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Preface

With the popularity of wireless networks, location-based service (LBS) has quickly

entered people’s daily life. In practice, LBS has a large range of applications and

often manifests in various forms in different types of networks. For example, E-911

in the USA, or corresponding E-112 in Europe, offers timely and accurate assis-

tance to the emergency callers by locating them through mobile communication

networks or global positioning system (GPS). Location information also plays a

major role in modern asset management. Some companies, in particular hospitals,

have deployed the WiFi-based solutions for real-time equipment locating and

tracking, in order to increase equipment utilization and reduce overpurchasing

costs. In addition, sensor network, a typical type of wireless ad hoc networks, has

shown its great prospects of environmental monitoring, industrial sensing and

diagnosis, battlefield surveillance, context-aware computing, and more. Autono-

mous localization of sensor nodes is essential since location makes the sensory data

geographically meaningful. In all, many applications and services of wireless net-

works directly or indirectly rely on location information.

This book aims to provide a comprehensive and in-depth view of location-

awareness technology in today’s popular wireless networks. However, the obvious

diversity of networks, from short-range bluetooth to long-range telecommunication

network, makes it very challenging to organize materials. Although general prin-

ciples exist, the implementation differs from network to network and application to

application.

When composing the text, we have been thinking a lot what materials to include

and how to organize them. Our thoughts come to the following two decisions. First,

from the perspective of application, the book focuses on wireless ad hoc and sensor

networks, in which the overwhelming majority of localization techniques are

involved. Indeed, the techniques discussed in the book are quite versatile. Other

types of networks, such as WLAN and 3G mobile network, are also mentioned.

Second, to make it better understood, the book is basically organized around three

step-by-step themes: location, localization, and localizability. Location-based

applications are close to daily life and accordingly presented at the beginning.
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Afterward, as the major part of the book, localization approaches are discussed

in-depth. Other advanced topics, such as localizability and location privacy, are

studied at last.

Book Organization

To begin with, the background of LBS and localization for wireless networks is

presented in Chap. 1. Localization relies on the knowledge of physical world, in

particular, the geometric relationship of network nodes. Chapter 2 discusses some

popular ranging methods, including radio signal strength (RSS), time of arrival

(ToA), time difference of arrival (TDoA), and hop counts. According to the physical

measurements, one-hop positioning, as well as the related mathematical techniques

of location computation, is presented in Chap. 3. Chapters 4 and 5 discuss the range-

based and range-free localization approaches, respectively. Chapter 6 studies a key

factor, error control, which determines the success of a localization approach in

practice. Typically, location errors come from two sources: ranging noises and

algorithm design, both of which are explained in detail. Chapter 7 presents the

localization approaches for mobile networks, in which network nodes physically

move and their locations change continuously. As we know, different approaches

have different capabilities in terms of the number of nodes whose locations can be

determined by a particular approach. Chapter 8 studies the issue of localizability that

characterizes such capability in theory. With the development of LBS, location

privacy is becoming crucial, which is discussed in Chap. 9.

The book discusses many up-to-date localization algorithms in considerable

depth, yet makes their design and analysis accessible to all levels of readers. We

emphasize the basic concepts and designs while keep the completeness. Each

chapter presents a related topic and is independent of each other. When finishing

the first two chapters, readers can select the remaining ones by their own interests.

Each chapter ends with a summary or a comparative study, which provides a big

picture and facilitates understanding.

Anticipated Audience

The book can serve as a guide book for the technicians and practitioners in the

industry of real-time location systems (RTLS) and wireless networks. They can

expect to obtain a comprehensive understanding of the field through reading the

book, in order to compare and select localization solutions fulfilling various appli-

cation requirements. Abundant references of the book open up a broader domain for

advanced study. In addition, the book is tailored toward a textbook for college

researchers and graduate students. For a one-semester gradate course, the main part

includes three chapters (Chaps. 3–5) about one-hop positioning and multi-hop
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network localization. Chapter 6 can be used as a follow-on topic. When there is

time, three independent chapters (Chaps. 7–9) can be added to course materials with

freedom of choice. The book includes the state-of-the-art research results in many

technical journals and conferences during its preparation. Readers can track trends

and hot topics in the field.

Last but not least, the book purposefully accommodates the different back-

grounds and career objectives of its reader. Specifically, it does not require a

background of location-awareness technology. But as a technical book, we hope

the readers have a basic knowledge of computer algorithms and networks.
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Chapter 1

Introduction

“Location, Location, Location”

— anonymous

It’s often said that the success of a retail store depends on three factors: location,

location, and location. So do many services of wireless networks.

1.1 Location-Based Services

Location-based service (LBS) is a key-enabling technology of these applications

and widely exists in today’s wireless communication networks from the short-range

Bluetooth to the long-range telecommunication networks, as illustrated in Fig. 1.1.

In this book, we mainly study the location, localization, and localizability. In LBS,

location information is generally considered to reveal the basic knowledge of the

circumstance and background of service users. Localization is a process to compute

the locations of wireless devices in a network. Localizability, answering whether or

not the locations of nodes can be uniquely determined, plays a beneficial role on

localization and a number of other network services. We focus on the three above-

mentioned issues of wireless ad hoc and sensor networks, while the principles and

techniques discussed in this book are of general purposes and can be used to other

scenarios, such as WLAN, cellular networks, or other wireless networks.

1.1.1 Location-Based Applications

The proliferation of wireless and mobile devices has fostered the demand for

context-aware applications, in which location is viewed as one of the most signifi-

cant contexts. For example, pervasive medical care is designed to accurately record

and manage patient movements [1, 2]; smart space enables the interaction between

physical space and human activities [3, 4]; modern logistics has major concerns on

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_1,
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goods transportation, inventory, and warehousing [5, 6]; environmental monitoring

networks sense air, water, and soil quality and detect the source of pollutants in real

time [7–13]; and mobile peer-to-peer computing encourages content sharing and

contributing among mobile hosts in the vicinity [14, 15]. A detailed survey on

location-based applications can be found in [16, 17].

Recent technological advances have enabled the development of low-cost, low-

power, and multifunctional sensor devices. These nodes are autonomous devices

with integrated sensing, processing, and communication capabilities. With the rapid

development of wireless sensor networks (WSNs), location information becomes

critically essential and indispensable. The overwhelming reason is that WSNs

are fundamentally intended to provide information on spatial–temporal character-

istics of the physical world; hence, it is important to associate sensed data with

locations, making data geographically meaningful. Almost all typical WSN appli-

cations, such as object tracking and environment monitoring, inherently rely on

location information.

1.1.1.1 Motivating Example: GreenOrbs

We start our discussion from a forest surveillance system recently launched in

China, in which location information is essentially important [10].

In the past decade, forest has received increasing attention from governments,

scientists, industries, and people all over the world, due to its great significance in

environmental protection, global climate change, and sustainable development.

Forest is regarded as “the lung of the Earth,” which is the major component on

the Earth that absorbs carbon dioxide (CO2) and release oxygen (O2). Forest

management and surveillance become important missions nowadays. Forestry

applications usually require long-term, continuous, synchronized monitoring on

huge measurement areas with diverse creatures and complex terrains.

On the other hand, wireless sensor networks (WSNs) in nature have some

attractive features. WSNs can be designed to support large-scale deployments,

Indoor(local) Indoor/Outdoor Outdoor(global)
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Intrared
WiFi ZigBee GPS
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Fig. 1.1 Location-based services for a wide range of wireless networks
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continuous monitoring, and coordinated sensing at relatively low cost. More impor-

tantly, the sensor nodes can self-organize to accomplish their tasks without human

supervision.

Under this circumstance, researchers have launched the GreenOrbs project

[9, 10], a long-term, large-scale wireless sensor network system in the forest. The

missions of GreenOrbs are twofold: On the one hand, GreenOrbs realizes all-year-

round ecological surveillance in the forest, collecting various sensory data, such as

temperature, humidity, illumination, and carbon dioxide titer. The collected infor-

mation can be utilized to support various forestry applications. On the other hand,

GreenOrbs is one of the latest efforts in the research community to build practical

WSN systems. Through the real-world experience in GreenOrbs, researchers expect

to explore the potential design space and scientific solutions of WSN.

The large-scale deployment of GreenOrbs system is carried out in the Tianmu

Mountain, Zhejiang, China, as shown in Fig. 1.2. Researchers adopt TeloB motes

with MSP430 processor and CC2420 radio. The sensor node software is developed

based on TinyOS 2.1, using a globally synchronized duty-cycling mechanism for all

the nodes. In each power-on period of the nodes’ radios, researchers adopt the CTP

protocol to collect the sensory data, whereas the beacon frequency is modified to

save communication cost. Data disseminations from the sink are enabled to control

the nodes’ operational parameters, such as the transmission power, sampling

frequency, duty ratio, and the length of a duty cycle. By April 2010, GreenOrbs

has expanded to include 1,000+ nodes. The nodes using battery power will be kept

in continuous operation for over 1 year.

Currently, GreenOrbs supports three typical applications: canopy closure esti-

mate, fire risk evaluation, and forest microclimate observation. For all three appli-

cations, localization is important since the sensory data without locations are fairly

meaningless. GPS is a straightforward solution but has two limitations for Green-

Orbs uses. First, GPS signal is highly dynamic and unstable in forest environments,

resulting in poor location accuracy. Second, it is costly to equip each sensor node a

GPS receiver for such a large-scale system. In fact, GreenOrbs adopts a combined

scheme that uses GPS and network localization simultaneously.

Fig. 1.2 GreenOrbs deployment
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1.1.2 Location-Aided Network Functions

Location information also supports many fundamental network services, such as

network routing, topology control, coverage, boundary detection, and clustering.

A brief overview is as follows.

1.1.2.1 Routing

Routing is a process of selecting paths in a network along which to send data traffic.

Many routing protocols for multihop wireless networks utilize physical locations to

construct forwarding tables and send messages to the node closer to the destination

in each hop [18]. Specifically, when a node receives a message, local forwarding

decisions are made according to the positions of the destination and its neighboring

nodes. Such geographic routing schemes require localized information, making the

routing process stateless, scalable, and low-overhead in terms of route discovery.

1.1.2.2 Topology Control

Topology control is one of the most important techniques used in wireless ad hoc

and sensor networks for saving energy and eliminating radio interference [19, 20].

By adjusting network parameters (e.g., the transmitting range), energy consumption

and interference can be effectively reduced; meanwhile some global network

properties (e.g., connectivity) can still be well retained. Certainly, using location

information as a priori knowledge, geometry techniques (e.g., spanner subgraphs

and Euclidean minimum spanning trees) can be immediately applied to topology

control [19].

1.1.2.3 Coverage

Coverage reflects how well a sensor network observes the physical space; thus, it

can be viewed as the quality of service (QoS) of the sensing function. Previous

designs fall into two categories. The probabilistic approaches [21–23] analyze the

node density for ensuring appropriate coverage statistically, but essentially have no

guarantee on the result. In contrast, the geometric approaches [24] are able to obtain

accurate and reliable results, in which location information is often necessary.

1.1.2.4 Boundary Detection

Boundary detection is to figure out the overall boundary of an area monitored by a

WSN. There are two types of boundaries: the outer boundary showing the
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undersensed area, and the inner boundary indicating holes in a network deployment.

The knowledge of boundary facilitates the design of routing, load balancing, and

network management [25]. As a direct evidence, location information helps to

identify border nodes and further depict the network boundary.

1.1.2.5 Clustering

To facilitate network management, researchers often propose to group sensor nodes

into clusters and organize nodes hierarchically [26]. In general, ordinary nodes only

talk to the nodes within the same cluster, and the intercluster communications rely

on a special node in each cluster, which is often called cluster head. Cluster heads

form a backbone of a network, based on which the network-wide connectivity is

maintained. Clustering brings numerous advantages on network operations, such as

improving network scalability, localizing the information exchange, stabilizing the

network topology, and increasing the network life time. Among all possible solu-

tions, location-based clustering approaches are greatly efficient by generating non-

overlapped clusters. In addition, location information can also be used to rebuild

clusters locally when new nodes join the network or some nodes suffer from

hardware failure [26].

1.2 Introduction to Localization

One method to determine the location of a device is through manual configuration,

which is often infeasible for large-scale deployments or mobile systems. As a

popular system, global positioning system (GPS) is not suitable for indoor or

underground environments and suffers from high hardware cost. Local positioning

systems (LPs) rely on high-density base stations being deployed, an expensive

burden for most resource-constrained wireless ad hoc networks.

Limitations of the existing positioning systems motivate a novel scheme of

network localization, in which some special nodes (a.k.a. anchors or beacons)

know their global locations and the rest determine their locations by measuring

the geographic information of their local neighboring nodes. Such a localization

scheme for wireless multihop networks is alternatively described as “cooperative,”

“ad hoc,” “in-network localization,” or “self localization,” since network nodes

cooperatively determine their locations by information sharing.

The terms of “known” and “unknown” nodes are referred to the nodes being

aware and being aware of their locations, respectively. Suppose a specific position-

ing process in which an unknown node determines its location based on the

information provided by a number of known nodes. The unknown node is also

known as a target node or a to-be-located node, while the known nodes as reference

nodes.
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Almost all existing localization approaches basically consist of two stages:

1 measuring geographic information from the ground truth of network deployment

and 2 computing node locations according to the measured data. Geographic

information includes a variety of geometric relationships from coarse-grained

neighbor-awareness to fine-grained internode rangings (e.g., distance or angle).

Based on physical measurements, localization algorithms solve the problem that

how the location information from beacon nodes spreads network-wide. Generally,

the design of localization algorithms largely depends on a wide range of factors,

including resource availability, accuracy requirements, and deployment restric-

tions, and no particular algorithm is an absolute favorite across the spectrum.

1.3 Book Organization

In Chap. 2, according to the capabilities of diverse hardware, we classify the

measuring techniques into six categories (from fine grained to coarse grained):

location, distance, angle, area, hop count, and neighborhood. Among them, the

most powerful physical measurement is directly obtaining the position without any

further computation. GPS is such a kind of infrastructure. We discuss the other five

measurements in this chapter, with emphasis on the basic principles of measuring

techniques. Basically, distance-related information can be obtained by radio signal

strength or radio propagation time; angle information by antenna arrays; and area,

hop count, and neighborhood information by the fact that radios only exist for nodes

in vicinity.

Chapter 3 shows how to transform physical measurements to locations of nodes.

Typically, this step takes place among a target node and its neighboring beacons.

We name the process one-hop location estimation. Various kinds of optimization

techniques are used for accurate location computation. In particular, we discuss the

positioning methods for measurements of distance, time difference of arrival

(TDoA), angle of arrival (AoA), and radio signal strength (RSS)-profiling. The

distances from an unknown node to several references constrain the presence of this

node, which is the basic idea of the so-called trilateration (or multilateration).

TDoA measurement gives the difference of the time receiving the same signal on

different reference nodes. Given a TDoA measurement ▵tij and the coordinates of

reference nodes i and j, they define one branch of a hyperbola whose foci are at the

locations of reference nodes i and j. Hence, the unknown node must lie on the

hyperbola. AoA measurement gives the bearing information of the two nodes. By

combining the AoA estimates of two reference nodes, an estimate of the position

can be obtained. RSS-profiling-based methods directly utilize RSS measurement

data for location estimation. Since the RSS distribution of a set of anchor nodes is

relatively stable over the spatial space, the RSS vector measured at an unknown

node, defined as RSS finger print, reveals the physical location of the node.

Chapter 4 discusses the range-based localization approaches that adopt ranging

techniques and use internode distance measurements to calculate the locations
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of nodes. According to the computation organization, we classify range-based

localization algorithms into two main categories: centralized algorithms and

distributed algorithms. Centralized algorithms take all distance measurements as

the input and locate the entire wireless network in a single step. In contrast, in

distributed algorithms, every node determines its location according to the informa-

tion provided by its neighbors, to avoid the network-wide information exchange.

This chapter reviews the state-of-the-art designs of range-based approaches. Multi-

dimensional scaling (MDS), as a centralized algorithm, adopts statistical techniques

and assigns locations of nodes such that the short-distance-apart nodes are close to

each other in the localization results. We also present a well-known distributed

solution, iterative trilateration (or sequential trilateration). It is computationally

efficient and easy to implement, thus widely used in many systems. The variations

of iterative trilateration, including bilateration and sweeps, are also discussed

in Chap. 4.

Due to the hardware limitations, ranging is not always available for wireless

devices. In such situations, range-free approaches are cost-effective alternatives, in

which nodes merely know their neighbors (a.k.a. connectivity information). In

Chap. 5, we show range-free approaches. Without direct distance ranging, the

physical distance of a pair of nodes is estimated by the hop count or the proximity.

The basic idea of hop count-based localization is to use hop by hop message

delivery to calculate hop counts from nodes to anchors. The hop-count information

is further converted to the distance estimates. Eventually, each node adopts trila-

teration or other methods to determine its location according to the estimated

distances. Another possibility of range-free approaches is to explore the relative

proximity of nodes. Although distance ranging is not available, the information that

one node is closer to some node than others has great potentials to be used for

localization. Both hop-count-and proximity-based solutions are discussed in

Chap. 5.

Chapter 6 studies techniques that localization approaches use for error control.

Although a number of ranging techniques are developed, noises and outliers are

inevitable in distance measurements. Numerous simulations and experiments have

suggested that the performances of many localization schemes would be drastically

degraded if ranging errors are not handled properly. As a result, error control

attracts a lot of research efforts. We first review the measurement accuracies of

different ranging methods. Then, we discuss how noisy and outlier ranging results

affect localization results in four aspects: uncertainty, nonconsistency, ambiguity,

and error propagation. Finally, we present the state-of-the-art studies on error

characterization, ambiguity elimination, location refinement, and outlier resistance,

all of which have the goal of mitigating the negative impact of errors in distance

measurements.

In Chap. 7, we concern the localization for mobile networks. Node mobility

gives rise to new challenges of localization. The most straightforward and essential

one is that localization is no longer a one-time task, but a continuous and repeated

procedure. Many new localization algorithms have been proposed for mobile net-

works. We first introduce the Monte Carlo localization (MCL) algorithm, which
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casts the mobile localization problem as a Markov process. We then discuss the

convex approximation localization (CAL) algorithms maintaining a convex poly-

gon or circle to approximate the potential location of each node. We also discuss the

moving-baseline localization (MBL) algorithm, whose emphasis is to construct a

global view of the network from the perspective of each individual node. Finally,

some techniques for universal localization (localizing static nodes and mobile

nodes simultaneously) are depicted.

Chapter 8 presents the localizability issue of wireless networks. Network local-

izability is to determine whether or not a network is localizable given distance

constrains. In recent years, this issue draws remarkable attentions from an increas-

ing number of researchers. Based on rigidity theory, we analyze the reasons why the

locations of some nodes in a network cannot be uniquely determined. In addition,

we present two approaches for inductively constructing globally rigid graphs:

trilateration and Wheel. Wheel is proved to be a nice substitute for trilateration,

determining the locations of a larger number of nodes, more suitable for sparsely or

moderately connected networks, and introducing no extra communication cost. At

last, we discuss node localizability. Different from network localizability, node

localizability focuses on whether or not a specific node is localizable given distance

constrains. Actually, node localizability is a more general issue than network

localizability. We investigate the state-of-the-art results on finding the condition

for a node being localizable. In general, this is a new research area, and a number of

open issues exist.

Location privacy is considered in Chap. 9. We begin with examining potential

threats against location privacy. We then review major privacy protecting strate-

gies, which fall into four categories: regulatory, privacy policies, anonymity,

and obfuscation. Following a quick tour of these strategies, we dig into some

anonymity-based approaches that use some tricks to fool the adversaries. Releasing

location information anonymously (i.e., using a pseudonym instead of an actual

identity) can prevent attackers from linking the location information to an actual

identity. However, hiding the name is not enough. Certain regions of a space, such

as desk location in an office, can be closely associated with certain identities, and

hence can be used to deanonymize identities, although pseudonym is applied. In

anonymity-based approaches, a trusted intermediary is introduced to coordinate

users and to provide a large enough anonymity set, in which a certain identity

cannot be distinguished from others. We present some typical approaches and make

a comparison. At the end of Chap. 9, we provide several directions of future

research on location privacy.
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Chapter 2

Physical Measurements

It is absolutely infeasible to do localization without knowledge of the physical

world. According to the capabilities of diverse hardware, we classify the measuring

techniques into six categories (from fine grained to coarse grained): location,

distance, angle, area, hop count, and neighborhood, as shown in Fig. 2.1.

Among them, the most powerful physical measurement is directly obtaining the

position without any further computation. GPS is such a kind of infrastructure.

Besides, the other five measurements are used in the scenarios of positioning an

unknown node by giving some reference nodes. Distance and angle measurements

are obtained by ranging techniques, while hop count and neighborhood are basi-

cally based on radio connectivity. In addition, area measurement relies on either

ranging or connectivity depending on how the area constrains are formed.

2.1 Distance Measurements

Many physical quantities are distance related, such as the received radio signal

strength, the propagation time of an acoustic signal. Investigating the physical

characteristics of signals, researchers form the basic quantity-distance models that

convert the measured signals to the physical distances. In this section, we mainly

focus on the typical ranging techniques: radio signal strength (RSS), time of arrival

(ToA), and time difference of arrival (TDoA).

2.1.1 Radio Signal Strength

RSS-based ranging techniques rely on the fact that the strength of radio signal

diminishes during propagation. As a result, the understanding of radio attenuation

helps to map signal strength to distance.

A common assumption is that the propagation distances d is much larger than the

square of the antenna size divided by the wavelength. In an idealized free space,

RSS is proved to be linear with the inverse square of the distance d between the

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_2,
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transmitter and the receiver. Let Pr(d) denote the received power at distance d.
The value of Pr(d) follows the Friis equation [27]:

PrðdÞ ¼ l
4pd

� �2

PtGtGr;

where Pt is the transmitted power, Gt andGr are the antenna gain of the transmitting

and receiving antennas, respectively, and lx is the wavelength of the transmitter

signal in meters.

In practice, several factors, such as shadowing and reflection, may affect the radio

signal propagation as well as the received power. Unfortunately, these factors are

environment dependent and unpredictable. As the shadowing effects cannot be

precisely tracked, they are usually modeled as a log-normally distributed random

variable. Considering the randomness, signal strength diminishes with distance

according to a power law. One model used for wireless radios is as follows [28]:

PrðdÞ ¼ P0ðd0Þ � �10 log10
d

d0

� �
þ Xs;

where Pr(d) denotes the received power at distance d and P0(d0) denotes the

received power at some reference distance d0, � denotes the path-loss exponent,

and Xs denotes a log-normal random variable with variance s2 that accounts for

fading effects. If the path-loss exponent for a given environment is known, the

received signal strength can be used to estimate the distance. By this model, the

maximum likelihood estimate of distance d is as follows [27]:

d̂ ¼ d0
Pr

P0ðd0Þ
� ��1=�

:

In addition, the relationship between the estimated distance and the ground-truth

distance is

d̂ ¼ d10�
Xs
10� ¼ de�

aXs
� ;

Location Angle Area Hop Count NeighborhoodDistance

Fine-grained Coarse-grained

Ranging Connectivity

Fig. 2.1 Physical measurements
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where a¼ ln 10/10. Hence, the expected value of the estimated distance is

Eðd̂Þ ¼ 1ffiffiffiffiffiffi
2p
p

s

Z 1

�1
d e�aXs=�e�Xs=2s2dXs ¼ d eða

2=2Þðs2=�2Þ:

Thus the maximum likelihood estimate is biased from the ground-truth distance.

Hence, an unbiased estimate is given by

d̂ ¼ d0
Pr

P0ðd0Þ
� ��1=�

e�ða
2=2Þðs2=�2Þ:

The ranging noise occurs because radio propagation tends to be highly dynamic in

complicated environments. Although RSS-based ranging contains noises on the

order of several meters (or even worse performance) [29], it is widely used in many

real-world systems because RSS is a relatively “cheap” solution without any special

hardware, as all nodes are supposed to have radios. It is believed that more careful

physical analysis of radio propagation may allow better use of RSS data. Neverthe-

less, the breakthrough technology is not there today.

2.1.2 Time of Arrival (ToA)

For a signal with known velocity (e.g., acoustic signal), measuring the propagation-

induced time can straightforwardly indicate the transmitter–receiver separation

distance. The key issue of this mechanism is to accuratelymeasure the time of arrival

(ToA). There are two categories of ToA-based distance measurement: the one-way

propagation time estimation and the round-trip propagation time estimation.

1) One-way propagation time estimation
Propagation delay, which can be calculated as ti � t0, is the time lag between the

departure of a signal from a transmitter and the arrival at a receiver; in other words,

it is the amount of time required for a signal to travel from a transmitter to a

receiver. Assuming the speed of a signal v, the transmitter–receiver distance can be

calculated by d ¼ v (ti � t0).
In the basic scheme of ToA, the receiver needs to know the time when the signal

is sent from the transmitter. One method to release the requirement of time

synchronization is the combined use of signals with different speeds, such as the

ultrasound/acoustic and radio signals [30–32].

In such a scheme, each node is equipped with a speaker and a microphone, as

illustrated in Fig. 2.2. Some systems use ultrasound while others use audible

frequencies. The general ranging technique, however, is independent of any partic-

ular hardware.

The idea of ToA ranging is conceptually simple, as illustrated in Fig. 2.3. The

transmitter first emits a radio signal. It waits some fixed internal of time, tdelay

2.1 Distance Measurements 11



(which might be zero), and then produces a fixed pattern of “chirps” on its speaker.

When the receivers hear the radio signal, they record the current time, tradio, and
turn on their microphones. When their microphones detect the chirp pattern, they

again record the current time, tsound. Once they have tradio, tsound, and tdelay, the
receivers can compute the transmitter–receiver distance d by

d ¼ vradiovsound
vradio � vsound

ðtsound � tradio � tdelayÞ;

where vradio and vsound denote the speed of radio and sound waves, respectively.

Since radio waves travel substantially faster than sound in air, the distance is then

estimated as d ¼ vsound (tsound � tradio � tdelay). If radio and acoustic signals are

designed to be transmitted simultaneously (i.e., tdelay ¼ 0), the estimation can be

further simplified as vsound (tradio � tsound).
To A methods are impressively accurate under line-of-sight conditions. For

instance, it is claimed in [31] that distance can be estimated with error no more

than a few centimeters for node separations under 3 m. The cricket ultrasound

system [30] can obtain centimeter accuracy over about 10-m range in indoor

environments.

Acoustic/
Ultrasound
Module 

RF Module

Acoustic/
Ultrasound

Module

RF Module

Transmitter Receiver

Fig. 2.2 To A hardware model

Transmitter

Receiver
tradio tsound

tdelay

RF Acoustic

Fig. 2.3 ToA computation model
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2) Round-trip propagation time estimation
One-way propagation time estimation requires synchronization between the nodes,

because the computation relies on the timestamps recorded in both the nodes. One

way to avoid synchronization is to use round trip time (RTT). In RTT measurement,

nodes only need to report local time duration instead of the timestamps. The RTT

estimate between two nodes, labeled as A and B, is as follows. Node A transmits a

packet to node B. After receiving this packet, node B delays tdelay, and then replies

node A by sending an acknowledgment packet. The RTT at A is determined by

tRT ¼ 2tflight + tdelay, where tflight denotes the distance-induced propagation time of

the signal. When node B reports the measured delay tdelay, node A can compute the

time of signal propagation by tflight ¼ (tRT � tdelay)/2. However, RTT measurement

suffers from the clock drift between the nodes, especially when tflight is of the same

level of the resolution of tRT and tdelay measurements.

2.1.2.1 Symmetric Double Sided Two-Way Ranging (SDS-TWR)

When we adopt radio signal for the ToA-based distance measurement, the ranging

mainly relies on the resolution of time measurement. There are two main sources of

errors: the multipath effect and the time synchronization. Nanotron technologies

proposes SDS-TWR to address such issues [33].

SDS-TWR adopts chirp spread spectrum (CSS) to provide fine resolution of a

few nanoseconds for signal detection in spite of the multipath propagation and

noises. CSS is a customized application of multidimensional multiple access

(MDMA) for the requirements of battery-powered applications, where the reliabil-

ity of the transmission and low power consumption are of special importance. CSS

operates in the 2.45 GHz ISM band and achieves a maximum data rate of 2 Mbps.

Each symbol is transmitted with a chirp pulse that has a bandwidth of 80 MHz and a

fixed duration of 1 ms.
To avoid time synchronization, the elapsed time is measured by round trip time

(RTT). RTT is the time duration between the timestamp of sending a ranging signal

and that of the acknowledgement. RTT uses highly predictable hardware-generated

acknowledgement packets where MAC processing time assumed to be equal on

both nodes. Note that the timestamps are processed on the physical layer, not on the

application layer. Figure 2.4 illustrates the measurement procedure, where we show

Node1

Node2

t1

RF

RTT

t2

t4

t3
Stage 1 Stage 2

Fig. 2.4 Symmetric double sided

two-way ranging
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the packet transfer according to the time lines of two nodes. There are two stages for

SDS-TWR, each of which is a RTT measurement.

In stage 1, time measurement of node 2 begins only when it receives a packet

from node 1 and then stops when it sends a packet back to node 1. Thus, the distance

between node 1 and node 2 is given by

d ¼ vðt1 � t2Þ=2;

where v denotes the speed of radio signal. Nevertheless, such a scheme suffers clock

drift between the two nodes, because off-the-shelf oscillators can only provide

timing resolution of several nanoseconds. To mitigate the clock drift, SDS-TWR

conducts the ranging measurement twice and symmetrically. As shown in Fig. 2.4,

the first ranging measurement is calculated based on a round trip from node 1 to

node 2 and back to node 1. The second measurement is calculated based on a round

trip from node 2 to node 1 and back to node 2. This double-sided ranging measure-

ment zeroes out the errors of the first order due to the clock drift. Hence, the

distance estimate is given by

d ¼ v½ðt1 � t2Þ þ ðt3 � t4Þ�=4:

2.1.2.2 BeepBeep

Recently, researchers [34] observe that two intrinsic uncertainties in ToA can

contribute to ranging inaccuracy: the possible misalignment between the sender

timestamp and the actual signal emission, and the possible delay of a sound signal

arrival being recognized at the receiver. To eliminate such uncertainties, round-trip

measurement techniques are introduced.

In general, many factors can cause uncertainties in a real system, such as the lack

of real-time control, software delay, interrupt handling delay, and system loads.

These factors, if not controlled, can easily add up to several milliseconds on

average, which translates to several feet of ranging error.

We show the general system model of BeepBeep design [34] in Fig. 2.5, in

which each device is equipped with a speaker and a microphone, denoted by SA,MA

in device A and SB, MB in device B, respectively. BeepBeep ranging scheme takes

three steps:

1. Two-way sensing. As shown in Fig. 2.5, both devices are initially in recording

state. Device A first emits a sound signal through its speaker SA. This signal will
be recorded by its own microphone as well as the other device B. Then, after an
arbitrary delay, device B emits another sound signal back through its speaker SB.
This signal is also recorded by both microphones on the two devices.

2. EToA computation. Both devices examine their recorded data and locate the

sample points when the two previously emitted signals arrive. The time
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difference between these two signals is denoted as elapsed time between the two

time of arrivals (EToA). When the EToA is computed, the two devices will

exchange their locally measured EToA.

3. Distance estimation. The distance between the two devices is computed based

on these two values of EToA.

