
Chapter 2
Functions of the Complex Variable z

Introduction

We wish to examine the notion of a “function of z”where z is a complex variable. To
be sure, a complex variable can be viewed as nothing but a pair of real variables so
that in one sense a function of z is nothing but a function of two real variables. This
was the point of view we took in the last section in discussing continuous functions.
But somehow this point of view is too general. There are some functions which are
“direct” functions of z = x + iy and not simply functions of the separate pieces x
and y.

Consider, for example, the function x2 − y2 + 2i x y. This is a direct function of
x + iy since x2 − y2 + 2i x y = (x + iy)2; it is the function squaring. On the other
hand, the only slightly different-looking function x2 + y2 − 2i x y is not expressible
as a polynomial in x + iy. Thus we are led to distinguish a special class of functions,
those given by direct or explicit or analytic expressions in x + iy. When we finally
do evolve a rigorous definition, these functions will be called the analytic functions.
For now we restrict our attention to polynomials.

2.1 Analytic Polynomials

2.1 Definition

A polynomial P(x, y) will be called an analytic polynomial if there exist (complex)
constants αk such that

P(x, y) = α0 + α1(x + iy) + α2(x + iy)2 + · · · + αN (x + iy)N .

We will then say that P is a polynomial in z and write it as

P(z) = α0 + α1z + α2z2 + · · · + αN zN .
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22 2 Functions of the Complex Variable z

Indeed, x2 − y2 + 2i x y is analytic. On the other hand, as we mentioned above,
x2 + y2 − 2i x y is not analytic, and we now prove this assertion. So suppose

x2 + y2 − 2i x y ≡
N∑

k=0

αk(x + iy)k .

Setting y = 0, we obtain

x2 ≡
N∑

k=0

αk xk

or

α0 + α1x + (α2 − 1)x2 + · · · + αN x N ≡ 0.

Setting x = 0 gives α0 = 0; dividing out by x and again setting x = 0 shows α1 = 0,
etc. We conclude that

α1 = α3 = α4 = · · · = αN = 0

α2 = 1,

and so our assumption that

x2 + y2 − 2i x y ≡
N∑

k=0

αk(x + iy)k

has led us to

x2 + y2 − 2i x y ≡ (x + iy)2 = x2 − y2 + 2i x y,

which is simply false!
A bit of experimentation, using the method described above (setting y = 0 and

“comparing coefficients”) will show how rare the analytic polynomials are. A ran-
domly chosen polynomial, P(x, y), will hardly ever be analytic.

EXAMPLE

x2 + iv(x, y) is not analytic for any choice of the real polynomial v(x, y). For
a polynomial in z can have a real part of degree 2 in x only if it is of the form
az2 + bz + c with a �= 0. In that case, however, the real part must contain a y2 term
as well. ♦

Another Way of Recognizing Analytic Polynomials We have seen, in our method of
comparing coefficients, a perfectly adequate way of determining whether a given
polynomial is or is not analytic. This method, we point out, can be condensed to the
statement: P(x, y) is analytic if and only if P(x, y) = P(x+iy, 0).Looking ahead to
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the time we will try to extend the notion of “analytic”beyond the class of polynomials,
however, we see that we can expect trouble! What is so simple for polynomials is
totally intractable for more general functions.We can evaluate P(x +iy, 0) by simple
arithmetic operations, but what does it mean to speak of f (x + iy, 0)? For example,
if f (x, y) = cos x + i sin y, we observe that f (x, 0) = cos x . But what shall we
mean by cos(x + iy)?What is needed is another means of recognizing the analytic
polynomials, and for this we retreat to a familiar, real-variable situation. Suppose
that we ask of a polynomial P(x, y) whether it is a function of the single variable
x + 2y. Again the answer can be given in the spirit of our previous one, namely:
P(x, y) is a function of x +2y if and only if P(x, y) = P(x +2y, 0).But it can also
be given in terms of partial derivatives! A function of x + 2y undergoes the same
change when x changes by as when y changes ε/2 and this means exactly that its
partial derivative with the respect to y is twice its partial derivative with respect to x .
That is, P(x, y) is a function of x + 2y if and only if Py = 2Px .

