Chapter S
Ashenhurst Decomposition Using SAT
and Interpolation

Hsuan-Po Lin, Jie-Hong Roland Jiang, and Ruei-Rung Lee

Abstract Functional decomposition is a fundamental operation in logic synthesis to
facilitate circuit transformation. Since the first formulation by Ashenhurst in 1959,
functional decomposition has received much attention and has been generalized and
studied to some extent. Recent practical approaches to functional decomposition
relied on the well-studied data structure binary decision diagram (BDD), which,
however, is known to suffer from the memory explosion problem and thus not
scalable to decompose large Boolean functions. In these BDD-based approaches,
variable partitioning, a crucial step in functional decomposition, has to be specified a
priori and often restricted to few bound set variables. Moreover, non-disjoint decom-
position requires substantial sophistication in formulation. This report shows that,
when Ashenhurst decomposition (the simplest and preferable functional decompo-
sition) is considered, both single- and multiple-output decomposition can be com-
puted with satisfiability solving, Craig interpolation, and functional dependency.
Variable partitioning can be automated and integrated into the decomposition pro-
cess without the bound set size restriction. The computation naturally extends to
non-disjoint decomposition. Experimental results show that the proposed method
can effectively decompose functions with up to 300 input variables.

5.1 Introduction

Functional decomposition [1, 6, 11] aims at decomposing a Boolean function into
a network of smaller sub-functions. It is a fundamental operation in logic synthesis
and has various applications to FPGA synthesis, minimization of circuit communi-
cation complexity, circuit restructuring, and other contexts. The most widely applied
area is perhaps FPGA synthesis, especially for the look-up table (LUT)-based FPGA
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architecture, where each LUT can implement an arbitrary logic function with up
to five or six inputs. Because of the input-size limitation of each LUT, a Boolean
function to be realized using LUTs has to be decomposed into a network of sub-
functions each conforming to the input-size requirement. Since FPGAs became a
viable design style and highly optimized BDD packages were available, BDD-based
functional decomposition [3, 13] has been intensively studied over the previous two
decades. A comprehensive introduction to this subject is available in [19].

Most prior work on functional decomposition used BDD as the underlying data
structure. By ordering variables in some particular way, BDD can be exploited for
the computation of functional decomposition. Despite having been a powerful tool,
BDD poses several limitations: First, BDDs are very sensitive to variable ordering
and suffer from the notorious memory explosion problem. In representing a Boolean
function, a BDD can be of large size (in the worst case, exponential in the number
of variables). It is even more so when special variable ordering rules need to be
imposed on BDDs for functional decomposition. Therefore it is typical that a func-
tion under decomposition can have just a few variables. Second, variable partition-
ing needs to be specified a priori and cannot be automated as an integrated part of
the decomposition process. In order to effectively enumerate different variable parti-
tions and keep BDD sizes reasonably small, the set of bound set variables cannot be
large. Third, for BDD-based approaches, non-disjoint decomposition cannot be han-
dled easily. In essence, decomposability needs to be analyzed by cases exponential
in the number of joint (or common) variables. Finally, even though multiple-output
decomposition [22] can be converted to single-output decomposition [9], BDD sizes
may grow largely in this conversion.

The above limitations motivate the need for new data structures and compu-
tation methods for functional decomposition. We show that, when Ashenhurst
decomposition [1] is considered, these limitations can be overcome through sat-
isfiability (SAT)-based formulation. Ashenhurst decomposition is a special case
of functional decomposition, where, as illustrated in Fig. 5.1, a function f(X) is
decomposed into two sub-functions 2 (X g, X¢, x¢) and g(X¢g, X¢) with f(X) =
h(Xy, Xc, g(Xg, Xc)). For general functional decomposition, the function g can
be a functional vector (g, ..., gx) instead. It is this simplicity that makes Ashen-
hurst decomposition particularly attractive in practical applications.

The enabling techniques of our method, in addition to SAT solving, include Craig
interpolation [5] and functional dependency [10]. Specifically, the decomposability
of function f is formulated as SAT solving, the derivation of function g is by Craig
interpolation, and the derivation of function 4 is by functional dependency.

Fig. 5.1 Ashenhurst decomposition
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Compared with BDD-based methods, the proposed algorithm is advantageous in
the following aspects. First, it does not suffer from the memory explosion problem
and is scalable to large functions. Experimental results show that Boolean functions
with more than 300 input variables can be decomposed effectively. Second, variable
partitioning need not be specified a priori and can be automated and derived on
the fly during decomposition. Hence the size of the bound set variables X need
not be small. Third, it works for non-disjoint decomposition naturally. Finally, it
is easily extendable to multiple-output decomposition. Nonetheless, a limitation
of the method is its expensive generalization to functional decomposition beyond
Ashenhurst’s special case.