Figure 2.6 shows the signal transmission procedure and timing relation among

events in the first stage. Two time lines are drawn in the figure with the upper

one representing the local time of device A and the bottom one the local time of

device B. Let t�A0 denote the time when device A instructs its speaker to emit the

sound signal. Due to the sending uncertainty, however, the actual time when the

speaker physically emits might be tA0. The time the signal arrives at the micro-

phones of devices A and B is marked tA1 and tB1, respectively. Again, due to the

receiving uncertainty, applications on device A and B may obtain these signal data

only at time t�A1 and t�B1. Similarly, let t�B2 and tB2 denote the time when device B
instructs to send out a sound signal and when the signal is physically out; tA3 and tB3

SA

MA

SB

MB

Device A Device B

Fig. 2.5 The system model of the BeepBeep design

MA

MB

A issues a play-
sound command

Sound is physically
emitted from A

arbitrary span

tB1
*tB1 t*B2 tB2

t*A0 tA0 t*A1tA1

SA SB

B issues a play-
sound command

Sound is physically
emitted from B 

tB3 t*B3 Local time of B

tA3 t*A3 Local time ofA

Fig. 2.6 Illustration of event sequences in BeepBeep ranging procedure
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denote the time when the signal from device B arrives at the microphones of device

A and B; and t�A3 and t�B3 denote the time when the applications on device A and B
conclude the arrival of the signal data.

Let dx,y denote the distance between the device x’s speaker to device y’s
microphone. From Fig. 2.6, we have

dA;A ¼ cðtA1 � tA0Þ;
dA;B ¼ cðtB1 � tA0Þ;
dB;A ¼ cðtA3 � tB2Þ;
dB;B ¼ cðtB3 � tB2Þ;

where c is the speed of sound. Then, the distance D between the two devices can be

approximated as

D ¼ 1

2
ðdA;B þ dB;AÞ

¼ c

2
ððtB1 � tA0Þ þ ðtA3 � tB2ÞÞ

¼ c

2
ððtA3 � tA1Þ � ðtB3 � tB1Þ þ ðtB3 � tB2Þ þ ðtA1 � tA0ÞÞ

¼ c

2
ððtA3 � tA1Þ � ðtB3 � tB1Þ þ dB;B þ dA;AÞ:

In this equation, the latter two terms are the distances between the speaker and the

microphone of the two devices. This distance is a constant to a certain device and

can be measured as a priori. Therefore, the distance between two devices is

determined solely by the first two terms, which are actually the EToA values

measured on device A and B, respectively. Note that EToA is calculated by each

individual device independently, i.e., without referring any timing information on

the other device, so that no clock synchronization between devices is needed.

Moreover, due to the self-recording strategy, all time measurements are associated

with the arrival instants of the sound signals, and, therefore, the sending uncertainty

is also removed.

Obtaining the exact time instance when the signal arrives is difficult due to the

indeterministic latency introduced by hardware and software (receiving uncer-

tainty). Hence, the values of tA0, tA1, tA3, tB1, tB2, and tB3 cannot be accurately

measured. BeepBeep solves this issue by not referring to any local clock while

inferring timing information directly from recorded sound samples.

As the received sound signal is always sampled at a fixed frequency (represented

by fs) by the A/D converter, BeepBeep directly obtains EToA by counting the

sample number between the two ToAs of signals from recorded data, without

dealing with the local clock of the end system. Thus, the accuracy depends on the

fidelity of the recording module. Since all the sound signals are recorded, BeepBeep
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only needs to check the recorded data and identify the first sample point of each

signal. Then, EToA is obtained by counting the number of samples between the two

sound signals.

With sample counting, the above equation can be rewritten as

D ¼ c

2

nA3 � nA1
fsA

� nB3 � nB1
fsB

� �
þ K;

where nx denotes the index of the sample point at instant tx, fsA and fsB are the

sampling frequency of device A and B, respectively, and K ¼ dB,B+dA,A is a

constant. Assume the sampling frequency to be 44.1 kHz, since the 44.1 kHz

sampling frequency is the basic, de facto standard that almost every sound card

supports. In this case, we have fsA¼ fsB, and the above equation can be simplified to

D ¼ c

2fs
ððnA3 � nA1Þ � ðnB3 � nB1ÞÞ þ K:

From this equation, the measurement granularity is positively proportional to the

sound speed c and inversely proportional to the sampling frequency fs. Take a

typical setting of c ¼ 340 m/s and fs¼ 44.1 kHz, the distance granularity is then

about 0.77 cm.

The distance granularity shows the best accuracy for BeepBeep system. In

practice, due to several constraints, such as the signal to noise ratio, the multipath

effects, and signal distortion, BeepBeep can achieve 1 or 2 cm accuracy. Experi-

ments show that the operational range for the indoor cases is around 4 m and that for

outdoor cases is in general larger than 10 m.

Being accurate, ToA systems are generally constrained by the line-of-sight

condition, which is often difficult to meet in some environments. In addition,

ToA systems perform better when they are calibrated properly, since speakers

and microphones never have identical transmission and reception characteristics.

Furthermore, the speed of sound in air varies with air temperature and humidity,

which introduce inaccuracy into distance estimation. Acoustic signals also show

multipath propagation effects that may impact the accuracy of signal detection.

These can be mitigated to a large extent using simple spread-spectrum techniques

[35]. The basic idea is to send a pseudorandom noise sequence as the acoustic signal

and use a matched filter for detection, instead of using a simple chirp and threshold

detection.

By designing BeepBeep, a high-accuracy acoustic-based ranging system, the

localization can achieve 1 or 2 cm accuracy within a range of more than 10 m,

which is so far the best result of ranging with off-the-shelf devices. Many localization

algorithms use ToA simply because it is dramatically more accurate than radio-only

methods. The trade-off is that nodes must be equipped with acoustic transceivers in

addition to radio transceivers.
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2.1.3 Time Difference of Arrival (TDoA)

When multiple reference nodes are available, there is a category of measurements

called TDoA. The transmitter sends a signal to a number of receivers at known

locations. Then, the receivers record the arrival time of the signal, as illustrated in

Fig. 2.7. The location of the transmitter is computed by the difference of the

recorded arrival timestamps. The TDoA between a pair of receivers i and j is
given by

Dtij ¼D ðti � t0Þ � ðtj � t0Þ ¼ ti � tj ¼ 1
c ðjjri � rtjj � jjrj � rtjjÞ i 6¼ j

where t0 is the time when the signal is sent from the transmitter (locating at rt), ti and
tj are the times when the signal is received at receivers i (locating at ri) and j
(locating at rj), respectively, c is the speed of the signal, and ||·|| denotes the

Euclidean norm. TDoA is also known as range difference since the speed of signal

is assumed to be known as a priori.

Accurate TDoA measurement relies on two issues, time synchronization of

receivers and signal detection, both of which are well known and still challenging.

In the TDoA scheme, receivers need to be precisely synchronized to make the time

difference (ti � tj) valid. Even tiny errors of synchronization can totally destroy the

final location results since the commonly used wireless signals travel fast (e.g.,

about 343 m/s for acoustic signals) or ultimately fast (e.g., 3 � 108�m/s for radio

signals).

signal emitted at t0

t1

t3
t2

Fig. 2.7 TDOA measurement
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Measuring the TDoA of a signal at two receivers at separate locations is a

relatively mature field. The most widely used method is the generalized cross-

correlation method [36], where the cross-correlation function between two signals

si and sj received at receivers i and j is given by integrating the lag product of two

received signals for a sufficiently long time period T:

ri;jðtÞ ¼
1

T

Z T

0

siðtÞsjðt� tÞdt:

TDoA only requires the receivers to be synchronized and does not demand any

synchronization between the transmitter and the receivers. However, intensive

computation is introduced and performed at receivers. Hence, it especially suits

for the networks with powerful infrastructures, such as the cellular network.

2.2 Angle Measurement

Another possibility for localization is the use of angular estimates instead of

distance estimates. In trigonometry and geometry, triangulation is the process of

determining the location of a point by measuring angles to it from two known

reference points (as illustrated in Fig. 2.8), using the law of sines. Triangulation is

once used to find the coordinates and sometimes the distance from a ship to the

shore.

The angle of arrival (AoA), a.k.a., direction of arrival (DOA), measurement is

typically gathered using radio or microphone arrays, which allow a receiver to

determine the direction of a transmitter. Suppose, several (3–4) spatially separated

microphones hear a single transmitted signal. By analyzing the phase or time

difference between the signal’s arrival’s at different microphones, it is possible to

discover the AoA of the signal.

These methods can obtain accuracy within a few degrees [37]. A very simple

localization technique, involving three rotating reference beacons at the boundary of

a sensor network providing localization for all interior nodes, is described in [38].

ObjectObject

a1 a2

(x1, y1) (x2, y2)

(x, y)a b

Fig. 2.8 Angle measurement
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Unfortunately, AoA hardware tends to be bulkier and more expensive than ToA

or TDoA ranging hardware, since each node must have one speaker and several

microphones. Furthermore, the need of spatial separation between microphones is

difficult to be accommodated in small size devices.

2.3 Area Measurement

If the radio or other signal coverage region can be described by a geometric shape,

this can be used to provide location estimates by determining which geometric

areas that a node is in. The basic idea of area estimation is to compute the

intersection of all overlapping coverage regions and choose the centroid as the

location estimate. Along with the increasing number of constraining areas, higher

localization accuracy can be achieved.

According to how the area is estimated, we classify the existing ideas into two

categories: single reference area estimation and multireference area estimation.

2.3.1 Single Reference Area Estimation

Single reference estimation means that areas are obtained in a pairwise manner, i.e.,

the information of a geometric area comes from only one reference at each stage.

For instance, the region of radio coverage may be upper bounded by a circle of

radius Rmax. In other words, if node B hears node A, it knows that it must be no more

than a distance Rmax from A. If an unknown node hears from several reference

nodes, it can determine that it must lie in the geometric region described by the

intersection of circles of radius Rmax centered at reference nodes, as illustrated in

Fig. 2.9a. This can be extended to other scenarios. For instance when both the lower

bound Rmin and the upper bound Rmax can be determined, based on the received

signal strength, the shape of a single node’s coverage is an annulus, as illustrated in

Fig. 2.9c; when an angular sector (ymin, ymax) and a maximum range Rmax can be

determined, the shape for a single node’s coverage would be a cone with given

angle and radius, as illustrated in Fig. 2.9d.

Localization using geometric regions is first described in [39]. One of the nice

features of these techniques is that not only the unknown nodes can use the centroid

of the overlapping region as a specific location estimate if necessary, but also they

can determine a bound on the location error using the size of this region. When the

upper bounds on these regions are tight, the accuracy of this geometric approach

can be further enhanced by incorporating “negative information” about which

reference nodes are not within the range [40]. Although arbitrary shapes can be

potentially computed in this manner, a computational simplification to determine

this bounded region is to use rectangular bounding boxes. Reference nodes by some

way define several bounding boxes; an unknown node estimates its location accord-

ing to the intersection of all boxes, which can be efficiently computed.
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2.3.2 Multireference Area Estimation

Another approach of area estimation is the approximate point in triangle (APIT)

technique [41]. Its novelty lies in that regions are defined as triangles between

different sets of three reference nodes, rather than the coverage of a single node.

APIT consists of two key processes: triangle intersection and point in triangle

(PIT) test. Nodes are assumed to hear a fairly large number of beacons. A node

forms some number of “reference triangles”: the triangle formed by three arbitrary

references. The node then decides whether it is inside or outside a given triangle by

PIT test. Once the process is complete, the node finds the intersection of the

reference triangles that contain it and chooses the centroid as its position estimate,

as illustrated in Fig. 2.9b. During process, APIT does not assume that nodes can

range to these beacons.

The PIT test is based on geometry. For a given triangle with points A, B, and C, a
pointM is outside triangle ABC, if there exists a direction such that a point adjacent
to M is further/closer to points A, B, and C simultaneously. Otherwise, M is inside

triangle ABC. Unfortunately, given that typically nodes cannot move, an approxi-

mate PIT test is proposed based on two assumptions. The first one is that the range

measurements are monotonic and calibrated to be comparable but are not required

to produce distance estimates. The second one assumes sufficient node density for

approximating node movement. If no neighbor of M is further from/closer to all

three anchors A, B, and C simultaneously, M assumes that it is inside triangle ABC.
Otherwise, M assumes it resides outside this triangle. In practice, however, this

approximation does not realize the PIT test well. Nevertheless, APIT provides a

novel point of view to do localization based on area estimation.

a b

c d

Fig. 2.9 Area measurements
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2.4 Hop Count Measurements

Based on the observation that if two nodes can communicate by radio, their distance

from each other is less than R (the maximum range of their radios) with high

probability, many delicate approaches are designed for accurate localization.

In particular, researchers have found “hop count” to be a useful way to compute

internode distances. The local connectivity information provided by the radio

defines an unweighted graph, where the vertices are wireless nodes and edges

represent direct radio links between nodes. The hop count hij between nodes

si and sj is then defined as the length of the shortest path from si to sj. Obviously,
the physical distance between si and sj, namely, dij, is less than R � hij, the value

which can be used as an estimate of dij if nodes are densely deployed.

Another method to estimate per-hop distance is to employ a number of anchor

nodes, as illustrated in Fig. 2.10. As the locations of anchor nodes are known, the

distance between them can be readily computed. Hence, if the hop count

hij between two references (si and sj ) and the distance dij are available, the per-

hop distance can be estimated as dhop ¼ dij /hij.
Due to the hardware limitations and energy constraints of wireless devices, hop-

count-based localization approaches are cost-effective alternatives to range-based

approaches. Since there is no way to measure physical distances between nodes,

existing hop-count-based approaches largely depend on connectivity measurements

with a high density of anchors.

Hop Distance
Physical Distance

Fig. 2.10 Hop count measurement
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2.5 Neighborhood Measurement

Radio connectivity can be considered economic since no extra hardware is required.

Perhaps the most basic location technique is that of one-neighbor proximity, involv-

ing a simple decision of whether two nodes are within reception range of each other.

A set of reference nodes is placed in the network with some nonoverlapping

(or nearly nonoverlapping) subregions. Reference nodes periodically emit beacons

including their location IDs. An unknown node uses the received location informa-

tion as its own location, achieving a course-grained localization. The major advan-

tage of this single-neighbor proximity approach is the simplicity of computation.

The neighborhood information can be more useful when the density of reference

nodes is sufficiently high that there are several reference nodes within the range of

an unknown node. Let there be k reference nodes within the proximity of the

unknown node, as illustrated in Fig. 2.11. Suppose black squares are references

and the black circle is the real location of the unknown node. We use the centroid

(denoted by the hollow circle) of the polygon constructed by the k reference nodes
as the estimated position of the unknown node. This is actually a k-nearest-neighbor
approximation in which all reference nodes have equal weights.

This simple centroid technique has been investigated using a model with each

node having a simple circular range R in an infinite square mesh of reference nodes

spaced a distance d apart [42]. It is shown through simulation that, as the overlap

ratio R/d is increased from 1 to 4, the average error in localization decreases from

0.5d to 0.25d.
The k-neighbor proximity approach inherits the merit of computational simplic-

ity from the single-neighbor proximity approach; while at the same time, it provides

more accurate localization results than the single-neighbor proximity statistically.

2.6 Summary

In this section, a comparative study is presented for the existing physical measurement

approaches. Table 2.1 provides an overview of these approaches in terms of accuracy,

hardware cost, and environment requirements. All approaches have their own merits

and drawbacks, making them suitable for different applications.

Fig. 2.11 k-neighbor
proximity
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Recent technical advances foster a novel ranging approaches. Ultra-wideband

(UWB) is a radio technology that can be used at very low energy levels for short-

range high-bandwidth communications by using a large portion of the radio spec-

trum [43]. It has relative bandwidth larger than 20% or absolute bandwidth of more

than 500 MHz. Such wide bandwidth offers a wealth of advantages for both

communications and ranging applications. In particular, a large absolute bandwidth

offers high resolution with improved ranging accuracy of centimeter level.

UWB has a combination of attractive properties for in-building location systems.

First, it is a non-line-of-sight technology with a range of a few tens of meters, which

makes it practical to cover large indoor areas; second, it is easy to filter the signal to

minimize the multipath distortions that are the main cause of inaccuracy in RF-

based location systems. With conventional RF, reflections in in-building environ-

ments distort the direct path signal, making accurate pulse timing difficult; while

with UWB, the direct path signal can be distinguished from the reflections. These

properties provide a good cost-to-performance ratio of all available indoor location

technologies.

In some positioning systems, two or more types of physical measurements,

studied in previous subsections, are used simultaneously in order to obtain more

information about the target node and increase the accuracy and robustness of

positioning. Examples of such multimodal (or hybrid) scheme include ToA/AoA

[44], ToA/RSS [45], TDoA/AoA [46], and ToA/TDoA [47]. Recently, some pro-

gresses from computational geometry reveal the great potential of multimodal

measurements, regarding localization accuracy. With the rapid development of

integrated circuits, multimodal measurement has been available on many wireless

devices, especially sensor motes.

In all ranging algorithms discussed above, nodes should actively participate in the

ranging process, i.e., sending or receiving radio signals, or measuring physical data.

For some applications, however, the to-be-located objects cannot join the process, and

it is also difficult to attach networked nodes to them. One typical application

is intrusion detection, in which it is impossible and unreasonable to equip intruders

with locating devices. To tackle this issue, recently a novel concept of device-

free localization, also called transceiver-free localization, is proposed [48, 49].

Table 2.1 Comparative study of physical measurements

Physical Measurements Accuracy Hardware cost Computation cost

Distance RSS Median Low Low

ToA High High Low

Angle AoA High High Low

Area Single reference Mediana Mediana Median

Multireference Mediana Mediana High

Hop count Per-hop distance Median Low Median

Neighborhood Single neighbor Low Low Low

Multineighbor Low Low Low
aDepends on the diverse geometric constrains
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Device-free localization is envisioned to be able to detect, localize, track, and identify

entities free of devices and works by processing the environment changes collected at

scattering monitoring points. Existing work focuses on analyzing RSS changes, and

often suffers from high false positives. How to design a device-free localization

system which can provide accurate locations is a challenging and promising research

problem.
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Chapter 3

One-Hop Location Estimation

This chapter discusses how to transform physical measurements to locations of

nodes. This step is a basic and essential building block of all localization

approaches. Typically, it takes place among a target node and its neighboring

beacons. Thus, we name it one-hop location estimation. Various kinds of optimiza-

tion techniques are used in this step for accuracy.

In particular, we discuss the positioning methods for measurements of distance,

TDoA, AoA, and RSS-profiling. The distances from an unknown node to several

references constrain the presence of this node, which is the basic idea of the

so-called multilateration. TDoA measurement gives the difference of the time

receiving the same signal on different reference nodes. Given a TDoAmeasurement

Dtij and the coordinates of reference nodes i and j, they define one branch of a

hyperbola whose foci are at the locations of reference nodes i and j. Hence, the
unknown node must lie on the hyperbola. AoA measurement gives the bearing

information of the two nodes. By combining the AoA estimates of two reference

nodes, an estimate of the position can be obtained. RSS-profiling-based methods

directly utilize RSS measurement data for location estimation. Since the RSS

distribution of a set of anchor nodes is relatively stable over the spatial space, the

RSS vector measured at an unknown node, defined as RSS finger print, reveals the

physical location of the node.

3.1 Distance-Based Positioning Techniques

Multilateration is the process of locating an object according to distance

measurements. Note that the word “multilateration” has different meanings in the

context of localization, and in this book it refers to the distance-based positioning

technique. Figure 3.1 shows an example of trilateration, a special form of multi-

lateration which utilizes exact three references. The object to be localized (the soft

dots) measures the distances from itself to three references (the solid squares).

Obviously, the object should locate at the intersection of three circles centered at

each reference position. The result of trilateration is unique as long as three

references are nonlinear.

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_3,
# Springer Science+Business Media, LLC 2011
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In practice, distance measurements inevitably contain errors, resulting in that the

circles may not always intersect at a single point. This problem can be solved by a

numerical solution to an overdetermined linear system [31]. Suppose an unknown

node locates (x0, y0) and it is able to obtain the distance estimates d 0i to the ith
reference node locating at xi; yið Þ; 1 � i � n; where n is the total number of

reference nodes. Let di be the actual Euclidean distance from the unknown node

to the ith reference node, i.e.,

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þ ðyi � y0Þ2

q
:

Thus the difference between the measured and actual distances can be repre-

sented as ri ¼ d 0i�di. Several methods are designed to deal with the ranging noise.

The least-squares method is one of them to determine the value of (x0, y0) by

minimizing
Pn

i¼1 r
2
i .

Each measurement determines an equation of the position of the unknown node,

so we have

d21 ¼ ðx1 � x0Þ2 þ ðy1 � y0Þ2

d22 ¼ ðx2 � x0Þ2 þ ðy2 � y0Þ2

..

.

d2n ¼ ðxn � x0Þ2 þ ðyn � y0Þ2

Ground truth Ranging circles 

a b

Fig. 3.1 Trilateration. (a) Ground truth; (b) ranging circles
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Subtracting the first equation from all of the rest equations gives

d22 � d21 ¼ x22 � x21 � 2ðx2 � x1Þx0 þ y22 � y21 � 2ðy2 � y1Þy0
d23 � d21 ¼ x23 � x21 � 2ðx3 � x1Þx0 þ y23 � y21 � 2ðy3 � y1Þy0

..

.

d2n � d21 ¼ x2n � x21 � 2ðxn � x1Þx0 þ y2n � y21 � 2ðyn � y1Þy0

Rearranging terms, the above equations can be written in matrix form as

x2 � x1 y2 � y1
x3 � x1 y3 � y1

..

. ..
.

xn � x1 yn � y1

2
6664

3
7775

x0
y0

� �
¼ 1

2

x22 þ y22 � d22 � ðx21 þ y21 � d21Þ
x23 þ y23 � d23 � ðx21 þ y21 � d21Þ

..

.

x2n þ y2n � d2n � ðx21 þ y21 � d21Þ

2
6664

3
7775

Then, this equation can be rewritten as

Hx ¼ b;

where

H ¼
x2 � x1 y2 � y1
x3 � x1 y3 � y1

..

. ..
.

xn � x1 yn � y1

2
6664

3
7775; x ¼ x0

y0

� �
; b ¼ 1

2

x22 þ y22 � d22 � ðx21 þ y21 � d21Þ
x23 þ y23 � d23 � ðx21 þ y21 � d21Þ

..

.

x2n þ y2n � d2n � ðx21 þ y21 � d21Þ

2
6664

3
7775 :

The least-squares solution of this equation is given by

x̂ ¼ ðHTHÞ�1HTb:

3.2 TDoA-Based Positioning Techniques

TDoA measurement gives the difference of the time a signal arriving at different

reference nodes. A TDoA measurement Dtij and the coordinates of reference nodes

i and jdefineonebranchofahyperbolawhose foci are at the locationsof referencenodes
i and j. Hence, the unknownnodemust lie on the hyperbola. Thus, localization based on

TDoAmeasurement is also called hyperbolic positioning. In two-dimensional spaceR2,

measurements from a minimum of three reference nodes are required to uniquely

determine the location of an unknown node, as illustrated in Fig. 3.2.
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Suppose we organize the TDoA measurements in the following way: the TDoA

value associated with a reference node i is Dti¼ ti�t1, i.e., it is the difference

between the arrivals of reference node 1. Let (x0, y0) denote the location of the

unknown node, di denote the distance between the unknown node and reference

node i, (xi, yi) denote the location of the reference node i. Then, we have the

following basic relations:

d21 ¼ ðx1 � x0Þ2 þ ðy1 � y0Þ2

d22 ¼ ðx2 � x0Þ2 þ ðy2 � y0Þ2

..

.

d2n ¼ ðxn � x0Þ2 þ ðyn � y0Þ2

where n is the total number of reference nodes. Let Ddi¼ cDti¼ di� d1, where c is
the speed of the signal used by the unknown node. Then, the above equations can be

rewritten as

d21 ¼ ðx1 � x0Þ2 þ ðy1 � y0Þ2

ðd1 þ Dd2Þ2 ¼ ðx2 � x0Þ2 þ ðy2 � y0Þ2

..

.

ðd1 þ DdnÞ2 ¼ ðxn � x0Þ2 þ ðyn � y0Þ2

Hyperbola from
receivers 1 and 2    

Hyperbola from
receivers 1 and 3   

r1
r2

r3

Fig. 3.2 Location computation by TDoA
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Subtracting the first equation from all of the rest equations gives

�ðx2 � x1Þx0 � ðy2 � y1Þy0 ¼ Dd2d1 þ 1

2
ðDd22 � x22 � y22 þ x21 þ y21Þ

�ðx3 � x1Þx0 � ðy3 � y1Þy0 ¼ Dd3d1 þ 1

2
ðDd23 � x23 � y23 þ x21 þ y21Þ

..

.

�ðxn � x1Þx0 � ðyn � y1Þy0 ¼ Ddnd1 þ 1

2
ðDd2n � x2n � y2n þ x21 þ y21Þ

Rewriting these equations in matrix form gives

Hx ¼ d1aþ b;

where

H ¼
x2� x1y2� y1
x3� x1y3� y1

..

...
.

xn� x1yn� y1

2
6664

3
7775;x¼

x0
y0

� �
;a¼

�Dd2
�Dd3

..

.

�Ddn

2
6664

3
7775;b¼� 1

2

Dd22 � x22� y22þ x21þ y21
Dd23 � x23� y23þ x21þ y21

..

.

Dd2n � x2n� y2nþ x21þ y21

2
6664

3
7775 :

The least-squares estimation of this equation is given by

x̂ ¼ ðHTHÞ�1HTðd1aþ bÞ:
In this result, parameter d1 is unknown. Note that we have d1

2¼(x1�x0)2+(y1�y0)2.
Substituting the above intermediate result into this equation leads to a quadratic equation

of d1. Solving for d1 and substituting the positive root back into the least-squares

estimation yields the final solution for x, i.e., the location estimate of the unknown node.

Other than the basic least-squares solution, researchers have developed several

techniques to solve the nonlinear equations of TDoA localization [50–52]. Being

accurate and robust, the Taylor-series method [50] is commonly used to deal with

nonlinearity. It is an iterative method under the prerequisite that the initial guess is

close to the true solution to avoid local minima. However, the selection of such a

starting point is not simple in practice. Using least-squares estimation two times,

Chan [52] propose a closed form, noniterative solution, which performs well when

the TDoA measurement errors are small. However, as the errors increase, the

performance degrades quickly.

3.3 AoA-Based Positioning Techniques

AoAmeasurement gives the bearing information of two nodes, as shown in Fig. 3.3.

Let (x0, y0) be the location of the unknown node to be estimated from AoA

measurement ai; 1 � i � n; where n is the total number of reference nodes.
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Let (xi, yi) be the known location of the reference node i, yi(p) denote the bearing of
a node located at x

* ¼ ðx; yÞ. We have

tan yiðx*Þ ¼ y� yi
x� xi

; 1 � i � n:

Suppose the measured bearings of reference node i are corrupted by additive noises
ei; 1 � i � n; which are assumed to be zero-mean Gaussian noises with covariance

matrices si
2, i.e.,

ai ¼ yIðx0Þ þ Ei; 1 � i � n:

When the reference nodes are identical and much closer to each other than to the

unknown node, the variances of bearing measurement errors are equal,

i.e., s2i ¼ s2; 1 � i � n. The maximum likelihood estimator of the location of the

unknown node is given by

x̂ ¼ argmin
1

2

Xn
i¼1

ðyiðx̂Þ � aiÞ2
s2i

This nonlinear minimization problem can be solved by a Newton–Gauss itera-

tion [53].

Another approach bases on the assumption that the measurement error is small

enough such that ei� sin(ei). In that case, the above cost function becomes

1

2

Xn
i¼1

sin2 ðyiðx̂Þ � aiÞ
s2i

:

a1 a2

(x0,y0)

(x2,y2)(x1,y1)

Fig. 3.3 Location computation by AoA measurement
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According to di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � xiÞ2 þ ðy0 � yiÞ2

q
and

sinðyiðx̂Þ � aiÞ ¼ sin yiðx̂Þ cos ai � cos yiðx̂Þ sin ai
¼ ðy0 � yiÞ cos ai � ðx0 � xiÞ sin ai

di
;

the cost function becomes

1

2

Xn
i¼1

½ðy0 � yiÞ cos ai � ðx0 � xiÞ sin ai�2
s2i d

2
i

¼ 1

2
ðA

*
x� bÞTR�1S�1ðA

*
x� bÞ;

where

A ¼
sin a1 � cos a1

..

. ..
.

sin an � cos an

2
664

3
775;

b ¼
x1 sin a1 � y1 cos a1

..

.

xn sin an � yn cos an

2
664

3
775;

R ¼ diagfd21; . . . ; d2ng;
S ¼ diagfs21; . . . ; s2ng:

This method implicitly assumes that a rough estimate of R can be obtained. Since

the cost function weakly depends on R, the roughness will not significantly affect

the solution. Under these assumptions, the minimum cost solution with respect to x
*

is given by

x̂ ¼ ðATR�1S�1AÞ�1ATR�1S�1b:

3.4 RSS-Profiling-Based Positioning Techniques

RSS-profiling-based positioning techniques directly utilize RSS data for location

estimation. In indoor environments, mapping RSS to distance measurement may

introduce huge errors, because RSS is strongly affected by the shadowing and

multipath effect. However, the RSS distribution of a set of anchor nodes is rela-

tively stable over the spatial space, so the RSS vector measured by an unknown
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node, defined as RSS finger print, reveals the physical location of the node.

By contrasting the RSS finger print with the profiled data, the location of the

unknown node is estimated. Based on the schemes of profiling, existing approaches

fall in to two categories: off-line profiling and online profiling.

3.4.1 Off-line Profiling Scheme

A typical off-line profiling scheme is RADAR [29], which positions an unknown node

by building an RSS-location map. RADAR contains two steps: off-line map sensing

and online node positioning. In the first step, RADAR collects the spatial distribution

of the RSS of the anchors to build a RSS-location map. Specifically, system operators

in advance conduct a site survey by recording the RSS values at each location in an

interesting area. The RSS at a given location varies quite significantly (by up to

5 dBm) depending on the user’s orientation, i.e., the direction he/she is facing.

Hence, RADAR takes into account the direction and records the following tuple at

each sample point (t,x,y,d), where t denotes the timestamp of the measurement, (x,y)
and d show the position and direction of the measurement, respectively.

After building the RSS-location-direction map, RADAR can provide online

positioning service, which is the second step. Each unknown node first measures

the RSS between the anchor nodes within its communication range, and thus creates

its own RSS finger print. Then, it transmits the RSS finger print to the central

station. Using this RSS finger print, the central station matches the presented signal

strength vector to the RSS-location-direction map, using the nearest-neighbor-

based method. That is, the location of a sample point, whose RSS vector is the

closest match to that of the unknown node, is chosen to be the estimated location of

the nonanchor node.

Besides the merit of simplicity, RADAR can also properly handle the mobility of

the unknown node. However, the accuracy of such scheme suffers the environmen-

tal dynamics.

3.4.2 Online Profiling Scheme

The off-line map for RSS-profiling suffers the environmental dynamics, which is a

main characteristic of the wireless communication. One way to address this issue is

to use the online map for positioning the unknown nodes, called LANDMARC [54].

LANDMARC design is based on the radio frequency identification (RFID) tech-

nology, which is a means of storing and retrieving data through electromagnetic

transmission to an RF-compatible integrated circuit. An RFID system has several

basic components including a number of RFID readers and RFID tags. The RFID

reader can read data emitted from RFID tags. RFID readers and tags use a

defined radio frequency and protocol to transmit and receive data. RFID tags are
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categorized as either passive or active. Passive RFID tags operate without a battery.

Active tags contain both a radio transceiver and a button cell battery to power the

transceiver. Since there is an onboard radio on the tag, active tags have larger range

than passive tags.

Positioning based on the online map does not need to collect the RSS distribution

prior. LANDMARC employs the idea of exploiting extra fixed location reference

tags to help location calibration. These reference tags serve as reference points in

the system (like landmarks in our daily life). The advantage of this design is to

achieve high localization accuracy from the cost of tags instead of the readers,

because the RFID readers are much more expensive than the RFID tags.

