Chapter 10
Algorithms for Maximum Satisfiability Using
Unsatisfiable Cores

Joao Marques-Sila and Jordi Planes

Abstract Many decision and optimization problems in electronic design automa-
tion (EDA) can be solved with Boolean satisfiability (SAT). These include binate
covering problem (BCP), pseudo-Boolean optimization (PBO), quantified Boolean
formulas (QBF), multi-valued SAT, and, more recently, maximum satisfiability
(MaxSAT). The first generation of MaxSAT algorithms are known to be fairly
inefficient in industrial settings, in part because the most effective SAT techniques
cannot be easily extended to MaxSAT. This chapter proposes a novel algorithm
for MaxSAT that improves existing state-of-the-art solvers by orders of magni-
tude on industrial benchmarks. The new algorithm exploits modern SAT solvers,
being based on the identification of unsatisfiable subformulas. Moreover, the new
algorithm provides additional insights between unsatisfiable subformulas and the
maximum satisfiability problem.

10.1 Introduction

Boolean satisfiability (SAT) is used for solving an ever increasing number of deci-
sion and optimization problems in electronic design automation (EDA). These
include model checking, equivalence checking, design debugging, logic synthesis,
and technology mapping [8, 19, 34, 36]. Besides SAT, a number of well-known
extensions of SAT also find application in EDA, including pseudo-Boolean opti-
mization (PBO) (e.g., [27]), quantified Boolean formulas (QBF) (e.g., [13]), multi-
valued SAT [26], and, more recently, maximum satisfiability (MaxSAT) [33].
MaxSAT is a well-known problem in computer science, consisting of finding the
largest number of satisfied clauses in unsatisfiable instances of SAT. Algorithms for
MaxSAT are in general not effective for large industrial problem instances, in part

J. Marques-Sila (=)
University College Dublin, Dublin, Ireland
e-mail: jpms @ucd.ie

Based on Marques-Silva, J.; Planes, J.: “Algorithms for maximum satisfiability using unsatisfiable
cores,” Design, Automation and Test in Europe, 2008. DATE *08, pp. 408—413, 10-14 March 2008
Doi: 10.1109/DATE.2008.4484715 © [2008] IEEE.

S.P. Khatri, K. Gulati (eds.), Advanced Techniques in Logic Synthesis, 171
Optimizations and Applications, DOI 10.1007/978-1-4419-7518-8_10,
© Springer Science+Business Media, LLC 2011

172 J. Marques-Sila and J. Planes

because the most effective SAT techniques cannot be applied directly to MaxSAT [9]
(e.g., unit propagation).

Motivated by the recent and promising application of MaxSAT in EDA (e.g., [33])
this chapter proposes a novel algorithm for MaxSAT, msu4, that performs particu-
larly well for large industrial instances. Instead of the usual algorithms for MaxSAT,
the proposed algorithm exploits existing SAT solver technology and the ability of
SAT solvers for finding unsatisfiable subformulas. Despite building on the work of
others, on the relationship between maximally satisfiable and minimally unsatisfi-
able subformulas [6, 16, 20, 21, 24], the approach outlined in this chapter is new,
in that unsatisfiable subformulas are used for guiding the search for the solution to
the MaxSAT problem. The msu4 algorithm builds on recent algorithms for the iden-
tification of unsatisfiable subformulas, which find other significant applications in
EDA [32, 37]. The msu4 algorithm also builds on recent work on solving PBO with
SAT [15], namely on techniques for encoding cardinality constraints as Boolean
circuits obtained from BDDs. The msu4 algorithm differs from the one in [16] in
the way unsatisfiable subformulas are manipulated and in the overall organization
of the algorithm.

Experimental results, obtained on representative EDA industrial instances, indi-
cate that in most cases the new msu4 algorithm is orders of magnitude more effi-
cient than the best existing MaxSAT algorithms. The msu4 also opens a new line of
research that tightly integrates SAT, unsatisfiable subformulas, and MaxSAT.

The chapter is organized as follows. The next section provides a brief overview
of MaxSAT and existing algorithms. Section 10.3 describes the msu4 algorithm
and proves the correctness of the proposed approach. Section 10.4 provides exper-
imental results, comparing msu4 with alternative MaxSAT algorithms. The chapter
concludes in Section 10.6.

