
Chapter 15
Maximum-Modulus Theorems
for Unbounded Domains

15.1 A General Maximum-Modulus Theorem

The Maximum-Modulus Theorem (6.13) shows that a function which is C-analytic
in a compact domain D assumes its maximum modulus on the boundary. In gen-
eral, if we consider unbounded domains, the theorem no longer holds. For example,
f (z) = ez is analytic and unbounded in the right half-plane despite the fact that on the
boundary |ez| = |eiy | = 1. Nevertheless, given certain restrictions on the growth of
the function, we can conclude that it attains its maximum modulus on the boundary.
The most natural such condition is that the function remain bounded throughout D.

15.1 Theorem

Suppose f is C-analytic in a region D. If there are two constants M1 and M2
such that

| f (z)| ≤ M1 for z ∈ ∂ D

| f (z)| ≤ M2 for all z ∈ D

then, in fact,
| f (z)| ≤ M1 for all z ∈ D.

Proof

Without loss of generality, we suppose | f (z)| ≤ 1 on ∂ D. Assuming, then, that
| f (z)| ≤ M in D, we wish to prove | f (z0)| ≤ 1 for every z0 ∈ D. We will first
prove the theorem in the special case where D is the right half-plane and then extend
the proof to a general region.

In the case of the right half-plane, fix z0 ∈ D and consider the auxiliary function

h(z) = f N (z)

z + 1

where N is a positive integer. By the hypothesis on f, |h(z)| ≤ 1 on the imag-
inary axis and |h(z)| ≤ M N /R for all z ∈ D such that |z| = R. Thus we have
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|h(z)| ≤ Max(1, M N /R) on the boundary of the right semi-circle DR =
{z ∈ D : |z| ≤ R}. Choosing R > M N and large enough so that z0 ∈ DR , we
conclude |h(z)| ≤ 1 along the boundary of the compact domain DR and hence by
the Maximum Modulus Theorem |h(z0)| ≤ 1. Thus for each z0 ∈ D∣∣∣∣ f N (z0)

z0 + 1

∣∣∣∣ ≤ 1

or
| f (z0)| ≤ |z0 + 1|1/N .

If we now let N → ∞, we see | f (z0)| ≤ 1 as desired.
In the more general case, where D is an arbitrary region, we must replace 1/(z+1)

by a function g, analytic in D and such that g(z) → 0 as z → ∞. Such a function
is given by

g(z) = f (z) − f (a)

z − a

where a is any fixed point in D.Clearly g, like f , is C-analytic in D (Proposition 6.7).
The boundedness of f assures g(z) → 0 as z → ∞ and this, in turn, implies that
|g(z)| ≤ K , some constant, throughout D̄.

Again, we set DR = {z ∈ D : |z| ≤ R}. Setting h(z) = f N (z)g(z), because
g → 0 as z → ∞ we may take R large enough so that |h(z)| ≤ K along the boundary
of DR . Hence, by the Maximum Modulus Theorem, |h(z0)| ≤ K for every z0 ∈ D.
Assuming, then, that g(z0) �= 0, we can write

| f (z0)| ≤
∣∣∣∣ K

g(z0)

∣∣∣∣1/N

,

and letting N → ∞ yields | f (z0)| ≤ 1. Note, finally, that unless f is constant, the
zeroes of g form a discrete set (Theorem 6.9); hence, by continuity,

| f (z0)| ≤ 1 for every z0 ∈ D. �

The above theorem may be used to derive the following stronger form of Liou-
ville’s Theorem.

15.2 Definition

Let γ be a path parameterized by γ = γ (t), 0 ≤ t < ∞. We will say that
f approaches infinity along γ if, for any positive integer N , there exists a point
t0 such that

| f (γ (t))| ≥ N for all t ≥ t0.

15.3 Theorem

If f is a nonconstant entire function, there exists a curve along which f approaches
infinity.
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Note: An equivalent formulation of Liouville’s Theorem (5.10) is that, for any non-
constant entire function f , there exists a sequence of points z1, z2 . . . such that
f (zn) → ∞ as n → ∞. However, the existence of a curve along which f → ∞
does not immediately follow. If we simply connect the points z1, z2, . . . successively,
we have no control over the behavior of f at the intermediate points. The proof of
Theorem 15.3 will depend on judiciously choosing the points zk and the connecting
lines so that we can guarantee that f → ∞ along the path thus formed.