The reference tags forms an online map for location computation. As shown in

Fig. 3.4, the predeployed reference tags cover the target area well and uniformly

provide sample data to locate the tracking tags. Note that the RF readers can read all

tags in the target area, including the reference tags and the tracking tags.

1 m

8 m

7 m

6 m

5 m

4 m

3 m

2 m

1 m

4 m 3 m 2 m

9 m

(0,0)

Reference Tag

Tracking Tag

RF Reader

Fig. 3.4 LANDMARC deployment
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The location computation of a tracking tag is as follows. Suppose there are n RF
readers along with m tags as reference tags and u tracking tags as objects being

tracked. The readers are all configured with continuous mode (continuously report-

ing the tags that are within the specified range) and a detection range of 1–8

(meaning the reader will scan from range 1 to 8 and keep repeating the cycle with

a rate of 30 s per range). Define the signal strength vector of a tracking/moving tag as

S¼ (S1, S2, . . ., Sn), where Si denotes the signal strength of the tracking tag perceived
on reader i, i∈ (1, n). For the reference tags, let y ¼ (y1, y2, . . ., yn) denote the

corresponding signal strength vector, where yi denotes the signal strength. LAND-
MARC adopts the Euclidean distance in signal strengths. For each individualtrack-

ing tag p, p∈ (1, u), define Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � SiÞ2
q

, j∈ (1, m), as the Euclidean

distance in signal strength between a tracking tag and a reference tag rj. Let E denote

the location relationship between the reference tags and the tracking tag, i.e., the

nearer reference tag to the tracking tag is supposed to have a smaller E value. When

there are m reference tags, a tracking tag has its E vector as E ¼ (E1,E2, . . .,Em).

The location of the unknown tag is finally computed by an algorithm averaging

the positions of the top k nearest neighbor with weights

ðx; yÞ ¼
Xk
i¼1

wiðxi; yiÞ;

where wi is the weighting factor to the ith nearest reference tag. Further, the weight
is given by

wi ¼ 1=E2
iPk

i¼1 1=E
2
i

:

Generally, the RSS-profiling-based positioning techniques can obtain several

meters average error. For example, RADAR can place objects to within about 3 m

of their actual position with 50% probability, while LANDMARC can localize a tag

to within 1 m of the ground truth position in average.
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Chapter 4

Range-Based Network localization

4.1 Computation Organization

This section defines the taxonomy of range-based approaches based on their

computational organization. Centralized algorithms are designed to run on a central

machine with plenty of resources. Network nodes collect physical measurements

and deliver back to a base station for analysis. Centralized algorithms resolve the

computational limitations of individual nodes. This benefit, however, comes from

accepting the communication cost of transmitting data back to the base station.

Unfortunately, communication generally consumes more energy than computation

in most hardware platforms.

In contrast, distributed algorithms are designed to run in-network, using massive

parallelism and internode communication to compensate for the lack of centralized

computing power, while at the same time reducing the expensive node-to-sink

communication. Often distributed algorithms use a subset of measurement data to

locate nodes one by one, yielding an approximation of a corresponding centralized

algorithm where all the data are considered and used to compute the positions of all

nodes simultaneously. There are two important categories of distributed

approaches. The first group, beacon-based distributed algorithms, typically starts

a localization process with beacons and the nodes in vicinity of beacons. In general,

nodes measure distances to a few beacons and then determine their locations. In

some algorithms, the newly localized nodes become beacons to help locating other

nodes in the following process. In such an iterative fashion, location information

diffuses from beacons to the border of a network, which can be viewed as a top-

down manner. The second group of approaches performs in a bottom-up manner, in

which localization is originated in a local group of nodes in relative coordinates.

After gradually merging such local maps, it finally achieves entire network locali-

zation in global coordinates.

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_4,
# Springer Science+Business Media, LLC 2011
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4.2 Centralized Localization Approaches

4.2.1 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [55] is originally developed for mathematical

psychology. The intuition behind MDS is simple. Suppose there are n points,

suspended in a volume. We do not know the positions of the points, but we know

the distance between each pair of points. MDS is an O(n3) algorithm that uses the

law of cosines and linear algebra to reconstruct the relative positions of the points

based on the pairwise distances. The algorithm has three stages:

1. Generate an n � n matrix M, whose (i, j) entry contains the estimated distance

between nodes i and j. (Simply run Floyd’s all-pairs shortest-path algorithm.)

2. Apply classical metric MDS onM to determine a map that gives the locations of

all nodes in relative coordinates.

3. Transform the solution into global coordinates based on a number of anchor

nodes.

The goal of metric MDS is to find a configuration of points in a multidimensional

space such that the interpoint distances are related to the provided proximities by

some transformation (e.g., a linear transformation). The computation of metric

MDS is as follows.

Let pij refer to the proximity measure between objects i and j. The Euclidean

distance between two points Xi ¼ (xi1, xi2, . . ., xim) and Xj ¼ (xj1, xj2, . . ., xjm) in an

m-dimensional space is given by

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1
ðxik � xjkÞ2

s
:

When a geometrical model (the coordinates of points) fits the proximity data

M perfectly, the corresponding Euclidean distances are related to the proximities by

a transformation dij¼ f(pij). In classical metric MDS, a linear transformation model

is assumed, i.e., dij ¼ a þ bpij.
The distances D are determined so that they are as close to the proximities P as

possible, under a least-squares metric. In this case, define I(P)¼ D þ E, where I(P)
is a linear transformation of the proximities and E is a matrix of errors (residuals).

Since D is a function of the coordinates X, the goal of classical metric MDS is to

calculate the X such that the sum of squares of E is minimized, subject to suitable

normalization of X. In classical metric MDS, P is shifted to the center and

coordinates X can be computed from the double centered P through singular

value decomposition (SVD). For an n � n P matrix for n points and m dimensions

of each point, we have

38 4 Range-Based Network localization



� 1

2
p2ij �

1

n

Xn
j¼1

p2ij �
1

n

Xn
i¼1

p2ij þ
1

n2

Xn
i¼1

Xn
j¼1

p2ij

 !
¼
Xm
k¼1

xikxjk:

The double-centeredmatrix on the left-hand side (call itB) is symmetric and positive

semidefinite. Performing singular value decomposition on B gives B ¼ VAV.
The coordinate matrix becomes X ¼ VA1/2.

Retaining the first r largest eigenvalues and eigenvectors (r < m) leads to a

solution for lower dimensions. This implies that the summation over k in the above
equation runs from 1 to r instead of m. It is the best low-rank approximation in the

least-squares sense. For example, for a 2D network, we take the first two largest

eigenvalues and eigenvectors to construct the best 2D approximation; while the first

three largest ones for 3D case.

MDS performs well on RSS data, getting performance on the order of half the

radio range when the neighborhood size nlocal is higher than 12 [56]. The main

problem with MDS, however, is its poor asymptotic performance, which isO(n3) on
account of stages 1 and 2.

Besides the computation cost, the classical metric MDS has the other two main

drawbacks. First, the computation is inherently centralized, which constrains the

scalability of MDS. Second, for irregularly shaped networks, the shortest path

distance between two nodes does not correspond well to their Euclidean distance.

Consequently, the distance estimation error will introduce huge errors in the

localization result. To address the problem, researchers propose a distributed

MDS-based algorithm, called MDS-MAP(P) [57]. The main idea of MDS-MAP

(P) is to build a local map at each node of the immediate vicinity and then merge

these maps together to form a global map. Specifically, MDS-MAP(P) includes the

following five steps:

1. Set the range for local maps, Rlm. For each node, neighbors within Rlm hops are

involved in building its local map. The value of Rlm affects the amount of

computation, as well as the quality. Generally, setting Rlm ¼ 2 can obtain

satisfactory results. The overall complexity of computing each local map is

O(k3), where k is the average number of neighbors. Thus the complexity of

computing n local maps is O(k3n), where n is the number of nodes.

2. Compute local maps for individual nodes. For each node, do the following:

(a) Compute shortest paths between all pairs of nodes in its local mapping range

Rlm. The shortest path distances are used to construct the distance matrix for

MDS.

(b) Apply MDS to the distance matrix and retain the first two (or three) largest

eigenvalues and eigenvectors to construct a 2D (or 3D) local map.

(c) Refine the local map. Using the node coordinates in the MDS solution as the

initial point, least-squares minimization is performed to make the distances

between nearby nodes match the measured ones.

3. Merge local maps. Local maps can be merged sequentially or in parallel. First,

randomly pick a node and make its local map the core map. Then, grow the core
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map by merging maps of neighboring nodes to the core map. Each time a

neighbor’s map with the maximal number of common nodes with the core

map is selected. Eventually the core map covers the whole network. If the

merges are chosen carefully, the complexity of this step is O(k3n), where k is

the average number of neighbors and n is the number of nodes.

4. Refine the global map (optional). Using the node coordinates in the global map

as the initial solution, least-squares minimization is applied to make the dis-

tances between neighboring nodes match the measured ones. This step leads to

O(n3) cost.
5. Given sufficient anchor nodes (three or more for 2D networks, four or more for

3D networks), transform the global map to an absolute map based on the

absolute positions of anchors. For r anchors, the complexity of this step is

O(r3 þ n).

To summarize, MDS-MAP(P) computes small relative maps using local infor-

mation, instead of a global map using pairwise distances between any two nodes.

Comparing with the centralized version, MDS-MAP(P) reduces the computational

complexity and can handle the nonconvexity of network deployment, thus the

localization accuracy is improved.

4.2.2 Semidefinite Programming (SDP)

Semidefinite programming (SDP) is pioneered by Doherty [39]. In this algorithm,

geometric constraints between nodes are represented as linear matrix inequalities

(LMIs). Once all the constraints in the network are expressed in this form, the LMIs

can be combined to form a single semidefinite program, which is solved to produce

a bounding region for each node. The advantage of SDP is its elegance on concise

problem formulation, clear model representation, and elegant mathematic solution.

The mathematical expression of SDP is as follows. Suppose there are m anchors

ak ∈ R2, k ¼ 1, . . ., m, and n unknown nodes xj ∈ R2, j ¼ 1, . . ., n. For a pair of two
points in Ne, we have a Euclidean distance measure dkj between ak and xj or dij
between xi and xj; and for a pair of two points in Nl, we have a distance lower bound

rkj between ak and xj or rij between xi and xj; and for a pair of two points in Nu, we

have a distance upper bound �rkj between ak and xj or �rij between xi and xj. Then, the
localization problem is to find xjs such that

k xi � xj k2¼ d2ij; k ak � xj k2¼ d2kj; 8ði; jÞ; ðk; jÞ 2 Ne

k xi � xj k2� r2ij; k ak � xj k2� r2kj; 8ði; jÞ; ðk; jÞ 2 Nl

k xi � xj k2� �r2ij; k ak � xj k2� �r2kj; 8ði; jÞ; ðk; jÞ 2 Nu

Since these measures and bounds are typically noisy, the coordinates xjs are chosen
to minimize the sum of errors:
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min
X

i;j2Ne;i<j
k xi � xj k2 �d2ij
��� ���

þ
X

k;j2Ne
k ak � xj k2 �d2kj
��� ���

þ
X

i;j2Nl;i<j
ðk xi � xj k2 �r2ijÞ�

þ
X

k;j2Nl
ðk ak � xj k2 �r2kjÞ�

þ
X

i;j2Nu;i<j
ðk xi � xj k2 ��r2ijÞþ

þ
X

k;j2Nu
ðk ak � xj k2 ��r2kjÞþ;

where (u)� and (u)þ are defined as (u)� ¼ max{0,�u} and (u)þ ¼ max{0, u},
respectively.

Let X ¼ [x1 x2 � � � xn] be the 2 � n matrix that needs to be determined. Then

k xi � xj k2¼ eTijX
TXeij;

k ai � xj k2¼ ðai; ejÞT½I X�T½I X�ðai; ej; Þ

where eij is a n� 1 vector with 1 at the ith position,�1 at the jth position, and zeros
elsewhere; and ej is the vector of all zero except�1 at the jth position. Let Y¼ XTX.
By introducing slack variables as and bs, the softer error minimization problem can

be rewritten as

min
X

i;j2Ne;i<j
ðaþij þ a�ij Þ þ

X
k;j2Ne

ðaþkj þ a�kjÞ
þ
X

i;j2Nl;i<j
b�ij þ

X
k;j2Nl

b�kj

þ
X

i;j2Nu;i<j
bþij þ

X
k;j2Nu

bþij

s:t: eTijYeij � d2ij ¼ aþij � a�ij ; 8i; j 2 Ne; i < j;

ðak; ejÞT
IX

XTY

 !
ðak; ejÞ � d2kj ¼ aþkj � a�kj ; 8k; j 2 Ne;

eTijYeij � r2ij � �b�ij ; 8i; j 2 Nl; i < j;

ðak; ejÞT
IX

XTY

 !
ðak; ejÞ � r2kj � �b�kj ; 8k; j 2 Nl;

eTijYeij � �r2ij � bþij ; 8i; j 2 Nu; i < j;

ðak; ejÞT
IX

XTY

 !
ðak; ejÞ � �r2kj � bþkj ; 8k; j 2 Nu;

aþij ; a
�
ij ; a

þ
kj ; a

�
kj ; b

�
ij ; b

�
kj ;b

þ
ij ; b

þ
kj � 0;

Y ¼ XTX:
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Unfortunately, the above problem is not a convex optimization problem. Biswas

et al. in IPSN’04 propose to convert this problem to a semidefinite program, by

relaxing Y ¼ XTX to Y � XTX. The expression Y � XTX is equivalent to

Z :¼ I X

XT Y

 !
� 0:

Then, the problem can be written as a standard SDP problem:

min
X

i;j2Ne;i<j
ðaþij þ a�ij Þ þ

X
k;j2Ne

ðaþkj þ a�kjÞ
þ
X

i;j2Nl;i<j
b�ij þ

X
k;j2Nl

b�kj

þ
X

i;j2Nu;i<j
bþij þ

X
k;j2Nu

bþij

s:t: ð1; 0; 0ÞTZð1; 0; 0Þ ¼ 1

ð0; 1; 0ÞTZð0; 1; 0Þ ¼ 1

ð1; 1; 0ÞTZð1; 1; 0Þ ¼ 2

ð0; eijÞTZð0; eijÞ � aþij þ a�ij ¼ d2ij; 8i; j 2 Ne; i<j;

ðak; ejÞTZðak; ejÞ � aþkj þ a�kj ¼ d2kj; 8k; j 2 Ne;

ð0; eijÞTZð0; eijÞ þ b�ij � r2ij; 8i; j 2 Nl; i<j;

ðak; ejÞTZðak; ejÞ þ b�kj � r2kj; 8k; j 2 Nl;

ð0; eijÞTZð0; eijÞ � bþij � �r2ij; 8i; j 2 Nu; i<j;

ðak; ejÞTZðak; ejÞ � bþkj � �r2kj; 8k; j 2 Nu;

aþij ; a
�
ij ; a

þ
kj ; a

�
kj; b

�
ij ; b

�
kj; b

þ
ij ; b

þ
kj � 0;

Z � 0:

Solving the linear or semidefinite program centrally, the time complexity is O(k2)
for angle of arrival data, and O(k3) when radial (e.g., hop count) data are included,

where k is the number of convex constraints needed to describe a network. Thus, the

computation complexity of SDP is likely to preclude itself in practice.

4.3 Distributed Localization Approaches

4.3.1 Beacon-based Localization

4.3.1.1 Iterative Trilateration

Beacon-based localization approaches utilize the node-to-beacon distances. The

distance between an unknown node and a beacon can be estimated using a basic
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distance-vector technique [58, 59]. Such a mechanism can be viewed as a top-down

manner due to the progressive propagation of location information from beacons to

entire networks.

One variant of this approach is the indirect usage of beacon nodes. Initially an

unknown node, if possible, is located based on its neighbors by multilateration or

other positioning techniques. After being aware of its location, it becomes a

reference node to localize other unknown nodes in the subsequent process. This

step continues iteratively, gradually changing unknown nodes to known ones. The

process of iterative trilateration is illustrated in Fig. 4.1, in which squares are

beacons, soft circles are unknown nodes, and solid circles are known nodes.

The advantage of this approach is that it only involves local information

(information within neighborhood) when locating a node, leading to high efficiency

in terms of communication. However, the use of localized unknown nodes as

reference inherently introduces substantial cumulative errors, especially for the

nodes far away from beacons. Some works [60, 61] characterize the error propaga-

tion in multihop localization approaches and make efforts to control error accumu-

lation. The error control techniques will be discussed in detail in Chap. 6.

4.3.1.2 Finite Localization by Bilateration

Experimental studies show that trilateration-based algorithms require an average

node degree beyond 10 for correctly localizing most of the nodes in a network [62].

When the average degree is below 8, the iterative trilateration will fail in most

Initial stage First stage

Second stage Third stage

a b

c d

Fig. 4.1 Iterative localization. Bring a to d here (a) Initial stage; (b) first stage; (c) second stage;

(d) third stage
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cases. To be more applicable for sparse networks, sweeps [63] partially relaxes the

requirement of node dependence in iterative approaches. In contrast to the tradi-

tional “unique position computation,” sweeps presents finite localization which

locates a target node to a set of possible positions called candidate positions. Finite

localization guarantees that the ground truth position of a node is one of its

candidate positions. Further, sweeps adopts a new positioning scheme called

bilateration, which computes the candidate positions of a node by utilizing the

distance measurements of only two reference nodes. As shown in Fig. 4.2, bilatera-

tion produces two candidate positions (soft dots) for an unknown node and one of

them (the left one) is the ground-truth position. Similar to multilateration, the

finitely localized node, called swept node, can act as a reference node to localize

other unknown nodes. The only difference is that all candidate positions of the

swept node are enumerated for the location computation of the target node.

Moreover, after each bilateration, sweeps checks the consistency among the candi-

date position sets and deletes the incompatible items. Under this mechanism,

sweeps can locate a large proposition of theoretically localizable nodes in a

network. However, the worst case computation grows exponentially in terms of

the number of nodes.

The details of sweeps design are demonstrated through a typical network

topology, as shown in Fig. 4.3 a, in which solid dots denote reference nodes and

soft dotes denote unknown nodes. Clearly, traditional trilateration-based algorithms

cannot localize any of the unknown nodes. In contrast, sweeps can locate v4 that has
the distance measurements to two swept nodes v1 and v3. This bilateration generates
two candidate positions, as shown in Fig. 4.3 b1, b2. As node v4 is finitely localized,
it becomes a swept node. Then, node v5 knows the distances to two swept nodes

v1 and v4, so it can be finitely localized. Note that, all candidate positions of node v4
are enumerated to compute the candidate positions of node v5. Based on the two

Bilateration creates two possible locationsGround truth

a b

Fig. 4.2 Bilateration. Bring a and b here (a) Ground truth; (b) bilateration creates two possible

locations
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candidate positions of node v4, node v5 has four candidate positions. The depen-

dence relationship of the candidate positions is shown by arrows in Fig. 4.3. All the

candidate positions of node v5 are consistent with the distant measurements, as

shown in Fig. 4.3 c1–c4. Finally, node v6 has distance measurements to three swept

nodes v1, v2, and v5. Due to the consistency check of these distance measurements,

only one of the candidate positions of node v5 is compatible. Hence, all the

incompatible candidate positions of node v5 are pruned. Further, the related candi-

date positions (by the dependence tree) of node v4 are also pruned. Eventually, all

the nodes in this network are properly localized.

Sweeps can localize a kind of network called localizable bilateration network,

formally defined as follows. A network has a bilateration ordering with anchors

v1, v2, and v3 if its nodes can be ordered as v1, v2, . . ., vn so that v1 and v2 are

adjacent, and each vi, i > 2, is adjacent to at least two vertices vj where j < i.
A network is called a bilateration network if it has a bilateration ordering. Clearly,

the wheel network illustrated in Fig. 4.3 a is a special case of the bilateration

network.

Incompatible

Incompatible

Incompatible

Step1 Step 2 Step 3

v1

v2v3

v4

v5

v6

v1

v2v3

v4

v
1

v2v3

v4

v1

v2v3

v4

v5

v1

v2v3

v4

v5

v1

v2v3

v4

v5

v1

v2v3

v4

v5

v1

v2v3

v4

v5

v6

(b1)

(a)

(b2)

(c1)

(c2)

(c3)

(c4)

(d)

Fig. 4.3 Sweeps execution
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From the example of the wheel network, it is concluded that the number of

candidate positions can grow O(2n) in the worst case, where n is the number

of nodes in the network. Hence, one of the drawbacks of sweeps is the computational

complexity. Sweeps introduces two mechanisms to mitigate this problem. First,

sweeps adopts an immediate consistency check after each bilateration to reduce

the amount of the candidate positions. Second, sweeps reduces the growth of the

candidate position set by choosing a particular sweep ordering called shell sweeps.

Shell sweeps is a breadth-first sweep in which at each stage, the nodes having

distance measurements to at least two already swept nodes are placed earlier in

the ordering than all other nodes. Nevertheless, these mechanisms cannot reduce the

worst case computational complexity, as the computational complexity is still

O(2n) for a wheel network. Though it is nonpolynomial in the worst case, sweeps

has acceptable average execution cost in a random deployed network.

Besides the computational complexity, sweeps also suffers noisy ranging mea-

surements. When the measurements contain errors, the consistency check scheme

may prune all the candidate positions. Further, the location error in each step may

accumulate severely and decay the result in several steps. sweeps has an extended

version to handle noisy ranging measurements, while the revised version requires a

strong geometric model of a network, the unit disk graph (UDG) model, and

generates results with no guaranteed accuracy. Hence, error control is still an

open problem for sweeps.

4.3.2 Coordinate System Stitching

4.3.2.1 Local Map Stitching

Coordinate system stitching is an alternative for localization and has attracted a lot

of research efforts recently [58, 62, 64]. It works in a bottom-up manner, in which

localization is originated in a group of local nodes in relative coordinates. By

gradually merging local maps, it finally achieves entire network localization in

global coordinates, illustrated in Fig. 4.4.

Coordinate system stitching typically works as follows:

1. Split the network into small overlapping subregions. Very often each subregion

is simply a single node and its one-hop neighbors.

2. For each subregion, compute a “local map,” which is essentially an embedding

of the nodes in the subregion into a relative coordinate system.

3. Finally, merge subregions using a coordinate system registration procedure.

Coordinate system registration finds a rigid transformation that maps points in

one coordinate system to a different coordinate system. Thus, step 3 places all

the subregions into a single global coordinate system. Many algorithms do this

step suboptimally, since there is a closed-form, fast and least-squares optimal

method of registering coordinate system.
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Moore et al. [62] outline an approach that produces more robust local maps.

Rather than using three arbitrary nodes, they use “robust quadrilateral” (robust

quads) to define a local map. As shown in Fig. 4.5, a robust quad consists of four

subtriangles (△ABC, △ADC, △ABD, △BCD) that satisfy

b� sin2 ðyÞ> dmin;

where b is the length of the shortest side, y is the smallest angle, and dmin is a

predetermined parameter according to the level of measurement error. The idea is

that the points of a robust quad can be placed correctly with respect to each other

(i.e., without “flips”). Given zero mean Gaussian measurement error, Moore et al.

demonstrate that the probability of a robust quadrilateral experiencing internal flips

can be bounded by setting dmin appropriately. In effect, dmin filters out quads that

have too much positional ambiguity. The appropriate level of filtering is based on

the inaccuracy of distance measurements. Unfortunately, coordinate system stitch-

ing suffers from error propagation caused by local map stitching. Moore et al.

B
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C

D

B

E
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D

B

A

C

D

E

Fig. 4.4 Coordinate system

stitching
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B

CD
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q1 q2

q3

b1

b2

b3

Fig. 4.5 Robust quadrilateral
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calculate the probability of their algorithm constructing correct local maps and

present an error lower bound of the local map positions. Furthermore, their algo-

rithm in many cases fails to locate orphan nodes, either because they could not be

added to a local map or because their local map failed to overlap sufficiently with

neighboring maps. Moore et al. claim that this is acceptable because the orphaned

nodes are the nodes most likely to display high error. In addition, for many

applications, missing localization information for a known set of nodes is preferen-

tial to incorrect information for an unknown set.

Coordinate system stitching techniques are quite compelling. They are inher-

ently distributed, since subregion and local map formation can trivially occur in a

network and stitching is easily organized in an ad hoc manner.

4.3.2.2 Component Stitching

A more general form of coordinate system stitching is the component-based

localization [65]. A component is a group of nodes that form a rigid structure

(e.g., each node has finite candidate positions in the local coordinate system). Using

globally rigid components (e.g., each node has a unique position in the local

coordinate system) as basic units, the algorithm merges and localizes components

through utilizing intercomponent distance measurements and anchors.

As shown in Fig. 4.6. three intercomponent distance measurements constrain the

relative geometric relationship between two components A and B, both of which

are adjacent to two anchors. From the perspective of each single node, none of the

nodes has enough neighboring anchors (no less than two) to be finitely localized

immediately. Traditional local-map-based algorithms will fail to localize this

network, because the local maps (i.e., components A and B) do not contain anchors

to convert the coordinate system. From the point of view of components, however,

component A and component B can be merged into a bigger component, which is

localizable by referring to the four anchors. Finally, all nodes in the two compo-

nents are localized.

Component A Component B

Fig. 4.6 Component-based localization
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The concept of component and related terms are formally defined as follows. For

a given network, a distance graph G¼ (V, E) is constructed, where vertices denote
nodes in the network and an edge (i,j) exists if nodes i,j can measure the mutual

distance between them. Associated with each edge, a function d(i,j): E!R is used to

denote the distance value. Assume there are m anchors, labeled from 1 to m, and the
left n�m unknown nodes are labeled from mþ1 to n, where n is the total number of

nodes in the network. The ground truth position of node i is denoted as pi.
A realization of a network is a mapping from nodes to their 2D coordinates, P:
V!R2, such that P(i)¼pi for all 1� i�m and ||P(i)�P(j)|| ¼ d(i,j) for all (i,j) ∈ E,
where ||P(i)�P(j)|| denotes the Euclidean distance of P(i) and P(j). Analogously,
the concept of realization on the subgraph of G is defined, and the only difference is

that the rotations, translations, and reflections of the mapping are treated as the

same mapping when operating on a subgraph. Then, a node is localizable if and

only if its image is unique for all realizations of G. A node is finitely localizable if

and only if the cardinality of its image set is finite for all realizations of G. If a
localization algorithm can generate a candidate position set that contains all the

possible positions of a finitely localizable node, then the node is finitely localized

by the algorithm. Given a distance graph G, a component is a set of nodes that has

finite number of ways to be realized. A component is globally rigid if and only if

there is a unique realization in a plane. Components are realized through both in-

component anchors and the interconnected edges between the component and

anchors. Hence, a component is realizable as long as it can determine its physical

layout by the anchor information.

There are two versions of component-based localization algorithms: BCALL

and CALL. As a basic version, BCALL operates on globally rigid components and

unique realization of them, thus can terminate in polynomial time. BCALL has

three major operations: component generation, component mergence, and compo-

nent realization:

1. Component generation partitions the network into globally rigid components.

Component generation follows similar procedures as generating local maps. The

only difference is that a node can only join one component, such that compo-

nents do not share any common node. BCALL initially selects a triangle as a

component and generates the local coordinate system of the component accord-

ing to the initial triangle. Other nodes then join the component and record their

local coordinates through trilateration. By iterative trilateration, the newly

generated component expands as large as possible. After component generation,

each node either belongs to a component or becomes an isolated node.

2. After component generation, component mergence integrates nonrealizable

components and isolated nodes into a larger component. As components do

not share any common nodes, the mergence is performed through the

interconnected edges between the two components. BCALL requires the resul-

tant component to be globally rigid, thus there must be at least four independent

interconnected edges connecting the two components. Here, independent means

the edges guarantee the global rigidity of the result. For isolated nodes, it can be
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merged to a component by trilateration. After merging, BCALL converts the

local coordinate system of a component to that of the other one by solving

overdetermined simultaneous equations. Component mergence is an iterative

process. Some mergence can make other components or isolated nodes capable

to merge into the resultant component. Component mergence process terminates

when no such mergence can continue or the resultant component is realizable.

3. Component realization converts the local coordinate system of the realizable

component to the physical positions. BCALL requires the realization to be

unique, so the anchor information must uniquely determine the physical layout

of the target component. As shown in Fig. 4.7, there are four ways to realize a

component based on the number of in-component anchors:

(a) The component contains at least three anchors

(b) The component contains two anchors and a nonanchor node sharing an edge

with a realized node

(c) The component contains one anchor and two distinct nonanchor nodes

sharing two edges with two distinct realized nodes

(d) There are at least four independent edges connecting at least three distinct

nodes in the component with at least three distinct realized nodes

CALL design is based on the concept of finite realization. CALL relaxes the

requirements of the component mergence and realization from unique to finite

states and adopts a consistency check step to prune the incompatible states.

CALL follows similar steps as BCALL:

1. Follow the same procedure as BCALL to generate components.

2. Merge nonrealizable components and isolated nodes to generate larger compo-

nents. CALL does not require the resultant component to be globally rigid.

Instead, it only demands that nodes have finite candidate positions. Specifically,

nodes are merged to components by bilateration. Components are merged, if the

result has finite ways to be realized on a plane, thus there must be at least three

interconnected edges connecting the two components.

3. Realize the components to a finite set of physical positions. Hence, the anchor

information must finitely determine the physical layout of the target component.

As shown in Fig. 4.8, there are three ways to finitely realize a component based

on the number of in-component anchors:

a b c d

Fig. 4.7 Unique realization of components
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(a) The component contains at least two anchors

(b) The component contains one anchor and a nonanchor node sharing an edge

with a realized node

(c) There are at least three edges connecting the component with at least two

distinct realized nodes, and there are at least two vertices associated with

these edges in the component

The relaxations cause nodes to have several candidate positions. CALL inserts an

extra substep in each of the above operations to check the consistency of the

candidate positions. Each neighboring node pair checks the consistency of its

candidate position sets by enumerating their items. Two items in each of the sets

are defined as counterparts, if their distance is equal to the measured distance.

A candidate position is incompatible, if it has no counterpart in the candidate

position set of a neighboring node.

Using components can better share and integrate the anchor and ranging infor-

mation, so the component-based localization algorithms are more applicable for

sparse networks. Clearly, using fewer measurements leads the algorithm to be more

sensitive for ranging errors.

4.4 Summary

We present a comparative study on existing range-based approaches with emphasis

on beacon nodes, node density, accuracy, and cost.

4.4.1 Beacon Nodes

Beacon nodes (a.k.a. seeds or anchors) are necessary for localizing a network in the

global coordinate system. Beacon nodes have no difference from ordinary network

nodes except knowing their global locations as a priori. This knowledge can be

hardcoded or acquired through some extra hardware like a GPS receiver.

a b c

Fig. 4.8 Finite realization of components
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Beacon configuration has significant impacts on localization. Existing works

show that higher localization accuracy can be achieved if beacons are placed in a

convex hull around the network. Placing additional beacons in the center of the

network is also helpful. Thus, it is necessary for system designers to plan the beacon

layout, as well as the amount of beacons, before deploying a network.

4.4.2 Node Density

Many localization algorithms are sensitive to node density. For instance, when the

average degree is over 10, the network has a trilateration ordering with high

probability, thus to suit the requirement of iterative trilateration. When designing

or analyzing an algorithm, it is important to take the algorithm’s implicit density

assumptions into account, since high node density can sometimes be expensive and

infeasible.

4.4.3 Accuracy

Given a localization algorithm, location accuracy shows how well the computed

locations match with the physical positions of nodes. To be specific, location

accuracy is defined as the expected Euclidean distance between the location estimate

and the actual location of an unknown node, while location precision indicates the

percentage of the results satisfying the predefined accuracy requirement.

