
Chapter 1
The Complex Numbers

Introduction

Numbers of the form a + b
√−1, where a and b are real numbers—what we call

complex numbers—appeared as early as the 16th century. Cardan (1501–1576)
worked with complex numbers in solving quadratic and cubic equations. In the 18th
century, functions involving complex numbers were found by Euler to yield solutions
to differential equations. As more manipulations involving complex numbers were
tried, it became apparent that many problems in the theory of real-valued functions
could be most easily solved using complex numbers and functions. For all their util-
ity, however, complex numbers enjoyed a poor reputation and were not generally
considered legitimate numbers until the middle of the 19th century. Descartes, for
example, rejected complex roots of equations and coined the term “imaginary” for
such roots. Euler, too, felt that complex numbers “exist only in the imagination” and
considered complex roots of an equation useful only in showing that the equation
actually has no solutions.

The wider acceptance of complex numbers is due largely to the geometric repre-
sentation of complex numbers which was most fully developed and articulated by
Gauss. He realized it was erroneous to assume “that there was some dark mystery
in these numbers.” In the geometric representation, he wrote, one finds the “intu-
itive meaning of complex numbers completely established and more is not needed
to admit these quantities into the domain of arithmetic.”

Gauss’ work did, indeed, go far in establishing the complex number system on
a firm basis. The first complete and formal definition, however, was given by his
contemporary, William Hamilton. We begin with this definition, and then consider
the geometry of complex numbers.

1.1 The Field of Complex Numbers

We will see that complex numbers can be written in the form a + bi , where a and b
are real numbers and i is a square root of −1. This in itself is not a formal definition,
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2 1 The Complex Numbers

however, since it presupposes a system in which a square root of −1 makes sense.
The existence of such a system is precisely what we are trying to establish. Moreover,
the operations of addition and multiplication that appear in the expression a + bi
have not been defined. The formal definition below gives these definitions in terms
of ordered pairs.

1.1 Definition

The complex field C is the set of ordered pairs of real numbers (a, b) with addition
and multiplication defined by

(a, b) + (c, d) = (a + c, b + d)

(a, b)(c, d) = (ac − bd, ad + bc).

The associative and commutative laws for addition and multiplication as well as
the distributive law follow easily from the same properties of the real numbers. The
additive identity, or zero, is given by (0, 0), and hence the additive inverse of (a, b)
is (−a,−b). The multiplicative identity is (1, 0). To find the multiplicative inverse
of any nonzero (a, b) we set

(a, b)(x, y) = (1, 0),

which is equivalent to the system of equations:

ax − by = 1

bx + ay = 0

and has the solution

x = a

a2 + b2
, y = −b

a2 + b2
.

Thus the complex numbers form a field.
Suppose now that we associate complex numbers of the form (a, 0) with the

corresponding real numbers a. It follows that

(a1, 0) + (a2, 0) = (a1 + a2, 0) corresponds to a1 + a2

and that
(a1, 0)(a2, 0) = (a1a2, 0) corresponds to a1a2.

Thus the correspondence between (a, 0) and a preserves all arithmetic operations
and there can be no confusion in replacing (a, 0) by a. In that sense, we say that the
set of complex numbers of the form (a, 0) is isomorphic with the set of real numbers,
and we will no longer distinguish between them. In this manner we can now say that
(0, 1) is a square root of −1 since

(0, 1)(0, 1) = (−1, 0) = −1
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and henceforth (0, 1) will be denoted i . Note also that

a(b, c) = (a, 0)(b, c) = (ab, ac),

so that we can rewrite any complex number in the following way:

(a, b) = (a, 0) + (0, b) = a + bi.

We will use the latter form throughout the text.
Returning to the question of square roots, there are in fact two complex square

roots of −1: i and −i . Moreover, there are two square roots of any nonzero complex
number a + bi . To solve

(x + iy)2 = a + bi

we set

x2 − y2 = a

2xy = b

which is equivalent to

4x4 − 4ax2 − b2 = 0

y = b/2x .

Solving first for x2, we find the two solutions are given by

x = ±
√
a + √

a2 + b2

2

y = b

2x
= ±

√
−a + √

a2 + b2

2
· (sign b)

where

sign b =
{

1 if b ≥ 0

−1 if b < 0.