A scalable decomposition method may be beneficial to modern VLSI design.
For example, the dominating interconnect delays in nanometer IC design may be
reduced by proper decomposition at the functional level; complex system realization
using FPGAs or 3D ICs may require a design being decomposed at the chip level.
On the other hand, the scalability of the proposed method may provide a global
view on how a large function can be decomposed. Accordingly, hierarchical and
chip-level logic decomposition might be made feasible in practice. In addition, our
results may possibly shed light on scalable Boolean matching for heterogeneous
FPGAs as well as topologically constrained logic synthesis [20].

5.2 Previous Work

Aside from BDD-based functional decomposition [19], we compare some related
work using SAT. In bi-decomposition [14], a function f is written as f(X) =
h(g1(Xa, Xc), g2(Xp, Xc)) under variable partition X = {X4|Xp|Xc}, where
function 4 is known a priori and is of special function types (namely, two-input
OR, AND, and XOR gates) while functions g; and g, are the unknown to be
computed. In contrast, the complication of Ashenhurst decomposition f(X) =
h(Xy, Xc, g(Xg, Xc)) comes from the fact that both functions 4 and g are
unknown. The problem needs to be formulated and solved differently while the
basic technique used is similar to that in [14].

FPGA Boolean matching, see, e.g., [4], is a subject closely related to functional
decomposition. In [15], Boolean matching was achieved with SAT solving, where
quantified Boolean formulas were converted into CNF formulas. The intrinsic expo-
nential explosion in formula sizes limits the scalability of the approach. Our method
may provide a partial solution to this problem, at least for some special PLB config-
urations.

5.3 Preliminaries

As conventional notation, sets are denoted by upper-case letters, e.g., S; set ele-
ments are in lower-case letters, e.g., ¢ € S. The cardinality of S is denoted by
IS|. A partition of a set S into §; € S fori = 1,...,k (with §; N §; =
@,i # j,and | J; S; = S)is denoted by {S1|S>]...|Sk}. For a set X of Boolean
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variables, its set of valuations (or truth assignments) is denoted by [X], e.g.,
[XT = {(0,0), (0, 1), (1,0), (1, 1)} for X = {x1, x2}.

5.3.1 Functional Decomposition

Definition 5.1 Given a completely specified Boolean function f, variable x is a
support variable of f if f, # f-x, where f; and f-, are the positive and negative
cofactors of f on x, respectively.

Definition 5.2 A set {f1(X), ..., fiu(X)} of completely specified Boolean func-
tions is (jointly) decomposable with respect to some variable partition X =
{Xg|Xc|Xc} if every function f;,i =1, ..., m, can be written as

filX)=hi(Xu,Xc, 81X, Xc), ..., 8x(Xg, Xc))

for some functions h;, g1, ..., g with k < |Xg|. The decomposition is called
disjoint if X¢ = ) and non-disjoint otherwise.

It is known as single-output decomposition for m = 1 and multiple-output decompo-
sition for m > 1. Note that, in multiple-output decomposition, functions k1, ..., Ay
share the same functions g1, ..., gk. For k = 1, the decomposition is known as the
so-called Ashenhurst decomposition [1].

Note that, for |[Xg| = 1, there is no successful decomposition because of the
violation of the criterion k < |X¢|. On the other hand, the decomposition trivially
holds if X¢ U Xg or X¢ U Xy equals X. The corresponding variable partition
is called trivial. We are concerned about decomposition under non-trivial variable
partition and furthermore focus on Ashenhurst decomposition.

The decomposability of a set { f1, ..., f,,} of functions under the variable parti-
tion X = {Xpg|Xg|Xc} can be analyzed through the so-called decomposition chart,
consisting of a set of matrices, one for each member of [ X ¢]]. The rows and columns
of a matrix are indexed by {1,...,m} x [Xg] and [Xs], respectively. For i €
{l,...,m},a € [Xul, b € [X¢g], and ¢ € [Xc], the entry with row index (i, a)
and column index b of the matrix of ¢ is of value f;( Xy = a, X¢g = b, Xc = ¢).

Proposition 5.1 (Ashenhurst [1], Curtis [6], and Karp [11]) A set {f1,..., fu} of
Boolean functions is decomposable as

filX)=hi(Xp, Xc, 81X, Xe), ..., gr(Xa, Xc))

fori = 1,...,m under variable partition X = {Xy|Xg|Xc} if and only if, for
every ¢ € [Xcll, the corresponding matrix of ¢ has at most 25 column patterns (i.e.,
at most 2% different kinds of column vectors).
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5.3.2 Functional Dependency

Definition 5.3 Given a Boolean function f : B” — B and a vector of Boolean
functions G = (g((X), ..., g.(X)) with g; : B" — B fori = 1,...,n, over the
same set of variable vector X = (x1, ..., X;;), we say that f functionally depends
on G if there exists a Boolean function z : B" — B, called the dependency function,
such that f(X) = h(g1(X), ..., g.(X)). We call functions f, G, and h the target
function, base functions, and dependency function, respectively.