Location accuracy trades off with location precision. If we relax the accuracy

requirement, precision is increased and vice versa. Thus, we must put these two

metrics in a common framework for comparison. We can fix location precision, say

95%, and evaluate the localization algorithms based on the corresponding accuracy

performance.

Error propagation demonstrates how location accuracy varies with measurement

error. Intuitively, localization error is linear with measurement error. However, it is

not true for sequential localization algorithms, such as trilateration and bilateration.

Nodes with large location errors would contaminate the location estimates of their

neighbors. In this scenario, measurement error is no longer the only factor con-

tributing to localization error.

4.4.4 Cost

In general, the cost of a localization system includes hardware cost and algorithm

cost. Hardware cost refers to the ranging equipment. Different ranging equipments
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provide different physical measurements, as discussed in Chap. 2. Basically, the

more accurate measurements the equipments can provide, the more expensive they

are. On the other hand, algorithm cost refers to the time and power consumption of

computation and communication required by an algorithm. In general, distributed

algorithms are more efficient than centralized ones, as they only produce local

optimal solutions and exchange information locally.

After years of extensive study on this topic, many localization solutions are

presented. Table 4.1 presents an overview of typical approaches in terms of

accuracy, node density, beacon percentage, computation cost, communication

cost, and error propagation. All approaches have their own merits and drawbacks,

making them suitable for different applications. Hence, the design of a localization

algorithm should sufficiently investigate application properties, as well as algo-

rithm generality and flexibility. In present and foreseeable future study, obtaining a

Pareto improvement is a major challenge. That is, increasing the performance of

one of the metrics without degradation on others.
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Chapter 5

Range-Free Network Localization

Range-free approaches locate nodes without the knowledge of internode distance

measurements. Saving the cost of ranging hardware, they are more cost-efficient

than range-based ones. Basically, range-free schemes rely on the coarse distance

estimates between nodes. Hence, it is more challenging to obtain high localization.

5.1 Basic Hop-Based Algorithms

The basic idea of hop-based localization is to use hop-by-hop propagation of a

network to build up node-to-anchor distance estimation. Without ranging hardware,

hop counts can be used to characterize the corresponding physical distances, based

on which nodes determine their locations by trilateration. According to the way of

mapping hop count to distance, there are two types of hop-based schemes: DV-hop

and Amorphous.

5.1.1 DV-Hop

DV-hop [59] is the basic implementation of the hop-based localization designs,

which measures the internode hop counts and linearly converts them to the distance

estimates by computing average per-hop distance. DV-hop follows three steps:

1. Each node estimates the least hop counts to each anchor. This could be imple-

mented in a distributed manner by flooding a message [xi, yi, hi] on each anchors,
where [xi, yi]

T denotes the physical location of anchor i, hi is a counter to record
the hop counts to anchor i. The value of hi is 1 initially and increases by 1 after

each forward. Then, the received value of hi shows the minimum hop count

between the forwarding node and anchor i.
2. Anchors cooperatively estimate the per-hop distance. Once an anchor j gets the

hop count hi to anchor i, it reports the value of hi to anchor i. After collecting

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_5,
# Springer Science+Business Media, LLC 2011
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these values from all other anchors, anchor i (locating at [xi, yi]
T) calculates the

pre-hop distance to itself:

di ¼
P

i6¼j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
P

i 6¼j hi
:

3. Suppose an unknown node receives the flood messages from three anchors, say

anchor i, j, and k. It uses the three distance estimates (di�hi, dj�hj, and dk�hk) to
determine its location by trilateration.

5.1.2 Amorphous

It turns out that a better estimate of per-hop distance can be made if we know nlocal,
the number of neighbors per node. Suppose R is the communication range of nodes.

As shown by Kleinrock and Silvester [66], it is possible to compute a better

estimate for the distance covered by one radio hop:

dhop ¼ R 1þ e�nlocal �
Z 1

�1
e�ðnlocal=pÞ arccos t�t

ffiffiffiffiffiffiffi
1�t2
p

dt

� �
:

We have dij� hij� dhop, where dij and hij are the distance and hop count between
nodes i and j, respectively. Experimental studies [67] show that the equation above

can be quite accurate when nlocal grows greater than 5. However, when nlocal > 15,

dhop approaches R, so the equation of dhop becomes less useful. Nagpal et al. [67]

demonstrate that even better hop-count distance estimates can be computed by

averaging distances with neighbors. This benefit does not appear until nlocal � 15,

and, it can reduce hop-count error down to as little as 0.2R.

5.2 Improved Hop-Based Algorithms for Anisotropic Networks

Basic hop-based algorithms assume that the network is isotropic and uniformly

distributed, so that hop count represents real distance. Unfortunately, in practice,

networks may be anisotropic and may contain complex inner or outer boundaries,

which make the least hop counts deviating the physical distances. Let us look at the

algorithms that address the anisotropy of network deployment.

5.2.1 PDM-Based Localization in Anisotropic Networks

When a network is anisotropic, hop distance (i.e., hop count) between nodes may

not match physical distance well. Hence, it may introduce huge errors to use a fixed
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coefficient for matching hop distance to physical distance. In contrast, the match

(specifically, the coefficient) may be direction and location dependent. To address

this issue, Lim and Hou [68] propose an approach that builds a proximity-distance

map (PDM) to represent the anisotropy of a network based on the skeleton of

anchors. PDM describes the optimal linear transformations between the hop dis-

tances and the physical distances under the least-squares metric. With the help of

PDM, an unknown node is able to obtain more accurate distance translation, thus to

get a better location estimation.

Suppose there existM anchor nodes. The hop distances measured from a (anchor

or nonanchor) node to anchor nodes define its coordinate in a linear system. In

particular, the coordinate of the ith anchor in an M-dimensional Lipschitz embed-

ding space is represented by the proximity vector

pi ¼ ½ pi1; . . . ; piM�T;
where pij is the hop distance between the ith anchor to the jth anchor and pii ¼ 0.

The overall embedding space can be represented by an M�M proximity matrix

P, whose ith column is the coordinate of the ith anchor:

P ¼ ½ p1; . . . ; pM�:

Here P is a square matrix with zero diagonal entries.

Similarly, the physical distance vector and matrix are defined as

li ¼ ½li1; � � � ; liM�T and L ¼ ½l1; � � � ; lM�;

where lij is the distance of anchors i and j, which can be calculated according to the
locations of the two anchors. The physical matrix L is an M�M symmetric square

matrix with zero diagonal entries.

PDM is an optimal linear transformation T that gives a mapping from

the proximity matrix P to the physical distance matrix L. Note that T is an M�M
square matrix. Each row vector ti of T can be obtained by minimizing the following

square error:

ei ¼
XM
k¼1
ðlik � tipkÞ2 ¼ jjlTi � tiPjj2:

The least-squares solution for the row vector ti is

ti ¼ lTi P
TðPPTÞ�1:

As a result, PDM is defined as

T ¼ LPTðPPTÞ�1:
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The element tij of T represents the impact of the hop distance to the jth anchor
node on the physical distance to the ith anchor node. Note that the main diagonal tii
of T can be considered as scaling factors roughly approximating the mapping from

the hop distance to the physical distance. The physical distance from a node to an

anchor node is specified as a weighted sum of hop counts to all the anchor nodes. As

PDM retains all the hop distance characteristics to all anchor nodes in all directions,

it can precisely characterize the anisotropic relationship between proximities and

physical distances.

An unknown node s can obtain its hop distance vector ps by counting the hop

counts to all anchor nodes. It then obtains the estimate of its physical distances to all

anchor nodes by multiplying ps with PDM:

l̂s ¼ Tps:

PDM algorithm can be implemented in a distributed way as follows:

1. Every node initializes an empty anchor list, whose entry will be filled with the

location and the hop distance for anchor nodes.

2. Every anchor node broadcasts to its neighboring nodes a probing packet contain-

ing its ID, location, and the “initial” hop distance {i, xi, pi¼0}.
3. Whenever a node receives a probing packet, it calculates the new hop distance.

If the new hop distance is larger than the hop distance in the anchor list, the node

discards the probing packet. Otherwise, the node updates its anchor list and

forwards the packet to its neighboring nodes.

4. If an anchor node b receives a probing packet containing the information for other

anchor nodes, it performs step 3 as other nodes do, and updates the hop distance

vector pb. In addition, it informs the other anchor nodes of its updated pb.
5. Whenever an anchor node b receives an update packet containing the updated pb

information, it updates both its hop distance matrix P and physical distance

matrix L. After update packets from all the other anchor nodes arrive, the anchor

node b computes SVD of P and obtains T.
6. A node s obtains the hop distance vector ps from its anchor list, retrieves T from

one of the anchor nodes, calculates the physical distances to anchor nodes by

PDM, and estimates its location xs by multilateration.

The main drawback of PDM is that it requires high anchor density to properly

“sample” the anisotropy of the network. Moreover, it may also introduce high

communicational and computational costs, considering O(M) flooding messages

and O(M3) cost for SVD computation, where M is the number of anchors.

5.2.2 Rendered Path in Networks with Holes

Trilateration is widely used for location positioning. Three nodes with known

positions, often called anchors, are deployed in a network as reference points.
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If nodes are able to measure their distances to the three anchors either directly or

indirectly, they can calculate their positions by trilateration. Under the range-free

context, however, without distance measurement, only the path information can be

utilized to calculate the Euclidean distance between two nodes. The Euclidean

distance represents the real geographic distance between nodes. From path infor-

mation the nodes can only obtain the number of hops separating them which is

denoted as hop count. As observed in [59], in isotropic networks, the hop count

between two nodes can be utilized to estimate the distance between them. Thus, the

distance is determined by computing the average per-hop distance multiplied by the

hop count between the two nodes.

Such a design is not valid in anisotropic networks with holes. Following [69], in

a homogeneous network, a hole refers to an empty area enclosed by a series of

connected nodes. When a shortest path tree passes such a hole, it diverges prior to

those nodes and then meets after them. Two parameters [69] s1 and s2 are defined
to quantify the size of holes. Holes of considerable sizes (e.g., a percentage of the

network diameter) break the isotropy of the network and may block the direct path

of two nodes, curving the shortest path between them (s1 refers to the hop distance

between the neighboring pair of nodes in two branches of the shortest path tree and

their least common ancestor; s2 refers to the maximum hop distance between a

node on one branch to the other branch). For example, as illustrated in Fig. 5.1a,

when there is no hole between nodes s and t, the shortest path is close to a straight

line st, and its hop number is proportional to the Euclidean distance between s and t.
On the other hand, as shown in Fig. 5.1b, if there are holes, the shortest path is

curved to bypass the hole. The shortest paths can actually bypass multiple holes,

largely increasing the estimation error. The basic idea of rendered path (REP) is

illustrated in Fig. 5.1c. After detecting the boundaries of the holes, REP labels the

boundary nodes of different holes with different “colors.” When a shortest path

passes the holes, it is rendered with the color of the boundary nodes. A path can be

rendered by multiple colors. By passing holes, a shortest path is segmented accord-

ing to the intermediate “colorful” boundary nodes. The REP protocol further creates

“virtual holes” to augment and render the shortest path as illustrated in Fig. 5.1c. As

Fig. 5.1 (a) The shortest path between s and t is close to a straight line; (b) The shortest path

between s and t is curved by a hole in between, (c) REP renders the paths and calculates the

distance st from the constructed geometric structure
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such, REP calculates the Euclidean distance between two nodes based on the

distance and angle information along the rendered path.

Let G denote a connected region of node deployment on the plane excluding k
holes inside the region. The boundary of each hole is assumed known and marked

with a color Ci, i ¼ 1, 2, . . ., k, Ci 6¼ Cj (i 6¼ j). For any two nodes s, t∈ G, PG(s,t) is
the shortest path between them within G. Let PG

st denote the Euclidean length of

PG(s,t), and dst denote the Euclidean distance between s and t. Clearly, P
G
st � dst and

the objective of REP is to find dst according to path information.

The REP protocol renders the shortest path PG(s, t) between s and t around
intermediate holes. Every point on the boundary of a hole H is assigned with the

color of H and is said to be H-colored. If there are holes in between s and t, PG(s,t),
in order to be the shortest path, must intersect with the hole boundaries. From the

colored points (and their colors), REP knows how many different holes the path has

passed. Thus the existence of holes between two nodes can be determined from the

coloring information of the shortest rendered path connecting them. The number of

passed holes is equal to the number of different rendered colors.

If the path passes no holes, the length of the path PG
st ¼ dst and P

G
st can be directly

used to estimate dst. If the path does pass any holes, REP segments the path

according to the colored points and calculates dst from the length and angle

information. The basic idea of REP is to create “virtual holes” around the boundary

nodes on the path and augment the shortest path by forcing it to bypass those

“virtual holes.” REP obtains the necessary length and angle information by com-

paring the two shortest paths. The REP principle is shown in a basic scenario,

presented in Fig. 5.2, where the shortest path between s and t intersects with a

convex hole H at point o, which is H-colored, and the shortest path PG
st is segmented

into so and ot. Assume that |sok ¼ d1 and kotk ¼ d2. As Fig. 5.2a shows, according
to law of cosines, there exists the following mathematical relationship in the

triangle Dsot: kstk2 ¼ ksok2 þ kotk2 � 2ksokkotkcosffsot. Thus,

dst ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 � 2d1d2 cos a

q
:

To obtain the angle quantity a between so and ot, REP creates an approximately

round-shaped “virtual hole” around o with radius r, which blocks the former

shortest path s–o–t. We call the center o of this virtual hole the focal point. The
newly created virtual hole is attached with color of o. The new shortest path

between s and t is thus augmented to bypass the enlarged hole. As illustrated in

Fig. 5.2b, with the virtual hole, the new shortest path PG	
st is segmented into three

parts: uncolored line sa of length d01, o-colored arc _ab of length dab and uncolored

line bt of length d02. The arc length dab reflects the angle y, and a can be derived

from the above geometric quantities:

a ¼ 2p� dab
r
� arccos

r

d1
� arccos

r

d2
:
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Using these formulas, the Euclidean distance dst can be calculated from the

length information in the two rendered paths PG
st and PG	

st . Thus, if the shortest path

PG
st between two points s and t intersects with some hole at a single point o, dst is

computable by augmenting the shortest path and using the length information in

rendered paths. Indeed, the basic principle can be generalized to deal with many

more complicated cases, such as the convex hole, multiple holes, or even concave

holes.

Thus far, we have described the principle of the REP protocol in the continuous

domain. In a real deployed sensor network, however, sensors are distributed

discretely on the field. Also, due to the lack of global coordination, the methods

of coloring the nodes, rendering the paths, and disseminating the coloring informa-

tion in a distributed manner need to be carefully addressed. The practical REP

protocol includes five major components: boundary detection, shortest path explo-
ration, virtual hole construction, virtual shortest path construction, and distance
computing. The protocol proceeds as follows. First, the system detects and enumer-

ates the holes inside the hole boundary as well as the nodes on the boundary using

the algorithm in [69]. Then, each node explores the shortest path to the three

anchors and calculates the Euclidean distances to them by rendering and augment-

ing the shortest paths. Based on the estimated distances to the anchors, the nodes

localize themselves by triangulation. All operations are carried out in a distributed

fashion among discrete sensor nodes.

We summarize REP protocol in several aspects including protocol features,

applicability, and overhead. Under the range-free context, REP can utilize as few

as three anchors to localize nodes in anisotropic networks. REP does not presume

super anchors. Each anchor is assumed to have the same communication capability

as an ordinary node. To calculate the location, each node needs several rounds of

query flooding to find different rendered paths and accordingly calculate the

Euclidean distances to the anchors. With the help of hole combination and parallel

path construction the rounds of query flooding are limited within a constant<9 for a

single node to all three anchors. Consequently for an entire network, the communi-

cation overhead is bounded byO(n2) where n is the number of nodes in the network.
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d1
'

d2
'

o
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b

s

t

d1

d2
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t
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H

α α

θ

a b

dab

dst

Fig. 5.2 A basic scenario for REP
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The anchor nodes bear most of the computational burden. Each anchor deals with

distance queries from all the network and for each query the anchor does at most O
(L) computations to calculate the distance from the rendered path, where L is the

number of holes within the network. Thus for each anchor, the computation

overhead is O(nL).
Table 5.1 compares REP with the three state-of-the-art range-free approaches:

DV-hop [59], PDM [68], and APIT [41]. DV-hop presumes isotropic networks and

triangulates the node location with its network distances to the three anchors. Each

node floods the network for computing the hop counts so the communication cost of

DV-hop is O(n2). Each anchor accepts requests from all the network and sends out

feedback with O(n) computation cost. PDM is a space-embedding approach which

with the help of a portion of anchors can handle anisotropic networks. Relying on

each node flooding the network to estimate the hop counts to all the anchors, PDM

has O(n2) communication cost. For each anchor, the cost to compute the transfor-

mation matrix is O(n3). APIT is a typical connectivity-based approach employing

super anchors with much larger transmitting radii than ordinary nodes. The anchors

locally broadcast their locations and the undetermined nodes do not send any

requests. They only listen to the anchors and determine their location locally.

Thus the communication cost is O(n) and the computation cost is O(1).

5.2.3 Delaunay-Complex-Based Localization

A major challenge in range-free localization is flip ambiguity. That is, two triangles

sharing an edge can be embedded in two possible ways, with the two triangles on the

same side or on opposite sides of the common edge. As shown in Fig. 5.3, preserving

all internode distances, there are two possible ways to embed the network. In the

view of a whole network, a more serious case can happen as a global flip, in which a

part of the network may have two ways to be embedded reflecting a line.

To address this problem, Delaunay-complex-based algorithms are introduced

[70, 71]. The Delaunay complex is defined in the notion of abstract simplicial

complex [71]. An example of Delaunay complex is shown in Fig. 5.4c, where the

shaded area denotes four cocircular landmarks and this corresponds to a simplex of

Table 5.1 Protocol Comparison

Protocol Anchor number

Communication

cost

Computation

cost Applicable networks

DV-hop 3 O(n2) O(n) Isotropic

PDM O(n) O(n2) O(n3) Anisotropic uniform

anchors

APIT O(n) super
anchors

O(n) O(1) Anisotropic uniform

anchors

REP 3 O(n2) O(nL) Anisotropic
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dimension 3. An important characteristic of Delaunay complex is that the Delaunay

complexes do not share any common nodes except the boundary. For example, in

Fig. 5.3, if n1n2n3 and n2n3n4 are Delaunay complexes, the embedding shown in

Fig. 5.3b is not legal, because there are nodes lying in both the complexes. Hence,

the embedding of combinatorial Delaunay complex is unique with sufficient land-

marks, where landmarks are the points to generate Delaunay complex.

n1
n2

n3

n4

n1
n2

n3

n4

a b

Fig. 5.3 Flip ambiguity

p

∂R

ILFS(p)

a b

dc

Fig. 5.4 Landmark selection scheme
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5.2.3.1 Basic Delaunay-Complex-Based Algorithm

The basic Delaunay-complex-based algorithm [70] follows four steps to localize a

network. As shown in Fig. 5.4a, the algorithm first selects a set of landmarks on the

boundary of the network. Second, it constructs the Voronoi cells based on the

landmarks, each of which consists of one landmark and all the nodes closest to it, as

shown in Fig. 5.4b. Then, it constructs the Delaunay graph as the dual of the

Voronoi diagram, which has two landmarks connected by a Delaunay edge if

their corresponding Voronoi cells are adjacent (or share some common nodes), as

shown in Fig. 5.4c. Third, the complexes are embedded in a plan, forming a

skeleton of the network global layout. Finally, the nonlandmark nodes can be

located by the measurements to the nearby landmarks.

The landmark selection must present the global geometric feature of the net-

work. Lederer et al. characterize the global geometry by the medial axis and r-
simples. Consider a geometric region R with obstacles inside. The boundary ∂R
consists of the outer boundary and boundaries of inner holes. The medial axis of R is

the closure of the collection of points, with at least two closest points on the

boundary ∂R. As shown in Fig. 5.4a, the medial axis of ∂R consists of two

components, one part inside R, called the inner medial axis, and the other part

outside R, called the outer medial axis. The rest analysis is based on the inner

medial axis. The inner local feature size of a point p∈∂R, denoted as ILFS(p), is
the distance from p to the closest point on the inner medial axis. An r-sample of the

boundary ∂R is a subset of points S on ∂R such that for any point p∈∂R, the ball
centered at pwith radius r ILFS(p) has at least one sample point inside, as illustrated

in Fig. 5.4a. With r < 1 and at least three landmarks on each boundary cycle, these

landmarks capture important topological information about the network layout and

can be used to reconstruct the network layout.

The distributed implementation of the basic Delaunay-complex-based algorithm

is as follows:

1. Select landmarks

(a) Use a distributed boundary detection algorithm that identifies nodes on both

outer and inner boundaries and connects them into boundary cycles [69].

With the boundary detected, the medial axis of the sensor field is identified,

defined as the set of nodes with at least two closest boundary nodes.

(b) Compute ILFS(p), where ILFS(p) is the inner local feature size of p defined

as the hop count distance from p to its closest node on the inner medial axis.

Each node p obtains ILFS(p) by recording the minimum hop count from the

messages broadcasted by the nodes on the medial axis.

(c) Select landmarks from boundary nodes such that for any node p on the

boundary, there is a landmark within distance ILFS(p). A serial way is to use

a message traversing along the boundary cycles and select landmarks along

the way in a greedy fashion to guarantee the sampling criterion. Alterna-

tively, to achieve lower time cost, let each boundary node p wait for a

random period of time and select itself as a landmark. Then p sends a
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suppression message with TTL as ILFS(p) to adjacent boundary nodes.

A boundary node receiving this suppression message will not further select

itself as landmarks.

2. Compute Voronoi diagram and combinatorial Delaunay complex

(a) Construct Voronoi cells. All the landmarks flood the network simulta-

neously and each node records the closest landmark(s). A node p will not

forward the message if it carries a hop count larger than the closest hop

count p has seen. So the propagation of messages from a landmark l is
confined within l’s Voronoi cell.

(b) Construct Delaunay complex. A k-witness node w, defined as a border node

which is within 1-hop from interior nodes of k different Voronoi cells,

reports to the corresponding k landmarks. Such a report contains the IDs

of the landmarks involved in this dimension k�1 Delaunay simplex,

together with the distance vector from the witness node w to each of the k
landmarks.

3. Embed Delaunay complex

(a) Initialize a coordinate system. Embed one simplex S1 arbitrarily.
(b) Embed other Delaunay complexes. For a neighboring simplex S2, let l1 and

l2 be the landmarks they share in common. For each landmark li in S2 not yet
embedded, compute the two points that are with distance d(l1; li) from l1 and
d(l2; li) from l2, where d( ; ) is the hop-count distance between landmarks,

estimated in the previous section. Among the two possible locations we take

the one such that the orientation of points {l1, l2, li} is different from the

orientation of {l1, l2, lr}, where lr is any landmark of S1, other than l1 and l2.
Thus li and lr lie on opposite sides of edge l1l2.

4. Network localization

(a) Since the locations of the landmarks are known, each nonlandmark node just

runs a trilateration algorithm to find its location by using the hop count

estimation to the landmarks.

5.2.3.2 Incremental Landmark Selection Scheme

A drawback of the basic Delaunay-complex-based algorithm is the requirement of

boundary detection. Boundary detection leads to high computational and commu-

nicational costs in a large-scale network, and may be infeasible in sparse networks.

To address this issue, Wang et al. propose an incremental landmark selection

scheme that does not rely on the knowledge of boundaries [71].

The main idea is to use the union of Voronoi balls to approximate the region R.
Voronoi ball is formally defined as follow. A point is called a Voronoi vertex if it has

equal distance to at least three landmarks. The Voronoi vertices inside R are called the

inner Voronoi vertices. A ballBr(p) centered at an inner Voronoi vertex pwith radius r
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equivalent to the distance from p to the closest landmarks is called a Voronoi ball. As

shown in Fig. 5.4d, the union of the Voronoi balls approximately covers the whole

network. The uniqueness of embedding and good coverage of the induced Delaunay

complex is guaranteed by the following local conditions of landmark selection:

1. Local Voronoi edge connectivity. The Voronoi edges for each landmark u form a

connected set.

2. Local Voronoi ball coverage. Each node x inside a Voronoi cell V(u) is d-
covered by a Voronoi ball Br(p), where p is a Voronoi vertex with landmark u.
The Delaunay complex DC(L) d-covers R if every point x∈R will be within

distance (1þd)r from the center p of a Voronoi ball Br(p), where r is the radius of
this Voronoi ball.

By the two conditions, the selected landmarks always locate at the boundary of the

network, hence this landmark selection scheme avoids boundary detection.

The distributed implementation of the landmark selection algorithm is as

follows:

1. Two initial landmarks are selected on the boundary. In order to guarantee that

these two starting landmarks are on the boundary, a message is flooded by a

random node r to find the farthest node p from r, and p must be on the network

boundary. Then, another message is flooded by p to find the farthest node q from
p. Node q will be on the boundary as well. Nodes p and q are two initial

landmarks.

2. Compute Voronoi diagram. Each landmark learns of its closest landmark(s) and

all the nodes with the same closest landmark are naturally classified to be in the

same Voronoi cell. Nodes with more than one closest landmarks lie on a Voronoi

edge or vertex. Voronoi vertex is a node with equal distance to at least three

landmarks.

3. Select more landmarks incrementally. With the Voronoi diagram from the initial

two landmarks, more landmarks are selected incrementally. For each landmark u
and its Voronoi cell V(u), do the following checks:

(a) If the Voronoi edges of u are not connected (this can be checked by having

each connected component of the union of u’s Voronoi edges sending a

message to u), choose among all nodes that are endpoints of Voronoi edges

lying on the network boundary and select the one furthest from u as a new

landmark.

(b) If the Voronoi edges of u are connected, check each point p in Voronoi cell

V(u) and any Voronoi vertex v associated with u. Point p is selected as a new
landmark if p is furthest away from any relaxed Voronoi ball B(1þd)r(v)
among all points that are not yet d-covered by Voronoi balls of u. Here r is
the hop-count distance between u and v.

Delaunay-complex-based algorithms can properly reconstruct the global geo-

metry of the network by purely connectivity information. However, the compu-

tational and communicational cost of this design depends on the amount of
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landmarks, i.e., the complexity of the network layout, which is not stable

for variously configured networks.

5.3 Proximity-Based Algorithms

RSS is closely related to the proximity of neighboring nodes. However, directly

using RSS for physical distance estimation is unacceptable in many scenarios

because of unknown radio path loss factors, multipath effects, hardware discrepan-

cies, antenna orientation, etc. Thus, a number of localization approaches try to

explore the closeness information according to RSS measurements instead of the

ranging information.

5.3.1 Point-in-Triangulation Test

Approximate point-in-triangulation test (APIT) is an area-based localization algo-

rithm leveraging the underlying proximity estimation of RSS [41]. APIT algorithm

follows three main steps. First, APIT estimates the possible area for a target node by

testing whether the node is inside the triangles formed by three nearby anchors.

Second, APIT aggregates the results of the area estimation by intersecting all

possible areas. Third, APIT takes the center of the intersection as estimated position

of the target node.

The basic block for APIT is called the point-in-triangulation test (PIT). PIT is

based on the following theorem: given a point M and a triangle DABC, if there
exists a direction such that a point adjacent toM is further/closer to points A, B, and
C simultaneously, then M is outside of DABC; otherwise, M is inside DABC, as
illustrated in Fig. 5.5. In APIT, an unknown node chooses three anchors from all

audible anchors and tests whether it is inside the triangle formed by connecting

these three anchors. As the target node cannot move to perform the ideal PIT test,

APIT adopts an approximation in the discrete domain based on the assumption of

moderate network density (with connectivity above 6). That is, if no neighbor of a

target node is further from/closer to all three anchors A, B, and C simultaneously,M
is assumed to be inside triangle DABC; otherwise, M is assumed to reside outside

this triangle. The way to compare the distances is based on the RSS of each node on

anchors. APIT assumes that the received signal strength is monotonically decreas-

ing in an environment without obstacles in a certain propagation direction. Hence,

further nodes introduce lower RSS on anchors.

APITs aggregate the result of PITs through a grid array representing the

maximum area in which the target node will likely reside. For each APIT inside

decision (a decision where the PIT test determines the node is inside a particular

region), the values of the grid regions over which the corresponding triangle

resides are incremented. For an outside decision, the grid area is similarly
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decremented. Finally, the location of the target node is estimated as the center

of maximum overlapping area (i.e., the grids with maximum value), as illustrated

in Fig. 5.6.

PIT test only requires the monotonicity of the RSS, which is more practical and

realistic in practice. Hence, APIT can generate relatively stable result based on the

inconstant RSS. However, the estimated area size of APIT is determined by the

density of triangles. As a result, APIT requires large proportion of anchors to

achieve high accuracy.

5.3.2 Perpendicular Intersection

Errors are often inevitable and unpredictable for RSS-based ranging techniques.

As an early attempt to address this issue, perpendicular intersection (PI)-based

localization [72] uses a mobile beacon to explore the mapping between RSS and

distance, as described in Fig. 5.7. The mobile beacon continuously broadcasts

signals to the rest static nodes and moves from 10 m away from O to 20, 30, 40,

and 50 m. The rest nodes are placed on the line perpendicular to the trajectory OA.
All the measured RSS values are shown in Fig. 5.8 corresponding to the node

deployment in Fig. 5.7. The results reveal that the closer a node to the signal sender

(node A), the larger RSSI value it perceives. Based on such observation, PI utilizes

the geometric relationship of perpendicular intersection and computes node posi-

tions by contrasting RSS values measured at each static node.

M

A

B C

M

A

B C

Fig. 5.5 Point-in-triangulation test

Fig. 5.6 Aggregation of the

PIT results
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The basic scheme of PI is illustrated using Fig. 5.9. When the mobile beacon

moves along a straight line, the largest RSS value received by a sensor node N
often, if not always, corresponds to the point on the line that is closest to the node.

Theoretically, this point should be the projection of the node on the line. When the

mobile beacon moves along two different lines, e.g., P1P2 and P2P3, there will be

two different projections of the node on the trajectory, i.e., A and B. Thus node N
can be located as the intersection point of two perpendiculars (AN and BN) that
cross the mobile beacon’s trajectory over the two projections, respectively.

The coordinates of N are calculated using the following equation:

Fig. 5.7 Deployment sketch of the observational experiment

Fig. 5.8 The observed RSSI values
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In order to minimize the localization latency and energy cost, the optimal

movement trajectory for the mobile beacon is considered, as shown in Fig. 5.10.

It consists of multiple equilateral triangles with the lengths of their sides all equal

to R, where R is the transmission radius of the mobile beacon.

To evaluate the performance, PI is implemented in a prototype system of 100

TelosB sensors and evaluated in various environments, including library hall,

laboratory, racket court, parking lots, and sea surface. The experimental results

demonstrate that PI, as a range free solution, achieves lower estimation errors and

more stable precisions.

5.4 Relative Distance Estimation

Regulated signature distance (RSD) [73] is designed to measure the proximity by

RSS without the knowledge of radio attenuation model. RSD is based on the

following observation: in outdoor open-air scenarios, the radio signal strength

weakens approximately monotonically with the physical distance, especially from

the viewpoint of a single node. They conduct a real-world experiment to testify this

Fig. 5.9 The basic scheme of PI

70 5 Range-Free Network Localization



assumption, and the result shows that this proposition holds for about 88% cases in

average. RSD computation follows three steps: (1) neighborhood ordering by RSS;

(2) calculating signature distance (SD); (3) SD regulation.