10.2 Background

This section provides definitions and background knowledge for the MaxSAT prob-
lem. Due to space constraints, familiarity with SAT and related topics is assumed
and the reader is directed to the bibliography [10].

10.2.1 The MaxSAT Problem

The maximum satisfiability (MaxSAT) problem can be stated as follows. Given an
instance of SAT represented in CNF, compute an assignment that maximizes the
number of satisfied clauses. During the last decade there has been a growing interest
on studying MaxSAT, motivated by an increasing number of practical applications,
including scheduling, routing, bioinformatics, and EDA [33].

Despite the clear relationship with the SAT problem, most modern SAT tech-
niques cannot be applied directly to the MaxSAT problem. As a result, most

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 173

MaxSAT algorithms are built on top of the standard DPLL [12] algorithm and so
do not scale for industrial problem instances [16, 17, 22, 23].

The usual approach (most of the solvers in the MaxSAT competition [3, 4]) is
based on a Branch and Bound algorithm, emphasizing the computation of lower
bounds and the application of inference rules that simplify the instance [17, 22,
23]. Results from the MaxSAT competition [3] suggest that algorithms based on
alternative approaches (e.g., by converting MaxSAT into SAT) do not perform well.
As a result, the currently best performing MaxSAT solvers are based on branch and
bound with additional inference rules.

More recently, an alternative, in general incomplete, approach to MaxSAT has
been proposed [33]. The motivation for this alternative approach is the potential
application of MaxSAT in design debugging and the fact that existing MaxSAT
approaches do not scale for industrial problem instances.

10.2.2 Solving MaxSAT with PBO

One alternative approach for solving the MaxSAT problem is to use pseudo-Boolean
optimization (PBO) (e.g., [24]). The PBO approach for MaxSAT consists of adding
a new (blocking) variable to each clause. The blocking variable b; for clause w;
allows satisfying clause w; independently of other assignments to the problem vari-
ables. The resulting PBO formulation includes a cost function, aiming at minimiz-
ing the number of blocking variables assigned value 1. Clearly, the solution of the
MaxSAT problem is obtained by subtracting from the number of clauses the solution
of the PBO problem.

Example 10.1 Consider the CNF formula: ¢ = (x1) (x2 + X1) (x2). The PBO
MaxSAT formulation consists of adding a new blocking clause to each clause. The
resulting instance of SAT becomes gw = (x| + b1) (x2 + X1 + b2) (X2 + b3), where
b1, by, b3 denote blocking variables, one for each clause. Finally, the cost function
for the PBO instance is min Y_3_, b;.

Despite its simplicity, the PBO formulation does not scale for industrial prob-
lems, since the large number of clauses results in a large number of blocking vari-
ables, and corresponding larger search space. Observe that, for most instances, the
number of clauses exceeds the number of variables. For the resulting PBO problem,
the number of variables equals the sum of the number of variables and clauses in
the original SAT problem. Hence, the modified instance of SAT has a much larger
search space.

10.2.3 Relating MaxSAT with Unsatisfiable Cores

In recent years there has been work on relating minimum unsatisfiable and maxi-
mally satisfiable subformulas [16, 20, 21, 24]. problem.

174 J. Marques-Sila and J. Planes

This section summarizes properties on the relationship between unsatisfiable
cores and MaxSAT, which are used in the next section for developing msu4. Let
@ be an unsatisfiable formula with a number of unsatisfiable cores, which may or
may not be disjoint. Note that two cores are disjoint if the cores have no identical
clauses. Let |¢| denote the number of clauses in ¢.

Proposition 10.1 (MaxSAT upper bound) Let ¢ contain K disjoint unsatisfiable
cores. Then |p| — K denotes an upper bound on the solution of the MaxSAT
problem.

Furthermore, suppose blocking variables are added to clauses in ¢ such that the
resulting formula ¢w becomes satisfiable.

Proposition 10.2 (MaxSAT lower bound) Let pw be satisfiable, and let B denote
the set of blocking variables assigned value 1. Then |¢| — | B| denotes a lower bound
on the solution of the MaxSAT problem.

Clearly, the solution to the MaxSAT problem lies between any computed lower
and upper bound.