Note that functions f and G are over the same domain in the definition; 4 need not
depend on all of the functions in G.

The necessary and sufficient condition of the existence of the dependency func-
tion 4 was given in [8]. Moreover a SAT-based computation of functional depen-
dency was presented in [10]. It forms an important ingredient in part of our formu-
lation.

5.3.3 Propositional Satisfiability and Interpolation

Let V = {vy,..., vt} be a finite set of Boolean variables. A literal | is either a
Boolean variable v; or its negated form —v;. A clause c is a disjunction of literals.
Without loss of generality, we shall assume that there are no repeated or comple-
mentary literals in the same clause. A SAT instance is a conjunction of clauses,
i.e., in the so-called conjunctive normal form (CNF). An assignment over V gives
every variable v; a Boolean value either true or false. A SAT instance is satisfiable
if there exists a satisfying assignment such that the CNF formula evaluates to true.
Otherwise it is unsatisfiable. Given a SAT instance, the satisfiability (SAT) problem
asks whether it is satisfiable or not. A SAT solver is a designated program to solve
the SAT problem.

5.3.3.1 Refutation Proof and Craig Interpolation

Definition 5.4 Assume literal v is in clause ¢ and —v in ¢3. A resolution of clauses
c1 and ¢ on variable v yields a new clause ¢ containing all literals in ¢; and c¢;
except for v and —v. The clause c is called the resolvent of ¢; and ¢, and variable v
the pivot variable.

Proposition 5.2 A resolvent ¢ of ¢ and c3 is a logical consequence of c1 A ca, that
is, c1 A cp implies c.

Theorem 5.1 (Robinson [18]) For an unsatisfiable SAT instance, there exists a
sequence of resolution steps leading to an empty clause.

Theorem 5.1 can be easily proved by Proposition 5.2 since an unsatisfiable SAT
instance must imply a contradiction. Often only a subset of the clauses, called an
unsatisfiable core, of the SAT instance participate in the resolution steps leading to
an empty clause.
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Definition 5.5 A refutation proof I7 of an unsatisfiable SAT instance S is a directed
acyclic graph (DAG) I' = (N, A), where every node in N represents a clause which
is either a root clause in S or a resolvent clause having exactly two predecessor
nodes and every arc in A connects a node to its ancestor node. The unique leaf of I7
corresponds to the empty clause.

Theorem 5.2 (Craig Interpolation Theorem [5]) Given two Boolean formulas ¢4
and ¢p, with oA App unsatisfiable, then there exists a Boolean formula \ 5 referring
only to the common variables of ¢ and @p such that o4 = Y4 and Yo N @p is
unsatisfiable.

The Boolean formula 14 is referred to as the interpolant of ¢4 with respect to
¢p. Some modern SAT solvers, e.g., MiniSat [7], are capable of constructing an
interpolant from an unsatisfiable SAT instance [16]. Detailed exposition on how
to construct an interpolant from a refutation proof in linear time can be found in
[12, 16, 17]. Note that the so-derived interpolant is in a circuit structure, which can
then be converted into the CNF as discussed below.

5.3.3.2 Circuit-to-CNF Conversion

Given a circuit netlist, it can be converted to a CNF formula in such a way that the
satisfiability is preserved. The conversion is achievable in linear time by introducing
some intermediate variables [21].

5.4 Main Algorithms

We show that Ashenhurst decomposition of a set of Boolean functions { f1, ..., fi}
can be achieved by SAT solving, Craig interpolation, and functional dependency.
Whenever a non-trivial decomposition exists, we derive functions %; and g automat-
ically for f;(X) = h;i(Xu, Xc, §(Xg, Xc)) along with the corresponding variable
partition X = {Xy|Xg|Xc}.

5.4.1 Single-Output Ashenhurst Decomposition

We first consider Ashenhurst decomposition for a single function f(X) =
h(Xu, Xc, g(Xg, Xc)).

5.4.1.1 Decomposition with Known Variable Partition

Proposition 5.1 in the context of Ashenhurst decomposition of a single function can
be formulated as satisfiability solving as follows.