Given the RSS sensing results for neighboring nodes, a node can obtain a

neighborhood ordering with two steps:

1. Sorting its 1-hop neighbors according to their signal strength by decreasing

order

2. Adding itself as the first element in the sorted node list

Figure 5.11 shows the result of the ordering of a network. The ordering is defined as

a signature of the node.

The SD of two nodes is calculated by the flips of their signatures. Given two

signatures Si and Sj, a flip of the signature pair is that the ordering of nodes um and un
in Si gets reversed in Sj. For example, the ordered node pair {1,6} in S2 ¼ (2,1,6,3)

gets reversed to {6,1} in S5 ¼ (5,4,6,1). There are three types of flips: explicit flip,

implicit flip, and possible flip. If node um and un appear in both Si and Sj and get

reversed order, it is an explicit flip, e.g., node pair {1,6} in S2 and S5. Implicit flip is

related to the node that does not exist in one of the signatures, for example node 2 in

S2 and S5. As this implies that node 2 and node 5 cannot communicate with each

other, node 2 is further than all nodes in S5 in the view of proximity. Hence, for each

signature, there implicitly exists a wildcard, denoted by□, in the end of the list that

matches any node not in the signature. An implicit flip is a flip by using an implicit

wildcard in a signature, e.g., node pair {2,6} in S2 ¼ (2,1,6,3,□) and

S5 ¼ (5,4,6,1,□). Possible flip is related to a pair of nodes that do not exist in

one of the signatures, for example node pair {2,3} in S2 and S5. As the orders (2,3)

Fig. 5.10 A sensor network and the optimal trajectory of the mobile beacon
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and (3,2) are both legal for matching the wildcards, this gives a possible node-pair

flip with 50% probability. In a word, the signature distance SD(Si,Sj) is equal to the
summation of the number of explicit flips Fe(Si,Sj), implicit flips Fi(Si,Sj), and
possible flips Fp(Si,Sj) times 0.5 (50% probability of flip for possible node pairs),

namely, SD(Si,Sj) ¼ Fe(Si,Sj)þFi(Si,Sj)þFp(Si,Sj)�0.5.
The number of flips between nodes is related to the mutual physical distance.

Formally, a node-pair flip (um, un))(un, um) from Si to Sj indicates that the line

segment L(ui,uj) passes the perpendicular bisector line B(um, un). As illustrated in

Fig. 5.12, the ordered node pair (um, un) in Simeans that from node i’s point of view,
node um is closer than node un. In other words, if we divide the plane with B(um, un),
the different ordering of (um, un) in Si and Sj indicates that node Si and node Sj are
located on the different side of B(um, un). Based on the definition of signature

distance, SD(Si,Sj) evaluates the difference between two signatures Si and Sj by
counting the total number of node-pair flips. Therefore, SD(Si,Sj) is equivalent to
the number of bisector lines we need to pass if going from neighboring node ui to uj
along the line segment L(ui,uj).

Spatially nonuniform bisector line density could affect the effectiveness of SD as

a relative distance. The problem comes from two aspects: (1) local node placement

S2= (2,1,6,3,  ) S3= (3,2,1,  )
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explicit flip of {1,3} non-flip of {1,2} implicit flip of {3,6}
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Fig. 5.12 Physical meaning of flips: (a) explicit flip of {1,3}; (b) nonflip of {1,2}; and (c) implicit

flip of {3,6}
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Node 1  S1: 1 6 2 4 5 3
Node 2  S2: 2 1 6 3
Node 3  S3: 3 2 1
Node 4  S4: 4 5 1 6
Node 5  S5: 5 4 6 1
Node 6  S6: 6 1 5 2 4

Fig. 5.11 Neighborhood

ordering
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and (2) network-wide neighborhood size. Hence, the original SD is regulated by the

density and neighborhood size, given by

RSDðui; ujÞ ¼ SDðSi; SjÞ
ffiffiffiffi
K
p

KðK � 1Þ=2 ;

where K¼kSi\Sjk is the total number of nodes in the neighborhood of node ui and
uj combined. In this equation, K(K� 1)/2 calculates the number of local bisector

lines, used to normalize SD(Si,Sj) with the local bisector density;
ffiffiffiffi
K
p

estimates the

diameter of this neighborhood, which puts the factor of neighborhood size into

consideration.

The design of RSD can be implemented in a supporting layer that is transparent

to the localization algorithms. As illustrated in Fig. 5.13, RSD is used to estimate

the distance between two nodes instead of the shortest-path hop count. Specially,

the accumulated RSD between two nodes is defined as

– For 1-hop neighboring nodes ui and uj , accumulated RSD equals RSD(ui,uj)
– For nonneighboring nodes ui and uj, accumulated RSD is calculated as the

summation of the RSD values of neighboring nodes along a path between ui
and uj

RSD obtains higher accuracy than hop-based measurement without the calibration

of model or environment profiling. However, this design relies on assumption that

the monotonicity of RSS holds over the whole network, which may not be always

practical in complex environments.

5.5 Summary

Table 5.2 provides an overview of the range-free localization approaches in terms

of accuracy, node density, beacon percentage, computation cost, communication

cost, and error propagation. All approaches have their own advantages and require-

ments, making them suitable for different applications.

Localization Algorithm

Relative Distance Estimation Layer

PHY:Neighborhood Sensing 

Hop-Based RSD

Hop Counts
Accumulated 

RSD

Fig. 5.13 RSD embedding
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Table 5.2 Comparative study of localization algorithms

Localization algorithm

Basic hop-based algorithms Accuracy

Node

density

Beacon

amount

Cost
Error

propagationComp. Comm.

Low Low Low Low Low Low

Anisotropy-

specialized

algorithms

PDM Higha Median Median High High Low

REP High Median Low Low High Low

Delaunay-

complex

Median Median Low Low High Median

Proximity-based

algorithms

APIT Median High High High Low Low

PI Median Low Low Low Low Low

RSD High High Low Median Median Low
aDepends on the implementation
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Chapter 6

Error Control

Many Localization algorithms are range based and adopt distance ranging

techniques, in which measuring errors are inevitable. Generally speaking, errors

fall into two categories: extrinsic and intrinsic. The extrinsic error is attributed to

the physical effects on the measurement channel, such as the presence of obstacles,

multipath and shadowing effects, and the variability of the signal propagation

speed, due to changes in the surrounding environment. On the other hand, the

intrinsic error is caused by limitations of hardware and software. While extrinsic

error is more unpredictable and challenging to handle in realistic deployments, the

intrinsic one can also cause many complications when using multihop measure-

ment information to estimate node location. Results from field experiments

demonstrate that even relatively small measurement errors can significantly

amplify the error in location estimates [62]; thus, for high-accuracy localization

algorithms, error control is essential.

6.1 Measurement Errors

6.1.1 Errors in Distance Measurements

Table 6.1 lists the typical measuring (intrinsic) error of a range of nowadays ranging

techniques: TDoA, RSS in AHLoS [31], ultra-wideband system [74], RF time-

of-flight (ToF) ranging systems [75], and elapsed time between the two time of

arrival (EToA) in BeepBeep [34]. In general, the accuracy of RF-based ranging

techniques, e.g., RSS, UWB, and RF ToF, can achieve the meter-level accuracy in a

range of tens of meters. In contrast, ToA-based methods have more accurate results

in the order of centimeters but require extra hardware and energy consumption.

On the other hand, extrinsic errors are caused by environmental factors or

unexpected hardware malfunction, leaving difficulties on characterizing them.

We will review the state-of-the-art works on controlling the intrinsic and extrinsic

errors in the following sections of location refinement and outlier-resistant

localization, respectively.

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_6,
# Springer Science+Business Media, LLC 2011
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6.1.2 Negative Impact of Noisy Ranging Results

Errors in distance ranging make localization more challenging in the following four

aspects [76]:

1. Uncertainty. Figure 6.1 illustrates an example of trilateration under noisy

ranging measurements. Trilateration often meets the situation that the three

circles do not intersect at a common point. In other words, there does not exist

any position satisfying all distance constraints.

2. Nonconsistency. In many cases, one node has many reference neighbors. Any

subgroup of them (on less than three) can locate this node by multilateration. The

computed results, however, is varying if different groups of references are chosen,

resulting in nonconsistency. Thus, when alterative references are available, it is a

problem to determine which combination of references provides the best result.

3. Ambiguity. The existence of flip and flex [62, 77] may lead to large localization

errors. Although localizability theory presents methods of detecting possible flip

and flex ambiguities, these methods do not work when distance measurements

are noisy.

Fig. 6.1 Trilateration

under noisy ranging

measurements

Table 6.1 Measurement

accuracy of different ranging

techniques
Technology System

Measurement

accuracy Range

TDoA AHLoS 2 cm 3-10 m

RSS AHLoS 2-4 m 30-100 m

UWB PAL UWB 1.5 m N/A

RF ToF RF ToF ranging

system

1-3 m 100 m

EToA BeepBeep 1-2 cm 10 m

76 6 Error Control



4. Error propagation. The results of a multihop localization process are based on

a series of single hop multilaterations in an iterative manner [31]. In such

a process, errors, coming from each step of multilateration, propagate and

accumulate [60, 61].

6.2 Error Characteristics

Localization error is a function of a wide range of network configuration parameters,

including the numbers of beacons and to-be-localized nodes, node geometry, network

connectivity, etc., which constitute a complicated system. Understanding the error

characteristics is an essential step toward controlling error. The Cramer Rao lower

bound (CRLB) provides a means for computing a lower bound on the covariance of

any unbiased location estimate that uses RSS, TdoA, and other ranging techniques.

In addition, CRLB can serve as a benchmark for a particular localization algorithm.

If the bound is closely achieved, there is little gain to continue improving the algo-

rithm’s accuracy. Furthermore, the dependence ofCRLBon network parameters helps

to understand the error characteristics of network localization.

6.2.1 What is CRLB

The Cramer Rao Lower Bound (CRLB) is a classic result from statistics that gives a

lower bound on the error covariance for an unbiased estimate of parameter [78]. This

bound provides a useful guideline to evaluate various estimators. One important and

surprising advantage of CRLB is that we can calculate the lower bound without even

considering any particular estimation method. The only thing needed is the statistical

model of the randomobservations, i.e., f ðXjyÞ, whereX is the randomobservation and

y is the parameter to be estimated. Any unbiased estimator ŷ must satisfy

CovðŷÞ � f�E½ryðry ln f ðXjyÞÞT�g�1; (6.1)

where CovðŷÞ is the error covariance of the estimator, E½�� indicates expected value,
and ry is the gradient operator with respect to y.

The CRLB is limited to unbiased estimators, which provides estimates that are

equal to the ground truth if averaged over enough realizations. In some cases,

however, a biased estimation approach can produce both a variance and a mean-

squared error that are below the CRLB.

6.2.2 CRLB for Multihop Localization

In network localization, the parameter vector y of interest consists of the coordinates
of nodes to be localized, given by y ¼ ½x1; y1; x2; y2; xL; yL�T, where L is the number

6.2 Error Characteristics 77



of nodes to be localized. The observation vector X is formed by stacking the distance

measurements d̂ij. LetM denote the size of X. We assume the distance measurement

are Gaussian [62, 79], so the pdf of X is vector Gaussian. According to (6.1), we find

that CRLB ¼ fð1=s2Þ½G0ðyÞ�T½G0ðyÞ�g�1, where s2 is the variance of each distance

measurement error and G0ðyÞ is the M � 2L matrix whose mnth element is

G0ðyÞmn ¼

xi � xj
dij

; ifyn ¼ xi;

xj � xi
dij

; ifyn ¼ xj;

yi � yj
dij

; ifyn ¼ yi;

yj � yi
dij

; ifyn ¼ yj;

0; otherwise:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(6.2)

The above result on CRLB is with the assumption that the location information

of beacons is exact. When beacon nodes have location uncertainty, we can also

characterize localization accuracy using a covariance bound that is similar to

CRLB. Both these two bounds are tight in the sense that localization algorithms

achieve these bounds for highly accurate measurements. In addition, according to

(6.2), CRLB can be computed analytically and efficiently and avoid the need for

expensive Monte Carlo simulations. The computational efficiency of CRLB

facilitates to study localization performance of large-scale networks.

6.2.3 CRLB for One-Hop Localization

One-hop multilateration is the source of the location error that could be amplified by

the iterative fashion of network localization. CRLB formultilateration exactly demon-

strates how distance measurement errors and node geometry affect location accuracy.

Consider the one-hop localization problem: there arem reference nodes v1, v2, . . .,
vm and one node v0 to be localized. From (6.1) and (6.2), we obtain

s20 ¼ s2m
Xm�1
i¼1

Xm
j>i

sin2 aij

" #�1
; (6.3)

where s20 is the variance of the estimate location of v0, aij is the angle between each
pair of reference nodes (i, j). According to Eq. (6.3), the uncertainty of location

estimate consists of two parts: the ranging error (s20) and the geometric relationship

of references and the to-be-localized node (aij). Eliminating the impact of ranging

errors, the error amplification effect caused by the node geometry has been demon-

strated as the geographic dilution of precision (GDoP), which is defined as s0=s.
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To gain more insights of GDoP, we consider a simplified case of multilateration,

where the to-be-localized node v0 is put at the center of a circle andm ¼ 3 reference

nodes v1, v2, v3 lie on the circumference of that circle, setting all references the same

distance to v0. Fixing v1 at b1 ¼ 0, according to the definition of GDoP, it becomes

a function of the locations of v2 and v3, denoted by b2; b3 2 ½0; 2p�, respectively.
We plot the GDoP in Fig. 6.2 and conclude that different geometric forms of

multilateration provide different levels of localization accuracy. In particular, in

this circular trilateration, the highest location accuracy would be achieved if

reference nodes are evenly separated, namely, b1 ¼ 0; b2 ¼ 2
3
p and b3 ¼ 4

3
p:

6.3 Localization

AmbiguitiesIn the literature of graph realization problem, graph rigidity theory

distinguishes between flexible and rigid graphs. Flexible graphs can be continuously
deformed to produce an infinite number of different realizations preserving distance

constraints, while rigid graphs have a finite number of discrete realizations. For rigid

graphs, however, two types of discontinuous ambiguities exist, preventing a reali-

zation from being unique [62, 77]:

l Flip. Figure 6.3 shows an example of flip, where the two nodes in the middle

create a mirror through which the position of v can be reflected without any

change of inter-node distance.
l Flex. Discontinuous flex ambiguities occur when the removal of one edge allows

the graph to be continuously deformed to a different realization and the removed

edge can be reinserted with the same length. An example of flex ambiguity is

illustrated in Fig. 6.4.

0.5π

π

1.5π

b
1
=0

b2

b3

v0
v1

v2

v3

a b

Fig. 6.2 The impact of node geometry on the accuracy multilateration
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Graph rigidity theory [77] suggests ways of determining whether flip or flex

ambiguities exist in a graph by checking global rigidity. However, this kind of

criterion fails when distance measurements are noisy. Even when the underlying

graph is globally rigid in the graph theoretic sense, realizations of the graph rarely

satisfy the distance constraints exactly; furthermore, alterative realizations can exist

and satisfy the constraints better than the correct one (the ground truth). An example

of trilateration, which is a globally rigid structure, is illustrated in Fig. 6.5, where

internode distance measurements are generated from a Gaussian distribution with a

mean of the true distance and standard deviation s ¼ 0:5. Figure 6.5a is the ground
truth realization with error metric serr ¼ 1:06 which is defined as the average

Fig. 6.4 An example of flex ambiguity

Fig. 6.3 An example of flip ambiguity

 

Groundtruth with σerr = 1.06 Least squares realization with σerr = 0.56

a b

Fig. 6.5 An example of flip due to noisy distance measurements, where black boxes denote

beacon nodes, and the black circle is the to-be-localized node
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difference between the computed distances and the measured distances. Figure 6.5b

is the least-squares realization which actually localizes the node at its mirror

location with respect to the three beacon nodes, but with a much better error metric

serr ¼ 0:56.
Compared to flex ambiguities, flip ambiguities are more likely to occur in

practical localization procedures and have attracted a lot of research efforts.

In this section, we focus on the strategies of flip avoidance.

Moore et al. [62] outline certain criteria to select subgraphs to be used in

localization against flip ambiguities due to noisy distance measurements. Rather

than arbitrary quadrilaterals, they use “robust quadrilaterals” (robust quads) to

localize nodes. As shown in Fig. 6.6, a robust quad consists of four subtriangles

(DABC, DADC, DABD and DBCD) that satisfy

b sin2 ðyÞ> dmin (6.4)

where b is the length of the shortest side, y is the smallest angle, and dmin is a

predetermined constant according to the average measurement error. The idea is

that the vertices of a quad can be placed correctly with respect to each other,

i.e., without flip ambiguity. Moore et al. demonstrate that the probability of a robust

quadrilateral experiencing internal flips given zero mean Gaussian measurement

error can be bounded by setting dmin appropriately. In effect, dmin filters out quads

that have too many positional ambiguities. The approximate level of filtering is

based on the distance measurements. For instance, let dmin ¼ 3s, then for Gaussian
noise, we can bound the probability of flip for a given robust quadrilateral to be less

than 1%, which poses minimal threat to the stability of the localization algorithm.

Furthermore, these robustness conditions have a tendency to orphan nodes, either

because they could not be localized by a robust quad or because their local map fail

to overlap sufficiently with the global map. This tendency is acceptable because the

orphaned nodes are likely to display large error. The drawback of this strategy is

that under conditions of sparse networks or high measurement noisy, the algorithm

may be unable to localize a useful number of nodes. Suggested in [27], there are

other criteria that can better characterize the robustness of a given subnetwork

against noisy ranging measurements.

A

B

CD

A

B

CD

A

B

CD
θ1

θ2

θ 3

b1

b2

b3

Fig. 6.6 Robust quadrilateral
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Kannan et al. [80] propose another formal geometric analysis of flip ambiguity

similar to robust quads [62]. Flip ambiguities are classified into two categories:

substantial flip ambiguity and negligible flip ambiguity, based on the distance Dd
between the two possible positions of the to-be-localized node. A flip ambiguity is

substantial if Dd � dS, some given bound. Otherwise, it is a negligible flip

ambiguity. Instead of filtering out possible flip ambiguities as suggested in [62],

they consider the identification of the substantial flip ambiguities only, because the

location error introduced by negligible flip ambiguities is comparable to the uncer-

tainty demonstrated by GDoP discussed previously. This strategy enables more

nodes to be localized compared to robust quads. For a quadrilateral ABCD with

known node positions A and B, Kannan et al. outline an algorithm to determine the

region for the position of D such that node C can be uniquely localized using

the measurements of the distances |AC|, |BC|, and |DC|.

6.4 Location Refinement

Since localization is often conducted in a distributed and iterative manner, error

propagation is considered as a serious problem, in which nodes with inaccurate

location estimates contaminate the localization process based on them. Existing

studies [76, 79, 81] have demonstrated that location refinement is an effective

technique to tackle this issue.

The basic location refinement requires nodes update their locations in a number

of rounds. At the beginning of each round a node broadcasts its location estimate,

receives the location information from its neighbors, and computes an LS-based

multilateration solution to estimate its new location. In general, the constraints

imposed by the distance to the neighbors will force the new location toward the

ground truth location of the node. After a specified number of iterations or when

the location update becomes small, the refinement stops and reports the final

localization result.

The basic refinement algorithm is fully distributed, easy to implement, and

efficient in communication and computation. An essential drawback of the basic

refinement algorithm is that it is inherently unclear under what conditions the

iteration would converge and how accurate the final solution would be, because

in each round a node will update its location unconditionally, and there is no

guarantee to make the new location better than the old one. We often call this

basic refinement algorithm refinement without error control. In contrast, in this

section we discuss refinement with error control, in which a node updates its

location only when the new location is better than the old one. For simplicity, in

the rest of the section, without special statements, when referring to location

refinement, we mean refinement with error control.
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6.4.1 A Framework of Location Refinement

To deal with error propagation, a number of location refinement algorithms have

been proposed. In general, they are composed of three major components [79]:

1. Node registry. Each node maintains a registry that contains the node location

estimate and the corresponding estimate confidence (uncertainty).

2. Reference selection. When redundant references are available, based on an

algorithm-specified strategy, each node selects the reference combination

achieving the highest estimate confidence (lowest uncertainty) to localize itself.

3. Registry update. In each round, if higher estimate confidence (lower uncer-

tainty) is achieved, a node updates its registry and broadcasts this information to

its neighbors.

Algorithm 6.1 outlines the framework of location refinement, in which how to

select appropriate reference combinations is the key step. Different strategies of

addressing this issue lead to different location refinement algorithms.

6.4.2 Metrics for Location Refinement

Although GDoP characterizes the effects of node geometry on location estimate, it

cannot be directly applied to the localization procedure due to the need of the

ground truth location of each node. This is a challenging problem and has attracted

a lot of research efforts.

Savarese et al. [81] propose a method that gives a confidence value to each node

and weights one-hop multilateration results based on such confidence values.

The estimate confidence is defined as follows. Beacons immediately start off with

confidence 1; to-be-localized nodes begin with a low confidence (0.1) and raise

their confidences at subsequent refinement iterations. In each round, a node chooses

those reference nodes that will raise its confidence to localize itself, and sets its

Algorithm 6.1 A framework of location refinement

1: Each node holds the tuple (p, e), where p is the node location estimate, e is the corresponding

estimate confidence (uncertainty).

2: Initialization step (optional):

Each node computes an initialized location estimate.

3: In each round, nodes update their registries.

do

for all to-be-localized node t do

examine local neighborhood N(t)

select the best reference combination and compute the estimate location p̂t and confidence êt
decide whether to update the registry of t with the new tuple

while the termination condition is not met.
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confidence to the average of reference confidences after a successful multilatera-

tion. Nodes close to beacons will raise their confidence at the first iteration, raising

in turn the confidences of node two hops away from beacons in the next iteration,

etc. This strategy is based on the intuition that the estimated locations of nodes close

to beacons are more reliable but puts little emphasis on node geometry.

Besides introducing the estimate confidence, Savarese et al. also consider the

issue of ill-connected nodes, e.g., a cluster of n nodes with no beacons and

connected to the main network by a single link, which are inherently hard or even

impossible to locate. To detect non-ill-connected nodes, they adopt a heuristic

criterion: a non-ill-connected node must have three edge disjoint paths to three

distinct beacons. None of ill-connected nodes participate in the location refinement,

which would make the algorithm convergence much faster.

By analyzing the effects of ranging errors and reference location errors on

the estimated locations, Liu et al. [79] design a location refinement scheme with

error management. Each node maintains information (p, e), where p is the estimated

location, and e is the corresponding estimate error, a metric reflecting the level

of uncertainty. At the beginning, each beacon is initialized with a registry

(beacon_loc, 0), and the to-be-localized nodes are initialized as (unknown_loc,
1). To handle errors, a robust LS (RLS) solution is adopted instead of the

traditional LS solution ðATAÞ�1ATb (discussed in Section 3.1) that gives

x̂t ¼ argmin
x
jAx� bj2

Let DA and Db denote the perturbations of A and b, respectively. The RLS

solution aims at

x̂t ¼ argmin
x
jðAþ DAÞx� ðbþ DbÞj2

With the assumption that DA and Db are zero mean, the cost to minimize is

e ¼ EjðAx� bÞ þ ð�DbÞj2
¼ ðxTATAx� 2xTATbþ bTbÞ þ ðxTE½DATDA�x� 2xTE½DAT � þ E½DbTDb�Þ
¼ xTðATAþ E½DAT �Þx� 2xT ½ATbþ E½DATDb�� þ ðbTbþ E½DbTDb�Þ

Accordingly, the RLS solution is given by

x̂t ¼ ðATAþ CAÞ�1½ATbþ rAb�

where CA ¼ E½DAT � DA� is the covariance matrix of perturbation of DA,
corresponding to the uncertainties of reference locations, and rAb ¼ E½DATDb� is
the correlation between DA and Db. If DA and Db are uncorrelated, the value of this
term is 0. The analysis from [79] suggest that rAb is often negligible compared to the

term ATb. Thus, the RLS solution becomes
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x̂t ¼ ðATAþ CAÞ�1ATb: (6.5)

Compared to the LS solution, the RLS solution uses the error statistics CA as

regularization, which would improve stability significantly when A is nearly

singular or ill-conditioned. Based on the RLS solution, the location estimate error

caused by noisy distance measurements can be expressed by

EjeDbj2 ¼ EjðATAþ CAÞ�1ATDbj2

¼ E½DbTAðATAþ CAÞ�TðATAþ CAÞ�1ATDb�
¼ trace½AðATAþ CAÞ�TðATAþ CAÞ�1ATCovðDbÞ�

Similarly, the error due to reference location uncertainty is

EjeDaj2 ¼ EjðATAþ CAÞ�1BDaj2

¼ trace½BTðATAþ CAÞ�TðATAþ CAÞ�1BCovðDaÞ�

where a ¼ ða11; a21; an1; a12; a22; an2ÞT , a vector rearranging elements in matrix A,
Da is the perturbation of a because of location uncertainty, andB is amatrix satisfying

ATb ¼ Ba, i.e.,

B ¼D b1 b2 ::: bn 0 0 ::: 0

0 0 ::: 0 b1 b2 ::: bn

 !
;

in which b1; b2; bn are elements in b. The total location error is the summation of

these two terms, as they are assumed to be uncorrelated, i.e., ê ¼ EjeDbj2 þ bEjeDaj2,
where b is a parameter to compensate for the over-estimation of the error due to a.
A small value of b works well in practice [79].

By defining Quality of Trilateration (QoT) [76], the accuracy of trilateration can

be characterized, enabling the comparison and selection among various geometric

forms of trilateration. Assuming some probability distribution of ranging errors,

probability tools are accordingly applied to quantify trilateration. The large value of

QoT indicates the estimate location is, with high probability, close to the real

location.

Let t ¼ Tri(s, {si, i ¼ 1,2,3}) denote a trilateration for a target node s based on

three reference nodes si. The quality of trilateration t is defined as

QðtÞ ¼
Z
p

Y3
i¼1

fs;siðdðp; pðsiÞÞÞdp; p 2 DiskðptðsÞ;RÞ; (6.6)

where fs;siðxÞ is the pdf of the distance measurement between s and si, and ptðsÞ is the
estimated location based on trilateration t, and Disk(p, R) is a disk area centered at

p with radius R. The parameter R is application specific for different accuracy

requirements. To gain more insight of QoT, Yang et al. [76] provide some instances
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to illustrate the impact of geometric relationship on QoT, shown in Fig. 6.7.

Figure 6.7(a), (b), and (c) show the ground truths of three examples of trilateration.

The black circles are the references and the white ones are the nodes to be localized.

Based on the assumption that ranging measurements are with normal noises, the

corresponding probability distributions are shown in Fig. 6.7. For the first instance,

Fig. 6.7 displays the probability distribution of a general case. And for the second

instance, Fig. 6.7(e) indicates a high probability of flip ambiguity as three references

nodes are almost collinear. In the third instance, Fig. 6.7(f) plots a concentrated

a
d

e

f

b

c

Fig. 6.7 The impact of geometric relations on QoT

86 6 Error Control



probability distributionwhich is accordwith the fact that three references in Fig. 6.7(c)

are well separated around the node to be localized.

Similar to [81], each node maintains a confidence associated with its location

estimate. The confidence of s (based on t) is computed according to the confidences

of references C(si):

CtðsÞ ¼ QðtÞ
Y3
i¼1

CðsiÞ: (6.7)

In each iteration, a to-be-localized node selects the trilateration that achieves the

highest confidence to localize itself. Different from [81] that only takes the reference

nodes reliability into account, QoT also considers the effects of geometry when

computing confidence. Compared to conventional LS-based approaches, QoT

provides additional information that indicates how accurate a particular trilateration

is. Such difference enables QoT the ability of distinguishing and avoiding poor

trilaterations that are of much location uncertainty.

6.5 Outlier-Resistant Localization

Compared with intrinsic errors, extrinsic errors are more unpredictable and caused

by non-systematic factors. Especially in some cases, the errors can be extremely

large due to the following factors:

l Hardware malfunction or failure. Distance measurements will be meaningless

when encountering ranging hardware malfunction. Besides, incorrect hardware

calibration and configuration also deteriorate ranging accuracy, which is not

much emphasized by previous studies. For example, RSS suffers from transmit-

ter, receiver, and antenna variability, and the inaccuracy of clock synchroniza-

tion results in ranging errors for TDoA.
l Environment factors. RSS is sensitive to channel noise, interference, and

reflection, all of which have significant impact on signal amplitude. The irregu-

larity of signal attenuation remarkably increases, especially in complex indoor

environments. In addition, for the propagation time based ranging measure-

ments, e.g., TDoA, the signal propagation speed often exhibits variability as a

function of temperature and humidity, so we cannot assume that the propagation

speed is a constant across a large field.
l Adversary attacks. As location-based services are getting prevalent, the locali-

zation infrastructure is becoming the target of adversary attacks. By reporting

fake location or ranging results, an attacker, e.g., a compromise (malicious)

node, can completely distort the coordinate system. Different from the previous

cases, the large errors here are intentionally generated by adversaries.
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These severe errors can be seen as outliers of measurements. We classify the

outlier-resistant approaches into two major categories: explicitly sifting and implic-

itly de-emphasizing. The explicitly sifting methods are usually based on the intui-

tion that normal ranging measurements are compatible while an outlier is likely to

be inconsistent with other normal and outlier rangings. By examining the inconsis-

tency, we can identify and reject outlier measurements. In contrast, the implicitly

de-emphasizing methods do not accept or reject a localization result by fixing a

threshold, but employ robust statistics methods, for example, high breakdown point

estimators and influence functions, to mitigate the negative effects of outliers.

6.5.1 Explicitly Sifting

The basic idea of outlier sifting is that the redundancy of geometric constraints can,

to some extent, reveal the inconsistency of outlier ranging and normal ranging.

Suppose m location references locating at pi, i ¼ 1,2,. . .,m, are used to locate a

target node by multilateration. Liu et al. [82] uses the mean square error B2 of the
distance measurements as an indicator of inconsistency, i.e.,

B2 ¼ 1

m

Xm
i¼1
ðdi � j�p0 � pijÞ2; (6.8)

where di is the measured distance to the ith reference and �p0 is the estimated location

of the target node. A threshold-based approach is proposed to determine whether a

set of location references is consistent. Formally, a set of location references L ¼
{(pi, di), i ¼ 1,2,. . .,m} obtained at a sensor node is t-consistent if the

corresponding mean square error B2 satisfies B2 � t2.
Apparently, the threshold t has significant impact on localization performance.

The determination of t depends on the measurement error model, which is assumed

to be available. Based on the measurement error model, an appropriate t is

determined by performing simulation off-line. This threshold is stored at each

senor node. In general, when the error model changes frequently and significantly,

the fixed value of t would degrade the performance. For simplicity, Liu et al. [82]

assume the measurement error model will not change.

Given a set L of n location references and a threshold t, it is desirable to compute

the largest set of t-consistent location references, because LS-based methods can

deal with measurement errors better if there are more normal ranging results.

The naive approach is to check all subsets of L with i location references about

t-consistency, where i starts from n and decreases until a subset of L is found to be

t-consistent or it is not possible to find such a set. Suppose the largest set of

consistent location references consists of m elements. Then the sensor node has to

perform LS-based localization at least 1þ n

mþ1

 !
þ n

mþ2

 !
þ�� �þ n

n

 !

88 6 Error Control



times to figure out the right one. Although such an approach can provide the optimal

result, it requires a large amount of computation when n and m are large numbers,

which sometimes is unacceptable for resource constrained sensor nodes. To address

this issue, Liu et al. [82] adopt a greedy algorithm, which is efficient but suboptimal.

The greedy algorithm works iteratively. It starts with the set of all available location

references. In each iteration, it checks whether the current set of location references

is t-consistent. If positive, the algorithm outputs the estimated location and stops.

