
Chapter 4
Statistical Design of Integrated Circuits

Sachin S. Sapatnekar

Abstract The presence of process variations makes it imperative to depart from the
traditional corner-based methodology and migrate to statistical design techniques.
In this chapter, based on a set of variational models that capture correlated as well
as uncorrelated variations, we present techniques for presilicon statistical timing
and power analysis to determine the performance spread over a population of man-
ufactured parts. In order to improve this spread, we discuss presilicon statistical
optimization techniques that incorporate appropriate margins to enable improved
manufacturing yield. At the post-silicon stage, we then present how a set of com-
pact sensors may be used to predict the delay of a manufactured part, with known
confidence, through a small set of measurements on the sensors: such data can then
be used to drive adaptive post-silicon tuning approaches that are individualized to
each manufactured part.

4.1 Introduction

As feature sizes have moved into tens of nanometers, it has become widely accepted
that design tools must account for parameter variations during manufacturing. These
considerations are important during both circuit analysis and optimization, in the
presilicon as well as the post-silicon phases, and are essential to ensure circuit
performance and manufacturing yield. These sources of variation can broadly be
categorized into three classes:

• Process variations result from perturbations in the fabrication process, due to
which the nominal values of parameters such as the effective channel length
(Leff), the oxide thickness (tox), the dopant concentration (Na), the transistor width
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(w), the interlayer dielectric (ILD) thickness (tILD), and the interconnect height
and width (hint and wint, respectively).

• Environmental variations arise due to changes in the operating environment of
the circuit, such as the temperature or variations in the supply voltage (Vdd and
ground) levels or soft errors. There is a wide body of work on analysis techniques
to determine environmental variations, both for thermal issues and voltage drop,
and a reasonable volume on soft errors.

• Aging variations come about due to the degradation of the circuit during its oper-
ation in the field. These variations can result in changes in the threshold voltage
over time, or catastrophic failures due to prolonged stress conditions.

All of these types of variations can result in changes in the timing and power char-
acteristics of a circuit. Process variations, even random ones, are fully determined
when the circuit is manufactured and do not change beyond that point. Therefore, a
circuit that experiences large variations can be discarded after manufacturing test, at
the cost of yield loss. An optimization process can target the presilicon maximiza-
tion of yield over the entire population of die, or a post-silicon repair mechanism.
On the other hand, environmental variations may appear, disappear, and reappear in
various parts of the circuit during its lifetime. Since the circuit is required to work
correctly at every single time point during its lifetime and over all operating condi-
tions, these are typically worst-cased. Aging variations are deterministic phenomena
that can be compensated for by adding margins at the presilicon, or by adaptation at
the post-silicon phase.

For these reasons, process variations are a prime target for statistical design that
attempts to optimize the circuit over a range of random variations, while environ-
mental and aging variations are not. The move to statistical design is a significant
shift in paradigm from the conventional approach of deterministic design. Unlike
conventional static timing analysis (STA) which computes the delay of a circuit at a
specific process corner, statistical static timing analysis (SSTA) provides a probabil-
ity density function (PDF)1 of the delay distribution of the circuit over all variations.
Similarly, statistical power analysis targets the statistical distribution of the power
dissipation of a circuit.

Process parameter variations can be classified into two categories: across-die
(also known as inter-die) variations and within-die (or intra-die) variations. Across-
die variations correspond to parameter fluctuations from one chip to another, while
within-die variations are defined as the variations among different locations within a
single die. Within-die variations of some parameters have been observed to be spa-
tially correlated, i.e., the parameters of transistors or wires that are placed close to
each other on a die are more likely to vary in a similar way than those of transistors
or wires that are far away from each other. For example, among the process param-
eters for a transistor, the variations of channel length Leff and transistor width W are
seen to have such spatial correlation structure, while parameter variations such as

1Equivalently, its integral, the cumulative density function (CDF), may be provided.
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the dopant concentration NA and the oxide thickness Tox are generally considered
not to be spatially correlated.

If the only variations are across-die variations, as was the case in older technolo-
gies, then the approach of using process corners is very appropriate. In such a case,
all variations on a die are similar, e.g., all transistor Leff values may be increased
or decreased by a consistent amount, so that a worst-case parameter value may be
applied. However, with scaling, the role of within-die variations has increased sig-
nificantly. Extending the same example, such variations imply that some Leff values
on a die may increase while others may decrease, and they may do so by inconsis-
tent amounts. Therefore, worst-case corners are inappropriate for this scenario, and
statistically based design has become important.

This chapter begins by overviewing models for process variations in Section 4.2.
Next, we survey a prominent set of techniques for statistical timing and power
analysis in Sections 4.3 and 4.4, respectively. Presilicon optimization methods are
outlined in Section 4.5, and statistically based sensing techniques are described in
Section 4.6.

4.2 Mathematical Models for Process Variations

4.2.1 Modeling Variations

In general, the intra-chip process variation δ can be decomposed into three parts: a
deterministic global component, δglobal; a deterministic local component δlocal; and
a random component ε [1]:

δ = δglobal + δlocal + ε (4.1)

The global component, δglobal, is location-dependent, and several models are
available in the literature to incorporate various known deterministic effects. The
local component, δlocal, is proximity-dependent and layout-specific. The random
residue, ε, stands for the random intra-chip variation and is modeled as a random
variable with a multivariate distribution ε to account for the spatial correlation of
the intra-chip variation. It is common to assume that the underlying distribution
is Gaussian, i.e., ε ∼ N(0, �), where Σ is the covariance matrix of the distribu-
tion. However, other distributions may also be used to model this variation. When
the parameter variations are assumed to be uncorrelated, Σ is a diagonal matrix;
spatial correlations are captured by the off-diagonal cross-covariance terms in a gen-
eral Σ matrix. A fundamental property of covariance matrices says that Σ must be
symmetric and positive semidefinite.

To model the intra-die spatial correlations of parameters, the die region may be
partitioned into nrow × ncol = n grids. Since devices or wires close to each other
are more likely to have similar characteristics than those placed far away, it is rea-
sonable to assume perfect correlations among the devices (wires) in the same grid,
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Fig. 4.1 Grid model for
spatial correlations [2]

high correlations among those in close grids and low or zero correlations in far-
away grids. For example, in Fig. 4.1, gates a and b (whose sizes are shown to be
exaggeratedly large) are located in the same grid square, and it is assumed that their
parameter variations (such as the variations of their gate length), are always iden-
tical. Gates a and c lie in neighboring grids, and their parameter variations are not
identical but are highly correlated due to their spatial proximity. For example, when
gate a has a larger than nominal gate length, it is highly probable that gate c will
have a larger than nominal gate length, and less probable that it will have a smaller
than nominal gate length. On the other hand, gates a and d are far away from each
other, and their parameters are uncorrelated; for example, when gate a has a larger
than nominal gate length, the gate length for d may be either larger or smaller than
nominal.

Under this model, a parameter variation in a single grid at location (x, y) can
be modeled using a single random variable p(x, y). For each type of parameter, n
random variables are needed, each representing the value of a parameter in one of
the n grids.

In addition, it is reasonable to assume that correlation exists only among the
same type of parameters in different grids and there is no correlation between dif-
ferent types of parameters. For example, the Lg values for transistors in a grid are
correlated with those in nearby grids, but are uncorrelated with other parameters
such as Tox or Wint in any grid. For each type of parameter, an n × n covariance
matrix, Σ , represents the spatial correlations of such a structure.

An alternative model for spatial correlations was proposed in [3, 4]. The chip area
is divided into several regions using multiple quad-tree partitioning, where at level
l, the die area is partitioned into 2l × 2l squares; therefore, the uppermost level has
just one region, while the lowermost level for a quad-tree of depth k has 4k regions.
A three-level tree is illustrated in Fig. 4.2. An independent random variable, �pi,r,
is associated with each region (i, r) to represent the variations in parameter p in the
region at level r. The total variation at the lowest level is then taken to be the sum of
the variations of all squares that cover a region.
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Fig. 4.2 The quadtree model
for spatially correlated
variations [3]

For example, in Fig. 4.2, in region (2,1), if p represents the effective gate length
due to intra-die variations, �Leff(2, 1), then

�Leff(2, 1) = �L0,1 + �L1,1 + �L2,1 (4.2)

In general, for region (i, j),

�p(i, j) =
∑

0<l<k,(l,r) covers (i,j)

�pl,r (4.3)

It can be shown rather easily that this is a special case of the model of Fig. 4.1, and
has the advantage of having fewer characterization parameters. On the other hand,
it shows marked edge effects that result in smaller correlations between adjacent
cells if they fall across the edges of early levels of the quad-tree than those that
do not.

Several approaches for characterizing spatial variations have been presented in
the literature. The traditional approach is based on Pelgrom’s model [5], which pro-
vides a closed-form structure for the variance of process parameters, and is widely
used by analog designers to model device mismatch. In [6], a technique for fitting
process data was presented, with a a guarantee that the resulting covariance matrix
is positive definite. In [7], the notion behind Pelgrom’s model is generalized using
the idea of variograms to come up with a distance-based correlation model. An alter-
native radially symmetric spatial correlation model, based on hexagonal cells, was
presented in [8].
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4.2.2 Gaussian Models and Principal Components

When the underlying variations are Gaussian in nature, they are completely speci-
fied by a mean vector and a covariance matrix, Σ . However, working with correlated
random variables involves considerable computation, and this can be reduced if
the variables are orthogonalized into a basis set of independent random variables.
Principal components analysis (PCA) techniques [9] convert a set of correlated ran-
dom variables into a set of orthogonal uncorrelated variables in a transformed space;
the PCA step can be performed as a preprocessing step for a design. As shown in [2],
by performing this orthogonalization as a preprocessing step, once for each technol-
ogy, the cost of SSTA can be significantly reduced. A variation on this theme is
the idea of using the Kosambi-Karhunen-Loéve expansion [10], which allows cor-
relations to be captured using a continuous, rather than a grid-based model and is
useful for more fine-grained variations; indeed, PCA is sometimes referred to as the
discrete osambi-Karhunen-Loéve transform.

