Chapter 3
Sequential Logic Synthesis Using Symbolic
Bi-decomposition

Victor N. Kravets and Alan Mishchenko

Abstract In this chapter we use under-approximation of unreachable states of
a design to derive incomplete specification of combinational logic. The result-
ing incompletely specified functions are decomposed to enhance the quality of
technology-dependent synthesis. The decomposition choices are computed implic-
itly using novel formulation of symbolic bi-decomposition that is applied recur-
sively to decompose logic in terms of simple primitives. The ability of binary
decision diagrams to represent compactly certain exponentially large combinatorial
sets helps us to implicitly enumerate and explore variety of decomposition choices
improving quality of synthesized circuits. Benefits of the symbolic technique are
demonstrated in sequential synthesis of publicly available benchmarks as well as on
the realistic industrial designs.

3.1 Introduction and Motivation

Due to recent advances in verification technology [2] circuit synthesis of semi-
conductor designs no longer has to be limited to logic optimization of combi-
national blocks. Nowadays logic transformations may involve memory elements
which change design’s state encodings or its reachable state space and still be veri-
fied against its original description. In this chapter we focus on a more conservative
synthesis approach that changes sequential behavior of a design only in unreachable
states, leaving its intended “reachable” behavior unchanged. Unreachable states are
used to extract incomplete specification of combinational blocks and are applied as
don’t cares during functional decomposition to improve circuit quality.

To implement combinational logic of a design we rely on a very simple, yet com-
plete, form of functional decomposition commonly referred to as bi-decomposition.
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In general, for a given completely specified Boolean function its bi-decomposition
has form

f(x) = h(gi1(x1), g2(x2))

where £ is an arbitrary 2-input Boolean function. This decomposition is not unique
and its quality varies depending on selected subsets x; and X, that form possibly
overlapping (i.e., non-disjoint) partition of x. The problem of finding good bi-
decomposition has been studied in [1, 10, 18, 19, 21]. The main contribution of
the material in this chapter is symbolic formulation of bi-decomposition for incom-
pletely specified functions. The bi-decomposition is used as main computational
step in the prototype sequential synthesis tool and is applied recursively to imple-
ment logic of combinational blocks whose incomplete specification is extracted
from unreachable states of a design. Our symbolic formulation of bi-decomposition
finds all feasible solutions and picks the best ones, without explicit enumeration.

Computation of variable partitions in our symbolic formulation of bi-decompo-
sition favors implicit enumeration of decomposition subsets. They are represented
compactly with a binary decision diagram (BDD) [4] and are selected based on
optimization objective. Unlike previous approaches (e.g., [1, 23]) that rely on BDDs,
the decomposition is not checked explicitly for a variable partition and is solved
implicitly for all feasible partitions simultaneously utilizing fundamental property
of BDDs to share partial computations across subproblems. Thus, no costly enu-
meration that requires separate and independent decomposability checks is needed.
The technique was also used to tune greedy bi-decomposition when handling larger
functions.

To overcome limitations of explicit techniques authors in [14] proposed solu-
tion that uses a satisfiability solver [11]. Their approach is based on proving that
a problem instance is unsatisfied. The unsatisfiable core is then used to greedily
select partition of variables that induces bi-decomposition. Authors demonstrate
the approach to be efficient in runtime, when determining existence of non-trivial
decomposition. The experimental results on a selected benchmark set, however, are
primarily focused on the existence of decomposition and do not offer a qualitative
synthesis data.

The problem of using unreachable states of a design to improve synthesis and
verification quality has been studied before in various contexts. In general, these
algorithms either avoid explicit computation of unreachable states or first compute
them in pre-optimization stage. Approaches that do not explicitly compute unreach-
able states are mostly limited to incremental structural changes of a circuit and
rely on ATPG environment or induction [5, 8, 12] to justify a change. In contrast,
approaches that pre-compute subsets of unreachable states treat them as external
don’t cares [20] for re-synthesis of combinational logic blocks [6, 15]. In this chapter
we adopt the later approach as it offers more flexibility in logic re-implementation
through functional decomposition.

