
Chapter 22
Effect of Power Ultrasound on Food Quality

Hyoungill Lee and Hao Feng

1 Introduction

Recent food processing technology innovations have been centered around pro-
ducing foods with fresh-like attributes through minimal processing or nonthermal
processing technologies. Instead of using thermal energy to secure food safety that is
often accompanied by quality degradation in processed foods, the newly developed
processing modalities utilize other types of physical energy such as high pressure,
pulsed electric field or magnetic field, ultraviolet light, or acoustic energy to process
foods. An improvement in food quality by the new processing methods has been
widely reported. In comparison with its low-energy (high-frequency) counterpart
which finds applications in food quality inspection, the use of high-intensity ultra-
sound, also called power ultrasound, in food processing is a relatively new endeavor.
To understand the effect of high-intensity ultrasound treatment on food quality, it is
important to understand the interactions between acoustic energy and food ingredi-
ents, which is covered in Chapter 10. In this chapter, the focus will be on changes in
overall food quality attributes that are caused by ultrasound, such as texture, color,
flavor, and nutrients.

The interaction of acoustic energy with a food is mainly substantiated through
a liquid medium because cavitation and cavitation-induced physical and chemical
actions play an important role in food quality alterations in an ultrasound-processed
food. The chemical effects of cavitation include free radical generation, produc-
tion of hydrogen peroxide, among others. The physical effects of cavitation include
localized high temperature and pressure, shock waves, and microstreaming. At a
solid and liquid interface, the water jet formed by an imploding transient cavitation
is also a factor that may contribute to changes in the overall properties of a food
product. It is noteworthy that all these chemical and physical effects of ultrasound
are microscopic. The interplay of these cavitation-induced chemical and physical
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activities with a food, however, is manifested through macroscopic changes that can
be perceived by consumers and may be expressed with terms such as texture, color,
and flavor. Nevertheless, it is not the intention of this chapter to translate micro-
scopic activities into changes in overall quality attributes of foods since there are
no sufficient data from systematic studies on the changes in a selected food quality
attribute as affected by ultrasonic process parameters. Until now, there has been no
reliable measure to quantify cavitation and cavitation-induced activities in a food
system. No reports have documented an attempt to correlate cavitation activity to
process conditions that can be used to predict quality changes. Therefore, wherever
appropriate, a descriptive approach is employed to provide an argument for quality
alterations in a food product caused by ultrasound. As a result, the conclusion that
might be drawn is strictly limited to the specific food and ultrasound parameters
used in the studies, which might still be far away from optimal process conditions.

2 Texture

Texture is a physical characteristic describing the flow behavior or responses to
deformation of a liquid or solid food product. As a key food quality attribute, tex-
ture is mainly determined by the microstructure of the product. The presence of
texturizing ingredients, such as proteins, as well as the interactions between food
components during processing or storage, also plays an important role in food tex-
ture. The texture of ultrasound-treated foods can thus be determined by the structure
or property changes of proteins and enzymes during sonication. For instance, it has
been reported that ultrasound produced structural changes followed by functional
changes in bovine serum albumin (BSA) (Gülseren et al., 2007). Such changes in
a protein may be attributed to the mechanical, thermal, and/or chemical effect of
sonication. Ultrasound also alters the activity of food enzymes. In some studies,
an increased enzymatic activity, such as the activity of proteolytic enzyme, was
reported after ultrasonication (Ronscale et al., 1992), while other reports have doc-
umented the use of ultrasound to inactivate food enzymes (Raviyan et al., 2005). In
addition, high-intensity ultrasound is known to reduce particle sizes in a liquid food.
Banerjee et al. (1996) ascribed the improved mechanical properties in protein-based
films to fat globule size reduction by ultrasound. In solid foods, ultrasound may
damage the cell wall structure of vegetables, thereby inducing changes in the tex-
ture (Gabaldón-Leyva et al., 2007). In this section, the effect of ultrasound treatment
on the texture of food products, such as tomato juice, bell peppers, yogurt, edible
films, and meat, will be discussed. The texture changes under different sonication
conditions are summarized in Table 22.1.

