
Chapter 11
Applications of the Residue Theorem to the
Evaluation of Integrals and Sums

Introduction

In the next section, we will see how various types of (real) definite integrals can
be associated with integrals around closed curves in the complex plane, so that the
Residue Theorem will become a handy tool for definite integration.

11.1 Evaluation of Definite Integrals by Contour Integral
Techniques

I Integrals of the Form
∫ ∞
−∞(P(x)/ Q(x))d x, where P and Q are polynomials.

From real-variable calculus we know that an integral of this type will converge if
Q(x) �= 0 and deg Q − deg P ≥ 2. Making these assumptions, we note that

∫ ∞

−∞
P(x)

Q(x)
dx = lim

R→∞

∫ R

−R

P(x)

Q(x)
dx,

and we seek to estimate the second integral for large values of R.
Let CR be the closed contour consisting of the real line segment from −R to R

and the upper semi-circle �R centered at the origin and of radius R large enough to
enclose all zeroes of Q lying in the upper half-plane.

iR

CR

R–R
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144 11 Applications of the Residue Theorem to the Evaluation of Integrals and Sums

By the Residue Theorem∫
CR

P(z)

Q(z)
dz = 2π i

∑
k

Res

(
P

Q
; zk

)

where the points zk are the zeroes of Q in the upper half-plane.
Thus ∫ R

−R

P(x)

Q(x)
dx +

∫
�R

P(z)

Q(z)
dz = 2π i

∑
k

Res

(
P

Q
; zk

)
(1)

To estimate
∫
�R

P/Q, note that since deg Q − deg P ≥ 2, by the usual M − L
estimates ∫

�R

P

Q
� π · R · A

R2

and hence

lim
R→∞

∫
�R

P(z)

Q(z)
dz = 0. (2)

Combining (1) and (2) shows that∫ ∞

−∞
P(x)

Q(x)
dx = 2π i

∑
k

Res

(
P

Q
; zk

)

EXAMPLE ∫ ∞

−∞
dx

x4 + 1
= 2π i

2∑
k=1

Res

(
1

z4 + 1
; zk

)

where z1 = eiπ/4 and z2 = e3π i/4 represent the poles of 1/(z4 + 1) in the upper
half-plane. Since each is a simple pole, the residues are given by the values of 1/4z3

at the poles. Thus

Res

(
1

z4 + 1
; eiπ/4

)
= 1

4z3
1

= −z1

4
= −1

8
(
√

2 + i
√

2)

and

Res

(
1

z4 + 1
; ei3π/4

)
= 1

8
(
√

2 − i
√

2),

so that ∫ ∞

−∞
dx

x4 + 1
= π

√
2

2
. ♦

II. Integrals of the Form
∫ ∞
−∞ R(x) cos x d x or

∫ ∞
−∞ R(x) sin x d x. Assuming

that

R(x) = P(x)

Q(x)

where P and Q are polynomials and Q(x) �= 0 (except perhaps at a zero of cos x or
sin x), the above integrals converge as long as deg Q > deg P .
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IntegratingR(z) cos z along the same contour as in Type I is not appropriate since

lim
M→∞

∫
�M

R(z) cos z dz �= 0.

If we consider ∫
CM

R(z)eizdz,

however, we will be able to show that∫
�M

R(z)eizdz → 0

so that ∫
CM

R(z)eizdz →
∫ ∞

−∞
R(x)eix dx . (3)∫ ∞

−∞
R(x) cos x dx and

∫ ∞

−∞
R(x) sin x dx

can then be determined as the real and imaginary parts of the limit in (3). Hence,
applying the Residue Theorem in (3), we see that∫ ∞

−∞
R(x) cos xdx = Re

[
2π i

∑
k

Res(R(z)eiz ; zk)

]

and
∫ ∞
−∞ R(x) sin xdx = Im [2π i

∑
k Res(R(z)eiz ; zk)], where the points zk are the

poles of R(z) in the upper half-plane.

To show that
∫
�M

R(z)eizdz → 0, and complete the argument, we split �M into
two subsets:

A = {z ∈ �M : Im z ≥ h}
B = {z ∈ �M : Im z < h}.

iM

ih

A

A

M

BB

–M
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Using the facts that R(z) � K/|z| and |ez| = eRe z , we obtain

∫
A
R(z)eizdz � K

e−h

M
· π M = C1e−h .

But ∫
B
R(z)eizdz � K

M
4h = C2

h

M
,

so ∫
�M

R(z)eizdz � C1e−h + C2
h

M
.

