
Chapter 14
Algebraic Techniques to Enhance Common
Sub-expression Extraction for Polynomial
System Synthesis

Sivaram Gopalakrishnan and Priyank Kalla

Abstract Datapath designs that perform polynomial computations over bit-vectors
are found in many practical applications, such as in Digital Signal Processing,
communication, multi-media, and other embedded systems. With the growing mar-
ket for such applications, advancements in synthesis and optimization techniques
for polynomial datapaths are desirable. Common sub-expression extraction (CSE)
serves as a useful optimization technique in the synthesis of such polynomial
systems. However, CSE has limited potential for optimization when many com-
mon sub-expressions are not exposed in the given symbolic representation. Given
a suitable set of transformations (or decompositions) that expose many common
sub-expressions, subsequent application of CSE can offer a higher degree of opti-
mization. This chapter proposes algebraic (algorithmic) techniques to perform such
transformations and presents a methodology for their integration with CSE. Exper-
imental results show that designs synthesized using our integrated approach are
significantly more area-efficient than those synthesized using contemporary tech-
niques.

14.1 Introduction

High-level descriptions of arithmetic datapaths that perform polynomial computa-
tions over bit-vectors are found in many practical applications, such as in Digi-
tal Signal Processing (DSP) for multi-media applications and embedded systems.
These polynomial designs are initially specified using behavioral or Register-
Transfer-Level (RTL) descriptions, which are subsequently synthesized into hard-
ware using high-level and logic synthesis tools [23]. With the widespread use of
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such designs, there is a growing need to develop more sophisticated synthesis and
optimization techniques for polynomial datapaths at high-level/RTL.

The general area of high-level synthesis has seen extensive research over the
years. Various algorithmic techniques have been devised, and CAD tools have
been developed that are quite adept at capturing hardware description language
(HDL) models and mapping them into control/data-flow graphs (CDFGs), per-
forming scheduling, resource allocation and sharing, binding, retiming, etc. [7].
However, these tools lack the mathematical wherewithal to perform sophisticated
algebraic manipulation for arithmetic datapath-intensive designs. Such designs
implement a sequence of ADD, MULT type of algebraic computations over bit-
vectors; they are generally modeled at RTL or behavioral-level as systems of multi-
variate polynomials of finite degree [19, 22]. Hence, there has been increasing inter-
est in exploring the use of algebraic manipulation of polynomial expressions, for
RTL synthesis of arithmetic datapaths. Several techniques such as Horner decom-
position, factoring with common sub-expression extraction [13], term-rewriting
[1] have been proposed. Symbolic computer algebra [10, 19, 22] has also been
employed for polynomial datapath optimization. While these methods are useful as
stand-alone techniques, they exhibit limited potential for optimization as explained
below.

Typically, in a system of polynomials representing an arithmetic datapath, there
are many common sub-expressions. In such systems, common sub-expression
extraction (CSE) serves as a useful optimization technique, where isomorphic pat-
terns in an arithmetic expression tree are identified, extracted, and merged. This
prevents the cost of implementing multiple copies of the same expression. How-
ever, CSE has a limited potential for optimization if the common expressions are
not exposed in the given symbolic representation. Hence, application of a “suitable
set of transformations” (or decompositions) of the given polynomial representation
to expose more common sub-expressions offers a higher potential for optimization
by CSE. The objective of this chapter is to develop algorithmic and algebraic tech-
niques to perform such transformations, to present a methodology for their integra-
tion with CSE, and to achieve a higher degree of optimization.

