Chapter 8
Simply Connected Domains

8.1 The General Cauchy Closed Curve Theorem

As we have seen, it can happen that a function f is analytic on a closed curve C and
yet fc f # 0. Perhaps the simplest such example was given by

1
/ dz =2mi.
lz|=1 %

On the other hand, the Closed Curve Theorem—6.3—showed that if f is ana-
lytic throughout a disc, the integral around any closed curve is 0. We now seek
to determine the most general type of domain in which the Closed Curve The-
orem is valid. Note that the domain of analyticity of f(z) = 1/z is the punc-
tured plane. We will see that it is precisely the existence of a “hole” at z = 0
which allowed the above counterexample. The property of a domain which as-
sures that it has no “holes” is called simple connectedness. The formal definition
is as follows.

8.1 Definition

A region D is simply connected if its complement is “connected within € to co.”
That is, if for any z¢ € D and € > 0, there is a continuous curve y(1),0 <t <o
such that

(a) d(y (1), 5) <eforallt >0,

() 7 (0) = 2o,

() limy, 00 y (1) = 00.

A curve y, satisfying (b) and (c), is said to “connect zg to 00.” (See Chapter 1.4.)

EXAMPLE 1

The plane minus the real axis is not simply connected since it is not a region; that is,
a simply connected domain must be connected. O
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108 8 Simply Connected Domains

EXAMPLE 2

The annulus
A={z:1 <|z] <3}

is not simply connected.

dh
/)

To prove this, note that 0 € A and yet there is no y which remains within € = ; of

A and connects 0 to co. If such a y existed, by the continuity of [y (#)], there would
have to be a point ¢ such that |y (1)| = 2, but then d(y (¢1), D) = 1. %

EXAMPLE 3
The unit disc minus the positive real axis is simply connected since for any zg in the

complement
y iy @) =@+ Dzo

connects z¢ to oo and is contained in the complement.
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EXAMPLE 4
The infinite strip § = {z: — 1 < Imz < 1} is simply connected. Note that in this
case, the complement S is not connected.

y

EXAMPLE 5
Any open convex set is simply connected. See Exercises 1 and 2. O

Definition 8.1 requires some explanation. It may seem somewhat simpler to say a
region D is simply connected if every point in its complement can be connected, by
a curve in the complement, to co. However, although this is the case in all the above
examples, it is still somewhat too restrictive. For example, suppose the complement
is the (connected) set

~ [ S 0<x<l } .
D= q1x+iy: .y (Yliy: =1 <y <oo}
y=sin

By Definition 8.1, D would then be simply connected although the points on the
curve y = sin(1/x) cannot be connected to co by a curve in D. For a compari-
son of Definition 8.1 with other definitions of simple connectedness, see [Newman,
pp- 164ff]. Also, see Appendix I.

Before proving the general closed curve theorem, we first prove an analogue
for simple closed polygonal paths. Recall that a polygonal path is a finite chain of
horizontal and vertical line segments.

8.2 Definition

Let I be a polygonal path. We define the number of levels of I' as the num-
ber of different values yy for which the line Imz = yo contains a horizontal
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segment of T'.

2 levels

3 levels

4 levels

8.3 Lemma

Let T be a simple closed polygonal path contained in a simply connected domain D.
Suppose the top level of T consists of the points y = y1,x € X1 and the next level
is given by y = yy, x € Xp. Then the set R = {z = x +iy: szSEyXSIyl } is contained
in D.

Proof

Note that R is a finite union of disjoint closed rectangles. We will show that for any
Zo € R and any curve y connecting zo to oo, y N I' # @. Then, since D is closed
and I is compact, d(I', D) = 6 > 0, and y would not remain within € = J/2 of D.
Thus zg € D.

To show y N T" # @, we proceed by induction on the number of levels of I'.
If T has only two levels, it is the boundary of a single rectangle and the proof is
straightforward (the details are given in Exercise 5). Otherwise we consider

L={x+iy:y=y,x e X\Xa}.

