear 
program with two variables can be constructed which can be solved very efficiently 
by an O( n) algorithm. Melachrinoudis and Zhang (1999) and Berman and Drezner 
(2000) independently provided O( mn) algorithms by using O( n) algorithms for lin-
ear programming problems of Dyer (1984) and Megiddo (1982), respectively.

The first paper on the maximin problem using the rectilinear metric was pub-
lished by Drezner and Wesolowsky (1983). Since the rectilinear distance is piece-
wise linear, the problem can be linearized. The feasible region is divided into rect-
angular segments by drawing horizontal and vertical lines through each customer 
point and a linear optimization problem is solved for each one of the O( n2) linear 
programming problems. Upper bounds for each region are used to reduce the num-
ber of linear programs that need to be solved. Mehrez et  al. (1986) proposed a 
new upper bound for that purpose which was further improved by Appa and Gi-
annikos (1994). Sayin (2000) formulated the rectilinear maximin location problem 
as a mixed integer program that can be solved by any standard MIP solver. Nadirler 
and Karasakal (2008) simplified the mixed integer programming formulation and 
improved further the bounds to increase the computational performance of a branch 
and bound algorithm very similar to the Big Square-Small Square algorithm of Han-
sen et al. (1981) and the generalized Big Square-Small Square method of Plastria 
(1992).

As was mentioned earlier, undesirable facility location problems provide some 
service to the community and some travel may be required to and from it. Therefore, 
in addition to minimizing the undesirable effects on populations, the minimization 
of transportation cost is of interest. This gives rise to a bi-objective problem for 
locating undesirable facilities. Depending on the application, either the minimax 
or the minisum (desirable facility) objective can be combined with the maximin or 
maxisum (undesirable facility) objective. An advantage of solving a bi-objective 
undesirable facility location problem is that one can obtain the whole efficient fron-
tier, i.e., the set of points that exhibit the complete tradeoff between the two objec-
tives, including the two points that optimize the individual objectives. For a formal 
definition of efficient points and other concepts in multicriteria optimization, see 
Steuer (1989).

The first bi-objective problem for undesirable facility location was formulated by 
Mehrez et al. (1985). The authors combined the minimax and maximin unweighted 
objectives using rectilinear distances. They generated the whole efficient set by 
examining the intersections of any two lines forming the equirectilinear distances 
between every pair of customer points or boundary edges of the feasible region. 
Also using rectilinear distances, Melachrinoudis (1999) combined the minisum and 
maximin objectives and solved the problem by generating a series of O( n2) linear 
programs as in Drezner and Wesolowsky (1983), but instead of solving the linear 
programs by the simplex method, he constructed the whole efficient frontier by 
reducing each linear program to simple variable ranges using the Fourier-Motzkin 
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elimination process. Brimberg and Juel (1998) used Euclidean distances in a bi-ob-
jective problem that combined the minisum objective and a second minisum objec-
tive (undesirable objective), which had the Euclidean distances raised to a negative 
power. They outlined an algorithm for generating the efficient set by solving the 
weighted-sum of the two objectives with varying weights. Skriver and Andersen 
(2001) solved the same problem using the Big Square-Small Square method and 
generated an approximation of the efficient set. A similar bi-objective model was 
developed by Yapicioglu et  al. (2007) where the second minisum objective was 
modified further to model undesirable effects with distance. They approximated 
the effects at a distance d( i, x) from the facility as a piecewise linear and decreas-
ing function of d( i, x); up to a certain distance, they argued, the obnoxious effects 
are constant, then decreasing with distance in a piecewise fashion, while beyond a 
certain distance the effects are nonexistent. Particle Swarm Optimization is used to 
approximate the efficient set.

