
Chapter 17
Different Forms of Analytic Functions

Introduction

The analytic functions we have encountered so far have generally been defined either
by power series or as a combination of the elementary polynomial, trigonometric and
exponential functions, along with their inverse functions. In this chapter, we consider
three different ways of representing analytic functions.We begin with infinite prod-
ucts and then take a closer look at functions defined by definite integrals, a topic
touched upon earlier in Chapter 7 and in Chapter 12.2. Finally, we define Dirichlet
series, which provide a link between analytic functions and number theory.

17.1 Infinite Products

17.1 Definition

a. Let {uk}∞k=1 be a sequence of nonzero complex numbers. The infinite product∏∞
k=1 uk is said to converge if the sequence of partial products PN = u1u2 . . . uN

converges to a nonzero limit as N → ∞. If PN → 0, we say the infinite product
diverges to 0.

b. If finitely many terms uk are equal to zero, we will say the product converges to
zero provided

∏∞
k=1

uk �=0
uk converges.

EXAMPLES

i.
∏∞

k=1(1 + 1/k) = 2
1 · 3

2 · 4
3 · . . . diverges (to ∞) since PN = N + 1 → ∞.

ii.
∏∞

k=2(1 − 1/k) diverges to zero.

iii.
∏∞

k=2(1 − 1/k2) = ∏∞
k=2(k − 1)(k + 1)/k2 converges.

We leave it as an exercise to prove this by finding an explicit formula for PN .
iv.

∏∞
k=1(1 − 1/k2) converges to 0 since

∏∞
k=2(1 − 1/k2) converges. ♦
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242 17 Different Forms of Analytic Functions

Notes

1. If PN−1 �= 0,

uN = PN

PN−1
.

Hence if
∏∞

k=1 uk converges, uN → 1 as N → ∞. For this reason, we will
usually write infinite products in the form

∏
k(1+ zk) with the understanding that

zk → 0 if the product converges.
2. If {ak}∞k=1 is a sequence of positive real numbers,

∏∞
k=1(1 + ak) converges if and

only if
∑∞

k=1 ak converges. This follows from the inequalities

a1 + a2 + · · · + aN ≤
N∏

k=1

(1 + ak) ≤ ea1+a2+···+aN .

The right-hand inequality is a direct consequence of the fact that 1 + x ≤ ex

for all real x . It is not true for complex numbers zk , however, that
∏∞

k=1(1 + zk)
converges if any only if

∑∞
k=1 zk converges (see Exercise 5), but we do have the

following theorem.

17.2 Proposition

Let zk �= −1, k = 1, 2, . . . .
∏∞

k=1(1+zk) converges if and only if
∑∞

k=1 log(1+zk)
converges. (log z here denotes the principal branch of the logarithm; i.e., −π <
Im log z = Arg z ≤ π .)

Proof

Let SN = ∑N
k=1 log(1 + zk). Then PN = eSN and if SN → S, PN → P = eS .

Suppose, on the other hand, that PN → P �= 0. Then, some branch of the logarithm
(which we will denote log∗) is continuous at P and log∗ PN → log∗ P as N → ∞.
Suppose we inductively define integers nk so that

N∑
k=1

(log(1 + zk) + 2π ink) = log∗ PN .

Then since log∗ PN converges,

N∑
k=1

(log(1 + zk) + 2π ink)

converges; therefore log(1 + zk) + 2π ink → 0 as k → ∞. Since zk → 0 and log
denotes the principal branch, it follows that nk = 0 for k sufficiently large.

Hence
∑∞

k=1 log(1 + zk) converges. �

17.3 Proposition

If
∑∞

k=1 |zk | converges,
∏∞

k=1(1 + zk) converges.
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Proof

Assume
∑∞

k=1 |zk | converges and take N such that for k > N, |zk | < 1
2 . Then, for

k > N

| log(1 + zk)| = |zk − z2
k

2
+ z3

k

3
− + · · · | ≤ |zk |

(
1 + 1

2
+ 1

4
+ · · ·

)
≤ 2|zk|.