14.1.1 Motivation

Consider the various decompositions for a system of polynomials P1, P2, and P3,
implemented with variables x , y, and z, as shown in Table 14.1. The direct imple-
mentation of this system will require 17 multipliers and 4 adders. To reduce the
size of the implementation, a Horner-form decomposition may be used. This imple-
mentation requires the use of 15 multipliers and 4 adders. However, a more sophis-
ticated factoring method employing kernel/co-kernel extraction with CSE [13, 14]
can further reduce the size of the implementation, using 12 multipliers and 4 adders.
Now, consider the proposed decomposition of the system, also shown in the table.
This implementation requires only 8 multipliers and 1 adder. Clearly, this is an
efficient implementation of the polynomial system. This decomposition achieves a
high degree of optimization by analyzing common sub-expressions across multiple
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Table 14.1 Various
decompositions for a
polynomial system

Original system Horner-form decomposition

P1 = x2 + 6xy + 9y2; P1 = x(x + 6y)+ 9y2;
P2 = 4xy2 + 12y3; P2 = 4xy2 + 12y3;
P3 = 2x2z + 6xyz; P3 = x(2xz + 6yz);
Factorization+ CSE Proposed decompsoition

P1 = x(x + 6y)+ 9y2; d1 = x + 3y; P1 = d1
2;

P2 = y2(4x + 12y); P2 =4y2d1;
P3 = xz(2x + 6y); P3 = 2xzd1;

polynomials. This is not a trivial task and is not achieved by any earlier manipulation
techniques [13, 14]. Note that d1 is a good building block (common sub-expression)
for these system of equations. Identifying and factoring out such building blocks
across multiple polynomial datapaths can yield area-efficient hardware implemen-
tations.

14.1.2 Contributions

In this chapter, we develop techniques to transform the given system of polynomi-
als by employing certain algebraic manipulations. These transformations have the
potential to expose more common terms among the polynomials. These terms can
be easily identified by the CSE routines and can be used as good “building blocks”
for the design. Our expression manipulations are based on the following algebraic
concepts:

• Canonical representation of polynomial functions over finite integer rings of the
type Z2m [4]

• Square-free factorization
• Common coefficient extraction
• Factoring with kernel/co-kernel computation
• Algebraic division

We show how the above-mentioned algebraic methods are developed and employed
in a synergistic fashion. These methods form the foundation of an integrated CSE
technique for area-efficient implementations of the polynomial system.

14.1.3 Paper Organization

The next section presents the previous work in the area of polynomial datapath
synthesis. Section 14.3 describes some preliminary concepts related to polynomial
functions and their algebraic manipulations. Section 14.4 describes the optimiza-
tion methods developed in this chapter. Section 14.5 presents our overall inte-
grated approach. The experimental results are presented in Section 14.6. Finally,
Section 14.7 concludes the chapter.
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14.2 Previous Work

Contemporary high-level synthesis tools are quite adept in extracting control/data-
flow graphs (CDFGs) from the given RTL descriptions and also in performing
scheduling, resource-sharing, retiming, and control synthesis. However, they are
limited in their capability to employ sophisticated algebraic manipulations to reduce
the cost of the implementation. For this reason, there has been increasing interest in
exploring the use of algebraic methods for RTL synthesis of arithmetic datapaths.

In [20, 21], the authors derive new polynomial models of complex computa-
tional blocks by the way of polynomial approximation for efficient synthesis. In
[19], symbolic computer algebra tools are used to search for a decomposition of
a given polynomial according to available components in a design library, using a
Buchberger-variant algorithm [2, 3] for Gröbner bases. Other algebraic transforms
have also been explored for efficient hardware synthesis: factoring with common
sub-expression elimination [13], exploiting the structure of arithmetic circuits [24],
term re-writing [1], etc. Similar algebraic transforms are also applied in the area of
code optimization. These include reducing the height of the operator trees [18], loop
expansion, induction variable elimination. A good review of these approaches can
be found in [8].

Taylor Expansion Diagrams (TEDs) [5] have also been used for data-flow trans-
formations in [9]. In this technique, the arithmetic expression is represented as a
TED. Given an objective (design constraint), a sequence of decomposition cuts
are applied to the TED that transforms it to an optimized data-flow graph. Mod-
ulo arithmetic has also been applied for polynomial optimization/decomposition
of arithmetic datapaths in [10, 11]. By accounting for the bit-vector size of the
computation, the systems are modeled as polynomial functions over finite integer
rings. Datapath optimization is subsequently performed by exploiting the number
theoretic properties of such rings, along with computational commutative algebra
concepts.

