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Preface

This book is intended to provide an overview of the processes that occur in atomiza-
tion and spray systems. It covers both the classical, theoretical concepts of atomiza-
tion and more recent developments. The book is organized into four parts. Part I deals
with the basic elements of a liquid that form a spray. These are liquid jets, sheets, and
drops. Part II deals with theories of atomization and sprays. Part III discusses spray
nozzles and their behavior. Part IV concludes with spray applications.

The atomization process is very complex, involving highly turbulent and convo-
luted interfaces as well as breakup and coalescence of liquid masses. However, the
models currently used to describe the atomization process are based on simple
laminar instability theories. In many spray nozzles, a liquid is forced through an
orifice. These types of nozzles form a liquid jet at low injection pressures. Therefore,
the instability theory of liquid jets is used as a first estimate of the droplets that may
be formed by these nozzles. In many other spray nozzles, a liquid sheet is formed
prior to atomization. Therefore, the instability theory of a liquid sheet is used for
these prefilming nozzles. Part I introduces the instability theories for these two
configurations. Linear and nonlinear instabilities of a free liquid jet moving in air
and subject to small perturbations are discussed in Chap. 1. These theories intend to
provide the growth rate of a disturbance wave. The growth rate of the fastest
growing disturbance is later used in the atomization theories to obtain a droplet
size due to the breakup of a jet. Therefore, the linear theories provide an estimate of
the main droplet size emerging from capillary breakup. Formation of satellite
droplets and other effects such as thermocapillarity or swirl are also discussed in
this chapter. Chapter 2 is devoted to jet bending and Chap. 3 discusses the linear and
nonlinear instability theories for a liquid sheet. Instability of a liquid sheet results in
the formation of cylindrical liquid ligaments, which have the same fate as liquid jets.
Therefore, liquid sheets and liquid jets in combination are used to describe the
atomization process in nozzles that form a film or sheet prior to atomization
(prefilming atomizers). The spray itself is made of millions of droplets that flow
inside a gas. The interaction of a liquid drop with a coflowing gas, including
oscillation, deformation, and breakup, is discussed in Chaps. 4—6. Drops may also
collide with each other (Chap. 7) or with the walls of the system (Chap. 8).
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Part II utilizes the basic instability theories discussed in Part I to develop models
for the atomization and spray systems. Chapters 9—11provide the current atomiza-
tion theories used in spray systems to predict a droplet size. The most commonly
used atomization models, namely, the Taylor analogy breakup (TAB) model,
the enhanced-TAB (E-TAB) model, and the WAVE model, and variations and
improvements of these models are discussed in Chap. 9; the concept of flash
atomization and supercritical injection are introduced in Chaps. 10 and 11, respec-
tively. Chapters 12—16 introduce spray theories dealing with spray evaporation,
combustion, and freezing. Spray evaporation is modeled based on evaporation of
individual droplets, which is discussed in Chap. 12, by means of the conservation
equations for mass, species, and energy of the liquid and gas phases. The results of
single droplet evaporation are simplified and used for heat and mass transfer for
forced and non-forced convection through Nusselt and Sherwood numbers. React-
ing sprays are discussed in Chap. 13, introducing chemical kinetics, ignition
processes, and mixing-controlled, flamelet, and PDF combustion models. A brief
discussion on the pollutant and particulate models is provided in this chapter as
well. Some other important spray issues such as spray group combustion and sprays
in non-continuum regimes are also discussed in Part II. Flame propagation modes
between neighboring droplets and macroscopic flame propagation modes in spray
elements, and the excitation mechanism of group combustion (diffusion flame
enclosing droplets) is described in Chap. 14. The evaporation process is altered
significantly at low pressures. This is discussed in Chap. 15 for flows in which the
mean free path of the evaporated molecules is large compared with the droplet
radius. This chapter discusses the kinetic theory of gases as applied to molecules
having the Maxwell-Boltzmann distribution of molecular velocities. The concept
of the Knudsen regime is introduced to develop a transport equation for the
molecules at the droplet interface. Droplet freezing and solidification is considered
in Chap. 16 with emphasis on a four-stage model for solidification. Because of the
recent enhancement in computational capabilities, direct numerical modeling of the
atomization process has become more feasible. The models used for tracking
deforming and breaking interfaces to simulate the atomization process are dis-
cussed in Chaps. 17 and 18. The spray models that track droplets are introduced in
Chaps. 19 and 20. The turbulence models used in spray modeling, including
Reynolds-averaged Navier—Stokes (RANS) and large eddy simulation (LES) mod-
eling, are introduced in Chap. 19; the non-continuum-based computational techni-
ques, for example, the lattice Boltzmann method (LBM), are introduced in Chap.
20. Chapters 21 and 22 introduce special topics of spray wall impact and spray-
spray impingements and interaction. Chapter 22, in particular, addresses questions
like, “is the use of multiple sprays more effective than the use of a single spray, or is
it possibly detrimental? And, if the latter is true, can the situation be ameliorated by
manipulation of the physics through geometric and other factors that relate to the
sprays?”’

The main objective of atomization and spray systems is to generate a spray with
a desired droplet size and velocity distribution. Part III deals directly with spray
nozzles. This part starts with Chap. 23, which discusses the concept of droplet size
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distribution. Chapter 24 provides an overview of various spray nozzles and their
droplet size distributions. A series of size correlations are included at the end of
Chap. 24 for ease of use. Various correlations are compiled from different sources.
Chapters 25-33 provide more detailed discussions on different types of nozzles.
In particular, plain orifice atomizers, pintle injectors, jet-in-crossflow atomizers,
impinging jet atomizers, splash plate nozzles, electrosprays, and several other
atomizers are discussed in Part III.

Part IV is devoted to spray applications. This part is by no means exhaustive of
all applications and is kept limited to applications in various engines, melt atomi-
zation, and several other specific applications. In engine applications, port fuel
injection (PFI), throttle-body injection (TBI), direct injection (DI), and diesel
injection are discussed in Chap. 34. For gas turbine engines, the modeling meth-
odologies, including LES, of reacting flows in realistic combustor configurations
are discussed in Chap. 35. Another spray application extensively discussed in this
book is melt atomization and powder generation. Melt atomization, which is the
dominant method used commercially to produce metal and alloy powders, is
considered in Chap. 36. Mechanisms of melt breakup and atomization, powder
morphology, droplet dynamics, and so on are considered. In addition, fundamentals
of spray drying, spray pyrolysis, spray freeze drying, low pressure spray pyrolysis,
flame spray pyrolysis, and emulsion combustion method are described in Chaps.
37-40. Sprays have an important application in drug delivery to the lungs. Chapter
41 discusses the pharmaceutical aerosol sprays. The book is closed with fire
sprinklers discussed in Chap. 42.

N. Ashgriz
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Part I
Dynamics of Liquid Jets, Sheets and Drops



Chapter 1
Capillary Instability of Free Liquid Jets

N. Ashgriz and A.L. Yarin

Abstract This chapter deals with capillary instability of straight free liquid jets
moving in air. It begins with linear stability theory for small perturbations of
Newtonian liquid jets and discusses the unstable modes, characteristic growth
rates, temporal and spatial instabilities and their underlying physical mechanisms.
The linear theory also provides an estimate of the main droplet size emerging
from capillary breakup. Formation of satellite modes is treated in the framework
of either asymptotic methods or direct numerical simulations. Then, such addi-
tional effects like thermocapillarity, or swirl are taken into account. In addition,
quasi-one-dimensional approach for description of capillary breakup is introduced
and illustrated in detail for Newtonian and rheologically complex liquid jets
(pseudoplastic, dilatant, and viscoelastic polymeric liquids).

Keywords Capillary instability of liquid jets - Curvature - Elongational rheology -
Free liquid jets - Linear stability theory - Nonlinear theory - Quasi-one-dimensional
equations - Reynolds number - Rheologically complex liquids (pseudoplastic,
dilatant, and viscoelastic polymeric liquids) - Satellite drops - Small perturbations
- Spatial instability - Surface tension - Swirl - Temporal instability - Thermocapil-
larity - Viscosity

Introduction

A liquid jet emanating from a nozzle into an ambient gas may breakup into small
drops when it is subjected to even minute disturbances. These disturbances may be
in the form of surface displacement, pressure or velocity fluctuations in the supply
system or on the jet surface, as well as fluctuations in liquid properties such as
temperature, viscosity, or surface tension coefficient. The instability and breakup of

N. Ashgriz (<)

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada,
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4 N. Ashgriz and A.L. Yarin

liquid jets into drops has been a subject of interest since the early nineteenth century
and has continued to this date [1-20].

In order to characterize the instability of a capillary jet, a harmonic disturbance
is imposed on the jet and its growth rate and other jet characteristics, such as jet
breakup length and satellite formation, are investigated. Different types of distur-
bances, such as pressure, surface, inlet velocity and temperature disturbances have
been used. Pressure disturbances can be due to application of a sound wave on the
jet. Surface disturbances can be in the form of using a piezoelectric transducer at the
nozzle which contracts and expands periodically by applying a periodic voltage on
it. Velocity disturbances can be applied by using an oscillating flow. Temperature
disturbances can be introduced by applying a periodic heating on a jet. Temperature
changes the liquid surface tension, which affects the capillary action on the jet.
Disturbances introduced by adding surfactants to the liquid jet affect it similarly to
temperature.

Studies of capillary instability have revealed that a liquid jet is unstable for axial
disturbances with wave numbers less than a cut-off wave number k., but stable
otherwise. For each wavelength of an unstable disturbance one main drop and one
or more usually smaller drop(s), referred to as the satellite or spherous drop(s), are
formed. Figure 1.1 shows images of a liquid jet becoming unstable when it is
subject to small perturbation. It is possible to disturb the jet such that the satellite
drops are not formed. Figure 1.2 shows one such breakup.

The classical study of the capillary instability of liquid jets was published in the
seminal works of Lord Rayleigh [4, 5]. With the assumption of an inviscid liquid, he
obtained an equation for the growth rate of a given axisymmetric surface disturbance
by equating the potential and kinetic energies computed for the flow. Further, with
the hypothesis that the disturbance with the maximum growth rate would lead to the
breakup of the jet, he obtained an expression for the resulting droplet size assuming
that it would be of the order of the wavelength of this disturbance. Later Weber [10]

Fig. 1.1 Instability of a water jet with diameter of 0.27 mm and velocity of 3.3 m/s subject to a
long wavelength periodic disturbance with wavelength to diameter ratio of 11.3 showing forma-
tion of satellite droplets [21, Fig. 16] (Courtesy of the Royal Society)

Fig. 1.2 Uniform breakup of a water jet with diameter of 0.27 mm and velocity of 2.9 m/s subject
to disturbance wavelength to diameter ratio of 4.6 [21, Fig. 5] (Courtesy of the Royal Society)
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included the effect of viscosity in his analysis of the jet breakup based on the three-
dimensional partial differential equations of hydrodynamics of Newtonian viscous
liquids. He found that the effect of the liquid viscosity is to shift the fastest growing
waves to longer wavelengths and to slow down their growth rate, without, however,
altering the value of the cut-off wave number.

Theoretical investigations of capillary instability of free liquid jets have been
mainly through either perturbation-type analysis or quasi-one-dimensional models.
These studies can be divided into two major categories, namely temporal and spatial
analysis. In the temporal analysis, an infinite jet, stationary relative to a moving
observer is considered and the growth rates of the disturbance amplitudes at all
jet cross-sections are determined (standing perturbation waves). In the temporal
analysis the imposed perturbations can be oscillatory or exponential in time. In the
spatial analysis a semi-infinite jet (e.g., a jet issuing from a nozzle) is considered and
the imposed perturbations propagating along the jet may be periodic in time and
oscillatory or exponential in space. In the spatial analysis, the growth rate of the
disturbance amplitude along a semi-infinite jet is considered with the nozzle condi-
tions fixed. Linear and nonlinear perturbation analysis or numerical methods are also
used in each category. Reviews of the theoretical analysis of jet instability are
provided by Bogy [14] and more recently by Sirignano and Mehring [20]. This chapter
provides an overview of mainly temporal capillary instability of straight liquid jets.

Basic Equations

Consider a fluid domain consisting of a liquid/gas interface. The Navier—Stokes
equations (1.1) and the continuing equations (1.2) for an incompressible Newtonian
flow describing such a system can be written as:

V-u;=0 (1.1)

Du; Ow; VP; 2 F
— e =" AV P — 1.2
; t+u Vu i +v u+g+p (1.2)

where u; is the velocity vector, P; is the pressure, v; = p;/p; is the kinematic
viscosity, u; is the coefficient of dynamics viscosity, p; is the density, g is the
gravitational acceleration vector, and F is the body force. The subscript i may stand
for the liquid (/) and its surrounding gas (g).

In the problems with free surfaces and interfaces, two different boundary condi-
tions are implemented at the interface. One is the stress balance and the other is the
kinematic condition. The stress balance at the interface between the liquid and its
surrounding fluid is one of the main factors in the evolution of the liquid surface shape.
This stress is governed by both the surface tension forces and the viscous forces.

(pr—pg+ox)n=(1,—7,)-n (1.3)
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where 7; is the stress tensor, n is the normal unit vector at the interface, ¢ is the
surface tension coefficient, and k is the mean interface curvature:

K=V-n=—+— (1.4)

where R, and R, are the principal radii of curvature of the interface. For instance,
for an axisymmetric jet with instantaneous radius R, the curvature along its axis, x,
is written as:

L1 1 Ry 0s)
K=—+—= - :
Ri Ry \R(1+R)'? (14+R2?

where the subscript x indicates the derivative with respect to x. The kinematic
boundary condition implies that fluid does not cross the free-surface, and therefore,
the velocity component normal to the interface is continuous across the interface:

W-n=u.-n (1.6)

Other boundary conditions depend on the particular problem. For instance, for
the instability of an axisymmetric jet, the axisymmetric condition on the axis of the
jet is applied.

