
Chapter 3
Analytic Functions

3.1 Analyticity and the Cauchy-Riemann Equations

The direct functions of z which we have studied so far—polynomials and conver-
gent power series—were shown to be differentiable functions of z. We now take a
closer look at the property of differentiability and its relation to the Cauchy-Riemann
equations.

As we mentioned earlier (after Definition 2.4), if f is differentiable,

lim
h→0

f (z + h) − f (z)

h

must exist regardless of the manner in which h approaches 0 through complex values.
An immediate consequence is that the partial derivatives of f must satisfy the Cauchy-
Riemann equations.

3.1 Proposition

If f = u + iv is differentiable at z, fx and fy exist there and satisfy the Cauchy-
Riemann equation

fy = i fx

or, equivalently,

ux = vy

uy = −vx .

Proof

Suppose first that h → 0 through real values. Then

f (z + h) − f (z)

h
= f (x + h, y) − f (x, y)

h
→ fx .
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36 3 Analytic Functions

On the other hand, if h → 0 along the imaginary axis, h = iη and

f (z + h) − f (z)

h
= f (x, y + η) − f (x, y)

iη
→ fy

i
.

(See Exercise 1.) Since the two limits must be equal,

fy = i fx .

As we mentioned in Chapter 2, setting f = u + iv, the equation fy = i fx takes the
form

uy + ivy = i(ux + ivx)

and hence

ux = vy

uy = −vx . �

The converse of the above proposition is not true. There are functions which are
not differentiable at a point despite the fact that the partial derivatives exist and satisfy
the Cauchy-Riemann equations there.

For example, consider

f (z) = f (x, y) =
⎧⎨
⎩

xy(x + iy)

x2 + y2 z �= 0

0 z = 0.

f = 0 on both axes so that fx = fy = 0 at the origin but

lim
z→0

f (z) − f (0)

z
= lim

(x,y)→(0,0)

xy

x2 + y2

does not exist. For on the line y = αx

f (z) − f (0)

z
≡ α

1 + α2
for z �= 0

and hence the limit depends on α!
The following partial converse, however, is true.

3.2 Proposition

Suppose fx and fy exist in a neighborhood of z. Then if fx and fy are continuous
at z and fy = i fx there, f is differentiable at z.

Proof

Let f = u + iv, h = ξ + iη.
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We will show that

f (z + h) − f (z)

h
→ fx (z) = ux (z) + ivx (z)

as h → 0. By the Mean-Value Theorem (for real functions of a real variable)

u(z + h) − u(z)

h
= u(x + ξ, y + η) − u(x, y)

ξ + iη

= u(x + ξ, y + η) − u(x + ξ, y)

ξ + iη

+ u(x + ξ, y) − u(x, y)

ξ + iη

= η

ξ + iη
uy(x + ξ, y + θ1η)

+ ξ

ξ + iη
ux(x + θ2ξ, y),

and

v(z + h) − v(z)

h
= η

ξ + iη
vy(x + ξ, y + θ3η)

+ ξ

ξ + iη
vx (x + θ4ξ, y)

for some θk ,
0 < θk < 1, k = 1, 2, 3, 4.

Thus

f (z + h) − f (z)

h
= η

ξ + iη
[uy(z1) + ivy(z2)]

+ ξ

ξ + iη
[ux (z3) + ivx (z4)]

where |zk − z| → 0 as h → 0, k = 1, 2, 3, 4. Since fy = i fx at z we can subtract
fx (z) in the form of

η

ξ + iη
fy + ξ

ξ + iη
fx

to obtain

f (z + h) − f (z)

h
− fx (z) = η

ξ + iη
[(uy(z1) − uy(z)) + i(vy(z2) − vy(z))]

+ ξ

ξ + iη
[(ux(z3) − ux (z)) + i(vx (z4) − vx (z))].
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Finally, since ∣∣∣∣ η

ξ + iη

∣∣∣∣ ,
∣∣∣∣ ξ

ξ + iη

∣∣∣∣ ≤ 1,

while each of the bracketed expressions approaches 0 as h → 0,

lim
h→0

f (z + h) − f (z)

h
= fx (z).

�

EXAMPLE

Let f (z) = |z|2 = x2 + y2. Then fx = 2x, fy = 2y so that f has continuous partial
derivatives for all z. By the previous proposition, then f is differentiable if and only
if fy = i fx . Hence f is differentiable only at the point z = 0. ♦

To avoid pathologies such as that given in the example above, we adopt the
following definition.