14.2.1 Kernel/Co-kernel Extraction

Polynomial systems can be manipulated by extracting common expressions by
using the kernel/co-kernel factoring. The work of [13] integrates factoring using
kernel/co-kernel extraction with CSE. However, this approach has its limitations.
Let us understand the general methodology of this approach before describing its
limitations. The following terminologies are mostly referred from [13].

A literal is a variable or a constant. A cube is a product of variables raised to
a non-negative integer power, with an associated sign. For example, +acb, −5cde,
−7a2bd3 are cubes. A sum of product (SOP) is said to be cube-free if no cube
(except “1”) divides all the cubes of the SOP. For a polynomial P and a cube c, the
expression P/c is a kernel if it is cube-free and has at least two terms. For example,
when P = 4abc − 3a2b2c, the expression P/abc = 4− 3ab is a kernel. The cube
that is used to obtain the kernel is the co-kernel (abc). This approach has two major
limitations:
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Coefficient Factoring: Numeric coefficients are treated as literals, not num-
bers. For example, consider a polynomial P = 5x2 + 10y3 + 15pq. According
to this approach, coefficients {5, 10, 15} are also treated as literals like variables
{x, y, p, q}. Since it does not use algebraic division, it cannot determine the fol-
lowing decomposition: P = 5(x2 + 2y3 + 3pq).

Symbolic Methods: Polynomials are factored without regard to their algebraic
properties. Consider a polynomial P = x2+ 2xy+ y2, which can actually be trans-
formed as (x + y)2. Such a decomposition is also not identified by this kernel/co-
kernel factoring approach. The reason for the inability to perform such a decompo-
sition is due to the lack of symbolic computer algebra manipulation.

This chapter develops certain algebraic techniques that address these limitations.
These techniques, along with kernel/co-kernel factoring, can be seamlessly inte-
grated with CSE to provide an additional degree of optimization. With this inte-
gration, we seek to extend the optimization potential offered by the conventional
methods.

14.3 Preliminary Concepts

This section will review some fundamental concepts of factorization and polynomial
function manipulation, mostly referred from [4, 6].

14.3.1 Polynomial Functions and Their Canonical Representations

A bit-vector of size m represents integer values reduced modulo 2m . Therefore,
polynomial datapaths can be considered as polynomial functions over finite integer
rings of the form Z2m . Moreover, polynomial datapaths often implement bit-vector
arithmetic with operands of different bit-widths. Let x1, . . . , xd represent the bit-
vector variables, where each bit-vector has bit-width n1, . . . , nd . Let f be the bit-
vector output of the datapath, with m as its bit-width. Then the bit-vector polynomial
can be considered as a function f : Z2n1 × Z2n2 × · · · Z2nd → Z2m .

A function f from Z2n1 × Z2n2 × · · · × Z2nd → Z2m is said to be a poly-
nomial function if it is represented by a polynomial F ∈ Z [x1, x2, . . . , xd ]; i.e.,
f (x1, x2, . . . , xd) ≡ F(x1, x2, . . . , xd) for all xi ∈ Z2ni , i = 1, 2, . . . , d and ≡
denotes congruence (mod 2m).

Let f : Z21 × Z22 → Z23 be a function defined as: f (0, 0) = 1, f (0, 1) = 3,
f (0, 2) = 5, f (0, 3) = 7, f (1, 0) = 1, f (1, 1) = 4, f (1, 2) = 1, f (1, 3) =
0. Then, f is a polynomial function representable by F = 1 + 2y + xy2, since
f (x, y) ≡ F(x, y) mod 23 for x = 0, 1 and y = 0, 1, 2, 3.