There are a number of studies about changes in proteins and enzymes by
an ultrasound treatment and their effects on food texture. Yogurt produced with
ultrasound-treated milk showed a stronger and firmer structure than that with
untreated milk (Fig. 22.1, Vercet et al., 2002a). An improvement in rheological
properties of tomato juice was reported after inactivation of detrimental enzymes,
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Fig. 22.1 Oscillation tests of
MTS-treated (filled symbols)
and control (empty symbols)
yoghurts. Storage modulus,
G′ (circles). Loss modulus,
G′′ (squares). Source: Vercet
et al. (2002a)

i.e., endopolygalacturonases and pectinmethylesterase, with manothermosonication
(MTS) (Vercet et al., 2002b). Gülseren et al. (2007) noticed that ultrasound-treated
BSA became more susceptible to heat denaturation. Sonication also increased
the surface hydrophobicity and reduced the particle sizes of BSA. Denaturation
of serum proteins, such as α-lactalbumin and β-lactoglobulin, was observed in
milk treated by continuous thermosonication (Villamiel and De Jong, 2000). Some
researchers have postulated that hydrophobic amino acid groups, which were
originally located inside a protein, might have been exposed by a high level of
denaturation or unfolding of the protein in ultrasound-treated samples (Iametti et al.,
1996; Qi et al., 1997). The exposed hydrophobic amino acid groups might have
induced aggregation of proteins, which finally yielded a stronger and firmer struc-
ture in yogurt made with the sonicated milk than in the control (Totosaus et al.,
2002).

Tenderness is one of the most important quality aspects in cooked meat. Two
primary muscle components that contribute to meat tenderness are myofibrillar
protein and connective tissues such as collagen (Tarrant, 1998). Improved meat
tenderness in ultrasound-assisted cooking was reported by Pohlman et al. (1996).
Meat tenderness can also be improved by ultrasound before postmortem or aging
processes (Dickens et al., 1991; Dolatowski et al., 2000; Jayasooriya et al., 2007;
Pohlman et al., 1997a; Smith et al., 1991). Jayasooriya et al. (2004) proposed that
proteolysis of myofibrillar protein was the major mechanism of meat tenderiza-
tion. The enzymes responsible for the proteolysis of myofibrillar protein include
calpains (calcium-activated proteinase) present in sarcoplasm and cathepsins (lyso-
somal cystein proteinase). Stangi and Bernard (1968) observed that an ultrasound
treatment on rat and beef skeletal muscles caused a release of cathepsin and thus an
increase in calpain activity in treated muscles. An enhanced postmortem proteolysis
of ultrasound-treated lamb skeletal muscles was reported with a release of lysoso-
mal enzymes found in treated lamb liver samples (Ronscale et al., 1992). Ultrasound
treatment could also increase the activity of calpains by an increase of calcium
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released from sarcoplasmic reticulum and/or cathepsins released from lysosomes
(Ronscale et al., 1992). Got et al. (1999) treated beef semimembranosus muscles
before the aging process with ultrasound and observed an immediate increase of
calcium in the cytosol. The improved tenderness by an ultrasound treatment before
postmortem or aging may thus be attributed to the release of calcium and cathepsin.
During aging, a high degradation of myofibrillar protein in ultrasound-treated meat
may also be accompanied by a high activity of calpains caused by released calcium
and cathepsin. In the case of meat treated by ultrasound after postmortem or aging,
and before cooking, disruption of muscle structures may play an important role in
increased meat tenderness.

In contrast to the reports on improved tenderness of ultrasound-treated meats,
several studies found that ultrasound has no effect on meat tenderness (Lyng et al.,
1997, 1998; Pohlman et al., 1997b). The authors suggested that the low ultrasound
intensity (UI) (0.29–1.55 W/cm2) used in their studies might have been responsible
for that result. It was noted that for those studies where improved meat tenderness
was reported, the UIs were in the range of 22 and 2,400 W/cm2 (Dickens et al.,
1991; Pohlman et al., 1996, 1997a). The low acoustic energy input during a treat-
ment could be insufficient to disrupt muscle structure and/or to release calcium and
cathepsin. The different experimental conditions in ultrasound treatments may also
play a role. For instance, Lyng et al. (1998) applied ultrasound to one side of the
steak which had a thickness of 2.5 cm, but Jayasooriya et al. (2007) exposed both
sides of their meat samples (0.2 cm thickness) to ultrasound by turning it over at half
of the total treatment time. The thicker sample and one-side treatment may have pre-
vented ultrasound from reaching the inside of the meat, rendering the treatment less
effective.

