Chapter 11
Applications of the Residue Theorem to the
Evaluation of Integrals and Sums

Introduction

In the next section, we will see how various types of (real) definite integrals can
be associated with integrals around closed curves in the complex plane, so that the
Residue Theorem will become a handy tool for definite integration.

11.1 Evaluation of Definite Integrals by Contour Integral
Techniques

I Integrals of the Form ff:o(P(x)/Q(x))dx, where P and Q are polynomials.
From real-variable calculus we know that an integral of this type will converge if
Q(x) # 0 and deg Q — deg P > 2. Making these assumptions, we note that

> P(x) . R P(x)
dx =1 d
oo 0(0) Rimoo/_R o

and we seek to estimate the second integral for large values of R.

Let Cg be the closed contour consisting of the real line segment from —R to R
and the upper semi-circle I'g centered at the origin and of radius R large enough to
enclose all zeroes of Q lying in the upper half-plane.
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144 11 Applications of the Residue Theorem to the Evaluation of Integrals and Sums

By the Residue Theorem
P P
@ dz =2xi ZRes ( ; Zk)
cr Q@) P 0
where the points z; are the zeroes of Q in the upper half-plane.
Thus R
P P P
/ ©) e 4 © 42 = 2 > Res ( ;Zk) (1)
200 i, 00) - 0
To estimate er P/Q, note that since deg Q — deg P > 2, by the usual M — L
estimates

P < R A
71' . .
rrx @ R?

and hence

. P@) ,
Rh—>moo rr Q@) de=0. @

Combining (1) and (2) shows that
® P(x) (P )
dx =2ri Res 3 Tk
oo O() ; 0

EXAMPLE
2

© dx 1
=2ri R ;
/_oox4+1 m; es(z4+1 Zk)

where z; = ¢/™/* and zo = ¢37%/* represent the poles of 1/(z* + 1) in the upper

half-plane. Since each is a simple pole, the residues are given by the values of 1/4z3
at the poles. Thus

1 . 1 —21 1
R ) = = T = (V242
es(z4+l,e ) 8(x/ +iv/2)

B 473 4
and | |
R ; i37[/4 — 2 7 2
(35(14_’_1 e 8(«/ iv' ),
so that
/°° dx T2 o
o X412
IL Integrals of the Form [°. R(x)cosxdx or [° R(x)sinxdx. Assuming
that PO)
X
R(x) =
Q(x)

where P and Q are polynomials and Q(x) # 0 (except perhaps at a zero of cos x or
sin x), the above integrals converge as long as deg Q > deg P.
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Integrating R (z) cos z along the same contour as in Type I is not appropriate since

lim R(z)coszdz # 0.

M— 00 Ty

If we consider

R(z)eizdz,
Cu

however, we will be able to show that
R(z)e'*dz — 0
'm

so that

R(z)e'*dz — / R(x)e¥dx. (3)
Cu —00

(0.¢] (0.¢]
/ R(x)cosxdx and / R(x)sinx dx
—00 —00

can then be determined as the real and imaginary parts of the limit in (3). Hence,
applying the Residue Theorem in (3), we see that

/00 R(x)cosxdx = Re |:27Z'i ZRGS(R(Z)L’"Z; Zk):|
o P

and [*7 R(x)sinxdx =Im[27i ", Res(R(z)e'; zx)], where the points z; are the
poles of R(z) in the upper half-plane.

To show that er R(z)e'*dz — 0, and complete the argument, we split I'y; into
two subsets:

A={zel'y:Imz > h}
B={zeTy:Imz <h}.

-M M
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Using the facts that R(z) < K /|z| and |e?| = eR®Z, we obtain

—h
/ R(z)e*dz « Ke M = Cie".
A M

But K b
R(z)e'%d 4h=C,p .,
/B (z)e"*dz < M 20

SO

iz —h h
R(z)e'*dz < Cre™" +Cy .
Ty M

If we now choose h = \/M, for example, we find

, C
R(z)el*dz « Cre™VM 4 2
Ty M
and
lim R(z)e*dz = 0.
M— oo Ty
EXAMPLE

To evaluate [°°_(sinx/x)dx, we might write

00 i o0 ix

sin x e
dx =Im dx.