Hence
∑∞

k=N+1 log(1 + zk) is convergent and by the previous proposition so is∏∞
k=1(1 + zk). �

17.4 Definition∏∞
k=1(1 + zk) is called absolutely convergent if

∞∏
k=1

(1 + |zk |) converges.

17.5 Proposition

An absolutely convergent product is convergent.

Proof

According to Note (2) (following Definition 17.1), the convergence of
∏∞

k=1(1+|zk|)
is equivalent to the convergence of

∑∞
k=1 |zk |. Hence if

∏∞
k=1(1 + |zk|) converges

so does
∑∞

k=1 |zk | and by the previous proposition, so does
∏∞

k=1(1 + zk). �

We wish to consider analytic functions defined by infinite products; i.e., functions
of the form

f (z) =
∞∏

k=1

(1 + uk(z)).

Recall that f is analytic if each function uk, k = 1, 2, . . . is analytic and the partial
products converge to their limit function uniformly on compacta (Theorem 7.6).

17.6 Theorem

Suppose that uk(z) is analytic in a region D for k = 1,2, …, and that
∑∞

k=1 |uk(z)|
converges uniformly on compacta. Then the product

∏∞
k=1(1 + uk(z)) converges

uniformly on compacta and represents an analytic function in D.

Proof

Let A be a compact subset of D. Since
∑∞

k=1 |uk(z)| converges uniformly on A, for
sufficiently large k, |uk(z)| < 1 there. Hence, we may assume that 1 + uk �= 0 for
all k. If we then take N large enough so that

∑∞
k=N+1 |uk(z)| < ε/2, it follows, as in
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the proof of Proposition 17.3, that∣∣∣∣∣∣
∞∑

k=N+1

log(1 + uk(z))

∣∣∣∣∣∣ ≤ ε throughout A.

That is,
∑∞

k=1 log(1 + uk(z)) converges uniformly on A to a limit function S(z). It
follows that S(A) is bounded. Finally, since the exponential function is uniformly
continuous in any bounded domain,

PN (z) = exp

(
N∑

k=1

log(1 + uk(z))

)

converges uniformly to its limit function eS(z). �

EXAMPLES

1.
∏∞

k=1(1 + zk) converges uniformly on any compact subset of the unit disc since
any compact subset is contained in a disc of radius δ < 1. Hence

∞∑
k=1

|zk| ≤
∞∑

k=1

δk = δ

1 − δ

and, by the M-test,
∑∞

k=1 |zk| is uniformly convergent.
2. ∞∏

k=1

(
1 + 1

kz

)

represents an analytic function in the half-plane D : Re z > 1. In any compact
subset of D, Re z ≥ 1 + δ throughout so that∣∣∣∣ 1

kz

∣∣∣∣ = 1

kRe z
≤ 1

k1+δ
, k = 1, 2, . . . .

Hence ∞∑
k=1

∣∣∣∣ 1

kz

∣∣∣∣
and, consequently, ∞∏

k=1

(
1 + 1

kz

)

are uniformly convergent. ♦
The Weierstrass Product Theorem. According to the Uniqueness Theorem (6.9), a
nontrivial entire function cannot have an accumulation point of zeroes. That is, if
{λk} → λ and if f is an entire function with zeroes at all the points λk , then f ≡ 0.
On the other hand, an entire function may be zero at all the points of a sequence which
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diverges to ∞. For example sin z is zero at all integral multiples of π . Similarly, ez −1
is zero at all the integral multiples of 2πi . The Weierstrass Product Theorem shows
that these examples are in no way exceptional.

17.7 Theorem (Weierstrass)

Suppose {λk}∞k=1 → ∞. Then there exists an entire function f such that f (z) = 0
if and only if z = λk, k = 1, 2, . . ..

Note: To define an entire function with zeroes at the points λk , it would seem natural
to write

f (z) =
∞∏

k=1

(z − λk).

