
Chapter 11
Variation and Aging Tolerance in FPGAs

Nikil Mehta and André DeHon

Abstract Parameter variation and component aging are becoming a significant
problems for all digital circuits including FPGAs. These effects degrade perfor-
mance, increase power dissipation, and cause permanent faults at manufacturing
time and during the lifetime of an FPGA. Several techniques have been developed
to tolerate variation and aging in ASICs; FPGA designers have been quick to adopt
and customize these strategies. While FPGAs can use many ASIC techniques ver-
batim, they have a distinct advantage to aid in the development of more innovate
solutions: reconfigurability. Reconfigurability gives us the ability to spread wear
effects over the chip which is not possible in ASICs. This chapter examines the
impact of variation and wear on FPGAs and notes the benefit that can be gained
from variation and aging tolerance techniques that operate open-loop.

11.1 Introduction

Like all scaled semiconductor devices, FPGAs are experiencing dramatic increase
in process variability. Every manufactured FPGA is unique in terms of its composi-
tion of physical parameters (e.g., channel lengths, oxide thickness, and threshold
voltages) for each transistor. FPGAs are also subject to the same aging mecha-
nisms that cause ASICs to degrade in performance and fail over time. However,
FPGA manufacturers have the unique challenge that the functionality of an FPGA
is not fixed at manufacturing time. Users can map any circuit onto an FPGA, and
they expect a fully functioning, high performance design, regardless of the param-
eter variation imposed on the specific chip they select for mapping. Additionally,
because every user design is different, every workload will differ in terms of how it
stresses individual circuits within the FPGA. Different temperature and usage pro-
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files result in unique aging trends. Without any techniques to combat variation and
aging, to meet the demand that every manufactured chip will function with any user
configuration and usage pattern over time, manufacturers pessimistically guard band
timing parameters.

Fortunately, FPGAs have two distinct advantages over fixed designs like ASICs
and CPUs. First, they have spare resources: user designs infrequently utilize all
resources, and even when mapped at full logic capacity, FPGAs still have many
additional, unused interconnect resources. These extra resources can be used to
avoid resources that have been degraded by parameter variation or aging. Second,
FPGAs can reconfigure. There are many ways to map a user’s design, and these dif-
ferent mappings can be instantiated over time in the field. When a specific user
mapping fails on a particular chip due to parameter variation or aging, another
configuration may be tried.

These alternate configurations can be identical mappings for all chips deployed
in the field over time, or they can be specific to a component such that every chip
receives a unique mapping. Component-specific mapping is a challenging but pow-
erful technique for FPGAs that will be explored in depth in the following chapter.
This chapter focuses on traditional, component-oblivious techniques for tolerating
variation and aging. Many techniques are adopted directly from ASIC and CPU
design flows, but customized for FPGAs and are general in that they can be applied
to any digital design without reconfiguration. Some, however, exploit configurabil-
ity, in a open-loop manner, to combat projected aging. The outline for this chapter is
as follows: Section 11.2 reviews how variation impacts FPGAs and Section 11.3
describes techniques for variation tolerance; Sections 11.4 and 11.5 discuss the
impact of aging and strategies for lifetime extension.

11.2 Impact of Variation

(Chapter 1) described sources of variation in detail. While die-to-die (D2D) vari-
ation has historically been the dominant source of variation, in recent technology
nodes within die (WID) variation has increased beyond that of D2D. Systematic,
spatially correlated, and random WID variations all have a significant impact on
FPGAs; random WID variation in particular has been increasing and will be the
dominant source of variation in future technology nodes. Compensating for this
random WID variation is a significant challenge as neighboring transistors can have
completely different characteristics.

