
Chapter 10
The Residue Theorem

10.1 Winding Numbers and the Cauchy Residue Theorem

We now seek to generalize the Cauchy Closed Curve Theorem (8.6) to functions
which have isolated singularities. Note that by 9.10 and 9.11, if γ is a circle sur-
rounding a single isolated singularity z0 and f (z) = ∑∞

−∞ Ck(z − z0)
k in a deleted

neighborhood of z0 that contains γ , then∫
γ

f = 2π iC−1.

Thus the coefficient C−1 is of special significance in this context.

10.1 Definition

If f (z) = ∑∞
−∞ Ck(z − z0)

k in a deleted neighborhood of z0, C−1 is called the
residue of f at z0. We use the notation C−1 = Res( f ; z0).

Evaluation of Residues

(i) If f has a simple pole at z0; i.e., if

f (z) = A(z)

B(z)

where A and B are analytic at z0, A(z0) �= 0 and B has a simple zero at z0, then

C−1 = lim
z→z0

(z − z0) f (z) = A(z0)

B ′(z0)
. (1)

Proof

Since

f (z) = C−1

z − z0
+ C0 + C1(z − z0) + · · · ,

(z − z0) f (z) = C−1 + C0(z − z0) + C1(z − z0)
2 + · · · ,
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130 10 The Residue Theorem

and
lim

z→z0
(z − z0) f (z) = C−1.

The second equality in (1) follows since

lim
z→z0

(z − z0) f (z) = lim
z→z0

(z − z0)
A(z)

B(z)

= lim
z→z0

A(z)

/
B(z) − B(z0)

z − z0
= A(z0)

B ′(z0)
. �

(ii) If f has a pole of order k at z0,

C−1 = 1

(k − 1)!

dk−1

dzk−1

[
(z − z0)

k f (z)
]

evaluated at z0.

Proof

Setting

f (z) = C−k(z − z0)
−k + · · · C−1(z − z0)

−1 + C0 + C1(z − z0) + · · ·
g(z) = (z − z0)

k f (z) = C−k + · · · C−1(z − z0)
k−1 + C0(z − z0)

k + · · ·
dk−1g(z)

dzk−1
= (k − 1)!C−1 + k!C0(z − z0) + · · ·

and the equality follows. �
(iii) In most cases of higher-order poles, as with essential singularities, the most

convenient way to determine the residue is directly from the Laurent expansion.

EXAMPLES

i. Res(csc z; 0) = 1

cos 0
= 1.

ii. Res

(
1

z4 − 1
; i

)
= 1

4i3
= i

4
.

iii. Res

(
1

z3 ; 0

)
= 0.

iv. Res

(
sin

1

z − 1
; 1

)
= 1, since

sin
1

z − 1
= 1

z − 1
− 1

3!(z − 1)3
+ 1

5!(z − 1)5
− + · · · . ♦

Winding Number. To evaluate
∫
γ f when γ is a general closed curve (and when

f may have isolated singularities), we introduce the following concept.



10.1 Winding Numbers and the Cauchy Residue Theorem 131

10.2 Definition

Suppose that γ is a closed curve and that a �∈ γ . Then

n(γ, a) = 1

2π i

∫
γ

dz

z − a

is called the winding number of γ around a.
Note that if γ represents the boundary of a circle (traversed counter-clockwise)

n(γ, a) =
{

1 if a is inside the circle

0 if a is outside the circle.

The first identity was proven in Lemma 5.4. The second was shown in Example 1
following the Cauchy Closed Curve Theorem.Also, if γ circles the point a k times—
i.e., if γ (θ) = a + reiθ , 0 ≤ θ ≤ 2kπ—then

n(γ, a) = 1

2π i

∫ 2kπ

0
idθ = k,

which explains the terminology “winding number.”

10.3 Theorem

For any closed curve γ and a �∈ γ, n(γ, a) is an integer.

Proof

Suppose γ is given by z(t), 0 ≤ t ≤ 1, and set

F(s) =
∫ s

0

ż(t)

z(t) − a
dt, 0 ≤ s ≤ 1.

Then, as we saw in defining the logarithm function (Section 8.2) it follows from

Ḟ(s) = ż(s)

z(s) − a

that
(z(s) − a)e−F(s)

is a constant, and setting s = 0,

(z(s) − a)e−F(s) = z(0) − a.

Hence

eF(s) = z(s) − a

z(0) − a
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and

eF(1) = z(1) − a

z(0) − a
= 1

since γ is closed; i.e., z(1) = z(0). Thus

F(1) = 2πki for some integer k

and

n(γ, a) = 1

2π i
F(1) = k.