However, since λk → ∞, the terms of the product would not approach 1 (for fixed
z) and hence the product would diverge. Instead, we consider the infinite product of
linear functions given by

f (z) =
∞∏

k=1

(
1 − z

λk

)
,

assuming for now that λk �= 0. Indeed, if
∑∞

k=1 |1/λk | converges,
∑∞

k=1 |z/λk |
converges uniformly on every compact set so that the product is uniformly convergent
on compacta and gives the desired entire function.Moreover, if

∑∞
k=1 1/|λk| diverges

but
∑∞

k=1 1/|λk|2 converges, we can modify the above construction by considering

f (z) =
∞∏

k=1

[(
1 − z

λk

)
ez/λk

]
.

With the “convergence factors” ez/λk , the product is uniformly convergent on com-
pacta since, for |λk | > 2|z|,

∣∣∣∣log

[(
1 − z

λk

)
ez/λk

]∣∣∣∣ =
∣∣∣∣∣
(

− z

λk
− z2

2λ2
k

− z3

3λ3
k

+ · · ·
)

+ z

λk

∣∣∣∣∣
≤

∣∣∣∣∣ z2

λ2
k

∣∣∣∣∣
(

1

2
+ 1

4
+ 1

8
· · ·

)
=

∣∣∣∣∣ z2

λ2
k

∣∣∣∣∣ .
Hence the series ∞∑

k=1

log
[
(1 − z/λk)e

z/λk
]
, z �= λk

is uniformly convergent and the product is uniformly convergent on compacta.
By the same reasoning, if

∑∞
k=1 1/|λk |m+1 converges for some positive integer

m and we consider the convergence factors

Ek(z) = exp
(

z/λk + z2/2λ2
k + · · · + zm/mλm

k

)
,
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it follows that the infinite product

∞∏
k=1

(
1 − z

λk

)
Ek(z)

is uniformly convergent on compacta and represents an entire function with the
desired zeroes. There are sequences {λk}, however, such that λk → ∞ and yet∑∞

k=1 1/|λk |N diverges for all N . (For example, {λk} = {log k}∞k=2.) Hence, for the
general case we must introduce a slight variation.

Proof

Assume for the moment that λk �= 0 and set

Ek(z) = exp

(
z

λk
+ z2

2λ2
k

+ · · · + zk

kλk
k

)
.

Suppose, moreover, that |z| < M . Then since λk → ∞, for sufficiently large
k, |λk | > 2|z| and

∣∣∣∣log

[(
1 − z

λk

)
Ek(z)

]∣∣∣∣ ≤
∞∑

j=k+1

∣∣∣∣∣ z j

jλ jk

∣∣∣∣∣ ≤
∣∣∣∣ z

λk

∣∣∣∣k

≤ 1

2k
.

Hence both

∞∑
k=1

log

[(
1 − z

λk

)
Ek(z)

]
and

∞∏
k=1

[(
1 − z

λk

)
Ek(z)

]

are uniformly convergent on compacta.Note also that the individual factors are zero
only at the points λk , and by the definition of convergence the infinite product is zero
at those points only. Finally, if we seek an entire function with zeroes at the origin
as well, we need only set

f (z) = z P
∞∏

k=1

[(
1 − z

λk

)
Ek(z)

]
.

�

EXAMPLES

1. To find an entire function f with a single zero at every negative integer λk = −k,
note that

∑∞
k=1 1/|λk| diverges but

∑∞
k=1 1/|λk |2 converges so that we can define

f (z) =
∞∏

k=1

(
1 + z

k

)
e−z/k .
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2. An entire function with zeroes at all the points λk = log k, k = 1, 2, . . ., is given
by

f (z) = z
∞∏

k=2

[(
1 − z

log k

)
exp

(
z

log k
+ z2

2 log2 k
+ · · · + zk

k logk k

)]
.

3. An entire function with a single zero at every integer is given by

f (z) = z
∞∏

k=1

[(
1 − z

k

)
ez/k

(
1 + z

k

)
e−z/k

]
= z

∞∏
k=1

(
1 − z2

k2

)
. ♦

17.8 Proposition

Let

f (z) = z
∞∏

k=1

(
1 − z2

k2

)
.

Then f (z) = (sin πz)/π .

Proof

Consider the quotient

Q(z) = z
∞∏

k=1

(
1 − z2

k2

) /
sin πz.