EXAMPLE

i. The two square roots of 2i are 1 + i and −1 − i .
ii. The square roots of −5 − 12i are 2 − 3i and −2 + 3i . ♦

It follows that any quadratic equation with complex coefficients admits a solution
in the complex field. For by the usual manipulations,

az2 + bz + c = 0 a, b, c ∈ C, a �= 0
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is seen to be equivalent to

(
z + b

2a

)2

= b2 − 4ac

4a2 ,

and hence has the solutions

z = −b ± √
b2 − 4ac

2a
. (1)

In Chapter 5, we will see that quadratic equations are not unique in this respect:
every nonconstant polynomial with complex coefficients has a zero in the complex
field.

One property of real numbers that does not carry over to the complex plane is the
notion of order. We leave it as an exercise for those readers familiar with the axioms
of order to check that the number i cannot be designated as either positive or negative
without producing a contradiction.

1.2 The Complex Plane

Thinking of complex numbers as ordered pairs of real numbers (a, b) is closely
linked with the geometric interpretation of the complex field, discovered by Wallis,
and later developed by Argand and by Gauss. To each complex number a + bi
we simply associate the point (a, b) in the Cartesian plane. Real numbers are thus
associated with points on the x-axis, called the real axis while the purely imaginary
numbers bi correspond to points on the y-axis, designated as the imaginary axis.

Addition and multiplication can also be given a geometric interpretation. The sum
of z1 and z2 corresponds to the vector sum: If the vector from 0 to z2 is shifted parallel
to the x and y axes so that its initial point is z1, the resulting terminal point is z1 + z2.
If 0, z1 and z2 are not collinear this is the so-called parallelogram law; see below.

y

x

z1 + z2

z1 + z2
0

y

x0

z1 z1

z2

z2

The geometric method for obtaining the product z1z2 is somewhat more compli-
cated. If we form a triangle with two sides given by the vectors (originating from
0 to) 1 and z1 and then form a similar triangle with the same orientation and the
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vector z2 corresponding to the vector 1, the vector which then corresponds to z1 will
be z1z2.

This can be verified geometrically but will be most transparent when we introduce
polar coordinates later in this section.For the moment, we observe that multiplication
by i is equivalent geometrically to a counterclockwise rotation of 90◦.

z1 z2

0 1 0 1

z1

z2

z

iz

i

With z = x + iy, the following terms are commonly used:

Re z, the real part of z, is x ;
Im z, the imaginary part of z, is y (note that Im z is a real number);
z̄, the conjugate of z, is x − iy.

Geometrically, z̄ is the mirror image of z reflected across the real axis.

z

z–

Re z
0

|z|, the absolute value or modulus of z, is equal to
√

x2 + y2; that is, it is the
length of the vector z. Note also that |z1 − z2| is the (Euclidean) distance between
z1 and z2. Hence we can think of |z2| as the distance between z1 + z2 and z1 and
thereby obtain a proof of the triangle inequality:

|z1 + z2| ≤ |z1| + |z2|.
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An algebraic proof of the inequality is outlined in Exercise 8.

0

z1 + z2

|z1 + z2|

z1

|z1|

|z2|

Arg z, the argument of z, defined for z �= 0, is the angle which the vector (orig-
inating from 0) to z makes with the positive x-axis. Thus Arg z is defined (modulo
2π) as that number θ for which

cos θ = Re z

|z| ; sin θ = Im z

|z| .

0 |Re z|

|Im z||z|

z

θ

EXAMPLES

i. The set of points given by the equation Re z > 0 is represented geometrically by
the right half-plane.

ii. {z : z = z̄} is the real line.
iii. {z : − θ < Arg z < θ} is an angular sector (wedge) of angle 2θ .
iv. {z : |Arg z − π/2| < π/2} = {z : Im z > 0}.
v. {z : |z + 1| < 1} is the disc of radius 1 centered at −1. ♦
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0
(i)

θ

0
(iii)

0

(v)

–1



8 1 The Complex Numbers

A nonzero complex number is completely determined by its modulus and
argument. If z = x + iy with |z| = r and Arg z = θ , it follows that x = r cos θ ,
y = r sin θ and

z = r(cos θ + i sin θ).

We abbreviate cos θ + i sin θ as cis θ . In this context, r and θ are called the polar
coordinates of z and r cis θ is called the polar form of the complex number z. This
form is especially handy for multiplication. Let z1 = r1 cis θ1, z2 = r2 cis θ2. Then

z1z2 = r1r2 cis θ1 cis θ2 = r1r2 cis(θ1 + θ2),

since

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2)

= cis(θ1 + θ2).