Given a set of correlated random variables X with a covariance matrix Σ , the
PCA method transforms the set X into a set of mutually orthogonal random vari-
ables, P, such that each member of P has zero mean and unit variance. The elements
of the set P are called principal components in PCA, and the size of P is no larger
than the size of X. Any variable xi ∈ X can then be expressed in terms of the
principal components P as follows:

xi = μi + σi

m∑
j=1

√
λi · vij · pj = μi +

m∑
j=1

kijpj (4.4)

where pij is a principal component in set P, λi is the ith eigenvalue of the covariance
matrix Σ , vij is the ith element of the jth eigenvector of Σ , and σ i and μi are,
respectively, the mean and standard deviation of xi. The term kij aggregates the terms
that multiply pj.

Since all of the principal components pi that appear in Equation (4.4) are
independent, the following properties ensue:

• The variance of d is given by

σ 2
xi

=
m∑

i=1

k2
ij (4.5)

• The covariance between xi and any principal component pj is given by

cov(xi, pj) = kijσ
2
pj

= kij (4.6)

• For two random variables, xi and xl are given by
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xi = μi +
m∑

j=1

kijpj

xl = μl +
m∑

j=1

kljpl

The covariance of xi and xl, cov(xi, xl) can be computed as

cov(xi, xl) =
m∑

j=1

kijklj (4.7)

In other words, the number of multiplications is linear in the dimension of the space, since
orthogonality of the principal components implies that the products of terms kir and kjs for
r �= s need not be considered.

If we work with the original parameter space, the cost of computing the covari-
ance is quadratic in the number of variables; instead, Equation (4.7) allows this to
be computed in linear time. This forms the heart of the SSTA algorithm proposed
in [2], and enables efficient SSTA.

4.2.3 Non-Gaussian Models and Independent Components

Non-Gaussian variations may be represented by a specific type of distribution in
closed-form, or by a set of moments that characterize the distribution. These cases
are indeed seen in practice: for example, the dopant density, Nd, can be modeled
using a Poisson distribution. SSTA methods that work on non-Gaussians are gen-
erally based on moment-based formulations, and therefore, a starting point is in
providing the moments of the process distribution.

Consider a process parameter represented by a random variable xi: let us denote
its kth moment by mk(xi) = E[xk

i ]. We consider three possible cases:

Case I: If the closed-form of the distribution of xi is available and it is of a standard
form (e.g., Poisson or uniform), then mk(xi) ∀ k can be derived from the standard
mathematical tables of these distributions.

Case II: If the distribution is not in a standard form, then mk(xi) ∀ k may be derived
from the moment generating function (MGF) if a continuous closed-form PDF of
the parameter is known. If the PDF of xi is the function fxi(xi), then its moment
generating function M(t) is given by

M(t) = E[etxi] =
∫ ∞

−∞
etxi fxi(xi)dxi (4.8)

The kth moment of xi can then be calculated as the kth order derivative of M(t) with

respect to t, evaluated at t = 0. Thus, mk(xi) = dkM(t)
dtk

at t = 0.
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Case III: If a continuous closed-form PDF cannot be determined for a parameter,
the moments can still be evaluated from the process data files as:

mk(xi) =
∑

x

xkPr(Xi = x) (4.9)

where Pr(xi = x) is the probability that the parameter xi assumes a value x.
For variations that are not Gaussian-distributed, it is possible to use the indepen-

dent component analysis method [11, 12] to orthogonalize the variables, enabling
an SSTA solution that has a reasonable computational complexity [13].

4.3 Statistical Timing Analysis

The problem of SSTA is easily stated: given the underlying probability distribu-
tions of the process parameters, the goal of SSTA is to determine the probability
distribution of the circuit delay. Most often, this task is divided into two parts: first,
translating process variations into a gate-level probabilistic delay model, and then
obtaining the circuit delay distribution.

Algorithms for SSTA can be classified according to various systems of taxonomy.

• Path-based vs. block-based methods: Path-based methods [3, 14] attempt to find
the probability distribution of the delay on a path-by-path basis, and eventually
performing a “max” operation to find the delay distribution of the circuit. If the
number of paths to be considered is small, these methods can be effective, but in
practice, the number of paths may be exponential in the number of gates. In con-
trast, block-based methods avoid path enumeration by performing a topological
traversal, similar to that used by the critical path method (CPM), which pro-
cesses each gate once when information about all of its inputs is known. While
early approaches were predominantly path-based, state-of-the-art methods tend
to operate in a block-based fashion.

• Discrete vs. continuous PDFs: SSTA methods can also be classified by their
assumptions about the underlying probability distributions. Some approaches use
discrete PDFs [15–17] while others are based on continuous PDFs; the latter class
of techniques tend to dominate in the literature, although the former are capable
of capturing a wider diversity of distributions, and may even directly use sample
points from the process.

• Gaussian vs. non-Gaussian models: The class of continuous PDFs can be further
subdivided into approaches that assume Gaussian (or normal) parameters, and
those that permit more general non-Gaussian models.

• Linear vs. nonlinear delay models: Under small process perturbations, it is
reasonable to assume that the change in gate delays follows a linear trend.
However, as these perturbations grow larger, a nonlinear model may be nec-
essary. Depending on which of these is chosen as the underlying model, the
corresponding algorithm can incur smaller or larger computational costs.
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The basic Monte Carlo method is probably the simplest method for perform-
ing statistical timing analysis. Given an arbitrary delay distribution, the method
generates sample points and runs a static timing analyzer at each such point, and
aggregates the results to find the delay distribution. The advantages of this method
lie in its ease of implementation and its generality in being able to handle the com-
plexities of variations and a wider range of delay models. For example, spatial
correlations are easily incorporated, since all that is required is the generation of
a sample point on a correlated distribution. Such a method is very compatible with
the data brought in from the fab line, which are essentially in the form of sample
points for the simulation. Its major disadvantage can be its extremely large run-
times. Recent work on SSTA has moved towards more clever and computationally
efficient implementations [18–20]. Our discussion will largely focus on the faster
and more widely used block-based SSTA methods that seek closed-form expressions
for the delay at the output of each gate.

b

c

d

Path a−b−d

Path a−c−d

a

Fig. 4.3 An example to
illustrate structural
correlations in a circuit

In addition to accounting for randomness, including spatial correlations, SSTA
algorithms must also consider the effects of correlations between delay variables
due to the structure of the circuit. Consider the reconvergent fanout structure shown
in Fig. 4.3. The circuit has two paths, a-b-d and a-c-d. The circuit delay is the maxi-
mum of the delays of these two paths, and these are correlated since the delays of a
and d contribute to both paths.

4.3.1 Modeling Gate/Interconnect Delay PDF’s

The variations in the process parameters translate into variations in the gate delays
that can be represented as PDFs. Before we introduce how the distributions of gate
and interconnect delays will be modeled, let us first consider an arbitrary function
d = f (P) that is assumed to be a function on a set of parameters P, where each
pi ∈ P is a random variable with a known PDF. We can approximate d using a
Taylor series expansion:
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d = d0 +
∑

∀parameters pi

[
∂f

∂pi

]
0
�pi +

∑
∀parameters pi

[
∂2f

∂p2
i

]
0

�p2
i + · · · (4.10)

where d0 is the nominal value of d calculated at the nominal values of parameters in

the set P,
[

∂f
∂pi

]
0

is computed at the nominal values of and pi, and �pi = pi − μpi

is a zero-mean random variable. This delay expression is general enough to handle
the effects of input slews and output loads; for details, see [21].

If all of the parameter variations can be modeled by Gaussian distributions, i.e.,
pi ∼ N(μpi , σpi), then clearly �pi ∼ N(0, σpi ). If a first-order Taylor series approx-
imation is used in Equation (4.10) by neglecting quadratic and higher order terms,
then d is a linear combination of Gaussians and is therefore Gaussian. Its mean μd

and variance σ 2
d are

μd = d0 (4.11)

σ 2
d =

∑
∀i

[
∂f

∂pi

]2

0
σ 2

pi
+ 2

∑
∀i �=j

cov(pi, pj) (4.12)

where cov(pi, pj) is the covariance of pi and pj.
In cases where the variations are larger than can be accurately addressed by a

linear model, then higher-order terms of the expansion should be maintained. Most
such nonlinear models in the literature (e.g., [22–24]) find it sufficient to consider
the linear and quadratic terms in the Taylor expansion.

4.3.2 Algorithms for SSTA

4.3.2.1 Early Methods

Early work in this area spawned several methods that ignored the spatial corre-
lation component, but laid the foundation for later approaches that overcame this
limitation. Prominent among these was the work by Berkelaar in [25], [26], which
presented a precise method for statistical static timing analysis that could success-
fully process large benchmarks circuits under probabilistic delay models. In the
spirit of static timing analysis, this approach is purely topological and ignores the
Boolean structure of the circuit. The underlying delay model assumes that each gate
has a delay described by a Gaussian PDF, and observed that the essential operations
in timing analysis can be distilled into two types:

SUM: A gate is processed when the arrival times of all inputs are known, at which time the
candidate delay values at the output are computed using the “sum” operation that adds the
delay at each input with the input-to-output pin delay.
MAX: The arrival time at the gate output is determined once these candidate delays have
been found, and the “max” operation is applied to determine the maximum arrival time at
the output.
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The key to SSTA is to perform these two operations on operands that correspond
to PDFs, rather than deterministic numbers as is the case for STA. Note that, as in
STA, the SUM and MAX operators incorporate clock arrival times as well as signal
arrival times.