To describe the impact of variation on FPGA designs, metrics like timing yield
and power yield are often used. Users of FPGAs typically want all chips contain-
ing their mapped designs to achieve a set performance target while staying within
a power budget. Timing yield and power yield simply express the percentage of
devices that meet those targets. Power yield is often termed leakage yield as static
power has begun to dominate total power dissipation.
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11.2.1 FPGA-Specific Effects

Variation typically impacts ASICs and FPGAs in similar ways; however, com-
mercial FPGAs do have a few key architectural differences that help to mitigate
variation. First, while variation in memory is a serious problem in ASICs and CPUs,
it is less of a problem for FPGAs. Memory in FPGAs is predominately used as
configuration bits; these bits are typically only written once at power on time and
area always on – they are never read or written in timing critical paths. This means
that the FPGA can afford to use larger thresholds, supply voltages, and skewed
cells (Section 11.3.3) to combat variation without impacting power and perfor-
mance. Modern FPGAs contain large embedded memories that require similar care
as embedded memories in ASICs.

Second, connections between logic elements are longer in FPGAs than in ASICs.
Although these connections have larger mean delays, they also have smaller per-
centage variation. Because FPGA connections must traverse several switches, delay
variation averages out over the length of the path. The variation in path delay for a
path of N identical Gaussian gates with delay distributions of (μτgate , στgate ) can be
written as

μτpath = Nμτgate (11.1)
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Length N paths have variation reduced by 1/
√

N. This means for identical
designs, with the way commercial FPGAs are architected (long, unpipelined path
lengths), FPGAs may experience less delay variability than ASICs. This can help to
improve timing yield.

Another advantage of FPGAs is that they have a small, repeated circuit struc-
ture, unlike ASICs which can have a large, arbitrary layout. With the recent
explosion of layout design rules, ASIC physical design has become much more dif-
ficult. While FPGA manufacturers must also struggle with deep submicron effects,
they only have to design, layout, and verify a much smaller structure. Further,
because the structure is regular and repeated, it is much easier to understand and
potentially avoid the impact of systematic variation. When using optical proxim-
ity correction and other resolution enhancement techniques (Chapter 1, Section
1.2.1) to model the effect of diffraction through the mask, a regular, repeated
structure means that it is easier to calculate OPC and model its effect on a
design.
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11.2.2 FPGA-Level Impact

It is difficult to precisely quantify the impact of parameter variation on commercial
FPGAs. Because variation data is economically sensitive to vendors, no informa-
tion characterizing FPGA variability has been officially released. However, several
researchers have empirically measured batches of both custom manufactured and
commercial FPGAs, characterizing their variation distributions. These studies begin
to quantify and document the effect of real variation on FPGAs.

Katsuki et al. measured WID variability for 90-nm custom manufactured FPGAs
[2]. To collect variation data they mapped arrays of ring oscillators and measured
their frequencies across the chip. Unfortunately, they published data in arbitrary
units, so actual delay variation numbers are not available. However, Sedcole et al.
measured WID delay variability of 18 commercial 90-nm Altera Cyclone II FPGAs
by using a similar ring oscillator measurement technique [10] (Fig. 11.1a). They
found that individual logic elements have a random delay variability of 3σ/μ =
3.54%; they also found a WID-correlated component of delay variability of 3.66%.
Finally, Wong et al. used an at-speed measurement technique to characterize the
WID delay variability of both logic and embedded multipliers in a 65-nm Altera
Cyclone III FPGA [18] (Fig. 11.1b). They discovered a WID delay variation of
3σ/μ = 5.96%. Each of these experiments demonstrate the feasibility of charac-
terizing the delay distribution of individual FPGAs elements. The next chapter will
further develop how these measurements can be performed and leveraged to mitigate
variation.

Fig. 11.1 Measured LUT frequency maps for Altera FPGAs

11.3 FPGA Variation Tolerance

To tolerate FPGA parameter variation, researchers have employed many of the same
techniques used for ASICs and CPUs. These methods can operate at the CAD level
to statistically account for variability when generating a configuration for a design,
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or they can operate at the architecture and circuit levels to physically compensate
for the effects of variation. Some of these techniques are the same as those used for
reducing power consumption but used in a new context.

