
Chapter 12
Logic Difference Optimization for Incremental
Synthesis

Smita Krishnaswamy, Haoxing Ren, Nilesh Modi, and Ruchir Puri

Abstract During the IC design process, functional specifications are often modified
late in the design cycle, often after placement and routing are completed. However,
designers are left either to manually process such modifications by hand or to restart
the design process from scratch–a very costly option. In order to address this issue,
we present DeltaSyn, a tool and methodology for generating a highly optimized
logic difference between a modified high-level specification and an implemented
design. DeltaSyn has the ability to locate similar logic in the original design which
can be reused to realize the modified specification through several analysis tech-
niques that are applied in sequence. The first phase employs fast functional and
structural analysis techniques to identify equivalent signals between the original and
the modified circuits. The second phase uses a novel topologically-guided dynamic
matching algorithm to locate reusable portions of logic close to the primary out-
puts. The third phase utilizes functional hashing to locate similar chunks of logic
throughout the remainder of the circuit. Experiments on industrial designs show
that, together, these techniques successfully implement incremental changes while
preserving an average of 97% of the pre-existing logic. Unlike previous approaches,
bit-parallel simulation and dynamic programming enable fast performance and scal-
ability. A typical design of around 10K gates is processed and verified in about 200 s
or less.

12.1 Introduction and Background

As the IC industry matures, it becomes common for existing designs to be mod-
ified incrementally. Since redesigning logic involves high expenditure of design
effort and time, previous designs must be maximally re-utilized whenever possible.

S. Krishnaswamy (B)
IBM TJ Watson Research Center, Yorktown Heights, NY
e-mail: skrishn@us.ibm.com

This work is based on an earlier work: DeltaSyn: an efficient logic difference optimizer
for ECO synthesis, in Proceedings of the 2009 international Conference on Computer-Aided
Design, ISBN:978-1-60558-800-1 (2009) c© ACM, 2009. DOI= http://doi.acm.org/10.1145/
1687399.1687546

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis,
Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_12,
C© Springer Science+Business Media, LLC 2011

203

204 S. Krishnaswamy et al.

Designers have noted that, in existing flows, even a small change in the specification
can lead to large changes in the implementation [7]. More generally, the need for
CAD methodologies to be less sequential in nature and allow for transformations
that are “incremental and heterogeneous” has been recognized by leaders in indus-
try [6].

Recent advances in incremental physical synthesis [2, 22], placement [17], rout-
ing [25], timing analysis [22], and verification [4] have made incremental tools
practical. However, logic synthesis remains a bottleneck in incremental design for
several reasons. First, it is difficult to process incremental changes in the design
manually since logic optimizations can render intermediate signals unrecognizable.
Second, the inherent randomness in optimization choices makes the design process
unstable, i.e., a slight modification of the specification can lead to a different imple-
mentation. Therefore, a general incremental synthesis methodology that is able to
quickly derive a small set of changes in logic to handle incremental updates is nec-
essary.

Prior work on incremental synthesis tends to focus on small engineering change
orders (ECOs). Such methods primarily fall into two categories. The first category
consists of purely functional techniques which attempt to isolate point changes and
perform in-place rectification. Such techniques can be unscalable [12, 21] due to
the use of complex BDD manipulation and laborious analysis. Further, they may
simply fail to identify multiple point changes and changes that cannot be easily
isolated as originating at specific points in a circuit due to logic restructuring. The
second category of methods is heavily reliant on structural correspondences [3, 19]
and can result in large difference models that disrupt much of the existing design
when such correspondences are unavailable.

In this chapter, we present DeltaSyn, a method to produce a synthesized delta
or the logic difference between an RTL-level modified specification and an original
implemented design. As illustrated in Fig. 12.1, DeltaSyn combines both functional

Fig. 12.1 The main phases of DeltaSyn: (a) the original design and the modified specification
are given as inputs to DeltaSyn, (b) functional and structural equivalences forming the input-side
boundary of the changes are identified, (c) matching subcircuits which form the output-side bound-
ary of the changes are located and verified, (d) further reductions are identified through functional
hashing

12 Logic Difference Optimization for Incremental Synthesis 205

and structural analysis to minimize the logic difference. As a pre-processing step,
we compile the modified specification into a preliminary technology-independent
gate-level netlist with little optimization. Phase I finds structurally and functionally
equivalent gates to determine the input-side boundary of the logic difference. Phase
II uses a novel topologically guided functional technique that finds matching sub-
circuits starting from primary outputs and progressing upstream to determine the
output-side boundary of the change. Phase III finds further logic for reuse through a
novel functional hashing technique. DeltaSyn allows designers to avoid most design
steps including much of logic synthesis, technology mapping, placement, routing,
buffering, and other back-end optimizations on the unchanged logic.

The main features of our method include:

• An efficient multi-phase flow that integrates fast functional and structural tech-
niques to reduce the logic difference through the identification of input- and
output-side boundaries of the change.

• A novel dynamic algorithm that finds matching subcircuits between the modified
specification and implemented design to significantly decrease the logic differ-
ence.

• A functional hashing technique to enable wider use of matching.

A key advantage of our approach is that, unlike traditional ECO methodologies,
we make no assumptions about the type or extent of the changes in logic. The
remainder of the chapter is organized as follows. Section 12.2 describes previous
work in incremental synthesis. Section 12.3 describes the overall flow of Delta-
Syn. Sections 12.3.1 and 12.3.2 describe our equivalence-finding and subcircuit-
matching phases of logic difference reduction, while Section 12.3.3 presents the
functional-hashing phase of difference reduction. Section 12.4 presents empirical
results and analysis. Section 12.5 concludes the chapter.

12.2 Previous Work

Recently, the focus of incremental design has been on changes to routing or place-
ment [2, 11, 18]. However, there have been several papers dealing specifically with
logic ECO. Authors of [3, 19] present techniques that depend on structural corre-
spondences. They find topologically corresponding nets in the design. Then, gates
driving these nets are replaced by the correct gate type. While this type of analysis
is generally fast, it can lead to many changes to the design since such structural
correspondences are hard to find in designs that undergo many transformations.