This chapter has the following structure. After brief introduction and moti-
vation preliminary constructs are given in Section 3.2. Section 3.3 describes
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bi-decomposition existence requirements. They are used in Section 3.4 to formu-
late implicit computation of decomposition. Implementation details are described in
Section 3.5. Experimental results are given in Section 3.6. Section 3.7 gives con-
cluding remarks and possible directions for future work.

3.2 Preliminary Constructs

Basic constructs used by synthesis algorithms of the chapter are introduced in this
section.

3.2.1 “Less-Than-or-Equal” Relation

Computational forms constructed in this chapter rely on the partial order relation
between Boolean functions. Given functions f(x) and g(x), f(x) < g(x) indicates
that f(x) precedes g(x) in the order. This “less-than-or-equal” relation (<) between
the two functions can be expressed by one of the following three equivalent forms:

[f®) = g®]=[f®) <g®]=[fx +gx) =1]

The relation imposes consistency constraint on constructed computational forms. It
allows us to represent incompletely specified Boolean functions in terms of intervals
[3], defined as

), u)] = {f®EX) < f(x) < ux)}

Here interval represents a set of completely specified functions using its two distin-
guished members /(x) and u(x), known as upper and lower bounds, respectively. It
is non-empty (or consistent) if and only if /(x) < u(x) is satisfied.

Example 3.1 Consider interval [Xy, x 4+ y] which represents an incompletely spec-
ified function. It is composed of four completely specified functions: Xy, y, x & y,
and x + y. Each of them has a don’t care set represented by function x. (]

Application of existential quantification 3 and universal quantification V to lower
and upper bounds of the interval enables convenient selection of its member func-
tions that are vacuous, i.e., independent in certain variables.

Example 3.2 Consider abstraction of x from the interval in Example 3.1:
[Ax(xy), Vx(x + y)]

The abstraction yields non-empty interval that is composed of a unique function that
is vacuous in x: [y, y]. Abstraction of y, however, results in empty interval since the
relation between its lower and upper bounds is not satisfied: [x, x] is empty. g

We will use notation Vx[I/(X), u(x)] to represent abstraction [Ix/(x), Vxu(x)].
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3.2.2 Parameterized Abstraction

To determine subsets of variables whose abstraction preserves consistency of a
symbolic statement (or a formula) we use parameterized abstraction construct. It
parameterizes computational form with a set of auxiliary decision variables ¢ that
are used to guide variable abstraction decisions. An assignment to ¢ effects consis-
tency of a computational form and thereby determines feasibility of abstracting a
corresponding variable subset.

We use the “if-then-else” operator ITE(c, x, y) to encode effect of quantifying
variable subsets from a formula. Defined as cx + cy, the operator selects between
variables x and y depending on value of c¢. As stated, it provides a mechanism to
parameterize signal dependencies in a Boolean function. It can be also generalized
to the selection between functions. In particular, ITE(c, f(x), 3xf(x)) encodes a
decision of existential quantification of x from f(x), similarly for the universal
quantification.

Example 3.3 We can parameterize abstraction of variable x from interval [xXy, x + ]
using ITE operator and auxiliary variable ¢y as

UTE(cy, Ix(Xy), xy), ITE(cy, Vx(x + y), x + )]

or equivalently [c,y + ¢y (Xy), cx ¥ + ¢y (x 4+ y)]. Subsequent parameterization of y
transforms lower bound Ly = ITE(cy, 3x(Xy), Xy) into Ly, = ITE(cy, 3yLy, Ly).
The effect of decisions on ¢ variables then has a form depicted in the tree below:

Ly

/\ /\

Ix(xy) =y  Iy( Fey(xy) =1

Parameterization of universal quantification has analogous application to an upper
bound of the interval, producing Uyy. ]

We rely on consistency of the “less-than-or-equal” relation to find decomposition
of a Boolean function. In the example below it is illustrated determining feasible
abstraction of the interval variable subsets, and in finding its member functions with
smallest support (i.e., with fewest variables).