—0o X —00 X

The pole of ¢/*/x at x = 0 forces us to modify the technique slightly; we write

instead: )
o 1 0.¢] X
sin x et —1
/ dx =1Im / dx.
oo X oo X

iz_l M ix_l iz_l
/ ¢ dz=/ ¢ dx+/ ¢ dz;
cu % -M X ry 2

while, according to Cauchy’s Theorem,

iz_l
/ ¢ dz =0
w2

since the integrand has no poles! Thus

M eix -1 1= eiz 1 eiz
dx = dz = dz — dz
M X ry 2 Iy 2 Iy 2
iz
=i —/ ¢ dz.
'y <

Note that
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Since fFM (€% /z)dz approaches 0 as M — oo,

0 Lix _ 1 ]
dx =i
oo X

and

O

I (A) Integrals of the Form fow(P(x)/Q(x))dx As in I, to insure conver-
gence of the integral, we assume that deg Q — deg P > 2 and that Q(x) # 0
for x > 0. Of course, if the integrand is an even function it can be evaluated as
; ffooo(P(x)/Q(x))dx. In other cases, set R(z) = P(z)/Q(z) and consider the
integral of log z - R(z) around the keyhole-shaped contour K¢ js consisting of

i. the horizontal line segment /; fromie to /M2 — €2 + ie;
ii. the circular arc Cy; of radius M traced counterclockwise from

\/M2—62—|—ieto\/M2—e2—ie;

iM

iii. the horizontal line segment I from
\/M2 —€2—jeto —ie

iv. the semi-circle C¢ of radius € traced clockwise from —ie€ to i€.

The inside of K¢ p is a simply connected domain not containing 0 and hence
log z may be defined there as an analytic function. (For simplicity, we choose 0 <
Argz <2m.)

By the Residue Theorem

liH(l) / R(z)logzdz = 2rxi ZRes(R(z) log z; zk). 4)
A;:oo Kva k
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Moreover, assuming € is small enough and M large enough so that all the zeroes of
Q lie inside K¢ p, the contour integral is related to fooo R(x) dx as follows:

i fCe R(z)logzdz < me maxc, |R(z)logz| <« A€|loge| since R is continuous
at0 and |logz| < log|z| 4+ 27 . Thus

lim R(z)logzdz = 0.
e—0 Ce

ii. o, R@)1logzdz < 2aM - maxc, |logz||R(2)| < AM log M/M? since
R(z) < B/|z|?, and thus

lim R(z)logzdz = 0.

M— o0 Cu

iii. lim cso [} R(z)logzdz = Jo© R(x)logxdx and
M— oo

o0
lim R(z)logzdz = —/ R(x)(logx + 2xi)dx.
0

=0 L

Combining all of the above results we find

o
lim R(z)logzdz = —27ri/ R(x)dx,
Moo ! Kem 0
so that by (4) -~
R(x)dx = — ZRes(R(z) log 7; zx)
0 k

where the sum is taken over all the poles of R.

EXAMPLE
To evaluate fooo dx/(1+ x3), note that at z; = 7/3,

logz ir {1 /3
R ; = — j ;
es(1+z3,Z1) 9(2+l 2)

atzy = —1 = €7,

and at z3 = 7/3,

Res [ 1022 —Szif1 /3
es ; = —1 ;
142379 9 \27 "2

logz 2
ZR&:S(1 +Z3,Zk) = — 9 V3

k

so that
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* dx 2
= 3.
/0 143 97“/

and

O

(B) Integrals of the form f aoo (P(x)/Q(x))dx can be evaluated in a similar manner

by considering
P(z)
log(z — a dz
/CM €= Do)

Cu

with Cjs as indicated. In fact, since

L=k

this method can be used to find indefinite integrals of rational functions.

(C) Integration around the “keyhole” contour can also be used to evaluate integrals

of the form
00 xa—l
/ dx
o P)

where 0 < o < 1 and P is a polynomial with deg P > 1.

Throughout the inside of the contour K¢ j, z*~! = exp[(« — 1)logz] can be
defined as an analytic function (again, with 0 < Argz < 2z, for example).

As we integrate along /1 (as € — 0)

a 1

27! =exp((a — 1) logx) = x*~
while, throughout 1>

Za—l — e(a—l)(logx+2m) — xcx—leZm(a—l).
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Since the integrals along the two circular segments approach zero as before, the
integral around K¢y is given by the integrals along /1 and /> and hence

a—1

[1—62”"(“—1)]/00x dx:ZﬂiZReS Za_l;Zk ,
o P(x) p P(2)

the sum being taken over the zeroes of P.

