
Chapter 8
Simply Connected Domains

8.1 The General Cauchy Closed Curve Theorem

As we have seen, it can happen that a function f is analytic on a closed curve C and
yet

∫
C f �= 0. Perhaps the simplest such example was given by∫

|z|=1

1

z
dz = 2π i.

On the other hand, the Closed Curve Theorem—6.3—showed that if f is ana-
lytic throughout a disc, the integral around any closed curve is 0. We now seek
to determine the most general type of domain in which the Closed Curve The-
orem is valid. Note that the domain of analyticity of f (z) = 1/z is the punc-
tured plane. We will see that it is precisely the existence of a “hole” at z = 0
which allowed the above counterexample. The property of a domain which as-
sures that it has no “holes” is called simple connectedness. The formal definition
is as follows.

8.1 Definition

A region D is simply connected if its complement is “connected within ε to ∞.”
That is, if for any z0 ∈ D̃ and ε > 0, there is a continuous curve γ (t), 0 ≤ t < ∞
such that

(a) d(γ (t), D̃) < ε for all t ≥ 0,
(b) γ (0) = z0,
(c) limt→∞ γ (t) = ∞.

A curve γ, satisfying (b) and (c), is said to “connect z0 to ∞.” (See Chapter 1.4.)

EXAMPLE 1
The plane minus the real axis is not simply connected since it is not a region; that is,
a simply connected domain must be connected. ♦
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108 8 Simply Connected Domains

EXAMPLE 2
The annulus

A = {z : 1 < |z| < 3}
is not simply connected.

1 3

To prove this, note that 0 ∈ Ã and yet there is no γ which remains within ε = 1
2 of

Ã and connects 0 to ∞. If such a γ existed, by the continuity of |γ (t)|, there would
have to be a point t1 such that |γ (t1)| = 2, but then d(γ (t1), D̃) = 1. ♦

EXAMPLE 3
The unit disc minus the positive real axis is simply connected since for any z0 in the
complement

γ : γ (t) = (t + 1)z0

connects z0 to ∞ and is contained in the complement.

♦
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EXAMPLE 4
The infinite strip S = {z : − 1 < Im z < 1} is simply connected. Note that in this
case, the complement S̃ is not connected.

y

x

i

– i

♦

EXAMPLE 5
Any open convex set is simply connected. See Exercises 1 and 2. ♦

Definition 8.1 requires some explanation. It may seem somewhat simpler to say a
region D is simply connected if every point in its complement can be connected, by
a curve in the complement, to ∞. However, although this is the case in all the above
examples, it is still somewhat too restrictive. For example, suppose the complement
is the (connected) set

D̃ =
{

x + iy:
0 < x ≤ 1

y = sin 1
x

}
∪ {iy : − 1 ≤ y < ∞}.

By Definition 8.1, D would then be simply connected although the points on the
curve y = sin(1/x) cannot be connected to ∞ by a curve in D̃. For a compari-
son of Definition 8.1 with other definitions of simple connectedness, see [Newman,
pp. 164ff].Also, see Appendix I.

Before proving the general closed curve theorem, we first prove an analogue
for simple closed polygonal paths. Recall that a polygonal path is a finite chain of
horizontal and vertical line segments.

8.2 Definition

Let � be a polygonal path. We define the number of levels of � as the num-
ber of different values y0 for which the line Im z = y0 contains a horizontal
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segment of �.

2 levels
3 levels

4 levels

8.3 Lemma

Let � be a simple closed polygonal path contained in a simply connected domain D.
Suppose the top level of � consists of the points y = y1, x ∈ X1 and the next level
is given by y = y2, x ∈ X2. Then the set R = {z = x + iy: y2≤y≤y1

x∈X1
} is contained

in D.

Proof

Note that R is a finite union of disjoint closed rectangles.We will show that for any
z0 ∈ R and any curve γ connecting z0 to ∞, γ ∩ � �= ∅. Then, since D̃ is closed
and � is compact, d(�, D̃) = δ > 0, and γ would not remain within ε = δ/2 of D.
Thus z0 ∈ D.

z0 L R

γ

To show γ ∩ � �= ∅, we proceed by induction on the number of levels of �.
If � has only two levels, it is the boundary of a single rectangle and the proof is
straightforward (the details are given in Exercise 5). Otherwise we consider

L = {x + iy : y = y2, x ∈ X1\X2}.
Note that z0 is contained in one of the rectangles of R, so γ must intersect the
boundary of R. Thus, if γ doesn’t meet R ∩ �, it must meet L. Setting

t0 = sup{t : γ (t) ∈ R}
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we note that for small enough h > 0, γ (t0 + h) would be between the top two levels
of a simple closed polygonal curve which is a connected component of

�′ = (� ∩ R̃) ∪ L̄

and has one less level than �. But then, by induction γ (t) ∈ �′ for some t > t0 + h.
Finally, since γ (t) �∈ R for t > t0 and since L ⊂ R, γ (t) ∈ � and the proof is
complete. �

8.4 Theorem

Suppose f is analytic in a simply connected region D and � is a simple closed
polygonal path contained in D. Then

∫
� f = 0.