Example 3.4 For each assignment to c¢ variables the consistency of relation <
between interval bounds in Example 3.3 determines existence of a function that
is independent of the corresponding variables. The tree expansion over decision
variables shows that there are only two feasible abstractions, marked with v':

Of the two, there is only one non-trivial abstraction Vx[Xy, x 4+ y] and it yields
single member interval [y, y]. [
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[xy, x+y] Valzy, x+y] - Vy[Ey, x+y] Vxy[xy, x+y]
=[] =[x, ] =[1,0]

In a typical computational form, consistent assignment to the decision variables
must hold universally, independent of non-decision variables. We can therefore
compute characteristic function of consistent assignments implicitly, universally
abstracting non-decision variables.

Example 3.5 For the parameterized bounds L,y and Uy, from Example 3.3 the char-
acteristic function of consistent assignments in [Lyy, U] is computed implicitly as

Vx, y[Lyxy, Uxy] = Vx, )’[L_xy+ Uyy = 1] =0y CytCxCy =0y

The computed function states that abstraction of variable y yields an empty interval.
Therefore, the interval contains no function that is independent of y. O

3.3 Bi-decomposition of Incompletely Specified Functions

This section gives formal statement of bi-decomposition over 2-input decomposition
primitives, namely OR and XOR.

3.3.1 OR Decomposition

For a completely specified function f (x), the decomposition of this type is described
in terms of equation below:

f(x) =g1(x1) + g2(x2) 3.1

When function is incompletely specified with interval [/(x), u(x)] we need to make
sure that OR composition g; + g2 is a member function of the interval.

Let x; and X, be signal subsets in which decomposition functions g; and g are,
respectively, vacuous, i.e., are functionally independent. (The underline in X; indi-
cates that the computed g; is independent in these variables.) Vacuous in x; function
g1 must not exceed largest member u(x) in all its minterm points, independent of
X;, l.e,, relation g;(x1) < Vxu(X) must be satisfied. Otherwise g| is either not
contained in the interval or not independent of x;. Similarly, g2(x2) < VX,u(X)
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must hold. Thus, Vx;u(x) and VX,u(X) give upper bounds on gi(x;) and g2(x2).
To ensure that the selection of g; and g, is “large enough” the following must
hold:

1) < VX[u(%) + Xpu(x) (3.2)

The OR composition does not exceed u universally due to the “reducing” effect of
V on u. Thus, we can determine existence of the bi-decomposition limiting check
to relation in (3.2). This check provides necessary and sufficient condition for the
existence of OR decomposition and is a re-statement of the result from [17].

AND Decomposition. As indicated in [17], AND decomposition of f can be
obtained from OR decomposition utilizing dual property of the two gates. For an
incompletely specified function [/, #] we can find complemented g; and g by estab-
lishing OR decomposability of the interval complement, derived as [/, u] = [u, 1.

3.3.2 XOR Decomposition

We first describe XOR decomposability condition for a completely specified function
f(x). To derive an existence condition for the XOR decomposition

fX) =g1(x1) & g2(x2) (3.3)

requires partitioning of X; and x; into finer subsets. Let X; and x, be subsets of vari-
ables in which g; and g» are, respectively, vacuous, and let x3 be a set of variables
on which both decomposition functions depend. We can then state necessary and
sufficient condition for the existence of XOR decomposition as follows:

Proposition 3.1 X0R bi-decomposition

FX) = g1(X, X3) @ g2(Xy, X3) 3.4
exists if and only if
FX). %0, %3) £ f(Y,.X5.%3) (3.5)
4
Vy,Lf (X1, y,.%3) # f(¥,, Y, X3) (3.6)

We derived conditions in the above proposition when analyzing library require-
ments for an advanced technology [13]. In [14] authors recently and independently
stated analogous proposition in terms of the unsatisfiability problem. We therefore
show correctness of the above proposition giving only an information-theoretical
argument: For (3.4) to hold, it must be that all onset/offset minterms in f that cannot
be distinguished by g1 (3.5) must be distinguished by g (3.6).
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For an incompletely specified function [/(x), u(x)] the consistency constrain
(3.5) = (3.6) of Proposition 3.1 changes to

[l(§1’ §25 X3) # l(zl’ KZ? X3)] A [h(glv 32’ X3) # h(zl’ )_(27 X3)]
¥
VY, (X, Y, X3) # h(y,. ¥, X3)] V [A(X}.y,,X3) # [(¥,, ¥, X3)]]

The above statement extends containment relation (3.5) = (3.6) by reducing lower
bound (3.5) and increasing upper bound (3.6) as much as possible. The relation pro-
vides the condition for XOR bi-decomposition of incompletely specified functions,
previously unsolved problem [14].