EXAMPLE
To evaluate [;° dx//x(1 4 x), note that

1 .
Res(w(uz)’_l):"
i o0 dx .
(1-¢ )/0 Jr4m T
/°° dx .

0o Jx(I+x)

v f02n R(cosb, sin)dO where R Represents a Rational Function Here we take
a slightly different point of view. Previously, we viewed the definite integrals as
integrals along real line segments which were then supplemented into closed contours
in the complex plane. In this case, we think of the real integral itself as the parametric
representation of a line integral taken around the unit circle.

Recall that

and

so that

O

f(2)dz

lz|=1

becomes
2w

f(e®)ie'ao

onsettingz = e¢?, 0 <0 < 2x.
More specifically, the integral fozn R(cos 8, sinf)d@ is equal to

/ R Z+; Z—; dz )
lzl=1 2 ’ 2i iz

since with z = ¢'?
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i0 _ —if
sim9=(e ¢ )zl(z—l).
l

2i 2i z

The contour integral (5), as always, can be evaluated by the Residue Theorem.

and

EXAMPLE

/2” do _2/ dz
0 2+COS9_i |Z|=lZ2+4Z+1

4R ( 1 V3 2)
=4 Res ; —
22+4z+1

11.2 Application of Contour Integral Methods to Evaluation
and Estimation of Sums

I To evaluate sums of the form > 02

are given by {f(n):n =0, £1, £2,...}.
Suppose we set g(z) = f(2)@(z). Then the function ¢ should have a simple pole
with residue 1 at every integer. Such a function is given by

f(n), we seek a function g whose residues

COSTZ

p@)=m1m . ,
SINTZ

since sin 7 z has a simple zero at every integer and

T COSTZ T COSTN
Res . ;n) = =1.
sinzz T COSTN

(Note that sin z has no other zeroes in the complex plane.)
We first apply the Residue Theorem to the integral

/ f(z)-mcotmzdz (1)
Cy

where Cy is a simple closed contour enclosing the integersn = 0, £1, 2, ..., N
and the poles of f (which we assume to be finite in number). Thus

N
/ wf(z)cotmwzdz = 2mi Z f(n) + ZRes(f(z)n cotwz; zx) 2)
Cn

n=—N k
n#zg

where {z;} are the poles of f.
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Furthermore, to ensure convergence of > °_  f(n), we will assume that
[f@) < ZAZ so that
' lim zf(z) =0, 3)
Z—> 0

and by a proper choice of Cy, we will be able to show that

lim f@)mcotwrzdz =0. 4)
N—o00 Cy
Then by (2)
Z f(n) = —ZRes(f(z)n cotwz; zx). 5)
n=—00 k
n#zg

To demonstrate the existence of a contour Cy satisfying (4), we will let C be
the square with vertices £(N + ;) + (N + ;)i . Having thus avoided the poles of
cotmz, we can show that |cotzz| < 2 on Cy. For example,if Rez = x = N + é
and Im z = y then
eZniz +1 .eni—27ry 41

cotrz =1 e2miz 1 leni—27ry -1
i(N+%)
CN
N N+1
—i(N+3)
Cy
and
1 — e—27ry
cotrz| =
| a=h +e=27y
.. . o 1
Similarly, if Inz =y = N + ’
| + e—T@N+D
|cotmz| < 2

| — e—m@N+1) =

since the latter expression is maximized at N = 0. (The same bounds apply to the
other sides of Cy as well, since cot z is an odd function.)
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Since the length of Cy is 8N + 4, by the usual estimates,

f@mcotwrz < (8N + 4)27 max | f(z)|
Cy zeCpn

< Amax |zf (2)];
CN

thus
f@)m cotmrzdz — 0 by (3).
Cn
EXAMPLE
To find
o0
>,
2 9

n=I1 n

note that

and hence, by (5),
o0
1 1 T Ccotmz
Z = — Res ;0).
n=I1 n2 2 Z2

The residue can be determined by using the Laurent expansion for cot z; i.e.,

o=ty
CcO — —_ —_ e
ST T3 45t
so that
meotwz 1 2 rY
72 T8 3z 45
Thus 5
cot —
Re (7[ 27zz;0) _ -
z 3
and

S :
n2 6

n=1
II Toevaluate sumsof the form > oo (—1)" f(n), where f(z) has a finite number
of poles, we integrate again around the square Cy, this time using the auxiliary
function 7 f (z) csc 7 z.