Thus, if z is the product of two complex numbers, |z| is the product of their moduli
and Arg z is the sum of their arguments (modulo 2π). (This can be used to verify
the geometric construction for z1z2 given at the beginning of this section.) Similarly
z1/z2 can be obtained by dividing the moduli and subtracting the arguments:

z1

z2
= r1

r2
cis(θ1 − θ2).

It follows by induction that if z = r cis θ and n is any integer,

zn = rn cis nθ. (1)

Identity (1) is especially handy for solving “pure” equations of the form zn = z0.

EXAMPLE

To find the cube roots of 1, we write z3 = 1 in the polar form

r3 cis 3θ = 1 cis 0,

which is satisfied if and only if

r = 1, 3θ = 0 (modulo 2π).

Hence the three solutions are given by

z1 = cis 0, z2 = cis
2π

3
, z3 = cis

4π

3
,
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or in rectangular (x, y) coordinates

z1 = 1, z2 = −1

2
+ i

√
3

2
, z3 = −1

2
− i

√
3

2
.

The polar form of the three cube roots reveals that they are the vertices of an equilateral
triangle inscribed in the unit circle. Similarly the n-th roots of 1 are located at the
vertices of the regular n-gon inscribed in the unit circle with one vertex at z = 1. For
example, the fourth roots of 1 are ±1 and ±i . ♦

i

– i

–1
1

1.3 The Solution of the Cubic Equation

As we mentioned at the beginning of this chapter, complex numbers were applied to
the solution of quadratic and cubic equations as far back as the 16th century.While
neither of these applications was sufficient to gain a wide acceptance of complex
numbers, there was a fundamental difference between the two. In the case of quadratic
equations, it may have seemed interesting that solutions could always be found among
the complex numbers, but this was generally viewed as nothing more than an oddity
at best.After all, if a quadratic equation (with real coefficients) had no real solutions,
it seemed just as reasonable to simply say that there were no solutions as to describe
so-called solutions in terms of some imaginary number.

Cubic equations presented a much more tantalizing situation. For one thing, every
cubic equation with real coefficients has a real solution. The fact that such a real
solution could be found through the use of complex numbers showed that the complex
numbers were at least useful, even if somewhat illegitimate. In fact, the solution of
the cubic equation was followed by a string of other applications which demonstrated
the uncanny ability of complex numbers to play a role in the solution of problems
involving real numbers and functions.

Let’s see how complex numbers were first applied to cubic equations. There is
obviously no loss in assuming that the general cubic equation:

ax3 + bx2 + cx + d = 0
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has leading coefficient a = 1.The equation can then be further reduced to the simpler
form:

x3 + px + q = 0 (1)

if we change x into x − b
3 . The first recorded solution for cubic equations involved

a method for finding the real solution of the above “reduced” or “depressed” cubic
in the form:

x3 + px = q (2)

To the modern reader, of course, equation (2) is, for all practical purposes, identical
to equation (1). But in the early 16th century, mathematicians were not entirely
comfortable with negative numbers either, and it was assumed that the coefficients
p and q in equation (2) denoted positive real numbers. In fact, in that case, f (x) =
x3 + px is a monotonically increasing function, so that equation (2) has exactly one
positive real solution. To find that solution, del Ferro (1465–1526) suggested setting
x = u + v, so that (2) could be rewritten as:

u3 + v3 + (3uv + p)(u + v) = q (3)

The solution to (3) can be found, then, by solving the pair of equations:3uv+p = 0
and u3 + v3 = q .Using the first equation to express v in terms of u, and substituting
into the second equation leads to:

u6 − u3q − p3

27
= 0

which is a quadratic equation for u3 and has the solutions

u3 = q ± √
q2 + 4 p3/27

2
.

The identical formula can be obtained for v3, and since u3 + v3 = q ,

x = u + v = 3

√
q + √

q2 + 4 p3/27

2
+ 3

√
q − √

q2 + 4 p3/27

2
. (4)

or, as del Ferro would have written it to avoid the cube root of a negative number,

x = u + v = 3

√√
q2 + 4 p3/27 + q

2
− 3

√√
q2 + 4 p3/27 − q

2

For example, if p = 6 and q = 20, we find x = 3
√

6
√

3 + 10 − 3
√

6
√

3 − 10 or
(check this!) x = 2.