Q is entire and zero-free. To show that Q is constant we seek estimates on its growth
for large z. Assume then that 1

2 N ≤ |z| ≤ N . Then |Q(z)| is bounded by the
maximum value assumed by Q on the square of side 2N + 1 centered at the origin
(Theorem 6.13).We have already proved, however, (see Chapter 11.2) that along this
square (which avoids the zeroes of sin πz), |1/ sin πz| ≤ 4. Moreover,

∣∣∣∣∣
∞∏

k=1

(
1 − z2

k2

)∣∣∣∣∣ =
∣∣∣∣∣∣

N∏
k=1

(
1 − z

k

) (
1 + z

k

) ∞∏
k=N+1

(
1 − z2

k2

)∣∣∣∣∣∣
≤

N∏
k=1

e2|z/k|
∞∏

k=N+1

e|z2/k2|

≤ exp

(
2|z|(1 + log N) + |z2|

N

)

since
N∑

k=1

1

k
< 1 + log N and

∞∑
k=N+1

1

k2
<

1

N
.
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NN–N – –N 

z

¹
²
–

N + ¹
²
–

– ¹
²
– N¹

²
–

Noting again that for large N , 2(1+log N) <
√

N/2 ≤ |z|1/2 while |z2|/N ≤ |z|,
it follows that

|Q(z)| =
∣∣∣∣∣∣
z
∏∞

k=1

(
1 − z2

k2

)
sin πz

∣∣∣∣∣∣ ≤ A exp(|z|3/2).

By Theorem 16.12, then, we must have

z
∏∞

k=1

(
1 − z2

k2

)
sin πz

= AeBz.

However, Q is an even function so that B = 0, and the constant A can be determined
by noting that

A = Q(0) = lim
z→0

z

sin πz
= 1

π
.

�

Some consequences of the above proposition:

i. Setting z = 1
2 , we have

1 = π

2

∞∏
k=1

[
1 − 1

(2k)2

]

so that

2

π
=

(
1 · 3

2 · 2

) (
3 · 5

4 · 4

) (
5 · 7

6 · 6

)
· · ·

or

π = 2 ·
(

2 · 2

1 · 3

) (
4 · 4

3 · 5

) (
6 · 6

5 · 7

)
· · · .
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ii. Suppose we expand the terms in the product to obtain an infinite series. Then we
will have

sin πz = πz
∞∏

k=1

(
1 − z2

k2

)

= πz

⎡
⎣1 −

( ∞∑
k=1

1

k2

)
z2 +

⎛
⎝∑

k j

1

k2 j2

⎞
⎠ z4 − + · · ·

⎤
⎦ .

A comparison with the familiar power series

sin πz = πz − π3z3

6
+ π5z5

120
− + · · ·

shows that ∞∑
k=1

1

k2
= π2

6
.

(See 11.2 for an earlier proof of this identity.)

17.2 Analytic Functions Defined by Definite Integrals

We noted previously that Morera’s Theorem (7.4) can be used to prove the analyticity
of certain functions given in integral form.We now examine this notion in somewhat
greater detail.

17.9 Theorem

Suppose ϕ(z, t) is a continuous function of t, a ≤ t ≤ b, for fixed z and an analytic
function of z ∈ D for fixed t . Then

f (z) =
∫ b

a
ϕ(z, t)dt

is analytic in D and

f ′(z) =
∫ b

a

∂

∂z
(ϕ(z, t))dt . (1)

Proof

Since f is a continuous function of z, according to Morera’s Theorem (7.4), we need
only prove that

∫
� f (z)dz = 0 for any rectangle � ⊂ D. We can reverse the order

of integration, however, and write

∫
�

f (z)dz =
∫

�

(∫ b

a
ϕ(z, t)dt

)
dz =

∫ b

a

(∫
�

ϕ(z, t)dz

)
dt

<
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since ϕ is continuous in t and in z. Thus, since ϕ is analytic in z,

∫
�

f (z)dz =
∫ b

a
0 dt = 0

We leave it as an exercise to show that f ′ is given by the formula in (1). �

EXAMPLES

1. f (z) = ∫ 1
0 dt/(t − z) is analytic in D = C\ [0, 1].