Of course, the “2” can be replaced by any real number, and we obtain the more
general statement: P(x, y) is a function of x + λy if and only if Py = λPx .

Indeed for polynomials, we can even ignore the limitation that λ be real, which
yields the following proposition.

2.2 Definition

Let f (x, y) = u(x, y)+iv(x, y) where u and v are real-valued functions.The partial
derivatives fx and fy are defined by ux + ivx and uy + ivy respectively, provided
the latter exist.

2.3 Proposition

A polynomial P(x, y) is analytic if and only if Py = i Px .

Proof

The necessity of the condition can be proven in a straightforward manner.We leave
the details as an exercise. To show that it is also sufficient, note that if

Py = i Px ,

the condition must be met separately by the terms of any fixed degree. Suppose then
that P has n-th degree terms of the form

Q(x, y) = C0xn + C1xn−1y + C2xn−2y2 + · · · + Cn yn.

Since
Qy = i Qx ,

C1xn−1 + 2C2xn−2 y + · · · + nCn yn−1

= i [nC0xn−1 + (n − 1)C1xn−2y + · · · + Cn−1 yn−1].

ε
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Comparing coefficients,

C1 = inC0 = i

(
n
1

)
C0

C2 = i(n − 1)

2
C1 = i2 n(n − 1)

2
C0 = i2

(
n
2

)
C0,

and in general

Ck = i k
(

n
k

)
C0

so that

Q(x, y) =
n∑

k=0

Ck xn−k yk = C0

n∑
k=0

(
n
k

)
xn−k(iy)k = C0(x + iy)n.

Thus P is analytic. �

The condition fy = i fx is sometimes given in terms of the real and imaginary
parts of f . That is, if f = u + iv, then

fx = ux + ivx

fy = uy + ivy

and the equation fy = i fx is equivalent to the twin equations

ux = vy ; uy = −vx . (1)

These are usually called the Cauchy-Riemann equations.

EXAMPLES

1. A non-constant analytic polynomial cannot be real-valued, for then both Px and
Py would be real and the Cauchy-Riemann equations would not be satisfied.

2. Using the Cauchy-Riemann equations, one can verify that x2 − y2 + 2i x y is
analytic while x2 + y2 − 2i x y is not. ♦

Finally, we note that polynomials in z have another property which distinguishes
them as functions of z: they can be differentiated directly with respect to z. We will
make this more precise below.

2.4 Definition

A complex-valued function f , defined in a neighborhood of z, is said to be differen-
tiable at z if

lim
h→0

f (z + h) − f (z)

h

exists. In that case, the limit is denoted f ′(z).
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It is important to note that in Definition 2.4, h is not necessarily real. Hence the
limit must exist irrespective of the manner in which h approaches 0 in the complex
plane. For example, f (z) = z̄ is not differentiable at any point z since

f (z + h) − f (z)

h
= h̄

h

which equals +1 if h is real and −1 if h is purely imaginary.

2.5 Proposition

If f and g are both differentiable at z, then so are

h1 = f + g

h2 = f g

and, if g(z) �= 0,

h3 = f

g
.

In the respective cases,

h′
1(z) = f ′(z) + g′(z)

h′
2(z) = f ′(z)g(z) + f (z)g′(z)

h′
3(z) = [ f ′(z)g(z) − f (z)g′(z)]/g2(z).

Proof

Exercise 6. �

2.6 Proposition

If P(z) = α0 + α1z + · · · + αN zN , then P is differentiable at all points z and
P ′(z) = α1 + 2α2z + · · · + NαN zN−1.

Proof

See Exercise 7. �

2.2 Power Series

We now consider a wider class of direct functions of z–those given by infinite poly-
nomials or “power series” in z.
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2.7 Definition

A power series in z is an infinite series of the form
∑∞

k=0 Ckzk .
To study the convergence of a power series, we recall the notion of the lim of a

positive real-valued sequence. That is,

lim
n→∞ an = lim

n→∞

(
sup
k≥n

ak

)
.