Although (4) was originally intended to be applied with p, q > 0, it can ob-
viously be applied equally well for any values of p and q . Changing q into −q
would simply cause the same change in x . For example, the unique real solution
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of the equation x3 + 6x = −20 is x = −2. Changing p into a negative number,
however, can introduce complex values. To be precise, if q2 + 4 p3/27 < 0; i.e., if
4 p3 < −27q2, equation (4) gives the solution as the sum of the cube roots of two com-
plex conjugates. For example, if we apply (4) to the equation x3 −6x = 4, we obtain

x = 3
√

2 + 2i + 3
√

2 − 2i (5)

Since we saw (in the last section) that we can calculate the three cube roots of any
complex number using its polar form, and since the cube roots of a conjugate of any
complex number are the conjugates of its cube roots, we realize that (5) actually does
give the three real roots of x3 − 6x = 4.

To Cardan, however, who published formula (4) in his Ars Magna(1545), the case:
4 p3 < −27q2 presented a dilemma.We leave it as an exercise to verify that equation
(2) has three real roots if and only if 4 p3 < −27q2. Ironically, then, precisely in
the case when all three solutions are real, if formula (4) is applicable at all, it gives
the solutions in terms of cube roots of complex numbers! Moreover, Cardan was
willing to try a direct approach to finding the cube roots of a complex number (as
we found the square roots of any complex number in section 1), but solving the
equation (x + iy)3 = a + bi by equating real and imaginary parts led to an equation
no less complicated than the original cubic. Cardan, therefore, labeled this situation
the “irreducible” case of the depressed cubic equation.

Fortunately, however, the idea of applying (4) even in the “irreducible” case, was
never laid to rest. Bombelli’s Algebra (1574) included the equation x3 = 15x + 4,
which led to the mysterious solution

x = 3
√

2 + 11i + 3
√

2 − 11i (6)

By a direct approach, combined with the assumption that the cube roots in (6) would
involve integral real and imaginary parts, Bombelli was able to show that formula (6)
did “contain” the solution x = 4 in the form of (2 + i) + (2 − i). He did not suggest
that (6) might also contain the other two real roots nor did he generalize the method.
In fact, over a hundred years later, the issue was still not resolved. Thus Leibniz
(1646–1716) continued to question how “a quantity could be real when imaginary
or impossible numbers were used to express it”. But he too could not let the matter
go. Among unpublished papers found after his death, there were several identities
similar to

3
√

36 + √−2000 + 3
√

36 − √−2000 = −6

which he found by applying (4) to: x3 − 48x − 72 = 0.
So complex numbers maintained their presence, albeit as second-class citizens, in

the world of numbers until the early 19th century when the spread of their geometric
interpretation began the process of their acceptance as first-class citizens.
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1.4 Topological Aspects of the Complex Plane

I. Sequences and Series The concept of absolute value can be used to define the
notion of a limit of a sequence of complex numbers.

1.2 Definition

The sequence z1, z2, z3, . . . converges to z if the sequence of real numbers |zn − z|
converges to 0. That is, zn → z if |zn − z| → 0.

Geometrically, zn → z if each disc about z contains all but finitely many of the
members of the sequence {zn}.

Since
|Re z|, |Im z| ≤ |z| ≤ |Re z| + |Im z|,

zn → z if and only if Re zn → Re z and Im zn → Im z.

EXAMPLES

1. zn → 0 if |z| < 1 since |zn − 0| = |z|n → 0.

2.
n

n + i
→ 1 since

∣∣∣∣ n

n + i
− 1

∣∣∣∣ =
∣∣∣∣ −i

n + i

∣∣∣∣ = 1√
n2 + 1

→ 0. ♦

1.3 Definition

{zn} is called a Cauchy sequence if for each ε > 0 there exists an integer N such that
n, m > N implies |zn − zm | < ε.

1.4 Proposition

{zn} converges if and only if {zn} is a Cauchy sequence.

Proof

If zn → z, then Re zn → Re z, Im zn → Im z and hence {Re zn} and {Im zn} are
Cauchy sequences. But since

|zn − zm | ≤ |Re(zn − zm)| + |Im (zn − zm)|
= |Re zn − Re zm | + |Im zn − Im zm |,

{zn} is also a Cauchy sequence.
Conversely, if {zn} is a Cauchy sequence so are the real sequences {Re zn} and

{Im zn}. Hence both {Re zn} and {Im zn} converge, and thus {zn} converges. �

An infinite series
∑∞

k=1 zk is said to converge if the sequence {sn} of partial sums,
defined by sn = z1 + z2 + · · · zn , converges. If so, the limit of the sequence is called
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the sum of the series. The basic properties of infinite series listed below will be
familiar from the theory of real series.

i. The sum and the difference of two convergent series are convergent.
ii. A necessary condition for

∑∞
k=1 zk to converge is that zn → 0 as n → ∞.

iii. A sufficient condition for
∑∞

k=1 zk to converge is that
∑∞

k=1 |zk | converges.When∑∞
k=1 |zk | converges, we will say

∑∞
k=1 zk is absolutely convergent.