Berkelaar’s approach maintains an invariant that expresses all arrival times
as Gaussians. As a consequence, since the gate delays are Gaussian, the “sum”
operation is merely an addition of Gaussians, which is well known to be a Gaussian.

The computation of the “max” function, however, poses greater problems. The
candidate delays are all Gaussian, so that this function must find the maximum of
Gaussians. In general, the maximum of two Gaussians is not a Gaussian, but can be
approximated as one. Intuitively, this can be justified by seeing that if a and b are
Gaussian random variables, then

• if a � b, then max(a, b) = a is a Gaussian
• if a = b, then max(a, b) = a = b is a Gaussian

It was suggested in [25] that a statistical sampling approach could be used to approx-
imate the mean and variance of the distribution; alternatively, this information
could be embedded in look-up tables. In later work in [26], a precise closed-form
approximation for the mean and variance, based on [27], was utilized.

4.3.2.2 Incorporating Spatial Correlations

In cases where significant spatial correlations exist, it is important to take them
into account. Figure 4.4 shows a comparison of the PDF yielded by an SSTA tech-
nique that is unaware of spatial correlations, as compared with a Monte Carlo
simulation that incorporates these spatial correlations, and clearly shows a large
difference. This motivates the need for developing methods that can handle these
dependencies.

Early approaches to spatial correlation did not scale to large circuits. The work
in [28] extended the idea of [25] to handle intra-gate spatial correlations, while
assuming zero correlation between gates. A notable feature of this work was the
use of an approximation technique from [29] that provides a closed-form formula
to approximate the maximum of two correlated Gaussian random variables as a
Gaussian.

Under normality assumptions, the approach in [2, 21] leverages the decompo-
sition of correlated variations into principal components, as described in Section
4.2.2, to convert a set of correlated random variables into a set of uncorrelated vari-
ables in a transformed space. As mentioned earlier, the PCA step is to be performed
once for each technology as a precharacterization. The worst-case complexity of
the method in [2, 21] is n times the complexity of CPM, where n is the number of
squares in the correlation grid (see Fig. 4.1). The overall CPU times for this method
have been shown to be low, and the method yields high accuracy results.

This parameterized approach to SSTA propagates a canonical form (a term pop-
ularized in [30]) of the delay PDF, typically including the nominal value, a set
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Fig. 4.4 A comparison of the results of SSTA when the random variables are spatially correlated.
The line on which points are marked with stars represents the accurate results obtained by a lengthy
Monte Carlo simulation, and the the solid curve shows the results when spatial correlations are
entirely ignored. The upper plot shows the CDFs, and the lower plot, the PDFs [2]

of normalized underlying independent sources of variation. For spatially corre-
lated variations, these sources correspond to the principal components (PCs) [2],
computed by applying PCA to the underlying covariance matrix of the correlated
variations; uncorrelated variations are typically captured by a single independent
random variable.

If the process parameters are Gaussian-distributed, then the m PCs affect the
statistical distribution of both the original circuit and the test structures on the same
chip, and the canonical form for the delay d is represented as

d = μ +
m∑

i=1

aipi + R = μ + aTp + R (4.13)

where μ is the mean of the delay distribution. The value of μ is also an approxima-
tion of its nominal value.2 The random variable pi corresponds to the ith principal

2The nominal value of the delay of the circuit is the delay value when no parameter variations are
present. This can be computed exactly by a conventional static timing analysis with all parameters
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component, and is normally distributed, with zero mean and unit variance; note that
pi and pj for i �= j are uncorrelated by definition, stemming from a property of PCA.
The parameter ai is the first order coefficient of the delay with respect to pi. Finally,
R corresponds to a variable that captures the effects of all the spatially uncorre-
lated variations. It is a placeholder to indicate the additional variations of the delay
caused by the spatially uncorrelated variations, and cannot be regarded as a principal
component.

Equation (4.13) is general enough to incorporate both inter-die and intra-die
variations. It is well known that, for a spatially correlated parameter, the inter-die
variation can be taken into account by adding a value σ 2

inter, the variance of inter-die
parameter variation, to all entries of the covariance matrix of the intra-die variation
of that parameter before performing PCA. The uncorrelated component R accounts
for contributions from both the inter-die and intra-die variations. Systematic vari-
ations affect only the nominal values and the PC coefficients in SSTA. Therefore,
they can be accounted for by determining the shifted nominal values and sensitivi-
ties prior to SSTA, and computing the nominal values and PC coefficients in SSTA
based on these shifted values.

The work in [2] uses this canonical form, along with the properties of such
a principal components-based representation (as described in Equations (4.5)
through (4.7) to perform SSTA under the general spatial correlation model of
Fig. 4.1.

The fundamental process parameters are assumed to be in the form of corre-
lated Gaussians, so that the delay given by Equation (4.10) is a weighted sum of
Gaussians, which is Gaussian.

As in the work of Berkelaar, this method maintains the invariant that all arrival
times are approximated as Gaussians, although in this case the Gaussians are cor-
related and are represented in terms of their principal components. Since the delays
are considered as correlated Gaussians, the sum and max operations that underlie
this block-based CPM-like traversal must yield Gaussians in the form of principal
components.

We will first consider the case where R in (Equation 4.13) is zero. The compu-
tation of the distribution of the sum function, dsum = ∑n

i=1 di, is simple. Since this
function is a linear combination of normally distributed random variables, dsum is a
normal distribution whose mean, μdsum, and variance, σ 2

dsum, are given by

μdsum =
n∑

i=1

d0
i (4.14)

σ 2
dsum

=
m∑

j=1

n∑
i=1

k2
ij (4.15)

at their nominal values. However, because of the approximation of the max operation in the sta-
tistical timer, the mean value computed from the topological traversal is more compatible with the
rest of the canonical form.
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where di is written in terms of its normalized principal components as d0
i +∑m

j=1 kijpj.
Strictly speaking, the max function of n normally distributed random variables,

dmax = max(d1, · · · , dn), is not Gaussian; however, as before, it is approximated
as one. The approximation here is in the form of a correlated Gaussian, and the
procedure in [29] is employed. The result is characterized in terms of its princi-
pal components, so that it is enough to find the mean of the max function and the
coeficients associated with the principal components.

Although the above exposition has focused on handling spatially correlated
variables, it is equally easy to incorporate uncorrelated terms in this framework.
Only spatially correlated variables are decomposed into principal components, and
any uncorrelated variables are incorporated into the uncorrelated component, R, of
(Equation 4.13); during the sum and max operations, the uncorrelated components
of the operands are consolidated into a single uncorrelated component of the canon-
ical form of the result. For a detailed description of the sum and max operations, the
reader is referred to [21].

The utility of using principal components is twofold:

• As described earlier, it implies that covariance calculations between paths are of
linear complexity in the number of variables, obviating the need for the expensive
pair-wise delay computation methods used in other methods.

• In the absence of the random component, R, in (Equation 4.13), structural cor-
relations due to reconvergent fanouts (see Fig. 4.3) are automatically accounted
for, since all the requisite information required to model these correlations is
embedded in the principal components. When R is considered, the structural
components associated with R are lumped together and individual variational
information is lost, leading to a slight degradation of accuracy. However, heuristic
methods may be used to limit this degradation.

The overall flow of the algorithm is shown in Fig. 4.5. To further speed up the
process, several techniques may be used:

Input: Process parameter variations
Output: Distribution of circuit delay

1.  Partition the chip into n = nrow × ncol grids , each modeled by spatially
     correlated variables.
2.  For each type of parameter, determine the n jointly normally distributed
     random variables and the corresponding covariance matrix.
3.  Perform an orthogonal transformation to represent each random variable
     with a set of principal components.
4.  For each gate and net connection, model their delays as linear combinations
     of the principal components generated in step 3.
5.  Using “sum” and “max” functions on Gaussian random variables, perform
     a CPM-like traversal on the graph to find the distribution of the statistical
     longest path. This distribution achieved is the circuit delay distribution.

Fig. 4.5 Overall flow of the PCA-based statistical timing analysis method
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1. Before running the statistical timing analyzer, one run of deterministic STA is
performed to determine loose bounds on the best-case and worst-case delays for
all paths. As in [31], any path whose worst-case delay is less than the best-case
delay of the longest path will never be critical, and edges that lie only on such
paths can safely be removed.

2. During the “max” operation of statistical STA, if the value of mean+3 ·σ of one
path has a lower delay than the value of mean − 3 · σ of another path, the max
function can be calculated by ignoring the path with lower delay.

For the non-Gaussian case [13], the linear canonical form is similar to
(Equation 4.13):

d = μ + bTx + cTy + e.z (4.16)

where d is the random variable corresponding to a gate delay or an arrival time at
the input port of a gate. The vector x corresponds to the non-Gaussian independent
components, obtained from applying ICA to the non-Gaussian process parameter
set, and b is the vector of first-order sensitivities of the delay with respect to these
independent components. The Gaussian random variables are orthogonalized using
PCA into the principal component vector, y, and c is the corresponding linear sen-
sitivity vector. Finally, z is the uncorrelated parameter which may be a Gaussian or
a non-Gaussian random variable, e is the sensitivity with respect this. We assume
statistical independence between the Gaussian and non-Gaussian parameters: this
is a reasonable assumption as parameters with dissimilar distributions are likely to
represent different types of variables and are unlikely to be correlated.