�

It follows from Definition 10.2 that if we fix γ and let a vary, n(γ, a) is a continuous
function of a (as long as a �∈ γ ). Since it is always integer-valued, we conclude that
n(γ, a) is constant in the connected components of the complement of γ .Moreover,
n(γ, a) → 0 as a → ∞. Hence n(γ, a) = 0 in the unbounded component of γ (the
set of points which can be connected to ∞ without intersecting γ ). Some typical
examples are illustrated below.

n = 2
n = 2

n = 1

n = 1

n = 1

n = 1

n = 1

n = –1

n = 0

n = 0

n = 0

The Jordan Curve Theorem asserts that any simple closed curve divides the plane
into exactly two components—one bounded, the other unbounded (here the curve
need not necessarily be smooth)—so that if γ is such a “Jordan” curve (and is smooth
besides),

n(γ, a) =
{

k if a ∈ Bounded Component

0 if a ∈ Unbounded Component.

The proof of the Jordan Curve Theorem would lead us too far afield.Nevertheless,
in all future examples when we deal with simple closed curves, we will be able to
verify directly that n(γ, a) = 0 or ±1 for all a �∈ γ . In fact, by choosing the “proper”
orientation, we will be able to show that n(γ, a) = 0 or 1 for all a �∈ γ . (The “proper”
orientation will be easily recognized as that one for which the bounded component
of γ̃ lies to the left of γ.)
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EXAMPLE

Let γ be a semicircle traversed counterclockwise. Then

n(γ, a) =
{

1 if a is inside the semicircle

0 if a is outside.

The first assertion can be seen by citing the Closed Curve Theorem to show∫
γ

dz

z − a
=

∫
C

dz

z − a

a

C

C

γ

γ

where C is the completed circle containing z = a. The second follows from the
analyticity of 1/(z − a) in a half-plane containing γ but not a.

a

γ

♦

To simplify our terminology, we introduce the following definition.

10.4 Definition

γ is called a regular closed curve if γ is a simple closed curve with n(γ, a) = 0 or
1 for all a �∈ γ . In that case, we will call {a : n(γ, a) = 1} the inside of γ . The set
of points a where n(γ, a) = 0 is called the outside of γ .

10.5 Cauchy’s Residue Theorem

Suppose f is analytic in a simply connected domain D except for isolated singulari-
ties at z1, z2, · · · , zm .Let γ be a closed curve not intersecting any of the singularities.
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Then ∫
γ

f = 2π i
m∑

k=1

n(γ, zk)Res( f ; zk).

Proof

(Note that since γ is a “general” curve, we cannot replace it by a finite union of
“familiar” curves. Instead we proceed as in Section 9.2.)

If we subtract the principal parts

P1

(
1

z − z1

)
, · · · , Pm

(
1

z − zm

)

from f , the difference

g(z) = f (z) − P1

(
1

z − z1

)
− P2

(
1

z − z2

)
− · · · − Pm

(
1

z − zm

)

(with the appropriate definitions at z1, . . . , zm ) is an analytic function in D. Hence,
by the Closed Curve Theorem (8.6) ∫

γ
g = 0

and ∫
γ

f =
m∑

k=1

∫
γ

Pk

(
1

z − zk

)
dz. (3)

Furthermore, for any k, ∫
γ

1

(z − zk)n
= 0, if n �= 1 since

(z − zk)
−n is the derivative of

(z − zk)
1−n

1 − n
,

which is analytic along the closed curve γ . Hence if

Pk

(
1

z − zk

)
= C−1

z − zk
+ C−2

(z − zk)2 + · · · ,∫
γ

Pk

(
1

z − zk

)
dz = C−1

∫
γ

dz

z − zk
= 2π i n(γ, zk)Res( f ; zk)

and by (3), the proof is complete. �

10.6 Corollary

If f is as above, and if γ is a regular closed curve in the domain of analyticity of f ,
then

∫
γ f = 2π i

∑
k Res( f ; zk), where the sum is taken over all the singularities of

f inside γ .
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10.2 Applications of the Residue Theorem

10.7 Definition

We say f is meromorphic in a domain D if f is analytic there except at isolated
poles.

10.8 Theorem

Suppose γ is a regular closed curve. If f is meromorphic inside and on γ and
contains no zeroes or poles on γ , and if
Z = number of zeroes of f inside γ (a zero of order k being counted k times),
P = number of poles of f inside γ (again with multiplicity),
then

1

2π i

∫
γ

f ′

f
= Z − P.