Property (iii), which will be important in later chapters, follows from Proposi-
tion 1.4. For if

∑∞
k=1 |zk | converges and tn = |z1| + |z2| + · · · + |zn | then {tn} is a

Cauchy sequence.But then so is the sequence {sn} given by sn = z1 + z2 + · · ·+ zn ,
since

|sm − sn | = |zn+1 + zn+2 + · · · + zm |
≤ |zn+1| + |zn+2| + · · · + |zm | = |tm − tn|

by the triangle inequality. Hence
∑∞

k=1 zk converges.

EXAMPLES

1.
∑∞

k=1
i k

k2 + i
converges since

∣∣∣∣ i k

k2 + i

∣∣∣∣ = 1√
k4 + 1

and since
∞∑

k=1

1√
k4 + 1

converges.

2.
∑∞

k=1
1

k + i
diverges, since

1

k + i
= k − i

k2 + 1
, which implies that

∞∑
k=1

Re

(
1

k + i

)
diverges. ♦

II. Classification of Sets in the Complex Plane We give some definitions relating
to planar sets.

1.5 Definitions

D(z0; r) denotes the open disc of radius r > 0 centered at z0; i.e., D(z0; r) =
{z : |z − z0| < r}.

D(z0; r) is also called a neighborhood (or r -neighborhood) of z0.
C(z0; r) is the circle of radius r > 0 centered at z0.
A set S is said to be open if for any z ∈ S, there exists δ > 0 such that D(z; δ) ⊂ S.
For any set S, S̃ = C\S denotes the complement of S; i.e., S̃ = {z ∈ C : z /∈ S}.
A set is closed set if its complement is open. Equivalently, S is closed if {zn} ⊂ S

and zn → z imply z ∈ S.
∂S, the boundary of S, is defined as the set of points whose δ-neighborhoods have

a nonempty intersection with both S and S̃, for every δ > 0.
S̄, the closure of S, is given by S̄ = S ∪ ∂S.
S is bounded if it is contained in D(0; M) for some M > 0.
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Sets that are closed and bounded are called compact.
S is said to be disconnected if there exist two disjoint open sets A and B whose

union contains S while neither A nor B alone contains S. If S is not disconnected, it
is called connected.

[z1, z2] denotes the line segment with endpoints z1 and z2.
A polygonal line is a finite union of line segments of the form [z0, z1] ∪ [z1, z2] ∪

[z2, z3] . . . ∪ [zn−1, zn].
If any two points of S can be connected by a polygonal line contained in S, S is

said to be polygonally connected.

z1

z2

It can be shown that a polygonally connected set is connected. The converse,
however, is false. For example, the set of points z = x + iy with y = x2 is clearly
connected but is not polygonally connected since the set contains no straight line
segments. In fact there are even connected sets whose points cannot be connected to
one another by any curve in the set (see Exercise 23). On the other hand, for open
sets, connectedness and polygonal connectedness are equivalent.

1.6 Definition

An open connected set will be called a region.

1.7 Proposition

A region S is polygonally connected.

Proof

Suppose z0 ∈ S. Let A be the set of points of S which can be polygonally connected
to z0 in S and let B represent the set of points in S which cannot. Since any point z
can be connected to any other point in D(z; δ), it follows that A is open. Similarly
B is open. For if any point in a disc about z could be connected to z0, then z could
be connected to z0. Now S is connected, S = A ∪ B and A is nonempty; hence we
must conclude that B is empty. Finally, since every point in S can be connected to
z0, every pair of points can be connected to each other by a polygonal line in S. �

III Continuous Functions

1.8 Definition

A complex valued function f (z) defined in a neighborhood of z0 is continuous at z0
if zn → z0 implies that f (zn) → f (z0). Alternatively, f is continuous at z0 if for
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each ε > 0 there is some δ > 0 such that |z−z0| < δ implies that | f (z)− f (z0)| < ε.
f is continuous in a domain D if for each sequence {zn} ⊂ D and z ∈ D such that
zn → z, we have f (zn) → f (z).