Proof of Theorem 15.3

Let T1 = {z : | f (z)| > 1} and fix S1, a connected component of T1. We will need
the following facts about S1:

a. S1 is an open set
b. | f (z)| = 1 for z ∈ ∂S1
c. f is unbounded on S1.

(a) is immediate. To prove (b), we first note that | f (z)| ≥ 1 on the boundary of
S1 by continuity. If | f (z)| > 1 for some z ∈ ∂S1, then | f (w)| > 1 for all w in a
neighborhood of z and thus z would be an interior, rather than a boundary point of
S1. Finally, if f were bounded throughout S1, we could apply (b) and Theorem 15.1
to show | f (z)| ≤ 1 throughout S1, contradicting its definition.

Now set T2 = {z ∈ S1 : | f (z)| > 2} and choose a connected component S2. (Note
that, by (c), T2 is non-empty.) As above, we can prove that f is unbounded on S2.
Proceeding inductively, we obtain a sequence of regions

S1 ⊃ S2 ⊃ S3 ⊃ · · ·
such that | f (z)| > k for all z ∈ Sk .

S1

S2 S3z2

z3
z1

γ

Finally, we choose a point zk ∈ Sk for k = 1, 2, . . .. Since each set Sk is a region
which contains all points zn, n ≥ k, we can connect zk to zk+1 by a polygonal
path γk contained in Sk . Thus | f (z)| > k for all z ∈ γk . If we then form the path
γ = ⋃∞

k=1 γk , it follows that f approaches ∞ along γ , proving the theorem. �
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15.2 The Phragmén-Lindelöf Theorem

We now return to theorems of maximum-modulus type.
Theorem 15.1 is rather general in that it applies to any region.On the other hand, if

we restrict ourselves to various specific regions D, we will be able to derive the same
type of conclusion under a much weaker hypothesis on f . We begin, as before, by
considering the right half-plane. As previously noted, the function ez is unbounded
in this domain despite the fact that it is bounded by 1 on the imaginary axis. The
same, of course, is true of the function eδz for any δ > 0.However, if f (z) has slower
growth than eδz , we have the following extension of Theorem 15.1.

15.4 Phragmén-Lindelöf Theorem

Let D denote the right half-plane and suppose f is C-analytic in D. If

| f (z)| ≤ 1 (1)

on the imaginary axis and if, for each ε > 0, there exists a constant Aε such that

| f (z)| ≤ Aεeε|z| (2)

throughout D, then (1) holds for all z ∈ D.

Before proceeding with the proof, we will need the following lemma, which is a
slightly weaker form of the theorem.

Lemma 1

Suppose f is C-analytic in the right half-plane D. If

| f (z)| ≤ 1 (3)

on the imaginary axis, and if for some δ > 0, there exist constants A and B such that

| f (z)| ≤ A exp(B|z|1−δ) (4)

for all z ∈ D, then (3) holds throughout D.

Proof of Lemma 1

Here we use the auxiliary function

h(z) = f N (z)

exp(z1−δ/2)

and wish to show |h(z0)| ≤ 1 for each z0 ∈ D. Let us first analyze the denominator
g(z) = exp(z1−δ/2). In the open right half-plane z1−δ/2 may be defined as an analytic
function (see the comments following Theorem 8.8). To fix its value, we take it to
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be positive on the positive real axis. Then, for z = reiθ , − π/2 < θ < π/2,

z1−δ/2 = r1−δ/2eiθ(1−δ/2), −π

2
< θ <

π

2

which is also continuous to the boundary.
Finally,

g(z) = exp(z1−δ/2) = exp(r1−δ/2eiθ(1−δ/2)).

Thus, for z = iy

|g(z)| = exp

(
|y|1−δ/2 cos

(
1 − δ

2

)
π

2

)
≥ e0 = 1 (5)

and for |z| = R, z ∈ D,

|g(z)| = exp

(
R1−δ/2 cos

(
1 − δ

2

)
θ

)
≥ exp(R1−δ/2m). (6)

where m is the minimum value of

cos

(
1 − δ

2

)
θ, −π

2
< θ <

π

2
.