Finally, it should be observed that the relationship of unsatisfiable cores and
MaxSAT was also explored in [16] in the context of partial MaxSAT. This algorithm,
msul, removes one unsatisfiable core each time by adding a fresh set of blocking
variables to the clauses in each unsatisfiable core. A possible drawback of the algo-
rithm of [16] is that it can add multiple blocking variables to each clause, an upper
bound being the number of clauses in the CNF formula [30]. In contrast, the msu4
algorithm adds at most one additional blocking variable to each clause. Moreover, a
number of algorithmic improvements to the algorithm of [16] can be found in [30],
i.e., msu2 and msu3. The proposed improvements include linear encoding of the
cardinality constraints and an alternative approach to reduce the number of blocking
variables used.

10.3 A New MaxSAT Algorithm

This section develops the msu4 algorithm by building on the results of Sec-
tion 10.2.3. As shown earlier, the major drawback of using a PBO approach for
the MaxSAT problem is the large number of blocking variables that have to be used
(essentially one for each original clause). For most benchmarks, the blocking vari-
ables end up being significantly more than the original variables, which is reflected
in the cost function and overall search space. The large number of blocking variables
basically renders the PBO approach ineffective in practice.

The msu4 algorithm attempts to reduce as much as possible the number of neces-
sary blocking variables, thus simplifying the optimization problem being solved.
Moreover, msu4 avoids interacting with a PBO solver and instead is fully SAT
based.

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 175
10.3.1 Overview

Following the results of Section 10.2.3, consider identifying disjoint unsatisfiable
cores of ¢. This can be done by iteratively computing unsatisfiable cores and adding
blocking variables to the clauses in the unsatisfiable cores. The identification and
blocking of unsatisfiable cores are done on a working formula gy . Eventually, a set
of disjoint unsatisfiable cores is identified, and the blocking variables allow satis-
fying @w. From Proposition 10.2, this represents a lower bound on the solution of
the MaxSAT problem. This lower bound can be refined by requiring fewer blocking
variables to be assigned value 1. This last condition can be achieved by adding a
cardinality constraint to ¢'.

The resulting formula can still be satisfiable, in which case a further refined car-
dinality constraint is added to gw. Alternatively, the formula is unsatisfiable. In this
case, some clauses of ¢ without blocking variables may exist in the unsatisfiable
core. If this is the case, each clause is augmented with a blocking variable, and a new
cardinality constraint can be added to ¢w, which requires the number of blocking
variables assigned value 1 to be less than the total number of new blocking clauses.
Alternatively, the core contains no original clause without a blocking variable. If
this is the case, then the highest computed lower bound is returned as the solution
to the MaxSAT problem. The proof that this is indeed the case is given below.

In contrast with the algorithms in [16] and [30], the msu4 algorithm is not exclu-
sively based on enumerating unsatisfiable cores. The msu4 algorithm also identifies
satisfiable instances, which are then eliminated by adding additional cardinality con-
straints.

10.3.2 The Algorithm

Following the ideas of the previous section, the pseudocode for msu4 is shown in
Algorithm 5. The msu4 algorithm works as follows. The main loop (lines 8-33)
starts by identifying disjoint unsatisfiable cores. The clauses in each unsatisfiable
core are modified so that any clause w; in the core can be satisfied by setting to 1 a
new auxiliary variable b; associated with ;. Consequently, a number of properties
of the MaxSAT problem can be inferred. Let |¢| denote the number of clauses, let vy
represent the number of iterations of the main loop in which the SAT solver outcome
is unsatisfiable, and let ;1 py denote the smallest of the number of blocking variables
assigned value 1 each time ¢w becomes satisfiable. Then, an upper bound for the
MaxSAT problem is |¢|—vy, and a lower bound is |¢|— gy . Both the lower and the
upper bounds provide approximations to the solution of the MaxSAT problem, and
the difference between the two bounds provides an indication on the number of iter-
ations. Clearly, the MaxSAT solution will require at most (py blocking variables
to be assigned value 1. Also, each time the SAT solver declares the CNF formula