Once the above equations are nondimensionalized using a length scale (e.g.,
nozzle or unperturbed jet radius, a), and a velocity scale (e.g., mean jet velocity, U),
the following nondimensional numbers appear:

U,
Re; = ’)’T“ (1.7)
2
We, = PiUia (1.8)
g

which are the Reynolds and the Weber numbers of the flow, respectively.
Reynolds and Weber numbers can be described for the liquid phase, using liquid
properties and liquid velocity, or for the gas phase, using the gas properties and
gas velocity. The Reynolds number represents the ratio of the inertia to viscous
forces, whereas the Weber number represents the ratio of the inertia to surface
tension forces. Combining these two numbers to eliminate the velocity, results in
Ohnesorge number:

(1.9)



1 Capillary Instability of Free Liquid Jets 7

Ohnesorge number represents fluid properties. Low Oh (v/Z) numbers represent
either a low viscous or a high surface tension fluid. When the gravitational effects
are important, the ratio of the gravitational forces to surface tension forces is
represented by the Bond number defined as:

_pgd’
o

Bo (1.10)

Other important parameters are the density and viscosity ratio of the two fluids:

- (1.11)
P

=t (1.12)
17

Interface Wave Characteristics

Prior to the analysis of instability of a liquid interface, a discussion on the char-
acteristics of surface waves is provided. When a liquid/gas interface is deformed,
as shown in Fig. 1.3, the surface tension forces may tend to bring it back to its
equilibrium shape. The equilibrium shape of the interface is defined based on all the
forces that may act on it, including the gravitational and pressure forces. On a flat
interface, as the disturbed interface tends to move to its equilibrium shape, a wave
like propagation appears. If the forces that are acting on the disturbed interface are
the surface tension or the capillary forces, the waves are referred to as the capillary
waves. The waves on the surfaces of large liquid masses may be under the influence
of the gravity forces. Therefore, they are referred to as the gravity waves.
Consider a wave with wavelength /, frequency @, and a wave amplitude of (.
Also, let us consider a characteristic velocity of U for the liquid. The characteristic
fluid velocity due to the motion of the interface can be estimated based on the
amplitude of the disturbance and its characteristic time or u ~ {@. Therefore, the
second derivative of velocity with respect to space, or the Laplacian of the velocity
is estimated according to Viu~U / /12, and, the time derivative of the velocity
according to du/dt ~ Uc. The order of the magnitude of the convective term can

Fig. 1.3 Schematic of an unstable jet
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also be written as (uV)u ~ U2/ ~ (*@?/4. The above terms can be used to
determine the conditions under which the viscous terms can be neglected.
One condition is that the first term in (1.2) is larger than the viscous terms:
Ou/0t >> vV*u. Therefore, in order to be able to neglect the viscous terms we
should have Coiz/v >> 1. This indicates that viscosity may be ignored for
long waves. Based on the order of magnitude of the terms provided, the
Reynolds number for the flow based on the wavelength can be written as
Re = UlJv ~ {J@®/v. For low Reynolds numbers: {2*®//v << 1. For the last
two conditions be simultaneously true, it requires {/1<<1, i.e., the wave amplitude
must be much smaller than the wavelength. The convective terms are small
in comparison with the transient term, du/dt, if Ud >> (*@? /4 or (/) << 1.
Therefore, if the wave amplitude is small with respect to wavelength, the nonlinear
terms may be neglected.

Temporal Linear Capillary Instability of Inviscid Liquid Jets

In the analysis of a liquid jet, equations (1.1) and (1.2) are written in the cylindrical
coordinates with w; = (u;,v;,w;), being the velocities in the axial, x, radial, r, and
azimuthal, 6, directions, respectively. The continuity equations is:

ou; 0Ov; v l%

8x+5+7+r 6920 (1.13)

and the Navier—Stokes equations are given by
814,- + 8ui + wi 814,‘ + E)u,- 8P
|\ =+vi—F——tu— | =——%
Pi\or T or T 00 T ax ) T o

621/{,' 1 814,‘ 1 8214,' 8214,-
+,u,-<ar2 +;E+I’_2W+ 8x2>+FX (1.14)

) (8\/,- v w; Ov; v w,~2> 0P

a et t e T )T T

+ 821;1- l%_ﬁ+i@+82v,_z(9w, +F (1 15)
M\ar " rar 2T 0> ot 1 90 " ’
ow; o ow;  viw; Wi ow; n u% B _l OP;
Plar "ar T T a0 T ax ) T T r a0
82W1 1 aW,' Wi 1 82w,- 82w,- 2 8v,~
A S Wi oW A 1.16
+“’(ar2 ror oo 9e? Toe T 80) o (1.16)
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Assuming an inactive surrounding gas, the gas effects can be neglected. The
governing equations are then linearized using small perturbation in the velocity,
pressure and radius of the jet: u=u+u', v=v+VvV,p=p+p,and R =a+ ¢,
where a is the unperturbed radius and { is the small surface perturbation. Also,
the axial velocity of the jet can be eliminated by a Galilean transformation,
therefore, the system can be considered to be a stationary liquid column in inactive
environment.

A simple solution for the jet instability is that of an inviscid stationary jet
(& = v = 0) subject to an axisymmetric disturbance (no perturbation in 0 direction).
For this problem, the linearized equations are:

ou’ 1 0p'

= -7 1.17
ot p Ox (1.17)
o' 1 0p'

—_— = 1.18
ot p Or (1.18)

1or  ou

and after defining a potential function and integrating the momentum equation, the
following relation is found:

p = —p?+cm (1.20)

where ¢ is the potential function defined as v = d¢/0r, ' = d¢p/0x, ox is the
constant of integration, derived from the stationary jet. Furthermore, from the
continuity equation, ¢ must be a solution to the Laplacian of potential function,
V2¢ = 0, where the Laplacian operator is in the cylindrical coordinates.

Assuming a periodic disturbance to the radius along the x-axis, we seek a
solution of the form:

¢ = O(r) exp(ikx + wt) (1.21)

where k = 27/ is a real positive wave number, with 1 being the wavelength, and
is the growth rate of the disturbance. Axisymmetric disturbances result in a so-
called dilatational or varicose waviness of the jet. After substitution in the continu-
ity equation we get:

®
1d (r‘i_> _Ro—0 (1.22)
:

This is a Bessel equation, and its solution consists of the modified Bessel
functions /o and Ky of the first kind: 1,,(kr) = (—i)"J,(ikr). Since K is unbounded
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at r = 0, it is eliminated, and the solution of (1.22) becomes: ® = Aly(kr). The
pressure and the velocity components are then found as:

p' = —Apwly(kr) exp(ikx + wt) + oK (1.23)
V' = Ak, (kr) exp(ikx + wt) (1.24)
u' = Aikly(kr) exp(ikx + wt) (1.25)

Rayleigh [5] used a periodic perturbation in both axial and angular direction of
the following form: R = a + {,,, cos kx cos m0; here, m = 1 is termed kink mode and
m > 2 are termed flute modes. However, he showed that the linear instability
analysis provides that the jet is stable for all angular disturbances, and it is only
the axial disturbances that may be unstable. This is related to the fact that only the
axisymmetric perturbations can reduce the surface energy. Therefore, we only
consider the axial disturbances.

The amplitude of perturbation, , is related to the radial velocity of the surface by
v/ = 9(/0r at r = a. Therefore, { can be determined from (1.24):

(A Sh (ka) exp(ikx + oor) (126)

The axisymmetric flow conditions (along the axis of the jet) provide:
/

y=0 and 8_v:0 at r =0. (1.27)
or

The pressure boundary condition is the Young—Laplace equation (1.3) and (1.4),
which for an axisymmetric jet can be written as:

1 1
1 7Cvx
= 1.29
R +)” "

where subscript x represents the derivative with respect to x ({,, = 9°{/0x*). Note
that normal to the axis, the cross-section is circular with the instantaneous radius of
a + {. The above equations can be simplified in the linear approximation for small
perturbations and using Taylor series expansion, to:

111 1={fa
R a+( a(1+/a)  a (1.30)
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and

1
R_2: —Ce (1.31)

Therefore, the pressure at the jet surface can be determined from:

ag g

_ 2 _ 2
pP= a 112 (C +a gxx) (132)

This equation is only valid for small-amplitude disturbances, when the approxi-
mation {/a <<1 holds. When this expression for p is equated to (1.23) at r = a and
simplified in the linear approximation, the amplitude, A, disappears, and we are left
with a characteristic relationship between the growth rate and the wave number
determining the perturbation spectrum. Solving for the growth rate, we have:

(1.33)

where o = w, + iw;, with o, being the growth rate, i = v/—1, and w; being the
oscillation frequency.

If the real part of the growth rate is positive, the disturbances grow exponentially in
time. The ratio of the modified Bessel functions is positive for all conditions (/;/ly > 0).
This means that w is real positive as long as ka < 1. This leads to the conclusion that
any periodic disturbance to the jet which has a wave number that satisfies 0 < ka < 1
will make the jet unstable. The growth rate of such an instability will be at the rate
described in (1.33). Since the wave number is k = 27/A, a jet is unstable for
A>2na. In other words, any disturbance with a wavelength larger than the diameter
of the jet, makes the jet unstable. Note also that perturbations with ka > 1 may result
in stable surface oscillations. Since the whole perturbation spectrum is always
present in the jet, the fastest growing perturbations always dominate the jet evolu-
tion. A plot of the nondimensional growth rate versus the wave number is shown in
Fig. 1.4 [18] which compares the growth rates with experimental data, showing
good agreement. The maximum growth rate occurs at ka = 0.697.

The mechanism of capillary instability can be understood from the expression of
(1.33). The first term in the second parentheses, 1, comes from the jet cross-
sectional curvature R; (radius). The second term — k%a?® comes from the jet axial
curvature R,. They are of opposite sign. The former represents the capillary
pinching in the radial direction; the latter is due to the curvature associated with
the other principle direction and represents the capillary force that opposes the
capillary pinching. For long waves with ka < 1, the capillary pinching dominates
over the restoring capillary force. For shorter waves with ka > 1, the restoring force
becomes sufficiently large to overcome the capillary pinching. Perturbations grow
only for those (long) wavelengths which decrease the surface energy.
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Fig. 1.4 Nondimensional growth rate of capillary axisymmetric perturbations for an inviscid jet
in terms of the wave number [18, Fig. 7]. The symbols represent the experimentally measured
growth rates for low viscosity jets (Courtesy of Cambridge University Press)

For ka <<1, I(ka)/Iy(ka) ~ ka/2. Then, (1.33) reduces to o? ~ (¢/2pa’(ka)*
[1-— (ka)z], which provides a maximum value for the growth rate as:

(2 /[ O
Wmax = 0.34 W =0.97 W (134)

atka=1/ V2 = 0.707. This is very close to the fastest growing mode predicted by
the exact equation (1.33), which is ka = 0.697. Rayleigh argued that for a naturally
breaking jet, the most unstable wave causes the jet breakup. Therefore, the size of
the droplet can be estimated based on the wavelength of the most unstable wave of
Amax = 9.016a. If the linear approximation is assumed to be valid until the very
breakup, jets break when the amplitude of the disturbance reaches the jet radius, and
a droplet is formed by each wavelength of the disturbance. Therefore, the main
droplet diameter, d, can be estimated by the volume of the liquid within a wave-
length: & = 6/1maxa2 ~ 54a® or d ~ 3.78a = 1.89D, where D is the jet cross-
sectional diameter (which is usually assumed to be equal to the orifice diameter).

Jet breakup time and length can be estimated based on the maximum growth rate.
Hence, according to (1.33) we expect to see uniformly spaced drops defined by:
L/2na =1/0.69 or L = 9.016a = 4.55D, where L is the drop spacing. Based on the
assumption that disturbance corresponds to wp,.x, the radius perturbation is expected
to grow as: { = {yexp(wmax?), Where {j is the initial perturbation amplitude. There-
fore, the time taken to break up a jet, f,,, corresponds to { = a and is equal to:

t, :wl. In (%) - (wc ) (1.35)

where C = In(a/{y). The breakup length of the jet, L,, can be calculated based on a
constant jet velocity, UL, = t,, and therefore, the breakup length can be written as:




1 Capillary Instability of Free Liquid Jets 13

L
5” = 1.04CV/We (1.36)

Grant and Middleman [22] reported that (1.36) correlated experimental data for
capillary breakup of low viscosity liquid jets when a value of C = 13 was selected.
It is instructive to use this value of C to evaluate the initial perturbation amplitude
{o- Taking for the estimate the unperturbed cross-sectional radius ¢ = 1 mm, one
can find {y = 1072 exp(—13) = 2.26 x 10~ m = 2.26 nm. How plausible such
estimates are for liquid jets whose profile is visibly perturbed at the nozzle exit,
remains an open question.

Linear Capillary Instability of Viscous Jets

Weber [10] and Chandrasekhar [23] extended Rayleigh’s inviscid theory to that of a
jet with a kinematic viscosity, v=p/p. The axisymmetric solutions for the velocity
components of the jet is written as the sum of the inviscid and viscous solutions as
u=u’+u’ and v =1° + ", where superscripts 0 represent the inviscid solution
and superscripts v represent the viscous contribution. Substituting these into the
components of the momentum balance equations, a pair of partial differential
equations for the two velocity components are obtained. A stream function Vs is
then introduced and pressure is eliminated from both equations. Again a solution of
the following form, = \(r) exp(ikx + wt) inevitably exists for an infinite jet
(a liquid column). The stream function amplitude is given by the Bessel function
W(r) = Aprly (Ir), where

P2 Ek2+% (1.37)

The constants are determined from the boundary conditions. The kinematic
boundary condition is similar to the inviscid case, (v = 0{/0t at r = a), whereas
the dynamic boundary conditions change. Namely, the linearized shear stress at the
jet surface is set equal to zero, 1,, = u(Ou/0r 4+ 0v/0x) = 0 at r = a, whereas
the linearized condition for the normal stress reads (7, + p) = o(1/R; + 1/R;) at
r = a. Again, 1/Ry = (1 —{/a)/a for a perturbed circular cross-section, and
1/Ry ~ —{,. As a result, the following characteristic equation for the perturbation
spectrum is obtained:

2vk? 2kl 1
PRI <I'1(ka) k l(ka)l’l(la)>w

Io(ka) R+ P ()
ak I, (ka) I> — k*

= (1 -k 1.38
pa? ( “ )lo(ka) P+ k2 (1.38)
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For ka << 1 (long waves) the above equation is approximated by:

3u(k?) O

; - w(l — Kad®)kPd*> =0 (1.39)

o +

which shows that the jet is unstable for disturbances with ka < 1. The maximum
value of w is found to be [10, 19]:

1

3\/2 -
Ormax = [(8’) a ) +6ﬂ] (1.40)

g g

corresponding to the most dominant wavelength of

3u 4n?
)2 =8r%d?( 1 = 1.41
m =IO pae) T P (14D

Figure 1.5 shows the growth rate of the capillary instability for different
liquid viscosities. Viscosity dampens the instability with a damping coefficient
of 3uk*/p and shifts the fastest growing perturbations toward longer waves. For
1 = 0, Rayleigh solution is obtained, whereas for very viscous jets with
(Buk?/2p)’ > 0 /2pa®, w = (¢/6ua)(1 — k*a*). The breakup length for a vis-
cous jet is found as:

0.4 T T T T T T T T T
035+  ——0h=0.001 (water) PP SRR ]
-==0Dh=0.01 /,’ \\
0al On=01 ‘ I\ |
- -—-0Oh =1 N
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" \
(=) o X \
o - h\
s 02f .
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'/ "'h-_h
4 T
005+ S
‘\.\_
0 1 1 I I 1 1 1 1 I \I\
0 01 02 03 04 05 086 07 08 09 1
ka

Fig. 1.5 Growth rate of small capillary perturbations of viscous jets instability in terms of the
wave number
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L 3
5” = C<We1/2 + I?f) = CWe'?(1 4+ 30h) (1.42)