11.3.1 SSTA CAD

A heavily researched method for dealing with variation during the technology map-
ping, place and route stages of an ASIC design is the use of statistical static timing
analysis (SSTA) (Chapter 4, Section 4.4.3). SSTA attempts to model variability
directly in CAD algorithms to help produce circuits that inherently account for
variation.

The goal of most CAD algorithms is to minimize the critical path delay of a cir-
cuit. Traditional CAD algorithms do not aggressively minimize near-critical paths
since their reduction would not reduce the delay of the circuit. However, near-critical
paths are important under variation because there is a probability that they will
become critical. As expressed in Equations (11.1), (11.2), (11.3), path delays are
not constants but distributions. Hence, with some probability, a path may be faster or
slower than its nominal value. Near critical paths that have a probability of becoming
critical are deemed to be statistically critical.

SSTA is a methodology that identifies statistically critical paths and enables CAD
algorithms to optimize those paths. Integrating SSTA into clustering, placement and
routing algorithms of the FPGA CAD flow simply involves replacing the nominal
STA routine with an SSTA routine. The algorithms then proceed as normal, attempt-
ing to reduce the delay of statistically critical paths and improve circuit timing yield
(e.g., minimize μτ and στ of the circuit).

FPGA CAD algorithms modified for SSTA have been studied for placement [5]
and routing [3, 11]. Lin et al. studied a full SSTA CAD flow with clustering, place-
ment, and routing and characterized the interaction between each stage [4]. The only
modification made to each algorithm is to replace the criticality of a net in all cost
functions with its statistical criticality. In clustering, SSTA is only performed at the
start of the algorithm; for placement and routing statistical criticalities are updated
at the start of every iteration.

Lin et al. [4] examined a 65-nm predictive technology with 3σLeff/μLeff and
3σVth/μVth of 10, 10, and 6% for D2D, WID spatially correlated, and WID ran-
dom variation. They observed that SSTA-based clustering alone can improve μτ

and στ by 5.0 and 6.4%, respectively, and improve timing yield by 9.9%. Placement
improves μτ , στ and timing yield by 4.0, 6.1, and 8.0%; routing achieves 1.4, 0.7,
and 2.2% improvement. All three SSTA algorithms combined yield 6.2, 7.5, and
12.6% improvement. As in the power-aware CAD algorithm case from (Chapter 10,
Section 10.3.7), they find that individual enhancements to the three stages of
FPGA CAD are not additive, and that stochastic clustering provides the majority of
benefit.

These benefits come with a 3× runtime increase but with minimal changes to
FPGA CAD algorithms. Their primary effect may be to provide a better estimate
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for the delay of the circuit, reducing some of the conservative margining used to
guarantee a target level of performance across almost all chips. Nonetheless, there
are several drawbacks to SSTA-based approaches. First, they depend on having
accurate models of process variation. Without correct values for the σ , μ, and corre-
lation coefficients of process parameters, SSTA cannot accurately determine which
paths are statistically critical. Second, these techniques only improve the probabil-
ity of a device meeting timing and do not guarantee working parts. SSTA CAD still
produces a one-size-fits-all design, and there is non-negligible probability that a par-
ticular chip will not yield with a SSTA-enhanced design. Finally, SSTA approaches
do not scale well with high random variation, which is expected to dominate future
technology nodes. High variation spreads out delay distributions, making many
more paths statistically critical. It then becomes difficult for the CAD algorithms
to optimize and reduce the delay of many paths at once.

11.3.2 Architecture Optimization

Another strategy for mitigating the impact of parameter variations is to optimize
the structure of the FPGA by changing key architectural parameters (Chapter 10,
Section 10.4). FPGA logic is parameterized by N, the number of LUTs per CLB,
and k, the number of inputs to a LUT. Routing is parameterized by the switchbox
type and segment length Lseg. Changing these values can have an impact on both
timing and leakage yield.