In contrast, the method from [12] does not analyze topology. Instead, it uses a
BDD-based functional decomposition technique to identify sets of candidate signals
that are able to correct the outputs of the circuit to achieve the ECO. The authors
rewrite functions of each output O(X) in terms of internal signals t1, t2 to see
whether there are functions that can be inserted at t1, t2 to realize a new function
O ′. In other words, they solve the Boolean equation O(X, t1, t2) = O ′ for t1 and
t2 and check for consistency. This method does not scale well due to the memory
required for a BDD-based implementation of this technique.

206 S. Krishnaswamy et al.

More recently, Ling et al. [13] present a maximum satisfiability (MAX-SAT)
formulation similar to that of [18] for logic rectification in FPGA-based designs.
Rectification refers to corrections in response to missing or wrong connections in
the design. They find the maximum number of clauses that can be satisfied between
a miter that compares the original implementation and the modified specification.
Then, gates corresponding to unsatisfied clauses are modified to correct the logic.
They report that approximately 10% of the netlist is disrupted for five or fewer
errors. For more significant ECO changes, MAX-SAT can produce numerous unsat-
isfied clauses since it depends on the existence of functional equivalences. Further,
this method does not directly show how to correct the circuit. Deriving the correction
itself can be a difficult problem – one that is circumvented by our method.

12.3 DeltaSyn

In this section, we describe the incremental logic synthesis problem and our solution
techniques. First, we define terms that are used through the remainder of the chapter.

Definition 12.1 The original model is the original synthesized, placed, routed, and
optimized design.

Definition 12.2 The modified specification is the modified RTL-level specification,
i.e., the change order.

Definition 12.3 The difference model is a circuit representing the changes to the
original model required to implement the modified specification. The set of gates
in the difference model represent new gates added to the original model. Wires
represent connections among these gates. The primary inputs and primary outputs
of the difference model are annotated by connections to existing gates and pins in
the original model.

Given the original model, the modified specification, and a list of corresponding
primary outputs and latches, the objective of incremental synthesis is to derive a
difference model that is minimal in the number of gates. We choose the minimal
number of gates as our metric because the general procedure by which incremental
synthesis occurs in the industry motivates the need to preserve as many gates as pos-
sible. Typically, when late-stage changes occur, the masks are already set for most
metal layers. The changes are realized by rewiring spare gates in the top metal layer.
Additionally, incremental placement and routing tools can optimize wire length and
other physical concerns.

The new specification, generally written in an RTL-level hardware description
language (such as VHDL), is compiled into a technology-independent form called
the modified model. This step is relatively fast because the majority of the design
time is spent in physical design including physical synthesis, routing, and analysis
[Osler, P. Personal Communication (2009)] (see Fig. 12.17).

The circuits in Fig. 12.2 are used to broadly illustrate the three phases of our
difference optimization. By inspection, it is clear that f 3 and f 7 are the only

12 Logic Difference Optimization for Incremental Synthesis 207

Fig. 12.2 Sample circuits to
illustrate our method

differences between the two circuits. Although some of the local logic has under-
gone equivalent transformations (gates g4 and g7 have been modified through the
application of DeMorgan’s law), most of the circuit retains its global structure. The
nearby logic in the original model being unrecognizable despite the actual change
being small is typical of such examples.

DeltaSyn recognizes and isolates such changes as follows: Our first phase
involves structural and functional equivalence checking. For the given example, the
equivalences x1 ≡ w∗1 , x4 ≡ w∗4 , and x5 ≡ w∗5 are identified by these techniques.
Our second phase is geared toward finding matching subcircuits from the primary
outputs. Through a careful process of subcircuit enumeration and Boolean matching,
the subcircuits consisting of { f 8, f 9} from the original model and {g7} are matched
under the intermediate input mapping {(x3, w

∗
3), (x6, w

∗
7)}. This phase leaves g3 and

g6 as the logic difference . However, in the third phase f 3 and g6 are recognized as
subcircuits performing the same functionality, therefore f 3 can simply be rewired
to realize g6. Therefore, the third phase leaves g3 as the optimized logic difference.
The remainder of this section explains the algorithms involved in these steps.

12.3.1 Phase I: Equivalence-Based Reduction

Phase I is illustrated in Fig. 12.3. Starting with the given list of corresponding
primary inputs and latches, DeltaSyn builds a new correspondence list L between
matched signals in the original and modified models. Matches are found both struc-
turally and functionally. Candidates for functional equivalence are identified by
comparing simulation responses and verified using Boolean satisfiability (SAT).

208 S. Krishnaswamy et al.

Fig. 12.3 Logic difference
reduction through
equivalence checking

Structural equivalences are found inductively, starting with corresponding pri-
mary inputs and latch outputs. All gates g, g′ whose input signals correspond, and
whose functions are identical, are added to the correspondence list. The correspon-
dence list can keep track of all pairwise correspondences (in the case of one-to-
many correspondences that can occur with redundancy removal). This process is
then repeated until no further gate-outputs are found to structurally correspond with
each other.

Example 12.1 In Fig. 12.4 the initial correspondence list is
L = {(a, a∗)(b, b∗)(c, c∗)(d, d∗)(e, e∗)(f, f ∗)}. Since both the inputs to the gate
with output x are in L , we examine gate x∗ in the original model. Since this gate is
of the same type as x , (x, x∗) can be added to L .

After the structural correspondences are exhausted, the combinational logic is
simulated in order to generate candidate functional equivalences. The simulation
proceeds by first assigning common random input vectors to signal pairs in L . Sig-
nals with the same output response on thousands of input vectors (simulated in a
bit-parallel fashion) are considered candidates for equivalence, as in [10, 15]. These
candidates are further pruned by comparing a pre-computed fanin signature for each
of these candidate signals. A fanin signature has a bit position representing each PI
and latch in the design. This bit is set if the PI or latch in question is in the transitive
fanin cone of the signal and unset otherwise. Fanin signatures for all internal signals
can be pre-computed in one topological traversal of the circuit.