Linear Capillary Instability of a Jet Affected
by Aerodynamic Effects

Uniform Jet Velocity Profile

Rayleigh’s instability analysis ignores the effect of surrounding gases. The
surrounding gas effects become important at high jet-gas relative velocities
and cannot be ignored. Weber [10] considered the capillary instability of a
liquid jet with a coaxial inviscid gas stream. Later, Sterling and Sleicher [24]
modified Weber’s analysis and included an empirical coefficient to match the
experimental data. Their dispersion equation that takes into account the aerodynamic
effects is:

(1510( ) Ko )>co2 . (21_? UKo (k) N ke [ZEIO(E)

21y (k) 2K, (k) " 2aK\ (k) pat | (k)
_2 —
L _22k _z(kl k) _ - 10 kl )D (1.43)
& -\ (k)
o o 2\ 2 Uzk K()(k)
" 20,83 (1 -k )k T K

where k = ka, ki* = k? + wa’p;/u, and & = p,/p,, with p; and p, being the liquid
and gas density, respectively, and U is a constant and uniform jet-gas relative velocity.
In the absence of a gas phase and viscosity (i.e., ¢ = u = 0), (1.43) reduces to
Rayleigh’s result. For an inviscid liquid in a gaseous surrounding, (1.43) can be

written as follows:
o _ DN
<k10() +skK0(k))w2 + e Uk Kogk) o
21, (k) 2K (k) ak (k)

(/2122 Ko (k)
‘22 Kb

o

(1—k)k>+ (1.44)

- 2p,a°

When k = ka < 1(for longwave perturbations), (1.43) can be reduced to:
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3uk’ o (17152)%2 Uk® Ko(k)

2  — =
@t p,a* @= 2p,a3 ‘2 K, (k)

(1.45)

Effect of Velocity Profile on Capillary Breakup

The previously noted analyses did not consider the effect of the velocity profile on
capillary breakup. Reitz-Bracco [25] relaxed this assumption, and considered a
liquid jet in a gas with a velocity profile in the radial direction. They obtained the
following general characteristic equation:
2kl
* + 2vk*w < (7) Ik

1y (k ))

INGERSESFAGRAG!
o _ — 1 oY, (1F— K\ 1 (k) Ko(k)
:pz—cl; (1 _kz) (12 +k2> I %; +8<U_7) S <§2+22> IOE%; ?(i’)

(1.46)

where lim,_o((> — k*)/(P + k%)) =1

In the absence of viscosity and the gas phase (i.e., v = 0, ¢ = 0), (1.46) becomes
the same as the Rayleigh’s result. And for an inviscid case including surrounding
gas effects, (1.46) reduces to [26]:

kI,(k)  kKo(k) UK, (k) o 4 UK Ko(k)
(51?(_k)+821<1(k))w2+ (’8 K, (k) ) =200 (1-#)F + 5, K. (k)
(1.47)

In the limit of short wavelength perturbations, k — oo, and for P1 > Py the
following relation, which is similar to the Kelvin—Helmbholtz instability condition
[27, 28] is obtained:

3
w? = Uk — % (1.48)
]

Quasi-One-Dimensional Approximation to the Jet Equations
in the Case of Capillary Breakup

The linear stability theory is exceptional in the sense that it can be fully based on
the three-dimensional equations of fluid dynamics. All the additional effects lead to
either direct numerical simulations or the asymptotic approximations. One of the
most natural ways of the asymptotic description of the dynamics of jets is the
quasi-one-dimensional approach. In the quasi-one-dimensional approximation,
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a jet is considered as a “directed” continuum, i.e., a long linear object with no
lateral dimension, which is characterized by a number of such integral parameters
as the cross-sectional radius, flow rate, etc. distributed along the jet axis. This
approach is kindred to the hydraulic theory of flows in long pipes (especially, in
pipes with flexible elastic walls), and its natural range of validity is linked to flows
slowly varying along the jet axis. The relations between three-dimensional fluid
mechanics and its quasi-one-dimensional approximation are also similar to those
between the theory of elasticity and the theory of bar bending, or between realism
and surrealism in art. It is always beneficial to sacrifice the excessive details, and to
build on a simplified vision of a peculiar object (in the present case, an elongated
thin jet with no significant tractions at the free surface). That is the way to achieve
the simplest, physically relevant understanding and description of such an object.

The quasi-one-dimensional approximation was initially introduced in the theory of
capillary jet breakup. The mass and longitudinal momentum balance under the assump-
tion of plug velocity and stress profiles in jet cross-sections reads according to Yarin [29]

of ouf .
TR P 0, f=nmnR (1.49)
ou oU\  Otnf 0 2nRo
pf(EJrUa) == o (1+R%)1/21 (1.50)

In (1.49) and (1.50), ¢ is time, x is the longitudinal coordinate reckoned along the
jet axis, f is the cross-sectional area (R is the cross-sectional radius), U and t,, are
the longitudinal velocity and normal stress in the jet cross-section, respectively, and
o is the surface tension coefficient. For viscous Newtonian liquids, the stress is
given by the following expression:

oUu 1 R._.
T =3U——o0 - = (1.51)
Ox {R<1+R%)‘/2 (1+R%)3/2}

This expression accounts for the fact that the jet surface is subjected to negligible
tractions and the deformation of the jet element corresponds in the first approxima-
tion to the uniaxial elongation/compression. The viscous term on the right hand side
in (1.51) thus naturally involves the Trouton elongational viscosity 34, with u being
liquid viscosity; the second term corresponds to the capillary pressure proportional
to the local double mean curvature of the jet surface.

Equations 1.49-1.51 represent themselves a slightly modified version of the
equations used in [30-32]. The modification introduced in [29] and references
therein involves the exact (not the asymptotic) expressions for the capillary force
at the jet surface and capillary pressure in the jet cross-section, which allows
description of the capillary breakup until formation of drops. A detailed derivation
of such equations based on the above-mentioned physical assumptions and the
integral mass and momentum balances can be found in the monograph [29]
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(see also the later reviews [33, 34]). Note, that there is a number of works where
similar equations are constructed as a regular asymptotic expansion of the solutions
of the three-dimensional differential equations of fluid mechanics (which were, in
their turn, derived from the integral mass and momentum balances) [35]. The latter
method is much more involved and yields the same equations.

The slower the cross-sectional radius and longitudinal velocity vary along the jet, the
more accurate becomes the quasi-one-dimensional description. Therefore, there is
nothing astonishing in the fact that the linear theory of the temporal stability of a slightly
perturbed infinite cylindrical thread based on (1.49)—(1.51) yields the long-wave limit of
the expression for the perturbation growth rate found in the classical Rayleigh—Weber
theory [5, 10] from the three-dimensional equations of fluid mechanics:

)
wua 3 9 ,m  Zk 2
—=—=Zk “Z%A+—(1—k 1.52

o 2 + \/4 + 2 ( ) (1.52)
where again o is the perturbation growth rate, Z = Oh* and the dimensionless
perturbation wave number k = ka = 27a//.. The fastest growth rate corresponds to:

)

It is emphasized that (1.52) is equivalent to the solution of (1.39), and, in the
inviscid case, to the long-wave limit of the Rayleigh result.

Similarly, the characteristic equation of the linear spatial stability theory for
semi-infinite inviscid jets found in [36] based on (1.49)—(1.51) coincides with the
long-wave limit of the exact result found in [13] based on the three-dimensional
equations of fluid mechanics (cf. section “Spatiotemporal Instability of a Jet”).

A more involved version of the quasi-one-dimensional equations of the dynamics
of thin liquid jets was proposed in [37, 38] where radial inertia in the jet cross-
section was accounted for. The final version of these equations for a Newtonian
viscous jet with a straight axis derived in [37-39] has the form

—1/2

kmax =

of ouf

- - — — 2
8t+ Ee 0, f=nR", (1.53)
ou ou\  0q 0 2nRo o (. .0U
pf(ﬁﬂjﬁ) =-5 %5 1R Har (fa ) (1.54)
f2

U P LU
Oxot ox2 2\ Ox

- omR _ IfR
(1+R)'?  (14+R2)Y?

1 0 (,0%U
B a<f82>+ uf——, (1.55)
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with ¢ being related to the longitudinal force in the jet cross-section.

After the small, higher order terms in (1.53)—(1.55) are neglected, these equa-
tions reduce to (1.49) — (1.51). In [40, 41] (1.53)—(1.55) were used to calculate the
growth rate of small axisymmetric perturbations of an infinite jet (thread) of viscous
Newtonian liquid and of a semi-infinite inviscid jet. For the infinite viscous jet
(thread) the following result was obtained

24k + &
28+ &)

2 4/€2<1 —I€2>

=2 4
Z(24k™ + k
wpa ( )+ 7 . (1.56)

o 2(8+/€2)

8 +k

In the long-wave range of validity of the quasi-one-dimensional approximation,
one has k2 < 1, and (1.56) naturally reduces to (1.52).

Summarizing, in the linear stability theory of capillary breakup of thin free
liquid jets, the quasi-one-dimensional approach allows for a simple and straightfor-
ward derivation of the results almost exactly coinciding with those obtained in
the framework of a rather tedious analysis of the three-dimensional equations of
fluid mechanics. This serves as an important argument for further applications of
the quasi-one-dimensional equations to more complex problems, which do not
allow or almost do not allow exact solutions, in particular, to the nonlinear stages
of the capillary breakup of straight thin liquid jets in air (considered below in this
chapter).

The quasi-one-dimensional equations are also popular in studies of electrospray-
ing of straight low-viscous jets, where the additional distributed electric forces enter
on the right hand side in (1.50) [42—44]. These equations play an important role in
the theory of melt spinning process where surface tension effects are negligible,
whereas viscous forces and jet cooling and solidification are significant [29]. The
quasi-one-dimensional equations represent the most important tool in the studies of
capillary breakup of non-Newtonian, rheologically complex jets considered in
detail later in this chapter.

Spatiotemporal Instability of a Jet

In the previous discussions, the liquid jet is considered to be infinitely long and £ is
assumed to be real. Thus, the disturbances must grow or decay everywhere in space
at the same time rate. However, Keller et al. [13] noted that the disturbances
initiating from the nozzle tip actually grow in space and move downstream to
break up the jet into drops, leaving a section of jet intact near the nozzle tip. They
set k to be complex and allow the disturbance to grow in space as well as in time in a
semi-infinite weightless inviscid jet in a vacuum to obtain the following characteristic
equation:
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o kal(ka)

kug)? = —— =12
(0 + kug) @ To(ka)

(Ka* +n*—1) (1.57)

They found that Rayleigh’s results are relevant only in the case of large Weber
numbers. They also showed that in the limit of We — oo, the spatial growth rate k; can
be inferred from the temporal growth rate, @, by the relation k; = @, + O(1/We),
while the disturbance travels at the jet velocity relative to the laboratory frame. For
Weber numbers less than the order of one, they found a new mode of faster-growing
disturbances whose wavelengths are so long that they may not be actually observ-
able on finite jets.

Using the theory of absolute and convective instability, Leib and Goldstein [15]
showed that the new mode actually corresponds to absolute instability arising from
a saddle-point singularity in the characteristic equation. The unstable disturbances
in an absolutely unstable jet must propagate in both upstream and downstream
directions. Thus, the unstable disturbances expand in space over the course of time.
This contrasts with what is observed in a Rayleigh jet, wherein unstable distur-
bances grow over time as they are convected in a wave packet in the downstream
direction with the group velocity dw; /dk,.

The critical Weber number We,., below which an inviscid jet under weightless
condition in vacuum is absolutely unstable, and above which the jet is convectively
unstable, was found by Leib and Goldstein [45] to be . When the viscosity of the jet
is taken into account, the critical Weber number depends on the Reynolds number
Re [15]. For more detailed discussion of spatial instability refer to Refs. [46-59].

Nonlinear Analysis of Capillary Breakup of Liquid Jets

Jet Instability

The linear Rayleigh—Weber theory of capillary breakup developed for small per-
turbations allows for a rather accurate prediction of the breakup time and length of
capillary jets of low-viscosity liquids when it is extrapolated to the nonlinear stage
up to the jet breakup. However, it does not allow prediction of the jet profiles at
the late nonlinear stage of their evolution. As a result, the linear theory is incapable
of predicting the sizes of all droplets originating from the jet breakup. In the
experiments, even in the cases with an imposed monochromatic excitation, as a
rule, small satellite droplets are formed from liquid threads between the main drops
[18, 60—62]. The linear theory obviously predicts only the main drops with the
volume equal to the volume corresponding to the fastest growing wavelength.
Peculiarities of capillary jet breakup are of significant interest not only from a
purely scientific point of view but in a number of important applications. Therefore,
there are many works devoted to the analysis of the capillary jet evolution at a later
stage, prior to breakup, in the framework of the nonlinear theory. As a rule, the
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analytical asymptotic approaches use the method of deformed coordinates or
the method of multiple scales applied to the full three-dimensional equations
of fluid mechanics [11, 12, 63-66], or to the quasi-one-dimensional equations
[14, 60, 67, 68].

The analytical asymptotic solutions allow for a rather accurate prediction of the
satellite droplet size [65, 66], and provide with a mostly qualitative description of
some of the experimental observations [14, 60, 68]. In particular, in the experiments
[61] it was observed that for small initial perturbation amplitude (o of any wave-
length, a satellite droplet does not completely detach from the main drop moving
after it, which results in their ultimate merging. At larger initial perturbation
amplitude {, the satellite droplet merges with the main drop moving before it. At
a still larger (,, satellite droplets do not form at all, which is sometimes termed as a
“print window.” The accurate prediction of the peculiarities of the nonlinear
capillary breakup is important for the ink-jet printing devices where only the latter
situation is acceptable [41, 69].

The quantitative verification of the predictions of the asymptotic nonlinear
theory of growth of perturbation modes was achieved using opto-electronic meth-
ods to measure jet profile [70]. The experimental data obtained for water jets with
the cross-sectional radius of 1.5 x 10~ m, appeared to be in reasonable agreement
with the theory [63].

The idea of control of the nonlinear effects by the energy transfer from the fastest
growing mode to the mode with a doubled wavelength is of significant interest. The
asymptotic theory of such a process [71] demonstrated satisfactory agreement with
the experiments [72, 73] where quantitative characteristics of the energy transfer
process were measured.

The asymptotic theories of the nonlinear phenomena characteristic of capillary
breakup of liquid jets lead to rather cumbersome expressions, even though they deal
with the simplest case of the inviscid liquid. Therefore, direct numerical
simulation of the full three-dimensional equations of fluid dynamics or the quasi-
one-dimensional equations of the dynamics of thin liquid jets attracted significant
attention in the literature. For example, the numerical solution of the quasi-one-
dimensional equations in the inviscid case allowed modeling of formation of both
main and satellite drops [30]. The investigation of the nonlinear stage of the
capillary breakup of low-viscosity liquids in the framework of the quasi-one-
dimensional approach is not fully legitimate, since at the later stage a significant
non-uniformity of flow should arise in the cross-sections of the growing main drop.
The best results for low-viscosity liquids can be obtained using direct numerical
simulations of the full three-dimensional equations of fluid dynamics [74]. Several
studies have modeled the capillary breakup of jets based on the full Navier—Stokes
equations [75-77], which will be discussed later in this chapter.