If we split f into its real and imaginary parts

f (z) = f (x, y) = u(x, y) + iv(x, y),

where u and v are real-valued, it is clear that f is continuous if and only if u and v
are continuous functions of (x, y). Thus, for example, any polynomial

P(x, y) =
m∑
j=1

n∑
k=1

ak j x
k y j

is continuous in the whole plane. Similarly

1

z
= x

x2 + y2 − i
y

x2 + y2

is continuous in the “punctured plane” {z : z �= 0}. It follows also that the sum,
product, and quotient (with nonzero denominator) of continuous functions are con-
tinuous.

We say f ∈ Cn if the real and imaginary parts of f both have continuous partial
derivatives of the n-th order.

A sequence of functions { fn} converges to f uniformly in D if for each ε > 0,
there is an N > 0 such that n > N implies | fn(z) − f (z)| < ε for all z ∈ D. Again,
by referring to the real and imaginary parts of { fn}, it is clear that the uniform limit
of continuous functions is continuous.

1.9 M-Test

Suppose fk is continuous in D, k = 1, 2, . . .. If | fk(z)| ≤ Mk throughout D and if∑∞
k=1 Mk converges, then

∑∞
k=1 fk(z) converges to a function f which is continuous

in D.

Proof

The convergence of
∑∞

k=1 fk(z) is immediate. Moreover, for each ε > 0, we can
choose N so that∣∣∣∣∣ f (z) −

n∑
k=1

fk(z)

∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
n+1

fk(z)

∣∣∣∣∣∣ ≤ Mn+1 + Mn+2 + · · · < ε

for n ≥ N . Hence the convergence is uniform and f is continuous. �
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EXAMPLE

f (z) = ∑∞
k=1 kzk is continuous in D : |z| ≤ 1

2 since

|kzk | ≤ k

2k
in D and

∞∑
k=1

k

2k

converges. (See Exercise 21.) ♦
Recall that a continuous function maps compact/connected sets into compact/

connected sets. None of the other properties listed above, though, are preserved
under continuous mappings. For example f (z) = Re z maps the open set C into
the real line which is not open. The function g(z) = 1/z maps the bounded set:
0 < |z| < 1 onto the unbounded set: |z| > 1.

Most of the key results in subsequent chapters will concern properties of (a certain
class of) functions defined on a region. We note that, arguing as in the proof of
Proposition 1.7, we could show that any two points in a region can be connected by
a polygonal line containing only horizontal and vertical line segments. For future
reference we will introduce the term polygonal path to denote such a polygonal line.

One important result regarding real-valued functions on a region is given below.

1.10 Theorem

Suppose u(x, y) has partial derivatives ux and uy that vanish at every point of a
region D. Then u is constant in D.

Proof

Let (x1, y1) and (x2, y2) be two points of D. Then, as noted above, they can be
connected by a polygonal path that is contained in D. Any two successive vertices of
the path represent the end-points of a horizontal or vertical segment. Hence, by the
Mean-Value Theorem for one real variable, the change in u between these vertices is
given by the value of a partial derivative of u somewhere between the end-points times
the difference in the non-identical coordinates of the endpoints. Since, however, ux

and uy vanish identically in D, the change in u is 0 between each pair of successive
vertices; hence u(x1, y1) = u(x2, y2). �

1.5 Stereographic Projection; The Point at Infinity

The complex numbers can also be represented by the points on the surface of a
punctured sphere. Let

∑
=

{
(ξ, η, ζ ) : ξ2 + η2 +

(
ζ − 1

2

)2

= 1

4

}
; (1)
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that is, let
∑

be the sphere in Euclidean (ξ, η, ζ ) space with distance 1
2 from (0, 0, 1

2 ).
Suppose, moreover, that the plane ζ = 0 coincides with the complex plane C, and that
the ξ and η axes are the x and y axes, respectively.To each (ξ, η, ζ ) ∈ ∑

we associate
the complex number z where the ray from (0, 0, 1) through (ξ, η, ζ ) intersects C.
This establishes a 1-1 correspondence, known as stereographic projection, between
C and the points of

∑
other than (0, 0, 1). Formulas governing this correspondence

can be derived as follows. Since (0, 0, 1), (ξ, η, ζ ) and (x, y, 0) are collinear,

x

ξ
= y

η
= 1

1 − ζ

(0, 0, 1)