Proof

Note that f ′/ f is analytic except at the zeroes or poles of f . If f has a zero of order
k at z = a, that is, if

f (z) = (z − a)kg(z) with g(z) �= 0,

then
f ′(z) = (z − a)k−1 [

kg(z) + (z − a)g′(z)
]

has a zero of order k − 1 at z, and

f ′(z)
f (z)

= k

z − a
+ g′(z)

g(z)

Hence, at each zero of f of order k, f ′/ f has a simple pole with residue k. Similarly,
if

f (z) = (z − a)−k g(z),

then
f ′(z)
f (z)

= −k

z − a
+ g′(z)

g(z)
,

so that at each pole of f, f ′/ f has a simple pole with residue −k. By Corollary 10.6,
then

1

2π i

∫
γ

f ′

f
=

∑
Res

(
f ′

f

)
= Z − P.

�
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If we take f to be analytic, we obtain

10.9 Corollary (Argument Principle)

If f is analytic inside and on a regular closed curve γ (and is nonzero on γ ) then

Z( f ) = the number o f zeroes o f f inside γ = 1

2π i

∫
γ

f ′

f
.

Remarks

1. The above is known as the “Argument Principle” because if γ is given by z(t),
0 ≤ t ≤ 1,

1

2π i

∫
γ

f ′

f
= log f (z(1)) − log f (z(0))

2π i
= 1

2π
� Arg f (z) (1)

as z travels around γ from the starting point z(0) to the terminal point z(1) = z(0).
To prove (1), we split γ into a finite number of simple arcs

γ1: z(t), 0 ≤ t ≤ t1
γ2: z(t), t1 ≤ t ≤ t2

· · ·
γn : z(t), tn−1 ≤ t ≤ tn = 1.

γ2

γ1

γ3γn

Since an analytic branch of log f can be defined in a simply connected domain
containing γ1, ∫

γ1

f ′

f
= log f (z(t1)) − log f (z(0)).

Similarly∫
γk

f ′

f
= log f (z(tk)) − log f (z(tk−1)), k = 2, 3, . . . , n.
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We note that ∫
γ

=
∫

γ1

+
∫

γ2

+ · · · +
∫

γn

,

and the first equality in (1) follows. Note, also, that since z(0) = z(1) and since

log w = log |w| + i Arg ω,

log f (z(1)) − log f (z(0)) = i
[

Arg f (z(1)) − Arg f (z(0))
]
,

and the second equality follows.
2. We may also view

∫
γ f ′/ f as the winding number of the curve f (γ (z)) around

z = 0. (See Definition 10.2.) Thus, if f is analytic inside and on γ , the number
of zeroes of f inside γ is equal to the number of times that the curve f (γ )
winds around the origin. By considering f (z) − a, it follows that the number of
times that f = a inside γ equals the number of times that f (γ ) winds around the
complex number a.As an example, consider the function described in Exercise 3b
of Chapter 7.

10.10 Rouché’s Theorem

Suppose that f and g are analytic inside and on a regular closed curve γ and that
| f (z)| > |g(z)| for all z ∈ γ . Then

Z( f + g) = Z( f ) inside γ.

Proof

Note first that if f (z) = A(z)B(z)

f ′

f
= A′

A
+ B ′

B

so that ∫
γ

f ′

f
=

∫
γ

A′

A
+

∫
γ

B ′

B
.

Thus, if we write

f + g = f

(
1 + g

f

)
,

Z( f + g) = 1

2π i

∫
γ

( f + g)′

f + g
= 1

2π i

∫
γ

f ′

f
+ 1

2π i

∫
γ

(
1 + g

f

)′

1 + g
f

= Z( f ) + 1

2π i

∫
γ

(
1 + g

f

)′

1 + g
f

.
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But this last integral is zero since, by hypothesis, (1 + g/ f )(γ ) remains within a
disc of radius 1 around z = 1. Hence the winding number of (1 + g/ f )(γ ) around
0 is 0 [i.e., setting ω = 1 + g/ f it follows that ω(z) remains in the right half-plane
for z ∈ γ and hence that

∫
γ ∗

dω
ω = 0.] �

(         )

210

1 + (   )
g
f γ

EXAMPLE

Since |4z2| > |2z10 + 1| on |z| = 1, each of the polynomials

2z10 + 4z2 + 1 and 2z10 − 4z2 + 1

has exactly two zeroes in |z| < 1. ♦

Recall that according to the Cauchy Integral Formula (6.4)

f (z) = 1

2π i

∫
C

f (ω)

ω − z
dω

where C is a circle containing z. By application of the Residue Theorem, we can
extend the result as follows.