Polynomial functions implemented over specific bit-vector sizes can be repre-
sented in a unique canonical form. According to [4, 10], any polynomial represen-
tation F for a function f , from Z2n1 × Z2n2 × · · · Z2nd to Z2m , can be uniquely
represented as a sum-of-product of falling factorial terms:

F = ΣkckYk (14.1)
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where,

• k =< k1, . . . , kd > for each ki = 0, 1, . . . , μi − 1;
• μi = min(2ni , λ), for each i = 1, . . . , d;
• λ is the least integer such that 2m divides λ!;
• ck ∈ Z such that 0 ≤ ck <

2m

gcd(2m ,
∏d

i=1 ki !) ;

In (14.1), Yk is represented as

Yk(x) =
d∏

i=1

Yki (xi )

= Yk1(x1) · Yk2(x2) · · · Ykd (xd) (14.2)

where Yk(x) is a falling factorial defined as follows:

Definition 14.1 Falling factorials of degree k are defined according to:

• Y0(x) = 1
• Y1(x) = x
• Y2(x) = x(x − 1)
...

• Yk(x) = (x − k + 1) · Yk−1(x)

Intuitively, this suggests that while having a canonical form representation as in
(14.1), it is possible to find common Yki (xi ) terms.

For example, consider the following polynomials implementing a 16-bit datap-
ath, i.e., as polynomial functions over f : Z216 × Z216 → Z216 :

F = 4x2 y2 − 4x2 y − 4xy2 + 4xy + 5z2x − 5zx (14.3)

G = 7x2z2 − 7x2z − 7xz2 + 7zx + 3y2x − 3yx (14.4)

Using the canonical form representation, we get

F = 4Y2(x)Y2(y)+ 5Y2(z)Y1(x) (14.5)

G = 7Y2(x)Y2(z)+ 3Y2(y)Y1(x) (14.6)

Such a representation exposes many common terms in Yki (xi ). These terms may
subsequently serve as a good basis for common sub-expression extraction.

For a detailed description of the above canonical form representation, the canon-
ical reduction operations, and their impact on hardware implementation costs for
polynomial datapaths, the reader is referred to [10].
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14.3.2 Factorization

Definition 14.2 Square-free polynomial Let F be a field or an integral domain Z .
A polynomial u in F[x] is a square-free polynomial if there is no polynomial v in
F[x] with deg(v, x) > 0, such that v2|u.

Although the definition is expressed in terms of a squared factor, it implies that the
polynomial does not have a factor of the form vn with n ≥ 2.

Example 14.1 The polynomial u1 = x2 + 3x + 2 = (x + 1)(x + 2) is square-free.
However, u2 = x4 + 7x3 + 18x2 + 20x + 8 = (x + 1)(x + 2)2 is not square-free,
as v2 (where v = x + 2) divides u2.

Definition 14.3 Square-free factorization A polynomial u in F[x] has a unique fac-
torization

u = cs1s2
2 · · · sm

m (14.7)

where c is in F and each si is monic and square-free with gcd(si , s j ) = 1 for i �= j .
This unique factorization in (14.7) is called square-free factorization of u.

Example 14.2 The polynomial u = 2x7−2x6+24x5−24x4+96x3−96x2+128x−
128 has a square-free factorization 2(x − 1)(x2 + 4)3 where c = 2, s1 = x − 1,
s2 = 1, and s3 = x2 + 4. Note that a square-free factorization may not contain all
the powers given in (14.7).

A square-free factorization only involves the square-free factors of a polynomial
and leaves the deeper structure that involves the irreducible factors intact.

Example 14.3 Using square-free factorization

x6 − 9x4 + 24x2 − 16 = (x2 − 1)(x2 − 4)2 (14.8)

both factors are reducible. This suggests that even after obtaining square-free poly-
nomials, there is a potential for additional factorization. In other words, consider
14.8, where (x2− 1) can be further factored as (x + 1)(x − 1) and (x2− 4)2 can be
factored as ((x + 2)(x − 2))2.

14.4 Optimization Methods

The limitations of contemporary techniques come from their narrow approach to
factorization, relying on single types of factorization, instead of the myriad of opti-
mization techniques available. We propose an integrated approach, to polynomial
optimization, to overcome these limitations. This section describes the various opti-
mization techniques that are developed/employed in this chapter.
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14.4.1 Common Coefficient Extraction

The presence of many coefficient multiplications in polynomial systems increases
the area-cost of the hardware implementation. Moreover, existing coefficient fac-
toring techniques [13] are inefficient in their algebraic manipulation capabilities.
Therefore, it is our focus to develop a coefficient factoring technique that employs
efficient algebraic manipulations and as a result reduces the number of coefficient
multiplications in the given system.