(0, 0, 0)

(  ,   ,   )

(x, y, 0)

 = yη

η

 = xξ

ξ

ζ

ζ

so that

x = ξ

1 − ζ
; y = η

1 − ζ
. (2)

We leave it as an exercise to show that the equations (1) and (2) can be solved for
ξ, η, ζ in terms of x , y as

ξ = x

x2 + y2 + 1
; η = y

x2 + y2 + 1
; ζ = x2 + y2

x2 + y2 + 1
. (3)

Now suppose that {σk} = {(ξk, ηk , ζk)} is a sequence of points of
∑

which converges
to (0, 0, 1) and let {zk} be the corresponding sequence in C. By (2),

x2 + y2 = ξ2 + η2

(1 − ζ )2 = ζ

1 − ζ
,

so that asσk → (0, 0, 1), |zk| → ∞.Conversely, it follows from (3) that if |zk| → ∞,
σk → (0, 0, 1). Loosely speaking, this suggests that the point (0, 0, 1) on

∑
cor-

responds to ∞ in the complex plane. We can make this more precise by formally
adjoining to C a “point at infinity” and defining its neighborhoods as the sets in
C corresponding to the spherical neighborhoods of (0, 0, 1). (See Exercise 24.)
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While we will not examine the resulting “extended plane” in greater detail, we will
adopt the following convention.

1.11 Definition

We say {zk} → ∞ if |zk | → ∞; i.e., |zk | → ∞ if for any M > 0, there exists
an integer N such that k > N implies |zk| > M . Similarly, we say f (z) → ∞ if
| f (z)| → ∞.

For future reference, we note the connection between circles on
∑

and circles
in C. By a circle on

∑
, we mean the intersection of

∑
with a plane of the form

Aξ + Bη+Cζ = D.According to (3), if S is such a circle and T is the corresponding
set in C,

(C − D)(x2 + y2) + Ax + By = D (4)

for (x, y) ∈ T . Note that if C �= D, (4) is the equation of a circle. If C = D, (4)
represents a line. Since C = D if and only if S intersects (0, 0, 1), we have the
following proposition.

1.12 Proposition

Let S be a circle on
∑

and let T be its projection on C. Then

a. if S contains (0, 0, 1), T is a line;
b. if S doesn’t contain (0, 0, 1), T is a circle.

The converse of Proposition 1.12 is also valid. We leave its proof as an exercise.
(See Exercise 25.)

Exercises

1. Express in the form a + bi:

a.
1

6 + 2i
b.

(2 + i)(3 + 2i)

1 − i

c.

(
− 1

2
+ i

√
3

2

)4

d. i2, i3, i4, i5, . . .

2. Find (in rectangular form) the two values of
√−8 + 6 i .

3. Solve the equation z2 + √
32 iz − 6 i = 0.

4. Prove the following identities:
a. z1 + z2 = z + z2.
b. z1z2 = z1 · z2.
c. P(z) = P(z̄), for any polynomial P with real coefficients.
d. ¯̄z = z.

5. Suppose P is a polynomial with real coefficients. Show that P(z) = 0 if and only if P(z̄) = 0 [i.e.,
zeroes of “real” polynomials come in conjugate pairs].

6. Verify that |z2| = |z|2 using rectangular coordinates and then using polar coordinates.

1
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7. Show
a. |zn | = |z|n .
b. |z|2 = zz̄.
c. |Re z|, |Im z| ≤ |z| ≤ |Re z| + |Im z|.

(When is equality possible?)

8. a. Fill in the details of the following proof of the triangle inequality:

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= |z1|2 + |z2|2 + z1z2 + z1z2

= |z1|2 + |z2|2 + 2 Re(z1z2)

≤ |z1|2 + |z2|2 + 2|z1||z2|
= (|z1| + |z2|)2.

b. When can equality occur?
c. Show: |z1 − z2| ≥ |z1| − |z2|.

9.* It is an interesting fact that a product of two sums of squares is itself a sum of squares. For example,

(12 + 22)(32 + 42) = 125 = 52 + 102 = 22 + 112.

a. Prove the result using complex algebra. That is, show that for any two pairs of integers {a, b} and
{c, d}, we can find integers u, v with

(a2 + b2)(c2 + d2) = u2 + v2

b. Show that, if a, b, c, d are all nonzero and at least one of the sets {a2, b2} and {c2, d2} consists
of distinct positive integers, then we can find u2, v2 as above with u2 and v2 both nonzero.

c. Show that, if a, b, c, d are all nonzero and both of the sets {a2, b2} and {c2, d2} consist of distinct
positive integers, then there are two different sets {u2, v2} and {s2, t2} with

(a2 + b2)(c2 + d2) = u2 + v2 = s2 + t2.

d. Give a geometric interpretation and proof of the results in b) and c), above.