Since supk≥n ak is a non-increasing function of n, the limit always exists or equals
+∞. The properties of the lim which will be of interest to us are the following.

If limn→∞an = L,

i. for each N and for each ε > 0, there exists some k > N such that ak ≥ L − ε;
ii. for each ε > 0, there is some N such that ak ≤ L + ε for all k > N .

iii. lim can = cL for any nonnegative constant c.

2.8 Theorem

Suppose lim|Ck |1/k = L.

1. If L = 0,
∑

Ckzk converges for all z.
2. If L = ∞,

∑
Ckzk converges for z = 0 only.

3. If 0 < L < ∞, set R = 1/L. Then
∑

Ckzk converges for |z| < R and diverges
for |z| > R. (R is called the radius of convergence of the power series.)

Proof

1. L = 0.
Since lim|Ck |1/k = 0, lim|Ck |1/k|z| = 0 for all z. Thus, for each z, there is some
N such that k > N implies

|Ckzk| ≤ 1

2k
,

so that
∑ |Ckzk| converges; therefore, by the Absolute Convergence Test,

∑
Ckzk

converges.
2. L = ∞.

For any z �= 0,

|Ck |1/k ≥ 1

|z|
for infinitely many values of k. Hence |Ckzk | ≥ 1, the terms of the series do
not approach zero, and the series diverges. (The fact that the series converges for
z = 0 is obvious.)
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3. 0 < L < ∞, R = 1/L.
Assume first that |z| < R and set |z| = R(1 − 2δ). Then since lim|Ck |1/k|z| =
(1 − 2δ), |Ck|1/k|z| < 1 − δ for sufficiently large k and

∑
Ckzk is absolutely

convergent. On the order hand, if |z| > R, lim|Ck |1/k|z| > 1, so that for in-
finitely many values of k, Ckzk has absolute value greater than 1 and

∑
Ckzk

diverges. �

Note that if
∑∞

k=0 Ckzk has radius of convergence R, the series converges uni-
formly in any smaller disc: |z| ≤ R − δ. For then

∞∑
k=0

|Ckzk | ≤
∞∑

k=0

|Ck |(R − δ)k,

which also converges.Hence a power series is continuous throughout its domain of
convergence. (See Theorem 1.9.)

All three cases above can be combined by noting that a power series always
converges inside a disc of radius

R = 1/lim|Ck |1/k.

Here R = 0 means that the series converges at z = 0 only and R = ∞ means that
the series converges for all z. In the cases where 0 < R < ∞, while the theorem
assures us that the series diverges for |z| > R, it says nothing about the behavior of
the power series on the circle of convergence |z| = R. As the following examples
demonstrate, the series may converge for all or some or none of the points on the
circle of convergence.

EXAMPLES

1. Since n1/n → 1,
∑∞

n=1 nzn converges for |z| < 1 and diverges for |z| > 1. The
series also diverges for |z| = 1 for then |nzn | = n → ∞. (See Exercise 8.)

2.
∑∞

n=1(z
n/n2) also has radius of convergence equal to 1. In this case, however,

the series converges for all points z on the unit circle since∣∣∣∣ zn

n2

∣∣∣∣ = 1

n2
for |z| = 1.

3.
∑∞

n=1(z
n/n)has radius of convergence equal to 1. In this case, the series converges

at all points of the unit circle except z = 1. (See Exercise 12.)
4.

∑∞
n=0(z

n/n!) converges for all z since

1

(n!)1/n
→ 0.

(See Exercise 13.)
5.

∑∞
n=0 [1 + (−1)n]nzn has radius of convergence 1

2 since lim[1 + (−1)n] =
lim 2 = 2.
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6.
∑∞

n=0 zn2 = 1 + z + z4 + z9 + z16 + · · · has radius of convergence 1. In this case
lim|Cn |1/n = lim 1 = 1.