Consider the following polynomial P1 = 8x + 16y + 24z. When coefficient
extraction is performed over P1, it results in three possible transformations, given
as follows:

P1 = 2(4x + 8y + 12z) (14.9)

P1 = 4(2x + 4y + 6z) (14.10)

P1 = 8(x + 2y + 3z) (14.11)

From these three transformations, (14.11) extracts the highest common term in P1.
This results in the best transformation (reduced set of operations). A method to
determine the highest common coefficient is the greatest common divisor (GCD)
computation. Therefore, in this approach, GCD computations are employed to per-
form common coefficient extraction (CCE) for a system of polynomials. The pseu-
docode to perform CCE is shown in Algorithm 6.

Algorithm 6 Common Coefficient Extraction (CCE)
1: CCE(a1, · · · , an)
2: /* (a1, · · · , an) = Coefficients of the given polynomial;*/
3: for every pair (ai , a j ) in n do
4: Compute GCD(ai , a j );
5: Ignore GCDs = “1”;
6: if GCD(ai , a j ) < ai and GCD(ai , a j ) < a j then
7: Ignore the GCDs;
8: end if
9: end for

10: Order the GCDs in decreasing order;
11: while GCD list is non-empty do
12: Perform the extraction using that order
13: Store the linear/non-linear blocks created as a result of extraction
14: Remove GCDs corresponding to extracted terms and update the GCD list
15: end while

Let us illustrate the operation of the CCE routine. Consider the polynomial P1
computed as

P1 = 8x + 16y + 24z + 15a + 30b + 11 (14.12)
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The input to CCE is the coefficients of the given polynomial that are involved
in coefficient multiplications. In other words, if there is a coefficient addition in
the polynomial, it is not considered while performing CCE. For example in (14.12),
only the coefficients {8, 16, 24, 15, 30} are considered and 11 is ignored. The reason
is because there is no benefit in extracting this coefficient and a direct implementa-
tion is the cheapest in terms of area-cost.

The algorithm then begins by computing the GCDs for every pair-wise combi-
nation of the coefficients in the input set. Computing pair-wise GCDs of the coeffi-
cients:

GC D(8, 16) = 8

GC D(8, 24) = 8
...

GC D(15, 30) = 15 (14.13)

we get the following set {8, 8, 1, 2, 8, 1, 2, 3, 6, 15}. However, only a subset is
generated by ignoring “GCDs = 1” and “GCDs (ai , a j )< ai and a j .” The reason for
ignoring these GCDs is that we only want to extract the highest common coefficients
that would result in a reduced cost. For example, the GCD(24, 30) = 6. However,
extracting 6 does not reduce the cost of the sub-expression 24z + 30b in (14.12), as
6(4z + 5b) requires more coefficient multipliers.

Applying the above concepts, the final subset is {8, 15}. This set is then arranged
in the decreasing order to get {15, 8}. The first element is “15.” On performing the
extraction using coefficient “15,” the following decomposition is realized:

P1 = 8x + 16y + 24z + 15(a + 2b) (14.14)

This creates a smaller polynomial (a+ 2b). It should be noted that this is a linear
polynomial. This polynomial is stored and the extraction continues until the GCD
list is empty. After CCE, the polynomial decomposition obtained is

P1 = 8(x + 2y + 3z)+ 15(a + 2b) (14.15)

Two linear blocks (a+2b) and (x+2y+3z) are finally obtained. The motivation
behind storing these polynomials is that they can serve as potentially good building
blocks in the subsequent optimization methods.