In terms of logic, larger values of N and k increase the area, delay, and leakage of
individual CLBs which will hurt leakage and timing yield. However, the total num-
ber of CLBs and required routing resources may decrease, which would improve
leakage yield. Additionally, the number of CLBs and switches on near critical paths
may decrease with larger k and N, improving timing yield. Wong et al. studied the
impact of N and k on timing and leakage yield [16]. They observe that while N has
little impact on yield, k = 7 maximizes timing yield, k = 4 maximizes leakage
yield, and k = 5 maximizes combined yield. These results are not surprising since
leakage roughly scales with area and timing yield is directly related to delay; these
results largely match the k values that optimize delay, area, and area-delay product,
respectively.

Wire segmentation can have an impact on timing yield for similar reasons as N
and k. For a fixed distance net, smaller values of Lseg increase the number of buffers
on the path, increasing mean delay but decreasing variance due to delay averaging
(Equation (11.3)). Kumar et al. found that compared to an FPGA with 50% Lseg = 8
and 50% Lseg = 4 segments in a 45-nm predictive technology with 3σ/μ = 20%
variation, using a mix of shorter segments can reduce both mean delay and variance
[3]. They find that architectures with between 20 and 40% Lseg = 2 segments can
improve μτ by 7.2–8.8% and στ by 8.7–9.3%.

Work to date has focused on revisiting traditional FPGA architecture parameters
with the new concern for variation. The evidence so far suggests that variation does
not significantly change the way we would select these parameters. This leaves open
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exploration of more significant changes that might introduce new parameters or
structures into FPGA architecture design.

11.3.3 Transistor Sizing

Lower level, device, and circuit parameters can also be optimized to mitigate the
impact of parameter variation. Transistor sizing is a common strategy used in ASICs
to directly reduce the magnitude of variation. Larger transistors have increased num-
bers of dopants, and, due to law of large numbers effects, the magnitude of dopant
variation will reduce. Vth variation can be expressed as a function of transistor
dimensions as:

σVth ∝ 1√
WL

(11.4)

Increasing W in logic transistors can increase variation tolerance, but at the cost
of area and energy. There has been no published work quantifying the tradeoffs in
resizing FPGA logic transistors, which may be a promising avenue of exploration.

Another option is to adjust the W of transistors located in memory, which can
reduce the probability of failure of FPGA SRAM bits [8]. SRAM bits can fail in
one of four ways: read upsets, write upsets, hold failures, or access time failures.
FPGA configuration memory will typically fail with read or hold upsets; writes
only happen at configuration time and timing is irrelevant as they are always in the
read state. FPGA data memory failures are dependent on application characteristics;
Paul et al. [8] study applications where memories were used as logic such that reads
dominate writes and hence design a cell that increases read and access time failure
tolerances significantly.

Figure 11.2 shows the skewed SRAM cell. Increasing W for the pull-up transis-
tors in the cross coupled inverters decrease read failure probability by increasing the
voltage at which a read upset occurs. Decreasing W of the access transistors makes
it more difficult for the internal storage node to be flipped, but increases access time
failure probability by slowing down reads. Increasing W of the pull-down transis-
tors compensates for this effect. Paul et al. show two orders of magnitude read upset

Fig. 11.2
Skewed SRAM cell [8]
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and access time failure probability reductions at the cost of a four orders of magni-
tude increase in write failure probability. The write failures can be addressed with
component-specific mapping techniques (Chapter 12).

11.3.4 Asynchronous Design

Choosing the right timing target to achieve high performance and acceptable timing
yield is a significant concern with synchronous designs under process variation. If
a timing target is chosen too pessimistically, performance of manufactured designs
will suffer; if it is chosen too aggressively, many devices may fail. One way to avoid
this problem is to design circuits that are not clocked and do not run at a uniform
frequency. Instead of using a global clock for synchronization, sequencing can be
performed by using handshaking circuitry between individual gates. These self-
timed or asynchronous circuits have been studied in depth by ASIC designers and
have been explored by FPGA designers as well. Asynchronous FPGAs have been
demonstrated in [6, 15] and have even begun to be commercially manufactured [1].