Proof of Theorem 8.4

The proof will again be by induction on the number of levels of �. Define L, R and
�′ as in the lemma. We can write∫

�
f =

∫
∂ R

f +
∫

�′
f

the integral over L being taken in opposite directions. Since ∂ R consists of the
boundaries of rectangles and since f is analytic throughout these rectangles (by the
lemma),

∫
∂ R f = 0 by the Rectangle Theorem (6.1).

Proceeding by induction on the number of levels of �, we may assume∫
�′

f = 0

since it has one less level than �. Hence
∫
� f = 0 and the proof is complete. �

8.5 Theorem

If f is analytic in a simply connected region D, there exists a “primitive” F, analytic
in D and such that F ′ = f .

Proof

Choose z0 ∈ D and define

F(z) =
∫ z

z0

f (ζ )dζ,

where the path of integration is a polygonal path contained in D.
By the previous theorem, F is well-defined for if we take �1 and �2 to be two

such polygonal paths from z0 to z,∫
�1

f −
∫

�2

f =
∫

�
f
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where � is a closed polygonal curve. We leave it as an exercise to show that any
closed polygonal curve can be decomposed into a finite number of simple closed
polygonal curves and line segments traversed twice in opposite directions. Thus it
follows from Lemma 8.3 that

∫
� f = 0 and

∫
�1

f = ∫
�2

f .
To show that F ′ = f , we consider

F(z + h) − F(z)

h
= 1

h

∫ z+h

z
f (ζ )dζ

where now (by taking h small enough), we may take the simplest path of integration:
horizontally and then vertically from z to z + h. It follows, then, as in Theorems 5.2
and 6.2, that F ′(z) = f (z). �

8.6 General Closed Curve Theorem

Suppose that f is analytic in a simply connected region D and that C is a smooth
closed curve contained in D. Then ∫

C
f = 0.

Proof

∫
C

f =
∫

C
F ′(z)dz

where F is the primitive function guaranteed by Theorem 8.5,

= F(z(b)) − F(z(a)) = 0

since the endpoints of the closed curve coincide. �

It might be noted that while Theorem 8.6 is stated for simply connected regions,
it has implications for other domains as well. For example, if f is analytic in the
punctured plane z �= 0 and C is a closed curve in the upper half-plane,

∫
C f = 0

since C may be viewed as a closed curve in the simply connected subset Im z > 0,
where f is analytic. In general, if f is analytic in D and if C is contained in a simply
connected subset of D, then

∫
C f = 0.

EXAMPLE 1
Suppose C is the circle α + reiθ , 0 ≤ θ ≤ 2π and |a − α| > r . Then∫

C

dz

z − a
= 0

since 1/(z − a) is analytic in the simply connected disc: |z − α| < |a − α| which
contains C . (Compare with Lemma 5.4.) ♦
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Cauchy’s Theorem also allows us at times to switch an integral along one closed
contour to another.

EXAMPLE 2
Suppose f is analytic in the annulus: 1 ≤ |z| ≤ 4. Then∫

|z|=2
f (z)dz =

∫
|z|=3

f (z)dz

since, by adding the integrals along the real axis from 2 to 3 and from −2 to −3 in
both directions, we can write∫

|z|=3
f (z)dz −

∫
|z|=2

f (z)dz =
∫

�1

f (z)dz +
∫

�2

f (z)dz

where �1 and �2 are closed curves contained in simply connected subsets of the
annulus. (See below.)

1Γ

2Γ

–3 3–2 2

♦

8.2 The Analytic Function log z

8.7 Definition

We will say f is an analytic branch of log z in a domain D if

(1) f is analytic in D, and
(2) f is an inverse of the exponential function there; i.e., exp( f (z)) = z.

Of course if f is an analytic branch of log z then so is

g(z) = f (z) + 2πki

for any fixed integer k.



114 8 Simply Connected Domains

Since eω �= 0 for any ω, log 0 is not defined. However, for any z = Reiθ , R > 0,
if we set

f (z) = log z = u(z) + iv(z)

condition (2) above becomes

exp( f (z)) = eu(z) · eiv(z) = Reiθ

which is possible if and only if

(3) eu(z) = |z| = R

and

(4) v(z) = Arg z = θ + 2kπ .

Hence a function f satisfying (2) can always be found by setting

(5) f (z) = u(z) + iv(z) = log |z| + i Arg z.