14.4.2 Common Cube Extraction

Common cubes, that consist of products of variables, also need to be extracted from
the given polynomial representation. The kernel/co-kernel extraction technique
from [13] is quite efficient for this purpose. Therefore, we employ this approach
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to perform the common cube extraction. Note that the cube extraction technique of
[13] also considers coefficients as variables. We do not allow the technique of [13]
to treat coefficients as variables – as we employ CCE for coefficient extraction. We
employ this technique of [13] for extracting cubes composed only of variables.

Consider the following system of polynomials:

P1 = x2 y + xyz

P2 = ab2c3 + b2c2x

P3 = axz + x2z2b (14.16)

A kernel/co-kernel cube extraction results in the following representation. (Here,
ck is the co-kernel cube and k is the kernel.)

P1 = (xy)ck(x + z)k
P2 = (b2c2)ck(ac + x)k
P3 = (xz)ck(a + xzb)k (14.17)

Note that this procedure (which we call Cube_Ex()) exposes both cubes and ker-
nels as potential (common) building blocks, which CSE can further identify and
extract.

14.4.3 Algebraic Division

This method can potentially lead to a high degree of optimization. The problem
essentially lies in identifying a good divisor, which can lead to an efficient decom-
position. Given a polynomial a(x), and a set of divisors (bi (x)), ∀i we can perform
the division a(x)/bi (x) and determine if the resulting transformation is optimized
for hardware implementation.

Using common coefficient extraction and cube extraction , a large number of lin-
ear blocks, that are simpler than the original polynomial, are exposed. These linear
blocks can subsequently be used for performing algebraic division. For our overall
synthesis approach, we consider only the exposed “linear expressions” as algebraic
divisors. The motivation behind using the exposed “linear” blocks for division is
that

• Linear blocks cannot be decomposed any further, implying that they have to be
certainly implemented.

• They also serve as good building blocks in terms of (cheaper) hardware imple-
mentation.

For example, using cube extraction the given system in Table 14.1 is transformed
to
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P1 = x(x + 6y)+ 9y2 or P1 = x2 + y(6x + 9y)

P2 = 4y2(x + 3y)

P3 = 2xz(x + 3y) (14.18)

The following linear blocks are now exposed: {(x + 6y), (6x + 9y), (x + 3y)}.
Using these blocks as divisors, we divide P1, P2, and P3. (x + 3y) serves as a good
building-block because it divides all the three polynomials as

P1 = (x + 3y)2

P2 = 4y2(x + 3y)

P3 = 2xz(x + 3y) (14.19)

Such a transformation to (14.19) is possible only through algebraic division. None
of the other expression manipulation techniques can identify this transformation.

14.5 Integrated Approach

The overall approach to polynomial system synthesis is presented in this section. We
show how we integrate the algebraic methods presented previously with common
sub-expression elimination. The pseudocode for the overall integrated approach is
presented in Algorithm 7.

The algorithm operates as follows:

• The given system of polynomials is initially stored in a list of arrays. Each
element in the list represents a polynomial. The elements in the array for each
list represent the transformed representations of the polynomial. Figure 14.1a
shows the polynomial data structure representing the system of polynomials in
its expanded form, canonical form (can), and square-free factored form (sq f ).

• The algorithm begins by computing the canonical forms and the square-free
factored forms, for all the polynomials in the given system. At this stage, the
polynomial data structure looks like in Fig. 14.1a.

• Then, the best-cost implementation among these representations is chosen and
stored as Pinitial. The cost is stored as Cinitial. We estimate the cost using the
number of adders and multipliers required to implement the polynomial.

• Common coefficient extraction (CCE) and common cube extraction (Cub_Ex)
are subsequently performed. The linear/non-linear polynomials obtained from
these extractions are stored/updated. Also, the resulting transformations for
each polynomial are updated in the polynomial data structure. At this stage,
the data structure looks like in Fig. 14.1b. To elaborate further, in this figure,
{P1, P1a, P1b, P1c} are various representations of P1 (as a result of CCE and
Cub_Ex), and so on.