On the other hand, capillary breakup of sufficiently viscous liquid jets is a long-
wave phenomenon, and its description in the framework of the quasi-one-dimensional
equations of the dynamics of liquid jets is sufficiently accurate. The effect of the
viscosity on the capillary breakup of highly-viscous liquid jets was studied numerically
by Yarin [29]. The initial perturbation of the jet surface was imposed as a harmonic
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function of small amplitude, with the wavelength corresponding to the fastest growing
mode /. according to the Rayleigh-Weber theory. The non-dimensional
group characterizing viscous effects is the Ohnesorge number. As the Ohnesorge
number increases, the main drop at the moment of breakup becomes more and
more elongated (spindle-like), whereas the volume corresponding to the forming
satellite droplet decreases (Figs. 1.6 and 1.7). The predicted breakup time is in
good agreement with the experimental data. The results shown in Figs. 1.6 and 1.7
correspond to the infinite, periodically perturbed jets (threads). Capillary breakup
of semi-infinite jets issued from a nozzle was numerically modeled in [78]
using the quasi-one-dimensional equations of the dynamics of liquid jets. The
results of these calculations were in satisfactory agreement with the asymptotical
results [14, 68], however, it was impossible to reach full agreement with the
experimentally observed breakup pattern in the whole range of the amplitude of
the initial perturbation (.

At the late stage of capillary breakup near the jet cross-section where the
breakup will eventually occur, liquid flow completely “forgets” the initial condi-
tions. It is dominated by the local flow conditions and becomes self-similar. The
numerical description of the latest stages of capillary breakup is unreliable near the
cross-sections where the cross-sectional radius tends to zero. A theoretical descrip-
tion of such self-similar final jet pinching is given in [79-84], assuming either
inertia or viscosity dominated flows in the tiny threads and, in particular, using
quasi-one-dimensional equations.

Fig. 1.6 Capillary breakup of
a glycerin jet (Z = 1.755;
Yarin [29]). (a) Jet profile
corresponding to one half of
the perturbation wavelength.
The cross-sectional radius R
is rendered dimensionless by
a =6 x 107> m, the axial
coordinate x — by Ay =
1.04 x 107> m. The
dimensionless time ¢ = 10 for
curve 1, 20 — curve 2, 30 —
curve 3, and 30.81 — curve 4
(the time scale is T = pa/o =
0.848 x 10~*s). (b) The jet
shape at the moment of
breakup. In the inset, the
radius evolution in the cross-
section where the breakup
takes place is shown
(Courtesy of Pearson
Education)
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Fig. 1.7 Capillary breakup of a castor oil jet (Z = 370.3; Yarin [29]). (a) Jet profile corresponding
to one half of the perturbation wavelength. The cross-sectional radius R is rendered dimensionless
bya =06 x 107> m, the axial coordinate x — bY Amax = 3.45 x 10~3m. The dimensionless time 7 = 10
for curve 1,20 — curve 2, and 22.4 — curve 3 (the time scale is T = ua/o = 1.52 x 10’35). (b) The jet
shape at the moment of breakup. In the inset, the radius evolution in the cross-section where the
breakup takes place is shown (Courtesy of Pearson Education)

With the limitations and the problems associated with both the perturbation
analysis and the one-dimensional models, the full nonlinear equations of motion
for the jet are solved numerically. One such solution is by Ashgriz and Mashayek
[75]. They studied the temporal instability of an axisymmetric incompressible
Newtonian liquid jet in vacuum and zero gravity. The variables are nondimensio-
nalized by the radius of undisturbed jet, @, and a characteristic time (pa®/ a)l :

An infinitely long cylindrical Newtonian liquid jet, is disturbed with a spatially
harmonic surface displacement of a cosine shape: R =a — {ycoskz, where
k = 2na/J, and a is determined such that the volume of the jet is kept constant
when the initial amplitude is changed. Therefore, a = (1 — {2/2)"/. The dynamics
of this jet due to capillary forces was investigated for various values of initial
disturbance wave number k, and initial amplitude {,, and of the jet Ohnesorge
number, Oh.

Their results of the shape evolution of liquid jets with Oh~" = 200, 10, and 0.1
and ka = 0.2, 0.45, 0.7, and 0.9, are presented in Fig. 1.8. This figure reveals the
following characteristics for the breakup of a capillary jet: (1) The breakup point
moves towards the swell point of the jet as the jet Ok~ ' increases. This results in the
formation of a ligament in addition to the main drops. The ligament will eventually
form a satellite drop. (If the ligament is long enough, it may further break up into
even smaller drops.) (2) The length and diameter of the liquid ligament decrease
with increasing wave number k, and, therefore, the satellite size also decreases. (3)
The diameter of the liquid ligament and the satellite size increase with increasing
Oh™ ! at a constant wave number. (4) Satellite formation is inhibited at low oh™".
(5) The breakup time decreases with increasing Oh~ .

The linear theories provide a growth rate for the unstable waves. These growth
rates are useful in estimating the breakup length and time. According to the linear
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Fig. 1.8 Time evolution of the instability of a capillary liquid jet [75, Fig. 2]. {, = 0.05: (a)
k=0.2,0n"" =200, (b) k = 0.45, Oh~' =200, (¢) k = 0.7, 0h~ " =200, (d) k = 0.9, Oh~" = 200,
(@ k=02,0n""=10,(f) k=0.45,0h"" =10, (g) k=0.7,0h"' =10, (h) k = 0.9, Oh~" = 10,
BHk=02,0n"=0.1,() k=0450h"=0.1,K) k=0.7,0h""' =0.1, ) k=0.9,0h ' =0.1.
The numbers on the figures indicate the corresponding times (Courtesy of Cambridge University
Press)

theory the variation of the logarithmic value of the amplitude of the surface
disturbances with time is linear. Although, for an actual liquid jet this amplitude
variation may not be linear, the experimental results of Goedde and Yuen [18]
showed that for water and glycerin-water jets the logarithmic value of the
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Fig. 1.9 Comparison of the numerically calculated growth rates (symbols) [75, Fig. 5] with those
from Chandrasekhar’s [23] linear theory, open circles are experimental data from [85] (Courtesy
of Cambridge University Press)

difference between the amplitude at the neck and that at the swell varies linearly
except close to the breakup moment.

The perturbation spectra are obtained using the calculated values of the growth
rate for different wave numbers and for three O numbers. The data is plotted in
Fig. 1.9, along with the corresponding curves from Chandrasekhar’s [23] linear
theory for a viscous jet equation (1.52). As predicted by the linear theory and
observed experimentally, the viscosity reduces the magnitude of the growth rate for
all wave numbers. In addition, the maximum growth rate occurs at lower wave
numbers (i.e., for longer perturbation waves) for more viscous jets. This is due to
the more effective viscous damping at larger wave numbers. The linear theory
results in a better prediction at high Oh jets. At low O#h, the linear theory over-
predicts the nonlinear growth rate for lower wave numbers and underpredicts it at
higher wave numbers. The largest deviation at Ok~ ' = 200 is approximately 10%.
The experimental data of Cline and Anthony [85] for water jets which are also
plotted in Fig. 1.9 (open circles) show the same behavior as the nonlinear results.

Again a better understanding of the effect of the nonlinearities on the jet breakup
and the mode-coupling, Ashgriz and Mashayek [75] decomposed the jet surface
shape into its linear modes by implementing the Fourier expansion:

r(z,t) =R + Z ¢, cos(nkz) (1.58)
n=0

Again, k = 2na// is a reduced wave number. The orthogonality of the cosine
functions and numerical integration is used to determine the coefficients c,,.
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Figure 1.10 shows the amplitude of the fundamental, zeroth, second, third, and
fourth harmonics of the initial disturbance with time. Figure 1.10a shows the
fundamental and higher harmonics for a jet with Oh~' = 200 and k = 0.2.
Here, the second and third harmonics grow right from the initiation (r = 0).
However, their amplitudes and growth rates are small at the beginning and become
significant only later in time. In Fig. 1.10b, for Oh~' =200 and k = 0.9, none of the
harmonics grow until very close to the breakup time. The higher harmonics in this case
do not grow until the formation of the thin ligament close to the breakup time.

The formation of the ligament can be explained by the nonlinear theories. The
nonlinear analysis of Yuen [63] and also Chaudhary and Redekopp [71] have
revealed that the mode coupling results in a feedback from higher harmonics to
the fundamental and vice versa. For instance, the second harmonic generates
interactions between the first four harmonics only by considering the second
order solution. The summation of all of the fundamentals generated by this mode
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Fig. 1.10 Amplitude of the fundamental (- - -), and zeroth (- - -), second (- - -), third (-- -- --), and

fourth (-- - --) harmonics as a function of time [75, Fig. 6]. {, = 0.05: (a) k = 0.2, Oh™! =200,

(b)k=0.9,0nh™" =200, (¢) k=0.2,0h"' =0.1,(d) k= 0.9, 0h~" = 0.1 (Courtesy of Cambridge
University Press)
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coupling results in the nonlinear variation of the fundamental, and the formation of
the observed ligament.

As the wave number increases, the higher harmonics do not grow until very close
to the breakup time. In addition, for large wave numbers the jet shape remains
almost sinusoidal until the last moments of the breakup. This explains the rapid
reduction of the ligament length with wave number. For smaller wave numbers, the
feedback mechanism from the higher harmonics to the fundamental seems to be
small. In fact the energy is mainly transferred from the fundamental to the higher
harmonics. Figure 1.10a shows a minimum in the amplitude of the fundamental.
Here, significant energy is transferred from the fundamental to the second and third
harmonics. Note that the signs of the second harmonic and the fundamental are
different for smaller wave numbers, but equal at larger wave numbers. In addition,
the study of the harmonics reveals that no significant changes with Oh number
occur within the range Oh~' = 10-200. Generally, the second harmonic contributes
the most to the observed nonlinearity in growth rates.

The breakup times for each wave number and for different Oh are shown
in Fig. 1.11. The curves belong to Chandrasekhar’s analytical solution, where
the breakup times are calculated from the growth rates using the relation 7, =
In (a/lp)/w. The numerically calculated data [75] are shown with symbols
on Fig. 1.11 and are in good agreement with the analytical results only
around the most unstable wave numbers. For each Oh, as the wave number
increases, the breakup time first decreases until it reaches a minimum and then
increases.

Linear theories by Rayleigh for inviscid jets and Weber—Chandrasekhar for
viscous jets predict that a jet is unstable for disturbances with wave numbers

=4

Breakup time

0 0.2 0.4 06 03 1.0

k

Fig. 1.11 Comparison of the numerically calculated breakup times with (o = 0.05 (symbols) with
those from Chandrasekhar’s linear theory [75, Fig. 7] (Courtesy of Cambridge University Press)
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smaller than one and stable for wave numbers greater than one. The cut-off wave
number of k.= 1 is found to exist in the limiting case of an infinitesimal initial
disturbance. Some nonlinear theories also predict k = 1 [66]. However, the
nonlinear theories by Yuen [63] and Nayfeh [11] predict that the cut-off wave
number varies with the initial disturbance amplitude as: k.=1 + (9/ 16)¢3, and k. =
1 + (3/4)(3, respectively. Chaudhary and Redekopp’s [71] nonlinear analysis
results in a transitional zone for the cut-off wave number based on the initial
disturbance amplitude. Their analysis shows that in the cut-off zone the growth
rate changes from exponential to linear near X = 1 and finally to an oscillatory
solution. Experimental results of Chaudhary and Maxworthy [72, 73] have shown
a linear growth rate for large initial inputs and transition toward a higher growth
rate (i.e., shorter breakup time) for lower inputs near the cut-off wave number of 1.

Satellite Droplets

The first obvious deviation of the nonlinear instability from the linear theory is the
formation of a long ligament between the main (parent) drops after the breakup as
shown in Figs. 1.1 and 1.8. This ligament eventually becomes spherical and forms
the satellite drop (it may also break up into even smaller drops). Therefore, the
volume of the ligament between the main drops after the breakup provides the
satellite size. Numerous studies have investigated the satellite droplet [61, 75, 86].

Satellite droplets may merge with the main drops shortly after they are formed.
Figure 1.12 [21] shows three types of satellite formation: (a) rear merging; (b)
stable; and (c) forward merging satellites. The type of merging depends on whether
the satellite droplet is pinched from the front of the ligament or from its rear side.

Fig. 1.12 Medium-wavelength Rayleigh breakup. (a) Rear merge satellite (D = 0.34 mm, We =
27.3, A/D = 5.7). (b) Stable satellite (D = 0.27 mm, We = 30.6, /D = 5.9). (¢) Forward merge
satellite (D = 0.27 mm, We = 30.6, /D = 5.9) [21, Fig. 8] (Courtesy of the Royal Society)
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Other types of merging droplets, such as reflexive merging are also observed, in
which the satellite droplet collides with one of the main drops, but the conditions
are such that they do not coalesce. The satellite droplet is then tossed toward the
other main droplet for merging.

Figure 1.8 shows that as the wavelength increases, the length of the ligament and,
consequently, the satellite size increase. Figure 1.13 shows the variation of the main
drop radius as well as the radius of the satellite drop for different wave numbers
[75]. Generally for the Oh numbers less than 0.1, there is no significant change in
sizes with Oh. This explains the observed agreement between the results obtained by
the inviscid theories (both weakly nonlinear analysis and boundary integral calcula-
tions of full nonlinear equations) and the experimental data for water jets (Oh~' =
200) [86]. However, for Oh > 0.1 the variation becomes more pronounced.

The results show that for the same disturbance wave number the satellite size
decreases with increasing Oh. For high-Oh jets, the viscous damping of the higher
harmonics delays the movement of the minimum point and, consequently, results in
a reduction of the ligament length. In addition, high-O jets need a higher pressure
difference between the ligament and the drop to overcome the dissipative and
inhibiting effects of viscosity in order to cause detachment of the ligament from
the drop. This latter effect results in the reduction of the ligament diameter. An
increase in viscosity strengthens the inhibiting effects of the fluid, and in order to
have detachment, the ligament should become more slender and threadlike. The
combined effects of reduced length and diameter of the ligament result in significant
reduction of the satellite size for highly viscous liquids. Ashgriz and Mashayek [75]
provided marginal jet Oh numbers for a range of disturbance wave numbers, below

4
o
|
=
=
=
v}
g -
=
B
s
(=
l 3
Fig. 1.13 Variation of the
main and satellite drop sizes
with wave number, prediction
and comparison with the . " . <
experimental data [75, Fig. 8] 0 02 04 06 08 1.0

(Courtesy of Cambridge =
University Press) k



30 N. Ashgriz and A.L. Yarin

which no satellite is formed. Figure 1.14 shows the satellite/no-satellite regions in
terms of Oh and k for {, = 0.05. As Oh decreases, satellite drops are eventually
formed for all the unstable wave numbers. An interesting observation made from
Fig. 1.14 is that the slope of the limiting Ok~ " versus the wave number curve
changes significantly around k = 0.7. For k < 0.7, much larger Oh jets are needed
in order to prevent satellite drop formation. For k > 0.7, the slope of the curve is
drastically increased and the limiting O~ ' increases faster with the wave number.