The work in [13] presents an approach that translates the moments of the pro-
cess parameters to the moments of the principal and independent components in
a precharacterization step that is performed once for each technology. Next, a
moment-based scheme is used to propagate the moments through the circuit, using
a moment-matching scheme similar to the APEX algorithm [32]. The sum and
max operations are performed on the canonical form to provide a result in canon-
ical form, with moment-matching operations being used to drive the engine that
generates the canonical form.

4.4 Statistical Power Analysis

The power dissipation of a circuit consists of the dynamic power, the short-circuit
power, and the leakage power. Of these, the leakage power is increasing drastically
with technology scaling, and has already become a substantial contributor to the
total chip power dissipation. Consequently, it is important to accurately estimate
leakage currents so that they can be accounted for during design, and so that it is
possible to effectively optimize the total power consumption of a chip.

The major components of leakage in current CMOS technologies are due to sub-
threshold leakage and gate tunneling leakage. For a gate oxide thickness, Tox, of
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over 20Å, the gate tunneling leakage current, Igate, is typically very small, while the
subthreshold leakage, Isub, dominates other types of leakage in circuit. For this rea-
son, early work on leakage focused its attention on subthreshold leakage. However,
the gate tunneling leakage is exponentially dependent on gate oxide thickness, e.g.,
a reduction in Tox of 2Å will result in an order of magnitude increase in Igate.
While high-K dielectrics provide some relief, the long-term trends indicate that gate
leakage is an important factor. Unlike dynamic and short-circuit power, which are
relatively insensitive to process variations, the circuit leakage can change signifi-
cantly due to changes in parameters such as the transistor effective gate length and
the gate oxide thickness. Therefore, statistical power analysis essentially equates to
statistical leakage analysis.

4.4.1 Problem Description

The total leakage power consumption of a circuit is input-pattern-dependent, i.e., the
value differs as the input signal to the circuit changes, because the leakage power
consumption, due to subthreshold and gate tunneling leakage, of a gate depends on
the input vector state at the gate. As illustrated in [33], the dependency of leakage
on process variations is more significant than on input vector states. Therefore, it
is sufficient to predict the effects of process variations on total circuit leakage by
studying the variation of average leakage current for all possible input patterns to
the circuit. However, it is impractical to estimate the average leakage by simulating
the circuit at all input patterns, and thus an input pattern-independent approach is
more desirable.

In switching power estimation, probabilistic approaches [34] have been used for
this purpose. The work of [33] proposed a similar approach that computes the aver-
age leakage current of each gate and estimates the total average circuit leakage as a
sum of the average leakage currents of all gates:

Iavg
tot =

Ng∑
k=1

Iavg
leak,k =

Ng∑
k=1

∑
∀veci,k

Prob(veci,k) · Ileak,k(veci,k) (4.17)

where Ng is the total number of gates in the circuit, Iavg
leak,k is the average leakage

current of the kth gate, veci,k is the ith input vector at the kth gate, Prob(veci,k) is the
probability of occurrence of veci,k, and Ileak,k(veci,k) is the leakage current of the kth
gate when the gate input vector is veci,k.

In our discussion, we consider the variations in the transistor gate length Leff and
gate oxide thickness Tox, since Isub and Igate are most sensitive to these parameters
[35, 36]. To reflect reality, we model spatial correlations in transistor gate length,
while the gate oxide thickness values for different gates are taken to be uncorre-
lated. Note that although only transistor gate length and gate oxide thickness are
considered in this work, the framework is general enough to consider effects of any
other types of process variations such as the channel dopant variation Nd.
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(b) Ignoring spatial correlation

Fig. 4.6 Comparison of
scatter plots of full-chip
leakage of circuit c432
considering and ignoring
spatial correlation

In performing this computation, it is extremely important to consider the impact
of spatial correlations. While random variations tend to cancel themselves out, spa-
tially correlated variations magnify the extent of the variation. This difference can
be visualized in Fig. 4.6, which shows the scatter plots for c432 for 2000 samples
of full-chip leakage current generated by Monte Carlo simulations, with and with-
out consideration of spatial correlations of Leff. The x-axis marks the multiples of
the standard deviation value of �Linter

eff , inter-die variations of effective gate length,
ranging from −3 to +3, since a Gaussian distribution is assumed. The y-axis are the
values of total circuit leakage current. Therefore, at each specific value of �Linter

eff ,
the scatter points list the various sampled values of total circuit leakage current due
to variations in Tox and intra-die variation of Leff. The plots also show a set of con-
tour lines that correspond to, with the effect of spatial correlation taken into account,
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a set of percentage points of the cumulative density function (CDF) of total circuit
leakage current at different values of �Linter

eff . In Fig. 4.6a, where spatial correla-
tions are considered, nearly all points generated from Monte Carlo simulation fall
between the contours of the 1 and 99% lines. However, in Fig. 4.6b, where spatial
correlations are ignored, the spread is much tighter in general: the average value
of 90% point of full-chip leakage, with spatial correlation considered, is 1.5 times
larger than that without for �Linter

eff ≤ −1σ ; the same ratio is 1.1 times larger oth-
erwise. Looking at the same numbers in a different way, in Fig. 4.6b, all points are
contained between the 30 and 80% contours if �Linter

eff ≤ −1σ . In this range, Isub
is greater than Igate by one order of magnitude on average, and thus the variation of
Leff can have a large effect on the total leakage as Isub is exponentially dependent
on Leff. Consequently, ignoring spatial correlation results in a substantial underes-
timation of the standard deviation, and thus the worst-case full-chip leakage. For
�Linter

eff > −1σ , Isub decreases to a value comparable to Igate and Leff has a rel-
atively weak effect on the variation of total leakage. In this range, the number of
points of larger leakage values is similar to that when spatial correlation is con-
sidered. However, a large number of remaining points show smaller variations and
are within the 20 and 90% contours, due to the same reasoning given above for
�Linter

eff ≤ −1σ .

4.4.2 Computing the Distribution of the Full-Chip Leakage
Current

The distribution of Iavg
tot can be calculated in two steps. First, given the probability of

each input pattern vector to a gate, veci,k, we can compute the leakage of the gate as
a weighted sum over all possible vectors. Second, this quantity can be summed up
over all gates to obtain the total leakage. In other words,

Iavg
tot =

Ng∑
k=1

∑
∀veci,k

Prob(veci,k) · (Isub,k(veci,k) + Igate,k(veci,k)
)

(4.18)

where Ileak,k under vector (veci,k) is written as the sum of the subthreshold leakage,
Isub,k(veci,k), and the gate leakage, Igate,k(veci,k), for gate k.

The commonly used model for subthreshold leakage current through a transistor
expresses this current as [35]:

Isub = I0e(Vgs−Vth)/nsVT (1 − e−Vds/VT ) (4.19)

Here, I0 = μ0Cox(Weff/Leff)V2
Te1.8, where μ0 is zero bias electron mobility, Cox

is the gate oxide capacitance, Weff and Leff are the effective transistor width and
length, respectively, Vgs and Vds are gate-to-source voltage and drain-to-source volt-
age, respectively, ns is the subthreshold slope coefficient, VT = kT/q is the thermal
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voltage, where k is Boltzman constant, T is the operating temperature in Kelvin (K),
q is charge on an electron, and Vth is the subthreshold voltage.

It is observed that Vth is most sensitive to gate oxide thickness Tox and effective
transistor gate length Leff due to short-channel effects [35]. Due to the exponential
dependency of Isub on Vth, a small change on Leff or Tox will have a substantial
effect on Isub. From this intuition, we estimate the subthreshold leakage current per
transistor width by developing an empirical model through curve-fitting, similarly
to [36, 37]:

Isub = c × ea1+a2Leff+a3L2
eff+a4T−1

ox +a5Tox (4.20)

where c and the ai terms are the fitting coefficients. To quantify the empirical model,
the values of Isub achieved from expression (Equation 4.20) are compared with those
through SPICE simulations over a ranged values of Tox and Leff.

Under process perturbations, Isub can be well approximated by expanding its
exponent U using a first-order Taylor expansion at the nominal values of the process
parameters:

Isub = c × eU0+β1·�Leff+β2·�Tox (4.21)

where U0 is the nominal value of the exponent U, β0 and β1 are the derivatives of U
to Leff and Tox evaluated at their nominal values, respectively, and �Leff and �Tox
are random variables standing for the variations in the process parameters Leff and
Tox, respectively.

Expression (Equation 4.21) for Isub can also be written3 as
eln(c)+U0+β1·�Leff+β2·�Tox . Since �Leff and �Tox are assumed to be Gaussian-
distributed, Isub is seen as an exponential function of a Gaussian random variable,

with mean ln(c) + U0 and standard deviation
√

β2
1σ 2

Leff
+ β2

2σ 2
Tox

, where σLeff and

σTox are standard deviations of �Leff and �Tox, respectively.
In general, if x is a Gaussian random variable, then z = ex is a lognormal random

variable. From (Equation 4.21), it is obvious that Isub can be approximated as a
lognormally distributed random variable whose probability density function can be
characterized using the values of c, U0, and β i’s.

Since subthreshold leakage current has a well-known input state dependency due
to the stack effect [38], the PDFs of subthreshold leakage currents must be charac-
terized for all possible input states for each type of gate in the library, for which the
same approach described in this section can be applied. Once the library is charac-
terized, a simple look-up table (LUT) can then be used to retrieve the corresponding
model characterized given the gate type and input vector state at a gate.