3.3 Definition

f is analytic at z if f is differentiable in a neighborhood of z. Similarly, f is analytic
on a set S if f is differentiable at all points of some open set containing S.

Note that this definition is consistent with Definition 2.1 for analytic polynomials.
For we have already noted (Proposition 2.6) that “polynomials in z” are everywhere
differentiable.Conversely, if a polynomial P is analytic at a point z, its partial deriv-
atives must satisfy the Cauchy-Riemann equations throughout a neighborhood of z.
Hence, as in Proposition 2.3, it follows that P must be a “polynomial in z.”

Functions, such as polynomials or everywhere convergent power series, that are
everywhere differentiable are called entire functions.

As we saw in Propositions 2.5 and 2.6, many of the properties of differentiability
are analogous to those of differentiable functions of a real variable. Similarly, the
composition of differentiable functions is differentiable (see Exercise 3). As in the
“real” case, the inverse of a differentiable function need not even be continuous.
Under the appropriate hypothesis, however, we can establish the differentiability of
inverse functions.

3.4 Definition

Suppose that S and T are open sets and that f is 1-1 on S with f (S) = T . g is the
inverse of f on T if f (g(z)) = z for z ∈ T . g is the inverse of f at z0 if g is the
inverse of f in some neighborhood of z0.

Note that an inverse function must be 1-1 for if f −1(z) = f −1(z0), f ( f −1(z)) =
f ( f −1(z0)); i.e., z = z0.



3.1 Analyticity and the Cauchy-Riemann Equations 39

3.5 Proposition

Suppose that g is the inverse of f at z0 and that g is continuous there. If f is
differentiable at g(z0) and if f ′(g(z0)) �= 0, then g is differentiable at z0 and

g′(z0) = 1

f ′(g(z0))
.

Proof

g(z) − g(z0)

z − z0
= 1

f (g(z)) − f (g(z0))

g(z) − g(z0)

for all z �= z0 in a neighborhood of z0. Since g is continuous at z0, g(z) → g(z0) as
z → z0, and by the differentiability of f,

lim
z→z0

g(z) − g(z0)

z − z0
= 1

f ′(g(z0))
.

�
As we shall see in the coming chapters, the property of analyticity is a very

far-reaching one. Some immediate consequences are proven below.

3.6 Proposition

If f = u + iv is analytic in a region D and u is constant, then f is constant.

Proof

Since u is constant, ux = uy = 0; therefore, by the Cauchy-Riemann equations,
vx = vy = 0. According to Theorem 1.10, u and v are each constant in D; hence f is
constant. �

3.7 Proposition

If f is analytic in a region and if | f | is constant there, then f is constant.

Proof

If | f | = 0, the proof is immediate. Otherwise

u2 + v2 ≡ C �= 0.

Taking the partial derivatives with respect to x and y, we see that

uux + vvx ≡ 0

uuy + vvy ≡ 0.
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Making use of the Cauchy-Riemann equations, we obtain

uux − vuy ≡ 0

vux + uuy ≡ 0,

so that
(u2 + v2)ux ≡ 0

and ux = vy ≡ 0. Similarly, uy and vx are identically zero, hence f is constant. �

3.2 The Functions ez, sin z, cos z

We wish to define an exponential function of the complex variable z; that is, we seek
an analytic function f such that

f (z1 + z2) = f (z1) f (z2), (1)

f (x) = ex for all real x . (2)

According to (1) and (2) we must have

f (z) = f (x + iy) = f (x) f (iy) = ex f (iy).

Setting f (iy) = A(y) + i B(y), it follows that

f (z) = ex A(y) + iex B(y).

For f to be analytic, the Cauchy-Riemann equations must be satisfied; therefore
A(y) = B ′(y) and A′(y) = −B(y), so that A′′ = −A. Thus we consider

A(y) = α cos y + β sin y

B(y) = −A′(y) = −β cos y + α sin y.

Since f (x) = ex , however, A(0) = α = 1 and B(0) = −β = 0, so that, finally, we
are led to examine

f (z) = ex cos y + iex sin y.

Indeed, it is easy to verify that f is an entire function with the desired properties
(1) and (2). (See Exercise 11.) Hence f is an entire “extension” of the real exponential
function and we write f (z) = ez .

The following properties of ez are easily proven:

i. |ez| = ex .
ii. ez �= 0.

This follows from (i) since ex �= 0. Also, according to (1), above, eze−z=e0=1.
iii. eiy = cis y.
iv. ez = α has infinitely many solutions for any α �= 0.
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Proof

Set α = r cis θ = reiθ , r > 0. Since ez = exeiy , we will have ez = α if x = log r
and eiy = eiθ . Hence ez = α for all points z = x + iy with x = log r , y = Arg α =
θ ± 2kπ, k = 0, 1, 2 . . .. �

v. (ez)′ = ez .
Recall that (ez)′ = (ez)x = ez .