7. Any series of the form
∑

Cnzn with Cn = ±1 for all n has radius of convergence
equal to 1. ♦
It is easily seen that the sum of two power series is convergent wherever both

of the original two power series are convergent. In fact, it follows directly from the
definition of infinite series that

∞∑
n=0

(an + bn)z
n =

∞∑
n=0

anzn +
∞∑

n=0

bnzn.

Similarly if
∑∞

n=0 anzn = A and
∑∞

n=0 bnzn = B , the Cauchy product
∑∞

n=0 cnzn

defined by cn = ∑n
k=0 akbn−k converges for appropriate values of z to the product

AB . The proof is the same as that for “real” power series and is outlined in Exercises
17 and 18.

2.3 Differentiability and Uniqueness of Power Series

We now show that power series, like polynomials, are differentiable functions of
z. Suppose then that

∑
Cnzn converges in some disc D(0; R), R > 0. Then the

series
∑

nCnzn−1 obtained by differentiating
∑

Cnzn term by term is convergent in
D(0; R), since

lim|nCn |1/(n−1) = lim(|nCn|1/n)n/(n−1) = lim|Cn |1/n.

2.9 Theorem

Suppose f (z) = ∑∞
n=0 Cnzn converges for |z| < R. Then f ′(z) exists and equals∑∞

n=0 nCnzn−1 throughout |z| < R.

Proof

We will prove the theorem in two stages. First, we will assume that R = ∞, then
we will consider the more general situation. Of course, the second case contains the
first, so the eager reader may skip the first proof.We include it since it contains the
key ideas with less cumbersome details.

Case (1): Assume
∑∞

n=0 Cnzn converges for all z. Then

f (z + h) − f (z)

h
=

∞∑
n=0

Cn
[(z + h)n − zn]

h

and

f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1 =
∞∑

n=2

Cnbn
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where

bn = (z + h)n − zn

h
− nzn−1

=
n∑

k=2

(
n
k

)
hk−1zn−k ≤ |h|

n∑
k=0

(
n
k

)
|z|n−k = |h|(|z| + 1)n

for |h| ≤ 1. Hence, for |h| ≤ 1,∣∣∣∣∣ f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1

∣∣∣∣∣ ≤ |h|
∞∑

n=0

|Cn|(|z| + 1)n ≤ A|h|

since
∑∞

n=0 |Cn |zn converges for all z. Letting h → 0, we conclude that

f ′(z) =
∑

nCnzn−1.

Case (2): 0 < R < ∞.
Let |z| = R − 2δ, δ > 0, and assume |h| < δ. Then |z + h| < R and, as in the

previous case. we can write

f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1 =
∞∑

n=2

Cnbn,

where

bn =
n∑

k=2

(
n
k

)
hk−1zn−k .

If z = 0, bn = hn−1 and the proof follows easily. Otherwise, to obtain a useful
estimate for bn we must be a little more careful. Note then that(

n
k

)
= n(n − 1) · · · (n − k + 1)

k!
≤ n2

(
n

k − 2

)
for k ≥ 2.

Hence, for z �= 0,

|bn| ≤ n2|h|
|z|2

n∑
k=2

(
n

k − 2

)
|h|k−2|z|n−(k−2)

≤ n2|h|
|z|2

n∑
j=0

(
n
j

)
|h| j |z|n− j

= n2|h|
|z|2 (|z| + |h|)n

≤ n2|h|
|z|2 (R − δ)n
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and ∣∣∣∣∣ f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1

∣∣∣∣∣ ≤ |h|
|z|2

∞∑
n=0

n2|Cn |(R − δ)n ≤ A|h|,

since z �= 0 is fixed and since
∑∞

n=0 n2|Cn|zn also converges for |z| < R. Again,
letting h → 0, we conclude that f ′(z) = ∑∞

n=0 nCnzn−1. �

EXAMPLE

f (z) = ∑∞
n=0(z

n/n!) is convergent for all z and, according to Theorem 2.9,

f ′(z) =
∞∑

n=0

nzn−1

n!
=

∞∑
n=0

zn

n!
= f (z).