Melachrinoudis and Xanthopulos (2003) solved the Euclidean distance location 
problem with the minisum and maximin objectives. They developed the whole tra-
jectory of the efficient frontier by a combination of a problem that optimizes the 
weighted sum of the objectives and the Voronoi diagram of the customer points. 
Using Karush-Kuhn-Tucker optimality conditions showed that this trajectory is not 
necessarily continuous and may consist of (a) a parametric curve of the weighted-
sum of the objectives starting at the minisum point and ending at the boundary of its 
Voronoi polygon, (b) segments of the Voronoi edges as the weight of the maximin 
objective is increasing while the weight of the minisum objective is decreasing, and 
(c) segments of the boundary until the maximin point is reached.

A different type of undesirable facility location problem is the minimal cover-
ing problem in which the undesirable effects of a facility are evident only within 
certain distance from it, referred to as the circle of influence. Given n populations of 
size wi, i = 1, …, n, that are concentrated in n points on the plane, the location of an 
undesirable facility is to be found within a feasible planar region S to minimize the 
population covered within a certain distance r from the facility. This problem was 
introduced by Drezner and Wesolowsky (1994) who, in addition to the circle, deter-
mined the rectangle that contains the minimum total population. Berman et al. (1996) 
extended the problem to the network space. By considering the radius of the circle as 
a continuous variable and second objective, Plastria and Carrizosa (1999) solved the 
problem with two objectives. First, to maximize the radius r of a circle with center 
the point x at which the facility is to be located, and second, to minimize the popula-

tion covered in that circle, 
∑

d(i,x)<r
wi. They developed polynomial algorithms for gen-

erating all efficient discs ( x, r) whose number they show is finite. The trade-off infor-
mation of efficient solutions can provide answers to interesting coverage questions, 
such as finding the facility location that minimizes the population covered within a 
given radius (previously defined as minimal covering problem) or finding the largest 
circle not covering more than a given total population. They considered a feasible 
region of any shape in the plane and the results can be extended to a planar network.
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A more recent approach for locating an undesirable facility is with expropriation. 
The rationale is that in certain cases there is no point in the feasible region that is 
far enough from all customers to locate the undesirable facility. One possibility to 
resolve this issue is by buying (or compensating) some of the customers. Berman 
et al. (2003) introduced two models for the location problem with expropriation. In 
the first model, a location on a network was sought that maximizes the minimum 
distance (maximin) from the facility to the non-expropriated customer points, sub-
ject to a given expropriation budget. In the second model, the expropriation cost 
was minimized while ensuring that the facility is located at least certain distance 
away from all non-expropriated customer points. Berman and Wang (2007) added a 
second objective to the last model: the minimization of transportation cost. The two 
cost objectives were added into one, so the resulting problem is treated as a single 
objective problem. For a planar feasible region and rectilinear metric, they identi-
fied a finite dominating set that contains the optimal solution.

There are not many papers on undesirable facility location on networks using 
two objectives. Zhang and Melachrinoudis (2001) formulated the first bi-objective 
problem on a network by combining the maxisum objective with the maximin objec-
tive. Using the piecewise linear and concave property of both objectives on an arc, 
they developed fathoming rules for eliminating inefficient arcs and arc segments. 
Unfathomed arc segments were mapped onto the 2-dimensional objective space and 
a direct search was undertaken to construct the nondominated set, followed by the 
efficient set, which was shown to consist of discontinuous arc segments. Hamacher 
et al. (2002) developed several multicriteria models for undesirable facility location 
problems on a network with minisum and center objectives, and proposed methods 
for solving them.

A general model for the undesirable facility location problem with Euclidean dis-
tances in a polygonal feasible region S was presented by Saameno et al. (2006). By 
setting a parameter to certain values the model reduces to problems already defined: 
maximin, maxisum and bi-objective maximin/maxisum problems. In addition, the 
model reduces to the r-anticentrum problem, which maximizes the weighted sum of 
distances between the undesirable facility and its r closest customers. The maximin 
and maxisum problems are special cases of the r-anticentrum problem for r = 1 and 
r = n, respectively. The authors generalized the properties of local optima developed 
by Dasarathy and White (1980) and Melachrinoudis and Smith (1995) for the whole 
class of objectives. They identified a finite dominating set consisting of the set of 
vertices of S, V, the set of intersections of weighted bisectors (10.29) of customer 
points with the edges of S, W, and the set of intersections of the weighted bisectors 
taken two at a time, I. The finite dominating set was obtained in O( nm2 + m4). In 
their algorithm they generated all candidate points in the set, eliminated some of 
them using the Lipschitzian property of the objective function, and evaluated the 
remaining points to obtain the optimal solution.