1 Encodings of cardinality constraints are studied, for example, in [15].

176 J. Marques-Sila and J. Planes

to be unsatisfiable, then the number of blocking variables that must be assigned
value 1 can be increased by 1. Each time ¢ becomes satisfiable (line 25), a new
cardinality constraint is generated (line 30), which requires the number of blocking
variables assigned value 1 to be reduced given the current satisfying assignment
(and so requires the lower bound to be increased, if possible). Alternatively, each
time @w is unsatisfiable (line 12), the unsatisfiable core is analyzed. If there exist
initial clauses in the unsatisfiable core, which do not have blocking variables, then
additional blocking variables are added (line 17). Formula ¢y is updated accord-
ingly by removing the original clauses and adding the modified clauses (line 18).
A cardinality constraint is added to require at least one of the blocking clauses
to be assigned value 1 (line 19). Observe that this cardinality constraint is in fact
optional, but experiments suggest that it is most often useful. If g is unsatisfiable,
and no additional original clauses can be identified, then the solution to the MaxSAT
problem has been identified (line 22). Also, if the lower bound and upper bound
estimates become equal (line 32), then the solution to the MaxSAT problem has
also been identified. Given the previous discussion, the following result is obtained.

Proposition 10.3 Algorithm 5 gives the correct MaxSAT solution.

Proof The algorithm iteratively identifies unsatisfiable cores and adds blocking vari-
ables to the clauses in each unsatisfiable core that do not yet have blocking variables
(i.e., initial clauses), until the CNF formula becomes satisfiable. Each computed
solution represents an upper bound on the number of blocking variables assigned
value 1, and so it also represents a lower bound on the MaxSAT solution. For each
computed solution, a new cardinality constraint is added to the formula (see line 30),
requiring a smaller number of blocking variables to be assigned value 1. If the algo-
rithm finds an unsatisfiable core containing no more initial clauses without blocking
variables, then the algorithm can terminate and the last computed upper bound rep-
resents the MaxSAT solution. Observe that in this case the same unsatisfiable core
C can be generated, even if blocking clauses are added to other original clauses
without blocking clauses. As a result, the existing lower bound is the solution to the
MaxSAT problem. Finally, note that the optional auxiliar constraint added in line
19 does not affect correctness, since it solely requires an existing unsatisfiable core
not to be re-identified.

10.3.3 A Complete Example

This section illustrates the operation of the msu4 algorithm on a small example
formula.

Example 10.2 Consider the following CNF formula:
@ =W W2 W3- W4 W5 W6 W]+ WY

(x1) (X1 + Xx2) (x2) (X1 + X3) (x3) (k2 + X3)
(x1 + x4) (1 + x4)

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 177

Algorithm 5 The msu4 algorithm

Msu4(p)
1 > Clauses of CNF formula ¢ are the initial clauses
2 ow <@ > Working formula, initially set to ¢
3 gy <« ol > Min blocking variables w/ value 1
4 vy <0 > Iterations w/ unsat outcome
5 V<90 > IDs of blocking variables
6 UB <« |p|+1 > Upper bound estimate
7 LB <0 > Lower bound estimate
8 while true
9 do (st, oc) < SAT(ew)

10 I> @c is an unsat core if ¢y is unsat

11 if st = UNSAT

12 then

13 o1 =@c N > Initial clauses in core

14 I < {i|lw; €}

15 VB <~ VB Ul

16 if 7] >0

17 then ¢y <« {w; U {b;}|w; € ¢}

18 ow < (pw — o) Upy

19 or <~ CNF(}_,c; bi = 1)

20 ow < ow Ugr

21 else > Solution to MaxSAT problem

22 return LB

23 vy < vy +1

24 UB < |¢| — vy > Refine UB

25 else

26 v < | blocking variables w/ value 1 |

27 if upy <v

28 then MBY <V

29 LB < |p| — pupv > Refine LB

30 @r < CNF(}_;cy, bi < gy — 1)

31 ow < ow Uger

32 if LB = U B 1> Solution to MaxSAT problem

33 then return LB

Initially ¢w contains all the clauses in ¢. In the first loop iteration, the core
w1, w2, w3 is identified. As a result, the new blocking variables b1, by, and b3 are
added, respectively, to clauses wy, w;, and w3, and the CNF encoding of the cardi-
nality constraint by +by+b3 > 1 is also (optionally) added to gw . In the second iter-
ation, ¢ is satisfiable, with by = b3 = 1. As a result, the CNF encoding of a new
cardinality constraint, by + by + b3 < 1, is added to ¢w . For the next iteration, ¢y
is unsatisfiable and the clauses w4, ws, and wg are listed in the unsatisfiable core. As
a result, the new blocking variables b4, bs, and bg are added, respectively, to clauses
w4, ws, and we, and the CNF encoding of the cardinality constraint by + b5 +bg > 1
is also (optionally) added to ¢@w. In this iteration, since the lower and the upper
bounds become equal, then the algorithm terminates, indicating that two blocking
variables need to be assigned value 1, and the MaxSAT solution is 6.