In addition to traditional ultrasound treatments, hydrodynamic shock waves have
also been used to tenderize meat. Hydrodynamic shock waves are generated by
the explosion of a small amount of an explosive in a liquid medium (water). If an
object submerged in water has an acoustic match with the water, the shock waves
can pass through the object (Kolsky, 1980). Since meat compositionally contains
approximately 75% water, it is easy to achieve a close acoustic match (Price and
Schweigert, 1978). It has been reported that such shock waves cause disruption of
myofibrillar structure and direct alteration of muscle proteins, resulting in meat ten-
derization (Zuckerman and Solomon, 1998). The hydrodynamic shock wave method
has been proven effective in improving the tenderness of beef and other meat prod-
ucts (Callahan et al., 2006; Liu et al., 2006; Schilling et al., 2002; Solomon et al.,
1997; Spanier and Romanowski, 2000).

Improved mechanical properties in edible films prepared using ultrasound-
treated whey protein concentrate (WPC) and sodium caseinate (SC) were reported
by Banerjee et al. (1996). The tensile strength of ultrasound-treated WPC and SC
films was increased by up to 224%. A longer exposure time yielded a higher tensile
strength at all acoustic energy levels. Transmission electron micrographs (TEMs) of
ultrasound-treated WPC films showed a more orderly and condensed knit matrix
of proteins, fat, and other components than that in the control. With the TEM
observations, the authors also confirmed that the ultrasound treatment reduced the
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particle size of milk components in the film solution. Increased molecular inter-
actions may be induced due to smaller particle sizes, leading to a high level of
molecular order (Banerjee et al., 1996). High chain order polymers can be related
to the high cohesion in edible films (Gontard and Guilbert, 1994), which may
contribute to the high film strength of ultrasound-treated WPC films.

In an ultrasound-assisted brine process, ultrasound showed a negative effect on
the firmness of bell peppers (Gabaldón-Leyva et al., 2007). A rapid softening in
ultrasound-treated samples occurred in 30 min, while the softening was not observed
until 120 min for peppers from a brine process without ultrasound. It was reported
that a thermal or physical treatment can cause losses in cell wall rigidity and
intracellular adhesion, which could enhance water movement from tissue to brine
(Heredia-Léon et al., 2004; Lazarides and Mavroudis, 1995). The combined action
of ultrasound and thermal treatment thus would induce changes in bell pepper cells,
causing a decrease in the firmness of the processed peppers.

3 Flavor

A limited number of reports have been published on flavor changes in ultrasound-
treated food products, which include flavor improvement in Mahon cheese, genera-
tion of off-flavor in edible oil, and loss of active aroma compound in apple juice. The
effect of ultrasound on flavor is directly related to the physical and chemical effects
of cavitation. Until now, almost all the reports on flavor/aroma alterations caused by
sonication have been experimental, with an emphasis on reporting findings rather
than elucidating the mechanisms. Nevertheless, an effort is made in this section
to summarize studies conducted on the impact of ultrasound on flavor changes in
selected food products (Table 22.2).

An ultrasound-assisted brining process was used to prepare Mahon cheese, a
noncooked pressed cheese salted in brine. During ripening, the acoustically brined
cheese showed a higher concentration of free fatty acid (FFA), and more intense
aroma and flavor than the conventionally brined counterpart (Sánchez et al., 2001a).
In addition, the acoustically brined cheese had a higher level of total free amino
acids (TFAAs) in all the stages of ripening than the conventionally brined coun-
terpart (Sánchez et al., 2001b). It was proposed that the reduced fat globule sizes
and sonication-induced protein denaturation might be responsible for the high FFA
and TFAA in the cheese (Sánchez et al., 2001a, b). Villamiel and De Jong (2000)
reported reduced fat globule sizes in milk after sonication at 20 kHz and 8 W/ml.
Good homogenization was also observed in ultrasound-treated milk at 20 kHz and
3 W/ml (Wu et al., 2001). On the other hand, ultrasound treatment can denature
whey protein in milk (Villamiel and De Jong, 2000), and the resulting denatured
whey protein might be less resistant to proteolysis than the native whey protein
during cheese ripening (Sánchez et al., 2001b). Mahon cheese is classified as a
semisoft cheese, which is surface ripened with microflora (Scott, 1998). Normally,
the surface-ripened soft cheese shows a high level of proteolysis and lipolysis on
the external area or surface of the cheese (Gripon, 1997). Consequently, the Mahon
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cheese with small-sized fat globules and denatured surface proteins would have a
high lipolytic and proteolytic activity during surface ripening and thus high levels
of FFAs, TFFAs, and aroma intensity.