Example 12.2 In Figure 12.4, the same set of four random vectors are assigned to
corresponding input and internal signals. The output responses to each of the inputs

12 Logic Difference Optimization for Incremental Synthesis 209

Fig. 12.4 Identifying structural and functional equivalences

are listed horizontally. The simulations suggest that (z, z∗), (u, u∗), (w, v∗) are can-
didate equivalences. However, the fanin list of v∗ contains PIs c, d but the list for w
contains c, d, e, f . Therefore, these signals are not equivalent.

Equivalences for the remaining candidates are verified using SAT. We construct
miters between candidate signals by connecting the corresponding primary inputs
together and check for satisfiability. UNSAT assignments can be used to update
simulation vectors.

Note that it is not necessary for all intermediate signals to be matched. For
instance, if two non-identical signals are merged due to local observability don’t
cares (ODCs) as in [27], then downstream equivalences will be detected after the
point at which the difference between the signals becomes unobservable. After func-
tional equivalences are found, all of the gates driving the signals in L can be deleted
from the difference model.

12.3.2 Phase II: Matching-Based Reduction

Phase II of DeltaSyn finds subcircuits that are functionally equivalent under some
permutation of intermediate signals. Since incremental synthesis is intended to be
used for small changes in large netlists, there are large areas of logic that are iden-
tifiably unchanged once the dependence on the changed logic is removed. In other
words, once the output-side boundary of the change is disconnected, the remaining
logic should be equivalent under an appropriate association (connection) of internal
signals (as illustrated in Fig. 12.2).

210 S. Krishnaswamy et al.

At the outset, the task of finding matching subcircuits seems to be computation-
ally complex because it is unclear where the potentially matching subcircuits are
located within the modified and original models. Enumerating all possible subcir-
cuits (or even a fraction of them) is a computationally intractable task with expo-
nential complexity in the size of the circuit. Additionally, once such candidate sub-
circuits are located, finding an input ordering such that they functionally match is
itself an N P-complete problem known as Boolean matching . For our purposes,
we actually find all such input orders instead of just one. While these problems are
generally highly complex, we take advantage of two context-specific properties in
order to effectively locate and match subcircuits:

1. Most of the modifications we encounter are small.
2. Many of the logic optimizations performed on the original implementation

involve localized transformations that leave the global structure of the logic
intact.

In fact, about 90% of the optimizations that are performed in the design flow
are physical synthesis optimizations such as factoring, buffering, and local timing-
driven expansions [9, 20, 22, 24]. While redundancy removal can be a non-local
change, equivalent signals between the two circuits (despite redundancy removal)
can be recognized by techniques in Phase I. Since we expect the change in logic
to be small, regions of the circuit farther from the input-side boundaries are more
likely to match. Therefore, we enumerate subcircuits starting from corresponding
primary outputs in order to find upstream matches. Due to the second property, we
are able to utilize local subcircuit enumeration. The subcircuits we enumerate are
limited by a width of 10 or fewer inputs, thereby improving scalability. However,
after each subcircuit pair is matched, the algorithm is recursively invoked on the
corresponding inputs of the match.

Figure 12.5 illustrates the main steps of subcircuit identification and matching.
Candidate subcircuits are generated by expanding two corresponding outputs along
their fanin cones. For each candidate subcircuit pair, we find input symmetry classes,
and one input order under which the two circuits are equivalent (if such an order
exists). From this order, we are able to enumerate all input orders under which the
circuits are equivalent. For each such order, the algorithm is called recursively on
the corresponding inputs of the two subcircuits.

12.3.2.1 Subcircuit Enumeration

For the purposes of our matching algorithm we define a subcircuit as follows:

Definition 12.4 A subcircuit C consists of the logic cone between one output O ,
and a set of inputs {i1, i2, . . . , in}.

Pairs of subcircuits, one from the original model and one from the modified
model, are enumerated in tandem. Figure 12.6 illustrates the subcircuit enumeration
algorithm. Each subcircuit in the pair starts as a single gate and expands to incor-
porate the drivers of its inputs. For instance, in Fig. 12.6, the subcircuit initially

12 Logic Difference Optimization for Incremental Synthesis 211

Fig. 12.5 Difference reduction through subcircuit matching

Fig. 12.6 Candidate subcircuit enumeration

contains only the gate driving primary output z and then expands in both the x- and
y-directions. The expansion in a particular direction is stopped when the input being
expanded is (a) a primary input, (b) a latch, (c) a previously identified equivalence,
(d) a previously matched signal, (e) the added gate increases the subcircuit width
beyond the maximum allowed width, or (f) the signal being expanded has other
fanouts outside the subcircuit (signals with multiple fanouts can only be at the output
of a subcircuit).

Pseudocode for subcircuit expansion and enumeration are shown in Fig. 12.7. A
subcirc_enum structure (shown in Fig. 12.8) is instantiated for pairs of nets N , N∗
where N is from the modified model and N∗ is from the original model (starting

212 S. Krishnaswamy et al.

Fig. 12.7 Subcircuit pair
enumeration algorithm

EXPAND SUBCIRCUIT(subcircuit C, queue Q)
{

for(all inputs i ∈ C)
if(has outside fanouts(i))continue
g = get driver(i)
if(is PI(g) is latch(g)continue
if(is equivalent(g) is matched(g))continue
if(num inputs((C g) > MAX))continue
Q.push(new subcircuit(C g))

}

Fig. 12.8 The data structure
for enumerated subcircuits

STRUCT subcirc enum

{
N
N∗
mod queue
orig queue
pair history

next subcircuit pair(C, C∗)
expand subcircuit(subcircuit C, queue Q)

}

from corresponding primary outputs). The next_subcircuit_pair method fills in the
variables C and C∗. First, the orig_queue is popped. If the orig_queue is empty,
then all the possible subcircuits in the original model have already been enumerated
for a particular subcircuit C in the modified model. In this case, a new modified
subcircuit is found by popping the mod_queue. If a particular pair of subcircuits has
already been seen (and recorded in the pair_history) then the next pair is generated.
If the mod_queue is also empty, then all possible pairs of subcircuits have already
been enumerated for the pair of nets (N , N∗) and the process terminates.