The primary advantage of asynchronous FPGAs in terms of process variation is
their high tolerance to delay variability. In the most robust class of asynchronous
circuits, quasi-delay insensitive (QDI) circuits [7], only a single timing assump-
tion must be validated to ensure correct operation. This assumption is called an
isochronic fork, shown in Fig. 11.3. If the adversary path is faster than the primary
path due to delay variation, circuit B may receive an incorrect value. To ensure cor-
rectness delay elements can be inserted in the adversary path to margin against error.

Figure 11.4 depicts an asynchronous FPGA LUT circuit from [6]. There are
two important characteristics of how asynchronous QDI logic is commonly imple-
mented. First, dual-rail precharge logic is used for high speed circuits. Second, data
communication between circuit blocks is done via one-hot encoded signals. We
see that in the LUT, precharge signals charge up the dual-rail output bits. During

Fig. 11.3 Isochronic fork
assumption in QDI
asynchronous circuits
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Fig. 11.4 Asynchronous FPGA 4-LUT [6]

evaluate (precharge low), a single LUT input case is selected via the 16-bit, one-
hot encoded input, and one of the dual-rail outputs of the LUT is pulled down.
The precharge signal is controlled via handshake circuitry from adjacent blocks.
When the next block is ready for data and the previous block has sent valid data (as
determined by the handshake logic), the LUT will fire.

Figure 11.5 shows a switch circuit. At the heart of the switch circuit is a weak-
condition half-buffer, which essentially acts as a register for asynchronous logic.
Handshaking signals (enable signals from each direction) control data movement
through the switch in the same manner as described for the LUT. Enable and data
signals are selected via pass transistor multiplexers as in synchronous switch boxes.
One of the primary demonstrated advantages of asynchronous FPGAs is that by
using register-like circuits at every switch, interconnect is effectively pipelined for
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Fig. 11.5 Asynchronous FPGA switch [6]

high speed. Some synchronous FPGA designs have demonstrated highly pipelined
interconnect [14], but commercial FPGA vendors have yet to adopt this design style.

If one adopts a fully asynchronous system model, the system will always work
regardless of the variability, which reduces the design burden of achieving tim-
ing closure in synchronous circuits. The asynchronous design decouples the delay
of unrelated blocks allowing each to run at their natural speed. Nonetheless, the
throughput and cycle-time of asynchronous circuits are impacted by variation, and
high-variation can prevent the asynchronous circuit from meeting a performance
yield target as well. The main drawback of asynchronous circuits is that they require
area and energy overhead for handshaking circuitry, although energy is simultane-
ously reduced by eliminating the clock network and through implicit clock gating
(as only circuit elements that are performing computation are switching). There has
been no published work quantifying the advantages of asynchronous FPGAs under
variation, which may be a promising area for future work.

11.4 Impact of Aging

(Chapter 1, Section 1.4) described sources of aging in detail. We will briefly discuss
how the primary sources of aging (NBTI, HCI, TDDB, and electromigration) impact
FPGAs.

NBTI degrades the threshold of PMOS transistors and is heavily dependent on
how long the transistor is held on. The degradation caused by NBTI can be reversed
while the PMOS transistor is turned off; this is perhaps the simplest way to com-
bat the induced Vth degradation. Reconfiguration potentially allows the FPGA to
change the on-profile seen by individual transistors without additional circuitry.
NBTI threshold degradation slows down PMOS transistors in logic and signifi-
cantly reduces the static noise margin (SNM) of SRAM cells. FPGAs typically
have more NMOS than PMOS transistors; most architectures use NMOS pass tran-
sistors for multiplexers in LUTs and switches that comprise the majority of area.
PMOS transistors are used in configuration SRAM, buffers, and embedded struc-
tures (e.g., memories and multipliers) in modern parts. Configuration bits are the
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primary source of NBTI degradation in FPGAs [9] as these transistors are the largest
fraction of PMOS devices, and when configured as conducting, they remain on
for the entire time the part stays powered on. NBTI can potentially cause severe
configuration cell instability through SNM degradation, resulting in early lifetime
failures.