In fact, direct integration shows that f (z) = log(1 − 1/z), and we can use
Theorem 10.8 to show that f is analytic in D. Recall then that �Arg(1 − 1/z),
as z traverses a closed curve, gives the number of zeroes minus the number of
poles of 1 − 1/z that lie inside the curve.Yet if the curve is a simple closed curve
encircling the interval [0, 1], because 1 − 1/z has one zero and one pole inside,
�Arg(1 − 1/z) = 0. The same argument shows that f has a jump discontinuity
of 2πi as z crosses through any point x, 0 < x < 1 from the upper to the lower
half-plane.

2. g(z) = ∫ ∞
0 dt/(et − z) is analytic in C\ [1,∞). Although g is given by an

improper integral, it is the uniform limit of

gN (z) =
∫ N

0

dt

et − z

on any compact subset of C\ [1,∞), and hence g is analytic. As we shall see
below, g has a “jump” of 2π i/x as z crosses from the upper half-plane to the
lower half-plane through any point x > 1. ♦

17.10 Proposition

Suppose that f and g are continuous real-valued functions on [a, b] and that f ′ > 0
is also continuous. Then

F(z) =
∫ b

a

g(t)

f (t) − z
dt

is analytic outside the interval [α, β] where α = f (a), β = f (b) and

lim
y→0+ [F(x + iy) − F(x − iy)] = 2π i

g( f −1(x))

f ′( f −1(x))
for all x ∈ (α, β).

Proof

The analyticity of F is proven in Theorem 17.9. By rationalizing the denominator,
we obtain

F(x + iy) =
∫ b

a

[ f (t) − x] g(t)

[ f (t) − x]2 + y2
dt + iy

∫ b

a

g(t)dt

[ f (t) − x]2 + y2
.
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Hence

F(x + iy) − F(x − iy) = 2iy
∫ b

a

g(t)dt

[ f (t) − x]2 + y2
,

and setting t = f −1(u), α = f (a), β = f (b)

F(x + iy) − F(x − iy) = 2i
∫ β

α

yg( f −1(u))du

f ′( f −1(u))
[
(u − x)2 + y2

] .

We leave it as an exercise to complete the proof by showing that

∫ β

α

h(u)y

(u − x)2 + y2 du → πh(x)

as y → 0 for any continuous function h on [α, β] and α < x < β. �

17.3 Analytic Functions Defined by Dirichlet Series

Series of the form ∞∑
n=1

an

nz

are known as Dirichlet Series. Note that n−z = exp(−z log n) represents an entire
function for every positive integer n. (log n is chosen as the principal value; i.e., log n
is real-valued, so n−z is positive for all real z. The coefficients an , of course, can be
any complex constants.) Since the partial sums are entire, a function f (z), defined
by a Dirichlet series, is analytic in any region where the series converges uniformly.
According to the theorems below, the natural regions of convergence for Dirichlet
series are half-planes of the form Re z > x0, much as discs centered at the origin are
the natural regions associated with power series.

17.11 Theorem

If
∑∞

n=1
an

nz
converges for z = z0, then it converges for all z in the half-plane H =

{z :Re z > Re z0}.Moreover, the convergence is uniform in any compact subset of H.

Proof

To show that
∑∞

n=1
an

nz
converges, we will show that the partial sums form a Cauchy

sequence. That is, we will show that∣∣∣∣∣
N∑

n=M

an

nz

∣∣∣∣∣ =
∣∣∣ aM

Mz
+ · · ·aN

Nz

∣∣∣
is arbitrarily small for sufficiently large values of M .
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Our proof is based on “summation by parts” and the following two observations:

(i) Since
∞∑

n=1

an

nz0

converges, there exists a positive constant A with∣∣∣∣∣
T∑

n=1

an

nz0

∣∣∣∣∣ < A (2)

for all positive integers T .
(ii) ∣∣∣∣ 1

nw
− 1

(n + 1)w

∣∣∣∣ <
|w|

nRe w+1

The above inequality follows easily from the usual M − L formula, since

1

nw
− 1

(n + 1)w
=

∫ n+1

n
wt−w−1dt .