If we now choose h = √
M , for example, we find∫
�M

R(z)eizdz � C1e−√
M + C2√

M

and

lim
M→∞

∫
�M

R(z)eizdz = 0.

EXAMPLE

To evaluate
∫ ∞
−∞(sin x/x)dx , we might write

∫ ∞

−∞
sin x

x
dx = Im

∫ ∞

−∞
eix

x
dx .

The pole of eix/x at x = 0 forces us to modify the technique slightly; we write
instead: ∫ ∞

−∞
sin x

x
dx = Im

∫ ∞

−∞
eix − 1

x
dx .

Note that ∫
CM

eiz − 1

z
dz =

∫ M

−M

eix − 1

x
dx +

∫
�M

eiz − 1

z
dz;

while, according to Cauchy’s Theorem,

∫
CM

eiz − 1

z
dz = 0

since the integrand has no poles! Thus

∫ M

−M

eix − 1

x
dx =

∫
�M

1 − eiz

z
dz =

∫
�M

1

z
dz −

∫
�M

eiz

z
dz

= π i −
∫

�M

eiz

z
dz.
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Since
∫
�M

(eiz/z)dz approaches 0 as M → ∞,

∫ ∞

−∞
eix − 1

x
dx = π i

and ∫ ∞

−∞
sin x

x
dx = π.

♦

III (A) Integrals of the Form
∫ ∞

0 (P(x)/ Q(x))d x As in I, to insure conver-
gence of the integral, we assume that deg Q − deg P ≥ 2 and that Q(x) �= 0
for x ≥ 0. Of course, if the integrand is an even function it can be evaluated as
1
2

∫ ∞
−∞(P(x)/Q(x))dx . In other cases, set R(z) = P(z)/Q(z) and consider the

integral of log z · R(z) around the keyhole-shaped contour Kε,M consisting of

i. the horizontal line segment I1 from iε to
√

M2 − ε2 + iε;
ii. the circular arc CM of radius M traced counterclockwise from√

M2 − ε2 + iε to
√

M2 − ε2 − iε;

iM

i

CM

I1

I2

K  ,M

–M

∋

C  ∋

∋

–i ∋

iii. the horizontal line segment I2 from√
M2 − ε2 − iε to − iε;

iv. the semi-circle Cε of radius ε traced clockwise from −iε to iε.

The inside of Kε,M is a simply connected domain not containing 0 and hence
log z may be defined there as an analytic function. (For simplicity, we choose 0 <
Arg z < 2π .)

By the Residue Theorem

lim
ε→0

M→∞

∫
Kε,M

R(z) log zdz = 2π i
∑

k

Res(R(z) log z; zk). (4)
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Moreover, assuming ε is small enough and M large enough so that all the zeroes of
Q lie inside Kε,M , the contour integral is related to

∫ ∞
0 R(x) dx as follows:

i.
∫

Cε
R(z) log z dz � πε maxCε |R(z) log z| � Aε| log ε| since R is continuous

at 0 and | log z| < log |z| + 2π . Thus

lim
ε→0

∫
Cε

R(z) log z dz = 0.

ii.
∫

CM
R(z) log z dz � 2πM · maxCM | log z||R(z)| ≤ AM log M/M2 since

R(z) � B/|z|2, and thus

lim
M→∞

∫
CM

R(z) log z dz = 0.

iii. lim ε→0
M→∞

∫
I1
R(z) log z dz = ∫ ∞

0 R(x) log xdx and

lim
ε→0

M→∞

∫
I2

R(z) log z dz = −
∫ ∞

0
R(x)(log x + 2π i)dx .

Combining all of the above results we find

lim
ε→0

M→∞

∫
Kε,M

R(z) log z dz = −2π i
∫ ∞

0
R(x)dx,

so that by (4) ∫ ∞

0
R(x)dx = −

∑
k

Res(R(z) log z; zk)

where the sum is taken over all the poles of R.

EXAMPLE

To evaluate
∫ ∞

0 dx/(1 + x3), note that at z1 = eiπ/3,

Res

(
log z

1 + z3 ; z1

)
= − iπ

9

(
1

2
+ i

√
3

2

)
;

at z2 = −1 = eiπ ,

Res

(
log z

1 + z3 ; z2

)
= iπ

3
;

and at z3 = ei5π/3,

Res

(
log z

1 + z3
; z3

)
= −5π i

9

(
1

2
− i

√
3

2

)
;

so that ∑
k

Res

(
log z

1 + z3
; zk

)
= −2π

9

√
3
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and ∫ ∞

0

dx

1 + x3 = 2

9
π

√
3.