Proposition 5.3 A completely specified Boolean function f(X) can be expressed
as h(Xy, Xc, 8g(Xg, Xc)) for some functions g and h if and only if the Boolean
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formula

(f(X}. X, X0) # (X}, X5, X)) A
(f(X3. X, X0) # (X3, X5, X)) A
(f(X3, X, Xo) # (X3, X5, X0)) (5.1)

is unsatisfiable, where a superscript i in Y' denotes the ith copy of the instantiation
of variables Y .

Observe that formula (5.1) is satisfiable if and only if there exists more than two
distinct column patterns in some matrix of the decomposition chart. Hence its unsat-
isfiability is exactly the condition of Ashenhurst decomposition.

Note that, unlike BDD-based counterparts, the above SAT-based formulation of
Ashenhurst decomposition naturally extends to non-disjoint decomposition. It is
because the unsatisfiability checking of formula (5.1) essentially tries to assert that
under every valuation of variables X ¢ the corresponding matrix of the decomposi-
tion chart has at most two column patterns. In contrast, BDD-based methods have
to check the decomposability under every valuation of X ¢ separately.

Whereas the decomposability of function f can be checked through SAT solving
of formula (5.1), the derivations of functions g and & can be realized through Craig
interpolation and functional dependency, respectively, as shown below.

To derive function g, we partition formula (5.1) into two sub-formulas

oa = f(X}y, X§, Xo) # f(X}, X5, X¢) and (5.2)
o = (f(X3, X5, Xc) # (X3, X&, X)) A
(f(X3, Xe, Xo) # f(X3, XE, X0)) (5.3)

Figure 5.2 shows the corresponding circuit representation of formulas (5.2) and
(5.3). The circuit representation can be converted into a CNF formula in linear time
[21] and thus can be checked for satisfiability.

®a Ps

Fig. 5.2 Circuit representing the conjunction condition of formulas (5.2) and (5.3)
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Lemma 5.1 For function f(X) decomposable under Ashenhurst decomposition
with variable partition X = {Xg|Xg|Xc}, the interpolant \r 4 with respect to g4 of
formula (5.2) and ¢p of formula (5.3) corresponds to a characteristic function such
that,

(i) for @4 satisfiable under some ¢ € [Xc1l, ¥a (b1, b2, c) = 1 with by € [[XIG]]
and by € [ X é]] if and only if the column vectors indexed by b and b, in the
matrix of ¢ of the decomposition chart of f are different;

(i1) for ¢4 unsatisfiable under some ¢ € [ X¢]l, there is only one column pattern in
the matrix of ¢ of the decomposition chart of f; and

(iii) for unsatisfiable ¢4, variables X are not the support variables of f and thus
{Xm|Xc|Xc} is a trivial variable partition for f.

Figure 5.3a illustrates the relation characterized by interpolant 4 (X ¢ %;, c)
for some ¢ € [ X¢]. The left and right sets of gray dots denote the elements of [[ X IG]]
and [ X 2G]], respectively. For function f to be decomposable, there are at most two
equivalence classes for the elements of [X iG]] for i = 1, 2. In the figure, the two
clusters of elements in [X é;]] signify two equivalence classes of column patterns
indexed by I[Xi6]]. An edge (b1, by) between by € [[XIG]] and by € [[Xé]] denotes
that b1 is not in the same equivalence class as by, i.e., ¥4 (b1, bz, ¢) = 1. For exam-
ple, p and r in the figure are in different equivalence classes and V¥4 (p, r,c) = 1,
whereas p and ¢ are in the same equivalence class and ¥4 (p, ¢, ¢) = 0. Essentially
the set of such edges is characterized by the equivalence relation ¥4 (X, X é, ).
So every element in one equivalence class of [X (1;]] is connected to every element
in the other equivalence class of [X é]], and vice versa, in Fig. 5.3a.

Fig. 5.3 (a) Relation characterized by 4 (X lG, X ZG, c) for some ¢ € [Xc]; (b) relation after
cofactoring Y4 (X5 = p, X%, ¢) with respect to some p € [XL]]

We next show how to extract function g from the interpolant ¥/ 4.

Lemma 5.2 For an arbitrary a € [[Xé;]], the cofactored interpolant 4 (XIG =
a, X%;, X ) is a legal implementation of function g(Xé, Xo).

After renaming X%; to X, we get the desired g(Xg, Xc)-
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Consider Fig. 5.3. After cofactoring 4 (XIG, Xé, ¢) with respect to p € [[Xé]],
all the edges in Fig. 5.3a will disappear except for the ones connecting p with
the elements in the other equivalence class of [ X é]] as shown in Fig. 5.3b. Hence
Yalp, X %;, ¢) can be used as an implementation of g function.