To complete the proof, let

An =
n∑

k=1

ak

kz0
, bn = 1

nw
, with w = z − z0.

Then

aM

Mz
+ · · · + aN

Nz
= (AM − AM−1)bM + · · · + (AN − AN−1)bN

= −AM−1bM +
N−1∑
k=M

Ak(bk − bk+1) + AN bN . (3)

−AM−1bM and AN bN both go to zero for sufficiently large values of M and N ,
since

|Ak | < A for all k, and |bn| = 1/nRe (z−z0)

The remaining sum on the right side of (3) is also arbitrarily small for sufficiently
large M since, according to (i) and (ii), it is bounded in absolute value by

∞∑
k=M

A|z − z0|
k1+δ

, where δ = Re (z − z0),
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which is the “tail” of a convergent series. Hence

∞∑
n=1

an

nz

converges.
Finally, note that if K is a compact subset of H , there is a positive value of δ,

with Re (z − z0) > δ for all z in K , as well as a positive constant B with |z| < B
throughout K . Hence the expression in (3) will have a uniformly small absolute value
for all z in K , once M is sufficiently large.So the series converges to its limit function
uniformly in K . �

Note that in the proof of Theorem 17.11, we never actually used the convergence
of the Dirichlet series at z0. The only actual requirement for the conclusion was that
there was a finite upper bound for the absolute value of its partial sums.

EXAMPLE

Suppose an = (−1)n .Then
∑∞

n=1
an

nz
has bounded partial sums (although it diverges)

at z = 0. According to Theorem 17.11, then, it converges and represents an analytic
function in the right half-plane: Re z > 0. The fact that it diverges at z = 0 also
implies that its partial sums are not bounded for any value of z with a negative real
part. ♦

17.12 Theorem

If
∑∞

n=1
an

nz
converges for some, but not all, values of z, there exists a real constant

x0 (called the abscissa of convergence) such that
∑∞

n=1
an

nz
converges if Re z > x0

and diverges if Re z < x0.

Proof

Let x0 be the greatest lower bound of the real parts of all the complex numbers z for

which
∑∞

n=1
an

nz
converges. By Theorem 17.11, if x0 = −∞, the series converges

for all z. If the series neither converges for all z nor diverges for all z, −∞ < x0 < ∞
and the theorem follows from Theorem 17.11 �

The abscissa of convergence of the Dirichlet series bears an obvious analogy to
the radius of convergence of a power series.However, the analogy does not extend to
the idea of absolute convergence. Power series converge absolutely in any compact
subset of their region of convergence.On the other hand, consider the Dirichlet series

∞∑
n=1

(−1)n

nz

As we mentioned above, the series converges (and represents an analytic function)
in the right half-plane: Re z > 0. However, it converges absolutely only if Re z > 1.



254 17 Different Forms of Analytic Functions

This is the general situation with Dirichlet series. In addition to the half-plane of
convergence H , there is a half-plane of absolute convergence H1, which may be a
proper subset of H .

17.13 Theorem

Suppose
∑∞

n=1
an

nz converges absolutely for some, but not all, values of z. Then there

exists a constant x1 (called the abscissa of absolute convergence) such that
∑∞

n=1
an

nz

converges absolutely if Re z > x1 and does not converge absolutely if Re z < x1.

Proof

∣∣∣an

nz

∣∣∣ = |an|
nx

So if
∑∞

n=1
an

nz
is absolutely convergent at z0, it is also absolutely convergent at

all points z with Re z ≥ Re z0. The theorem follows with x1 equal to the great-

est lower bound of the real parts of all complex z for which
∑∞

n=1
an

nz
converges

absolutely. �

Note that if the coefficients an are all positive, the abscissas of convergence and
absolute convergence must be identical. Otherwise there would be a real number x
between them where the Dirichlet series is convergent but not absolutely convergent.
But this is obviously impossible since the terms in the Dirichlet series, for real values
of z, are all positive.