3.4 Parameterized Decomposition

Section 3.3 decomposition checks assume that the x; and X, subsets are pre-
determined. Finding such feasible subsets, however, may not be straightforward
and depending on the objectives could potentially require an exponential search if
performed explicitly. Our solution to the problem is to perform the search implicitly,
formulating the problem symbolically and solving it by leveraging the capability of
binary decision diagrams to compactly represent certain combinatorial subsets.

3.4.1 OR Parameterization

We use (3.2) to find feasible OR decompositions implicitly. It is used to construct a
computational form that parameterizes the V operation applied to variables x:

U <« u;

for each x € xdo

U <« ITE(cy,U,VxU);

end for
Such iterative parameterization gives function U (¢, x) that encodes the effect of
abstracting all variable subsets from u, where variable x is abstracted iff ¢y = 0.

The parameterized function U (¢, X) can be used in (3.2) to encode possible sup-
ports to g1 and g> in terms of the decision variables ¢; and ¢; :

I(x) < Ui(x,¢1) + Ua(x, ¢2) (3.7)

For any feasible assignment to ¢; and ¢;, the above relation must hold universally,
irrespective of values on x. Thus, computational form

Bi(cr, ) = VX[I(x) + Ui (x, ¢1) 4+ Ua(x, €2)] (3.8)
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yields a characteristic function of all feasible supports for g; and g»: it evaluates to
truth iff assignments to ¢; and ¢, induce feasible supports for g; and g».

We illustrate potentially scalable nature of BDDs to handle computation in (3.8)
decomposing multiplexer function for its various support sizes:

Max width Bi computation Best partition
Control Data  BDDsize  Time(s) (Jx1 1, 1x21]) No. of Choices
2 4 23 0.00 4.4 6
3 8 43 0.01 7,7) 70
4 16 79 0.09 (12,12) 12870
5 32 147 1.35 (21,21) 6E8.0
6 64 279 20.56 (38, 38) 1.8E18

The above table gives results of the computation in terms of multiplexer widths,
BDD size and time required to compute Bi, and the best support sizes of g; and
g2. As the table suggests, the amount of resources required in computation grows
moderately for smaller problem instances and is tolerable even for a larger function.

We point out that the exhaustive computational form (3.8) could be relaxed to
produce solution subsets to (3.7), instead of producing a complete solution. For
example, in place of (3.8) a specialized satisfiability procedure could be used to
produce solutions with additional optimization constraints. Specialized BDD-based
abstraction techniques that monitor resource consumption could be also deployed
to produce solution subsets. Another possibility is to rely on a greedy assignment
selection to ¢ and ¢, targeting disjoint subsets x; and x,. More detailed discussion
on selecting best x; and x; is given later, in Section 3.5.

3.4.2 XOR Parameterization

To simplify presentation we compute characteristic function of all feasible sup-
port partitions for a completely specified function. As before, encoding of pos-
sible supports for g; and g, is performed using two sets of auxiliary variables
¢; and ¢p. Using ¢q, (3.5) is transformed into f(x) # Fi(X,y,c1), where F is
derived from f(x) replacing each of its variables x; with ITE(cy;, x;, y;). Similarly,
part f(x, Y, x3) from (3.6) is parameterized with ¢, to construct Fz/ x,y,¢2). It
encodes selection of vacuous variables for go. The last component f (Xl’ Y, X3)
is transformed into F}'(X,y, €1, €2), replacing each variable in f(x) with ITE(cy; -
c2i, Xi, yi). Universally abstracting x and y variables gives representation of all fea-
sible supports for g1 and g»:

Bi(er, ) = VX, y[(f # F1) = (F, # F3)] (3.9)