Based on the nonlinear instability results, the satellite drops are persistently
formed after the breakup. Only for very small Oh~" values, the satellite drops are
not observed. Also, an increase in the initial disturbance amplitude will shift
the no-satellite region to lower Oh numbers. The results show that using jets with
Oh~! between 1 and 5 and disturbances with k > 0.8, the satellite formation can be
prevented, even with very small initial disturbance amplitudes.

Hibling and Heister [87] performed a boundary element-based numerical mod-
eling to investigate the influence of unsteady inflow conditions on the nonlinear
evolution and droplet formation processes within a low speed, finite-length capil-
lary liquid jet. Their results indicate that modulation of either the amplitude or the
frequency (wave number) of the perturbation can affect droplet sizes so as to create
a monodisperse droplet train. For fixed orifice radius and liquid density, decreasing
the Weber number corresponds to either increasing the surface tension or decreas-
ing the inflow velocity [87]. As the surface tension is increased, the wave formed on
the surface of the jet from the unsteady inflow should tend to grow more quickly,
leading to shorter breakup lengths. This effect is shown in Fig. 1.15 for a jet that has

Satellite

1/0h
L

Fig. 1.14 The satellite/no- 14
satellite regions in the Oh-k
domain. A no satellite is 1 No Satellite
formed, V small satellite is P L S PO
formed [75, Fig. 9] (Courtesy 0 0.5 1.0
of Cambridge University —
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Fig. 1.15 Effect of Weber number on jet profile for k=0.7,u =2%, (a) We = 100, (b) We = 50
[87, Fig. 3] (Courtesy of American Institute of Physics)

an inlet velocity perturbation with We = 50 and 100, using £ = 0.7 and velocity
perturbation amplitude of ' = 2%. Each pair of profiles shows the jet just before a
main droplet and satellite droplet are shed from the calculation. Increasing the
Weber number also tends to decrease the size of the satellite droplets for the chosen
conditions. Note that the tip of the satellite droplet for the lower Weber number case
takes on a more spherical shape before being shed from the calculation. In addition,
at lower We values, the pinching event tends to form a series of waves on the parent
surface due to the enhanced influence of surface tension.

Controlling Satellite Droplet Formation

It was noted that when a liquid jet is subjected to a monochromatic (single-wave
number) disturbance with a wave number less than the cut-off wave number, it
becomes unstable and breaks up. Each wavelength of the input disturbance usually
generates two types of drops: a large main drop and one or more smaller satellite
drops. Generally, the size of the satellite drops reduces with increasing (decreasing)
the wave number (wavelength) and increasing the Ohnesorge number.

In order to obtain uniform-size drops, either the larger main drops or the satellite
drops are eliminated. This is achieved mainly by three different techniques: (a)
preventing the initial formation of the satellite drops; (b) forcing the satellite drops
to merge with the main drops; (c) charging and deflecting one of the drops. To
prevent satellite formation or forcing it to merge with the main drops, usually a
complex wave form, rather than a single period wave, is used to disturb the jet.
Therefore, satellite drop formation can be controlled by using frequency modulated
disturbances. For instance, by disturbing the jet with two wave numbers, one being
the fundamental &, and the other being its second harmonic 2k, one may be able to
reduce the satellite size.

Satellite drops can also be eliminated by increasing the amplitude of the initial
disturbance. This reduces the breakup time, and therefore, there is no time for the
development of the satellite-forming liquid ligament. For a jet with Oh~' = 200 the
initial disturbance amplitude has to be very large in order to eliminate the satellites.
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Such high amplitudes are impractical in most applications. In practice, however, the
change in amplitude results in the forward or backward merging of satellite drops
with the main drops and, therefore, the formation of uniform drops shortly after the
breakup point. Satellite merging is due to the nonsymmetric breakup of the liquid
ligament. Pimbley and Lee [61], Chaudhary and Maxworthy [72, 73], Bousfield
etal. [91] and Vassallo and Ashgriz [21] showed experimentally that the forward or
backward merging of the satellites with the main drops can occur at various applied
disturbance frequencies depending on the amplitude of the disturbance.

A more practical method of eliminating the formation of the satellite drops is
by using a modulated disturbance. Chaudhary and Maxworthy [72, 73] provided
results of such experiments. They used a modulated velocity disturbance composed
of two frequencies, and showed that the satellite drop formation can be most
effectively prevented by the superposition of the first and third harmonics for
certain ratios of the initial amplitudes of the two harmonics. Modulated distur-
bances are also used to force the merging of the satellites with the main drops after
their formation. Although forward and backward merging occurs even with mono-
chromatic disturbances, the merging can be expedited by using modulated distur-
bances. Chaudhary and Maxworthy [72, 73] used the two-frequency disturbances
and measured the distance it took for the satellite drops to merge with the main
drops. They showed that the merging distance depends on the amplitude ratio of the
two frequencies and the phase angle between them. In addition, Orme and Muntz
[88] studied droplet formation experimentally by perturbing the jet with an ampli-
tude-modulated velocity disturbance. They showed that the small droplets merge
into a final configuration where the uniform drops are equally separated by one
wavelength of the modulation frequency. Orme et al. [89] further obtained
sequences of repeating drop patterns by adding non-integer frequency ratios (the
ratio of the high to the low frequency).

Huynh et al. [92] conducted a numerical study of capillary instability of a jet
subject to two superposed disturbances. The surface disturbance, { was composed
of the superposition of two wave numbers:

{(x) = & cos(kx) + &, cos(mkx + 0)

where k and ¢; respectively represent the reduced wave number (27a//) and the
amplitude of the first harmonic (also referred to as the fundamental disturbance). ¢,
represents the amplitude of the nth harmonic, and 0 is the phase angle between the
first and the nth harmonic input. Figure 1.16 presents typical breakup patterns for
half of a wavelength obtained with an unstable second harmonic. The wave number
considered is 0.45 and the amplitudes of the first and second harmonics are both
0.01. In the following description, the point at x = 0 and the point at x = /2 are
referred to as the swell and the neck points, respectively (they are respectively the
time until a cylindrical thread is formed. A contraction then appears at the joint
between the bulbous swell region and the ligament thus creating a local pressure
maximum which accelerates the detachment of the ligament by pushing the liquid
away from that point. With the second harmonic input (Fig. 1.16b), a contraction is
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Fig. 1.16 Jet breakup by the addition of an unstable second harmonic, k = 0.45 and Oh™' = 200
[90, Fig. 2] (Courtesy of Elsevier)

formed around 4/4. The breakup occurs at one end of the ligament, resulting in a
large satellite. When a phase angle of 180° is used, an almost opposite evolution of
the jet occurs, as shown in Fig. 1.16c. Here, a bulging of the central region is
observed and two contractions are formed at the swell and the neck points. The
contraction at the neck point leads to the formation of a small ligament, which after
pinch-off will produce the satellite drop. Notice that the breakup time is reduced
when using an unstable second harmonic.

Figure 1.17 shows the variation of the main and satellite drop sizes versus the
wave number of the first harmonic where the initial amplitudes of the sinusoidal
disturbances are kept constant at & = 0.01 and ¢, = 0.05. Three sets of results are
presented in this figure: (a) first harmonic, only; (b) added second harmonic with 0 = 0;
and (c¢) added second harmonic with 6 = 180°. Two different behaviors are
observed. For k < 0.5, when the added second harmonic is unstable, the breakup
is highly dependent on the initial phase of the second-harmonic input. For no phase
difference, the initial positive amplitude of the unstable second harmonic leads to
satellites much larger than when no second harmonic is added. For very small wave
numbers, the satellite drop becomes larger than the main drops. For 0 = 180°, which
is equivalent to an initial negative amplitude of the second harmonic, the satellite
drop sizes are significantly reduced.

Spangler et al. [93] considered nonlinear instability of a straight liquid jet under
the influence of both capillary forces and aerodynamic interactions with an external
gas. They showed that the gas phase interaction is important even at relatively low
jet velocities. The presence of the gas leads to a “swelling” in the trough region of
the wave. Aerodynamic interactions had very little effect on predicted droplet sizes
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Fig. 1.17 Variations of the main and the satellite drop sizes with the wave number for Oh~' =200
[90, Fig. 5] (Courtesy of Elsevier)

for low speed jets within the Rayleigh regime. At higher velocities, a decrease in
main drop size (with an attendant increase in satellite drop size) is predicted by the
model. This behavior is attributed to the swelling phenomena which effectively
drives the pinch location toward the droplet at higher jet velocities.

Figure 1.18 presents the nonlinear jet evolution in low speed conditions, referred
to as the first wind-induced regime. In this figure, the surface shape is given at three
different time steps during the evolution, with two complete waves of the distur-
bance shown. The first surface shape is at t = 250, and corresponds to a point just
after the jet enters into the nonlinear portion of its growth. At this point, the
maximum and the minimum radii of the surface are at the points that correspond
to the initial peaks and troughs of the wave. The second surface shape is given at
t =300, well into the nonlinear portion of the jet growth. At this time, the minimum
radius point on the surface no longer corresponds to the initial trough. The trough
area has flattened out and there are now two points of minimum radius per
wavelength, one at each end of the flattened trough area. The final surface shape
shown is for = 312, just before the pinching process occurs. At this time, the larger
main drops are separated by thin ligaments of fluid that make up the satellite drops.

It is shown [93] that below k = 0.28 the satellite drops are larger than the main
drops, while above this wave number, the main drops are larger than the satellite
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Fig. 1.18 Nonlinear jet evolution in the first wind-induced regime, ¢ = 0.00129, k = 1.07,
{ =0.004, We = 850 [93, Fig. 6] (Courtesy of American Institute of Physics)

a

Fig. 1.19 Experiments showing the shape of the filament between the two main drops (satellite
droplet) (a) before the firtst pinch-off and (b) after the last pinch-off, for droplet to surrounding
fluid viscosity ratio of 0.4. The initial filament breaks up into more smaller satellite droplets due to
the capillary action [94] (Courtesy of Cambridge University Press)

drops. At increased jet velocities (i.e., Weber numbers), the main drop radius
decreases and the satellite drop correspondingly increases in size. This effect is
attributed to the importance of the swelling phenomena. At higher We values, the
swelling in the trough region is more dramatic (particularly for lower & values), thus
moving the pinch location closer to the peak and increasing the size of the satellite
droplet. It should be noted that since the initial filament connecting the main drops
is highly deformed, it may breakup into several small satellite droplets, as shown in
Fig. 1.19 by Tjahjadi et al. [94].
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Thermocapillary Instability of a Liquid Jet

There are several studies on the effect of temperature perturbations on the instabil-
ity of a liquid jet [95-98]. In non-isothermal capillary jets, variation of the surface
tension with temperature along the free surface of the liquid results in a tangential
shear force on the surface which induces the so-called thermocapillary flows [99,
100]. Thermocapillary effects can, depending on the particular conditions, enhance
or retard the instability. It is generally shown that the breakup of a liquid jet may
occur not only for surface amplitude disturbances with axial wavelengths larger
than the circumference of the jet, but also through oscillatory temperature gradients
that excite the otherwise calm and free surface.

Since liquid surface tension is strongly dependent on temperature, it can be
controlled by controlling the liquid temperature. This technique was utilized
[101, 102] to control the breakup of a water jet. Furlani et al. [103] have conducted
a linear analysis of a jet subject to a spatially periodic variation of surface tension
imposed along its length. It is shown that as the jet approaches breakup it swells at
the points of maximum surface tension, and necks at the points of minimum surface
tension. A periodic variation of temperature can induce a time-harmonic modula-
tion of the surface tension ¢ of the jet, which has an equation of state of the form
a(T) = aog— (T — T,) where f is a property constant. Instability of an evaporating
jet is considered by Saroka et al. [104], who showed that the evaporation increases
the growth rate of instability.

Mashayek and Ashgriz [98] considered effects of the heat transfer from the
liquid to the surrounding ambient, the liquid thermal conductivity, and the temper-
ature-dependent surface tension coefficient on the jet instability and the formation
of satellite drops. Two different disturbances were imposed on the jet. In the first
case, the jet is exposed to a spatially periodic ambient temperature. In addition to
the thermal boundary condition, an initial surface disturbance with the same wave
number as the thermal disturbance is also imposed on the jet. Both in-phase and out-
of-phase thermal disturbances with respect to surface disturbances are considered.
For the in-phase thermal disturbances, a parameter set is obtained at which capillary
and thermocapillary effects can cancel each other and the jet attains a stable
configuration. No such parameter set can be obtained when the thermocapillary
flows are in the same direction as the capillary flows, as in the out-of-phase thermal
disturbances. In the second case, only an initial thermal disturbance is imposed on
the surface of the liquid while the ambient temperature is kept spatially and
temporally uniform (Fig. 1.20).

The instability of a liquid jet with thermocapillarity in a dynamically inactive
ambient and in the absence of gravity and stationary relative to a moving observer is
governed by the following nondimensional parameters: Reynolds, Re,,, Capillary,
Ca, Prandtl, Pr, Marangoni, Ma = Re,, Pr, and Biot, Bi, numbers, defined as:
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Fig. 1.20 Time evolution of surfaces of four jets with (a) Bi =0, (b) Bi = 1.37, (¢) Bi = 1.38, and
(d) Bi = co. For all jets a surface displacement was applied accompanied by a thermal resistance
which increased sinusoidally from O at the neck to 1 at the swell of the initial surface disturbance.
The initial temperature was T = 1, Re,, = 20, Ma = 200, Ca = 0.2, k=0.7, and ¢, = 0.05 for all
jets. The numbers on the figure represent the time. Critical breakup of the jets occurs in the interval
1.37 < Bi < 1.38 [98, Fig. 2] (Courtesy of Cambridge University Press)
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where k is thermal conductivity, ¢, is the specific heat, A, is the convective heat
transfer coefficient at the surface of the jet, and the liquid surface tension, g, is
assumed to be a linear function of temperature, ¢ = dg — ﬁAT where T is the
liquid temperature, and o, is the surface tension coefficient at a reference
temperature To.

The results clearly show that a small temperature disturbance can quickly induce
a surface disturbance which will eventually cause the breakup of the jet. Such
temperature disturbances are readily available in most natural processes, since upon
exiting from the nozzle the liquid temperature is usually slightly different than the
ambient temperature. For the small thermal disturbance amplitudes the results
indicate that neither the breakup time nor the satellite size are sensitive to Bi and
Ma; however, they are sensitive to Ca. In other words, the initial thermal distur-
bance only induces a small surface disturbance which basically governs the insta-
bility of the jet thereafter.
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Capillary Instability of a Swirling Jet

Ponstein [105] provided the following equation for the dispersion relations of a
swirling liquid column in gas:

o = |-T (1K) + <1s><2nr)
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where I is the circulation around the ring (or column), which can be estimated as
I' = (2ra)Uy from Saffman [106]. Here Uy is the tangential velocity of the ring
surface. For non-swirling jet (i.e., I' = 0) in the absence of the aerodynamic effect
(i.e., U = ¢ = 0), Rayleigh’s result is recovered [26]. Here, the centrifugal force
(expressed via circulation) has a destabilizing effect as indicated by the positive
sign on the I' term. The faster the column swirls, the more unstable it becomes.
Increasing gas density &( Pe / pj) serves to aid in stabilizing the column circulation-
related term, but destabilizes the dominant aerodynamic U? term. Considering the
non-swirling case with aerodynamic effect, Ponstein’s equation (1.59) can be
written as [26]:

o1 (k
W =—"(1- kz)k]l(z) + U (1.60)
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For k < 1, it is known that I; (k) /Iok ~ k/2. Applying this identity, (1.60) is
re-written as:
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This result is exactly the same as the inviscid case of the characteristic equation
derived by Sterling and Sleicher, (1.45).