12 Logic Difference Optimization for Incremental Synthesis 213

12.3.2.2 Subcircuit Matching

For two candidate subcircuits (C,C∗) realizing the Boolean functions F(i1, i2, . . . ,

in) and F∗(i1∗, i2∗, . . . , in∗), respectively, our goal is to find all of the permutations
of the inputs of F∗ such that F = F∗. Note that this is not necessary for most uses
of Boolean matching (such as technology mapping). We elaborate on this process
below.

Definition 12.5 A matching permutation ρ(F∗,F) of a function F∗(i1, i2, . . . , in)

with respect to a function F is a permutation of its inputs such that

F∗(ρ(F∗,F)(i1), ρ(F∗,F)(i2), . . . , ρ(F∗,F)(in)) = F

Definition 12.6 Two inputs ix and iy of a function F are said to be symmetric with
respect to each other if

F(i1, i2, . . . ix, . . . iy . . . in) = F(i1, i2, . . . iy, . . . ix . . . in)

Definition 12.7 Given a function F and a partition of its inputs into symmetry
classes

sym_F = {sym_F[1], sym_F[2], . . . , sym_F[n]},

a symmetric permutation τF on the inputs of F is a composition of permutations on
each symmetry class τF = τsym_F[1] ◦ τsym_F[2] ◦ . . . ◦ τsym_F[n]. Each constituent
permutation τsym_F[i] leaves all variables not in sym_F[i] fixed.

We now state and prove the main property that allows us to derive all matching
permutations.

Theorem 12.1 Given a matching permutation ρ(F∗,F), all other matching permuta-
tions π(F∗,F) can be derived by composing a symmetric permutation τ with ρ(F∗,F),
that is, for some symmetric permutation τ :

π(F∗,F) = ρ(F∗,F) ◦ τ

Proof Assume there exists a matching permutation π(F∗,F) that cannot be derived
by composing a symmetric permutation with ρ(F,F∗). Then, there is a permutation φ
which permutes a set of non-symmetric variables S′ such that ρ(F,F∗)◦φ = π(F∗,F).
However, by definition of symmetry

F∗(ρ(F,F∗)(φ(i1)), ρ(F,F∗)(φ(i2)), ρ(F,F∗)(φ(i3)) . . .)

�= F∗(ρ(F,F∗)(i1), ρ(F,F∗)(i2), ρ(F,F∗)(i3))

By transitivity

214 S. Krishnaswamy et al.

F∗(ρ(F,F∗)(φ(i1)), ρ(F,F∗)(φ(i2)), ρ(F,F∗)(φ(i3)) . . .) �= F.

Therefore, π(F∗,F) cannot be a matching permutation . For the other side, suppose
φ is any symmetric permutation of F∗ then by definition of symmetry

F∗(φ(i1), φ(i2), φ(i3) . . .) = F∗(i1, i2, i3 . . .)

and by definition of matching permutation:

F∗(ρ(F,F∗)(φ(i1)), ρ(F,F∗)(φ(i2)), ρ(F,F∗)(φ(i3)) . . .)

= F∗(ρ(F,F∗)(i1), ρ(F,F∗)(i2), φ(F,F∗)(i3)) = F

Therefore, ρ ◦ φ is also a matching permutation of F∗ with respect to F . �

Theorem 12.1 suggests that all matching permutations can be derived in these
steps:

1. Computing the set of input symmetry classes for each Boolean function, i.e., for
a function F we compute sym_F = {sym_F[1], sym_F[2], . . . , sym_F[n]}
where classes form a partition of the inputs of F and each input is contained in
one of the classes of sym_F .

2. Deriving one matching permutation through the use of a Boolean matching
method.

3. Permuting symmetric variables within the matching permutation derived in
step 2.

To obtain the set of symmetry classes for a Boolean function F we recompute the
truth table bitset after swapping pairs of inputs. This method has complexity O(n2)

for a circuit of width n, and this method is illustrated in Fig. 12.9.
We derive a matching permutation of F∗ or determine that one does not exist

through the algorithm shown in Fig. 12.11. In the pseudocode, instead of specifying

Fig. 12.9 Computing symmetry classes

12 Logic Difference Optimization for Incremental Synthesis 215

permutations ρF∗,F , we directly specify the ordering on the variables in F∗ that is
induced by ρ when F is ordered in what we call a symmetry class order, i.e., F with
symmetric variables adjacent to each other, as shown below:

F(sym_F[1][1], sym_F[1][2], . . . , sym_F[1][n], sym_F[2][1],
sym_F[2][2], . . . , sym_F[2][n], . . .)

The reorder(F, sym_F) function in the pseudocode is used to recompute the func-
tions F according to the order suggested by sym_F (and similarly with F∗). The
overall function is explained below:

1. First, we check whether number of inputs in both the functions is the same.
2. Next, we check the sizes and number of symmetry classes. If the symmetry

classes all have unique sizes, then the classes are considered resolved.
3. If the symmetry classes of F and F∗ are resolved, they can be associated with

each according to class size and immediately checked for equivalence.
4. If the symmetry classes do not have distinctive sizes, we use a simplified form

of the method from [1], denoted by the function matching_cofactor_order in
Fig. 12.10. Here, cofactors are computed for representative members of each
unresolved symmetry class, and the minterm counts of the nth-order cofactors
are used to associate the classes of F with those of F∗. This determines a per-
mutation of the variables of F∗ up to symmetry classes.