We compare implicit computation of decomposition choices to a greedy algo-
rithm for the XOR decomposition, used by authors in [17, 22]. Starting from a seed
partition, the algorithm greedily extends support subsets calling XOR decomposabil-
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ity check in its inner loop. Although efficient in general, the check has potentially
formidable runtime. The profile of its behavior on a 16-bit adder is given in the table
below; it is compared against our implicit computation:

Output Time(s)

Sum bit  No. of Inputs  Best part.  Implicit [17] Check
s2 7 (2,5) 0.01 0.00
s4 11 2,9) 0.06 0.13
s6 15 (2,13) 0.12 4.44
s8 19 2,17) 0.13 71.05

s16 33 (2,31) 0.42 Time out

For a subset of sum-bit functions the table lists runtime for both techniques.
(The best part. column gives data generated by our implicit enumeration of feasible
partitions.) Although not typical, it is interesting that where a rather efficient greedy
check times out after an hour, an implicit exhaustive computation takes only 0.42 s.

In general, we can use best partition produced by the exhaustive implicit compu-
tation to evaluate and tune greedy algorithm or to improve some other approximate
technique.

3.5 Implementation Details of Sequential Synthesis

This section describes a sequential synthesis flow that first extracts incompletely
specified logic accounting for unreachable states in a design and then uses bi-
decomposition to synthesize technology-independent circuit.

3.5.1 Extraction of Incompletely Specified Logic

Unreachable states of a design form don’t cares for the combinational logic. Due
to the complexity of computing unreachable states even in designs of modest size,
incompletely specified combinational logic is extracted with respect to an approx-
imation of unreachable states. Unlike other partitioning approaches that try to pro-
duce a good approximation of unreachable states in reasonable time [10, 16], our
objective is to compute a good approximation with respect to support of individual
functions. A similar approach to approximate unreachable states using induction
was proposed in [7].

We perform state-space exploration with forward reachability analysis for over-
lapping subsets of registers. These subsets are selected using structural dependence
of next-state and primary outputs on the design latches. The selection tries to cre-
ate partitions maximizing accuracy of reachability analysis for present-state signals
supp_ps(f) output function f. In particular, the partitioning tries to meet the fol-
lowing goals:
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e For each function f, present-state inputs supp_ps(f) are represented in at least
one partition.

e Each partition selects additional logic to maximize accuracy of reachability anal-
ysis.

After completing reachability analysis for a partition, an incomplete specifica-
tion of signals that depend on the partition latches becomes available in the form
of a interval notation. For each signal, its interval pre-processed with the V oper-
ation eliminates vacuous variables, selecting a dependence on the least number of
variables. The interval is then used for performing bi-decomposition. Figure 3.1
exemplifies OR bi-decomposition applied to function f = ab + ac + bc of its output
signal. The bi-decomposition of [ f - abe, f + abc] finds OR decomposition of f in
g1 = ab + bc simplifying the circuit.

an unreachable state
state used as don’t care value

g,(@b) +g,(b.c)

Fig. 3.1 Bi-decomposition with unreachable states. State abc is used as a don’t care condition to
find OR decomposition that simplifies circuit

3.5.2 Exploring Decomposition Choices

The characteristic function Bi gives all feasible supports for decomposition func-
tions. Since the provided variety of choices could be very large, we restrict them
to a subset of desired solutions. The restriction targets minimization and balanced
selection of supports in decomposition functions. It is achieved symbolically, as
described below.

Let w;(c) be characteristic function of assignments to ¢ that have weight i (i.e.,
have exactly i decision variables set to 1). For a given n = |c| it represents com-
binatorial subsets (7) This function has compact representation in terms of BDDs.
Given a desired support size k1 = |x1| of g1, and of k> = |x3| of g2, existence of the
decomposition is determined constraining Bi with its corresponding solution space:
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Bi(cy, €2) - wy, (€1) - wi, (€2)

If the resulting function is not empty, then the desired decomposition exists. To
target balanced decomposition of a function we seek feasible k; and k; minimizing
max(ky, kp). Such simultaneous minimization of k; and k» balances supports x; and
X, favoring their disjoint selection. (This is in contrast to [14], where different cost
measures are used for each of the objectives.)