3To consider the effect of varying Nd on Isub, equation (4.21) can be adapted by adding an addi-
tional term for �Nd in the exponent. As in the case of Tox, the variation of Nd does not show spatial
correlation, and thus Nd can be handled using a similar method as used for Tox in the framework.
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The gate oxide tunneling current density, Jtunnel, can be represented by the
following analytical model [39]:

Jtunnel = 4πm∗q

h3
(kT)2

(
1 + γ kT

2
√

EB

)
e

EF0,Si/SiO2
kT e−γ

√
EB (4.22)

Here m∗ is the transverse mass that equals 0.19m0 for electron tunneling and 0.55m0
for hole tunneling, where m0 is the free electron rest mass; h is Planck’s constant;
γ is defined as 4πTox

√
2mox/h, where mox is the effective electron (hole) mass in

the oxide; EB is the barrier height; EF0,Si/SiO2 = qφS − qφF − EG/2 is the Fermi
level at the Si/SiO2 interface, where φS is surface potential, φF is the Fermi energy
level potential, either in the Si substrate for the gate tunneling current through the
channel, or in the source/drain region for the gate tunneling current through the
source/drain overlap; and EG is the Si band gap energy.

However, this formulation (Equation 4.22) does not lend itself easily to the anal-
ysis of the effects of parameter variations. Therefore, we again use an empirically
characterized model to estimate Igate per transistor width through curve-fitting:

Igate = c′ × eb1+b2Leff+b3L2
eff+b4Tox+b5T2

ox (4.23)

where c′ and the bi terms are the fitting coefficients.
As before, under the variations of Leff and Tox, Igate can be approximated by

applying first-order Taylor expansion to the exponent U′ of Equation (4.23):

Igate = c′ × eU′
0+λ1·�Leff+λ2·�Tox (4.24)

where U′
0 is the nominal value of the exponent U′, and λ0 and λ1 are the derivatives

of U′ to Leff and Tox evaluated at their nominal values, respectively.
Under this approximation, Igate is also a lognormally distributed random variable,

and its PDF can be characterized through the values of c′, U′
0, and λi

′. Since the gate
tunneling leakage current is input state dependent, the PDFs of the Igate variables are
characterized for all possible input states for each type of gate in the library, and a
simple look-up table (LUT) is used for model retrieval while evaluating a specific
circuit.

4.4.2.1 Distribution of the Full-Chip Leakage Current

We now present an approach for finding the distribution of Iavg
tot as formulated in

Equation (4.18), which is a weighted sum of the subthreshold and gate leakage
values for each gate, over all input patterns to the gate. Since the probability of
each veci,k can be computed by specifying signal probabilities at the circuit pri-
mary inputs and propagating the probabilities into all gate pins in the circuit using
routine techniques, in this section, we focus on the computation of the PDF of the
weighted sum.
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As each of Isub,k (veci,k) or Igate,k (veci,k) has a lognormal distribution, it can easily
be seen that any multiplication by a constant maintains this property. Therefore, the
problem of calculating the distribution of Iavg

tot becomes that of computing the PDF
of the sum of a set of lognormal random variables. Furthermore, the set of lognormal
random variables in the summation could be correlated since:

• the leakage current random variables for any two gates may be correlated due to
spatial correlations of intra-die variations of process parameters.

• within the same gate, the subthreshold and gate tunneling leakage currents are
correlated, and the leakage currents under different input vectors are correlated,
because they are sensitive to the same process parameters of the same gate,
regardless of whether these are spatially correlated or not.

Theoretically, the sum of several lognormal distributed random variables is not
known to have a closed form. However, it may be well approximated as a lognor-
mal, as is done in Wilkinson’s method [40].4 That is, the sum of m lognormals,
S = ∑m

i=1 eYi , where each Yi is a normal random variable with mean myi and stan-
dard deviation σyi , and the Yi variables can be correlated or uncorrelated, can be
approximated as a lognormal eZ, where Z is normally distributed, with mean mz and
standard deviation σ z. In Wilkinson’s approach, the values of mz and σz are obtained
by matching the first two moments, u1 and u2, of eZ and S as follows:

u1 = E(eZ) = E(S) =
m∑

i=1

E(eYi ) (4.25)

u2 = E(e2Z) = E(S2) = Var(S) + E2(S) (4.26)

=
m∑

i=1

Var(eYi ) + 2
m−1∑
i=1

m∑
j=i+1

cov(eYi , eYj) + E2(S)

=
m∑

i=1

Var(eYi ) + 2
m−1∑
i=1

m∑
j=i+1

(
E(eYieYj) − E(eYi)E(eYj)

)+ E2(S)

where E(.) and Var(.) are the symbols for the mean and variance values of a random
variable, and cov(., .) represents the covariance between two random variables.

In general, the mean and variance of a lognormal random variable eXi , where Xi

is normal distributed with mean mxi and standard deviation σxi , is computed by:

4An approximation of the sum of correlated lognormal random variables by Monte Carlo sim-
ulations is computationally difficult for large-sized problems. As an alternative, three analytical
approaches have been overviewed and compared in [40]: Wilkinson’s approach, Schwartz and
Yeh’s approach, and the cumulant-matching approach. Through numerical comparisons, [40]
concluded that Wilkinson’s method is the best in terms of computational simplicity and accuracy.
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E(eXi ) = emxi+σ 2
xi

/2 (4.27)

Var(eXi) = e2mxi+2σ 2
xi − e2mxi+σ 2

xi (4.28)

The covariance between two lognormal random variables eXi and eXj can be
computed by:

cov(eXi , eXj ) = E(eXi · eXj ) − E(eXi )E(eXj ) (4.29)

Superposing Equations (4.27), (4.28), and (4.29) into Equations (4.25) and (4.26)
results in:

u1 = E(eZ) = emz+σ 2
z /2 = E(S) =

m∑
i=1

(emyi+σ 2
yi

/2) (4.30)

u2 = E(e2Z) = e2mz+2σ 2
z = E(S2) (4.31)

=
m∑

i=1

(e2myi+2σ 2
yi − e2myi+σ 2

yi ) + 2
m−1∑
i=1

m∑
j=i+1

(
e

myi +myj+(σ 2
yi

+σ 2
yj

+2rijσyiσyj )/2

−emyi +σ 2
yi

/2e
myj+σ 2

yj
/2
)

+ u2
1

Where rij is the correlation coefficient between Yi and Yj.
Solving (Equation 4.30) and (Equation 4.31) for mz and σ z yields:

mz = 2 ln u1 − 1

2
ln u2 (4.32)

σ 2
z = ln u2 − 2 ln u1 (4.33)

The computational complexity of Wilkinson’s approximation can be analyzed
through the cost of computing mz and σ z. The computational complexities of mz and
σ z are determined by those of u1 and u2, whose values can be obtained using the
formulas in (Equation 4.30) and (Equation 4.31). It is clear that the computational
complexity of u1 is dominated by that of u2, since the complexity of calculating u1
is O(m), while that of u2 is O(m · Ncorr), where Ncorr is the number of correlated
pairs among all pairs of Yi variables. The cost of computing u2 can also be verified
by examining the earlier expression of u2 in (Equation 4.26), in which the second
term in the summation, in fact, corresponds to the covariance of Yi and Yj, which
becomes zero when Yi and Yj are uncorrelated. Therefore, if rij �= 0 for all pairs of
Yi and Yj, the complexity of calculating u2 is O(m2); if rij = 0 for all pairs of i and
j, the complexity is O(m).

As explained earlier, for full-chip leakage analysis, the number of correlated log-
normal distributed leakage components in the summation could be extremely large,
which could lead to a prohibitive amount of computation. If Wilkinson’s method is
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applied directly, when the total number of gates in the circuit is Ng, the complex-
ity for computing the sum will be O(N2

g ), which is impractical for large circuits. In
the remainder of this section, we will propose to compute the summation in a more
efficient way.

4.4.2.2 Reducing the Cost of Wilkinson’s Method

Since Wilkinson’s method has a quadratic complexity with respect to the number of
correlated lognormals to be summed, we now introduce mechanisms to reduce the
number of correlated lognormals in the summation to improve the computational
efficiency.

The work of [41] proposes a PCA-based method to compute the full-chip leakage
considering the effect of spatial correlations of Leff. The leakage current of each gate
is rewritten in terms of its principal components by expanding the variable �Leff as
a linear function of principal components, i.e.,

Ii
sub = eU0,i+∑Np

t=1 β1,iki
t·pt+β2,i·�Tox,i (4.34)

where Np is the number of principal components. The sum of such lognormal terms
can be approximated as a lognormal using Wilkinson’s formula. The benefit of
using a PCA form is that the mean and variance of a lognormal random variable
can be computed in O(Np), as can the covariance of two lognormal random vari-
ables in PCA form. Therefore, the computation of all values and coefficients in
Ih
sub, and thus the sum of two lognormals in PCA form, can be computed in O(Np).

As mentioned in the description of Wilkinson’s method, the computation of full-
chip leakage current distribution requires a summation of Ng correlated lognormals.
Thus, the PCA-based method has an overall computational complexity of O(Np ·Ng).

A second approach, presented in [42], which we refer to as the “grouping
method,” uses two strategies for reducing the computations in applying Wilkinson’s
formula. First, the number of terms to be summed is reduced by identifying dom-
inant states [38, 43] for the subthreshold and gate tunneling leakage currents for
each type of gate in the circuit. As shown in Fig. 4.7a, the leakage PDF curves for
simulations using dominant states only, and using the full set of states, for the aver-
age subthreshold leakage current of a three-input NAND gate are virtually identical.
Similar results are seen for other gate types.