In addition to the above classes of models for undesirable facility location there 
are other models, such as multifacility, discrete, and location and routing models, 
which followed the classical contributions; we cannot elaborate upon these papers 
due to the limited space in this chapter. For the interested reader, some excellent 

10  The Location of Undesirable Facilities



234

papers and surveys are available. For the p-dispersion problem, Chandrasekaran 
and Daughety (1981), Kuby (1987), Erkut (1990), and Pisinger (2006); for the 
p-defense problem, Moon and Chaudhry (1984), Kincaid (1992), and Klein and 
Kincaid (1994); for generic discrete multifacility undesirable location problems, 
Chhajed and Lowe (1994). For locating multiple undesirable facilities on graphs 
using maxisum and maximin objectives, Tamir (1988, 1991); using coverage objec-
tives, Berman and Huang (2008); using expropriation, Berman and Wang (2007). 
A recent survey for location and routing problems that includes undesirable facility 
location and routing of hazardous wastes can be found in Nagy and Salhi (2007).

10.4 � Summary and Outlook

The advent of more stringent environmental standards, the resurgence of environ-
mental groups and a greater awareness of the public of the potential dangers of 
pollution in the early 1970s generated a research need for systematically locating 
polluting and environmentally hazardous facilities. Undesirable facility location 
research began with the pioneering work of Church and Garfinkel (1978). Their 
work on the maxian (maxisum) problem was analyzed in detail followed by the 
first works on the Euclidean maximin problem of Dasarathy and White (1980) and 
Drezner and Wesolowsky (1980).

Church and Garfinkel (1978) first formulated a model for locating an undesir-
able facility on a network by replacing the min with the max operator in the median 
model that had dominated the location literature since the seminal work of Hakimi 
(1964). Unlike the median model, they demonstrated that the maxian model is hard 
to solve because it is nonconvex and typically has many local optima, a character-
istic of undesirable facility location problems. They showed that local optima occur 
on the cycles (bottleneck points) and on the leaves of the network and developed a 
simple solution procedure that decomposes the network into its arcs in the search 
for the global optimum. Arcs were considered for fathoming using bounds, and 
the local maxisum point was found on unfathomed arcs by utilizing the concavity 
property of the objective function. This algorithm became a standard for future 
algorithms in undesirable facility location. For example, instead of arcs, parts of 
the feasible region are considered for fathoming in the Big Square-Small Square 
method or individual facets of the feasible region in Dasarathy and White’s (1980) 
algorithm that partially enumerates local maxima. The work of Church and Garfin-
kel had an enormous impact by stimulating research and establishing the field of 
undesirable facility location in the 1980s.

Undesirable facility location in the continuous space has its origins in the larg-
est empty circle problem, one of several problems Shamos (1975) and Shamos and 
Hoey (1975) studied in computational geometry. Dasarathy and White (1980) were 
the first to define the maximin problem using Euclidean distances as a nonconvex 
and nonlinear problem, derive the properties of the local optima using the Karush-
Kuhn-Tucker optimality conditions, and identify a finite dominating set. They 
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proved that the global optimum is either in the convex hull of the customer points 
or on the boundary of the feasible region and developed an algorithm for searching 
those parts of the feasible region. As in Church and Garfinkel (1978), they used 
upper bounds to fathom facets of the feasible region and updated the lower bound 
on the optimal objective value using the current best feasible solution. For a 2-di-
mensional feasible region, they extended Shamos and Hoey’s Voronoi diagram ap-
proach to search for local optima at the boundary of the feasible region.