To avoid “trial-and-error” search for feasible support sizes we select desired k
and k, from a computed set of feasible pairs for g; and g». Suppose function «; (e)
encodes integer k; in terms of the e variables. Then function K (c, e) = Z?:o w; (¢) -
ki (e) relates a decision variables assignment to integer encoding of the support size
it induces. This function is used within the computational form

Bi, (e, e2) = dejez[Bi(er, ¢2) - K(ep, e1) - K(c2, €2)]

to generate all feasible size pairs (k1, k7).

The Bi, function should be post-processed to purge pairs that are dominated by
other, better solutions. For example, pair (3, 5) is dominated by pair (3, 4) since it
produces smaller distribution of supports between g; and g». Let gte(e, ') describe
“greater-than-or-equal” relation between a pair of integers encoded with e and €;
similarly, let equ describe the equality relation. We then define the dominance rela-
tion between bi-tuples £ = (eq, €) and &' = (¢], €}) as

dom(e, &) = gte(er, €)) - gte(ez, €5) - equ(er, €)) - equ(ey, €))
Using this relation subtraction of the dominated solutions from Bi, is performed as
Ve'[Bi (') < Bi,(g) - dom(e, &')]

It states that if an assignment to &’ is in Bi, (left-hand side of the relation), then its
dominated assignments to ¢ should be subtracted from Bi, (right-hand side of the
assignment).

To complete decomposition of a function we need to find functions g and g». For
the OR decomposition, possible functions g; and g» can be deduced directly from
the corresponding existence condition (3.2), universally quantifying out variables
in which g; and g» are vacuous. To construct XOR decomposition functions we use
algorithm from [17].

3.5.3 Synthesis Algorithm

Our logic optimization algorithm selectively re-implements functions of circuit sig-
nals relying on bi-decomposition of extracted incompletely specified logic. The
pseudocode code in Algorithm 1 captures general flow of the optimization.
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Algorithm 1 Logic optimization loop

create latch partitions of a design;
selectively collapse logic;
while (more logic to decompose) do
select a signal and its function f(x);
retrieve unreachable states u(x);
abstract vars from interval [ f-u, f + ul;
apply bi-decomposition to interval;
end while

The algorithm first creates overlapping partitions of a design. These partitions
are formed according to Section 3.5.2 and are typically limited to 100 latches.
Additional connectivity cost measures are used to control size of a partition. For
each partition computation of unreachable states is delayed until being requested by
a function that depends on its present-state signals. BDDs for computed reachable
states are then stored in a separate node space for each partition. When retrieving
unreachable states for a given support, their conjunctive approximation is brought
together to a common node space.

To re-decompose logic of a design the algorithm first creates functional repre-
sentation for selected signals in terms of their cone inputs or in terms of other
intermediate signals. The decision on whether to select a signal is driven by an
assessed impact of bi-decomposition on circuit quality: if it has potential to improve
variable partition, logic sharing, or timing over existing circuit structure, then signal
is added to a list of re-decomposition candidates.

The logic of candidate signals is processed in topological order until it is fully
implemented with simple primitives. This processing constitutes main loop of the
algorithm. After a signal and its function f(x) in the loop are selected, a set of
unreachable states u(x) are retrieved. This set is derived from reachability informa-
tion of partitions that f(x) depends on.

Before applying bi-decomposition to the incompletely specified function

[f(X) - u(x), fx) + ux)]

the algorithm tries to abstract some of the interval variables while keeping it consis-
tent; this eliminates redundant inputs. The bi-decomposition is then applied target-
ing potential logic sharing and balanced partition of x, as described in Section 3.5.3.
From a generated set of choices, partition that best improves timing and logic shar-
ing is selected. Figure 3.2 illustrates bi-decomposition that benefits from logic shar-
ing. The transformation re-uses logic of g;, which was present in the network but
was not in the fanin of f.

3.6 Experimental Evaluation

From a suite of publicly available benchmarks we selected a subset of sequential
circuits and assessed effect of unreachable states on bi-decomposition. Three types
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Fig. 3.2 Bi-decomposition which benefits from re-using existing logic: node g; is shared in the
f = g1 + g2 decomposition

of bi-decomposition were applied to functions of their output and next-state logic:
OR, AND, and XOR. They are evaluated in terms of their ability to reduce maximum
support of functions g| and g». Experiments with and without reachable state-space
analysis were performed.