bool COMPUTE MATCHING PERM ORDER(f unction F , f unction F∗)
{

if(|inputs(F)|! = |inputs(F∗)|
return UNMATCHED

sym F = compute sym classes(F)
sym F∗ = compute sym classes(F∗)
sort by size(sym F)
sort by size(sym F∗)
if(|sym F |! = |sym F∗|)

return UNMATCHED
for(0 < = i < |sym F |)

if(|sym F[i]|! = |sym F∗[i]|)
return UNMATCHED

if(resolved(sym F∗))
reorder(F∗, sym F∗)
reorder(F, sym F)
if(F∗ = = F) return MATCHED
else return UNMATCHED

if(matching cofactor order(F, sym F, F∗, sym F∗))
return MATCHED

else
return UNMATCHED

}

Fig. 12.10 Compute a matching permutation order

216 S. Krishnaswamy et al.

Fig. 12.11 Enumerating
matching input orders

NEXT MATCHING PERM ORDER(sym classes sym F∗, f unction F∗)
{

index = −1
for(0 < = i < |sym F∗|)

if(next permutation(sym F∗[i]))
index = i
break

if(index = = −1)
return NULL

for(0 < = j < i)
next permutation(sym F∗[j])

reorder(sym F∗, F)
}

The remaining matching permutations are derived by enumerating symmetric
permutations as shown in Fig. 12.11. The next_permutation function enumerates
permutations of individual symmetry classes. Then all possible combinations of
symmetry class permutations are composed with each other.

The different input orders induced by matching permutations define different
associations of intermediate signals between the subcircuit from the original model
C∗ and that of the modified model C . Figure 12.12 illustrates that although two
subcircuits can be equivalent under different input orders, the “correct” order leads
to larger matches upstream.

Note that the discussion in this section can be applied to finding all matching
permutations under negation-permutation-negation (NPN) equivalence, by simply
negating the inputs appropriately at the outset as in [1]. This involves choosing the
polarity of each input variable that maximizes its cofactor minterm count and using
that polarity in deriving matching permutations. In other words, for a subcircuit C
realizing function F , if |F(i0 = 0, . . .)| > |F(i0 = 1, . . .)| then input i0 is used in
its negated form and the remainder of the analysis follows as discussed above. In
practice, this helps in increasing design reuse by ignoring intermediate negations.

Fig. 12.12 Although the
single-gate subcircuits in the
boxes have completely
symmetric inputs, the input
ordering (c, b, a) leads to a
larger upstream match than
(a, b, c)

12 Logic Difference Optimization for Incremental Synthesis 217

12.3.2.3 Subcircuit Covering

In this section, we describe a recursive covering algorithm which derives a set of
subcircuits or cover of maximal size.

Definition 12.8 A subcover for two corresponding nets (N , N∗) is a set of con-
nected matching subcircuit pairs that drive N and N∗.

Different subcircuit matches at nets (N , N∗) can lead to different subcovers as
shown in Fig. 12.13. Once the subcircuit D of the original and D∗ is generated
through subcircuit enumeration algorithm of Fig. 12.8, the algorithm of Fig. 12.10
finds an input ordering under which they are functionally equivalent. Figure 12.13
shows the initial ordering where inputs (0, 1) of are associated with inputs (0, 1) of
D∗. The subcover induced by this ordering is simply {(D, D∗)}, leaving the logic
difference {A, B,C}. However, an alternate input ordering–derived by swapping the
two symmetric inputs of D∗–yields a larger cover.

(a) (b)

Fig. 12.13 Snapshots of subcircuit covering: (a) Subcover induced by input ordering D∗(0, 1) on
original model and resulting difference (b) Subcover induced by input ordering D∗(1, 0), and the
resulting (smaller) logic difference

Since D(1, 0) = D∗(0, 1), the covering algorithm is invoked on the pairs of
corresponding inputs of D and D∗. The subcircuits (B, B∗) are eventually found
and matched. The inputs of B, B∗ are then called for recursive cover computation.
One of the inputs of B is an identified functional equivalence (from phase 1) so this
branch of recursion is terminated. The recursive call on the other branch leads to the
match (A, A∗) at which point this recursive branch also terminates due to the fact
that all of the inputs of A are previously identified equivalences. The resultant logic
difference simply consists of {C}. Note that this subcover requires a reconnection
of the output of A to C which is reflected in the difference model.

Figure 12.14 shows the algorithm to compute the optimal subcover . The
algorithm starts by enumerating all subcircuit pairs (see Fig. 12.6) and match-
ing permutations (see Fig. 12.11) under which two subcircuits are equivalent.
The function is recursively invoked at the input of each matching mapping in
order to extend the cover upstream in logic. For each match C,C∗ with input
correspondence {(i1, j1), (i2, j2), (i3, j3), . . .} (defined by the matching permu-
tation), the best induced subcover is computed by combining best subcovers

218 S. Krishnaswamy et al.

COMPUTE COVER(net N, net N∗)
{

subcirc enum N enum
while(N enum.next subcircuit pair(C,C∗) {

F∗ = compute truth table(C∗)
F = compute truth table(C)
sym F = compute symm classes(F)
sym F∗ = compute symm classes(F∗)
if(!compute matching perm order(F, F∗))

continue
do{

for(0 < = i < |sym F |)
for(0 < = j < |sym F[i]|)

if(is PI latch matched(sym F[i][j]))
continue

if(is PI latch matched(sym F∗[i][j])
continue

compute cover(sym F[i][j], sym F∗[i][j])
this match = combine subcovers(sym F, sym F∗)
if(|this match| > |opt match(N, N∗)|)

opt match(N, N∗) = this match
}while(next matching perm order(sym F∗))

}
mark matched gates(opt match(N, N∗)

}

Fig. 12.14 The recursive subcircuit covering algorithm

opt_match(i1, j1), opt_match(i2, j2) . . . at the inputs of the match. The subcovers
are corrected for any conflicting matches during the process of combining. For
example, if a net in the modified model has higher fanout than a net in the origi-
nal model then different subcovers may correspond the modified net with different
original nets. When such conflicts occur, the correspondence that results in the larger
subcover is retained.

In this process, we search for matches starting with topologically corresponding
primary outputs, and further topological correspondences emerge from the match-
ing processes. Since topologically connected gates are likely to be placed close to
each other during physical design, many of the timing characteristics of the original
implementation are preserved in reused logic. After a subcircuit cover is found, the
outputs of subcircuit pairs are added to the correspondence list L and all the covered
gates in the modified model are removed from the difference model.