• Using the linear blocks, algebraic division is performed and the polynomial data-
structure is further populated, with multiple representations.
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Algorithm 7 Approach to Polynomial System Synthesis
1: /*Given: (P1, P2, · · · , Pn) = Polys (P ′i s) representing the system; Each Pi is a list to store

multiple representations of Pi ;*/
2: Poly_Synth(P1, P2, · · · , Pn)
3: /*Initial set of Polynomials, Porig*/
4: Porig = 〈P1, · · · , Pn〉;
5: Pcan = Canonize(Porig);
6: Psq f = Sqr_free(Porig);
7: Initial_cost Cinitial = min_cost (Porig, Pcan, Psq f );
8: /*The polynomial with cost Cinitial is Pinitial */
9: CC E(Pinitial ); Update resulting linear/non-linear polynomials;

10: /*PCC E = Polynomial representation after CCE();*/ Update P ′i s;
11: Cube_Ex(P ′i s); Update resulting linear/non-linear polynomials;
12: /*PCC E_Cube = Polynomial representation after Cube_Ex();*/ Update P ′i s;
13: Linear polynomials exposed are lin_poly =〈l1, · · · , lk〉
14: for every l j in lin_poly do
15: ALG_DIV(P ′i s, l j );
16: Update P ′i s and l ′j s;
17: end for
18: for every combination of P ′i s (Pcomb) representing Porig do
19: Cost = CSE(Pcomb);
20: if (Cost < Cinitial ) then
21: Cinitial = Cost ;
22: Pf inal = Pcomb;
23: end if
24: end for
25: return Pf inal ;

• The entire polynomial system can be represented using a list of polynomials,
where each element in the list is some representation for each polynomial. For
example, {P1, P2a, P3b} is one possible list that represents the entire system
(refer Fig. 14.1b). The various lists that represent the entire system are given
by

{(P1, P2, P3), (P1, P2, P3a), (P1, P2, P3b),

...

(P1a, P2b, P3), (P1a, P2b, P3a), (P1a, P2b, P3b),

...

(P1c, P2b, P3), (P1c, P2b, P3a), (P1c, P2b, P3b)} (14.20)

• Finally, we can pick the decomposition with the least estimated cost. For exam-
ple, Fig. 14.1c shows that the least-cost implementation of the system is identified
as:

Pfinal = (P1a, P2b, P3a) (14.21)
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Fig. 14.1 Polynomial system representations

The working of Algorithm 7 is explained with the polynomial system presented
in Table 14.2.

Table 14.2 Illustration of algorithm 7

Original system

P1 = 13x2 + 26xy + 13y2 + 7x − 7y + 11;
P2 = 15x2 − 30xy + 15y2 + 11x + 11y + 9;
P3 = 5x3 y2 − 5x3 y − 15x2 y2 + 15x2 y + 10xy2 − 10xy + 3z2;
P4 = 3x2 y2 − 3x2 y − 3xy2 + 3xy + z + 1;
After canonization and CCE

P1 = 13(x2 + 2xy + y2)+ 7(x − y)+ 11;
P2 = 15(x2 − 2xy + y2)+ 11(x + y)+ 9;
P3 = 5x(x − 1)(x − 2)y(y − 1)+ 3z2;
P4 = 3x(x − 1)y(y − 1)+ z + 1;
After cube extraction

P1 = 13(x(x + 2y)+ y2)+ 7(x − y)+ 11;
P2 = 15(x(x − 2y)+ y2)+ 11(x + y)+ 9;
P3 = 5x(x − 1)(x − 2)y(y − 1)+ 3z2;
P4 = 3x(x − 1)y(y − 1)+ z + 1;
Final decomposition

d1 = x + y; d2 = x − y; d3 = x(x − 1)y(y − 1)
P1 = 13(d1

2)+ 7d2 + 11; P2 = 15(d2
2)+ 11d1 + 9;

P3 = 5d3(x − 2)+ 3z2; P4 = 3d3 + z + 1;

Initially, canonical reduction and square-free factorization are performed. In this
example, this technique does not result in any decomposition for square-free factor-
ization. For P3 and P4, there is a low-cost canonical representation.