♦

(B) Integrals of the form
∫ ∞

a (P(x)/Q(x))dx can be evaluated in a similar manner
by considering ∫

CM

log(z − a)
P(z)

Q(z)
dz

CM

–M a M
0

with CM as indicated. In fact, since∫ ∞

0
−

∫ ∞

a
=

∫ a

0
,

this method can be used to find indefinite integrals of rational functions.

(C) Integration around the “keyhole” contour can also be used to evaluate integrals
of the form ∫ ∞

0

xα−1

P(x)
dx

where 0 < α < 1 and P is a polynomial with deg P ≥ 1.
Throughout the inside of the contour Kε,M , zα−1 = exp [(α − 1) log z] can be

defined as an analytic function (again, with 0 < Arg z < 2π , for example).
As we integrate along I1 (as ε → 0)

zα−1 = exp((α − 1) log x) = xα−1

while, throughout I2

zα−1 = e(α−1)(log x+2π i) = xα−1e2π i(α−1).
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Since the integrals along the two circular segments approach zero as before, the
integral around Kε,M is given by the integrals along I1 and I2 and hence

[
1 − e2π i(α−1)

] ∫ ∞

0

xα−1

P(x)
dx = 2π i

∑
k

Res

(
zα−1

P(z)
; zk

)
,

the sum being taken over the zeroes of P .

EXAMPLE

To evaluate
∫ ∞

0 dx/
√

x(1 + x), note that

Res

(
1√

z(1 + z)
; −1

)
= −i

and (
1 − e−πi

) ∫ ∞

0
√

x(1 + x)
= 2π

so that ∫ ∞

0

dx√
x(1 + x)

= π.

♦

IV
∫ 2π

0 R(cos θ, sin θ)dθ where R Represents a Rational Function Here we take
a slightly different point of view. Previously, we viewed the definite integrals as
integrals along real line segments which were then supplemented into closed contours
in the complex plane. In this case, we think of the real integral itself as the parametric
representation of a line integral taken around the unit circle.

Recall that ∫
|z|=1

f (z)dz

becomes ∫ 2π

0
f (eiθ )ieiθ dθ

on setting z = eiθ , 0 ≤ θ ≤ 2π .
More specifically, the integral

∫ 2π
0 R(cos θ, sin θ)dθ is equal to

∫
|z|=1

R
(

z + 1
z

2
,

z − 1
z

2i

)
dz

i z
(5)

since with z = eiθ

dθ = dz

i z
,

cos θ = eiθ + e−iθ

2
= 1

2

(
z + 1

z

)
,

dx
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and

sin θ =
(
eiθ − e−iθ

)
2i

= 1

2i

(
z − 1

z

)
.

The contour integral (5), as always, can be evaluated by the Residue Theorem.

EXAMPLE ∫ 2π

0

dθ

2 + cos θ
= 2

i

∫
|z|=1

dz

z2 + 4z + 1

= 4πRes

(
1

z2 + 4z + 1
; √

3 − 2

)

= 2

3
π

√
3. ♦

11.2 Application of Contour Integral Methods to Evaluation
and Estimation of Sums

I To evaluate sums of the form
∑∞

n=−∞ f (n), we seek a function g whose residues
are given by { f (n) : n = 0,±1,±2, . . .}.

Suppose we set g(z) = f (z)ϕ(z). Then the function ϕ should have a simple pole
with residue 1 at every integer. Such a function is given by

ϕ(z) = π
cos πz

sin πz
,

since sin πz has a simple zero at every integer and

Res

(
π cos πz

sin πz
; n

)
= π cos πn

π cos πn
= 1.

(Note that sin z has no other zeroes in the complex plane.)
We first apply the Residue Theorem to the integral∫

CN

f (z) · π cot πzdz (1)

where CN is a simple closed contour enclosing the integers n = 0,±1,±2, . . . ,±N
and the poles of f (which we assume to be finite in number). Thus

∫
CN

π f (z) cot πzdz = 2π i

⎡
⎢⎣ N∑

n=−N
n �=zk

f (n) +
∑

k

Res( f (z)π cot πz; zk)

⎤
⎥⎦ (2)

where {zk} are the poles of f .
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Furthermore, to
∑∞

n=−∞ f (n), we will assume that
| f (z)| ≤ A

z2 so that
lim

z→∞ z f (z) = 0, (3)

and by a proper choice of CN , we will be able to show that

lim
N→∞

∫
CN

f (z)π cot πz dz = 0. (4)