10.11 Generalized Cauchy Integral Formula

Suppose that f is analytic in a simply connected domain D and that γ is a regular
closed curve contained in D. Then for each z inside γ and k = 0, 1, 2 . . .,

f (k)(z) = k!

2π i

∫
γ

f (ω)

(ω − z)k+1
dω.

Proof

Note that since

f (ω) = f (z) + f ′(z)(ω − z) + · · · + f (k)(z)

k!
(ω − z)k + · · ·
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throughout a neighborhood of z,

Res

(
f (ω)

(ω − z)k+1
; z

)
= f (k)(z)

k!
.

Since f (ω)/(ω − z)k+1 has no other singularities in D, the result follows from
Corollary 10.6. �

We now derive an extension of Theorem 7.6 for the limit of analytic functions.

10.12 Theorem

Suppose a sequence of functions fn , analytic in a region D, converges to f uniformly
on compacta of D. Then f is analytic, f

′
n → f ′ in D and the convergence of f ′

n is
also uniform on compacta of D.

Proof

We proved the analyticity of f in Theorem 7.6.By the Integral Formula 10.11, if we
pick any z0 ∈ D and let C = C(z0; r) for some r < 1,

f ′
n(z) − f ′(z) = 1

2π i

∫
C

fn(ω) − f (ω)

(ω − z)2
dω

for all z in D(z0; r). Moreover, if we take n large enough so that | fn − f | < εr2/4
throughout the compact D(z0; r), it follows that

| f ′
n(z) − f ′(z)| < ε

for all z in D(z0; r/2). Thus, to see that the convergence is uniform on compacta,
we need only note that any compact subset D can be covered by finitely many discs
of the form: |z − z0| < r/2. �

10.13 Hurwitz’s Theorem

Let { fn} be a sequence of non-vanishinganalytic functions in a region D and suppose
fn → f uniformly on compacta of D. Then either f ≡ 0 in D or f (z) �= 0 for all
z ∈ D.

Proof

Suppose f (z) = 0 for some z ∈ D. If f �≡ 0, there is some circle C centered at z
and such that f (z) �= 0 on C; hence

f ′
n

fn
→ f ′

f
uniformly on C.
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However
1

2π i

∫
C

f ′

f
= Z( f ) ≥ 1,

while
1

2π i

∫
C

f ′
n

fn
= Z( fn) = 0.

Hence
f ≡ 0. �

[Note that it is possible to have f ≡ 0 despite the fact that fn(z) �= 0 for all n.
Consider, for example, fn(z) = (1/n)ez.]

EXAMPLE

Since sin π = 0, there must be some n0 such that

z − z3

3!
+ z5

5!
− + · · · z2n+1

(2n + 1)!

has a zero in |z − π | < 1 for all n > n0. ♦

10.14 Corollary

Suppose that fn is a sequence of analytic functions in a region D, that fn → f
uniformly on compacta in D, and that fn �= a. Then either f ≡ a or f �= a in D.

Proof

Consider gn(z) = fn(z) − a, etc. �

10.15 Theorem

Suppose that fn is a sequence of analytic functions, and that fn → f uniformly on
compacta in a region D. If fn is 1-1 in D for all n, then either f is constant or f is
1-1 in D.

Proof

Assume z1 �= z2, f (z1) = f (z2) = a and take disjoint discs D1 and D2 (in D)
surrounding z1 and z2, respectively. If f �≡ a, by 10.13, fn(z) = a must have a
solution in D1 once n is large enough. (Otherwise we could find a subsequence
fnk → f with no a-values D1.) But then since fn is 1-1, fn(z) �= a throughout D2
for all large n and hence f (z2) �= a, contradicting our hypothesis. �
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Exercises

1. Determine the singularities and associated residues of

a.
1

z4 + z2
b. cot z

c. csc z d.
exp(1/z2)

z − 1

e.
1

z2 + 3z + 2
f. sin

1

z

g. ze3/z h.
1

az2 + bz + c
, a �= 0.

2. Use the Residue Theorem to evaluate

a.
∫
|z|=1 cot z dz b.

∫
|z|=2

dz

(z − 4)(z3 − 1)

c.
∫
|z|=1 sin

1

z
dz d.

∫
|z|=2 ze3/zdz.