178 J. Marques-Sila and J. Planes

From the example, it is clear that the algorithm efficiency depends on the ability
for finding unsatisfiable formulas effectively and for generating manageable cardi-
nality constraints. In the implementation of msu4, the cardinality constraints were
encoded either with BDDs or with sorting networks [15].

10.4 Experimental Results

The msu4 algorithm described in the previous section has been implemented on top
of MiniSAT [14]. Version 1.14 of MiniSAT was used, for which an unsatisfiable
core extractor was available. Two versions of msu4 are considered, one (v1) uses
BDDs for representing the cardinality constraints and the other (v2) uses sorting
networks [15].

All results shown below were obtained on a 3.0 GHz Intel Xeon 5160 with 4 GB
of RAM running RedHat Linux. A time-out of 1000s was used for all MaxSAT
solvers considered. The memory limit was set to 2 GB. The MaxSAT solvers eval-
uated are the best performing solver in the MaxSAT evaluation [3], maxsatz [23],
minisat+ [15] for the MaxSAT PBO formulation, and finally msu4. Observe that
the algorithm in [16] targets partial MaxSAT, and so performs poorly for MaxSAT
instances [3, 30].

In order to evaluate the new MaxSAT algorithm, a set of industrial problem
instances was selected. These instances were obtained from existing unsatisfiable
subsets of industrial benchmarks, obtained from the SAT competition archives and
from SATLIB [7, 18]. The majority of instances considered was originally from
EDA applications, including model checking, equivalence checking, and test-pattern
generation. Moreover, MaxSAT instances from design debugging [33] were also
evaluated. The total number of unsatisfiable instances considered was 691.

Table 10.1 shows the number of aborted instances for each algorithm. As can
be concluded, for practical instances, existing MaxSAT solvers are ineffective. The
use of the PBO model for MaxSAT performs better than maxsatz, but aborts more
instances than either version of msu4. It should be noted that the PBO approach uses
minisat+, which is based on a more recent version of MiniSAT than msu4.

Table 1(')-1 Number of Total maxsatz pbo msu4 vl msudv2
aborted instances 601 554 248 212 163

Figures 10.1, 10.2, and 10.3 show scatter plots comparing maxsatz, the PBO
formulation, and msu4 vl with msu4 v2. As can be observed, the two versions of
msu4 are clearly more efficient than either maxsatz or minisat+ on the MaxSAT
formulations. Despite the performance advantage of both versions of msu4, there are
exceptions. With few outliers, maxsatz can only outperform msu4 v2 on instances
where both algorithms take less than 0.1 s. In contrast, minisat+ can outperform
msu4 v2 on a number of instances, in part because of the more recent version of
MiniSAT used in minisat+.

10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 179

Fig. 10.1 Scatter plot: 103 - -
maxsatz vs. msu4-v2 P . .
102 . v
1
§ 10 .
] .
E 100 Ory/in
.. L] L]
107! .f','.
1072
1072 107" 10 10! 102 103
msu4-v2
Fig. 10.2 Scatter plot: pbo 103 —
vs. msu4-v2 e ..'.:_, Be A
102) R v
..:. ..o " r .
10! i gt
38 XD :,..
[=% ol
0 Sy, [
10 PLOE
107! °
1072 T
1072 107" 10 10" 10> 10°
msu4-v2
Fig. 10.3 Scatter plot: 103 oG
msu4-vl vs. msu4-v2 ".:.‘:_ . *
10 : . &-,- g
o [sv8fe| .
= 10! N e C e R
< o fe N0 .
74 ° . . e .
E 100 A0
b s,
107! Aadell £3 0
1072

[
1072 107! 10° 100 102 10°
msu4-v2

Finally, Table 10.2 summarizes the results for design debugging instances [33].
As can be concluded, both versions of msu4 are far more effective than either
maxsatz or minisat+ on the PBO model for MaxSAT.