Otherwise, it considers all subsets of location references with one fewer location

reference, and chooses the subset with the minimum mean square error as the input

to the next iteration. Similar to the brute-force algorithm aforementioned, the

greedy algorithm continues until it finds a set of t-consistent location references

or when it is not possible to find such a set. In general, through the greedy

algorithm, the sensor node needs to perform LS-based localization for at most

1þnþðn�1Þþ �� �þ4 times, which is much better than the brute-force algorithm.

Another way is to handle phantom nodes that claim fake locations. Hwang et al.

[83] propose a speculative procedure, which can effectively and efficiently filter out

phantom nodes. The filtering procedure is illustrated in Algorithm 6.2, where

NbrðvÞ is the node set consisting of v and its neighbors, and E is used to keep

consistent edges. G is initially empty. After computing the locations of all neigh-

bors in the local coordinate system L by trilateration, for any two neighboring nodes

j and k, if the difference between the measured distance and the computed distance

is less than a threshold e, the edge e(j, k) is inserted into E. The threshold value e
depends on the noise in the ranging measurement. The largest connected cluster is

regards as the largest consistent subset in the speculative plane L. This filter is done

Algorithm 6.2 Speculative filtering

for i ¼ 0 to iter do

node v randomly selects two neighbors u and w

create local coordinate system L using v, u, w and their inter-distances d̂vu, d̂vw and d̂uw
initialize undirected graph G(V, E)

create nodes v, u, w with locations pv, pu, pw in V, respectively

for each node k 2 NbrðvÞ do
calculate the location of k, pk, in L by trilateration using pv, pu, pw and d̂kv, d̂ku, d̂kw
create node k with location pk in V

end for

for each pair of nodes j; k 2 V and the distance d̂jk do

if d̂jk � pj � pk
�� ���� ��<e then

create edge e(j, k) in E

end if

end for

find the largest connected cluster C and save it

end for

choose the one with the largest size among all saved C
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iter times, where iter is determined by the application requirement, and the cluster

with the largest size is chosen as the final result. The theoretical foundations of this

strategy are the following two arguments:

l If the three pivots are honest nodes, the cluster output by Algorithm 6.2 contains

no phantom nodes.
l If one pivot is a phantom node, the size of largest cluster is smaller than the one

when none of pivots is a phantom node.

Departing from the two works previously discussed, which focus on security

scenarios, in a recent work [84], Jian et al. propose a more general framework of

sifting noisy and outlier distance measurements for localization. They formally

define the problem of outlier detection for localization, and build the theoretical

foundations based on graph embeddability and rigidity. Accordingly, an outlier

detection algorithm is designed based on bilateration and generic cycles. Their

results suggest the algorithm significantly improves the localization accuracy by

wisely rejecting outliers. We discuss this work more detailed here.

Based on the grounded graphs associated with network instances, Jian et al.

formulate normal ranging results and outlier ranging results as normal edges and

outlier edges, respectively. In their error model of distance ranging, normal edges

contain no ranging noise, while the measured distance of an outlier edge is an

arbitrary continuous random variable. They argue that this assumption and abstrac-

tion is a good starting point to address the outlier detection problem. Through

introducing an error threshold, their proposed algorithm can handle a more practical

error model, where normal edges are with moderate ranging errors. Based on the

normal edge and outlier edge model, the definition of outlier detection is straight-

forward: given a weighted graph G ¼ <V, E, W> consisting of normal and outlier

edges, identify those outlier edges in G.
The theoretical foundations are built based on graph embeddability and rigidity.

The first result provided by Jian et al. is:

Theorem 6.1. Given a weighted grounded graph G ¼<V, E, W>, if G is unem-
beddable, the E contains at least one outlier edge.

This result is intuitive: if G contains no outlier, then the ground truth is an

embedding, andG cannot be unembeddable. Nevertheless, this is the best we can do

for detecting outliers only based on ranging information. Formally, if G is embed-

dable, even G actually contains some outliers, we have no way to detect them.

Theorem 6.1 only provides a fine-granularity way to detect outliers, but cannot

tell which are outliers and which are not. To address this issue, a concept of outlier

disprovable is proposed:

Definition 6.1. Given a weighted graph G¼ <V, E, W>, G is outlier disprovable if
and only if the embeddability of G implies that it contains no outlier edge.

Jian et al. prove the second result:
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Theorem 6.2.Given a weighted graph G, G is outlier disprovable if and only if G is
redundantly rigid.

A graph is rigid if it has no continuous deformation other than global rotation,

translation and reflection while preserving distance constraints; otherwise, it is

flexible. A graph is called redundantly rigid if it remains rigid after removing any

single edge. Based on these two results, an outlier detection algorithm is designed

as Algorithm 6.3. Different from [82] and [83], which are based on quadrilateral

structures and require dense networks, Algorithm 6.3 pays more attention to

exploring and utilizing the redundantly rigid topological structures, and thus,

works properly in networks with moderate connectivity.

Algorithm 6.3 addresses the problem of outlier detection and identification

theoretically. However, in practice, it suffers from the computational prohibitive-

ness, termed as combinational explosion, which is implied by the following result.

Theorem 6.3. Let G1 ¼ <V1, E1> and G2 ¼ <V2, E2> be two redundantly rigid
graphs with V1 \ V2j j � 2. Then G1 [ G2 is redundantly rigid.

Suppose we have checked the embeddability of G1 and G2, both of which are

redundantly rigid. According to Algorithm 6.3, we still need to check the embedd-

ability of G1 [ G2, which is actually implied by the checking results of G1 and G2 if

V1 \ V2j j � 2. To tackle this issue, Jian et al. introduce the concept of generic cycle,
which is the minimally redundant rigidity.

Definition 6.2. A graph G ¼ <V, E> with Vj j � 4 is called a generic cycle if
Ej j ¼ 2 Vj j�2 and G satisfies

iðXÞ� 2 Xj j�3 for all X�V with 2� Xj j � Vj j�1

where iðXÞ denotes the number of edges induced by X in G.

Based on generic cycles, another outlier detection algorithm is proposed, out-

lined by Algorithm 6.4, which avoids the computational prohibitiveness.

Algorithm 6.3 Outlier Detection Algorithm

for all redundantly rigid component H in G do

if H is embeddable then

mark every edge e 2 H a normal edge

else

for all edge e 2 H not marked a normal edge do

mark e an outlier edge

end for

end if

end for
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6.5.2 Implicitly De-emphasizing

(a) What is Robust Statistics?

In the literature of statistics, classical methods, e.g., mean and least squares, rely

heavily on some idealized assumptions about input data sets, which are often not

met in practice. Particularly, it is often assumed that the data residuals, i.e., the

difference between the computed value and the input value, are normally

distributed, or at least approximately. However, when there are outliers in the

input data set, these methods often show very poor performance. Robust statistics

is a theoretical framework concerning the outlier rejection problem, which provides

alterative approaches to classical statistical methods in order to produce estimators

that are not unduly affected by outliers. Two of the most common measures of

robustness are breakdown point and influence function.
The breakdown point of an estimator is the fraction of data that can be given

arbitrarily large values without giving an arbitrarily large result. For instance, it is

obvious from the formula of the mean estimator, 1
n ðx1 þ x2 þþxnÞ, that if we hold

x1; x2; xn�1 fixed and let xn approach infinity, the statistic result also goes to infinity.
In short, even one gross outlier can ruin the result of the mean estimator. Thus, such

an estimator has a breakdown point of 0. In contrast, the median estimator can still

give out a reasonable result when half of data goes to infinity. Accordingly, the

breakdown point of the median estimator is 50%. The higher the breakdown point

of an estimator, the more robust it is. Clearly, 50% is the theoretically highest

breakdown value that can be achieved by an estimator, because if more than half of

data is contaminated, it is impossible to distinguish the underlying distribution from

the contaminating distribution.

Other than the breakdown point, the influence function is used to characterize the

importance of individual data samples. A smaller absolute value of the influence

function means the data item receives less weight in the estimation. The influence

function is proportional to the derivative of the estimator. A robust estimator should

have a bounded influence function, which does not go to infinity when the data

value becomes arbitrarily large.

(b) Robust Statistics Based Localization

According to robust statistics [85], the least squares algorithm is sensitive to out-

liers, since its breakdown point is zero. One of the most commonly used robust

Algorithm 6.4 Edget-based Outlier Detection Algorithm.

for all e not marked in G do

if there is a generic cycle H containing e is embeddable then

mark every edge 2 H, including e, a normal edge

else

mark e an outlier edge

end if

end for
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fitting algorithms is the method of least median of squares (LMS), introduced by

Rousseeuw et al. [85], which is adopted in [86] to design a robust localization

algorithm. Instead of minimizing the summation of the residue squares, LMS

minimizes the median of the residue squares, i.e., it estimates the location using

�p0 ¼ argmin
p0

mediðdi � jjp0 � pijjÞ2; (6.9)

where the parameters are defined in Section 6.5.1. In contrast to the least squares

method, in which a single influential outlier may destroy the estimation, a single

outlier has little effect on the objective function of LMS, and will not bias the

estimate significantly. Results from [85] show that LMS has a breakdown point of

50%; in other words, LMS tolerates up to 50% outliers among all measurements

and still outputs the correct estimate.

It is computationally prohibitive to get the exact solution of LMS. Rousseeuw

et al. proposed an efficient and statistically robust alterative. First, using LS solution,

we compute several candidate estimations according to random subsets of samples.

The median of the residue squares for each candidate is then computed, and the one

with the least median of residue squares is chosen as a tentative estimate. However,

this tentative estimate is computed based on a small subset of data samples.

As discussed previously, a better estimation can be achieved if more normal ranging

results are included. To address this issue, the samples are weighted based on their

residue for the tentative estimate, followed by a weighted least square fitting to get

the final estimate. A simple threshold-based weighting strategy is as follows:

wi ¼
1; ri

s0

��� ��� � g;

0; otherwise:

8<
: (6.10)

where g is a predetermined threshold, ri is the residue of the i-th sample for the least

median subset estimate �p0, and so is the scale estimate given by [85] for the two

dimensional estimated variable �p0,

s0 ¼ 1:4826ð1þ 5
n�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medir2i ð�p0Þ

q
; (6.11)

where n is the number of available samples. The term ð1þ 5
n�2Þ is used to compen-

sate the tendency for a small scale estimate when there are few samples.

In summary, the LMS-based robust localization algorithm has the following

steps:

l Parameters selection. Suppose n references are available. Choose an appropriate
subset size m, the total numbersM of subsets, and a threshold g.

l Subsets generation. Randomly drawM subsets of size m from the data set. Find

the estimate �p0 (using LS solution) for each subset. For each �p0, calculate the

median of residues ri of each reference, i ¼ 1, 2, . . ., n.
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l Least median calculation. Calculate �p0 ¼ argmin
p0

mediðdi � jp0 � pijÞ2 and

residues with respect to �p0, rið�p0Þ.
l Weights assignment. Calculate s0 based on Eq. (6.11) and assign weight wi to

each sample using Eq. (6.10).
l Location estimation. Do a weighted least squares fitting to all data to get the

final location estimate.

The basic idea of LMS implementation is that, at least one subset among all

randomly drawn subsets does not contain any outlier, and the estimate from this good

subsetwill fit the inliers well. The chosen values ofm andM have significant impact on

the probability of such solution. The probability P of getting at least one good subset

without outlier is calculated as follows. Assuming the contamination rate is e, then

P ¼ 1� ð1� ð1� eÞmÞM: (6.12)

Given m ¼ 4 and M ¼ 20, the LMS algorithm is resistant up to 30% contamina-

tion with P � 0:99.
Inspired by robust statistics, the recent work SISR [87], from the perspective of

influence function, analyzes the non-robustness of LS-based methods to outliers,

and uses a residual shaping influence function to de-emphasize the “bad nodes” and

“bad links” during the localization procedure.

The motivation of SISR is illustrated in Fig. 6.8, where different localization

schemes would lead to different solutions. It is more desirable to get the uneven

solution rather than the even solution, because E cannot be localized accurately in

any case, given that it has large measurement error. Furthermore, since A, B, C and D

could potentially be localized with great accuracy, a localization method that returns

Even
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·
·
·

·
·
·

·
·

·
·

·
·

b

Uneven

Fig. 6.8 Two possible solutions of nodes A, B, C, D and E, where E has large measurement errors.

Squares indicate the ground truth locations; and circles the computed localization solutions.

(a) The measurement errors from E is amortized over A, B, C and D. (b) Solutions for A, B, C
and D are accurate, but that for E is very inaccurate
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the uneven solution ought to de-emphasize the measurements of E to avoid contam-

inating the localization results ofA,B,C andD.The conventional least squaresmethod

would find the even solution, as it does not distinguish between normal and outlier

ranging measurements. To overcome this issue, SISRmakes a key modification to the

conventional least squares method: the residual function is shaped. As discussed

previously, the influence function is proportional to the derivative of the estimator;

in particular, here the estimator is the residual function. Thus, by shaping the residual

function, the influence function is accordingly shaped in order to dampen the impact of

outlier measurements and emphasize normal measurements. This modification make

SISR find the uneven solution. The implementation of SISR is as follows.

Instead of optimizing the sum of squared residues, i.e., F ¼Pi;j r
2ði; jÞ, where

rði; jÞ is the residue corresponding to edge (i, j), SISR solves the optimization

problem of F ¼Pi;j sði; jÞ, where

sði; jÞ ¼ arði; jÞ2; if rði; jÞj j< t

lnð rði; jÞj j � uÞ � v; otherwise

(
; (6.13)

where a, t, u and v are parameters to be configured.

Figure 6.9 sketches the residual function of SISR, which has the following two

properties:

l The shaping function increases with a smaller slope when the residual is large; in

other words, the influence function of a measurement with large residual is

smaller. In particular, the function dampens the impact of residuals larger than

a threshold t. This is called the wing-shaped section.
l The shaping function has a narrow and deep well for residuals close to 0. The

normal measurements can therefore be emphasized by growing the shaped

residuals more rapidly. This is called the U-shaped section.

Fig. 6.9 Comparison between the standard squared residual used in conventional least squares

and the shaped residuals used in SISR with a ¼ 4 and t ¼ 1
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The a and t are two parameters that tune the shape of the SISR function in order

to control its sensitivity to errors. The a is used to control the height of the U-shaped
section, while t controls its width. On the other hand, minimizing F ¼Pi;j sði; jÞ is
a nonlinear optimization problem, and usually involves some iterative searching

techniques, such as gradient descent or Newton method, to get the solution. Thus, it

is necessary to make the SISR function piecewise-continuous and piecewise-

differential at t (apparently, it is piecewise-continuous and piecewise-differential

at any other point). Accordingly, the other parameters u and v can be solved by

u ¼ t� 1

2at
; (6.14)

v ¼ ln
� 1

2at

�
� at2: (6.15)

Kung et al. [87] suggest that the value of t has significant impact on the

performance of the SISR estimator. On one hand, a small t leads to more accurate

localization results, while increases the probability of falling into an incorrect local

minimum. On the other hand, a more permissive t reduces this probability at the

expense of localization accuracy. When t approaches to infinity, SISR is actually

reduced to the conventional least squares method. They design an iterative refine-

ment scheme to exploit the above trade-off, and the proposed scheme works well in

practice [87].

6.6 Summary

Although more ranging techniques are developed, noises and outliers are inevitable

in distance measurements. Numerous simulations and experimental studies have

suggested that ranging error can degrade the performances of many localization

algorithms drastically. How to handle noises and outliers is essential for a wide

range of location-based services. In this chapter, we review the measurement

accuracies of different ranging techniques and how errors in distance measurements

affect the localization results from four aspects: uncertainty, non-consistency,

ambiguity and error propagation. We discuss the state-of-the-art works on char-

acteristics of localization error, elimination of location ambiguities, location refine-

ment schemes and outlier-resistant localization.

With no noise at all, the localization issue with distance information in dense

networks, e.g., quadrilateral networks or trilateration networks, is trivial. However,

in the presence of even a small amount of noise, for complete networks (graphs),

localization is hard [88]. One promising research direction in this area is to adopt

multimodal measurements, distance and angle information. Besides reducing the

computational complexity of localization, multimodal measurements can provide

more robustness to noises.
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Chapter 7

Localization for Mobile Networks

7.1 Overview

In previous chapters, we have introduced many localization algorithms for wireless

ad hoc and sensor networks. All those algorithms have a common assumption:

nodes reside at fixed locations after being deployed, and localization can be done

once for all. Recently, mobile networks are emerging because of the following two

major reasons:

– Passive motion. In some applications, wireless nodes are attached to animals or

people moving throughout an environment, e.g., in the ZebraNet [89], sensor

nodes are placed on a sampled set of zebras. In addition, in some applications, e.

g., ecosystem monitoring, wireless networks are deployed in dynamic environ-

ments, where nodes are in passive motion with the surroundings. For example,

sensor nodes deployed on a sea surface are facing the motion of flows and waves

[7, 90].

– Active motion. With the development of robotic platforms, wireless nodes can

control underlying inexpensive robots and move autonomously for wide-area

surveillance and reconnaissance. Mobility of nodes can improve network per-

formance in a wide range of aspects, including increasing capacity [91], enhanc-

ing security [92], and improving connectivity [93].

Node mobility gives rise to new challenges on localization. The most straightfor-

ward and essential one is that localization is no longer a one-time task but a

continuous and repeated procedure. In general, three ways exist for mobile network

localization:

– Equip mobile nodes with global positioning system (GPS) receivers. However,

as suggested when we discuss static networks, this solution faces nonavailable

GPS signal and high hardware and energy costs, which make it not suitable for

large-scale, low-cost mobile wireless networks. Nevertheless, it is more reason-

able when adopted in mobile networks than static networks.

– Re-execute localization algorithms for static networks periodically to compute

the real-time locations of mobile nodes. One important drawback of this strategy

is that, in a highly dynamic environment where nodes move fast, localization

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_7,
# Springer Science+Business Media, LLC 2011
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algorithms need to be triggered frequently to meet accuracy requirements.

In this case, significant energy and communication cost are inevitable.

– Design new techniques to deal with mobility. Localization algorithms for

mobile networks often use some a priori information of node mobility, e.g.,

maximum velocity, to decrease energy and communication costs and improve

location accuracy.

Compared to the first two trivial solutions, the third one is more appealing to large-

scale mobile networks and recently has attracted a lot of research efforts. Thus, we

focus on this kind of solution in this chapter. Without special statement, when

referring to localization algorithms for mobile networks, we mean the third kind of

solutions listed above in the rest of this chapter.

The remainder of this chapter is organized as follows. First, we introduce the

Monte Carlo localization (MCL) algorithm, which casts the mobile localization

problem as a Markov process, and employs sequential Monte Carlo (SMC) methods

to resolve it. Then, we present the convex approximation localization (CAL)

algorithms. Departing from MCL, CAL maintains a convex polygon or circle to

approximate the potential location of each node rather than location samples. Both

MCL and CAL focus on using beacon nodes to localize their neighboring nodes and

propagate global location information, and update new location based on sequential

measurements. We also discuss the moving-baseline localization (MBL) algorithm,

whose emphasis is to construct a globally consistent view of the network from the

perspective of each individual node, i.e., distances and velocities of other nodes

with respect to some node. Finally, some techniques for universal localization

(locating both static and mobile nodes simultaneously) are depicted.

7.2 Monte Carlo Localization

7.2.1 Particle Filtering

In applications where the state of a system has to be estimated from some observa-

tions, the system can be formulated by using a Bayesian model in which the

posterior distribution of the state of the system is only determined by the current

observations and state of the system. In dynamic systems, observations arrive

sequentially, and it is therefore required to update the posterior distribution of the

system state upon arrival of new observations. Formally, the state of the system

{xt}t ¼ 0, 1, 2, . . . is modeled as a Markov process with initial distribution p(x0) and
transition prior p(xt | xt-1). The observations {yt}t ¼ 1, 2, . . . are assumed to be

conditionally independent given {xt} and with marginal distribution p(yt | xt).
If the initial state and the observations can be modeled by a linear Gaussian state-

space model, it is possible to derive an exact analytical expression to compute the

evolving sequence of posterior distributions. This is the well-known and widely
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accepted Kalman filter. However, the states and observations of real systems

are often very complex, typically involving elements of non-Gaussianity, high

dimensionality, and nonlinearity, which usually preclude analytic solution. To

address this challenge, particle filters, also known as sequential Monte Carlo

(SMC) methods, are widely employed in practice, which are a set of simulation-

based techniques providing a convenient approach to compute the posterior dis-

tributions in non-Gaussian environments.

The key idea of particle filtering is to represent the state distribution of a system

by a set of N weighted samples:

pðxtjy1;2;...;tÞ � xit;w
i
t

� �
i¼1;2;...;N; (7.1)

where p(xt|y1,2,. . .,t) is the posterior distribution of the system state at time t given
observations {yk}k¼1, 2,. . .,t, xt

i is a sample of xt, and wt
i is the normalized impor-

tance weight associated with xt
i. The number of samples maintained is an essential

system parameter: a minimum of samples should be available so that the set of

samples converges to the posterior distribution. A number of particle filters have

been proposed in the literature. Here, we illustrate the major steps of particle

filtering by introducing the most typical one, bootstrap filter. Actually, all SMC-

based algorithms to be discussed in this chapter employ bootstrap filter since it is

easy to implement and computationally efficient.

Algorithm 7.1 depicts the three steps of bootstrap filter: initialization, impor-

tance sampling, and selection. In the initialization step, N samples are randomly

selected according to the initial distribution of the system, p(x0). In the second step,
based on the transition prior p(xt | xt-1) and N samples xit�1 representing the previous

Algorithm 7.1 Bootstrap filter

1 Initialization step: t ¼ 0

for i ¼ 1 to N do
sample xi0 � pðx0Þ

end for
set t ¼ 1

2 Importance sampling step:

W ¼ 0

for i ¼ 1 to N do
sample ~xit � pðxtjxit�1Þ and set ~xi0:t ¼ ð~xi0:t�1; ~xitÞ
calculate the importance weight ~wi

t ¼ pðytj~xitÞ
W ¼ W + ~wi

t

end for
for i ¼ 1 to N do

~wi
t ¼ ~wi

t=W
end for

3 Selection step:

resample with replacement N particles xi0:t
� �

t¼1;2;...N from the set ~xi0:t
� �

t¼1;2;...N according to the

importance weights

set t tþ 1 and go to Step 2
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state xt-1, N new samples xt
i are chosen to represent the current state xt.

The importance weights wt
i associated with xt

i are computed based on the marginal

distribution p(yt|xt) and normalized. In the last step, after resampling according

to the importance weights, the particles with small weights are eliminated while

those with high weights are multiplied. The finalized N samples are with the same

weight, i.e., 1/N.

7.2.2 Sequential Monte Carlo Localization

From Algorithm 7.1, three distribution functions that are essential to bootstrap filter

exist: the initial distribution pðx0Þ, the transition prior pðxtjxt�1Þ, and the marginal

distribution pðytjxtÞ. We discuss these three functions in the context of network

localization. Although the Monte Carlo methods can apply to range-based locali-

zation for mobile networks [94], we focus on range-free localization here for the

simplicity of discussion. The principles presented can be directly applied to the

range-based localization.

Initial distribution. In general, nodes initially have no information about their

locations except beacons. Therefore, the distribution pðx0Þ can be first modeled as

a uniform distribution over the whole field of interest. One way to improve the

performance of MCL, especially the convergence speed, is to use expensive

localization algorithms for static networks, such as manual configuration, to pro-

vide relatively accurate pðx0Þ.
Transition distribution. In the MCL framework, the motion of nodes is modeled as

a Markov process: the location of a node at time t, xt, is only determined by xt�1, its
location at time t – 1. Generally, other than knowing its upper bound speed vmax

(probably as a system configuration parameter), a node is unaware of its moving

speed and direction. In other words, for each node, xt must be contained in the

circular region centered at xt�1 with radius vmax. It is also assumed that node speed

is uniformly distributed in the interval [0, vmax]. Accordingly, the transition distri-

bution pðxtjxt�1Þ is given by

pðxtjxt�1Þ ¼
1

pv2max

; if d (xt, xt� 1)� vmax,

0; otherwise,

(
(7.2)

where dðxt; xt�1Þ denotes the Euclidean distance between xt and xt�1. This distribu-
tion function reflects the fact that the unknown motion of a node increases the

uncertainty of its location. The larger the value of vmax is, the more uncertainty is

introduced in each step. If an accurate mobility model is available, such as an

accurate moving velocity or orientation, the transition distribution can be adjusted

accordingly to provide better predictions.
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Marginal distribution. The marginal distribution pðytjxtÞ represents the relation-

ship between the observation yt and the system state xt at time t. Since we focus on
range-free localization here, the only information available to each node is the

existence of its neighbors. The 1-hop neighbors of a node u are nodes that can

communicate with u directly. The 2-hop neighbors are nodes that communicate

with at least one of 1-hop neighbors of u directly but cannot communicate with u
directly. We can extend these definitions to k-hop neighbors. In the unit disk graph

(UDG) model with communication radius r, for a k-hop neighbor v of u, the
following geometric constraints is satisfied:

0 � pðvÞ � pðuÞj j � r if k ¼ 1;

r< pðvÞ � pðuÞj j � k�r if k � 2;
(7.3)

where p (u) and p (v) denote the physical locations of u and v, respectively.
Apparently, the greater the value of k is, the more communication cost and larger

localization latency would be introduced, and the geometric constraints become

less useful. Therefore, in practice, only 1-hop and 2-hop neighbors are used for

location estimation.

Different schemes on using 1- and 2-hop neighbors lead to different marginal

distributions. In particular, communication and computation cost trades off with the

localization accuracy. Here, we review two existing works on MCL. The work

presented in [95] relies on only 1- and 2-hop beacons. On the one hand, it is efficient

in terms of communication and computation; on the other hand, abundant beacons

are required to provide accurate location results. In contrast, the MSL in [96] uses

information from all 1- and 2-hop neighbors, i.e., including beacon nodes and

ordinary nodes.

Let xit
� �

i¼1;2;...;N be the sample set representing the location of a node u at time

t obtained based on pðxtjxt�1Þ. Let S and T denote the sets of beacons which are 1-

hop neighbors and 2-hop neighbors of u, respectively. In [95], the marginal

distribution of u is given by

pðytjxitÞ¼
1
N
; if 8s 2S, 0� jp(s) --- xti j � r, and, 8s2 T, r< jp(s) --- xti j � 2r,

0; otherwise,

(

(7.4)

where N is the number of samples maintained by the system as discussed previ-

ously. Intuitively, not all samples in xit
� �

i¼1;2;...;N would have nonzero weights. To

address this issue, particle filtering adopted in [95] makes some revisions at the

“importance sampling” step of Algorithm 7.1: instead of generating N samples, it

repeats the sampling procedure until there are N samples with nonzero weights.

Since all the N surviving samples are equally weighted, the selection step of

Algorithm 7.1 is actually eliminated.

Since information from all 1- and 2-hop neighbors is used, it is very complicated

to compute the marginal distribution [96]. Let ST denote all 1-hop and 2-hop
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neighbors of node u. For each sample xit; i ¼ 1; 2; . . . ;N chosen for u, pðytjxitÞ is
computed by

pðytjxitÞ ¼
Y
s2ST

w0xitðsÞ; (7.5)

where w0
xit
ðsÞ is the partial weight associated with s, one 1-hop or 2-hop neighbor

of node u. If s is a beacon, w0
xit
ðsÞ is calculated using (7.4), except substituting 1 for

1/N. Otherwise, let sif gi¼1;2;...;N denote the sample set for s, and w0
xit
ðsÞ is computed

as follows: if s is a 1-hop neighbor, then w0
xit
ðsÞ ¼P

sj: sj�xitj j�rþvmax
pðytjsjÞ; if s is a

2-hop neighbor, then w0
xit
ðsÞ ¼P

sj:r�vmax� sj�xitj j�2rþvmax
pðytjsjÞ. MSL in [96]

employs a threshold to eliminate those samples with low importance weights.

The threshold adopted in MSL is b ¼ ð0:1Þk, where k is the number of 1-hop and

2-hop neighbors of a node.

7.3 Convex Approximation Localization

Now, we discuss another kind of localization for mobile wireless networks: convex

approximation localization (CAL). Departing from MCL, in which a set of discrete

points is maintained to represent the location candidate region of each node, CAL

employs a convex polygon or circle to approximate the location region that contains

the physical location of a node. The approximation simplifies the locate region

update procedure due to node motions and decreases network communication cost.

This scheme, however, cannot make use of nonconvex constraints [97]. One typical

example of nonconvex constraint is the negative information [98], e.g., a node does

not hear from a beacon located at somewhere. In general, however, the negative

information plays an important role in refining location estimations. In the rest of

the section, we discuss two existing convex approximation localization algorithms:

one is convex polygon based, and the other one is circle based.

In [97], each node maintains a convex polygon that represents its location

candidate region. At any time, the polygon associate with a node is sufficiently

large to contain the physical location of the node, which is the key invariant of this

algorithm. The centroid of the polygon is used as the estimated location of the node,

and the size of the polygon can serve as a measure of the estimated uncertainty.

Since it is often assumed that the radio range of a node is a perfect circle, how to

represent a circle is critical for polygon-based localization. Figure 7.1a illustrates an

example of using regular polygon to approximate a perfect circle. The major benefit

of using polygons is that the intersection of convex polygons can be efficiently

computed, compared to circles and curves.

The CAL algorithm proposed in [97] consists of the following three steps:

1. Initialization. Beacons start with small regular polygons to approximate a circle

centered at the location of the beacon and with radius e, whose value is chosen to
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reflect the uncertainty associated with that estimated location. Since the to-be-

localized nodes have no nontrivial a priori knowledge about their locations, they

use the whole field of interest as their initial region.

2. Dilation. There are two kinds of dilation at each time step. The first one is due to

the mobility of nodes. Each to-be-localized node dilates its polygon outward by

vmax (illustrated in Fig. 7.1b), the maximum velocity. This dilation maintains the

invariant that the true location of the node is in the polygon. The second one is to

dilate the polygon by r (illustrated in Fig. 7.1c), the radio range. After two

dilations, a node informs the final polygon (the candidate region) to its neigh-

bors.

3. Update. Each node receives a set of polygons from its neighbors and then

computes the intersection of those received polygons and its own polygon.

The result is the new location polygon for that node. Figure 7.1d shows such a

procedure. Intersecting a convex polygon with other convex polygons yields a

smaller convex polygon with high probability.

CAL has the following salient features: free range, fully distributed, and no need for

routing infrastructure, computationally efficient, etc.

Approximating a circle Dilation by the maximum velocity

Dilation by the communication radius Updating the polygon

a b

c d

Fig. 7.1 Convex polygon approximation. (a) Approximating a circle, (b) dilation by the maxi-

mum velocity, (c) dilation by the communication radius, (d) updating the polygon
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Xi et al. [99] propose EUL, which utilizes the relationship between neighboring

nodes to update their locations and then filter impossible positions that are out of

neighbors’ radio range. The algorithm mainly consists of two phases:

1. Initial location estimation (ILE). Each node estimates its initial location by

trilateration.

2. Collaborative neighbor update (CNU). Each node updates location boundary

according to previous location and neighbors’ information.

ILE utilizes an improved DV-hop positioning algorithm to make all nodes know

their initial locations, which is the foundation of CNU. In DV-hop, there always are

sizable estimated errors in the last hop distances between nodes and seeds. ILE

modifies these errors based on the number of second-to-last hop nodes such that the

node with more second-to-last hop nodes has a shorter last hop distance. Formally,

for an unknown node i, they substitute hi � 1þ 1=ti for hi, where hi is the hop count
from node i to an anchor and ti is the number of second-to-last hop nodes.

CNU, as the core of EUL, achieves efficient localization with the help of

mobility. In this phase, all nodes move freely, which causes a constant change of

network connectivity.