Free radicals produced by ultrasound in the aqueous phase may catalyze the
degradation of flavor compounds (geosmin and volatile fatty acids) and the oxi-
dation of sunflower oil to generate off-flavors (Chemat et al., 2004b; Yoo et al.,
1995, 1997). It is known that sonolysis of water due to cavitation forms hydrogen
(H•) and hydroxyl (•OH) radicals (Stanley et al., 2004). Yoo et al. (1995, 1997)
proposed that the H• and •OH radicals generated by water sonolysis were mainly
responsible for the degradation of geosmin and volatile fatty acids. A deterioration
of sunflower oil was also found during emulsification by ultrasound, with oxidized
volatile compounds produced from the oil (Chemat et al., 2004b). Hydroxyl rad-
icals (•OH) were believed to initiate lipid peroxidation in liposome (Jana et al.,
1986, 1990a, b). Since hydroperoxide can be produced by lipid peroxidation (Jana
et al., 1986, 1990a, b), the homolysis of hydroperoxide would finally lead to the
formation of off-flavors (Grosh, 1987). Sunflower oil directly treated by ultrasound
also shows quality degradation as indicated by high peroxide values (Chemat et al.,
2004a). Similar off-flavors were detected in sunflower oil treated by an ultrasonic
cutting device (Schneider et al., 2006). The authors suggested that the off-flavors
might be a result of oxidation of the sunflower oil catalyzed by the metallic part of
the ultrasound horn (Chemat et al., 2004b). Additionally, metal ions, such as copper,
that occur naturally in edible oil might be involved in cavitation-related reactions,
which may also contribute to the formation of oxy radical species, thus inducing
generation of volatile off-flavors (Chemat et al., 2004b).

In a study to treat commercial apple juice in an open system by thermosoni-
cation to achieve a 5-log reduction of E. coli K12 population, the concentration
of 1-butanol-3-methyl acetate, a major active aroma compound in apple juice,
was 6,071 ppb in untreated juice and was 502 and 40 ppb in thermal- and
thermosonication-treated juice, respectively (unpublished data). The loss of 1-
butanol-3-methyl acetate during sonication might have been caused by the degassing
effect of ultrasound or by the physical (localized high temperature and pressure)
or chemical (radical) reactions associated with cavitation. More studies are needed
to ascertain the mechanism for the reduction of 1-butanol-3-methyl acetate in
sonicated apple juice.

Ultrasound-assisted aging was applied to process rice and maize wines (Chang,
2004; Chang and Chen, 2002). The hypothesis was that localized high temperature
and pressure generated by ultrasound might accelerate the aging process of wines
and produce more flavor and taste. The wine was circulated through a 10 mm orifice
atomizer where ultrasound treatment was applied up to 16 times. After treatment the
concentration of acetaldehyde (unpleasant stingy flavor) decreased, and ethyl acetate
(apple and/or fruit flavor) increased in the ultrasound-treated rice wine. Polyols in
rice wine, causing a sense of greasy aftertaste in the mouth, were decreased by the
ultrasound treatment (Chang and Chen, 2002). In contrast, the content of acetalde-
hyde in an aged maize wine following ultrasound treatment was higher than that of
the conventionally aged maize wine. The polyols content in a maize wine aged with
ultrasound was higher, whereas the concentration of ethyl acetate, a pleasant flavor
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compound, in the ultrasound-aged maize wine was lower (Chang and Chen, 2002).
It appears that ultrasound-assisted aging is appropriate only for certain wines and
hence further research must be conducted to determine if ultrasound-assisted aging
is appropriate for a specific wine.

4 Color

Color changes in a food product may affect the overall acceptability of the product
for consumers. Several researchers have documented the effect of ultrasound on the
color of liquid and solid food products, including milk, orange juice, apple cider,
dehydrated rabbiteye blueberry, blanched watercress, and meat. Table 22.3 sum-
marizes the reports on color changes of ultrasound-treated foods and experimental
conditions used in the studies.