We then compute the initial cost of the polynomial by using only CSE. In the
original system, there are no common sub-expressions. The total cost of the original
system is estimated as 51 MULTs and 21 ADDs. Then CCE is performed, resulting
in the transformation, as shown in the Table 14.2.

The linear polynomials obtained are (x − y) and (x + y). The non-linear poly-
nomials are (x2 + 2xy + y2) and (x2 − 2xy + y2). After performing common cube
extraction (Cube_Ex()), the additional linear blocks added are (x+2y) and (x−2y).
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Subsequently, algebraic division is applied using the linear blocks as divisors for all
representations of the polynomial system. The final decomposition with CSE leads
to an implementation where only the linear blocks (x+ y) and (x− y) are used. The
representation for the final implementation is shown in the final row of Table 14.2.
The total cost of the final implementation is 14 MULTs and 12 ADDs.

14.6 Experiments

The datapath computations are provided as a polynomial system, operating over
specific input/output bit-vector sizes. All algebraic manipulations are implemented
in Maple [15]; however, for Horner-form decomposition and factorization, we used
the routines available in MATLAB [17]. For common sub-expression elimination,
we use the JuanCSE tool available at [14]. Based on the given decomposition (for
each polynomial in the system), the individual blocks are generated using the Syn-
opsys Design Compiler [23]. These units are subsequently used to implement the
entire system.

The experiments are performed on a variety of DSP benchmarks. The results
are presented in Table 14.3. The first column lists the polynomial systems used for
the experiments. The first five benchmarks are Savitzky-Golay filters. These filters
are widely used in image-processing applications. The next benchmark is a polyno-
mial system implementing quadratic filters from [16]. The next benchmark is from
[12], used in automotive applications. The final benchmark is a multi-variate cosine
wavelet used in graphics application from [13]. In the second column, we list the
design characteristics: number of variables (bit-vectors), the order (highest degree),
and the output bit-vector size (m). Column 3 lists the number of polynomials repre-
senting the entire system. Columns 4 and 5 list the implementation area and delay,
respectively, of the polynomial system implemented using Factorization+ common
sub-expression elimination. Columns 6 and 7 list the implementation area and delay
of the polynomial system, implemented using our proposed method. Columns 8 and
9 list the improvement in the implementation area and delay using our polynomial
decomposition technique, respectively. Considering all the benchmarks, we show

Table 14.3 Comparison of proposed method with factorization/CSE

Factorization/CSE Proposed method Improvement

Systems Var/Deg/m # polys Area Delay Area Delay Area % Delay %

SG_3X2 2/2/16 9 204805 186.6 102386 146.8 50 21.3
SG_4X2 2/2/16 16 449063 211.7 197599 262.8 55.9 −24.1
SG_4X3 2/3/16 16 690208 282.3 557252 328.5 19.2 −16.3
SG_5X2 2/2/16 25 570384 205.6 271729 234.2 52.3 −13.9
SG_5X3 2/3/16 25 1365774 238.1 614955 287.4 54.9 −20.7
Quad 2/2/16 2 36405 118.4 30556 129.7 16 −9.5
Mibench 3/2/8 2 20359 64.8 8433 67.2 58.6 −3.7
MVCS 2/3/16 1 31040 119.1 22214 157.8 28.4 −32
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an average improvement in the actual implementation area of approximately 42%.
However, this area optimization does come at a cost of higher delay.

14.7 Conclusions

This chapter presents a synthesis approach for arithmetic datapaths implemented
using a system of polynomial functions. We develop algebraic techniques that effi-
ciently factor coefficients and cubes from the polynomial system, resulting in the
generation of linear blocks. Using these blocks as divisors, we perform algebraic
division, resulting in a decomposition of the polynomial system. Our decomposi-
tion exposes more common terms which can be identified by CSE, leading to a
more efficient implementation. Experimental results demonstrate significant area
savings using our approach as compared against contemporary datapath synthesis
techniques. As part of future work, as datapath designs consume a lot of power, we
would like to investigate the use of algebraic transformations in low-power synthesis
of arithmetic datapaths.
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