12.3.3 Phase III: Functional Hashing-Based Reduction

In the previous section, we used a topologically-guided method to match regions
of the circuit which can be reused starting from the primary outputs. However, it is
possible to search for reusable logic at a finer level of granularity. Often, different
logic functions have subfunctions in common. Further, certain logic optimizations,

12 Logic Difference Optimization for Incremental Synthesis 219

such as rewiring, can cause global changes in connectivity while still maintain-
ing logic similarity. For instance, if two output pins were swapped, the method of
Phase-II would fail because it searches based on topological connectivity. To address
this issue, we present a method that searches for similar logic throughout the circuit
and not just in topologically relevant.

This method proceeds by traversing all of the nets in the unmatched portions of
the original and modified designs and hashing subcircuit functions of limited size
at the fanin cones of the nets. The functions within the original design that hash
to the same key as the modified design are candidates for reuse. These candidates
are then verified for Boolean matching using the method of Fig. 12.10 and then the
matches are dynamically extended using the recursive subcircuit covering algorithm
of Fig. 12.16. In other words, the hashing enables us to restart the subcircuit coveri
ng algorithm from new, promising locations. Additionally, reusable modules, such
as adders or priority muxes, which may be available in the logic, can be appropriated
for use in realizing the changed specification.

In previous literature, functional hashing has been used in logic rewriting [14] to
hash 4-input cuts such that cuts realizing identical functionality can be replaced by
each other. However, the representative member of the corresponding NPN equiva-
lence class is simply referenced from an exhaustive list. It is only possible to exhaus-
tively list 4-input functions, as classified by [16] as the number of Boolean functions
of five or more gets prohibitively large. Authors of [5] use another method of func-
tional hashing, where they derive a signature for 3- and 4-input cuts. However, that
method does not scale to larger circuits either.

Here, we propose an efficient key for the hash function based on easy-to-compute
functional characteristics such that likely Boolean matches are placed in the same
hash bucket. These functional characteristics include a subset of what is computed
in order to assess a full Boolean match.

Definition 12.9 Given a Boolean function F(i1, i2, . . . , in), the matching key
K (F, k) is the (k + 3)-tuple,

< N , S, F0, F1, . . . , Fk >

where

• N is the number of input symmetry classes in the function.
• S is a sequence containing the sizes of the symmetry classes in sorted order.
• F0 is the minterm count of the function realized by the subcircuit.
• Fj for any 0 ≤ j < k is a sequence containing the kth order positive cofactor or

negative minterm counts (whichever is greater) in sorted order.

Note that if k = n, then K (F, k) completely specifies the function K . However,
in practice, one rarely needs more than k = 2 to sufficiently differentiate most
functions. Since we do not need complete differentiation through hashing, we use
k = 1. This observation has been corroborated by results in [1] where it is reported
that k = 2 is enough to determine the existence of a Boolean match between two

220 S. Krishnaswamy et al.

functions in most cases. The hash values simply consist of the boundaries of the
subcircuit in question.

Figure 12.15 shows the overall matching algorithm using functional hashing .
After the remainder of the original circuit is functionally hashed, the modified cir-
cuit is traversed and the largest matches starting at each net are found and stored
in the map Best Match. At this point the largest possible matches are known,
and we essentially have an optimization version of the set cover problem, i.e., we
want a cover of the largest number of gates in a circuit. Set cover is a well-known
N P-complete problem, whose best-known approximation algorithms simply pick
the largest covers greedily [8]. We follow the same approach in choosing a cover.
We note that this finer granularity of gate preservation will enable farther-reaching
changes to be incorporated into the incremental synthesis flow especially as the
synthesis of larger and larger blocks begins to be automated.

FIND FUNCTIONAL MATCHES(C orig, C eco){
{

foreach(unmatched net N∗ ∈ C orig){
while(N ∗ enum.next subcircuit(C∗) {

F∗ = compute truth table(C∗)
K(F∗, k) = compute hash key(F∗)
H[K(F∗, k)] = C

}
}
foreach(unmatched net N ∈ C eco){

while(N enum.next subcircuit(C) {
F = compute truth table(C)
K(F, k) = compute hash key(F)
for(0 < = i < |H[K(F, k)]|){

C cov(N) = compute cover(N,H[K(F, k)][i])
if(|C cov(N)| > |BestMatch[N]|){

BestMatch [N] = C cov
}

}
}

}
}

Fig. 12.15 Functional matching algorithm

12.4 Empirical Validation

We empirically validate our algorithms on actual ECOs, i.e., modifications to the
VHDL specifications, performed in IBM server designs. Our experiments are con-
ducted on AMD Opteron 242, 1.6 GHZ processors with 12 GB RAM. Our code is
written in C++ and compiled with GCC on a GNU linux operating system. For
our experimental setup, we initially compiled the modified VHDL into a technol-
ogy independent netlist with some fast pre-processing optimizations [20] that took
0.01% of the design time. The result, along with the original mapped/placed/routed
design, was analyzed by DeltaSyn to derive a logic difference. Results of this

12 Logic Difference Optimization for Incremental Synthesis 221

experiment are shown in Table 12.1. The logic difference is compared with the
difference derived by the cone-trace system, which is used in industry. The cone-
trace system copies the entire fanin cone of any mismatching primary output to
the difference model and resynthesizes the cone completely. Table 12.1 shows an
average improvement of 82% between the results of DeltaSyn and those of the
cone-trace system. The entries with difference size 0 represent changes that were
achieved simply by reconnecting nets.

Table 12.2 shows results on larger changes. These may be categorized as incre-
mental synthesis benchmarks rather than traditional ECO benchmarks. On such
cases, we measured the results of all three of the phases, and noted that the addition
of a third phase offers an extra 8% reduction in delta size through the reuse of
common subfunctions in logic. Note that the reduction numbers only reflect the
results of DeltaSyn and not pre-processing optimizations.