HCI degrades the threshold of NMOS devices and is not reversible like NBTI. It
is heavily dependent on transistor usage and current density. The most direct tech-
nique to combat HCI is to ensure uniform wear leveling across the chip and not use
particular NMOS transistors for the entire operational lifetime. Electromigration
causes wire faults and is similar to HCI in that it is usage dependent, not reversible,
and best avoided through uniform wearing.

TDDB is largely dependent on gate leakage. Hence, the best approach to mit-
igating TDDB is to reduce leakage current. The prior chapter outlined several
techniques to reduce leakage, such as body biasing (Chapter 10, Section 10.4.6),
dual Vth (Chapter 10, Section 10.4.6), power gating (Chapter 10, Section 10.4.4),
and bit inversion (Chapter 10, Section 10.3.3 and Chapter 11, Section 11.5.1).

Finally, each source of aging is heavily dependent on temperature. When com-
pared to CPUs, FPGAs are much more power efficient and have a lower power
density. In identical environments for identical workloads, this will translate to
lower operational temperatures and longer lifetimes. However, when compared to
an equivalent ASIC, FPGAs are much less power efficient, which could mean faster
aging.

As in the case of parameter variation, no commercial data about aging has been
made public. However, Stott et al. performed accelerated aging experiments on a
pair of Altera Cyclone III FPGAs to estimate the impact of aging on FPGAs [13]
(Figures 11.6 and 11.7). Using measurement technique from [17], they tested chips
overvolted from 1.2 to 2.2 V and heated to 150

◦
C. They observed a frequency

degradation of 15%, with NBTI being the primary cause.

Fig. 11.6 Measured LUT frequency degradation for Altera Cyclone III under accelerated aging
[13]
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Fig. 11.7 Measured LUT frequency map of Altera Cyclone III under accelerated aging [13]

11.5 FPGA Aging Tolerance

FPGAs are an excellent substrate for compensating for lifetime degradation because
of their spare resources and in-field reconfigurability. These characteristics make
it easy to change a mapped FPGA design over time to more uniformly spread
out wear over the part. The following techniques begin to take advantage of this
configurability.

11.5.1 Bit Inversion

Bit inversion was discussed in the previous chapter (Chapter 10, Section 10.3.3)
as a way to lower leakage power in LUTs. Because certain LUT configura-
tions leak more than others, by flipping LUT configuration bits (and inverting
the input select signals to the LUT to ensure correct output), leakage can be
reduced. The same technique can be applied to reducing lifetime degradation
in LUTs from NBTI. Because NBTI is reversible, by turning off PMOS tran-
sistors that were previously on, degraded values of Vth can begin to return to
normal.

Ramakrishnan et al. proposed a scheme for relaxing PMOS LUT transistors by
loading in a new, bit-inverting bitstream during the life of an FPGA [9]. Inverting
configuration bits in the interconnect is more challenging because routes between
CLBs may be disrupted. To address this challenge they classified switch configu-
ration bits in three ways: dead, inactive, and used. Dead switches have undriven
inputs and unused outputs and can safely be flipped without affecting any routes.
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Inactive switches have driven inputs and unused outputs, meaning that inversion
could cause a short. They propose a method for flipping these bits in a round-robin
fashion to avoid creating a short. Finally, used switches have driven inputs and used
outputs. The switches contain valid routes that must be rerouted to allow for bit
flipping. They propose a rerouting scheme described in [12]. With these techniques
they report a failure-in-time (FIT) decrease of 2.5%.

Bit inversion was also used as a compensation strategy for TDDB [12] by the
virtue of it reducing leakage current. Using simulations, they found that bit inversion
improved mean-time-to-failure (MTTF) due to TDDB by 24% on average.