Capillary Breakup of Rheologically Complex Liquid Jets

The effects of such physical properties as liquid density, viscosity and surface
tension on the capillary jet breakup in the case of Newtonian viscous liquids are
discussed in the previous sections of this chapter. In many applications non-
Newtonian liquid jet flows are used, which demonstrate very peculiar deviations
from the Newtonian behavior. This section is devoted to the discussion of the
dominating effects of rheological properties on jet breakup.

A relatively close counterpart of Newtonian liquids is the family of the nonlinear
power law liquids, which do not possess any viscoelastic, thixotropic, or rheopectic
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effects or yield stresses and behave according to the following rheological consti-
tutive equation:

= —pl+ 2k [2r(D?)]" "D, (1.62)

where p in pressure, I is the unit tensor, T and D are the stress tensor and the rate of
strain tensor, respectively, and K and » are the rheological parameters of the liquids.
For 0 < n < 1, the liquids are termed pseudoplastic, for n > 1, dilatant; the linear
case of n = 1 (with K = p) corresponds to Newtonian viscous liquid. The effective
viscosity of pseudoplastic liquids decreases as the rate of strain increases, whereas
for dilatant liquids it increases as the rate of strain increases. Typical representatives
of pseudoplastic liquids are various suspensions, whereas dilatant liquids are rather
rare, albeit rheological behavior of viscoelastic liquids in some cases mimics that of
the dilatant ones, as discussed in the monograph by Yarin [29].

Capillary breakup of free jets of aqueous clay suspensions or of y-Fe,O3
particles in oil moving in air was studied experimentally and theoretically by
Yarin and coauthors in [29, 107]. In the experiments the initial perturbations were
imposed by a needle periodically touching the jet surface with a frequency of 250
Hz. Such an excitation of purely Newtonian jets frequently led to an irregular
breakup. However, jets of sufficiently concentrated suspensions demonstrated a
peculiar sausage-like breakup with the length determined by the perturbation
frequency (cf. Fig. 1.21). Later on, the sausages shrink in flight under the action
of surface tension and recover spherical shape.

The quasi-one-dimensional theory of capillary breakup of pseudoplastic jets
provides an explanation of the phenomenon of sausage-like breakup [29, 107].
In the case of the power law liquids, the continuity and momentum balance
equations of straight jets have the form (1.49) and (1.50), whereas, based on
(1.62), (1.51) is replaced by a more general one:

ou
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The system of equations (1.49), (1.50), and (1.63) was integrated numerically for
the case of an infinite jet (thread), i.e., considering the temporal instability. The
results showed that in the case of a sufficiently expressed pseudoplastic behavior
(with the exponent n being sufficiently smaller than 1), the time to breakup and the
breakup pattern are strongly affected by the amplitude and shape of the initial
perturbation. In particular, in the case of a narrow axisymmetric localized depres-
sion of the jet surface, which mimics perturbation imposed by a touching needle,
the subsequent evolution of the jet profile shows a localized progress of pinching.
As a result, the jet breaks up into “sausages” (Fig. 1.22). It is explained by the fact
that a sufficient rate of deformation appears only close to the jet necking. For the
pseudoplastic rheological behavior, it results in a localized decrease in the effective
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Fig. 1.21 Capillary breakup of pseudoplastic liquid jets [29]. (a) Suspension of 25% y-Fe,O3
particles in oil. (b) Suspension of 36% y-Fe,Oj3 particles in oil. (¢) Aqueous suspension of clay
(Courtesy of Pearson Education)

viscosity of the liquid close to the jet necking locations. This, in turn, after a certain
delay related to the flow development, leads to a rapid, avalanche-like localized
progressing of necking. The duration of the delay depends on the amplitude of the
initial perturbation {,. For the values of the exponent n sufficiently lesser than 1, it
can be very long for relatively small initial perturbations resulting in small initial
rates of deformation near the surface depressions and, hence, in high effective
viscosities there. This can extend the duration of the capillary breakup as a whole.
On the other hand, relatively large amplitudes of the initial perturbations result in
large initial rates of deformation near the surface depressions and, hence, in low
effective viscosities there, which decreases the delay time and leads to a rapid jet
breakup as a whole.
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Fig. 1.22 Capillary breakup of a pseudoplastic jet (Yarin [29]). The parameter values are: K/p=
8.18 x 107* m%s', a/p= 34.7 x 107 m*/s?, n = 0.5, a = 0.06 x 107> m, the perturbation
wavelength 1 = 1.98 x 1072 m. (a) The evolution of the jet profile corresponding to a half
wavelength of the perturbation (the cross-sectional radius is rendered dimensionless by its
unperturbed value a, the longitudinal coordinate x — by 4, time — by T = 0.229 x 1072 s). (b)
Shape of the “sausage” emerging at the moment of the breakup corresponding to one perturbation
wavelength: 1 —¢ =300, 2 — t = 479.05. The inset in (b) shows the evolution of the radius in the jet
cross-section where the breakup takes place (Courtesy of Pearson Education)

The flow near the necking sections of pseudoplastic liquid jets at the final stages
of their capillary breakup “forgets” the global jet configuration and becomes self-
similar. This behavior was studied in detail in [108] in the framework of the
elongational rheology of gelled propellants and their simulants.

The capillary breakup pattern described above is expressed stronger when the
liquid pseudoplasticity manifests itself stronger. Therefore, their most spectacular
manifestations are observed in the experiments with sufficiently concentrated
suspensions. However, they are also seen in the experiments with jets of polymer
gels [109]. The latter work is devoted to the effect of the thixotropic breakup of the
internal structure of a gel on capillary jet breakup.

By contrast, it is clear that dilatant liquids should demonstrate an increased
stability in the necking sections of capillary jets and a deceleration of the later
stages of the capillary breakup. A relatively rapid growth of the initial axisymmetric
perturbations leads to an increase of the effective viscosity in the necking sections
of the jet and its transformation into a net of practically spherical droplets connected
by tiny threads. The results of the numerical calculations for dilatant liquids by
Yarin [29] are depicted in Fig. 1.23.
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The inset in Fig. 1.23 shows a characteristic deceleration of the later stage of the
capillary breakup of a dilatant jet, when significant rates of elongation in the liquid
threads connecting the drops are reached, and the corresponding “reinforcement” of
the liquid in the threads occurs. At this late stage, the evolution of the jet surface is so
slow that the calculations can be made in the inertialess approximation.

The comparison of the results for the capillary breakup of viscous Newtonian
(Figs. 1.6 and 1.7), pseudoplastic (Figs. 1.21 and 1.22) and dilatant (Fig. 1.23) liquids
demonstrates a very strong influence of the rheological properties of liquid on both the
breakup time and the drop shape. Liquid jets with strongly expressed dilatancy
are characterized by a relatively rapid transition to a quasi-steady stage with an almost
fully developed beads-on-a-string structure of practically spherical drops (in distinc-
tion from the pseudoplastic liquid jets whose breakup is completely determined by the
magnitude and form of the initial perturbations). The estimate of the breakup time
of the beads-on-a-string structure of dilatant jets given in Yarin [29,] reads

K 1/n
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Fig. 1.23 Capillary breakup of a dilatant jet [29]. The parameter values are: K/p= 9.43 x 10~*
mz/so's, alp = 34.7 x 107° m3/s2, n=1.14,a = 0.06 x 1072 m, the perturbation wavelength
/.= 1.98 x 1072 m. (a) The evolution of the jet profile corresponding to a half wavelength of the
perturbation (the cross-sectional radius is rendered dimensionless by its unperturbed value a, the
longitudinal coordinate x — by 4, time — by T = 6.08 x 1072 s);1—-t=52-t=10,3-t=13,
4 —t = 21.85. The evolution from curve 3 to the dashed curve 4 was calculated in the inertialess
approximation. (b) Shape of the jet emerging at the moment of its breakup corresponding to one
perturbation wavelength. The inset in (b) shows the evolution of the radius in the jet cross-section
where the breakup takes place (Courtesy of Pearson Education)
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Fig. 1.24 Capillary breakup - i
of a thin jet of 0.02 wt% % O

aqueous solution of poly(oxy

ethylene) WSR-301 [29]. The

unperturbed cross-sectional jet 2 -
radius @ = 2.74 x 10" m.

(1) The results of the numerical

simulations. (2) The

experimental image. (3) The 3 /\
analytical asymptotic solution w
by Yarin [29, 111] (Courtesy of

Pearson Education)

Various liquids (first of all, polymer solutions) demonstrate “memory” effects, i.e.,
viscoelasticity. Among the experimental works devoted to capillary breakup of dilute
polymer solution jets, an important role was played by [110]. In the experiments of
[110], the axisymmetric capillary perturbations began to increase similarly to their
growth in the corresponding jets of pure solvents. However, at the later stage capillary
jets of dilute polymer solutions formed the beads-on-a-string structure (see the photo-
graphic image 2 in Fig. 1.24 from Yarin [29]). This structure appears to be amazingly
long-living. As a result, the jet length to breakup sharply increases compared to the
corresponding jets of pure solvents (with practically the same values of density,
surface tension, and the initial cross-sectional radius and velocity). An increase in
the polymer concentration results in suppression of the initial fast perturbation growth
after a jet is issued from the nozzle. In this case such a jet has an appearance of a smooth
cylinder. Only at a significant distance from the nozzle, the visible axisymmetric
perturbations become apparent on the jet. This pattern was fully corroborated by the
later experiments in [112, 113] and in numerous consequent works.

One of the reasons of the enhanced stability of viscoelastic jets is related to the
fact that they can develop significant longitudinal stresses during their flow inside
the nozzle or in the transitional zone of the jet formation beyond the nozzle exit,
which do not have enough time to relax during capillary breakup of the free jet. The
physical reason of the emergence of significant longitudinal stresses is in the coil-
stretch transition of polymer macromolecular coils in the converging part of flow
near the nozzle entrance or exit. The presence of the longitudinal stresses in
polymer liquid jets was experimentally demonstrated in [114, 115] using observa-
tions of bending perturbations imposed on straight jets (see some additional detail
below). It is emphasized, that this is a nontrivial phenomenon. Indeed, free non-
electrified jets are not pulled at their leading edge. Therefore, a jet can continue to
be stretched only if the deformation from the unloaded leading edge does not have
enough time to reach the nozzle exit [116, 117]. This can happen if the jet velocity
is higher than the speed of propagation of waves of the elastic stresses (the elastic
“sound”), i.e., the jet is “supersonic” in a sense. On the other hand, if a jet
propagates slowly, it will be “subsonic” and completely unloaded. Then, after
being issued from a nozzle, a viscoelastic jet abruptly swells, a phenomenon called
die swell in the fiber spinning technology.
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The appearance of significant longitudinal elastic stresses represents itself only
one of the manifestations of stretching of macromolecular coils in jets of polymer
solutions. Sometimes the measured stresses are so large (e.g., of the order of 10-100
kPa [115]) that one can speak about an almost complete stretching of macromole-
cules along the jet. However, this alone does not fully explain the mechanism of
stabilization of jets by macromolecular additives. Some additional mechanisms are
discussed below.

Formation of the beads-on-a-string structure at the late stage of capillary breakup
of dilute polymer solution jets is also directly related to the coil-stretched transition
of macromolecular coils in such jets. The very fact of a “long life” of the emerging
tiny threads between the growing drops (cf. Fig. 1.24) demonstrates an unusual
resistance of liquid in them to any further deformation. A thin thread is squeezed
radially by the capillary pressure g/a. Therefore, liquid in the thread flows axially
toward the two ends attached to the neighboring drops. The effective longitudinal
stress is also of the order of g/a. In a viscous Newtonian liquid, such longitudinal
stress will result in the following rate of elongation

2 dR o
R dt  3uR (1.65)

Therefore, measurements of the rate of thread self-thinning da/(adr) reveal the
value of the effective viscosity of liquid u. The results of such experiments with
dilute polymer solution jets and threads [118—120] revealed the values of the
effective viscosity that are larger than the solvent viscosity or the shear viscosity
of the same solution by 3—4 orders of magnitude. For example, for dilute 0.02 wt%
aqueous solution of poly(oxy ethylene) WSR-301, the elongational viscosity was
found to be u.; = 7 Pa s, whereas its shear viscosity was p, = 3 X 1073 Pa s. This
approach resulted in the development of a new type of an elongational rheometer
for dilute polymer solutions [118-122].

The theoretical studies of the capillary breakup of viscoelastic jets were seem-
ingly in disagreement with the experimental results for quite some time. The linear
stability analysis of the effect of the elastic stresses on the capillary instability of
capillary jets always (irrespective of the viscoelastic constitutive equation used)
leads to a conclusion that small axisymmetric perturbations in viscoelastic liquid
jets grow faster than in the corresponding Newtonian jets of the same viscosity
[110, 123—-128]. The reason of that is quite elementary: in the framework of the
linearized small perturbation theory, when the unperturbed state corresponds to an
unloaded liquid at rest, the elastic stresses are of the order of the square of the
perturbation amplitude, and thus, are negligibly small. As a result, the role of
elasticity is reduced to a decrease in the effective viscosity, which makes the jet
more unstable. In other words, a Newtonian liquid is rigid, whereas its linearized
viscoelastic counterpart is elastic, i.e., weaker than the rigid originator and thus
prone to a faster perturbation growth rate. The resolution of the above-mentioned
disagreement can be achieved if a jet with significant longitudinal elastic stresses is
taken as an unperturbed state [29, 111, 127]. According to the results of these
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works, it is possible to state that a fast growth of the axisymmetric perturbations of
capillary jets of viscoelastic liquids is possible only after a full relaxation of such
longitudinal stresses, i.e., with a delay of the order of the relaxation time of liquid 6.
Perhaps that is the reason of a long absence of visible perturbations on the jets of
semi-dilute polymer solutions in [110].