So far we have successfully obtained function g by interpolation. Next we need
to compute function /. The problem can be formulated as computing functional
dependency as follows. Let f(X) be our target function; let function g(X¢, X¢)
and identity functions 7, (x) = x, one for every variable x € Xy U X¢, be our
base functions. So the computed dependency function corresponds to our desired /.
Since functional dependency can be formulated using SAT solving and interpolation
[10], it well fits in our computation framework.

Remark 5.1 For disjoint decomposition, i.e., X¢c = @, we can simplify the derivation
of function %, without using functional dependency.

Given two functions f(X) and g(X¢) with variable partition X = {Xg|Xg}, we
aim to find a function 2(X g, x,) such that f(X) = h(Xp, g(X¢)), where x, is the
output variable of function g(X¢g). Leta, b € [Xg] with g(a) = 0 and g(b) = 1.
Then by Shannon expansion

h(Xp, xg) = (mxg Aoy (XH)) V (xg Ay (X 1))

where h—.xg(XH) = f(XH, XG = a) and hxg(XH) = f(XH, XG = b). The
derivation of the offset and onset minterms is easy because we can pick an arbitrary
minterm ¢ in [ X ] and see if g(c) equals O or 1. We then perform SAT solving on
either g(X¢) or —g(X¢) depending on the value g(c) to derive another necessary
minterm.

The above derivation of function %, however, does not scale well for decom-
position with large |Xc| because we may need to compute h(Xg, Xc = ¢, xg),
one for every valuation ¢ € [X¢]l. There are 21%¢| cases to analyze. Consequently
when common variables exist, functional dependency may be a better approach to
computing A.

The correctness of the so-derived Ashenhurst decomposition follows from
Lemma 5.2 and Proposition 5.1, as the following theorem states.

Theorem 5.3 Given a function f decomposable under Ashenhurst decomposition
with variable partition X = {Xy|Xg|Xc}, then f(X) = h(Xy, Xc, 8(Xg, X))
for functions g and h obtained by the above derivation.

5.4.1.2 Decomposition with Unknown Variable Partition

The previous construction assumes that a variable partition X = {Xgy|Xg|Xc} is
given. We show how to automate the variable partition within the decomposition
process of function f. A similar approach was used in [14] for bi-decomposition of
Boolean functions.

For each variable x; € X we introduce two control variables a,, and By;. In
addition we instantiate variable X into six copies X 1 x 2, X3, X4, X3, and X°. Let
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pa=(FXH £ FXNA N\ =xD)V By (54)
and
o8 = (f(X?) £ F(XH) A (F(X7) # F(XO) A
NG =) A=) A f =x)) v A
N =xH A7 =x0) v Br) (5.5)
where xl‘./ € X/ for j = 1,..., 6 are the instantiated versions of x; € X. Observe

that (ay;, By;,) = (0,0), (0,1), (1,0), and (1, 1) indicate that x; € Xc, x; € Xg,
Xx; € Xy, and x; can be in either of X and X g, respectively.

In SAT solving the conjunction of formulas (5.4) and (5.5), we make unit
assumptions [7] on the control variables. Similar to [14] but with a subtle differ-
ence, we introduce the following seed variable partition to avoid trivial variable
partition and to avoid | Xg| = 1. For the unit assumption, initially we specify three
distinct variables with one, say, x;, in Xy and two, say, x;, x;, in X and specify
all other variables in X¢. That is, we have (ay;, Bx;) = (1, 0), (o, Br) = (0, 1),
(e, By) = (0. 1), and (@y,. B,) = (0,0) fori # j. k. L.

Lemma 5.3 For an unsatisfiable conjunction of formulas (5.4) and (5.5) under a
seed variable partition, the final conflict clause consists of only the control vari-
ables, which indicates a valid non-trivial variable partition.

If the conjunction of formulas (5.4) and (5.5) is unsatisfiable under a seed vari-
able partition, then the corresponding decomposition (indicated by the final conflict
clause) is successful. Otherwise, we should try another seed variable partition. For a
given function f(X) with |X| = n, the existence of non-trivial Ashenhurst decom-
position can be checked with at most 3 - C different seed partitions.

Rather than just looking for a valid variable partition, we may further target one
that is more balanced (i.e., | X gy| and |X | are of similar sizes) and closer to dis-
joint (i.e., | X¢| is small) by enumerating different seed variable partitions. As SAT
solvers usually refer to a small unsatisfiable core, the returned variable partition is
desirable because |X¢| tends to be small. Even if a returned unsatisfiable core is
unnecessarily large, the corresponding variable partition can be further refined by
modifying the unit assumption to reduce the unsatisfiable core and reduce |Xc| as
well. The process can be iterated until the unsatisfiable core is minimal.

After automatic variable partition, functions g and & can be derived through a
construction similar to the foregoing one. The correctness of the overall construction
can be asserted.