EXAMPLE

The function ζ(z) is defined by the Dirichlet series
∑∞

n=1
1

nz
. This series converges

absolutely for Re z > 1, and diverges if Re z < 1. ♦

Since Dirichlet series converge uniformly within their half-plane of convergence,

they can be differentiated term-by-term. So if f (z) = ∑∞
n=1

an

nz
, then

f ′(z) =
∞∑

n=1

−an log n

nz
.

For any value of z within the half-planes of convergence for two Dirichlet series,
we have : ∞∑

n=1

an

nz
+

∞∑
n=1

bn

nz
=

∞∑
n=1

an + bn

nz
.

We can also multiply two Dirichlet series.Rewriting the product as another Dirich-
let series involves a rearrangement of the terms, which is justified if the two series
are absolutely convergent. Hence, within the half-planes of absolute convergence,
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we have ∞∑
n=1

an

nz

∞∑
n=1

bn

nz
=

∞∑
n=1

cn

nz

with cn defined as the “convolution” of an and bn. That is,

cn =
∑
d |n

adbn/d

where the sum is taken over all the positive divisors of n.

EXAMPLE

ζ 2(z) =
∞∑

n=1

1

nz

∞∑
n=1

1

nz
=

∞∑
n=1

d(n)

nz

where d(n) equals the number of positive divisors of n.

Exercises

1. Prove ∞∏
k=2

(
1 − 1

k2

)

converges by finding an explicit formula for PN .
2. As above, prove

∞∏
k=2

[
1 + (−1)k

k

]

converges.

3.* Prove that
∏
n

(1 + i

n
) diverges, but

∏
n

|1 + i

n
| converges.

4. Show that if
∑∞

k=1 zk converges and
∑∞

k=1 |zk |2 converges, then
∏∞

k=1(1 + zk) converges.
5. Show that ∞∏

k=2

[
1 + (−1)k

√
k

]

diverges even though
∞∑

k=2

(−1)k
√

k

converges.

6. Prove that (1 +z)(1+z2)(1+z4) . . . = ∏∞
k=0(1+z2k

) converges uniformly on compacta to 1/(1−z)
in |z| < 1. [Hint: Find PN .]

7. Define an entire function g with single zeroes at and only at all the “squares” λk = k2; k = 1, 2, . . ..
8. Show that one solution to (7) is given by sin π

√
z/π

√
z.

9. Prove that

cos πz =
∞∏

k=0

[
1 − 4z2

(2k + 1)2

]
.
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10. a. Define a function f , analytic in |z| < 1 and such that

f (z) = 0 if and only if z = 1 − 1

k
; k = 1, 2, . . . .

[Hint: Find an entire function g with zeroes at λk = k, k = 1, 2, . . . and consider f (z) =
g(1/(1 − z)).]

b. Generalize the above results.
11. Given F(z) = ∫ b

a ϕ(z, t)dt . Derive the formula for F ′(z) by writing

F ′(z) = 1

2π i

∫
C

F(ζ )

(ζ − z)2
dζ = 1

2π i

∫
C

(∫ b

a

ϕ(ζ, t)

(ζ − z)2
dt

)
dζ

and switching the order of integration.
12. Complete Proposition 17.10 by splitting

∫ β

α

h(u)ydu

(u − x)2 + y2
into

∫ x−ε

α
+

∫ x+ε

x−ε
+

∫ β

x+ε
.

.
13. Show that

f (z) =
∫ 1

0

dt

1 − zt

is analytic outside [1,∞]. Find the discontinuity of f as z “crosses” a point x > 1.
14.* a. Let φ(n) be the Euler totient function; i.e., the number of positive integers not exceeding n, which

are relatively prime to n. Prove that
∞∑

n=1

φ(n)

nz

is absolutely convergent for Re z > 2.

b. It can be shown that
∑

d|n φ(d) = n, for all n ≥ 1 [Apostol, p.26]. Show that ζ(z)
∑∞

n=1
φ(n)

nz =
ζ(z − 1), for Re z > 2.
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