Yarin et al. [29, 111] gave a theory of the capillary breakup of thin jets of dilute
polymer solutions and formation of the bead-on-the-string structure (some addi-
tional later results can be found in [90]). The basic quasi-one-dimensional equations
of capillary jets (1.49) and (1.50) are supplemented with an appropriate viscoelastic
model for the longitudinal stress. Yarin et al. [29, 111] used the Hinch rheological
constitutive model, which yields the following expression
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The last term on the right hand side in (1.66) expresses the elastic stress through
the components of the orientation-deformation tensor L. The evolution of this
tensor in the jet flow is described by the following equations accounting for
macromolecular stretching and relaxation

OL. . OL. ou 2
“ Y KL O — KoKy (L — 1.
al‘ + U 6)(,‘ 1Lxx 8}( 2 3( XX 3)7 ( 67)
OL,, OL,, oU 2
e e O SCA 00 O S 1.
a V% by gy — R\ B m 7 ) (1.68)
2+ Ly Nb
1 yy 1 Ea Ky — (1.69)

C3r2+42Ly + Ly

Nb— /2L, + Ly’
2r

01/2Ly, + Ly,

In (1.66)—(1.70), u denotes solvent viscosity, ¢ is the number of macromolecules
in unit volume, b is the length of Kuhn segments in macromolecule, N is the number
of Kuhn segments in macromolecule, » = bN'/? is of the order of the equilibrium
macromolecular coil size, § = 6mur/ic is the relaxation time, x the elasticity of
macromolecular coils. According to the second equation (1.69) macromolecules
cannot be stretched beyond their fully expended length Nb.

The results of the numerical calculations based on (1.49), (1.50), and (1.66)—(1.70)
depicted in Figs. 1.24 and 1.25 reveal the evolution in time of a jet segment
corresponding to one wavelength of perturbation. The relevant dimensionless groups
for viscoelastic jets are the volume fraction of the macromolecular coils in solution in

K; = (1.70)
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Fig. 1.25 The emergence a
of the beads-on-a-string l |
structure during capillary b

breakup of a thin viscoelastic
jet (Yarin [29]). The values
of the dimensionless groups
are o =0.419, De” ' = 0.21 x
1072, Ly =2.5. (a) 1 = 0, (b)
=037 x 10735, (¢)
t=0.56 x 107 to 3.04 x
10725 (Courtesy of Pearson
Education)

equilibrium ¢ =4 nier’/3, the inverse Deborah number De ' = ual(o0) = kaf(6nro),
and L, discussed below. The inverse Deborah number represents the ratio of the
characteristic time of the capillary breakup affected by viscous forces to the elastic
relaxation time. It can also be interpreted as the ratio of the initial modulus of
elasticity of macromolecular coils to capillary pressure. The value L represents the
initial value of the longitudinal component of the orientation-deformation tensor L,
L,x, which characterizes the initial axial elongation of macromolecular coils. The
ratio of the initial elastic energy to the surface energy of the jet £, can be expressed as
Eo =9 @De ™ 'Ly/8. The results in Fig. 1.25 correspond to 0.03 wt% aqueous solution
of poly(oxy ethylene) WSR-301. In the case of Ly = 2.5, the value of Eg = 2.5 x 10,
which shows that the effect of the elastic stresses at the early stage of perturbation
growth is small. However, the elongational flow in the emerging thin threads
connecting growing drops results in the axial orientation and elongation of macro-
molecular coils. Such an elongation can reach one third of the fully stretched
macromolecular length. The macromolecular stretching at this level appears to be
sufficient for such a significant reinforcement of liquid in the threads that the outflow
from them into drops abruptly decreases, as the jet evolution decelerates as a whole.
As a result, the beads-on-a-string structure forms. It is emphasized that a significant
stretching of macromolecular coils in the jet after some delay emerges almost
abruptly. In the numerical calculations the beads-on-a-string structure can be
observed almost unchanged up to the times, which are fivefold the liquid relaxation
time (0 = 6.15 x 1072 s). At this moment the calculations were terminated. If the
initial axial elongation of macromolecular coils is increased up to Ly = 100 (Ey = 0.1)
with the other parameters being unchanged, the initial elastic stresses begin to affect
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the initial stage of perturbation evolution. This results in a delay of the order of 2.50,
during which there is no visible perturbation growth in correspondence with the
predictions of the linear stability theory. After a partial relaxation of the longitudinal
stress, a relatively slow perturbation growth begins. It results in an increase of the
longitudinal stresses in the jet contractions, stretching of macromolecular coils, and
the emergence of the beads-on-a-string structure. An increase in the solvent viscosity
leads to an increase in the relaxation time, as well as in the delay time. In general, the
numerical results confirm the stabilizing effect of the elastic stresses at both the initial
stage of the evolution of capillary viscoelastic jets, and at the stage of formation
of beads-on-a-string structure. The following numerical works also predicted forma-
tion of beads-on-a-string structure in capillary viscoelastic jets using quasi-one-
dimensional or three-dimensional (axisymmetric) equations and different viscoelastic
rheological constitutive equations [90, 129, 130].

Since the beads-on-a-string structure evolves very slowly, it can be considered as
a succession of nontrivial (non-cylindrical) quasi-equilibrium shapes of an elastic
material subjected to the action of surface tension and a very slow viscoelastic
relaxation. The asymptotic analysis of such jet shapes under the assumption that
the material represents itself a neo-Hookean body was conducted by Yarin et al. in
[29, 111]. It revealed that the nontrivial quasi-equilibrium jet shapes represent
themselves a succession of spherical drops of radius a = (3//4a)"” (with 1 being
perturbation wavelength), which are fully relaxed and practically do not possess
any elastic stresses, and strongly stressed thin uniform threads connecting the drops.
The cross-sectional radius of these threads is a(e/2)"/?, where ¢ = 2Ga/o is the ratio
of the modulus of elasticity to capillary pressure. This analytical solution is
compared to the experimental data and the results of the numerical simulations in
Fig. 1.24 (curve 3). This analytical solution for beads-on-a-string structure was
later confirmed in [131]. The thread stability can be sustained if the gradual
thinning would be accompanied by an increase of the longitudinal elastic stress
that is faster than the corresponding decrease of the surface tension force moa. The
initial cylindrical shape would be always stable if the liquid stiffness is sufficiently
high, i.e., 7, (t = 0) a/c >> 1. In the latter case there is no nontrivial (non-cylindrical)
jet shapes.

However, in experiments even beads-on-a-string structure ultimately breaks up.
Yarin [29] attributed the weakening and breakup of the beads-on-a-string structure
to mechanical degradation of polymer macromolecules in strong elongational flows
in the tiny threads between drops. Another possible mechanism of weakening of the
threads is related to viscoelastic relaxation leading to a partial unloading there
[129]. As a result, new cycles of the capillary instability appear in a cascade-like
manner and new drops are formed between the original beads in the structure. These
“iterative instabilities” were revealed in the experiments of [132]. It is emphasized
that the duration of the uniform stretching in thin threads of dilute polymer solu-
tions is very long. The uniform self-thinning in many cases proceeds to such sizes
where the “iterative instabilities” cannot be observed optically. Such threads are the
key element of the elongational rheometers for dilute polymer solutions [118—121]
where the threads emerge either between the drops in a jet or between small solid
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plates. The dynamics of the uniform thread self-thinning under the action of
capillary pressure was developed in [118-120, 132—135]. This theory predicts the
existence of an intermediate universal regime of thread thinning according to the
following exponential law

a:aexp(—?)io) (1.71)

where «a is the cross-sectional thread radius at a certain moment of time, i.e., t = 0.

Comparing of (1.71) with the experimental data allows for measurements of the
viscoelastic relaxation time 0 of dilute and semi-dilute polymer solutions.

Straight jets of concentrated polymer solutions and melts typically possess such
high elastic stresses that surface tension becomes negligibly small and capillary
breakup does not happen. The latter opens doors to such important technologies as
melt spinning of man-made polymer fibers, as well as spinning of optical fibers,
where the Newtonian viscosity of molten glass dominates surface tension and also
suppresses capillary breakup. These are the key technological processes of the
textile, non-woven and optoelectronic industries. They demonstrate fascinating
dynamics, which are, however, out of scope of the present section. An interested
reader is addressed to the following monographs by Yarin, Ziabicki and Kawai
discussing these issues: [29, 136, 137].
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Chapter 2

Bending and Buckling Instabilities

of Free Liquid Jets: Experiments

and General Quasi-One-Dimensional Model

A.L. Yarin

Abstract This chapter deals with liquid jets bending due to the aerodynamic
interaction with surrounding air or buckling due to the impingement on a solid
wall. The experimental evidence is considered and linear and nonlinear theories
describing perturbation growth developed in the framework of the quasi-one-dimen-
sional equations of the dynamics of liquid jets moving in air are discussed. Jets of
viscous Newtonian or rheologically complex liquids (in particular, viscoelastic
polymeric liquids) are considered. In addition, bending instability of the electrified
liquid jets (in particular, polymeric liquid jets in electrospinning) is considered.
In the latter case, both the experimental and theoretical aspects are tackled.

Keywords Bending instability of liquid jets - Buckling of liquid jets - Electrified
liquid jets - Electrospinning - Elongational rheology - Newtonian and rheologically
complex liquids - Quasi-one-dimensional equations of the dynamics of liquid jets -
Small and finite perturbations - Viscoelastic polymeric liquids

Introduction

Thin liquid jets demonstrate not only capillary breakup considered in Chap. 1 but
some other regular long-wave forms of instability and breakup, e.g., bending
instability of jets moving in air with a relatively high-speed U or of the electrified
jets, as well as buckling of thin, highly viscous jets impinging on a wall [1].
Theoretical investigation of the dynamics of bending instability of liquid jets
rapidly moving in air began in the seminal works of Weber and Debye and Daen
[2, 3]. This leads to a rather complicated coupled problem on a dynamic interaction
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of air flow with a jet when the jet evolution is to be found as well. The linear
stability analysis of the temporary planar bending instability of an inviscid jet in [3]
resulted in the following characteristic equation for the growth rate y of bending
instability based on the three-dimensional equations of fluid mechanics

V:k\/_pg_lﬂm K)o k(K o

In (2.1) k = kay is the dimensionless wave number with k being the dimensional
wave number and a, the unperturbed jet cross-sectional radius; p and ¢ are the
density and surface tension of the jet liquid, respectively; the gas density is denoted
by p,; and I, and K, denote the modified Bessel functions. From several terms in
the analysis of [3] describing the dynamic action of air, we keep in (2.1) only the
largest one, of the order of ngz, since p, << p. The surface tension is a stabilizing
factor in the case of the bending instability, since bending results in an increase of

the jet surface area [I{(k)>0, Kj(k)<O0 for any k]. Beginning from a certain
critical value of the relative air velocity U, the first (positive) term under the square
root on the right hand side in (2.1) acquires a larger magnitude than the second
term, which corresponds to the onset of the bending instability and an exponential
growth of the bending perturbations. The bending instability is determined by a
peculiar pressure distribution in gas over the jet surface: in the framework of the
inviscid gas model, gas pressure on convex surface elements is lower than on the
concave ones.

General Quasi-One-Dimensional Equations of Dynamics
of Free Liquid Jets

The theory of Debye and Daen [3] does not account for a number of important
factors. The most important of them is the effect of liquid viscosity, which should
counteract to the perturbation growth. In addition, the experiments show that the
growing bending perturbations are three-dimensional rather than planar. Also, in the
case of low-viscous liquid jets, bending perturbations grow together with the axisym-
metric capillary perturbations, which significantly change the cross-sectional sizes
and shapes during bending [4]. Moreover, all these factors are dominant in reality.
Therefore, the analysis of the dynamics of the bending perturbations in the frame-
work of an inviscid liquid model is intrinsically contradictory. Accounting for these
factors in the framework of the Navier—Stokes equations in the context of the bending
perturbations of liquid jets is tremendously difficult. However, these difficulties can
be relatively easily overcome in the framework of the quasi-one-dimensional descrip-
tion of liquid motion in the bending jets. In the works of Yarin et al. [1, 5, 6], the
general quasi-one-dimensional equations of the straight and bending jets were
derived from the integral balances of mass, momentum, and moment of momentum,
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as well as by averaging the three-dimensional equations of hydrodynamics over the
jet cross-section [7]. The quasi-one-dimensional continuity and momentum equa-
tions, as well as the moment of momentum equation for the general case of motion of
a thin liquid jet in air derived by Yarin et al. [1, 5-7] read
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These equations are a close hydrodynamic analog of the equations of the Euler-
Bernoulli beam theory [8]. They are related to the three-dimensional equations of
hydrodynamics (the Navier—Stokes equations in the case of viscous Newtonian
liquids) exactly as the equations of the Euler-Bernoulli beam theory are related to
the three-dimensional equations of the theory of elasticity. The hydrodynamics
of thin liquid jets is reduced to finding the evolution in time ¢ and over a spatial
coordinate s of the “integral” parameters — the cross-sectional area f, the velocity of
the center of mass of a liquid cross-section V, and the angular velocity of this cross-
section €. Equation (2.2) is the mass balance (the continuity equation). Equation
(2.3), the momentum equation, represents itself the balance of forces acting on a jet
element, namely, the inertial, internal and external forces. Equation (2.4) represents
itself the moment of momentum balance, in particular, its left-hand side expresses
the rate of change of the moment of the inertial forces. The following notation is
used in (2.2)-(2.4)
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Here, R and X denote the position vectors of the jet axis, and of a point in the
jet cross-section, respectively (X is reckoned from the center of mass of a jet
cross-section D(s, ) and belongs to its plane); F is the body force per jet element
of unit volume; g and m are the distributed force and moment of force imposed
on the jet by the environment, respectively; Qs the shearing force acting in the
jet cross-section, which is determined using (2.4); & is the jet axis curvature; p is
liquid density. Here and hereinafter, i, B, and 7 denote the principal unit normal,
unit binormal, and unit tangent to the jet axis, respectively. The angular velocity
of the trihedron 1, b and 7 associated with the jet axis is denoted @. Subscripts n,
b, and 7 denote projections on the principal normal, binormal, and tangent to the
jet axis, respectively; y is the coordinate reckoned along the principal normal. In
the case of Newtonian viscous liquid, the magnitude of the longitudinal force in
the jet cross-section P and the moment of the internal stresses M are related
to the kinematic parameters in a cross-section of radius a by the following
expressions

P= {w (1 a‘? — kVn) - GG] f+ P, (2.9)
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Here, x is the geometric torsion of the jet axis, u and ¢ are the viscosity and
surface tension coefficient, respectively, and [/ is the moment of inertia of the jet
cross-section.

The system of (2.2)—(2.14) describes both the axisymmetric capillary instability
of straight jets ((1.49)—(1.51) in Chap. 1 represent its particular case) and bending
instability of liquid jets. It is closed if the jet cross-sections possess double symme-
try (in particular, it is closed for jets with circular cross-sections). This system of
equations was derived by Yarin et al. in [1, 5-7] assuming the jet slenderness and
the absence of significant shear tractions at its surface. These assumptions are
sufficiently accurate in the case of highly viscous jets moving in air. In the cases
of short wavelength perturbations and large axis curvatures, as well as in the case
of liquid jets propagating in liquid medium of comparable viscosity, the quasi-
one-dimensional description, strictly speaking, is inappropriate. The assumptions of
the jet slenderness and of the absence of significant shear tractions at the jet surface
lead to the following additional restrictions on the internal kinematics in the jet,
namely to

1 9V, 1 0V,
Qn:———b—KVn, Qb:I 8S —KVb‘i'KV-” (215)

The kinematic equation, which should be added to the system of (2.2)—(2.15),
determines the location of the jet axis in space in accordance with the velocity field
in it

-

=V - (V-7 (2.16)
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Equation (2.16) is written here for the simplest case where the tangent to the jet
axis is inclined at any point to a certain straight line O, ¢ by an acute angle and it is
possible to introduce a Cartesian coordinate system O;&n{ with the corresponding
unit vectors 1, fand K and to describe the jet axis using the following equations

E=s, n=H(s1), c=2Z(s,0), R=1i¢ +jH+kzZ (2.17)

In the other cases, the jet axis parameter s can be chosen differently, which leads
to changes in the expression for 8§/ or.