Theorem 5.4 For a function f decomposable under Ashenhurst decomposition, we
have f(X) = h(Xy, Xc, g(Xg, Xc)) for functions g and h and a non-trivial vari-
able partition X = {Xy|Xg|Xc} derived from the above construction.
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f

a b ¢ d e

Fig. 5.4 Circuit to be decomposed

Example 5.1 To illustrate the computation, consider the circuit of Fig. 5.4. The first
step is to derive a valid variable partition. To exclude trivial partition, suppose we
force variables @ and b in X and d in Xg. Then the assignments along with the
assignments of the other variables, i.e., ¢ and e, in X¢ form a seed variable parti-
tion. These conditions can be specified by unit assumption setting control variables
(Aa; Ba) = (ap, Bp) = (0, 1), (ag, Ba) = (1,0), and (ac, Bec) = (ate, fe) = (0,0).
Solving the conjunction of formulas (5.4) and (5.5) under the unit assumption results
in an unsatisfiable result. It indicates that the seed partition is valid. Furthermore
suppose the returned conflict clause is (og Voap VeV Be V Ba V Be). It corresponds to
a valid partition suggesting that c € X¢,a,b € Xg, and d, e € Xy. For illustration
convenience, the decomposition chart of the circuit under this variable partition is
given in Fig. 5.5.

Given a valid variable partition, the second step is to derive the corresponding g
function. In turn, an interpolant can be derived from the unsatisfiability proof of the
conjunction of formulas (5.2) and (5.3). Suppose the derived interpolant is

1 2_.2 1.1 2b2 2

Y = —a'b'=c'a?=b>=c? v a' =b'=c'=a?=c? v al = =a’b =P v

—blel=a?b?c? v alc' =a?bic? v —a'b et =b3c? v —albl et a? P

Then the Boolean relation characterized by the interpolant can be depicted in
Fig. 5.6a, where the solid and dashed circles indicate different column patterns
in the decomposition chart of Fig. 5.5. Note that, when ¢ = 0, there is only one
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a,b
00 01 10 11
of0[0|0]|0
010|0|0|0|c=0
1000|0|0
d11111100011011
,€
o0{0[0]0]|O
o 0|0f0O]|O
c=1 1000(0|0]|O0
111011]|10(0

Fig. 5.5 Decomposition chart

column pattern in the decomposition chart as shown in Fig. 5.5. In effect both for-
mulas (5.2) and (5.3) are themselves unsatisfiable when ¢ = 0. Hence the interpolant
under ¢ = 0 is unconstrained and can be arbitrary. On the other hand, when ¢ = 1,
the interpolant corresponds to the Boolean relation characterizing different column
patterns of the decomposition chart as indicated in Fig. 5.6. By cofactoring the
interpolant with (@' = 0, ' = 0), we obtain a legal implementation of function
ﬂmbxﬂﬁammmmgmmﬂwa%nmb%ohmﬂ&amwzmaNmmmum

alblct

Fig. 5.6 (a) Relation characterized by interpolant and (b) cofactored relation
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derivation of the g function is not unique, which depends on the cofactoring values
of (a', bh).

Finally the third step is to derive the /& function using functional dependency com-
putation. In the computation, as shown in Fig. 5.7a the base functions include the
obtained g function and identity functions each representing a variable in Xy U X .
Furthermore the original f function in Fig. 5.4 is considered as the target func-
tion. Under such arrangement, the computed dependency function is what we desire
for the h function. In this example the derived i function is shown in Fig. 5.7b.
Therefore after Ashenhurst decomposition, f(a, b, ¢, d, e) can be re-expressed by
h(d,e,c, g(a,b,c)) with g and h functions derived above.

h
X, ¢ d e
A 4 A 4
A A A VN
abc ¢ d e x,c d e

(a) (b)

Fig. 5.7 (a) Base functions for functional dependency computation and (b) computed dependency
function

5.4.2 Multiple-Output Ashenhurst Decomposition

So far we considered single-output Ashenhurst decomposition for a single function
f. We show that the algorithm is extendable to multiple-output Ashenhurst decom-
position for a set { f1, ..., fiu} of functions.

Proposition 5.1 in the context of Ashenhurst decomposition of a set of functions
can be formulated as satisfiability solving as follows.

Proposition 5.4 A set { f1(X), ..., fm(X)} of completely specified Boolean func-
tions can be expressed as

filX) =hi(Xu,Xc,g(Xg, Xc))

for some functions h; and g withi = 1, ..., m if and only if the Boolean formula
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(\/ filX g, X6, Xe) # fi(Xy, XG, Xc)) A

1

(\/ fi(XF, X5, Xo) # fi(XG, X3, Xc)) A

1

(\/ fiXa, X&, Xe) # fi(X3, X HC)) (5.6)

L
is unsatisfiable.