Table 12.1 DeltaSyn statistics on IBM ECO benchmarks

Design
No.
gates

Runtime
CPU (s)

Cone
size

Diff. model
size

% Diff.
reduced

% Design
preserved

ibm1 3271 35.51 342 17 95.03 99.48
ibm2 2892 47.40 1590 266 83.27 90.80
ibm3 6624 192.40 98 1 98.98 99.98
ibm4 20773 20.32 774 4 99.48 99.98
ibm5 2681 10.01 1574 177 88.75 100.00
ibm6 1771 4.99 318 152 52.20 91.42
ibm7 3228 180.00 69 0 100.00 100.00
ibm8 5218 9.01 22 13 40.91 99.75
ibm9 532 38.34 77 20 74.03 96.24
ibm10 11512 0.40 1910 429 77.54 96.27
ibm11 6650 211.02 825 126 84.73 98.11
ibm12 611 0.23 47 0 100.00 100.00
ibm13 1517 6.82 21 6 71.43 99.60
Avg. 82.03 97.31

Table 12.2 DeltaSyn statistics on IBM incremental synthesis benchmarks. Compares two-phase
difference reduction with three-phase difference reduction

Design
No.
gates

Cone
size

Diff.
model
size

New diff.
model
size

2-Phase
runtime
CPU(s)

3-Phase
runtime
CPU(s)

% 2-Phase
diff.
reduced

% 3-Phase
diff.
reduced

ibm14 7439 841 149 34 82.61 242.87 82.28 95.95
ibm15 4848 1679 447 169 24.77 29.27 73.38 89.93
ibm16 12681 4439 1310 584 179.13 474.86 70.49 86.84
ibm17 4556 510 12 9 23.93 22.58 97.65 98.23
ibm18 8711 1547 177 121 3.71 23.42 88.55 92.17
ibm19 3200 304 89 80 0.73 21.61 70.72 73.68
ibm20 5224 58 13 12 28.86 36.22 7.58 79.31
ibm21 6548 1910 429 261 190.82 266.69 77.54 86.33
ibm22 547 77 20 13 0.26 0.73 74.03 83.11
ibm23 8784 1299 249 174 13.93 85.74 80.83 86.61
Avg. 79.31 87.22

222 S. Krishnaswamy et al.

While the lack of standard benchmarks in this field makes it hard to directly
compare to previous work, it should be noted that DeltaSyn is able to derive a small
difference model for benchmarks that are significantly larger than previous work
[3, 12]. DeltaSyn processes all benchmarks in 211 or fewer seconds. The more
(global) structural similarity that exists between the modified model and the original
model, the faster DeltaSyn performs. For instance, ibm12 is analyzed in less than 1 s
because similarities between the implemented circuit and the modified model allow
for the algorithm in Fig. 12.14 to stop subcircuit enumeration (i.e., stop searching for
potential matches) and issue recursive calls frequently. Any fast logic optimizations
that bring the modified model structurally closer to the original model can, there-
fore, be employed to improve results. Figure 12.16 shows the relative percentages
of difference model size reduction achieved by our three phases. The first phase
reduces the logic difference by about 50%. The second phase offers an additional
30% difference reduction. The third phase offers an additional 8% of reduction on
average.

Fig. 12.16 Difference model reduction through phases I, II, III of DeltaSyn

Table 12.1 shows that our difference model disturbs only 3% of logic on average,
which is important for preserving the design effort. Figure 12.17 gives a break-
down of the time spent in various parts of the design flow. This is derived from an

Fig. 12.17 Percentage of
time spent in various parts of
the design flow [Osler, P,
Personal Communication
(2009)]. The VHDL
compilation step is too small
to be visible

12 Logic Difference Optimization for Incremental Synthesis 223

average of 44 circuits that were through the complete design flow [Osler, P, Per-
sonal Communication (2009)]. The first point to note in this figure is that the only
step that DeltaSyn repeats is the VHDL compilation step which takes 0.01% of the
entire design flow (not visible on the pie chart). Despite some additional overhead,
DeltaSyn allows designers to essentially skip the rest of the process on the unper-
turbed parts of the design. To demonstrate this, we have embedded DeltaSyn into
the PDSRTL physical synthesis and design system [22] which performs incremental
placement and optimization only on gates in the difference model (leaving all other
gates and latches fixed). Table 12.3 indicates that the runtime decreases drastically
for all available benchmarks. In addition, the total slack generally improves or stays
close to the same. In the case of ibm2, the fanout of a particular gate in the logic dif-
ference increased drastically and disturbed timing. We confirmed that the electrical
correction step returns the slack to its original value.

Figure 12.18 shows an example of incremental placement enabled by DeltaSyn.
The original model and the final model (with the difference model stitched in) look
very similar while the entirely replaced modified model appears significantly dif-
ferent. Preserving the placement generally has the effect of preserving wire routes
and also maintaining slack. In summary, DeltaSyn is able to automatically identify
changes which leave a large portion of the design unperturbed through the design
flow.

Table 12.3 PDSRTL [22] runtime and slack comparison between incremental design and complete
redesign

Runtime (s) % Runtime % Slack

Design Entire Design Difference Decrease Increase

ibm1 23040 823 96.43 27.79
ibm2 3240 1414.13 56.35 −20.83
ibm3 10800 1567 85.49 21.95
ibm4 50400 2146 95.74 9.36
ibm5 22680 1315 94.20 99.02
ibm6 2160 665 69.21 −2.97
ibm7 2160 748 65.38 69.72
Avg. 80.40 29.15

(a) (b) (c)

Fig. 12.18 Placement illustration of (a) the modified model placed from scratch, (b) the original
model, and (c) incremental placement on the difference model stitched. Blue indicates deleted
gates, red indicates newly added gates

224 S. Krishnaswamy et al.

12.5 Chapter Summary

In this chapter, we presented DeltaSyn, a method that analyzes an original and a
modified design to maximize the design reuse and design preservation. DeltaSyn
uses three phases of analysis in order to find redundant and usable subcircuits
in logic. These phases use a variety of techniques such as functional equivalence
checking, recursive topologically guided Boolean matching, and functional hash-
ing. Results show that DeltaSyn reduces the logic difference by an average of 88%
as compared to previous methods. Further, typical specification changes were pro-
cessed by reusing an 97% of existing logic, on average. Future work involves exten-
sions to handle changes in sequential logic.