Note that zo is contained in one of the rectangles of R, so y must intersect the
boundary of R. Thus, if y doesn’t meet R N I, it must meet L. Setting

to = sup{t : y (t) € R}
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we note that for small enough 2 > 0, y (fo + h) would be between the top two levels
of a simple closed polygonal curve which is a connected component of

I'=(TNRUL

and has one less level than I'. But then, by induction y (¢) € T’ for some ¢ > o + h.
Finally, since y (f) &€ R fort > 1o and since L C R,y (t) € I' and the proof is
complete. O

8.4 Theorem

Suppose f is analytic in a simply connected region D and T is a simple closed
polygonal path contained in D. Then ;. f = 0.

Proof of Theorem 8.4

The proof will again be by induction on the number of levels of I". Define L, R and
I’ as in the lemma. We can write

Jor=foregs

the integral over L being taken in opposite directions. Since dR consists of the
boundaries of rectangles and since f is analytic throughout these rectangles (by the
lemma), f sr J = 0 by the Rectangle Theorem (6.1).

Proceeding by induction on the number of levels of I', we may assume

f=0
l"/

since it has one less level than I'. Hence fr f = 0 and the proof is complete. O

8.5 Theorem

If f is analytic in a simply connected region D, there exists a “primitive” F, analytic
in D and such that F' = f.

Proof

Choose zg € D and define

na=/f@wa

where the path of integration is a polygonal path contained in D.
By the previous theorem, F' is well-defined for if we take I'y and I'> to be two
such polygonal paths from zg to z,

Jor k= b
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where I is a closed polygonal curve. We leave it as an exercise to show that any
closed polygonal curve can be decomposed into a finite number of simple closed
polygonal curves and line segments traversed twice in opposite directions. Thus it
follows from Lemma 8.3 that [, f = 0 and frl f= fl"z f.

To show that F/ = f, we consider

Fa+h) = F@) _ 1 [
= [ o

where now (by taking 4 small enough), we may take the simplest path of integration:
horizontally and then vertically from z to z + A. It follows, then, as in Theorems 5.2
and 6.2, that F'(z) = f(z). O

8.6 General Closed Curve Theorem

Suppose that f is analytic in a simply connected region D and that C is a smooth
closed curve contained in D. Then
/ f=0.
C

Proof

/sz/CF’(z)dz

where F is the primitive function guaranteed by Theorem 8.5,
= F(z(b)) = F(z(a)) =0
since the endpoints of the closed curve coincide. g

It might be noted that while Theorem 8.6 is stated for simply connected regions,
it has implications for other domains as well. For example, if f is analytic in the
punctured plane z # 0 and C is a closed curve in the upper half-plane, fC f=0
since C may be viewed as a closed curve in the simply connected subset Imz > 0,
where f is analytic. In general, if f is analytic in D and if C is contained in a simply
connected subset of D, then [ f = 0.

EXAMPLE 1
Suppose C is the circle a + re’e, 0<6 <2rand|a —a| > r. Then

d
f L=
cz—a

since 1/(z — a) is analytic in the simply connected disc: |z — a| < |a — a| which
contains C. (Compare with Lemma 5.4.) O
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Cauchy’s Theorem also allows us at times to switch an integral along one closed
contour to another.

EXAMPLE 2
Suppose f is analytic in the annulus: 1 < |z| < 4. Then

fR)dz = f(2)dz

lz|=2 |z1=3

since, by adding the integrals along the real axis from 2 to 3 and from —2 to —3 in
both directions, we can write

f)dz — f(Z)dZ=/r f(Z)dZ+/r f(z)dz

lz|=3 lz|=2

where I'1 and I'» are closed curves contained in simply connected subsets of the
annulus. (See below.)

Iy

A
A

I

8.2 The Analytic Function log z

8.7 Definition
We will say f is an analytic branch of log z in a domain D if

(1) f is analyticin D, and
(2) f is an inverse of the exponential function there; i.e., exp(f(z)) = z.
Of course if f is an analytic branch of log z then so is

g(@) = f(z) + 27ki

for any fixed integer k.
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Since ¢® = 0 for any o, log 0 is not defined. However, for any z = Re'?, R > 0,
if we set

f(z) =logz =u(z) +iv(z)

condition (2) above becomes
exp(f(z)) = '@ . £*@ = Re'?

which is possible if and only if

(3) e"@ =]zl =R

and

4) v(z) = Argz =0 + 2kx.

Hence a function f satisfying (2) can always be found by setting
(5) f(@) =u(z) +iv(z) =loglz| +i Argz.