However, Arg z is not a well-defined function [see Chapter 1.2] and even if we
adopt a particular convention for Arg z, it is not clear that the function defined in (5) is
analytic (or even continuous) in D. However, if D is a simply connected domain not
containing 0, we may define an analytic branch of log z there. (Recall that according
to Theorem 3.5 if an analytic inverse of ez exists, its derivative must be 1/z. Thus
we proceed as follows.)

8.8 Theorem

Suppose that D is simply connected and that 0 �∈ D. Choose z0 ∈ D, fix a value of
log z0 and set

(6) f (z) =
∫ z

z0

dζ

ζ
+ log z0.

Then f is an analytic branch of log z in D.

Proof

f is well-defined since 1/ζ is an analytic function of ζ in D and hence the integral
along any two paths from z0 to z yield the same value (Theorem 8.5). Furthermore,
f ′(z) = 1/z, so f is analytic in D.

To show that exp( f (z)) = z, we consider

g(z) = ze− f (z).

Since g′(z) = e− f (z) − z f ′(z)e− f (z) = 0, g is constant and

g(z) = g(z0) = z0e− f (z0) = 1.

Hence
e f (z) = z. �
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In an analogous manner, we can define an analytic branch of log f (z) in any
simply connected domain where f is analytic and unequal to 0. We simply fix z0
and a value of log f (z0) and set

log f (z) =
∫ z

z0

f ′(ζ )

f (ζ )
dζ + log f (z0).

In a typical situation, suppose D represents the whole plane minus the non-positive
real axis: x ≤ 0. If we choose z0 = 1 and log 1 = 0 in (6) the resulting function,

f (z) =
∫ z

1

dζ

ζ
,

is an analytic branch of log z with

−π < Im(log z) = Arg z < π.

(This latter inequality can be seen by integrating from 1 to |z| and from |z| to z.)
Similarly, if D is the plane slit along the non-negative real axis and we choose that

branch of log z for which log(−1) = π i , we will have defined an analytic branch of
log z with 0 < Arg z < 2π . [See Exercise 8.]

By proper application of the logarithm, we can also define analytic branches of√
z, z1/3, etc., in the appropriate domains.
For example,

√
z may be defined, in any domain where log z is defined, as

(7)
√

z = exp( 1
2 log z).

Since (
exp

(
1

2
log z

))2

= exp(log z) = z,

this does define a “
√

z” and it is analytic where the logarithm is. Note that different
branches of log z may yield different branches of

√
z. Unlike log z, however, which

has infinitely many different branches

log z + 2πki

for any integer k, there are only two different branches of
√

z. This follows from the
fact that the equation w2 = z has exactly two different solutions for any z �= 0. It
also follows from (7) since

exp

(
1

2
log z

)
= exp

(
1

2
[ log z + 2πki ]

)

if k is even.
The same technique may be used to define arbitrary powers of any nonzero com-

plex number. For example,

i i ≡ ei log i = {. . . e3π/2, e−π/2, e−5π/2, . . .}.
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Exercises

1. A set S is called star-like if there exists a point α ∈ S such that the line segment connecting α and
z is contained in S for all z ∈ S. Show that a star-like region is simply connected. [Hint: Show that
γ : γ (t) = tz + (1 − t)α, t ≥ 1 is contained in the complement for any z in the complement.]

2.* Prove that every convex region is simply connected.

3. Suppose a region S is simply connected and contains the circle C = {z : |z − α| = r}. Show then that
S contains the entire disc D = {z : |z − α| ≤ r}. [Hint: Show that since S is open (by definition) and
C is compact, S contains the annulus B = {z : r − δ ≤ |z − α| ≤ r + δ} for some δ > 0.]

4. Show that if

s̃ =
{

x + iy :
0 < x ≤ 1
y = sin 1

x

}
∪ {iy : − 1 ≤ y < ∞},

S is simply connected.

5.* Show that a polygonal line γ connecting z to ∞ intersects the boundary of every rectangle R containing
z. [Hint: Consider t0 = sup{t : γ (t) ∈ R}.]

6. Define the “inside” of a simple closed polygonal path. Show that if such a path is contained in a simply
connected domain, so is its “inside.”

7. Show that any closed polygonal path can be decomposed into a finite union of simple closed polygonal
paths and line segments traversed twice in opposite directions.

8. Show that πi + ∫ z
−1 dζ/ζ defines an analytic branch of log z in the plane slit along the non-negative

axis with 0 < Im log z = Arg z < 2π .

9.* Define a function f analytic in the plane minus the non-positive real axis and such that f (x) = xx

on the positive axis. Find f (i), f (−i). Show that f (z̄) = f (z) for all z.
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