Nonenzymatic browning in milk model (0.1 M phosphate buffer, pH 6.6, 3%
(w/v) sodium caseinate, and 2% (w/v) glucose) and fruit juice model (0.1 M citrate
buffer, pH 3.5, and 12% (w/v) glucose) systems was studied with a continuous MTS
system (Vercet et al., 2001). Brown pigments in MTS-treated milk model system
increased with treatment time compared to heat-treated milk, which was proba-
bly caused by the Maillard reaction. Browning was also observed in MTS-treated
artificial fruit juice. Due to the absence of amine groups in the juice, the authors
suggested that a mechanism other than Maillard reaction may have played a role
(Vercet et al., 2001). The ultrasound treatment of glucose in an aqueous phase could
yield glucosyl radical and polymers in the presence of oxygen, which could con-
tribute to the formation of browning pigments (Portenlänger and Heusinger, 1994;
Vercet et al., 2001). In a nitrogen-protected MTS system, the browning index of
MTS-treated orange juice was significantly lower than that treated by a commercial
thermal method, but was significantly higher than that of raw juice (Lee et al., 2005).
In a report by Valero et al. (2007), orange juice was sonicated by both batch and
continuous systems. An increase in brown pigments in ultrasound-treated orange
juice was observed only in the continuous system. Valero et al. (2007) attributed
this result to greater exposure of the orange juice to oxygen in the continuous
system.

In another color parameter, lightness was found to increase in ultrasound-treated
liquid foods. For instance, orange juice sonicated with a continuous system showed
an increase in lightness with treatment time (Zenker et al., 2003). The authors postu-
lated that partial precipitation of suspended, insoluble particles in the juice probably
contributed to the increase in lightness. In ultrasound-treated apple cider, the tur-
bidity was significantly (p < 0.05) lower than that of untreated or thermally treated
samples. Particle separation and reduction in particle sizes by ultrasound were sug-
gested as the possible cause of the low turbidity (Ugarte-Romero et al., 2006).
Less darkness was also observed in ultrasound-treated apple cider compared to the
untreated counterpart. Since polyphenol oxidase (PPO) is known to promote brown-
ing or darkening in apple cider (Zárate-Rodríguez et al., 2000), the PPO inactivation
plus removal of particulates by ultrasound may thus help to produce less dark colors
in ultrasound-treated samples (Ugarte-Romero et al., 2006).
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Other ultrasound-assisted processes, such as osmotic dehydration and blanch-
ing, could also indirectly affect the color of processed fruits and vegetables. Dried
rabbiteye blueberries processed by ultrasound-assisted osmotic dehydration exhib-
ited more reddish and yellowish colors than those processed without ultrasound
treatment (Stojanovic and Silva, 2007). Thermosonication used in the blanching
of watercress resulted in darker and less yellowish colors than in raw watercress
(Cruz et al., 2007). There was no significant (p < 0.05) difference in lightness and
yellowish colors between conventional and thermosonication blanching. However,
the thermosonication-blanched watercress showed a greener color than the conven-
tionally blanched one. Compared to conventional blanching, the thermosonication
blanching also developed green color at a higher rate. Ultrasonication may help
to expel gases inside the intercellular space and enhance blanching medium trans-
fer into the product due to enhanced mass transfer induced by ultrasound. As a
result, the light refraction from the cell surface and hence the color perception of
the product will be changed (Bower, 1992).

Ultrasound treatment has been reported to alter meat colors. One observation
was that ultrasound-treated meat showed lighter, less red, and more yellow col-
ors than untreated meat (Pohlman et al., 1997a). Since high-intensity ultrasound
was reported to generate heat on meat surfaces (Dickens et al., 1991; Eggleton
et al., 1965; Gersten, 1965), the color changes during sonication might be caused by
thermal denaturation of myoglobin and hemoglobin pigments on product surfaces
(Marten et al., 1982). In other reports, however, no color changes were found in
ultrasound-treated meat products (Jayasooriya et al., 2007; Pohlman et al., 1997b).
The low ultrasound intensity (UI) and short treatment times used in those studies
might not allow any measurable changes in meat proteins and pigments. For exam-
ple, in the study of Pohlman et al. (1997b), the UI was 1.55 W/cm2, while that used
by Pohlman et al. (1997a) was 22 W/cm2. Jayasooriya et al. (2007) also used a rel-
atively low UI (12 W/cm2) and shorter treatment time (up to 240 s) than Pohlman
et al. (1997a).