Then by (2)
∞∑

n=−∞
n �=zk

f (n) = −
∑

k

Res( f (z)π cot πz; zk). (5)

To demonstrate the existence of a contour CN satisfying (4), we will let CN be
the square with vertices ±(N + 1

2 ) ± (N + 1
2 )i . Having thus avoided the poles of

cot πz, we can show that | cot πz| < 2 on CN . For example, if Re z = x = N + 1
2

and Im z = y then

cot πz = i
e2π iz + 1

e2π iz − 1
= i

eπ i−2πy + 1

eπ i−2πy − 1

CN

CN

N N + 1

i (N +   )¹
²–

–i (N +   )¹²–

and

| cot πz| =
∣∣∣∣∣1 − e−2πy

1 + e−2πy

∣∣∣∣∣ < 1.

Similarly, if Im z = y = N + 1
2

| cot πz| ≤ 1 + e−π(2N+1)

1 − e−π(2N+1)
< 2

since the latter expression is maximized at N = 0. (The same bounds apply to the
other sides of CN as well, since cot z is an odd function.)

ensure convergence of
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Since the length of CN is 8N + 4, by the usual estimates,∫
CN

f (z)π cot πz � (8N + 4)2π max
z∈CN

| f (z)|
� A max

cN
|z f (z)|;

thus ∫
CN

f (z)π cot πz dz → 0 by (3).

EXAMPLE

To find ∞∑
n=1

1

n2
,

note that ∞∑
n=1

1

n2 = 1

2

∞∑
n=−∞

n �=0

1

n2

and hence, by (5),
∞∑

n=1

1

n2
= −1

2
Res

(
π cot πz

z2
; 0

)
.

The residue can be determined by using the Laurent expansion for cot z; i.e.,

cot z = 1

z
− z

3
− 1

45
z3 + · · ·

so that
π cot πz

z2
= 1

z3
− π2

3z
− π4z

45
− · · · .

Thus

Res

(
π cot πz

z2
; 0

)
= −π2

3

and ∞∑
n=1

1

n2
= π2

6
. ♦

II To evaluate sums of the form
∑∞

n=−∞(−1)n f (n), where f (z) has a finite number
of poles, we integrate again around the square CN , this time using the auxiliary
function π f (z) csc πz.

Note that

Res

(
π

sin πz
; n

)
= 1

cos πn
= (−1)n,
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and since
csc2 πz = 1 + cot2 πz,

csc πz (like cot πz) is bounded on CN . Thus we may conclude that

lim
N→∞

∫
CN

π f (z) csc πz dz = 0

and, by the Residue Theorem, that

∞∑
n=−∞
n �=zk

(−1)n f (n) = −
∑
k

Res(π f (z) csc πz; zk)

where the zk are the poles of f .

EXAMPLE

1 − 1

4
+ 1

9
− 1

16
+ − · · · = −

∞∑
n=1

(−1)n

n2 = −1

2

∞∑
n=−∞
n �=0

(−1)n

n2

= 1

2
Res

(
π csc πz

z2
; 0

)
= π2

12

since
π csc πz

z2 = 1

z3 + π2

6z
+ 7π4z

360
+ · · · . ♦

III Sums Involving Binomial coefficients The connection between binomial coef-
ficients and contour integration is an immediate corollary of the Residue Theorem
since (

n
k

)
= coefficient of zk in (1 + z)n

and hence (
n
k

)
= 1

2π i

∫
C

(1 + z)n

zk+1 dz (6)

where C is any simple closed contour surrounding the origin. The identity (6) has
some immediate consequences. For example,(

2n
n

)
= 1

2π i

∫
C

(1 + z)2n

zn+1
dz

and if we choose C to be the unit circle, we find(
2n
n

)
≤ 4n.
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This same identify (6) can be used to evaluate (or estimate) sums involving bino-
mial coefficients.

EXAMPLE 1
To find ∞∑

n=0

(
2n
n

)
1

5n
= 1 + 2

5
+ 6

25
+ · · ·

we set (
2n
n

)
= 1

2π i

∫
C

(1 + z)2n

zn+1
dz

where C is any simple contour surrounding the origin so that

∞∑
n=0

(
2n
n

)
1

5n
= 1

2π i

∞∑
n=0

∫
C

(1 + z)2n

(5z)n
dz

z
. (7)

If we could then interchange the order of summation and integration, we would
conclude ∞∑

n=0

(
2n
n

)
1

5n
= 5

2π i

∫
C

dz

3z − 1 − z2
.