♦
2.10 Corollary

Power series are infinitely differentiable within their domain of convergence.

Proof

Applying the above results to f ′(z) = ∑∞
n=0 nCn zn−1 which has the same radius

of convergence as f, we see that f is twice differentiable. By induction, f (n) is
differentiable for all n. �

2.11 Corollary

If f (z) = ∑∞
n=0 Cnzn has a nonzero radius of convergence,

Cn = f (n)(0)

n!
.

Proof

By definition f (0) = C0. Differentiating the power series term-by-term gives

f ′(z) = C1 + 2C2z + 3C3z2 + · · ·
so that

f ′(0) = C1.

Similarly

f (n)(z) = n!Cn + (n + 1)!Cn+1z + (n + 2)!

2!
Cn+2z2 + · · · ,

and the result follows by setting z = 0. �

for all n
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According to Corollary 2.11, if a power series is equal to zero throughout a
neighborhood of the origin, it must be identically zero. For then all its derivatives at
the origin–and hence all the coefficients of the power series–would equal 0. By the
same reasoning, if a power series were equal to zero throughout an interval containing
the origin, it would be identically zero. An even stronger result is proven below.

2.12 Uniqueness Theorem for Power Series

Suppose
∑∞

n=0 Cnzn is zero at all points of a nonzero sequence {zk} which converges
to zero. Then the power series is identically zero.

[Note: If we set f (z) = ∑
Cnzn , it follows from the continuity of power series

that f (0) = 0. We can show by a similar argument that f ′(0) = 0; however, a
slightly different argument is needed to show that the higher coefficients are also 0.]

Proof

Let
f (z) = C0 + C1z + C2z2 + · · · .

By the continuity of f at the origin

C0 = f (0) = lim
z→0

f (z) = lim
k→∞ f (zk) = 0.

But then

g(z) = f (z)

z
= C1 + C2z + C3z2 + · · ·

is also continuous at the origin and

C1 = g(0) = lim
z→0

f (z)

z
= lim

k→∞
f (zk)

zk
= 0.

Similarly, if C j = 0 for 0 ≤ j < n, then

Cn = lim
z→0

f (z)

zn
= lim

k→∞
f (zk)

zn
k

= 0,

so that the power series is identically zero. �

2.13 Corollary

If a power series equals zero at all the points of a set with an accumulation point at
the origin, the power series is identically zero.

Proof

Exercise �

The Uniqueness Theorem derives its name from the following corollary.

20.
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2.14 Corollary

If
∑

anzn and
∑

bnzn converge and agree on a set of points with an accumulation
point at the origin, then an = bn for all n.

Proof

Apply 2.13 to the difference: ∑
(an − bn)z

n.

�
Power Series Expansion about z = α All of the previous results on power series are
easily adapted to power series of the form∑

Cn(z − α)n .

By the simple substitution w = z − α, we see, for example, that series of the above
form converge in a disc of radius R about z = α and are differentiable throughout
|z − α| < R where R = 1/lim|Cn |1/n . (See Exercises 22 and 23.)

Exercises

1. Complete the proof of Proposition 2.3 by showing that for an analytic polynomial P, Py = i Px .
[Hint: Prove it first for the monomials.]

2.* a. Suppose f (z) is real-valued and differentiable for all real z. Show that f ′(z) is also real-valued
for real z.

b. Suppose f (z) is real-valued and differentiable for all imaginary points z. Show that f ′(z) is
imaginary at all imaginary points z.

3. By comparing coefficients or by use of the Cauchy-Riemann equations, determine which of the
following polynomials are analytic.
a. P(x + iy) = x3 − 3xy2 − x + i(3x2 y − y3 − y).
b. P(x + iy) = x2 + iy2.
c. P(x + iy) = 2xy + i(y2 − x2).