5 Nutrients

Interactions between ultrasound and chemical compounds in a food that provides
nutritional values are complicated. Unfortunately, not much research has been
conducted and reported to elucidate the underlying mechanisms for the observed
reduction or enhancement in nutritional values after an ultrasound treatment and
during storage. Therefore, this section is not aimed at drawing any conclusions about
the effect of ultrasound on food nutrients. Instead, it only serves to report the limited
findings documented in current publications. A summary of the studies dealing with
the effect of ultrasound on nutrients is given in Table 22.4.

The release of anthocyanin and phenolics was reported for rabbiteye blueberries
processed by ultrasound-assisted osmotic dehydration (Stojanovic and Silva, 2007).
Anthocyanin and phenolics loss was higher after 3-h ultrasound-assisted osmotic
dehydration than when treated by osmotic dehydration only. It was proposed that
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the surface cell rupture caused by cavitation might contribute to the release of antho-
cyanin and phenolics in berry samples (Stojanovic and Silva, 2007). In addition,
the final product, dried blueberries, was found to retain higher anthocyanin and
phenolics in ultrasound-treated samples compared to those dried with conventional
osmotic dehydration.

It was reported that L-ascorbic acid in distilled water was degraded by ultrasound
treatment, possibly due to the generation of H• and •OH radicals (Portenlänger
and Heusinger, 1992). Degradation of (all-E)-astaxanthin, a carotenoid, in ethanol
by ultrasound treatment was also reported (Zhao et al., 2006). Degradation of
oxidation-sensitive nutrients, such as thiamin and riboflavin in milk, as well as
ascorbic acid and carotenoids in orange juice, was analyzed after a continuous MTS
treatment (Vercet et al., 2001). The MTS treatment showed no effect on the concen-
tration of thiamin and riboflavin in milk. In contrast, the contents of ascorbic acid
and carotenoids in orange juice decreased by around 10% after the MTS treatment.

Zenker et al. (2003) observed that ascorbic acid concentration in thermally
treated orange juice was slightly higher than in thermosonication-treated juice
immediately after the treatment. Similar results were reported by Lee et al. (2005) in
which the ascorbic acid concentration in MTS-treated orange juice was lower than
that in thermally pasteurized juice (Lee et al., 2005). Interestingly, during storage,
ascorbic acid retention in ultrasound-treated orange juice could be better than that in
a thermally processed juice. In Zenker et al.’s report (2003), the loss of ascorbic acid
in thermal-treated orange juice was faster than that in ultrasound-treated juice, ulti-
mately resulting in higher ascorbic acid content in ultrasound-treated orange juice
after 35-day storage. Lee et al. (2005) also found a higher retention of ascorbic acid
in MTS-treated orange juice than in thermally processed juice after 63-day storage
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Fig. 22.2 Changes in
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treated with different methods
during storage at 4◦C.
Source: Lee et al. (2005)
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(Fig. 22.2). The lower degradation of ascorbic acid in thermosonicated orange juice
was attributed to degassing of juice by ultrasound (Zenker et al., 2003). Dissolved
gases, including oxygen, can act as nuclei to form bubbles, which could float to the
surface and be removed from the juice. This degassing effect could lower the dis-
solved oxygen level in the juice and hence reduce oxidative degradation of ascorbic
acid during storage. In another study (Feng, 2005), improvement in ascorbic acid
retention of MTS-treated juice was observed in two out of six storage tests. The
dissolved oxygen levels in MTS- and thermal-pasteurized orange juice were about
same during storage, and oxygen levels became negligible after 50 days. There
might be factors other than dissolved oxygen that contribute to degradation reac-
tions in juice. It has been found that during MTS treatment, due to strong cavitation
activities, some metal ions, including iron, manganese, and nickel, were released
from the metal container wall. These metal ions may function as catalysts to speed
up some degradation reactions. More studies are needed to better understand the
degradation reactions in ultrasound treatment of juice products.
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