Now consider |h(z)| on the boundary of DR . On the imaginary axis, by (3) and
(5), |h(z)| ≤ 1. For |z| = R, by (4) and (6),

|h(z)| ≤ AN exp(NBR1−δ − mR1−δ/2).

Since the expression in parenthesis approaches −∞ as R → ∞, we have for R large
enough, |h(z)| ≤ 1 on the boundary of DR . Once again, invoking the maximum
modulus theorem,

|h(z0)| ≤ 1

for every z0 ∈ D and thus

| f (z0)| ≤ | exp(z1−δ/2
0 )|1/N .

Finally, letting N → ∞ gives the desired result. �

Note: While the lemma was stated in the right half-plane, it is obviously true in any
other half-plane as well. For example, if f satisfies the growth conditions (3) and (4)
in the upper half-plane, g(z) = f (−i z) would satisfy the hypotheses of the lemma.
Hence, g � 1 in the right half-plane and f � 1 in the upper half-plane.

Similarly, by mapping other regions analytically onto the right half-plane, we
can derive results similar to Lemma 1 for functions which are C-analytic in the
given regions. We record one example which will serve as another lemma to
Theorem 15.4.
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Lemma 2

Suppose f is C-analytic in a quadrant. If | f (z)| ≤ 1 on the boundary and if for
some δ > 0, there exist constants A and B such that

| f (z)| ≤ A exp(B|z|2−δ) for every z in the quadrant,

then | f (z)| ≤ 1 throughout the quadrant.

Proof of Lemma 2

Without loss of generality, we consider the first quadrant. Set g(z) = f (
√

z). Then g
is C-analytic in the upper half-plane.Furthermore, by the hypothesis on f, |g(z)| ≤ 1
on the boundary and

|g(z)| ≤ A exp(B|z|1−δ/2)

throughout the half-plane. By Lemma 1, |g(z)| ≤ 1 throughout the half-plane and
thus | f (z)| ≤ 1 for all points z in the quadrant. �

Proof of Theorem 15.4

We consider

h(z) = f N (z)

ez

and, as before, the proof will follow if we can show |h(z)| ≤ 1 throughout the
right half-plane. To do this, we consider the first and fourth quadrants separately. To
estimate h(z) on the boundary of the first quadrant, note that |eiy | = 1 and hence,
by (1)

|h(z)| ≤ 1 on the positive imaginary axis.

Also, by (2), | f (z)| ≤ A1/N e(1/N)|z| so that setting BN = (A1/N )N ,
| f N (z)| ≤ BN e|z| throughout the half-plane. On the positive x-axis, though,
|ez| = e|z| and hence |h(z)| ≤ BN for z > 0. Thus |h(z)| ≤ Max(1, BN ) along
the boundary of the first quadrant. Furthermore, throughout the first quadrant

|h(z)| ≤ | f N (z)| ≤ BN e|z|

so that we can apply Lemma 2 to conclude

|h(z)| ≤ Max(1, BN )

in the first quadrant. By the exact same reasoning,

|h(z)| ≤ Max(1, BN )

in the fourth quadrant. Hence h(z) is a bounded C-analytic function in the right
half-plane and is bounded by 1 on the imaginary axis. By Theorem 15.1, |h(z)| ≤ 1
throughout the right half-plane, and the proof is complete. �
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By mapping a wedge of angle α onto the right half-plane, we derive the following
corollary.

15.5 Corollary

Let
D =

{
z : − α

2
< Arg z <

α

2

}
, where 0 < α ≤ 2π,

and suppose f is C-analytic in D. If

| f (z)| ≤ 1 (1)

on ∂ D and if, for each ε > 0, there exists a constant Aε such that

| f (z)| ≤ Aε exp(ε|z|π/α), (2)

then (1) holds throughout D.

Proof

Given f as above, consider g(z) = f (zα/π ) in the right half-plane and apply
Theorem 15.4. �

An interesting special case of the corollary arises if we take a wedge of angle 2π
(the whole plane slit along one ray). In that case, the boundary is a single ray and,
by the above corollary, if f is bounded on that ray and has slower growth than eε

√|z|
for each ε > 0, it is in fact bounded throughout the wedge. Now, we may view an
entire function as a C-analytic function in every wedge of angle 2π . This leads to
the following theorem.