11.5.2 Reconfiguration

The most promising technique to use for FPGA lifetime extension is
reconfiguration. As an FPGA ages, new configurations can be mapped to a part,
avoiding aged resources and utilizing fresh ones or simply rearranging the assigment
of logic to resources. Srinivasan et al. explored using reconfiguration to compen-
sate for both HCI and electromigration [12]. Both effects are irreversible and usage
dependent, and require avoidance of over-utilization of resources over time.

To avoid HCI, Srinivasan et al. propose to re-place a design over time to previ-
ously unused portions of the FPGA. Figure 11.8 shows an example. Using switching
activity estimates, they determine the extent to which a region has aged during its
operational lifetime. They then perform re-placement using an algorithm that can
place blocks with regional restrictions, avoiding areas estimated to be degraded by
HCI. Because placement is regionally constrained potentially in a smaller space, the
new placement may have a longer critical path. They report that using this method
to avoid HCI, part life can be increased by 28% at the cost of 1.53% delay.

Fig. 11.8 Region relocation
for uniform wear
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Since electromigration targets wires, simply re-placing logic may not ensure
avoidance of specific interconnect segments. Therefore, to mitigate electromigra-
tion Srinivasan et al. propose to re-route nets over time. Only nets that have high
activity factors and are most likely to fail are chosen for re-routing. Similar to re-
placement, re-routing incurs a frequency penalty as re-routed nets may not be timing
optimal. By using this technique to combat electromigration they report a lifetime
extension of 14% at the cost of 1.3% delay.

An important point to note about these techniques is that they assume that
every component is the same and ages in the same way. Hence, every chip will
be remapped in the same manner over its lifetime. As manufactured chips are all
unique due to process variation and age in unique ways, it would be more effective
to create customized configurations for chip. However, this scheme would require
ways to measure and characterize each chip separately, in addition to generating a
custom mapping per chip. The next chapter will explore these ideas and challenges
in depth.

11.6 Summary

Table 11.1 summarizes techniques for variation tolerance; Table 11.2 summarizes
techniques for aging tolerance. As in the case of low power techniques, benefits may
not be cumulative.

Table 11.1 Roundup of FPGA techniques for variation tolerance

3σ/μ Vth variation Timing improvement
Yield
improvement

Technique Regional Random μ σ Timing Leakage

SSTA clustering 10% 6% 5.0% 6.4% 9.9% –
SSTA placement 10% 6% 4.0% 6.1% 8.0% –
SSTA routing 10% 6% 1.4% 0.7% 2.2% –
Logic block architecture ? ? – – 9% 73%
Interconnect architecture – 20% 7.2–8.8% 8.7–9.3% – –

Table 11.2 Roundup of FPGA techniques for aging tolerance

Target

Technique Aging mechanism Location Lifetime metric
Lifetime
increase (%)

Bit inversion NBTI Configuration Bits FIT 2.5
Bit inversion TDDB LUTs MTTF 24
Re-placement (open

loop)
HCI LUTs MTTF 28

Re-routing (open
loop)

Electromigration Interconnect MTTF 14
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These techniques show that FPGAs can begin to tolerate variation by using very
similar techniques as those used by ASICs. However, most of these techniques do
not use the most powerful tool at the disposal of an FPGA: reconfiguration. FPGAs
have a valuable opportunity to surpass ASICs in reliability at a time when vari-
ation and aging effects are predicted to increase substantially. The fundamental
problem caused by variation is that every manufactured chip is degraded differ-
ently; component-specific reconfiguration is the natural response to compensate
for this unique degradation on a per-chip basis. For aging we saw that open-loop
configurability can increase lifetime; however, by closing the loop and measur-
ing characteristics of individual components, reconfiguration should be able to
extend life even further. The challenges and potential benefits of component-specific
mapping will be addressed in the next chapter.
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