Nodes move with variable speed and direction, both of which can be described

as random variables. With regard to its current status, a node knows nothing except

the maximum speed vmax. For the ease of discussion, EUL assumes that nodes have

the same radio range r. CNU aims to characterize the area that contains all possible

locations of a node. There are two main stages in this phase: prediction and

correction.

In the prediction stage, nodes estimate their current locations according to their

previous locations and vmax. At first, a node predicts possible location set S1 in a

circle whose center is its initial location estimated in ILE and radius is vmax. In a

subsequent time slot t, St is concentric with St�1 are concentric circles, and radius of
vmax greater than St�1. Figure 7.2a shows the relation between St and St�1.

In the correction stage, collaborating with neighbors, each node filters impossi-

ble locations. If a node has neighbors, it should be in the overlap of these neighbors’

radio range including both new neighbors and constant neighbors. Thus the possible

St-1
St Vmax St

r
Rt i

St

j
Rt

k
Rt

a b c

Fig. 7.2 Collaborative neighbors update. (a) The prediction of a node’s location range; (b) the
prediction of a node’s radio range; (c) the correction of a node’s location range

104 7 Localization for Mobile Networks



radio range should be estimated before filtering. Figure 7.2b shows the relationship

between a node’s possible radio range Rt and St. The node estimates Rt according to

St and r similar to location range prediction process. Each node computes the

overlap region between its possible location set and neighbors’ possible radio

range as its new location set.

There is a knotty problem that the boundary of a node’s location set is irregular.

It is hard to describe and compute when the number of neighbors is large. Approxi-

mation by maximum inscribed circle (MIC) is an effective method to regularize

boundary. The center of MIC is the intersection point of circles, which have

common centers with St or Rt. That is,

ðx1 � a1Þ2 þ ðx2 � b1Þ2 � ðx3 � c1Þ2 ¼ 0

ðx1 � a2Þ2 þ ðx2 � b2Þ2 � ðx3 � c2Þ2 ¼ 0

..

.

ðx1 � anÞ2 þ ðx2 � bnÞ2 � ðx3 � cnÞ2 ¼ 0;

8>>>>><
>>>>>:

(7.6)

where (a, b) and c denote the center and radius of St or Rt, and (x1, x2) and x3 are the
center and radius of MIC, respectively. When n is greater than 3, the equation set is
a nonlinear overdetermined set of equations, which requires nonlinear optimization

methods to approximate. Nonlinear least-squares method is used to fit m observa-

tions with a model that is nonlinear in n unknown quantities (m> n). EUL [99] uses

the Gauss–Newton method which is based on linear approximation of the objective

function to approximate an optimum solution, where the Jacobian, J, is a function of
constants:

JðxkÞTJðxkÞ þ rf ðxkÞ ¼ 0: (7.7)

7.4 Moving-Baseline Localization

Moving-baseline localization (MBL) [100] deals with the absence of a fixed

reference frame. The MBL problem arises when a group of nodes moves in an

environment where no external coordinate reference is available. The goal of MBL

is to enable each node to infer the spatial relationship and motion of all other nodes

with respect to itself.

To model the pairwise interactions among nodes in a mobile network, a concept

of dynamic network is introduced in [100], in which an edge between nodes i and j
exists if and only if they can exchange information, i.e., it is assumed that when

edge ij exists, a discrete sequence of range measurements rij(t) is available at node i,
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describing the measured range from node i to node j at time t observed by node i, as
illustrated in Fig. 7.3.

Starting from the simplest case of MBL, where each node is moving along a

straight-line path at a constant speed, recovering node trajectories can be cast as

a low-dimensional optimization, as shown in Fig. 7.4. Formally, four degrees of

freedom per node need to be recovered: the values of ~pi and ~vi in the following

expression

~LiðtÞ ¼ ~pi þ t �~vi; (7.8)

where ~pi and~vi represent the origin (corresponding to two degrees of freedom) and

the velocity vector (corresponding to the other two degrees of freedom) of the

motion of node i, and ~LiðtÞ is the location of that node at time t. Accordingly, the
distance ranges rijðtÞ between nodes i and j lie on a hyperbola is defined by

r2jiðtÞ ¼ m2
ji þ ðt� tcjiÞ2s2ji; (7.9)

where tcji denotes the time when nodes i and j are closest to each other, and mji

represents the node separation distance at tcji, and sji is the relative speed, i.e.,

~vj �~vi
�� ��. These parameters are illustrated in Fig. 7.5. Clearly, as long as

Hji ¼ ðsji; tcji;mjiÞ is available, the distance rji between nodes i and j at any specific

time can be computed by (7.9), as shown in Fig. 7.5. Because not any pair of nodes i

Fig. 7.3 Time-series range data rij (t)

ip
jp

iv jv( )ijr t

( )iL t ( )jL t

Fig. 7.4 MBL recovers four degrees of freedom per node
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and j is connected in the dynamic network, to achieve the goal of enabling each

node to infer the spatial relationship and motion of all other nodes with respect to

itself, an optimal global motion solution is needed to be reconstructed from all

available Hji, which involves the following steps.

Hyperbola estimation. The basic block of MBL algorithm is to estimate the motion

hyperbola parameters Hij ¼ ðsij; tcij;mijÞ from time-stamped range measurements.

Based on the motion model, i.e., (7.9), given a sequence of n discrete distance range
measurements between two nodes, rz; tzð Þ; z ¼ 1; 2; . . . ; n, the following quadratic

model is considered:

r2z ¼ gt2z þ btz þ aþ ez: (7.10)

Instead of using parametric regression methods like the ordinary least-squares

estimator, which are sensitive to data containing significant noise and outliers

(modeled as ez), to estimate ĝ, b̂; and â, nonparametric robust quadratic fitting is

adopted [100]. This method performs well even when the error distribution asso-

ciated with the data is not normal. When n � 3, ĝ, b̂; and â can be determined, and

then the motion hyperbola parameters H ¼ ðs; tc;mÞ are calculated by

ŝ ¼
ffiffiffî
g

p
, t̂c ¼ b̂

.
ð�2ĝÞ and m̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â� b̂2

.
ð4ĝÞ

r
: (7.11)

Based on the recovered parameters H ¼ ðs; tc;mÞ, the hyperbola illustrated in

Fig. 7.5 can be reconstructed. In general, more samples can improve the accuracy of

the estimation. After computing the motion hyperbola parameters, each node shares

this information with its neighbors to estimate local clusters.

Path estimation geometry. The estimated motion hyperbola parameters only cap-

ture the relative position and motion of a pair of nodes. To build a local cluster,

three relations among nodes i, j, and k are needed to infer the relative motion of the

node triangle, just like using distance information of three nodes to build a local

coordinate system. From the perspective of node i, this problem can be cast as fixing

i at the origin and determining the motions of j and k in the frame of i. Analysis in
[100] shows that three motion relations are enough to tackle this problem.

( )ijr t

( )iL t

( )jL t ( )cji jit t s

ijm

Fig. 7.5 Distance ranges lie on a hyperbola
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Local Cluster Localization. After constructing each triangle in its own frame, each

node calculates the motion of its neighbors following a procedure analogous to

chained trilateration. The algorithm for local cluster localization is outlined in

Algorithm 7.2.

Global View Construction. To get a global view of a dynamic network, we can

repeatedly find the best alignment for each pair of local clusters, i.e., merging two

local clusters consistently, that share three or more noncollinear nodes, each time

adding a local cluster to the major component. This problem is formulated as the

absolute orientation problem, which can be solved efficiently by the eigendecom-

position. Consider the problem of aligning cluster 2 to cluster 1. Let S denote the

common nodes between cluster 1 and cluster 2. For i 2 S, we use ðPð1Þi ;V
ð1Þ
i Þ and

ðPð2Þi ;V
ð2Þ
i Þ to represent the position and velocity of node i in cluster 1 and cluster 2,

respectively. The Euclidean transformation from Pð2Þ to Pð1Þ is recovered by mini-

mizing the sum of squared residuals:

ð �R; �TÞ ¼ argmin
R;T

X
i2S

P
ð1Þ
i � RðPð2Þi Þ � T

��� ���2; (7.12)

where R corresponds to a rotation, while T is a translation. After solving for ð �R; �TÞ
by the eigendecomposition method, we solve

�V ¼ argmin
V

X
i2S

V
ð1Þ
i � �RðVð2Þi Þ � V

��� ���2; (7.13)

to get the velocity offset �V that best shifts velocities in cluster 2 to align with those

of cluster 1.

Algorithm 7.2 Local cluster localization

Input: Node i and its neighbors Neighbors
Output: LocalCluster represented by a set of (ID, position, velocity) tuples of Neighbors
doneNodes ¼ f
Initialize LocalCluster as triangle (i; j0; k0) by randomly picking j0; k0 from Neighbors
Add j0; k0 to doneNodes
for node j 2 doneNodes do
for node k 2 Neighbors� doneNodes do

if Hji, Hjk and Hik are available then
Construct triangle (i, j, k)
Merge (i, j, k) into LocalCluster
Add k to doneNodes

end if
end for

end for
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7.4.1 Techniques for Universal Localization

Universal localization refers to the localization algorithms that can be applied to

both mobile and static wireless networks. For static networks or slightly mobile

networks, i.e., the maximum velocity of nodes vmax is zero or close to zero, the

geometry relationship among nodes changes slowly. In other words, in each step,

little information from network measurements is useful for refining the localization

results. In this case, the strategy adopted by [96, 99] is to substitute vmax with

vmax+a. As discussed in [96], there is a trade-off with the value of a. On the one

hand, the greater the value of a is, the more uncertainty is introduced, because we

use a circle with radius vmax+a instead of vmax to represent the candidate region of

each node. On the other hand, if a is small, it cannot provide enough variability in

network measurements when the network is static or slowly mobile. Results from

[96, 99] demonstrate that setting a ¼ 0.1r works well in practice, where r is the
radio range of network nodes.
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Chapter 8

Localizability

8.1 Network Localizability

Based on distance ranging techniques, the ground truth of a wireless ad hoc network

can be modeled by a distance graph G ¼ (V, E), where V is the set of wireless

communication devices (e.g., laptops, RFID tags, or sensor nodes), and there is an

un-weighted edge (i, j)∈E if the distance between vertices i and j can be measured

or both of them are at known locations, e.g., beacon nodes. Associated with each

edge (i, j), we use a function d(i, j): E!R to denote the measured distance value

between i and j.
An essential question occurs as to whether or not a network is localizable given

its distance graph. This is called the network localizability. A graph G¼ (V, E) with
possible additional constraints I (such as the known locations of beacon nodes)

is localizable if there is a unique location p(v) of every node v such that d(i, j) ¼
||p(i) � p(j)|| for all links (i, j) in E and the constraint I is preserved, where ||�||
denotes the Euclidean distance in the 2D plane. Different from localization that

determines locations of wireless nodes, localizability focuses on the location

uniqueness of a network.

Localizability assists localization fundamentally and importantly. As previously

mentioned, localization often consumes a large amount of computational resource

and makes sense only when networks are localizable. Hence, testing localizability

before localization can save unnecessary and meaningless computation, as well as

accompanying power consumption.

Also, being aware of localizability is of great benefit to many aspects of network

operation and management, including topology control, network deployment, mobil-

ity control, power scheduling, and geographic routing, as illustrated in Fig. 8.1. Taking

deployment adjustment as an example, many measurements (e.g., augmenting com-

munication range, increasing node or beacon density, etc.) can be taken to improve

those non-localizable networks to be localizable, which can be effectively guided by

the results of localizability testing.

Although the network localizability is given birth by the proliferation of wireless

ad-hoc/sensor networks, the problem of unique graph realization has attracted a lot

of efforts made by researchers from different literatures over 30 years. An obvious
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requirement for a network to be localizable is the network connectivity: when a

network is densely connected, it is more likely to be uniquely localizable; other-

wise, it may fail the localizability testing. Besides dense connectivity, researchers

also point out other requirements for localizable networks, which is discussed in the

next section.

8.2 Graph Rigidity

8.2.1 Globally Rigid Graphs

Previous studies have shown that the network localizability problem is closely

related to graph rigidity [77, 101–103].

A realization of a graph G is a function p that maps the vertices of G to points in

Euclidean space (this study assumes 2D space). Generally, realizations are referred

to the feasible ones that respect the pairwise distance constraints between a pair of

vertices i and j if the edge (i, j)∈E. That is, d(i, j) ¼ ||(p(i) � p(j)|| for all (i, j)∈E.
Two realizations of G are equivalent if they are identical under trivial variation in

2D plane: translations, rotations, and reflections. A distance graphG has at least one

feasible realization which represents the ground truth of the corresponding network.

Formally, G is embeddable in 2D space and all pairwise distances are compatible, i.

e., satisfying the triangle inequality. We assumeG is connected and has at least four

vertices in the following analysis.

A graph is called generically rigid if one cannot continuously deform any of its

realizations in the plane while preserving distance constraints [101, 103]. A graph is

generically globally rigid if it is uniquely realizable under translations, rotations,

and reflections. A realization is said to be generic if the vertex coordinates are

algebraically independent [101]. Since the set of generic realizations is dense in the

space of all realizations, we omit this word for simplicity hereafter.

There are several distinct manners in which the nonuniqueness of realization can

appear, as shown in Fig. 8.2. A graph that can be continuously deformed while still

Topology

Power

Routing

Mobility

Deployment
Localizability

Fig. 8.1 Localizability can assist network operation and management
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satisfying all the constraints is said to be flexible; otherwise it is rigid. Hence,

rigidity is a necessary condition for global rigidity. Rigid graphs, however, are still

susceptible to discontinuous deformation. Specially, they may be subject to flip
ambiguities in which a set of nodes has two possible configurations corresponding to

a “reflection” across a set of mirror nodes (e.g., v and w in the flip example in

Fig. 8.2). This type of ambiguity is not possible in three-connected graphs. Figure

8.2 further provides a three-connected and rigid graph which becomes flexible upon

removal of an edge. After the removal of the edge (u, v), a subgraph can swing into a
different configuration in which the removed edge constraint is satisfied and then

reinserted. Such a type of ambiguity, called flex deformation, is eliminated by

redundant rigidity, the property that a graph remains rigid upon removal of any

single edge.

Summarizing the conditions for eliminating ambiguities in graph realization,

Jackson and Jordan provide the necessary and sufficient condition for global

rigidity in Theorem 8.1.

Theorem 8.1 [102]. A graph with n� 4 vertices is globally rigid in two dimensions
if and only if it is three-connected and redundantly rigid.

Based on Theorem 8.1, the property of global rigidity can be tested in polynomial

time by combining the Pebble game algorithm [104] and the network flow algo-

rithms [101, 105] for rigidity and three-connectivity, respectively.

Fig. 8.2 Graph deformation and solutions
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8.2.2 Conditions for Network Localizability

The locations of all vertices in a globally rigid graph can be uniquely determined if

fixing any group of three vertices to avoid trivial variation in 2D plane, such as

translation, rotation, or reflection. Hence, for wireless ad hoc networks, Eren et al.

present the following conclusion that perfectly bridges the theory of graph rigidity

and the application of network localizability, as illustrated in Fig. 8.3.

Theorem 8.2 [77]. A network is uniquely localizable if and only if its distance
graph is globally rigid and it contains at least three anchors.

Figure 8.4 shows the relationship between network connectivity and localizability

(global rigidity) through extensive simulations. We generate networks of 400 nodes

randomly, uniformly deployed in a unit square [0, 1]2. The unit disk model with a

radius is adopted for communication and distance ranging. For each evaluation, we

integrate results from 100 network instances. The curve ri denotes the percentage of
i-connected networks in varied radius while rg denotes globally rigid networks. Like

many other properties for random geometric graphs, both connectivity and rigidity

have transition phenomena. It can be seen that rg lies between r3 and r6 and is closer to
r3. This observation reflects the theoretical conclusion that three-connectivity is a

necessary condition while six-connectivity is a sufficient one for global rigidity [106].
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8.3 Inductive Construction of Globally Rigid Graphs

Inductive construction of globally rigid graphs inspires localizability testing in a

distributed manner, which is highly appreciated by wireless ad hoc/sensor network

community since centralized approaches often consume large communication

resource on data transmission and device synchronization.

8.3.1 Trilateration

Trilateration is an important and widely accepted scheme to inductively construct

localizable networks. The basic principle of trilateration is that the position of an

object can be uniquely determined by measuring the distances to three reference

positions. Being employed in many real-world applications [30, 31], it is computa-

tionally efficient, fully distributed, and easy to implement. Importantly, the net-

works that can be constructed by iterative trilateration are localizable.

Theoretically, a trilateration ordering of a graph G ¼ (V, E) is an ordering (v1,
v2, . . ., vn) of V for which the first three vertices are pairwise connected and at least

three edges connect each vertex vj, 4 � j � n, to the set of the first j�1 vertices.

A graph is a trilateration extension if it has a trilateration ordering. It is shown that

trilateration extensions are globally rigid [77, 107].

Trilateration-based approaches, however, recognize only a subset (called trila-

teration extension) of globally rigid graphs. In Fig. 8.5a, two globally rigid

Globally rigid
component

Globally rigid
component1
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6
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Globally rigid
component

1 2

3 4 5
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b

Fig. 8.5 Deficiency of

trilateration. (a) Geographical
map; (b) border nodes

8.3 Inductive Construction of Globally Rigid Graphs 115



components are connected by nodes i (i¼ 1,2,. . .,7). Suppose the nodes 1, 2, 3, and
4 in the left component are known as localizable. The localizability information,

however, cannot propagate to the other part by trilateration since none of the nodes

5, 6, and 7 connects to three localizable nodes. Obviously, trilateration wrongly

reports that nodes in the right component are not localizable, ignoring the fact that

the entire graph is globally rigid.

A similar situation recurs for the border nodes, as illustrated in Fig. 8.5b. In this

case, the border nodes 1 and 2 cannot be localized by trilateration even though

nodes 3, 4, and 5 know their locations. Actually, the entire graph in Fig. 8.5b is

globally rigid and thus localizable. Discarding locating border nodes is unaccept-

able, as border nodes often play critical roles in many applications. For example, a

sensor network for forbidden region monitoring has special interests on when and

where intruders crash into, which are collected by border nodes only.

8.3.2 Wheel

The limitations of trilaterations motivate another method to construct localizable

networks based on wheel graphs. A wheel graph Wn is a graph with n vertices,

formed by connecting a single vertex to all vertices of an (n�1) cycle. The vertices
in the cycle will be referred to as rim vertices, the central vertex as the hub, an edge
between the hub and a rim vertex as a spoke, and an edge between two rim vertices

as a rim edge. Figure 8.6 shows three examples of wheel graphs, in which node 0 is

the hub and others are rims.

The wheel graph has many good properties. From the standpoint of the hub

vertex, all elements, including vertices and edges, are in its one-hop neighborhood,

which indicates that the wheel structure is fully included in the neighborhood graph

of the hub vertex. Furthermore, wheel graphs are important for localizability

because they are globally rigid in 2D space [108]. Thus, all vertices in a wheel

structure with three beacons are uniquely localizable, which indicates an approach

to identify localizable vertices. Realizing nodes in general wheel graphs is NP-hard
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Fig. 8.6 Wheel graphs. (a) W4; (b) W6; (c) W9

116 8 Localizability



[77, 109]. For wireless networks, fortunately, the number d of neighbors of a node

(a.k.a., the degree of a node) cannot be arbitrarily high since distance measure-

ments, as well as communication links, only exist between nearby nodes. There-

fore, the coordinates of nodes can be calculated by bilateration that examines the

location space of at most O(2d) possible locations, where d is bounded by a constant
number.

A wireless network can be modeled by a graph GN ¼ (V, E). The closed
neighborhood graph of a vertex v∈V, denoted by N[v], is a subgraph of GN

containing only v and its one-hop (direct) neighbors and edges between them in

GN. We also define the open neighborhood graph N(v), where N(v) is obtained by

removing v and all edges incident to v from N[v]. Note that N[v] is the local

information known by the vertex v.
According to the previous analysis, if a vertex in N[v] is included in a wheel

graph centered at v, it is localizable by given three beacons in N[v]. The localizabil-
ity issue now can be transformed to finding wheel vertices in N[v] when given a

number of known localizable vertices.

We first consider the presence of three localizable vertices in N[v]. There are two
cases of their distribution: (1) the hub v and two rim vertices and (2), three rim

vertices. In the second case, v can be easily localized by trilateration. As a result,

this case degenerates to the first one. We thus focus on the first case in the following

analysis. Without loss of generality, suppose the two rim localizable vertices are v1
and v2. In addition, a two-connected component in a graph G is a maximal subgraph

of G without any articulation vertex whose removal will disconnect G. For sim-

plicity, we use blocks to denote two-connected components henceforth if no

confusion caused.

In Theorem 8.3, we propose a sufficient and necessary condition to find wheel

vertices.

Theorem 8.3 [108]. In a neighborhood graph N[v] with k (k� 3) localizable
vertices vi (i¼ 1, . . ., k and v ¼ vk), any vertex (other than vi) belongs to a wheel
structure with at least three localizable vertices if and only if it is included in the
only block of N(v) that contains k�1 localizable vertices.

According to Theorem 8.3, finding wheel vertices can be implemented by calculat-

ing blocks, as shown in Algorithm 8.1. Suppose there are k localizable vertices in a
neighborhood graph N[v].

The core part of Algorithm 8.1 is to find blocks in a graph G¼(V, E). This can be
done by depth first search in linear time in terms of the size of graphs. Hence the

time complexity of Algorithm 8.1 is O(|V|þ|E|).
Theorem 8.4 (Correctness) [108]. In a neighborhood graph N[v], a vertex is
marked by Algorithm 8.1 if and only if it is uniquely localizable in N[v].

Theorem 8.4 guarantees the optimality of Algorithm 8.1 since it finds the maximum

number of localizable vertices in N[v].
Now, we consider the localizability for an entire network. We call this problem

the network-wide localizability test so as to distinguish with the previously
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discussed case of localizability within neighborhood. Similar to the trilateration

extension, the wheel extension is defined as follows.

Definition 8.1. A graph G is a wheel extension if there are

(a) three pairwise connected vertices, say v1, v2, and v3; and
(b) an ordering of remaining vertices as v4, v5, v6. . ., such that any vi is included in

a wheel graph (a subgraph of G) containing three early vertices in the
sequence.

Theorem 8.5 [108]. The wheel extension is globally rigid.

The family of wheel extensions is actually a superset of trilateration extensions.

Figure 8.7 shows an example that is a wheel extension but not a trilateration

extension. To test localizability, it is important to know whether a graph is a

wheel extension. In the following, we present a distributed protocol that can mark

localizable nodes in a network. The protocol works in an iterative manner in which

a node marked in the current iteration acts as a known localizable one (or beacon) in

subsequent iterations. Localizability information diffuses step by step and reaches

the entire network after a number of iterations. A particular iterative process on the

example graph shown in Fig. 8.7 is as follows. First, three beacons are available at

the bottom left. In the first iteration, nodes in the bottom left hexagon are identified

Fig. 8.7 A wheel extension graph

Algorithm 8.1 Node

localizability
1: if k>¼3, then
2: find all blocks in N(v), denoted by Bi, i¼1,. . .,m;

let B1 be the unique one of localizable nodes;

3: for each vertex x not being marked in B1

4: mark x localizable;

5: connect x to all other localizable ones;

6: end for

7: end if
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because they are included in a wheel graph with three beacons. Such a procedure

continues until all localizable nodes are marked.

The protocol is given in Algorithm 8.2, which is conducted in a distributed

manner at each node. If all nodes in a network are marked by Algorithm 8.2, the

network graph is a wheel extension, and vice versa.

We now analyze the time complexity of Algorithm 8.2 running on a graph G
with n vertices. Since Algorithm 8.1 is only executed at the vertices with at least

three localizable ones in N[v], these vertices are localizable and will be marked by

Algorithm 8.2. Therefore, the running time of Algorithm 8.2 is output sensitive. In

the worst case, Algorithm 8.1 will be executed in all vertices in G. Let d(v) denote
the degree of a vertex v. In line 2, calculating blocks in N(v) costs O(d(v)2) time in

dense graphs or O(d(v)) in sparse graphs. In the while loop between lines 3 and 11,

at most d(v) neighbors are marked and informed. Hence, the total running time of

Algorithm 8.2 is ∑v∈GO(d(v)
2þd(v)) ¼ O(n3) in dense graphs and ∑v∈GO(d(v)) ¼

O(n) in sparse graphs. The bound is tight due to the instance of G¼ Kn, where Kn is

the complete graph of n vertices.

In practice, a wireless ad hoc network cannot be excessively dense because the

communication links only exist between nearby nodes due to radio signal attenua-

tion. In addition, the mechanism of topology control reduces redundant links to

alleviate collision and interference. Hence, the proposed algorithm is practically

efficient.

To analyze the correctness of Algorithm 8.2, we first define the concept of k-hop
localizability.

Definition 8.2. In a network, a node is k-hop localizable if it can be localized by

using only the information of at most k-hop neighbors.

Algorithm 8.2 Network localizability

1: exchange neighbor list between neighbors;

2: construct N[v];

3: if N[v] has >¼ 3 localizable nodes

4: run Algorithm 8:1 on N(v), obtaining a number of blocks Bi; (Assume B1 is the

unique localizable one)

5: mark v and B1 localizable;

6: inform B1 the change;

7: Update N(v);

8: end if;

9: while(true)

10: wait for state change of neighbor nodes;

11: update N(v);

12: if any nonmarked Bi has >¼2 localizable nodes

13: mark Bi localizable;

14: update N(v);

15: inform Bi the change;

16: end if

17: end while
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Clearly, 1-hop localizable is the most critical condition for all k and the set of

k-hop localizable nodes is monotonically increasing.

Theorem 8.6. In a graph G, a vertex marked by Algorithm 8.2 if and only if it is
1-hop localizable in G.

Theorem 8.6 suggests the optimality of Algorithm 8.2 by showing that it is able to

recognize all 1-hop localizable nodes locally.

Compared to the previous trilateration (TRI)-based methods, the advantages of

the proposed method (WHEEL) lie in:

1. Capability. Recognizing a superset of localizable nodes, as shown in Fig. 8.8.

2. Efficiency. TakingO(n) running time for sparse graphs andO(n3) for dense ones,
where n is the network size.

3. Low cost. Introducing no extra wireless communication cost by using only

localized information.

Three examples are further provided to show how wheel outperforms TRI. In

Fig. 8.9, a particular network with an “H” hole is generated in which 400 nodes are

randomly distributed. The blue dots denote the nodes marked by TRI, while reds

denote the nodes marked by wheel but not by TRI. Neither TRI nor wheel can mark

the remaining blacks. Wheel can easily step over gaps, such as borders or barriers,

and recognize more nodes than TRI does. The same phenomenon recurs in all three

network instances.

WHEEL

Localizable
Networks

TRI

Fig. 8.8 Trilateration extension is a

subset of wheel extension

a b c

Fig. 8.9 Networks with “H” holes. (a) Case 1; (b) case 2; (c) case 3
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8.4 Node Localizability

Due to hardware or deployment constraints, for some applications, the networks are

almost always not entirely localizable [110]. Indeed, theoretical analyses indicate

that, in most cases, it is unlikely that all nodes in a network are localizable, but a

(large) portion of nodes can be uniquely located [110]. Thus, the network localiz-

ability testing often fails unless networks are highly dense and regular.

On the other hand, nodes are not equally important since they play different roles

in a network. Such differentiation can be application specific. For example, a sensor

network for monitoring forbidden regions has special interest in when and where

the intruders enter, which are collected by border nodes only. In addition, many

applications can function properly as long as a sufficient number of nodes are aware

of their locations [110]. These observations motivate researchers to consider the

localizability problem beyond the network localizability.

Although the theory of network localizability is complete, what we really desire

is to answer the following two fundamental questions that cannot be solved by

existing methods:

1. Given a network configuration, whether or not a specific node is localizable?

2. How many nodes in a network can be located and what are they?

Answering the above questions not only benefits localization, but also provides

instructive directions to other location-based services. Therefore, the node localiz-
ability is addressed [110, 111], which focuses on the location uniqueness of every

single node. Clearly, network localizability is a special case of node localizability in

which all nodes are localizable. Thus, node localizability is a more general issue.

The first major challenge for studying node localizability is to identify uniquely

localizable nodes. Following the results for network localizability, an obvious

solution is to find a localizable subgraph from the distance graph and identify all

the nodes in the subgraph localizable. Unfortunately, such a straightforward attempt

misses some localizable nodes and wrongly identifies them as nonlocalizable, since

some conditions (e.g., three-connectivity) essential to network localizability are no

longer necessary to node localizability. As shown in Fig. 8.10a, node u can be

uniquely located under this network configuration but not included in the three-

connected component of beacons. The uniqueness of u’s location is explained in

Fig. 8.10b, c where we decompose the network into two subgraphs. As u connects

two beacons in the right component, it has two possible locations denoted by u and
u0. If we adopt u0 as its location, it is impossible to embed the left subgraph into the

plane. Specifically, the left subgraph has two realizations, but neither of them is

compatible with u0. Hence, u is uniquely localizable, although the three-connectivity
property does not hold. Motivated by the example, it is clear that the results derived

for network localizability cannot be directly applied, and we have to reconsider the

conditions for node localizability.

The big picture of the state of the arts of node localizability is shown in Fig. 8.11.

An obvious condition for a vertex to be localizable is that it must connect at least
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three other nodes, i.e., having a degree of at least 3. Goldenberg et al. [110] propose

the first nontrivial necessary condition: if a vertex is localizable, it has three vertex-

disjoint paths to three beacons. We denote such a condition as three-paths for short.

The necessity of three-paths is obvious: if a vertex has only two vertex-disjoint

paths to beacons, it definitely suffers from a potential flip ambiguity by reflecting

along the line of a pair of cut vertices. Nevertheless, it is easy to find that some

nonlocalizable vertices also satisfy the three-path condition, as illustrated in

Fig. 8.12. The vertex u is flexible even though it has three vertex-disjoint paths to

three beacons. Redundant rigidity has been further proved to be essential for node

localizability and accordingly Yang et al. [111] achieve the best necessary condi-

tion by combining 3P (three vertex-disjoint paths) and redundant rigidity, which is

called RR–3P for short. Clearly, RR–3P is still insufficient as illustrated in

Fig. 8.13a. Considering the vertex u, it satisfies the RR–3P condition but not

localizable due to the discontinuous flexing in which u can reflect along the axis

denoted by the dashed line in Fig. 8.13b.
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Fig. 8.10 An example showing that the result from network localizability fails to identify node u
as localizable. (a) u is localizable; (b) graph decomposing; (c) two realizations of the left subgraph
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Fig. 8.11 Evolution of conditions of node localizability
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On the other hand, for the sufficiency of node localizability, a straightforward

solution [110] is presented to identify localizable nodes by finding globally rigid

subgraph. All nodes in a globally rigid subgraph with at least three beacons

(denoted by RRT-3B) are localizable. An improvement has also been made by

introducing the “implicit edge.” Recent studies show that a vertex is localizable if it

belongs to a redundantly rigid component in which there exist three vertex-disjoint

paths connecting it to three beacon vertices in the component (denoted by RR3P)

[111]. Note that RR3P is fundamentally different from the previously mentioned

RR–3P. RR3P requires the three paths strictly residing in the redundantly rigid

component.

u
Fig. 8.12 The condition of

three paths is insufficient

u

u u

a

b

Fig. 8.13 RR–3P is

insufficient. (a) The vertex u
satisfies RR–3P; (b) u suffers a

discontinuous flexing
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The RR–3P and RR3P conditions are implemented in a real-world wireless

sensor network [111]. We can see from Fig. 8.14 that almost all the time the

network is not entirely localizable. However, a large portion, on average nearly

80%, of nodes are actually localizable (i.e., identified by the RR3P condition).