Second, instead of directly computing the sum of random variables of all leakage
current terms, by grouping leakage current terms by model and grid location, and
calculating the sum in each group separately first, the computational complexity in
the computation of full-chip leakage reduces to quadratic in the number of groups.
The key idea here is to characterize the leakage current per unit width for each
stack type (called a model – these are Nmodels in number). The summation can be
grouped by combining similar models in the same grid. Each group summation can
be computed in linear time with respect to the number of leakage terms in the group.
The results of the sums in all groups are then approximated as correlated lognormal
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Fig. 4.7 Comparison of PDFs of average leakage currents using dominant states with that of full
input vector states for a 3-input NAND gate, by Monte Carlo simulation with 3σ variations of Leff
and Tox 20%. The solid curve shows the result when only dominant states are used, and the starred
curve corresponds to simulation with all input vector states

random variables that can then be computed directly using Wilkinson’s method, so
that we must perform the summation over Ngroups = NmodelsNg terms. Since the
number of groups is relatively small, a calculation that is quadratic in the number of
groups is practically very economical.

Specifically, the computational complexity for estimating the distribution of full-
chip leakage current is reduced from O(N2

g ) for a naïve application of Wilkinson’s

formula to a substantially smaller number O(N2
models · n2), where n is the number of

correlation grid squares.
A third approach [44], called the “hybrid method,” combines the PCA-based

and grouping methods, which attack the problem in orthogonal ways. As in the
second approach, the leakage of each group is computed in terms of the original
random variables. During the summation over all groups, the PCA approach is used
to reduce the overall cost. The results in this paper show that the second approach
outperforms the first, and that the third (hybrid) method outperforms the second as
the number of grid squares, n, becomes larger.

The results of full-chip leakage estimation are presented in Fig. 4.8, which show
the distribution of total circuit leakage current achieved using a statistical approach
(the accuracy of the three methods is essentially indistinguishable) and using Monte
Carlo simulation for circuit c7552: it is easy to see that the curve achieved by the
basic method matches well with the Monte Carlo simulation result. For all test cases,
the run-time of these methods is in seconds or less, while the Monte Carlo sim-
ulation takes considerably longer: for the largest test case, c7552, this simulation
takes 3 h.

In terms of accuracy, the three methods are essentially very similar. However,
they differ in terms of run-time efficiencies. In Tables 4.1 and 4.2, we show
the run-times for different methods for ISCAS85 and ISCAS89 benchmark sets,
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Fig. 4.8 Distributions of the total leakage against Monte Carlo simulation method for circuit
c7552. The solid line illustrates the result of the proposed grouping method, while the starred
line shows the Monte Carlo simulation results

Table 4.1 Run-time comparison of the PCA-based, grouping and hybrid methods for the
ISCAS85 benchmarks

Benchmark c432 c880 c1908 c2670 c3540 c6288 c5315 c7552

Number of grids 4 4 16 16 16 16 64 64
PCA-based method (s) 0.03 0.06 0.18 0.27 0.40 0.57 1.43 1.82
Grouping method (s) 0.01 0.02 0.04 0.06 0.09 0.10 0.24 0.29
Hybrid method (s) 0.01 0.03 0.06 0.09 0.12 0.14 0.19 0.25

Table 4.2 Run-time comparison of the proposed PCA-based, grouping, and hybrid methods for
the ISCAS89 benchmarks

Benchmark s5378 s9234 s13207 s15850 s35932 s38584

Number of grids 64 64 256 256 256 256
PCA-based method (s) 0.93 1.62 7.58 8.97 17.38 24.28
Grouping method (s) 0.22 0.32 5.89 5.91 4.97 10.04
Hybrid method (s) 0.16 0.30 0.47 0.56 1.03 1.34

respectively. In general, the grouping method is about 3–4 times faster than the
PCA-based method. As expected, the hybrid approach does not show any run-time
advantage over the grouping method for smaller grid sizes. However, run-time of
both the grouping and the PCA-based methods grows much faster with the grid size
than the hybrid method. In Tables 4.1 and 4.2, when the number of grids grows
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to greater than 64, the hybird approach is about 100 times faster than the other
approaches. Therefore, the run-time can be significantly improved by hybridizing
the PCA-based with the grouping approach.

Follow-up work in [45] presents alternative ideas for speeding up the summation
of these lognormals, introducing the idea of a virtual-cell approximation, which
sums the leakage currents by approximating them as the leakage of a single virtual
cell.

4.5 Statistical Optimization

Process variations can significantly degrade the yield of a circuit, and optimization
techniques can be used to improve the timing yield. An obvious way to increase the
timing yield of the circuit is to pad the specifications to make the circuit robust to
variations, i.e., to choose a delay specification of the circuit that is tighter than the
required delay. This new specification must be appropriately selected to avoid large
area or power overheads due to excessively conservative padding.

The idea of statistical optimization is presented in Fig. 4.9, in a space where two
design parameters, p1 and p2, may be varied. The upper picture shows the constant
value contours of the objective function, and the feasible region where all constraints
are met. The optimal value for the deterministic optimization problem is the point
at which the lowest value contour intersects the feasible set, as shown. However,
if there is a variation about this point that affects the objective function, then after

(a)

(b)

Fig. 4.9 A conceptual
picture of robust optimization



4 Statistical Design of Integrated Circuits 135

manufacturing, the parameters may shift from the optimal design point. The figure
shows an ellipsoidal variational region (corresponding to, say, the 99% probability
contours of a Gaussian distribution) around an optimal design point: the manufac-
tured solution may lie within this with a very high probability. It can be seen that
a majority of points in this elliptical variational region lie outside the feasible set,
implying a high likelihood that the manufactured circuit will fail the specifications.
On the other hand, the robust optimum, shown in the lower picture, will ensure that
the entire variational region will lie within the feasible set.

Therefore, statistical optimization is essentially the problem of determining the
right amount by which the specifications should be “padded” in order to guarantee
a certain yield, within the limitations of the process models. Too little padding can
result in low yield, while too much padding can result in high resource overheads.
More precisely, real designs are bounded from both ends. If the delays are too large,
then the timing yield goes down, and if the delays are too small, this may be because
of factors such as low threshold voltages in the manufactured part: in such a case, the
leakage power becomes high enough that the part will fail its power specifications.

In the remainder of this section, we will first introduce techniques for finding
statistical sensitivities – a key ingredient of any optimization method – and then
overview some techniques for statistical optimization.

4.5.1 Statistical Sensitivity Calculation

A key problem in circuit optimization is the determination of statistical timing sen-
sitivities and path criticality. Efficient computational engines for sensitivity analysis
play an important role in guiding a range of statistical optimizations.

A straightforward approach in [46] involves perturbing gate delays to compute
their effect on the circuit output delay. The complexity of the computation is reduced
using the notion of a cutset belonging to a node in the timing graph: it is shown that
the statistical maximum of the sum of arrival and required times across all the edges
of a cutset gives the circuit delay distribution. If all sensitivities are to be computed,
the complexity of this approach is potentially quadratic in the size of the timing
graph.

For comprehensive sensitivity computation, one of the earliest attempts to com-
pute edge criticalities was proposed in [30], which performs a reverse traversal of
the timing graph, multiplying criticality probabilities of nodes with local criticali-
ties of edges. However, this assumes that edge criticalities are independent, which
is not a valid in practice. Follow-up work by the same group in [47] extends the
cutset-based idea in [46] to compute the criticality of edges by linearly traversing
the timing graph. The criticality of an edge in a cutset is computed using a bal-
anced binary partition tree. Edges recurring in multiple cutsets are recorded in an
array-based structure while traversing the timing graph.

Another effort in [48] approaches the problem by defining the statistical sensi-
tivity matrix of edges in the timing graph with respect to the circuit output delay,
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and uses the chain rule to compute these values through a reverse traversal of the
timing graph. Due to the matrix multiplications involved, albeit typically on sparse
matrices, the complexity of the approach could be large, especially if the principal
components are not sparse.

Like [46, 47], the work in [49] proposes an algorithm to compute the criticality
probability of edges (nodes) in a timing graph using the notion of cutsets. Edges
crossing multiple cutsets are dealt with using a zone-based approach, similar to
[50], in which old computations are reused to the greatest possible extent. This work
shows that without appropriate reordering, the errors propagated during criticality
computations that use to Clark’s MAX operation can be large; this is an effect that
was ignored by previous approaches. Further, the work proposes a clustering-based
pruning algorithm to control this error, eliminating a large number of non-competing
edges in cutsets with several thousand edges. An extension in [51] investigates the
effect of independent random variations on criticality computation and devises a
simple scheme to keep track of structural correlations due to such variations.

4.5.2 Performance Optimization

Gate sizing is a valuable tool for improving the timing behavior of a circuit. In
its most common form, it attempts to minimize an objective function, such as the
area or the power dissipation, subject to timing constraints. In the literature, it is
perhaps the most widely used target for statistical approaches, primarily because it
is a transform that is applied at the right level, where design uncertainty does not
overwhelm process uncertainty.

Early approaches to variation-tolerant gate sizing, which incorporate statistical
timing models, include early work in [26], which formulates a statistical objective
and timing constraints and solves the resulting nonlinear optimization formulation.
However, this is computationally difficult and does not scale to large circuits. Other
approaches for robust gate sizing that lie in the same family include [46, 52–54]: in
these, the central idea is to capture the delay distributions by performing a statistical
static timing analysis (SSTA), as opposed to the traditional STA, and then use either
a general nonlinear programming technique or statistical sensitivity-based heuristic
procedures to size the gates. In [55], the mean and variances of the node delays in
the circuit graph are minimized in the selected paths, subject to constraints on delay
and area penalty.