Since the derivation of functions g and /; and automatic variable partitioning are
essentially the same as the single-output case, we omit the detailed exposition.

5.4.3 Beyond Ashenhurst Decomposition

Is the above algorithm extendable to general functional decomposition, namely,

fX)=h(Xn,Xc, 81 XG, Xc), ..., g&x( X, Xc))

for k > 17 The answer is yes, but with prohibitive cost. Taking k = 2, for exam-
ple, we need 20 copies of f to assert the non-existence of 5 different column pat-
terns for every matrix of a decomposition chart, in contrast to the 6 for Ashenhurst
decomposition shown in Fig. 5.2. This number grows in 2(2* + 1). Aside from
this duplication issue, the derivation of functions gi, ..., gx and 2 may involve
several iterations of finding satisfying assignments and performing cofactoring. The
number of iterations varies depending on how the interpolation is computed and can
be exponential in k. Therefore we focus mostly on Ashenhurst decomposition.

5.5 Experimental Results

The proposed approach to Ashenhurst decomposition was implemented in C++
within the ABC package [2] and used MiniSAT [7] as the underlying solver. All
the experiments were conducted on a Linux machine with Xeon 3.4 GHz CPU and
6 GB RAM.

Large ISCAS, MCNC, and ITC benchmark circuits were chosen to evaluate the
proposed method. Only large transition and output functions (with no less than 50
inputs in the transitive fanin cone) were considered. We evaluated both single-output
and two-output Ashenhurst decompositions. For the latter, we decomposed simul-
taneously a pair of functions with similar input variables. For a circuit, we heuris-
tically performed pairwise matching among its transition and output functions for
decomposition. Only function pairs with joint input variables no less than 50 were
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decomposed. Note that the experiments target the study of scalability, rather than
comprehensiveness as a synthesis methodology.

Tables 5.1 and 5.2 show the decomposition statistics of single-output and two-
output decompositions, respectively. In these tables, circuits to be decomposed are
listed in column 1. Columns 2 and 3 list the numbers of instances (i.e., functions for
single-output decomposition and function pairs for two-output decomposition) with
no less than 50 inputs and the ranges of the input sizes of these instances, respec-
tively. Column 4 lists the numbers of instances that we cannot find any successful
variable partition within 60 s or within 1500 seed variable partitions. Column 5 lists
the numbers of instances that are decomposable but spending over 30 s in SAT solv-
ing for the derivation of function g or 4. Columns 6 and 7 list the numbers of suc-
cessfully decomposed instances and the ranges of the input sizes of these instances,
respectively. Columns 8 and 9 list the average numbers of tried seed partitions in
60 s and the average rates hitting valid seed partitions. Column 10 shows the aver-
age CPU times spending on decomposing an instance. Finally, Column 11 shows
the memory consumption. As can be seen, our method can effectively decompose
functions or function pairs with up to 300 input variables.

Table 5.1 Single-output Ashenhurst decomposition
Circuit #func #var #fail #SAT_TO #succ #var_succ #VP_avg rate_valid-VP time_avg (s) mem (Mb)

bl4 153 50-218 0 108 45 50-101 1701 0.615 144.22 90.01
bl15 370 143-306 0 51 319  143-306 1519 0.917 96.62 107.20
bl17 1009 76-308 0O 148 861 76-308 1645 0.904 87.12 125.84
C2670 6 78-122 0 1 5 78-122 1066 0.835 83.80 58.91
C5315 20 54-67 O 4 16 54-67 3041 0.914 50.90 51.34
C7552 36 50-194 0 2 34 50-194 1350 0.455 64.38 36.65
s938 1 66-66 0 0 1 66-66 3051 0.726 19.03 24.90
s1423 17 51-59 0 0 17 51-59 3092 0.723 13.66 25.34
$3330 1 87-87 0 0 1 87-87 3336 0.599 58.30 27.75
§9234 13 5483 0 0 13 54-83 3482 0.857 37.86 35.33
$13207 3 212-212 0 0 3 212-212 569 0.908 70.26 50.62
s38417 256 53-99 6 72 178  53-99 1090 0.523 103.33 136.04
$38584 7 50-147 0 0 7 50-147 1120 0.924 47.13 51.56