To define sin z and cos z, note that for real y

eiy = cos y + i sin y

e−iy = cos y − i sin y

so that

sin y = 1

2i
(eiy − e−iy)

and

cos y = 1

2
(eiy + e−iy).

Thus we can define entire extensions of sin x and cos x by setting

sin z = 1

2i
(eiz − e−iz)

cos z = 1

2
(eiz + e−iz).

Many of the familiar properties of the sin and cos functions remain valid in the larger
setting of the complex plane. For example,

sin 2z = 2 sin z cos z

sin2 z + cos2z = 1

(sin z)′ = cos z.

These identities are easily verified and are left as an exercise.Moreover, in Section 6.3,
we will see that, in general, functional equations of the above form, known to be true
on the real axis, remain valid throughout the complex plane.

On the other hand, unlike sin x , sin z is not bounded in modulus by 1.For example,
| sin 10i | = 1

2 (e10 − e−10) > 10, 000.

Exercises

1. Show that

fx = lim
h→0
h real

f (z + h) − f (z)

h
; f y = lim

h→0
h real

f (z + ih) − f (z)

h
,

provided the limits exist.
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2. a. Show that f (z) = x2 + iy2 is differentiable at all points on the line y = x .
b. Show that it is nowhere analytic.

3. Prove that the composition of differentiable functions is differentiable. That is, if f is differentiable
at z, and if g is differentiable at f (z), then g ◦ f is differentiable at z. [Hint: Begin by noting

g( f (z + h)) − g( f (z)) = [g′( f (z)) + ε][ f (z + h) − f (z)]

where ε → 0 as h → 0.]

4. Suppose that g is a continuous “
√

z” (i.e., g2(z) = z) in some neighborhood of z. Verify that
g′(z) = /

√
z [Hint: Use

1 = g2(z) − g2(z0)

z − z0

to evaluate

lim
z→z0

g(z) − g(z0)

z − z0
.]

5. Suppose f is analytic in a region and f ′ ≡ 0 there. Show that f is constant.

6. Assume that f is analytic in a region and that at every point, either f = 0 or f ′ = 0. Show that f is
constant. [Hint: Consider f 2.]

7. Show that a nonconstant analytic function cannot map a region into a straight line or into a circular
arc.

8. Find all analytic functions f = u + iv with u(x, y) = x2 − y2.

9. Show that there are no analytic functions f = u + iv with u(x, y) = x2 + y2.

10. Suppose f is an entire function of the form

f (x, y) = u(x) + iv(y).

Show that f is a linear polynomial.

11. a. Show that ez is entire by verifying the Cauchy-Riemann equations for its real and imaginary
parts.

b. Prove:
ez1+z2 = ez1 ez2 .

12. Show: |ez | = ex .

13. Discuss the behavior of ez as z → ∞ along the various rays from the origin.

14. Find all solutions of
a. ez = 1, b. ez = i,
c. ez = −3, d. ez = 1 + i .

15. Verify the identities

a. sin 2z = 2 sin z cos z,
b. sin2 z + cos2 z = 1,

c. (sin z)′ = cos z.

16.* Show that

a. sin( π
2 + iy) = 1

2 (ey + e−y) = cosh y

b. | sin z| ≥ 1 at all points on the square with vertices ±(N + 1
2 )π ± (N + 1

2 )π i , for any positive
integer N .

c. | sin z| → ∞, as Imz = y → ±∞.

1 ) .( 2
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17. Find (cos z)′.
18. Find sin−1(2)– that is, find the solutions of sin z = 2. [Hint: First set w = eiz and solve for ω.]

19.* Find all solutions of the equation:

eez = 1.

20. Show that sin(x + iy) = sin x cosh y + i cos x sinh y.

21. Show that the power series

f (z) = 1 + z + z2

2!
+ . . . =

∞∑
n=0

zn

n!

is equal to ez . [Hint: First show that f (z) f (w) = f (z + w), then show

f (x) = ex

f (iy) = cos y + i sin y

using the power series representations for the real functions

ex , cos x, sin x .]

22. Show:

g(z) = z − z3

3!
+ z5

5!
− + . . .

is equal to sin z. [Hint: Use the power series representation for ez given in (21) to show that

g(z) = 1

2i
(eiz − e−iz ).]

23. Find a power series representation for cos z.
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