More formal optimization approaches have also been used. Approaches for opti-
mizing the statistical power of the circuit, subject to timing yield constraints, can be
presented as a convex formulation, as a second-order conic program [56]. For the
binning model, a yield optimization problem is formulated [57], providing a bin-
ning yield loss function that has a linear penalty for delay of the circuit exceeding
the target delay; the formulation is shown to be convex.

A gate sizing technique based on robust optimization theory has also been
proposed [58, 59]: robust constraints are added to the original constraints set by
modeling the intra-chip random process parameter variations as Gaussian variables,
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contained in a constant probability density uncertainty ellipsoid, centered at the
nominal values.

Several techniques in the literature go beyond the gate sizing transform. For
example, algorithms for statistically aware dual threshold voltage and sizing are pre-
sented in [60, 61]. Methods for optimal statistical pipeline design are present in [62],
which explores the tradeoff between the logic depth of a pipeline and the yield, as
well as gate sizing. The work argues that delay-unbalanced pipelines may provide
better yields than delay-balanced pipelines.

4.6 Sensors for Post-Silicon Diagnosis

With the aid of SSTA tools, designers can optimize a circuit before it is fabricated,
in the expectation that it will meet the delay and power requirements after being
manufactured. In other words, SSTA is a presilicon analysis technique used to deter-
mine the range of performance (delay or power) variations over a large population
of dies. A complementary role, after the chip is manufactured, is played by post-
silicon diagnosis, which is typically directed toward determining the performance
of an individual fabricated chip based on measurements on that specific chip. This
procedure provides particular information that can be used to perform post-silicon
optimizations to make a fabricated part meet its specifications. Because presilicon
analysis has to be generally applicable to the entire population of manufactured
chips, the statistical analysis that it provides shows a relatively large standard devi-
ation for the delay. On the other hand, post-silicon procedures, which are tailored to
individual chips, can be expected to provide more specific information. Since tester
time is generally prohibitively expensive, it is necessary to derive the maximum
possible information through the fewest post-silicon measurements.

In the past, the interaction between presilicon analysis and post-silicon measure-
ments has been addressed in several ways. In [63], post-silicon measurements are
used to learn a more accurate spatial correlation model, which is fed back to the
analysis stage to refine the statistical timing analysis framework. In [64], a path-
based methodology is used for correlating post-silicon test data to presilicon timing
analysis. In [57], a statistical gate sizing approach is studied to optimize the bin-
ning yield. Post-silicon debug methods and their interaction with circuit design are
discussed in [65].

In this section, we will discuss two approaches to diagnosing the impact of pro-
cess variations on the timing behavior of a manufactured part. In each case, given
the original circuit whose delay is to be estimated, the primary idea is to deter-
mine information from specific on-chip test structures to narrow the range of the
performance distribution substantially. In the first case, we use a set of ring oscilla-
tors, and in the second, we synthesize a representative critical path whose behavior
tracks the worst-case delay of the circuit. In each case, we show how the results of a
limited measurement can be used to diagnose the performance of the manufactured
part. The role of this step is seated between presilicon SSTA and post-silicon full
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chip testing. The approaches used here combine the results of presilicon SSTA for
the circuit with the result of a small number of post-silicon measurements on an
individual manufactured die to estimate the delay of that particular die.

An example use case scenario for this analysis in the realm of post-silicon tun-
ing. Adaptive Body Bias (ABB) [66–68] is a post-silicon method that determines
the appropriate level of body bias to be applied to a die to influence its performance
characteristics. ABB is typically a coarse-grained optimization, both in terms of
the granularity at which it can be applied (typically on a per-well basis) as well
as in terms of the granularity of the voltage levels that may be applied (typically,
the separation between ABB levels is 50–100 mV). Current ABB techniques use
a replica of a critical path to predict the delay of the fabricated chip, and use this
to feed a phase detector and a counter, whose output is then used to generate the
requisite body bias value. Such an approach assumes that one critical path on a chip
is an adequate reflection of on-chip variations. In general, there will be multiple
potential critical paths even within a single combinational block, and there will be
a large number of combinational blocks in a within-die region. Choosing a single
critical path as representative of all of these variations is impractical and inaccu-
rate. In contrast, an approach based on these test structures implicitly considers the
effects of all paths in a circuit (without enumerating them, of course), and provides
a PDF that concretely takes spatially correlated and uncorrelated parameters into
account to narrow the variance of the sample, and has no preconceived notions,
prior to fabrication, as to which path will be critical. The 3σ or 6σ point of this PDF
may be used to determine the correct body bias value that compensates for process
variations.

A notable approach [69, 70] addresses the related problem of critical path iden-
tification under multiple supply voltages. Since the critical paths may change as
the supply voltage is altered, this method uses a voltage sensitivity-based proce-
dure to identify a set of critical paths that can be tested to characterize the operating
frequency of a circuit. An extension allows for sensitive paths to be dynamically
configured as ring oscillators. While the method does not explicitly address pro-
cess variations, the general scheme could be extended for the purpose. Overall, this
method falls under the category of more time-intensive test-based approaches, as
against the faster sensor-based approach described in the rest of this section, and
plays a complementary role to the sensor-based method in post-silicon test.

4.6.1 Using Ring Oscillator Test Structures

In this approach, we gather information from a small set of test structures such as
ring oscillators (ROs), distributed over the area of the chip, to capture the variations
of spatially correlated parameters over the die. The physical sizes of the test struc-
tures are small enough that it is safe to assume that they can be incorporated into
the circuit using reserved space that may be left for buffer insertion, decap insertion,
etc. without significantly perturbing the layout.
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Fig. 4.10 Two different
placements of test structures
under the grid spatial
correlation model

To illustrate the idea, we show a die in Fig. 4.10, whose area is gridded into
spatial correlation regions. For simplicity, we will assume in this example that the
spatial correlation regions for all parameters are the same, although the idea is valid,
albeit with an uglier picture, if this is not the case. Fig. 4.10a,b show two cases
where test structures are inserted on the die: the two differ only in the number and
the locations of these test structures. The data gathered from the test structures in
Fig. 4.10a,b are used in this paper to determine a new PDF for the delay of the orig-
inal circuit, conditioned on this data. This PDF has a significantly smaller variance
than that obtained from SSTA, as is illustrated in Fig. 4.11.
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PDFs, obtained from
statistical delay prediction,
using data gathered from the
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The plots in Fig. 4.11 may be interpreted as follows. When no test structures
are used and no post-silicon measurements are performed, the PDF of the original
circuit is the same as that computed by SSTA. When five ROs are used, a tighter
spread is seen for the PDF, and the mean shifts toward the actual frequency for the
die. This spread becomes tighter still when 10 ROs are used. In other words, as
the number of test structures is increased, more information can be derived about
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variations on the die, and its delay PDF can be predicted with greater confidence:
the standard deviation of the PDF from SSTA is always an upper bound on the
standard deviation of this new delay PDF. In other words, by using more or fewer
test structures, the approach is scalable in terms of statistical confidence.

If we represent the delay of the original circuit as d, then the objective is to find
the conditional PDF of d, given the vector of delay values, dr, corresponding to
the delays of the test structures, measured from the manufactured part. Note the
dr corresponds to one sample of the probabilistic delay vector, dt, of test structure
delays. The corresponding means and variances of d are unsubscripted, and those of
the test structures have the subscript “t.”

We appeal to a well-known result to solve this problem: given a vector of jointly
Gaussian distributions, we can determine the conditional distribution of one element
of the vector, given the others. Specifically, consider a Gaussian-distributed vector[

X1
X2

]
with mean μ and a nonsingular covariance matrix �. Let us define X1 ∼

N(μ1, �11), X2 ∼ N(μ2, �22). If μ and � are partitioned as follows,

μ =
[
μ1
μ2

]
and � =

[
�11 �12
�21 �22

]
, (4.35)

then the distribution of X1 conditional on X2 = x is multivariate normal, and its
mean and covariance matrix are given by

X1|(X2 = x) ∼ N(μ̄, �̄) (4.36a)

μ̄ = μ1 + �12�
−1
22 (x − μ2) (4.36b)

�̄ = �11 − �12�
−1
22 �21. (4.36c)

We define X1 as the original subspace, and X2 as the test subspace. By stacking
d and dt together, a new vector dall = [

d dT
t

]T
is formed, with the original sub-

space containing only one variable d and the test subspace containing the vector
dt. The random vector dall is multivariate Gaussian-distributed, with its mean and
covariance matrix given by:

μall =
[

μ

μt

]
and �all =

[
σ 2 aTAt

AT
t a �t

]
. (4.37)

We may then apply the above result to obtain the conditional PDF of d, given the
delay information from the test structures. We know that the conditional distribution
of d is Gaussian, and its mean and variance can be obtained as:

PDF(dcond) = PDF (d|(dt = dr)) ∼ N(μ̄, σ̄ 2) (4.38a)

μ̄ = μ + aTAt�
−1
t (dr − μt) (4.38b)
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σ̄ 2 = σ 2 − aTAt�
−1
t AT

t a. (4.38c)

From Equations Equation (4.38b) and Equation (4.38c), we conclude that while
the conditional mean of the original circuit is adjusted making use of the result
vector, dr, the conditional variance is independent of the measured delay values, dr.