Table 5.2 Two-output Ashenhurst decomposition
Circuit #pair #var #fail #SAT_TO #succ #var_succ #VP_avg rate_valid-VP time_avg (s) mem (Mb)

bl4 123 50-223 18 65 40 50-125 1832 0.568 96.86 226.70
bl5 201 145-306 0 31 170 145-269 1176 0.845 113.86 224.07
bl17 583 79-310 0 88 495 79-308 676 0.824 103.12 419.35
C2670 5 78-123 0 1 4 78-123 254 0.724 66.95 55.71
C5315 11 56-69 O 2 9 56-69 370 0.594 59.20 60.05
C7552 21 56-195 0 2 19 56-141 188 0.465 89.57 78.67
s938 1 6666 0 0 1 66-66 3345 0.720 61.24 34.77
s1423 14 50-67 O 0 14 50-67 3539 0.591 55.34 45.66
$3330 1 8787 0 0 1 87-87 1278 0.423 66.83 47.43
$9234 12 5483 0 0 12 54-83 2193 0.708 48.11 55.15
s13207 3 212-228 0 0 3 212-228 585 0.700 93.36 118.03
s38417 218 53-116 13 30 175 53-116 689 0.498 109.06 319.48
s38584 9 50-151 0O 0 9 50-151 1656 0.713 46.17 207.78
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Fig. 5.9 Best variable partition found in 60 s — with minimal UNSAT core refinement

We measure the quality of a variable partition in terms of disjointness, indicated
by | Xc|/|X|, and balancedness, indicated by ||Xg| — |X#1l/|X|. The smaller the
values are, the better a variable partition is. Figures 5.8 and 5.9 depict, for each
decomposition instance, the quality of best variable partition found within 60s' in
terms of the above two metrics, with emphasis on disjointness. A spot on these
two figures corresponds to a variable partition for some decomposition instance.
Figs. 5.8 and 5.9 show the variable partition data without and with further minimal

! The search for a best variable partition may quit before 60 s if both disjointness and balancedness
cannot be improved in consecutive 1500 trials.
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unsatisfiable (UNSAT) core refinement?, respectively. Since a final conflict clause
returned by a SAT solver may not reflect a minimal UNSAT core, very likely we can
further refine the corresponding variable partition. Suppose the variable partition is
X = {Xy|Xg|Xc} before the refinement. We iteratively and greedily try to move a
common variable of X¢ into X or X g, if available, making the new partition more
balanced as well. The iteration continues until no such movement is possible. On the
other hand, for a variable x with control variables (¢, 8x) = (1, 1), indicating x can
be placed in either of Xy and X, we put it in the one such that the final partition
is more balanced. Comparing Figs. 5.8 and 5.9, we see that minimal UNSAT core
refinement indeed can substantially improve the variable partition quality. Specifi-
cally, the improvement is 42.37% for disjointness and 5.74% for balancedness.
Figure 5.10 compares the qualities of variable partitioning under four different
efforts. In the figure, “1st” denotes the first-found valid partition and “tsec” denotes
the best found valid partition in ¢ seconds. The averaged values of |X¢|/|X| and
[IXGg| — | Xg|l/|X| with and without minimal UNSAT core refinement are plotted.
In our experiments, improving disjointness is preferable to improving balancedness.
These two objectives, as can be seen, are usually mutually exclusive. Disjointness
can be improved at the expense of sacrificing balancedness and vice versa. The
figure reveals as well the effectiveness of the minimal UNSAT core refinement in
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Fig. 5.10 Variable partition qualities under four different efforts

2 For every decomposition instance, the UNSAT core refinement is applied only once to the best
found variable partition. The CPU times listed in Tables 5.1 and 5.2 include those spent on such
refinements.
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improving disjointness. It is interesting to note that, on average, 1337 seed partitions
are tried in 60 s, in contrast to 3 seed partitions tried to identify the first valid one.

Practical experience suggests that the AIG sizes and levels of the composition
functions g and / are typically much larger than those of the original function f by
an order of magnitude, despite the reduction of support variables. How to minimize
interpolants effectively becomes an important subject for our method to directly
benefit logic synthesis.

5.6 Chapter Summary

A new formulation of Ashenhurst decomposition was proposed based on SAT solv-
ing, Craig interpolation, and functional dependency. Traditionally difficult non-
disjoint and multiple-output decompositions can be handled naturally. Moreover
variable partition need not be specified a priori and can be embedded in the decom-
position process. It allows effective enumeration over a wide range of partition
choices, which is not possible before. Although Ashenhurst decomposition is a
special case of functional decomposition, its simplicity is particularly attractive and
preferable.

Because of its scalability to large designs as justified by experimental results,
our approach can be applied at a top level of hierarchical decomposition in logic
synthesis, which may provide a global view on optimization. It can be a step forward
toward topologically constrained logic synthesis.

For future work, how to perform general functional decomposition and how
to minimize interpolants await future investigation. Also the application of our
approach to FPGA Boolean matching can be an interesting subject to explore.
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