180 J. Marques-Sila and J. Planes

Table 10.2 Design

R Total maxsatz pbo msu4 vl msudv2
debugging instances

29 26 21 3 3

10.5 Related Work

The use of unsatisfiable subformulas for solving (partial) MaxSAT problems was
first proposed by Fu and Malik [16]. This algorithm is referred to as msul.0. This
work was extended in a number of different ways in our own work [29-31]. msu4,
the algorithm described in this chapter, was first proposed in [31], whereas msu3
was first described in [30]. In addition, msu2 as well as different variations of
msul.O (namely, msul. 1 and msul. 2) were proposed in [29]. There has been addi-
tional work on unsatisfiability-based MaxSAT [1, 28]. A new algorithm for partial
MaxSAT was proposed in [1]. Finally, algorithms for weighted partial MaxSAT
were proposed in [1, 2, 28].

Besides dedicated unsatisfiability-based algorithms for MaxSAT, this work has
motivated its application in a number of areas. Unsatisfiability-based MaxSAT algo-
rithms motivated the development of similar algorithms for computing the minimal
correction sets (MCSes) [25]. The use of CNF encodings in unsatisfiability-based
MaxSAT algorithms motivated work on improved encodings for cardinality con-
straints [5]. Finally, one concrete application area where the best solution is given
by unsatisfiability-based MaxSAT algorithms is design debugging of digital cir-
cuits [11, 33, 35].

10.6 Conclusions

Motivated by the recent application of maximum satisfiability to design debug-
ging [33], this chapter proposes a new MaxSAT algorithm, msu4, that further
exploits the relationship between unsatisfiable formulas and maximum satisfiabil-
ity [6, 16, 20, 21, 24]. The motivation for the new MaxSAT algorithm is to solve
large industrial problem instances, including those from design debugging [33]. The
experimental results indicate that msu4 performs in general significantly better than
either the best performing MaxSAT algorithm [3] or the PBO formulation of the
MaxSAT problem [24].

For a number of industrial classes of instances, which modern SAT solvers solve
easily but which existing MaxSAT solvers are unable to solve, msu4 is able to find
solutions in reasonable time. Clearly, msu4 is effective only for instances for which
SAT solvers are effective at identifying small unsatisfiable cores and from which
manageable cardinality constraints can be obtained.

Despite the promising results, additional improvements to msu4 are expected.
One area for improvement is to exploit alternative SAT solver technology. msu4
is based on MiniSAT 1.14 (due to the core generation code), but more recent
SAT solvers could be considered. Another area for improvement is considering

10

Algorithms for Maximum Satisfiability Using Unsatisfiable Cores 181

alternative encodings of cardinality constraints, given the performance differences
observed for the two encodings considered. Finally, the interplay between different
algorithms based on unsatisfiable core identification (i.e., msul [16] and msu2 and
msu3 [30]) should be further developed.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

. Ansétegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiabil-

ity testing. In: International Conference on Theory and Applications of Satisfiability Testing,
pp- 427-440. Swansea, UK (2009)

. Ansétegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial MaxSAT. In:

National Conference on Artificial Intelligence. Atlanta, USA (2010)

. Argelich, J., Li, C.M., Manya, F., Planes, J.: MaxSAT evaluation. http://www.maxsat07.udl.es/

(2008)

. Argelich, ., Li, C.M., Manya, F., Planes, J.: The first and second Max-SAT evaluations. Jour-

nal on Satisfiability, Boolean Modeling and Computation 4, 251-278 (2008)

. Asin, R., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.: Cardinality networks and

their applications. In: International Conference on Theory and Applications of Satisfiability
Testing, pp. 167-180. Swansea, UK (2009)

. de la Banda, M.G., Stuckey, PJ., Wazny, J.: Finding all minimal unsatisfiable sub-sets. In:

International Conference on Principles and Practice of Declarative Programming, pp. 32—43.
Uppsala, Sweden (2003)

. Berre, D.L., Simon, L., Roussel, O.: SAT competition. http://www.satcompetition.org/ (2008)
. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Tools

and Algorithms for the Construction and Analysis of Systems, pp. 193-207. (1999)

. Bonet, M.L., Levy, J., Manya, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9),

606-618 (2007)

Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint programming:
A comparative survey. ACM Computing Surveys 38(4) (2006)

Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.: Spatial and temporal design debug
using partial MaxSAT. In: ACM Great Lakes Symposium on VLSI, pp. 345-350. Boston, USA
(2009)

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394-397 (1962)

Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: International
Conference on Theory and Applications of Satisfiability Testing, pp. 408-414. St. Andrews,
UK (2005)

Een, N., Sorensson, N.: An extensible SAT solver. In: International Conference on Theory and
Applications of Satisfiability Testing, pp. 502-518. Santa Margherita Ligure, Italy (2003)
Een, N., Sorensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfia-
bility, Boolean Modeling and Computation 2, 1-26 (2006)

Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: International Conference on
Theory and Applications of Satisfiability Testing, pp. 252-265. Seattle, USA (2006)

Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: a new weighted Max-SAT solver. In: Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 41-55. Lisbon,
Portugal (2007)

Hoos, H., Stiitzle, T.: SAT lib. http://www.satlib.org/ (2008)

Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equiva-
lence checking and functional property verification. IEEE Transactions on CAD of Integrated
Circuits and Systems 21(12), 1377-1394 (2002)

182 J. Marques-Sila and J. Planes

20. Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathematics 107(1-3),
99-137 (2000)

21. Kullmann, O.: Lean clause-sets: generalizations of minimally unsatisfiable clause-sets. Dis-
crete Applied Mathematics 130(2), 209-249 (2003)

22. Li, C.M., Many4, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: National Conference on Artificial Intelligence, pp. 86-91.
Boston, USA (2006)

23. Li, C.M., Manya, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial Intel-
ligence Research 30, 321-359 (2007)

24. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 173—186. (2005)

25. Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided max-sat. In: International Confer-
ence on Theory and Applications of Satisfiability Testing, pp. 481-494. Swansea, UK (2009)

26. Liu, C., Kuehlmann, A., Moskewicz, M.W.: CAMA: A multi-valued satisfiability solver. In:
International Conference on Computer-Aided Design, pp. 326-333. San Jose, USA (2003)

27. Mangassarian, H., Veneris, A.G., Safarpour, S., Najm, EN., Abadir, M.S.: Maximum circuit
activity estimation using pseudo-Boolean satisfiability. In: Design, Automation and Testing in
Europe Conference, pp. 1538—1543. Nice, France (2007)

28. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean optimization.
In: International Conference on Theory and Applications of Satisfiability Testing, pp. 495—
508. Swansea, UK (2009)

29. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum
satisfiability algorithms. In: International Conference on Theory and Applications of Satisfia-
bility Testing, pp. 225-230. Guangzhou, China (2008)

30. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
http://arxiv.org/corr/ (2007)

31. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores.
In: Design, Automation and Testing in Europe Conference, pp. 408—413. Munich, Germany
(2008)

32. McMillan, K.L.: Interpolation and SAT-based model checking. In: Computer-Aided Verifica-
tion, pp. 1-13. Boulders, USA (2003)

33. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved
design debugging using maximum satisfiability. In: Formal Methods in Computer-Aided
Design, pp. 13-19. Austin, USA (2007)

34. Smith, A., Veneris, A.G., Ali, M.F,, Viglas, A.: Fault diagnosis and logic debugging using
Boolean satisfiability. IEEE Transactions on CAD of Integrated Circuits and Systems 24(10),
1606-1621 (2005)

35. Siilflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug multiple
design errors. In: ACM Great Lakes Symposium on VLSI, pp. 77-82. Orlando, USA (2008)

36. Wang, K.H., Chan, C.M.: Incremental learning approach and SAT model for Boolean match-
ing with don’t cares. In: International Conference on Computer-Aided Design, pp. 234-239.
San Jose, USA (2007)

37. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In: Design, Automation and Testing in
Europe Conference. Munich, Germany (2003)

	10 Algorithms for Maximum Satisfiability Using Unsatisfiable Cores
	Joao Marques-Sila and Jordi Planes
	10.1 Introduction
	10.2 Background
	10.2.1 The MaxSAT Problem
	10.2.2 Solving MaxSAT with PBO
	10.2.3 Relating MaxSAT with Unsatisfiable Cores

	10.3 A New MaxSAT Algorithm
	10.3.1 Overview
	10.3.2 The Algorithm
	10.3.3 A Complete Example

	10.4 Experimental Results
	10.5 Related Work
	10.6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