The experimental results are given in Table 3.1. The table first lists circuit name,
along with its corresponding number of inputs/outputs and latches. Each circuit was
structurally pre-processed to remove cloned, dead, and constant latches. The #dec.
column gives number of functions for which non-trivial decomposition was identi-
fied. The average ratio between maximum support sizes of g; and g» and support
size of the function being decomposed is given in avg. reduct. column. Note that the
reduction of less than 0.5 (as in s713 and s838) indicates that both g; and g; tend to
be vacuous in some of the variables.

Table 3.1 Application of bi-decomposition to functions of next-state and output logic (without
and with state analysis)

Name Original circuit No states With states
Input/output Latches #Dec. Avg.reduct. log, states #Dec. Avg. reduct

s344  10/11 15 18 0.781 12 18 0.634
$526 3/6 21 21 0.775 14 21 0.556
s713  36/23 19 40 0.652 11 40 0.453
s838 36/2 32 33 0.540 5 33 0.088
s953  17/23 29 29 0.607 13 29 0.565
s1269 18/10 37 39 0.672 31 39 0.671
s5378 36/49 163 145 0.609 125 145 0.603
$9234  36/39 145 97 0.754 141 97 0.774
Average reduction: 0.673 0.54

The results are collected for two experiments: with and without state-space infor-
mation. The log, of computed reachable states is also listed in the table. Computed
average reduction ratios suggest that decomposability of a function improves as the
number of unreachable states gets larger. The unreachable states did not contribute
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much to s5378 largely because its logic is highly decomposable even in the absence
of state-space information. The runtime to compute reachable states for each of the
circuits did not exceed 1 min, requiring at most few seconds for circuits with 32 or
less latches. Computation of bi-decomposition was limited to 1 min per circuit.

We evaluate our Section 3.5.3 Algorithm 1 synthesizing technology-independent
netlists for a set of macro-blocks of a high-performance industrial design. Results
of the netlists optimized with bi-decomposition are given in Table 3.2. First four
columns list general parameters of each circuit, including number of gates it has
in its and/inv expansion. The circuits were first pre-processed using our in-house
tool, by optimizing it against publicly available mcnc.genlib library.

Table 3.2 Results of applying bi-decomposition in synthesis of industrial circuits

Name Original circuit Pre-processed Algor. 1
Input/Output Latches AND Area Delay Area Delay
seq4 108/202 253 1845 3638 44.8 2921 41.9
seqS 66/12 93 925 1951 47.2 1807 41.6
seq6 183/74 142 811 1578 34.9 1487 36.0
seq7 173/116 423 3173 6435 52.4 5348 48.3
seq8 140/23 201 2922 6183 50.1 5427 48.8
seq9 212/124 353 3896 8250 56.0 6938 45.2
Average reduction: 0.88 0.94

An implementation of the algorithm was then applied to improve each of the
circuits. Columns Pre-processed and Algor. 1 compare area (which corresponds
to the number of literals) and delay (estimated with a load-dependent model) of
mapped netlists before and after running our algorithm. The additional area and
timing savings are due to the algorithm, with the average area and delay reductions
of 0.88 and 0.94, respectively. We attribute these gains to the algorithm’s ability to
implicitly explore reach arsenal of decomposition choices during bi-decomposition.
Optimization of each circuit was completed within 4 min of runtime.

3.7 Conclusions and Future Work

Extraction of incompletely specified logic using under-approximation of unreach-
able states in sequential designs offers valuable opportunity for reducing the cir-
cuit complexity. We developed a novel formulation of symbolic bi-decomposition
and showed that the extracted logic has better implementation, with substantial
area and delay improvements. The introduced symbolic bi-decomposition computes
decomposition choices implicitly and enables their efficient subsetting using BDDs.
Selecting best decomposition patterns during synthesis, we improved circuit quality
of publicly available and realistic industrial design. We are currently working on
ways to further maximize logic sharing through bi-decomposition and to apply it in
a re-synthesis loop of well-optimized designs.
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