References

1. Abdollahi, A., Pedram, M.: Symmetry detection and Boolean matching utilizing a signature
based canonical form of Boolean functions. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(6), 1128–1137 (2009)

2. Alpert, C., Chu, C., Villarrubia, P.: The coming of age of physical synthesis. In: Proceedings of
the International Conference on Computer-Aided Design, San Jose, CA, pp. 246–249. (2007)

3. Brand, D., Drumm, A., Kundu, S., Narain, P.: Incremental synthesis. In: Proceedings of the
International Conference on Computer-Aided Design, San Jose, CA, pp. 14–18. (1994)

4. Chang, K.H., Papa, D.A., Markov, I.L., Bertacco, V.: Invers: An incremental verification sys-
tem with circuit similarity metrics and error visualization. IEEE Design and Test Magazine
26(2), 34–43 (2009)

5. Ganai, M., Kuehlmann, A.: On-the-fly compression of logical circuits. In: Proceedings of the
International Workshop on Logic Synthesis, Dana Point, CA, (2000)

6. Goering, R.: CAD foundations must change. EETimes (2006)
7. Goering, R.: Xilinx ISE handles incremental changes. EETimes (2007)
8. Kleinberg, J., Tardos, E.: Algorithm Design. Addison Wesley (2005)
9. Kravets, V., Kudva, P.: Implicit enumeration of structural changes in circuit optimization. In:

Proceedings of the Design Automation Conference, San Diego, CA, pp. 438–441. (2004)
10. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.: Robust Boolean reasoning for equivalence

checking and functional property verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 21(12), 1355–1394 (2002)

11. Li, Y.L., Li, J.Y., Chen, W.B.: An efficient tile-based eco router using routing graph reduction
and enhanced global routing flow. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 26(2), 345–358 (2007)

12. Lin, C.C., Chen, K.C., Marek-Sadowska, M.: Logic synthesis for engineering change. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 18(3), 282–292
(1999)

13. Ling, A.C., Brown, S.D., Zhu, J., Safarpour, S.: Towards automated ECOs in FPGAs. In:
Proceedings of the International Symposium on FPGAs, Monterey, CA, pp. 3–12. (2009)

14. Mishchenko, A., Chatterjee, S., Brayton, R.: Dag-aware AIG rewriting: A fresh look
at combinational logic synthesis. In: Proceedings of the Design Automation Conference,
San Francisco, CA, pp. 532–536. (2006)

15. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.: Fraigs: A unifying representation for
logic synthesis and verification. ERL Technical Report, EECS Department, UC Berkeley,
March 2005.

16. Muroga, S.: Logic Design and Switching Theory, John Wiley, New York (1979)
17. Osler, P.: Personal communication (2009)

12 Logic Difference Optimization for Incremental Synthesis 225

18. Roy, J., Markov, I., Eco-system: Embracing the change in placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 26(12), 2173–2185 (2007)

19. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Safarpour, S., Mangassarian,
H., Veneris, A.G., Liffiton, M.H.: Improved design debugging using maximum satisfiability.
In: Proceedings of Formal Methods in Computer-Aided Design, Austin, TX, pp. 13–19. (2007)

20. Shinsha, T., Kubo, T., Sakataya, Y., Ishihara, K.: Incremental logic synthesis through gate logic
structure identification. In: Proceedings of the Design Automation Conference, Las Vegas, NV,
pp. 391–397. (1986)

21. Stok, L., Kung, D.S., Brand, D., Drumm, A.D., Sullivan, A.J., Reddy, L.N., Hieter, N., Geiger,
D.J., Chao, H.H., Osler, P.J.: Booledozer: Logic synthesis for ASICs. IBM Journal of Research
and Development 40(4), 407–430 (1996)

22. Swamy, G., Rajamani, S., Lennard, C., Brayton, R.K.: Minimal logic re-synthesis for engi-
neering change. In: Proceedings of the International Symposium on Circuits and Systems,
Hong Kong, pp. 1596–1599. (1997)

23. Trevillyan, L., Kung, D., Puri, R., Reddy, L.N., Kazda, M.A.: An integrated environment for
technology closure of deep-submicron IC designs. IEEE Design and Test Magazine 21(1),
14–22 (2004)

24. Visweswariah, C., Ravindran, K., Kalafa, K.,Walker, S., Narayan, S.: First-order incremental
block-based statistical timing analysis. In: Proceedings of the Design Automation Conference,
San Diego, CA, pp. 331–336. (2004)

25. Werber, C., Rautenback, D., Szegedy, C.: Timing optimization by restructuring long combina-
torial paths. In: Proceedings of the International Conference on Computer-Aided Design, San
Jose, CA, pp. 536–543. (2007)

26. Xiang, H., Chao, K.Y., Wong, M.: An ECO routing algorithm for eliminating coupling capac-
itance violations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25(9), 1754–1762 (2006)

27. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.L.: SAT sweeping with local
observability don’t-cares. In: Proceedings of the International Conference on Computer-Aided
Design, San Jose, CA, pp. 229–234. (2006)

	12 Logic Difference Optimization for Incremental Synthesis
	Smita Krishnaswamy, Haoxing Ren, Nilesh Modi, and Ruchir Puri
	12.1 Introduction and Background
	12.2 Previous Work
	12.3 DeltaSyn
	12.3.1 Phase I: Equivalence-Based Reduction
	12.3.2 Phase II: Matching-Based Reduction
	12.3.2.1 Subcircuit Enumeration
	12.3.2.2 Subcircuit Matching
	12.3.2.3 Subcircuit Covering

	12.3.3 Phase III: Functional Hashing-Based Reduction

	12.4 Empirical Validation
	12.5 Chapter Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