However, we must indicate a contour C (surrounding 0) on which summation under
the integral sign is justified. [Without this caution,C could be an arbitrary circle cen-
tered at 0 and if we let the radius R be large enough, we would conclude erroneously
that ∞∑

n=0

(
2n
n

)
1

5n
= 0. ]

One way to assure the legitimacy of the interchange is to obtain uniform conver-
gence of the series

∑∞
n=0 [(1 + z)2/5z]n throughout C . Thus we pick C to be the

unit circle so that ∣∣∣∣∣ (1 + z)2

5z

∣∣∣∣∣ ≤ 4

5

throughout C and the convergence is uniform. Hence

∞∑
n=0

(
2n
n

)
1

5n
= 5

2π i

∫
|z|=1

dz

3z − 1 − z2

= 5 Res

(
1

3z − 1 − z2
; 3 − √

5

2

)
= √

5.

♦
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EXAMPLE 2
To evaluate

n∑
k=0

(
n
k

)2

, we cast

(
n
k

)
in two roles:

a.

(
n
k

)
= coefficient of zk in (1 + z)n

b.

(
n
k

)
= coefficient of z−k in (1 + 1/z)n

so that
n∑

k=0

(
n
k

)2

= constant term in (1 + z)n
(

1 + 1

z

)n

.

Thus

n∑
k=0

(
n
k

)2

= 1

2π i

∫
C
(1 + z)n

(
1 + 1

z

)n dz

z

= 1

2π i

∫
C

(1 + z)2n

zn+1
dz

= coefficient of zn in (1 + z)2n

=
(

2n
n

)
. ♦

EXAMPLE 3
To estimate

1 −
(
n
1

)(
2n
1

)
+

(
n
2

)(
2n
2

)
− + · · ·

(
n
n

)(
2n
n

)

we again note that since(
n
k

)
= coefficient of zk in (1 + z)n

and since

(−1)k
(

2n
k

)
= coefficient of

1

zk
in

(
1 − 1

z

)2n

,

the sum is equal to the constant term in the product and is given by

n∑
k=1

(−1)k
(
n
k

)(
2n
k

)
= 1

2π i

∫
C

[(z − 1)2(z + 1)]n

z2n+1 dz.
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In this case, however, there is no simple technique for evaluating the integral and
instead we seek to estimate it. If we let C be the unit circle, then throughout C ,

∣∣∣(z − 1)2(z + 1)
∣∣∣ ≤ 16

9

√
3

[see Exercise 15] and hence∣∣∣∣∣
n∑

k=1

(−1)k
(
n
k

)(
2n
k

)∣∣∣∣∣ ≤
(

16

9

√
3

)n

.

Note that this estimate is much smaller than one might guess by estimating the size
of the various terms–the last term of the series alone is of the order of magnitude of
4n . (See Exercise 16.) ♦

A more familiar series whose sum is of much smaller magnitude than its individual
terms is

e−x = 1 − x + x2

2!
− x3

3!
+ · · · .

The fact that e−x → 0 as x → ∞ is in sharp contrast to the growth of its
individual terms. By employing our contour integral technique, we can demonstrate
similar behavior for the series

B(x) = 1 − x

1
+ x2

(2!)2
− x3

(3!)2
+ − · · ·

that is related to the Bessel Function. Since

1

n!
= coefficient

and

(−x)n

n!
= coefficient of z−n in e−x/z

B(x) = 1

2π i

∫
C

eze−x/z

z
dz

where C is any simple contour surrounding 0.
We seek a contour C on which

|ez−x/z| = eRe (z−x/z)

is small. Setting z = Reiθ , we find

Re(z − x

z
) = R cos θ − x

R
cos θ ;

of zn the expansion of ez
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hence R = √
x seems a good choice, and we pick C to be the circle: |z| = √

x .
Then

B(x) = 1

2π

∫ 2π

0
e2i

√
x sin θdθ

and since the integrand is bounded by 1 for all θ , we conclude

|B(x)| ≤ 1

for all x ≥ 0.
(In fact, a closer analysis would show that B(x) → 0 as x → ∞, but this would

take us too far afield at this point.)

Exercises

1. Evaluate the following definite integrals

a.
∫ ∞
−∞

x2dx

(1 + x2)2
, b.

∫ ∞
0

x2dx

(x2 + 4)2(x2 + 9)
,

c.
∫ ∞

0
dx

x4 + x2 + 1
, d.