Drezner and Wesolowsky (1980) first formulated the weighted maximin loca-
tion problem. The 2-dimensional feasible region is the intersection of circles each 
having its center at a customer point and radius equal to the maximum distance 
the undesirable facility can be located away from that customer, implying that the 
facility performs some service to the customer and has to be within reach. Their 
solution approach is different from previous ones. It is graphical in nature and is 
implemented on the computer with a bisection search of the feasible region. Al-
though the bisection search seems very efficient for this feasible region, it has not 
been used generally. The contributions by Dasarathy and White and by Drezner and 
Wesolowsky incited a large body of research in undesirable facility location using 
the maximin objective with various distance metrics and solution spaces. Unlike 
the maxisum objective, the maximin objective does not limit the optimum to the 
boundary and excludes customer points for locating the undesirable facility. Its use 
represents obvious advantages over the maxisum objective in continuous spaces.

Important works that followed the original papers were analyzed with special 
attention given to location models or methods that extended the classical contribu-
tions, such as considering single facility location models on network and planar 
space and under multiple objectives. It was not the purpose of this chapter to survey 
the literature on undesirable facility location, and therefore many important papers 
have not been included. A complete survey of this area is important and its time is 
due, so therefore it is suggested that such an effort be undertaken in the near future.

Regarding future research directions, consider what has been accomplished so 
far, what has not and what can be accomplished given the technological advances 
and the changing needs of society. The location literature is full of elegant mathe-
matical models which admit neat solution algorithms. As ReVelle and Eiselt (2005) 
point out, the “location field is active from a research perspective but when it comes 
to applications it appears to be a significant deficit, at least as compared to other, 
similar fields.” It is known that real life problems are complex with nasty feasible 
regions and multiple objectives that may not be necessarily functions of straightfor-
ward distance metrics such as Euclidean or rectilinear. When it comes to undesir-
able facilities, pollution density or its effects often are neither symmetric nor linear 
functions of distance. Very often, a real feasible region is not a simple polygonal 
area but the union of many disjoint regions.

The parameters of the problem, such as customer weights, may change over time 
depending on the population size, technological developments, and legislation for 
hazardous wastes and facility standards. Multiple stakeholders and decision makers 
are usually involved in undesirable facility location decisions; therefore, more real-
istic, integrated and robust location models need to be developed that relate to the 
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practitioners’ concerns. New technological tools such as geographical information 
systems are readily available, together with versatile optimization tools and vast 
computer power to make the task easier. Without discouraging the development of 
elegant mathematical models that admit creative solution procedures, researchers 
should be encouraged to tackle real-life problems with creative formulations, even 
if they have to solve them for a near-optimal solution by a standard optimization 
software package or a heuristic procedure.

Although in this chapter we reviewed single facility location on continuous or 
network spaces, discrete location models appear to be more realistic from a practi-
tioner’s decision making point of view, maybe because it is more natural to compare 
the merits of given sites rather than find one among an infinite number of pos-
sible sites. As a strategic decision, the facility location process usually involves two 
stages: one approach is to evaluate many candidate sites in the first stage and come 
up with a few using constraints and minimum requirements, and in the second stage 
to select a site using multiple criteria optimization, as in Min et al. (1997); another 
approach is to generate a small number of candidate sites in the first stage with ana-
lytical models and in the second stage to use discrete multiobjective tools to select 
the candidate site, as suggested by Erkut and Neuman (1989) and Plastria (1992).

An interesting non-geographical area in which undesirable facility location mod-
els could be applied is product design; see, e.g., Goldman (2006). The attributes of 
a product, such as physical dimensions, expected lifetime, and cost can be regarded 
as coordinates in the attribute or design space. Given the existing products in the 
market (points in space), a company may want to design a new product to differenti-
ate from the existing ones as an alternative to purchase, yet not make it very differ-
ent. The new product has the properties of a semi-desirable facility that needs to be 
located in the design space away from existing points but within reach.

Finally, location researchers should adapt their models to fill new needs of the 
society and use tools made available by new technologies. Some examples are 
applications in telecommunications and especially wireless networks, homeland 
security, environment change and global warming (Francis 2008), and use of geo-
graphical information systems (Murray and Church 2008).
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