Examining Equation (4.38c) more closely, we see that for a given circuit, the vari-
ance of its delay before measuring the test structures, σ 2, and the coefficient vector,
a, are fixed and can be obtained from SSTA. The only variable that is affected by the
test mechanism is the coefficient matrix of the test structures, At, which also impacts
�t. Therefore, the value of the conditional variance can be modified by adjusting the
matrix At. We know that At is the coefficient matrix formed by the sensitivities with
respect to the principal components of the test structures. The size of At is deter-
mined by the number of test structures on the chip, and the entry values of At is
related to the type of the test structures and their locations on the chip. Therefore if
we use the same type of test structures on the circuit, then by varying their number
and locations, we can modify the matrix At, hence adjust the value of the condi-
tional variance. Intuitively, this implies that the value of the conditional variance
depends on how many test structures we have, and how well the test structures are
distributed, in the sense of capturing spatial correlations between variables.

If the number of test structures equals the number of PCA components, the test
structures collectively cover all principal components, and all variations are spa-
tially correlated, then it is easy to show [71] that the test structures can exactly
recover the principal components, and the delay of the manufactured part can be
exactly predicted (within the limitations of statistical modeling). When we consider
uncorrelated variations, by definition, it is impossible to predict these using any
test structure that is disjoint from the circuit. However, we can drown these out by
increasing the number of stages in the ring oscillator. This is shown in Fig. 4.12,
which shows the effects of increasing the number of ring oscillator stages on pre-
dicting the delays of circuits s13207 and s5378. It is easily observed that the curves
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Fig. 4.12 Conditional variance of the delay of the original circuit with respect to the number of
stages of ROs
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are monotonically decreasing. The results are similar for all other circuits in the
benchmark set.

Finally, as was illustrated in Fig. 4.11, if a smaller number of test structures are
used, then the variance of the conditional distribution increases. Figure 4.13 shows
the predicted delay distribution for a typical sample of the circuit s38417, the largest
circuit in the ISCAS89 benchmark suite. Each curve in the circuit corresponds to a
different number of test structures, and it is clearly seen that even when the number
of test structures is less than G, a sharp PDF of the original circuit delay can still be
obtained using our method, with a variance much smaller than provided by SSTA.
The tradeoff between the number of test structures and the reduction in the standard
deviation can also be observed clearly. For this particular die, while SSTA can only
assert that it can meet a 1400 ps delay requirement, using 150 test structures we can
say with more than 99.7% confidence that the fabricated chip meets a 1040 ps delay
requirement, and using 60 test structures we can say with such confidence that it can
meet a 1080 ps delay requirement.

4.6.2 Using a Representative Critical Path

Another approach to post-silicon diagnosis involves the replication of a critical path
of a circuit. As mentioned earlier, such techniques have been used in [66–68] in
connection with adaptive body bias (ABB) or adaptive supply voltage (ASV) opti-
mizations, where a replica of the critical path at nominal parameter values (we call
this the critical path replica (CPR)) is used; its delay is measured to determine the
optimal adaptation. However, such an approach has obvious problems: first, it is
likely that a large circuit will have more than a single critical path, and second, a
nominal critical path may have different sensitivities to the parameters than other
near-critical paths, and thus may not be representative. An alternative approach
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in [71] uses a number of on-chip ring oscillators to capture the parameter vari-
ations of the original circuit. However, this approach requires measurements for
hundreds of ring oscillators for a circuit with reasonable size and does not address
issues related to how these should be placed or how the data can be interpreted
online.

In this section, we describe how we may build an on-chip test structure that
captures the effects of parameter variations on all critical paths, so that a mea-
surement on this test structure provides us a reliable prediction of the actual delay
of the circuit, with minimal error, for all manufactured die. The key idea is to
synthesize the test structure such that its delay can reliably predict the maxi-
mum delay of the circuit, under across-die as well as within-die variations. In
doing so, we take advantage of the property of spatial correlation between param-
eter variations to build this structure and determine the physical locations of its
elements.

This structure, which we refer to as the representative critical path (RCP), is typ-
ically different from the critical path at nominal values of the process parameters.
In particular, a measurement on the RCP provides the worst-case delay of the whole
circuit, while the nominal critical path is only valid under no parameter variations,
or very small variations. Since the RCP is an on-chip test structure, it can easily
be used within existing post-silicon tuning schemes, e.g., by replacing the nomi-
nal critical path in the schemes in [66–68]. While our method accurately captures
any correlated variations, it suffers from one limitation that is common to any on-
chip test structure: it cannot capture the effects of spatially uncorrelated variations,
because by definition, there is no relationship between those parameter variations
of a test structure and those in the rest of the circuit. To the best of our knowledge,
this work is the first effort that synthesizes a critical path in the statistical sense. The
physical size of the RCP is small enough that it is safe to assume that it can be incor-
porated into the circuit (using reserved space that may be left for buffer insertion,
decap insertion, etc.) without significantly perturbing the layout.

An obvious way to build an RCP is to use the nominal critical path for this pre-
diction: this is essentially the critical path replica method [66–68]. However, the
delay sensitivities of this nominal path may not be very representative. For instance,
under a specific variation in the value of a process parameter, the nominal critical
path delay may not be affected significantly, but the delay of a different path may
be affected enough that it becomes critical. Therefore, we introduce the notion of
building an RCP, and demonstrate that the use of this structure yields better results
than the use of the nominal critical path.

The overall approach is summarized as follows. For the circuit under considera-
tion, let the maximum delay be represented as a random variable, dc. We build an
RCP in such a way that its delay is closely related to that of the original circuit,
and varies in a similar manner. The delay of this path can be symbolically repre-
sented by another random variable, dp. Clearly, the ordered pair (dc, dp) takes on a
distinct value in each manufactured part, and we refer to this value as (dcr, dpr). In
other words, (dcr, dpr) corresponds to one sample of (dc, dp), corresponding to a par-
ticular set of parameter values in the manufactured part. Since the RCP is a single
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path, measuring dpr involves considerably less overhead than measuring the delay
of each potentially critical path. From the measured value of dpr, we will infer the
value, dcr, of dc for this sample, i.e., corresponding to this particular set of parameter
values.

It can be shown mathematically [72] that in order to predict the circuit delay
well, the correlation coefficient, ρ, between the RCP delay and the circuit delay
must be high, i.e., close to 1. This is also in line with an intuitive understanding of
the correlation coefficient. However, what is not entirely obvious is that this implies
that the means of these delays can be very different, as long as ρ is high. In other
words, we should try to match ρ rather than the mean delay, as is done when we
choose the nominal critical path.

Assume that the circuit delay is listed in the canonical form in (Equation 4.13),
and that the RCP delay dc is also in canonical form as:

dc = μc +
m∑

i=1

aipi = μc + aTp + Rc (4.39)

where all terms inherit their meanings from Equation (4.13).
The correlation coefficient is then given by

ρ = aTb
σcσp

(4.40)

where σc =
√

aTa + σ 2
Rc

and σp =
√

bTb + σ 2
Rp

. An important point to note is that

ρ depends only on the coefficients of the PCs for both the circuit and the critical
path and their independent terms, and not on their means.

Although the problem of maximizing ρ can be formulated as a nonlinear pro-
gramming problem, it admits no obvious easy solutions. Therefore, the work in
[72] presents three heuristic approaches for finding the RCP. The first begins with
the nominal critical path with all gates at minimum size, and then uses a greedy
TILOS-like [73] heuristic to size up the transistors with the aim of maximizing ρ.
The second builds the critical path from scratch, adding one stage at a time, starting
from the output stage, each time greedily maximizing ρ as the new stage is added.
The third combines these methods: it first builds the RCP using the second method,
sets all transistors in it to minimum size, and then upsizes the transistors using a
TILOS-like heuristic to maximize ρ greedily at each step.

The first method is cognizant of the structure of the circuit, and works well when
the circuit is dominated by a single path, or by a few paths of similar sensitivity.
When the number of critical paths is very large, choosing a single nominal path as
a starting point could be misleading, and the second method may achieve greater
benefits.

The results of the three methods are generally within similar ranges of accuracy.
As expected, Method I performs better with circuits with a small number of critical
paths, and Method II on circuits with more critical paths. Method III performs better
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Fig. 4.14 The scatter plot: (a) true circuit delay vs. predicted delay by Method II and (b) true
circuit delay vs. predicted delay using the CPR method

than Method II. With its more limited search space, Method II is the fastest of the
three.

As an example result, we show scatter plots for both Method II and CPR for the
circuit s35932 in Fig. 4.14a, b, respectively. The horizontal axis of both figures is the
delay of the original circuit for a sample of the Monte Carlo simulation. The vertical
axis of Fig. 4.14a is the delay predicted by our method, while the vertical axis of
Fig. 4.14b is the delay of the nominal critical path, used by the CPR method. The
ideal result is represented by the (x = y) axis, shown using a solid line. It is easily
seen that for the CPR method, the delay of the CPR is either equal to the true delay
(when it is indeed the critical path of the manufactured circuit) or smaller (when
another path becomes more critical, under manufacturing variations). On the other
hand, for Method II, all points cluster closer to the (x = y) line, an indicator that the
method produces accurate results. The delay predicted by our approach can be larger
or smaller than the circuit delay, but the errors are small. Note that neither Method
II nor the CPR Method is guaranteed to be pessimistic, but such a consideration can
be enforced by the addition of a guard band that corresponds to the largest error. The
RCP approach has a clear advantage of a significantly smaller guard band in these
experiments.

4.7 Conclusion

This chapter has presented an overview of issues related to the statistical analysis of
digital circuits. Our focus has been on modeling statistical variations and carrying
these into statistical timing and power analyses, which in turn are used to drive sta-
tistical optimization at the presilicon stage. Finally, we overview initial forays into
the realm of using fast post-silicon measurements from special sensors to determine
circuit delay characteristics.
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