∫ ∞
0

sin xdx

x(1 + x2)
,

e.
∫ ∞

0
cos xdx

1 + x2
, f.

∫ ∞
0

dx

x3 + 8
,

g.
∫ ∞

0
xα−1

1 + x
dx, 0 < α < 1, h.

∫ 2π
0

dx

(2 + cos x)2
,

i.
∫ 2π

0
sin2 xdx

5 + 3 cos x
, j.

∫ 2π
0

dx

a + cos x
, (a real), |a| > 1.

2. Evaluate ∫ ∞
0

sin2 x

x2
dx .

[Hint: Integrate (e2iz − 1 − 2iz)/z2 around a large semi-circle.]

3. Evaluate ∫ ∞
0

dx

1 + xn

where n ≥ 2 is a positive integer. [Hint: Consider the following contour.]

2  /nπ

πe i/n
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4.* Evaluate:

a.
∫ ∞

0

cos ax

(x2 + 1)2
dx; a ≥ 0

b.
∫ ∞

0

x2

x10 + 1
dx (See the hint for exercise 3.)

c. ∫ 2π

0
ee

iθ
dθ

5.* Show that ∫ 2π

0
( cos x)2mdx = 2π

4m

(
2m

m

)

for any positive integer m.

6.* Show that ∫ ∞
−∞

dx

(1 + x2)n+1
= 1 · 3 · 5 · · · (2n − 1)π

2 · 4 · 6 · · · 2n

7. a. Show that
∫
�R

eiz
2
dz → 0 as R → ∞ where�R is the circular segment: z = Reiθ , 0 ≤ θ ≤ π/4.

b. Evaluate
∫ ∞

0 cos x2dx ,
∫ ∞

0 sin x2dx . Note: The convergence of the above integrals can be proven

for example by making the substitution u = x2 and applying Dirichlet’s Test.

8. Suppose f is a rational function of the form P/Q with deg Q − deg P ≥ 2. Show that the sum of the
residues of f is zero.

9. Evaluate

a.
∞∑
n=1

1

n2 + 1
,

b.
∞∑
n=1

1

n4
,

c.
∞∑
n=1

(−1)n

n2 + 1
.

10.* a. Show that
∫
Cn

1

z sin π z
dz → 0 as N → ∞, where CN is the square with vertices ±(N + 1

2 ) ±
(N + 1

2 )i. (See Chapter 3, exercise 16.)

b. By integrating
1

(2z − 1) sin π z
around a suitable contour, show that 1 − 1

3
+ 1

5
− 1

7
+ · · · = π

4
.

11.* Show that ∫ ∞
−∞

ekx

1 + ex
dx

converges if 0 < k < 1. Find its value by integrating around the rectangle with vertices at ±R and
at ±R + 2π i.

12.* Suppose f is analytic for |z| ≤ 1, and let log z be defined so that Im log z = arg z ∈ [ 0, 2π). Prove

that
1

2π i

∫
|z|=1

f (z) log z dz = ∫ 1
0 f (x)dx

13. Evaluate ∞∑
n=0

(
3n
n

)
1

8n
.
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14. Show that ∞∑
n=0

(
2n
n

)
xn = 1√

1 − 4x
as long as|x| <

1

4
.

Note: This is the sum of the middle column in Pascal’s Triangle for powers of 1 + x .

2x

3x 3x2

4x36x24x

x2

x3

x4

x
1

1

1

1

1
.    .    .    .    .

The equation can also be verified by applying the binomial expansion for (1 − 4x)−1/2.

15. Complete Example 3 of Section 2-III by showing |(z − 1)2(z + 1)| ≤ (16/9)
√

3 throughout |z| = 1.
[Hint: Maximize a2b given a2 + b2 = 4.]

–1 1

|z + 1| |z – 1|

z

16. a. Show that ∣∣∣∣∣ (z − 1)2(z + 1)

z2

∣∣∣∣∣ ≤ 2
√

2 for |z| = √
2

and thereby obtain an improved estimate for the example cited in (15).
b. Show that

max|z|=R

∣∣∣∣∣ (z − 1)2(z + 1)

z2

∣∣∣∣∣ ≥ 2
√

2 for any R > 0.

(Thus, in a sense, the estimate in (a) is the best possible.)

17.* a. Express
n∑

k=0

(−1)k
(

3n

k

)(
n

k

)

as a contour integral.

b. Use the integral above to prove that

∣∣∣∣∑n

k=0
(−1)k

(
3n

k

)(
n

k

)∣∣∣∣ ≤ 4n .
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