Specifically, 90% of network topologies have at least 60% of the nodes localizable,

and more than 25% of topologies have at least 90% of nodes localizable. These

results suggest the necessity and importance of node localizability. Figure 8.15

shows the results of node localizability testing. For the first time, it is possible to

analyze how many nodes one can expect to locate in sparsely or moderately

connected networks.

Other than figuring out localizable nodes, being aware of node localizability

greatly helps network deployments. Generally speaking, for those nonlocalizable

networks, we expect to make them localizable by adjusting some network para-

meters. Traditional solutions include augmenting ranging capability, increasing

node density, or equipping more nodes with GPS. Such measures can be more
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Fig. 8.15 Localizability testing on a particular network instance in which greens are beacons,

blacks are marked localizable, and reds are marked nonlocalizable. (a) Measured network topol-

ogy; (b) RR3P subgraph; (c) identifying localizable nodes
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targeted and effective with the knowledge of node localizability. Specifically, it is

possible for these adjustments to focus on nonlocalizable nodes only instead of

blindly exerting on all nodes.

Similar to existing localization approaches, the improved localization approach

can be divided into two stages: data preprocessing and location computation. As a

rule, the deployment adjustment is included in the preprocessing stage so as to

intensify network localizability or reduce the computation complexity of localiza-

tion. As shown in Fig. 8.16, the major difference of the improved flow is that the

task of localizability testing is added to assist deployment adjustment. Specifically,

the testing algorithm is carried out on the initial network deployment and the results

are used to instruct the subsequent adjustments.

We increase the distance ranging capability by augmenting signal transmitting

power. Those localizable nodes keep their states unchanged while others augment

their distance ranging capabilities to proper levels. This network adjustment not

only increases the number of localizable nodes, but also decreases communication

interference and energy consumption compared with traditional solutions.

Large-scale simulations are further conducted to examine RR–3P and RR3P

under varied network parameters. We randomly generate networks of 400 nodes,

uniformly deployed in a unit square [0, 1]2. The unit disk model with a radius is

adopted for communication and distance ranging. For each evaluation, we integrate

results from 100 network instances.

We study the improvements of our proposed conditions to existing ones. Note

that the necessary conditions and the sufficient ones can be used to identify

nonlocalizable and localizable nodes in a network, respectively. Other than the

proposed RR–3P and RR3P, for comparison, we introduce the best previous

necessary condition 3P and the widely used sufficient condition TRI, which is the

theoretical upper bound of trilateration based approaches. Figure 8.17a shows the

amount of nodes marked by 3P and TRI. As we know, nodes above the curve of 3P

are nonlocalizable while those below the curve of TRI are localizable. In addition,

the other ones between two curves are unknown at present based on 3P and TRI.

Specifically, almost 70% of nodes left unknown at radius 0.18. Contrastively,

Fig. 8.17b shows the results if we adopt the proposed RR–3P and RR3P. Clearly,

two curves are close to each other and the gap between them is always narrow along

Deployment
Adjustment

Pre-processing

Localization

Localizability
Testing

Traditional
Improved

Network
Deployment

Fig. 8.16 Localizability assists network deployment

8.4 Node Localizability 125



with the variation of network connectivity, indicating a smaller number of nodes

whose localizability cannot be determined.

We also study the performance of node localizability for sparsely and moder-

ately connected networks. In this evaluation, the percentage of localizable and

nonlocalizable nodes in 100 network instances is shown in Figs. 8.18 and 8.19

with communication radius r¼0.12 and 0.16. According to Fig. 8.18a, b, RR–3P

and 3P have nearly similar capabilities to recognize nonlocalizable nodes at both

sparse and medium network connectivity, except for a few cases in which RR–3P

successes much. For sufficient conditions, as shown in Fig. 8.19a, RR3P identifies

30% nodes as localizable while TRI cannot work at all due to sparseness. When

r ¼ 0.16 in Fig. 8.19b, RR3P recognizes, on average, more than 70% localizable

nodes in 78 cases while TRI only marks less than 10% localizable ones in 91 cases.

Such observations show that RR3P remarkably outperforms TRI at a specific range

of communication radius.

We further provide two examples to show how RR–3P and RR3P outperform 3P

and TRI. In Fig. 8.20, a particular network with a “Z” hole is generated in which

400 nodes are randomly distributed. The red dots denote the localizable nodes

marked by TRI while blues denote the nonlocalizable nodes marked by 3P. Neither

TRI nor 3P can recognize the remaining gray ones. As shown in Fig. 8.21, similar

evaluations are conducted on the same data sets and we use RR3P and RR–3P
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Fig. 8.17 Improvements of proposed RR–3P and RR3P. (a) The capability of 3P and TRI; (b) the
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Fig. 8.20 Testing 3P and TRI

on network instances with “Z”

holes. (a) Case 1; (b) case 2;
(c) case 3



instead of TRI and 3P, respectively. The comparison between Figs. 8.20 and 8.21

suggests that the proposed algorithm successfully steps over geographic gaps, such

as borders or barriers, and identifies more nodes than previous approaches. We

conduct more simulations and the results are consistent.

Fig. 8.21 Testing RR–3P and

RR3P on network instances

with “Z” holes. (a) Case 1;
(b) case 2; (c) case 3
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8.5 Summary

In this chapter, we discuss the localizability issue for wireless networks. Network

localizability is to determine whether or not all nodes in a network are localizable

given distance constrains. In recent years, this issue draws remarkable attentions

from an increasing number of researchers. Based on rigidity theory, we analyze the

reasons why the locations of nodes in a network cannot be uniquely determined. In

addition, we present two approaches for inductively constructing globally rigid

graphs: trilateration and WHEEL. WHEEL is proved to be a nice substitute for

trilateration, determining the locations of a larger number of nodes, more suitable

for sparsely or moderately connected networks, and introducing no extra commu-

nication cost. We then introduce the concept of node localizability. Different from

network localizability, node localizability focuses on whether or not a specific node

is localizable given distance constrains. Node localizability is a more general issue

and accordingly more difficult. We extensively investigate the state-of-the-art

results on finding the condition for a node being localizable. In general, this is a

new research area, leaving several important problems unsolved as follows.

Currently, the necessary and sufficient condition for node localizability is still

open and researchers believe RR3P is the one. The sufficiency of RR3P is proved in

[111]; while the necessity remains open, which is both challenging and worthwhile.

Another direction of future research with good potential is localizability under

noisy distance measurements. Previous studies have shown that measurement errors

play an important role on localization. Some nodes uniquely localizable under

perfect distance ranging may suffer from location ambiguities in a practical sce-

nario of ranging errors. We envision this point in order to increase the robustness of

localizability testing.
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Chapter 9

Location Privacy

9.1 Introduction

Location-based services exploit location information to provide a variety of fancy

applications. For instance, E-911 in the USA (correspondingly E-112 in Europe)

tries to help the caller of an emergency call as soon as possible by locating him or

her through GPS. Besides, applications that notify users the nearby places of

interest (such as the nearest hospital, restaurant, and store.) can facilitate daily

life. While amount of attractive quality of life enhancing applications are presented

by location-based services, new threats are also brought in. Among these threats,

perhaps the most important one is the intrusion of location privacy.

To clarify the meaning of the term “location privacy,” we use Alan Westin’s

commonly quoted definitions of information privacy [112]. Location privacy can be

defined as a special type of information privacy:

Location privacy is the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent location information about them is communi-
cated to others.

In other words, location privacy mainly concerns user’s ability of controlling

location information.

Most people have not paid enough attention on their location privacy. They tend to

underestimate the harmof location leaking for possible two reasons. First, they do not

fully understand the negative consequence of privacy divulging. Along with the

proliferation of pervasive and mobile computing, however, location disclosure not

only leaks location information, but also leads to the implications of personal

information. For example, by tracking the history of one’s movement, it is possible

for attackers to reveal some personal information, such aswho he is, where he usually

goes shopping, what company he is working for, and how often he does exercise.

Second, protecting location privacy usually to some extent sacrifices the quality

of services. Therefore, when we study location privacy, there is a key question

throughout: How much protection on location privacy is effective and acceptable?

Although the answer to this question is actually application and user dependent, the

public has a common belief that a good service design should take both the quality

and the privacy concerns into account.

Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-awareness
Technology for Wireless Networks, DOI 10.1007/978-1-4419-7371-9_9,
# Springer Science+Business Media, LLC 2011
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In Sect. 9.2, we discuss the threats on location privacy. Section 9.3 discusses the

four classes of privacy protection strategies. In Sect. 9.4, we concentrate on location

anonymity, which involves most of recent research works. Section 9.5 provides

several directions of ongoing research on location privacy.

9.2 Threats

To illustrate the threats of location privacy, we focus on two questions: How can

adversary obtain the location information of others? What if location information is

leaked?

9.2.1 How Can the Adversary Obtain Location
Information of Others?

Most users only desire to release their location information to certain service

providers. A straightforward question is how a third-party adversary can get access

to the location information.

There are several possible ways. For example, an adversary can intercept the

communications between the user and the service provider, or crack data from the

service provider directly, if the service provider does not protect user data well.

What is worse, some service providers might be camouflaged and malicious, so

they intentionally collect user information and sell them to hostile parties.

9.2.2 What Is the Negative Consequence
of a Location Leak?

The second question is what the consequence of location leaking is. A direct

negative effect is that personal well-being and safety are influenced. The leakage

of location information not only yields the uncomfortable creepiness of being

watched, but also leads to physical harms to individuals.

Another negative effect is the unwanted revelation of user activities. For most

people, it might be embarrassing to be seen at places such as abortion clinic and

AIDS clinic. It might also be unwilling for a staff if the proximity to a business

competitor is revealed to the boss. Generally speaking, location information con-

sists of three explicit or implicit factors: time, location, and personal identity.

Therefore, a large amount of personal information, such as political affiliations,

religious beliefs, lifestyles, and medical status, can be inferred by gathering loca-

tion information.

Here we use the term “gathering” because rather than the presence at

certain locations, the pattern of movement can be acquired by tracking an
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individual’s location for a period and help the adversary to read the meaning of the

individual’s routes.

The following example shows how one’s home address can be inferred from

one’s pattern of everyday movement. Assume his location is recorded by an

attacker every 5 min. Then all these location information can be segmented into

discrete trips. Observing these trips long enough (say, at least 1 km long), the

adversary can gather many clues in order to infer the location of his home. First, if

the last trip always ends in a same place everyday, this place has a high probability

of being his home. Second, if the subject spends much more time in a same place

than in other places, then this place may be his home. Third, considering the place

of his stay between 6 p.m. and 8 a.m., if there is a place that occupies a high

percentage, that place is probably his home.

9.3 Protection Strategies

In [113], existing location privacy protection strategies fall into four categories:

regulatory, privacy policies, anonymity, and obfuscation. Regulatory strategies try

to govern the use of personal information by legislation. Privacy policies provide

flexible privacy protection in order to meet the different requirement of users.

Anonymity approaches aim at disassociating the location information from the

real identity of a user. Obfuscation protects privacy by degrading the resolution

of location information provided by service providers. The former two strategies

mainly aim at preventing the attacker from obtaining the location information

of others through political efforts of mechanism designs. The latter two, on the

contrary, aim to preserve location privacy technically.

9.3.1 Regulatory Approaches

The most fundamental privacy protection strategy is to govern fair use of personal

location information by developing related regulations. Existing regulations are

quite different from one another since they are drafted by different organizations

and nations based on their own requirements. These regulations can be mainly

summarized by the five core principles proposed in Fair Information Practice

Principles [114]:

1. Notice/awareness. Individuals must be aware of the identification of the entity

collecting the data and the purpose of data collecting.

2. Choice/consent. Individuals must be able to decide how any personal informa-

tion collected from them may be used.

3. Access/participation. Individuals must be able to access data about themselves

and to contest the data accuracy and completeness.
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4. Integrity/security. Collectors must ensure the accuracy of personal data and

protect these data from disclosure.

5. Enforcement/redress. Collectors must be accountable for any violation of above

principles.

Although legislation provides a powerful way of protecting privacy, it also brings

about troubles. Privacy laws vary from nation to nation, so that location-based

services abide by the laws of a particular nation might violate privacy rules of

another nation. This issue makes it difficult for service providers to extend their

business in different nations without changing the services.

Another issue is that regulations only ensure the mechanisms of enforcement and

accountability when a violation of location privacy is detected. They cannot prevent

invasions of privacy afore. Moreover, regulation legislating always lags behind the

development of new technologies.

9.3.2 Privacy Policies

Regulation provides global or group-based protection of privacy, while it lacks flexi-

bility. Different individuals may have different concerns about their location privacy.

A super starmight bevery sensitive about thedisclosureofhis location, but for ordinary

people, most of their location information is less interesting to the public.

Privacy policies aim at providing flexible privacy protection by adopting indi-

vidual requirements. They are trust-based mechanisms. The term “trust based”

means that the system must be trusted by the users. Policy-based approaches cannot

provide privacy if the system betrays.

PIDF (presence information data format) [115] is a location privacy policy

scheme adopted by the IETF (Internet engineering task force). A user specifies

his acceptable usage of location information, such as whether retransmission of the

data is allowed, at what time the data expire and should be discarded, etc. Personal

preference of privacy policy is then attached to the location information to be

submitted. Both location information and privacy policy are encapsulated into a

location object and digitally signed (in order to prevent separating the location

information from privacy policy) before sending out.

P3P (privacy preferences project) [116] is a Web-based privacy protection mecha-

nism developed by W3C (World-Wide Web consortium). Unlike PIDF, P3P focuses

on the service providers rather than the users. Service providers can publish their data

practices, including the purpose of data collecting, how longwould these data be held,

and whom might these data be shared with. And it leaves for the users proscribing a

particular service to decide whether its data practices violate their own privacy

requirement. P3P does not explicitly address location privacy issues, while its mecha-

nism can be extended for location awareness context.

There are other policy-based mechanisms for location privacy protection, such

as PDRM (personal digital rights management) [117] and IBM’s EPAL (enterprise
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privacy authorization language) [118]. All these policy-based initiatives only pro-

vide a partial solution to privacy. The practicality of these policies under location-

aware environment, which involves frequent and dynamic location information, is

not yet proved. Unlike the regulatory approaches, privacy policies provide no

enforcement, but rely on economic, social, and regulatory pressures.

9.3.3 Anonymity

As mentioned in Sect. 9.2, adversary inference mainly counts on the three factors:

time, location, and personal identity. A direct thought is that if we can hide the

personal identity, i.e., make the released location information anonymous, we can

avoid being affected by the disclosure of location information, because even some

inferences are successfully obtained, an attacker still has no idea about the identity

of the subject.

Anonymity is a technical countermeasure that dissociates information about an

individual from his identity. Its goal is to use location-based services without

revealing user identity. Unlike the trust-based mechanisms, anonymity-based

approaches always suspect every service provider. A service intermediary is intro-

duced for anonymity-based scheme, which is trusted and might help users hiding

their identities. In such a scheme, users do not communicate with service providers

directly. Instead, they communicate with the intermediary first, and then the

intermediary would fetch data from the service providers and send the data back

to the users. The design of a service intermediary is important for both service

providers and users.

Notice that, it is clear that some location-based services, such as “when I am at

home, let my family know where I am” cannot work without the identity of the user.

The anonymity-based approaches mainly focus on other types of services that can

work in the absence of real identities, such as “when I walk into a restaurant, show

me the menu.” In Sect. 9.4, we discuss anonymity-based approaches in detail.

There are drawbacks for anonymity-based approaches. First, anonymity-based

approaches usually rely on the design and deployment of the intermediary. Second,

anonymity barriers authentication and personalization, and thus prevents some

customized applications.

9.3.4 Obfuscation

Obfuscation deliberately degrades the resolution of location information in order to

protect privacy while allowing user identities to be revealed. There are three types

of imperfection in the literature that can be introduced into the location information:

inaccuracy, imprecision, and vagueness. In location awareness context, inaccuracy
means telling a location differs from the real location; imprecision means telling a
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region including the real location instead of the real location; and vagueness means

involving linguistic terms like “near” or “far from” in the conveyed location. Many

researches on obfuscation concentrate on the use of imprecision.

Some anonymity-based approaches also use imprecision. The difference of

anonymity and obfuscation is that anonymity aims to make an individual indiscern-

ible to a number of other individuals, while obfuscation aims to make the location

of an individual indiscernible to a number of other locations.

Commonly used in location-based services, proximity query typically asks about

the life facilities close to a user’s location, e.g., “where is the nearest restaurant?”.

In [119], an algorithmic approach is proposed to obfuscating proximity queries. An

individual reports a set O of locations instead of his real location. The service

provider then tries to find the position of interest for each location in O. If all
locations in O have the same result, the provider can return this result to the user.

Otherwise, it asks whether the user agrees to refine his location. If the user agrees to

do so, the algorithm reiterates. If the user refuses, the provider returns the best

estimate approximation according to the coarse-grained information provided by

the user.

Obfuscation does not rely on any intermediary, and users can communicate with

service providers directly. As a result, the architecture is lightweight and

distributed. Also, it enables the applications that require authentication or persona-

lization, which might be blocked for the anonymity-based approaches. Even though

researchers claim that most location-based services can work with imprecise

location, the loss of quality of service is left open for study.

9.4 Anonymity-Based Approaches

Releasing location information anonymously (i.e., using a pseudonym instead of an

actual identity) can prevent attackers from linking the location information to an

individual. However, hiding the name is not enough. It is possible for attackers to

reidentify an individual from the location information of a pseudonym. For exam-

ple, certain regions of a space, such as desk location in an office, can be closely

associated with certain identities, and hence can be used to deanonymize the users.

Therefore, by tracking a pseudonym and gathering related clues (for example,

where the pseudonym spends most of its time and whether the pseudonym spends

more time at a certain desk than anyone else), the adversary can easily find out the

user identity, although the pseudonym is used.

To relieve the threat of linking attack, anonymity-based approaches need to

make a pseudonym indiscernible with a number of other pseudonyms. To achieve

this, most approaches introduce a trusted intermediary to coordinate users and to

provide a large enough anonymity set. In this section we discuss four anonymity-

based countermeasures in detail, and at the end of this section, we present a brief

comparison of these works.
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9.4.1 k-Anonymity

The concept of k-anonymity is originally proposed in [120] in order to provide

protection for linking attack. A released data set is considered to be k-anonymous if

every element in it is indistinct with at least k-1 other elements. In other words,

every combination of values of attributes can be indistinctly matched to at least k
elements.

Gruteser and Grunwald [121] extend the k-anonymous concept to the scope of

location information. A subject is considered as k-anonymous if and only if the

location of the subject is indistinguishable from the locations of at least k-1 other

subjects. If a k-anonymous individual reports his location, attackers cannot tell

which of the k subjects actually locates at the reported location.

Now the problem turns to be how to achieve k-anonymity. The location infor-

mation can be represented by a tuple of three intervals ([x1, x2], [y1, y2], [t1, t2]).
[x1, x2] and [y1, y2] describe a region in two-dimensional space where the subject is

located at a time span [t1, t2]. Basically, a set of tuples that dissatisfies the k-
anonymity requirement can be converted to a k-anonymous set by generalization.

Generalization is similar to the degrading techniques used for obfuscation, which

decreases the precision of the revealed information. For example, two distinct

intervals [12, 23] and [24, 37] can be generalized to [12, 37] and becomes indistin-

guishable. Since the location information contains both spatial and temporal infor-

mation, generalization can be applied spatially and/or temporally.

The basic idea of spatial cloaking is to choose a sufficiently large area so that

enough number of subjects inhabit this region. Obviously, a larger region means

less precision and lower quality of services. Therefore, the challenge is to report

spatial information as precise as possible while satisfying the k-anonymity con-

straint. The algorithm in [121] uses the quadtree to achieve this objective. It keeps

dividing an area into quadrants of equal size, until further dividing would create a

quadrant with less than k subjects, as illustrated in Fig. 9.1. Each subject reports its

host quadrant as its spatial information.

Temporal cloaking, the orthogonal approach to spatial cloaking, tends to reveal

more precise spatial coordinates while reducing the precision in time dimension.

The idea is to delay a service request containing location information until k
individuals have visited the same area of the requestor. Temporal cloaking can be

combined with spatial cloaking to make a balance between spatial and temporal

resolution.

Certainly, a trusted intermediary is necessary for this approach, since it requires

a global knowledge of the distribution of users. If the k-anonymity constraint is

satisfied, an attacker only has a probability of 1/k at the most to figure out the

identity of a user.

Nonetheless, Bettini et al. [122] point out that simple k-anonymity might be

insufficient since an attacker can track the historical location information of a

pseudonymous user and analyze the movement pattern (e.g., the commuter route

of a pseudonym). To mitigate this type of attack, they introduce the notion of
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“historical k-anonymity,” which concerns that the personal history of location

received by a service provider cannot be distinguished from k-1 other sets of

personal history of location received by the same service provider.

Generally speaking, spatial and temporal cloaking provides a limited protection

for location privacy. Tracking the path of a user can break the protection easily.

Also, this approach sacrifices spatial and temporal resolution of location informa-

tion as well as the quality of service.

9.4.2 Mix Zone

The method of “mix zones” [123] introduces a trusted middleware. A user registers

a list of location-based applications that he is interested in with the middleware. An

application receives event callbacks about the user from the middleware when the

user enters or exits the areas related to this application. The middleware updates

user location periodically and issues callbacks to applications when necessary.

When communicating with service providers, the middleware uses pseudonyms

instead of identities so as to protect privacy.

Mix zone is designed to solve two main drawbacks of anonymity-based

approaches. First, it is obvious that the longer a user keeps using a same pseudo-

nym, the weaker the anonymity becomes. The anonymity would be invalidated if

the identity of a subject one gets revealed at any location on its path. For example, if

a user divulges the identity and location (probably due to the imprudence) in some

messages caught previously, then the user appoints a new anonymous message to

the middleware. Unfortunately, this measurement does not work. The attacker can

link the later message with the previous ones.

Second, the history of location information provides clues that can help attackers

figure out the identity of a subject. Suppose an attacker knows that a pseudonym’s

Fig. 9.1 An example of achieving three-anonymity by quadrants dividing
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home and office are in regions A and B, respectively. But the attacker fails to figure
out the identity of the pseudonym because there are at least k different pseudonyms

in each region. If considering the two clues simultaneously, the attacker might be

able to reidentify the pseudonym, since the individual satisfying both constraints

(home in region A and office in region B) might be unique.

A direct countermeasure is to change user pseudonym frequently. However, it

brings out two new problems. First, some applications might not work properly

with fast-changing pseudonyms. Second, if the spatial and temporal resolution

provided by the middleware is sufficiently high, attackers can still link the old

and new pseudonyms.

To solve the two problems, the concept of “mix zone” is proposed. A mix zone

for a group of users is defined as a connected spatial region of maximum size in

which none of these users have registered any application callback. The areas where

some users have registered for callbacks are called application zones. Users keep

using same pseudonyms within the same application zone. When users are inside a

mix zone, applications would not receive any location information about them. The

following measurement makes the user identities “mixed.” When a user enters an

application zone from a mix zone (or enters a mix zone from an application zone),

the user is assigned with a new, unused pseudonym. As a result, when appears in a

mix zone, a user cannot be distinguished from others inside the mix zone at the

same time. Also, it is difficult to link a user coming out of a mix zone with any user

who enters the mix zone previously.

Figure 9.2 shows an example of this procedure. Suppose there are two users who

have registered services in airport, bank, and coffee shop. At some time, one user is

in the airport and the other is in the coffee shop. Their presence might be aware by

all three service providers since the providers can communicate with each other.

Afterwards both users have entered the mix zone and have their pseudonyms

changed. When one of the two users enters the bank zone, the service providers

only see a new pseudonym appears, but they cannot know which previously

appeared pseudonym should be linked to this new pseudonym, since it could be

either one of the two users.

Fig. 9.2 Mix zone example
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However, how to divide users into different groups and set the mix zone for

these groups is complex. A large mix zone would reduce the security due to the

relevance in spatial and temporal coordinates. A user entering a coffee shop in

downtown cannot be the one who just appears in the airport one minute ago.

A small mix zone increases the difficulty of pseudonym mixing, since it requires

the diversity of pseudonyms inside a mix zone.

9.4.3 Using Dummies

Kido et al. propose a way to fool attackers by using dummies [124]. When a user

sends position information to a service provider, the report is attached with a set of

fake position data which are called “dummies,” as illustrated in Fig. 9.3. From the

view of the service provider, it looks like there are several different user requests.

The provider answers these requests by sending back a message (which contains all

the responding to these positions) to the user. The user only selects the necessary

data corresponding to his location.

However, if the dummies are generated randomly, observers can easily tell apart

the true location and the dummies, because the distance that a subject can move in a

fixed time interval is limited. To avoid this, the dummy behavior should be related

to the user. Two dummy generalization algorithms are presented in [124]: moving

in a neighborhood and moving in a limited neighborhood.

Compared to the k-anonymity approaches, using dummies have several advan-

tages. First, it is difficult for attackers to find out the true pattern of movement of an

individual. Second, users can report precise location information with high spatial

and temporal resolution, so that little quality of services would be lost. This

approach has a drawback that it increases the cost of communication. Users need

to report additional dummy location information to service providers, and service

providers need to return additional service data for the dummies. Only a small

fraction of the communications is useful and all dummy-related communications

are overheads.

Fig. 9.3 Dummy generation. Attackers cannot determine the true movement
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9.4.4 Path Confusion

The k-anonymity approaches and the mix zone have a common weakness: they all

rely on the density of individuals. If the density is not sufficient, the k-anonymity

approaches deserve poor quality of services due to imprecise location information,

while the mix zone might provide poor anonymity since attackers can easily link

pseudonyms by temporal and spatial relevance.

Path confusion is proposed to preserve privacy in GPS traces, which can

guarantee a certain level of location privacy even for users in low-density regions

[125]. The idea is similar to temporal cloaking but it works on paths. The interme-

diary would delay releasing the user’s location, until it finds out the user’s path

intersects with another user’s. Then the intermediary reveals all locations on the

two paths altogether, as illustrated in Fig. 9.4. Attackers can only see a bundle of

locations on the two paths occurring at the same time. The attacker can tell neither

which path the target being tracked is on, nor which direction on the path the target

is heading for. Therefore, the target being tracked is confused with other indivi-

duals. To provide better anonymity, the intermediary can simply wait longer until

more paths are intersected.

Fig. 9.4 Path confusion. (a) At t ¼ t0, an attacker can track the two users according to previously

revealed locations. and (b) At t ¼ t0 + e, since the two users have coincided in space and time, the

attacker cannot say whether they turn or go straight
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Releasing precise location information, path confusion can keep the quality of

services. The main drawback is that, similar to temporal cloaking, it sacrifices real-

time services due to the delay of requests.

Meyerowitz and Choudhury develop cache cloak based on the idea of path

confusion [126]. Rather than posteriori analysis of a user’s path, cache cloak prefers

using mobility prediction to do a prospective form of path confusion. It keeps a

spatial cache which contains data for a set of position points. If a user submits a

position point that hits the cache, then the intermediary returns the cached data for

that location directly, without fetching data from the service provider. If a user

submits a position that is not in the cache, which means a cache miss, cache cloak

would generate a predicted path for the user. The predicted path is extrapolated

until it reaches another path that exists in the cache. (i.e., the predicted path is

connected on both ends to other cached paths) The entire predicted path is then

submitted to the service provider and all responses for locations along the path are

retrieved and cached. Moving along a path, a user gets serviced directly from the

cache until deviates from the predicted.

From the attackers’ view, each location release contains a bunch of locations on

a path. Each newly released path connects two paths released previously, say, path

A and path B, as illustrated in Fig. 9.5. There are three possible cases that will

trigger a new query: the user on path A turns toward path B; the user on path B turns

toward path A; and a new user on the newly released path begins to use the service.

Attackers cannot tell apart the three possibilities and accordingly fail to track users.

Cache cloak does not degrade the spatial or temporal resolution as the dummy-

based approach. Moreover, a predicted path can be viewed as a dummy (which

confuses attackers), and probably this kind of dummies acts more “reasonable” than

the dummies generated by the two algorithms, moving in a neighborhood and

moving in a limited neighborhood. For the cost of communication, cache cloak

does not increase any unnecessary communication between users and the interme-

diary, although it brings about unnecessary communications between the interme-

diary and service providers. This overhead can be low if the cache cloak

intermediary and service providers are connected by wired networks.

9.4.5 Comparison

Before comparing anonymity-based algorithms, we need to answer the problem that

how we can tell if an algorithm is better than any other? The level of location privacy

can be reflected by the size of anonymity set, but the definition of anonymity set varies

�

Fig. 9.5 An example for cache cloak. (a) A user is moving along a previously cached path.

He retrieves data from the intermediary directly. (b) A user deviates his path, which triggers a

cache miss. New path is predicted and service data along the predicted path are requested from the

service providers by the intermediary, and all the retrieved data are stored in the cache. (c) An
attacker cannot determine what triggers the new data queries. It could be users turning in from the

upper street (path A), or from the lower street (path B)
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among different approaches. In addition, the size of anonymity is usually a parameter

that can be set flexibly if necessary. Besides anonymity, we try to characterize an

anonymity approach by the following factors:

1. Loss of quality of service (QoS). Approaches, such as spatial and temporal

cloaking, which degrade the resolution of location information would certainly

sacrifice the quality of service. Mix zone breaks the continuity of services, which

might degrade the quality of services as well.

2. Antitracking ability. We have shown that the historical location data, a.k.a. the

pattern of movement, would lead to privacy leaks. Approaches like spatial and

temporal cloaking cannot curb an attacker from extracting information through

tracking, while some approaches like path confusion can deal well with the

attacks based on tracking.

3. Cost of communication. Approaches like using dummies and cache cloak

increase the cost of communication. The cost of communication on wired

network is much cheaper than that on wireless network.

4. Intermediary dependence. Most approaches require a trusted intermediary.

However, the deployment of an intermediary is expensive, and the communica-

tion between users and an intermediary needs to be protected from being

interrupted; otherwise, all the efforts would be meaningless.

At last, we summarize the anonymity-based approaches in Table 9.1.

9.5 Summary

Although a lot of approaches have been proposed, a number of issues remain open.

Distributed anonymity. Most anonymity-based approaches require a trusted inter-

mediary, but what if an intermediary cannot be trusted? Or the communication

between users and an intermediary is not secure? Dummy-based approach gives

a solution without an intermediary, but it increases the cost of communication.

Can users cooperate without an intermediary? These questions are still unan-

swered.

Other types of attacks. Anonymity-based approaches only solve linking attack

problem, but are vulnerable for other types of attacks, such as homogeneity

attack. Taking k-anonymity as an example, the lack of diversity inside the

anonymity set might leak user privacy. For instance, if a location region is inside

Table 9.1 Anonymity-based approaches

Loss of QoS Antitracking Cost of comm. Intermediary

Spatial & temporal cloaking Degraded Not capable No increase Necessary

Mix zone Degraded Capable No increase Necessary

Dummy Not affected Capable Increased (wireless) Not necessary

Cache cloak Not affected Capable Increased (wired) Necessary
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an abortion clinic or AIDS clinic, in spite of several indistinguishable subjects

inside the region, an attacker can still infer the activity of a victim as long as the

victim is among these subjects. How to protect privacy from other types of

attacks? These problems are worth researching.

Hybrid schemes. No approach can solve the privacy problem perfectly and a

combination of privacy strategies might be more effective. How to make differ-

ent strategies working together is need to be studied.

Pervasive and mobile computing changes the scale of the privacy issue. Future

privacy protection approaches are expected to deal with a large number of users, a

flood of service requests, and highly frequent data updates. In summary, the privacy

issue must be fully addressed before the real proliferation of pervasive computing

and the Internet of things (IoT).
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