3. Prove that for any positive integer n, Res((1 − e−z )−n ; 0) = 1. [Hint: Consider∫
C

dz

(1 − e−z)n

and make the change of variables ω = 1 − e−z to show

Res((1 − e−z )−n ; 0) = Res

(
1

ωn(1 − ω)
; 0

)
. ]

4.* Show that
∫
|z|=1(z + 1/z)2m+1dz = 2π i

(2m+1
m

)
, for any nonnegative integer m.

5.* Let C be a regular curve enclosing the distinct points ω1, ω2, ...ωn and let p(ω) =
(ω − ω1)(ω − ω2) · · · (ω − ωn). Suppose that f (ω) is analytic in a region that includes C. Show that

P(z) = 1

2π i

∫
C

f (ω)

p(ω)
· p(ω) − p(z)

ω − z
dω

is a polynomial of degree n − 1, with P(ωi ) = f (ωi ), i = 1, 2, ...n.

6. Suppose f is defined by

f (z) =
∫
γ

φ(ω)dω

ω − z
,

where γ is a compact curve, φ is continuous on γ , and z �∈ γ . Show that

f ′(z) =
∫
γ

φ(ω)dω

(ω − z)2

directly by considering
f (z + h) − f (z)

h
.

Give an alternate proof of Theorem 10.11.

7. Suppose that f is entire and that f (z) is real if and only if z is real. Use the Argument Principle to
show that f can have at most one zero. (Compare this with Exercise 13 of Chapter 5.)

8.* a. Show that Rouche’s Theorem remains valid if the condition: | f | > |g| on γ is replaced by:
| f | ≥ |g| and f + g �= 0 on γ.

b. Find the number of zeroes of z5 + 2z4 + 1 in the unit disc.
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9. Find the number of zeroes of

a. f1(z) = 3ez − z in |z| ≤ 1

b. f2(z) = 1

3
ez − z in |z| ≤ 1

c. f3(z) = z4 − 5z + 1 in 1 ≤ |z| ≤ 2

d. f4(z) = z6 − 5z4 + 3z2 − 1 in |z| ≤ 1.

10.* Suppose λ > 1. Show that λ− z − e−z = 0 has exactly one root (which is a real number) in the right
half-plane.

11. Suppose f is analytic inside and on a regular closed curve γ and has no zeroes on γ . Show that if m
is a positive integer then

1

2π i

∫
γ
zm

f ′(z)
f (z)

dz =
∑
k

(zk)
m

where the sum is taken over all the zeroes of f inside γ .

12. Show that for each R > 0, if n is large enough,

Pn(z) = 1 + z + z2

2!
+ · · · + zn

n!
has no zeroes in |z| ≤ R.

13.* a. Let P(z) be any polynomial of the form: a0 + a1z + a2z
2 + · · · + anzn, with all ai real and

0 ≤ a0 ≤ a1 ≤ · · · ≤ an . Prove that all the zeroes of P(z) lie inside the unit disc by applying
Rouche’s Theorem to (1 − z)P(z).

b. Prove that, for any ρ < 1, the polynomial Pn(z) = 1 + 2z+ 3z2 +· · ·+ (n+ 1)zn has no zeroes
inside the circle |z| < ρ if n is sufficiently large.

14. Derive the Fundamental Theorem of Algebra as a corollary of Rouché’s Theorem.

15. Supply the details of the following proof of Rouché’s Theorem (due to Carathéodory). Set

J (λ) = 1

2π i

∫
γ

( f + λg)′
f + λg

, 0 ≤ λ ≤ 1.

Note that J (λ) is defined for all λ, 0 ≤ λ ≤ 1. Furthermore J (λ) is a continuous function of λ and is
always integer-valued. Hence J is constant; in particular, J (0) = J (1) so that

Z( f ) = Z( f + g).

16. Recall, as in 8.2, that

log(z2 − 1) =
∫ z

√
2

2ζ

ζ 2 − 1
dζ

is analytic in the plane minus the interval (−∞, 1]. Hence, so is

√
z2 − 1 = exp

(
1

2
log(z2 − 1)

)
. (1)

Show that
√
z2 − 1 (as defined in (1)) is analytic in the entire plane minus the interval [−1, 1]. [Hint:

Use the Argument Principle to show that
√
z2 − 1 is continuous along the interval (−∞, −1) and

then apply Morera’s Theorem.]

17. Show that an analytic 3√(z − 1)(z − 2)(z − 3) can be defined in the entire plane minus [1, 3].
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