Note that |
Res( .n ;n): = (=17,
sinzz cosmn
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and since
csc>z = 1 + cot? nZ,

csc w z (like cot 7 z) is bounded on Cy. Thus we may conclude that

lim wf(z)escmzdz =0
N—oo Cn

and, by the Residue Theorem, that

D (=1)"f(n) = =D Res(xf(z)cscnz; 2)
k

n=—00

n#zy

where the z; are the poles of f.

EXAMPLE
1 1 1 = (—1)" 1 = (=)
4t 9 16 + Z:‘ n? 2 n;c n2
n= n£0
1 T CSCTZ 2
= Res ;0) =
2 72 12
since
mesemz 1 +7z2+77r4z+ o
22 3 6z 360 ‘

I Sums Involving Binomial coefficients The connection between binomial coef-
ficients and contour integration is an immediate corollary of the Residue Theorem
since

(Z) = coefficient of zX in (1 + z)"

n 1 (I+2)"
(k)_Zni o o O ©

and hence

where C is any simple closed contour surrounding the origin. The identity (6) has
some immediate consequences. For example,

2n 1 (14 z2)>"
= dz
n 271- i c Zn+1

and if we choose C to be the unit circle, we find

(211) <4n,
n
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This same identify (6) can be used to evaluate (or estimate) sums involving bino-
mial coefficients.

EXAMPLE 1
To find
i i W
n )5 5 25
n=0
we set

(2n) 1 o[a +z)2”dZ

n T ori c 7+l

where C is any simple contour surrounding the origin so that

(211 1 < [ (I+2)™dz

n=0

If we could then interchange the order of summation and integration, we would

conclude
i ) 1 _ 5 / dz
n )5 2xi Jo3z—1-22

n=0
However, we must indicate a contour C (surrounding 0) on which summation under
the integral sign is justified. [Without this caution, C could be an arbitrary circle cen-
tered at 0 and if we let the radius R be large enough, we would conclude erroneously

that -
1
3 (2”) —0.]
n 5n

n=0
One way to assure the legitimacy of the interchange is to obtain uniform conver-
gence of the series > > [(1 + z)?/5z]" throughout C. Thus we pick C to be the
unit circle so that
(1+2z)?
5z

4
<
-5

throughout C and the convergence is uniform. Hence

i am\ 1 5 / dz
no)sr 2xi Jiy= 32— 1 =22

n=0
1 3-45
=5R : = /5.
eS(31—1—22 2 )
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EXAMPLE 2
To evaluate

n 2
Z . wecast () in two roles:
k) > k ’

k=0
a. (Z) = coefficient of z¥ in (1 4 z)"

b. (Z ) = coefficient of z7% in (1 + 1/z)"

so that
n n 2 1 n
Z( ) = constant term in (1 + z)" (1—1— )
k z
k=0
Thus
n 2 n
1 1\" dz
(Z) -, ./(1+z)"(1+ )
k=0 Tt Jc z Z
1 / (1+2)*"
— . dz
2ri Jo o 7T
= coefficient of z" in (1 4 z)*"
2
-() 0
n
EXAMPLE 3

To estimate
B (n) (zn)
n n

(Z) = coefficient of zX in (1 + z)"

1 1 2n
in {1— )
z ( z )

the sum is equal to the constant term in the product and is given by

n tfn 2n\ 1 [(Z—l)z(z+1)]"
1;(_1) (k) (k )_ 27ri/c Z2n+1 dz.

- E)GE)

we again note that since

and since

(=¥ (in) = coefficient of
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In this case, however, there is no simple technique for evaluating the integral and
instead we seek to estimate it. If we let C be the unit circle, then throughout C,

16
‘(z “ 12+ 1)‘ < V3
[see Exercise 15] and hence

2 () ()= ()

Note that this estimate is much smaller than one might guess by estimating the size
of the various terms—the last term of the series alone is of the order of magnitude of
4" (See Exercise 16.) O

A more familiar series whose sum is of much smaller magnitude than its individual

terms is

_ 2 x3

e = l—xd L =
21 3!

The fact that e™ — 0 as x — oo is in sharp contrast to the growth of its
individual terms. By employing our contour integral technique, we can demonstrate
similar behavior for the series

x? x3

X
Bx)=1-— 1 +(2!)2—(3!)2+_...

that is related to the Bessel Function. Since

= coefficient of z" the expansion of e*
n.
and

(=x)"

n!