However, Arg z is not a well-defined function [see Chapter 1.2] and even if we
adopt a particular convention for Arg z, it is not clear that the function defined in (5) is
analytic (or even continuous) in D. However, if D is a simply connected domain not
containing 0, we may define an analytic branch of log z there. (Recall that according
to Theorem 3.5 if an analytic inverse of e® exists, its derivative must be 1/z. Thus
we proceed as follows.)

8.8 Theorem

Suppose that D is simply connected and that 0 & D. Choose zo € D, fix a value of
log zo and set

<d
©) f() = / f +log 2.

20

Then f is an analytic branch of log z in D.

Proof

f is well-defined since 1/¢ is an analytic function of ¢ in D and hence the integral
along any two paths from z to z yield the same value (Theorem 8.5). Furthermore,
f'(z) = 1/z,s0 f is analytic in D.

To show that exp(f(z)) = z, we consider

g(z) =ze~ .

Since g'(z) = e~/ — zf'(z)e=/ @) = 0, g is constant and
2(z) = g(z0) = Zoe—f(zo) -1

Hence ~
el = 7. O
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In an analogous manner, we can define an analytic branch of log f(z) in any
simply connected domain where f is analytic and unequal to 0. We simply fix zg
and a value of log f(z0) and set

(9]
o J©)

In atypical situation, suppose Drepresents the whole plane minus the non-positive
real axis: x < 0. If we choose zp = 1 and log 1 = 0 in (6) the resulting function,

f(z)=/lZd§,

is an analytic branch of log z with

log f(z) = d¢ + log f(zo).

—r < Im(logz) = Argz < =.

(This latter inequality can be seen by integrating from 1 to |z| and from |z] to z.)

Similarly, if D is the plane slit along the non-negative real axis and we choose that
branch of log z for which log(—1) = # i, we will have defined an analytic branch of
logz with 0 < Argz < 2x. [See Exercise 8.]

By proper application of the logarithm, we can also define analytic branches of
V2, 7173, etc., in the appropriate domains.

For example, ,/z may be defined, in any domain where log z is defined, as

(7) /2 = exp(; log2).

Since
1 2
(exp (2 log z)) =exp(logz) =z,

this does define a “,/z” and it is analytic where the logarithm is. Note that different
branches of log z may yield different branches of ,/z. Unlike log z, however, which
has infinitely many different branches

logz + 2 ki

for any integer k, there are only two different branches of ,/z. This follows from the
fact that the equation w? = z has exactly two different solutions for any z # 0. It
also follows from (7) since

1 1
exp (2 logz) = exp (z[logz + 27rki])

if k is even.
The same technique may be used to define arbitrary powers of any nonzero com-
plex number. For example,

i = ellosl = (| 3T pmm2 SE2
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Exercises

1. A set S is called star-like if there exists a point o € S such that the line segment connecting a and
z is contained in S for all z € S. Show that a star-like region is simply connected. [Hint: Show that
y :y(t) =tz+ (1 —t)a, t > 1 is contained in the complement for any z in the complement.]

2.*% Prove that every convex region is simply connected.

3. Suppose aregion S is simply connected and contains the circle C = {z : |z — a| = r}. Show then that
S contains the entire disc D = {z : |z — a| < r}. [Hint: Show that since S is open (by definition) and
C is compact, S contains the annulus B = {z:r —J < |z — a| < r + d} for some J > 0.]

4. Show that if
0<x<l1

S=qx+iy: T Uiy =1 <y <oo},
y =sin |

S is simply connected.

5.*% Show thata polygonal line y connecting z to oo intersects the boundary of every rectangle R containing
z. [Hint: Consider #y = sup{r : y () € R}.]

6. Define the “inside” of a simple closed polygonal path. Show that if such a path is contained in a simply
connected domain, so is its “inside.”

7. Show that any closed polygonal path can be decomposed into a finite union of simple closed polygonal
paths and line segments traversed twice in opposite directions.

8. Show that zi + ffl d(¢ /¢ defines an analytic branch of log z in the plane slit along the non-negative
axis with 0 < Imlogz = Argz < 2=x.

9.% Define a function f analytic in the plane minus the non-positive real axis and such that f(x) = x*
on the positive axis. Find f (i), f(—i). Show that f(Z) = f(z) for all z.
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