10.* Prove: |z1 + z2|2+ |z1 − z2|2 = 2(|z1|2 + |z2|2) and interpret the result geometrically.

11. Let z = x + iy. Explain the connection between Arg z and tan−1(y/x). (Warning: they are not
identical.)

12. Solve the following equations in polar form and locate the roots in the complex plane:
a. z6 = 1.
b. z4 = −1.
c. z4 = −1 + √

3i .

13. Show that the n-th roots of 1 (aside from 1) satisfy the “cyclotomic” equation zn−1 + zn−2 + · · · +
z + 1 = 0. [Hint: Use the identity zn − 1 = (z − 1)(zn−1 + zn−2 + · · · + 1).]

14. Suppose we consider the n − 1 diagonals of a regular n-gon inscribed in a unit circle obtained by
connecting one vertex with all the others. Show that the product of their lengths is n. [Hint: Let the
vertices all be connected to 1 and apply the previous exercise.]
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15. Describe the sets whose points satisfy the following relations. Which of the sets are regions?

a. |z − i| ≤ 1. b.

∣∣∣∣ z − 1

z + 1

∣∣∣∣ = 1.

c. |z − 2| > |z − 3|. d. |z| < 1 and Im z > 0.

e.
1

z
= z̄. f. |z|2 = Im z.

g. |z2 − 1| < 1. [Hint: Use polar coordinates.]

16.* Identify the set of points which satisfy
a. |z| = Rez + 1 b. |z − 1| + |z + 1| = 4 c. zn−1 = z

17. Let Arg w denote that value of the argument between −π and π (inclusive). Show that

Arg

(
z − 1

z + 1

)
=

{
π/2 if Im z > 0

−π/2 if Im z < 0

where z is a point on the unit circle |z| = 1.

18.* Find the three roots of x3 − 6x = 4 by finding the three real-valued possibilities for 3√2 + 2i +
3√2 − 2i .

19.* Prove that x3 + px = q has three real roots if and only if 4p3 < −27q2. (Hint: Find the local
minimum and local maximum values of x3 + px − q.)

20.* a. Let P(z) = 1 + 2z + 3z2 + · · · + nzn−1. By considering (1 − z)P(z), show that all the zeroes
of P(z) are inside the unit disc.

b. Show that the same conclusion applies to any polynomial of the form: a0 +a1z+a2z2+···+an zn,

with all ai real and 0 ≤ a0 ≤ a1 ≤ · · · ≤ an

21. Show that

a. f (z) = ∑∞
k=0 kzk is continuous in |z| < 1.

b. g(z) = ∑∞
k=1 1/(k2 + z) is continuous in the right half-plane Re z > 0.

22. Prove that a polygonally connected set is connected.

23. Let

S =
{

x + iy : x = 0 or x > 0, y = sin
1

x

}
.

Show that S is connected, even though there are points in S that cannot be connected by any curve
in S.

24. Let S = {(ξ, η, ζ ) ∈ ∑
: ζ ≥ ζ0}, where 0 < ζ0 < 1 and let T be the corresponding set in C. Show

that T is the exterior of a circle centered at 0.

25. Suppose T ⊂ C. Show that the corresponding set S ⊂ ∑
is

a. a circle if T is a circle.
b. a circle minus (0, 0, 1) if T is a line.

26. Let P be a nonconstant polynomial in z. Show that P(z) → ∞ as z → ∞.

27. Suppose that z is the stereographic projection of (ξ, η, ζ ) and 1/z is the projection of (ξ ′, η′, ζ ′).
a. Show that (ξ ′, η′, ζ ′) = (ξ,−η, 1 − ζ ).
b. Show that the function 1/z, z ∈ C, is represented on

∑
by a 180◦ rotation about the diameter

with endpoints (− 1
2 , 0, 1

2 ) and ( 1
2 , 0, 1

2 ).

28. Use exercise (27) to show that f (z) = 1/z maps circles and lines in C onto other circles and lines.

, where n is an integer.
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