15.6 Theorem

If f is a non-constant entire function and for each ε > 0 there exists a constant Aε

such that
| f (z)| ≤ Aεeε

√|z|

then f (z) is unbounded on every ray!

Proof

If f were bounded on some ray R, by Corollary 15.5 it would also be bounded
on the wedge C\R; that is, f would be bounded in the entire plane. But, then, by
Liouville’s Theorem f would reduce to a constant, contradicting the hypothesis of the
theorem. �

EXAMPLE

cos z has a power series involving only even terms, hence cos
√

z is an entire function
that is bounded on the positive x-axis. Hence, by the above theorem, it must grow
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as fast as eε
√|z| for some ε > 0. Setting

cos z = eiz + e−iz

2

shows that this is in fact the case. (Consider points z along the imaginary axis.) ♦

An Application of Theorem 15.6: The differential equation f ′(z) = − f (z) has the
explicit solution f (z) = Ae−z . However, if we consider the very similar equation

f ′(z) = − f
( z

2

)
(1)

no such explicit solution can be found. Nevertheless, one may seek to study the
behavior of a solution f (z) as z → ∞ along the positive x-axis. To accomplish this,
we will find the solution in the form of a power series which is, in fact, an entire
function. Furthermore, we will show that the solution is of “small” growth, so that
Theorem 15.6 is applicable, and f is unbounded on every ray. Thus, unlike Ae−z ,
the solution to (1) has no limit as z → +∞. The details are as follows:

15.7 Proposition

Let f be a solution of the differential equation f ′(z) = − f (z/2), analytic at z = 0.
Then f is entire and is unbounded on every ray.

Proof

Let f have the power series representation

f (z) =
∞∑

k=0

akzk .

Because of (1), we must have

∞∑
k=1

kakzk−1 = −
∞∑

k=1

ak

( z

2

)k

or
ak = − ak−1

2k−1k
.

By induction, then,

an = (−1)na0

n!2n(n−1)/2
.

Hence f (z) is given by

f (z) = A
∑

k

bkzk where bk = (−1)k

k!2k(k−1)/2
, (2)

and a simple check shows that (2) does in fact represent an entire solution of (1).
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We now show that f satisfies the hypothesis of Theorem 15.6. For this we fix
ε > 0 and show that, for z sufficiently large,

| f (z)| < exp(|z|ε).
Assume then that |z| = R = 2N , N > 2, and let

M(R) = Max|z|=R
| f (z)|, M = M(1).

According to (1),

f (z) − f (0) =
∫ z

0
f ′(ρ)dρ =

∫ z

0
− f

(ρ

2

)
dρ

� RM

(
R

2

)

so that

| f (z)| ≤ 2RM

(
R

2

)
.

Setting M(R/2) = | f (z1)| for some z1 ∈ D(0; R/2) and proceeding inductively,
we obtain

| f (z)| ≤ M RN = M|z|| log z|/ log 2. (3)

The right-hand side of (3) is bounded above by exp(|z|ε) for all z sufficiently large;
therefore, we get R0 = R0(ε) such that

| f (z)| < exp(|z|ε)
for all z with |z| ≥ R0, as desired. �

Exercises

1.* Show that the conclusion of Theorem 15.1 would hold if we insisted only that f � 1 along the
boundary and f (z) � log z throughout the domain. How could the hypothesis be further relaxed?

2. What is the “smallest” non-constant analytic function in the quadrant D = {x + iy : x, y < 0}, which
is bounded along the boundary?

3. Show that eez � 1 throughout the boundary of the region

D =
{

x + iy : − π

2
< y <

π

2

}
.

Show that it is the “smallest” such analytic function.

4.* Suppose g is a non-constant entire function which is bounded on every ray. (See 12.2). Show that for
any A and B , there must exist some point z with |g(z)| > A exp(|z|B ). [Hint: If not, divide the plane
into a finite number of very small wedges and apply 15.5 and Liouville’s Theorem to conclude that g
is constant.]
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