4. Show that no nonconstant analytic polynomial can take imaginary values only.

5. Find the derivative P ′(z) of the analytic polynomials in (3). Show that in each case P ′(z) = Px .
Explain.

6. Prove Proposition 2.5 by arguments analogous to those of real-variable calculus.

7. Prove Proposition 2.6. [Hint: Prove it for monomials and apply Proposition 2.5.]

8. Show Sn = n1/n → 1 as n → ∞ by considering log Sn .

9. Find the radius of convergence of the following power series:
a.

∑∞
n=0 zn!, b.

∑∞
n=0(n + 2n)zn .

10. Suppose
∑

cn zn has radius of convergence R. Find the radius of convergence of
a.

∑
n pcn zn , b.

∑ |cn |zn ,
c.

∑
c2

n zn .
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11. Suppose
∑

an zn and
∑

bn zn have radii of convergence R1 and R2, respectively. What can be said
about the radius of convergence of

∑
(an +bn)zn? Show, by example, that the radius of convergence

of the latter may be greater than R1 and R2.

12. Show that
∑∞

n=1(zn/n) converges at all points on the unit circle except z = 1. [Hint: Let z = cis θ

and analyze the real and imaginary parts of the series separately.]
13. a. Suppose {an} is a sequence of positive real numbers and

lim
n→∞

an+1

an
= L .

Show then that limn→∞ a1/n
n = L .

b. Use the result above to prove (
1

n!

)1/n
→ 0.

14. Use Exercise (13a) to find the radius of convergence of

a.
∑∞

n=0
(−1)n zn

n!
, b.

∑∞
n=0

z2n+1

(2n + 1)!
,

c.
∑∞

n=1
n!zn

nn , d.
∑∞

n=0
2n zn

n!
.

15.* Find the radius of convergence of

a.
∑

sin n zn , b.
∑

e−n2
zn ,

16.* Find the radius of convergence of
∑

cn zn if c2k = 2k ; c2k−1 = (1 + 1/k)k2
, k = 1, 2, ...

17. Suppose
∑∞

k=0 ak = A and
∑∞

k=0 bk = B . Suppose further that each of the series is absolutely
convergent. Show that if

ck =
k∑
j=0

a j bk− j

then ∞∑
k=0

ck = AB.

Outline: Use the fact that
∑ |ak | and

∑ |bk | converge to show that
∑

dk converges where

dk =
k∑
j=0

|a j ||bk− j |.

In particular,
dn+1 + dn+2 + · · · → 0 as n → ∞.

Note then that if

An = a0 + a1 + · · · + an
Bn = b0 + b1 + · · · + bn
Cn = c0 + c1 + · · · + cn ,

An Bn = Cn + Rn , where |Rn | ≤ dn+1 +dn+2 +· · ·+d2n , and the result follows by letting n → ∞.
18. Suppose

∑
an zn and

∑
bn zn have radii of convergence R1 and R2 respectively. Show that the

Cauchy product
∑

cn zn converges for |z| < min(R1, R2).



34 2 Functions of the Complex Variable z

19. a. Using the identity

(1 − z)(1 + z + z2 + · · · + z N ) = 1 − z N+1

show that
∞∑

n=0

zn = 1

1 − z
for |z| < 1.

b. By taking the Cauchy product of
∑∞

n=0 zn with itself, find a closed form for
∑∞

n=0 nzn .
20. Prove Corollary 2.13 by showing that if a set S has an accumulation point at 0, it contains a sequence

of nonzero terms which converge to 0.

21. Show that there is no power series f (z) = ∑∞
n=0 Cn znsuch that

i. f (z) = 1 for z = 1
2 , 1

3 , 1
4 , . . .

ii. f ′(0) > 0.

22. Assume lim|Cn |1/n < ∞. Show that if we set

f (z) =
∞∑

n=0

Cn(z − α)n,

then

Cn = f (n)(α)

n!
.

23. Find the domain of convergence of

a.
∑∞

n=0 n(z − 1)n , b.
∑∞

n=0
(−1)n

n!
(z + 1)n ,

c.
∑∞

n=0 n2(2z − 1)n .

and
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