1 Z,—X/2
B(x) = /” dz
C

2ri Z

= coefficient of 77" in e */?

where C is any simple contour surrounding O.
We seek a contour C on which
|ez—x/z| — eRe (z—x/2)

is small. Setting z = Re’?, we find

X X
Re(z — )= Rcosf — _cosb;
¥4 R
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hence R = /x seems a good choice, and we pick C to be the circle: |z| = 4/x.
Then

1 2 . .
B(x) =, / eHVxsindgp

T Jo

and since the integrand is bounded by 1 for all 4, we conclude
[B(x)| <1

forall x > 0.
(In fact, a closer analysis would show that B(x) — 0 as x — oo, but this would
take us too far afield at this point.)

Exercises
1. Evaluate the following definite integrals
foo x2dx b foo x2dx
a. , . s
=00 (1 4 x2)2 0 (2442249
dx sinxdx
{o¢] o0
c. , d. ,
fo 241 fo x(1 +x2)
00 COS xdx ¢ foo dx
e. s . s
R 0 X348
a—1
oo X 2r dx
. dx, 0 <a <1, h. s
g fo I+x 0 (24 cosx)2
2
2r Sin” xdx - dx
. s . s al), > 1.
o 5+ 3cosx . fO a+cosx (a real), a|
2. Evaluate

%0 gin2 x
2 dx.
JO X

[Hint: Integrate (eZiZ —1- 2iz)/z2 around a large semi-circle.]
g g

/°° dx
o l+x"

where n > 2 is a positive integer. [Hint: Consider the following contour.]

3. Evaluate

e wi/n

2rt/n
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4.* Evaluate:

o0 Q

a. / cosax dx; a>0
0 (2412

2

o0
b. / 1())C dx (See the hint for exercise 3.)
o x'V+1

2T i0
/ & do
0

2 2 2
/ (cosx)2Mdx = i ( m)
0 4m \ m

5.*% Show that

for any positive integer m.

6.* Show that
/°° dx 1-3-5---2n— 1z

oo (L4224l 2.4.6...2n
) .
7. a. Showthatfrk ¥ dz — 0as R — oowhere I' g is the circular segment: z = Re’e, 0<0<nr/4
b. Evaluate fé)o cos x2dx, fé)o sin x2dx. Note: The convergence of the above integrals can be proven
for example by making the substitution u = xZ and applying Dirichlet’s Test.

8. Suppose f is a rational function of the form P/Q with deg Q — deg P > 2. Show that the sum of the
residues of f is zero.

9. Evaluate

10.*  a. Showthat/ .
c, Zsinmz

(N + é)i. (See Chapter 3, exercise 16.)

dz — 0 as N — oo, where Cy is the square with vertices (N + ;) +

1 11 1
b. By integrating (22 — 1)sinzz around a suitable contour, show that 1 — 3 + 577 4= 4

00 kx
/ ¢ Ldx
oo 1+ e
converges if 0 < k < 1. Find its value by integrating around the rectangle with vertices at R and
at £R +2mi.

11.* Show that

12.*% Suppose f is analytic for |z| < 1, and let log z be defined so that Imlogz = argz € [0, 27 ). Prove
1
that / f(@)logzdz = fol fx)dx
=1

27i lzl=
i 3n) 1
n 8n’

13. Evaluate
n=0
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14. Show that
o0

Z(zn)x” = : as long as|x| < :
n V1 —4x ¢ 4

n=0

Note: This is the sum of the middle column in Pascal’s Triangle for powers of 1 + x.

1
1 X
1 2x x?
1 3x 3x2 x3
1 4x 6x2 4x3 x*

The equation can also be verified by applying the binomial expansion for (1 — 4x)_1/2.

15. Complete Example 3 of Section 2-1II by showing |(z — 1)2(z +1)| < (16/9)V/3 throughout |z| = 1.
[Hint: Maximize a%b given a® + b* = 4.]

lz+1l Iz 1l

16. a. Show that

N2
@ 1)2(”]) <2V2 for |zl =2

Z

and thereby obtain an improved estimate for the example cited in (15).
b. Show that

(=12 +1)
max 2

> Zx/Zforany R > 0.
|z|=R

Z

(Thus, in a sense, the estimate in (a) is the best possible.)
n
3
> ()0)
k=0
n 3\ (1
=L ()

17.% a. Express

as a contour integral.

b. Use the integral above to prove that < 4"
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