The distributed force and moment of force imposed on the jet by the environ-
ment ¢ and m should be specified separately. In particular, in the case of small
spatial perturbations of the jet axis when it rapidly moves in air, the inviscid flow
theory yields the following expressions

- SPH LOPZN
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Equation (2.18) for @ means that it is directed along the normal (as — ).
For the finite bending perturbations, the drag force imposed by a relative air flow
should be accounted in addition. Then, for example, for planar jet bending, (2.18)

are generalized by the following expressions
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These expressions close the system of the general quasi-one-dimensional equa-
tions of free liquid jets moving in air with arbitrary speeds.

In the context of the electrified jets in electrospraying and electrospinning, the
distributed force g originates from the Coulomb repulsion of different parts of the
jet surface. Then, it is given by the following expression [9-11]

-5/2

g=—¢*In (é> kil (2.20)
a

where e is the electric charge at the jet surface per unit jet length and L is a cutoff
length along the jet axis. Comparison of (2.18) and (2.20) shows that both the
aerodynamic and electric bending forces are directed along the normal (as — 1)
and should result in a very similar aerodynamically or electrically driven bending
instability, as discussed below.

Linear Stability Theory for Bending Breakup of Newtonian
Liquid Jets Moving in Air

The solutions of a particular version of the quasi-one-dimensional equations of the
jet dynamics in the case of capillary breakup, when they can be reduced to
(1.49)—(1.51) of Chap. 1, were discussed there. Here, we discuss the applications
of (2.2)—(2.19) to the aerodynamically-driven bending instability of the uncharged
liquid jets rapidly moving in air following the work of Yarin [1, 5, 6]. The
characteristic equation for the growth rate of small bending perturbations of highly
viscous slender liquid jets moving in air in the case of the temporal instability reads
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According to (2.21), both planar and three-dimensional (helical) small bending
perturbations increase with the same growth rate if the relative velocity of gas
flow is

Us -2 (2.22)
Pg4o

when the dynamic action of air can overbear the resistance of surface tension to
growth of bending perturbations. The growth rate of the axisymmetric capillary
perturbations is much smaller than that of the bending perturbations for sufficiently
viscous liquids when the inequality

e

pa%ngz > 1 (2.23)
holds. In this case, deformations of the jet due to the capillary Rayleigh-Weber
instability can be neglected during bending.

It is worth noting that at u = 0 (2.21) coincides with the long-wave limit (k — 0)
of (2.1).

The breakup length of jets in the case of the aerodynamically-driven bending
instability is determined by the following expression [1, 6]
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where A = In(may/{o), m = 24, {y is the initial amplitude of bending perturbations.
The value of the factor m is chosen in agreement with the experimental data [4] and the
energy estimates, which show that as the bending perturbation amplitude reaches the
value of the order of a few cross-sectional radii, the jet is almost immediately squeezed
by the air pressure difference at its surface. Equation (2.24) predicts a decrease in the
jet breakup length at higher flow velocity U, which agrees with the experimental data.
(Itis emphasized that the breakup length Ly eqip Of straight capillary jets experiencing
Rayleigh-Weber instability increases proportionally to U).

Nonlinear Theory of Finite Bending Perturbations of Liquid
Jets Moving in Air

In the works of Yarin [1, 6], the aerodynamically-driven nonlinear bending insta-
bility of thin jets of highly viscous liquids rapidly moving in air was studied
numerically by solving (2.2)—(2.19). It was shown that the nonlinear effects, in
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particular, the most important of them — the viscous stresses originating from the
elongation of the bending jet axis — decelerate growth of bending perturbations.
However, for the estimates of the perturbation amplitudes and timing up to the
amplitudes of the order of (2—4)a, one may extrapolate the predictions of the linear
theory with sufficient accuracy [as it was done in derivation of (2.24)]. The
presence in (2.19) for g of the quadratic drag force leads to a slow sweep of bending
perturbations down the gas flow in addition to growth of their amplitude (the latter
is due to the “lift” component of the aecrodynamic force ). The configurations of
the jet axis corresponding to one length of the bending perturbation at several
consecutive time moments denoted by numerals by the curves are shown in Fig. 2.1.
It is seen that the jet axis at the end takes a form of a cliff which leads to an
“overturning.” At this moment, the amplitude of the bending perturbation is of the
order of 4aq. Figure 2.2 depicts the corresponding jet section at the moment of
“overturning.”

The rate of growth of the bending perturbations, as well as its deceleration due to
the nonlinear effect (the longitudinal viscous stresses resulting from stretching of the
jet axis at the nonlinear stage of bending) can be also calculated based on the energy
balance given by Yarin [1]. Namely, the work of the distributed aerodynamic
bending force  is spent on changes in the kinetic and surface energies and viscous
dissipation in the jet. Assuming sinusoidal shape of a bending section of a jet, one
arrives at the following equation for the amplitude H(¢) of the bending perturbation
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Fig. 2.1 Jet evolution in the case of the bending perturbations of finite amplitude affected by air
drag force [1]. All the parameters in the plot are dimensionless. As a length scale, the wavelength

1/6
of the fastest growing bending mode in the linear approximation I, = 2r [(9 /8)p*ag) (ppg Uz)]
is chosen. Time denoted by the numerals near the curves is rendered dimensionless by the

1/3
characteristic time of small bending perturbations, T = [(p,ua(z)) / <p§U4>] (Courtesy of

Pearson Education)
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Fig. 2.2 Predicted
instantaneous shape of

a jet with a large-scale
aerodynamically-driven
bending instability
corresponding to the jet axis
configuration at t = 7 in

Fig. 2.1 [1]. The cross-
sectional radius ranging from
65% to 80% of its initial value
(Courtesy of Pearson
Education)
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Fig. 2.3 The amplitude of the bending perturbation of a Newtonian liquid jet with u = 1 Pa s [1].
Curve 1 was obtained by solving the complete system of the quasi-one-dimensional equations
of the jet dynamics (2.2)—(2.19). The straight line 2 corresponds to the linear theory: H = Hyexp
(yt) with y found from (2.21). Curve 3 was obtained by numerical integration of the nonlinear
energy balance, (2.25). The length scale is taken as [, = 0.943 x 1072 m and T = 0.0047 s is used
as a time scale (Courtesy of Pearson Education)

In (2.25) primes denote time differentiation. The above-mentioned nonlinear
effect related to stretching of the jet axis by finite bending perturbations is given by
the third (nonlinear in H) term on the left-hand side in (2.25). The linearized version
of (2.33) corresponds to small bending perturbations and readily admits the solution
H = exp(yf). The amazing fact is that the growth rate y thus obtained satisfies the
exact (2.21). The nonlinear numerical solution of (2.25) is depicted in Fig. 2.3
together with the numerical solution of the quasi-one-dimensional equations and
the result of the linear theory.

Bending Instability of Rheologically Complex Liquid Jets

Capillary instability and breakup of thin jets of dilute polymer solutions considered
in section Capillary Breakup of Rheologically Complex Liquid Jets of Chap. 1
represents itself an example of the so-called strong flows, in which coil-stretch
transition of macromolecular coils can happen because the elongation rate is so
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high that viscoelastic relaxation does not succeed to fully unload the liquid. The
corresponding presence of significant elastic stresses results in such peculiar non-
Newtonian phenomena as formation of the beads-on-a-string structure. Bending
instability of non-Newtonian liquids, in particular, of concentrated polymer solu-
tions and melts, also reveals a wide spectrum of nontrivial deviations from the
Newtonian behavior, related to a number of important applications. Some of them
are discussed below.

The bending instability of jets of power law liquids rapidly moving in air was
studied by Yarin [1] in the framework of the energy balance similar to the one
which led to (2.25). An equation for the bending amplitude H obtained, which
generalizes (2.25) for the power law liquids, reveals that the evolution of the
bending perturbations of pseudoplastic jets (n < 1) is dominated by an initial
stage where the perturbation amplitude and rates of deformation are small (similar
to the capillary breakup of pseudoplastic jets discussed in Ch.1). On the other hand,
in bending of dilatant (n > 1) high-speed jets, an increase of the effective viscosity
at a later stage significantly decelerates perturbation growth.

The dynamics of bending perturbations of high-speed viscoelastic jets of
uncharged polymer solutions and melts, as well as of concentrated micellar solu-
tions was studied by Yarin [1]. One of the important applications of such jets is in
melt blowing — a technology used to produce nonwoven mats of polymer nanofibers
[12]. In Yarin [1], it was shown that the growth rate of small bending perturbations
is determined by the following characteristic equation

, 3 i . o U a6y,

a0 (ﬂa?) a3 | pa%>k ! (220
which generalizes (2.21) to the case of viscoelastic liquid jets (the Newtonian case
is recovered with the relaxation time 0 = 0). In (2.26) the initial longitudinal stress
in the jet can either be absent (69 = 0) or present and “frozen” gy = const # 0.

If 6y =0, (2.26) predicts an accelerated growth of small bending perturbations of
viscoelastic liquids compared to a corresponding Newtonian liquid (with the
same values of p, u, ¢, ag, and U) due to a decrease in the effective viscosity per =
u/(1 4 y0). The initial stress go > 0 is a stabilizing factor, which diminishes the
growth rate 9, or can even prevent bending instability if (oo + a/ag) > ngz. The
following dimensionless groups govern the bending perturbations of viscoelastic
jets
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Figure 2.4 depicts the growth rates predicted from (2.26) for two jets of the
upper-convected Maxwell liquids, which are shown by curves 1 and 3. They
correspond to different values of the relative gas velocity (U for curve 1 is higher
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Fig. 2.4 Growth rate of small 4
bending perturbations of 7.8ec
viscoelastic jets of the upper- 100
convected Maxwell liquid [1].
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Fig. 2.5 The amplitude Y of the bending perturbations of a jet of the upper-convected Maxwell
liquid is shown by curve 1 [1]. The values of the dimensionless groups are: I1; = 107>, IT, = 0.156 x
10%, T3 = 0.64, I, = II5 = 0. Curve 2 depicts the amplitude of the corresponding jet of
Newtonian liquid (IT; = 0) (Courtesy of Pearson Education)

than for curve 3). Curves 2 and 4 show the results for the corresponding Newtonian
liquid jets, with curve 2 corresponding to curve 1, and curve 4 to curve 3.

The nonlinear dynamics of the bending perturbations of high-speed viscoelas-
tic uncharged jets moving in air reveals a new phenomenon found by Yarin [1].
Figure 2.5 shows that at the nonlinear stage the growth of the perturbation
amplitude is not only drastically slowed down due to the longitudinal stresses
resulting from the jet elongation (similar to Newtonian jets discussed above), but
the amplitude can also decrease and oscillate. These latter phenomena result from
the competition of the inertial and elastic forces. A jet element undergoing
bending misses its “equilibrium” position due to its inertia, and the jet axis
becomes overstretched, which produces an extra longitudinal elastic stress. This
stress tends to contract the jet element. However, during the contraction stage
(when the bending perturbation amplitude decreases), the jet element once more
misses its “equilibrium” position due to its inertia and becomes overcompressed.
This initiates a new cycle of the oscillations. Viscous stresses gradually dissipate
the energy of these oscillations.
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Buckling of Thin Liquid Jets

G.I Taylor in his seminal works [13, 14] discovered a new instability mode of
highly viscous jets, namely buckling of slowly moving jets impinging onto a wall
when they are subjected to a longitudinal compressive force. In one of his experi-
ments, compressive forces resulted from squeezing the ends of a liquid thread
floating on the mercury surface. In another experiment, highly viscous jets were
either moving vertically downward in a liquid and passing into a lower layer of
higher density, which created a sudden increase in the compressive buoyancy force,
or impinging onto a wall. The latter case was experimentally studied in detail in
[15, 16]. These works showed that buckling occurs only in very slowly moving
highly viscous jets. The jets with the values of the Reynolds number Re exceeding
the critical threshold of Re., =~ 1.2 were stable and straight. Therefore, in this case,
the buckling instability emerges when the Reynolds number decreases. On the other
hand, there is also a restriction on the jet lengths L from nozzle to wall. If L is less
than a certain critical value L, there is no buckling. Immediately after the onset of
the buckling instability (at Re < Re,, and L/dy > L./d, with d, being the nozzle
diameter) a two-dimensional bucking (folding) sets in, and the jet is deposited on
the wall as folds. However, with a further increase of the ratio L/d,, bucking
perturbations become spiral-like. The jet axis becomes three-dimensional, which
signifies the bifurcation from folding to coiling, and the jet is deposited on the wall
as coils. In the experiments [15], the dependences of L., and the folding and coiling
frequencies on the liquid jet viscosity, its velocity and the nozzle diameter were
established. Buckling was also observed in horizontal jets moving over the free
surface of a denser liquid (such jets widen beginning from the nozzle, in distinction
from gravity-driven jets, which initially become thinner and begin to widen only
close to the wall onto which they impinge). All the observations confirmed the idea
of Taylor [14] that buckling of liquid jets is determined by the presence of the
longitudinal compressive force acting in the jet and in this sense is a direct analog
of the elastic buckling of bars and columns studied by Euler [8]. A detailed theory
of the onset of buckling instability (folding of highly viscous liquid jets and
films-planar jets-impinging on a wall) was given by Yarin et al. in [1, 17, 18]
based on the general quasi-one-dimensional equations of jet dynamics
(2.2)-(2.19) (see also the later efforts directed on a nonlinear buckling theory
in [19]).

Recently, jet buckling on laterally moving solid surfaces nearly perpendicular to
the jet axis was reported [20-22], which is of interest, in particular, in relation to
writing by short straight electrically driven jets. The stability analysis in that case
was also based on the quasi-one-dimensional equations of the dynamics of liquid
jets similar to (2.2)—(2.19). It revealed that the characteristic frequencies of buck-
ling are practically unaffected by the lateral motion of the surface and stay the same
as in the case of liquid jet impingement on a stationary hard flat surface [21, 22].
Moreover, the deposit morphology at the wall is practically unaffected by the
method of jet initiation (gravity-driven jets [20] versus the electrically driven jets
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1 5+ 84 0

Fig. 2.6 (a—f) Comparison of the buckled patterns created by electrified jets of polyethylene oxide
(PEO) in water, collected on glass slides in [22], to patterns produced by the buckling of the
uncharged gravity-driven syrup jets [20]. Note that the gravity-driven syrup jets and their buckling
patterns are about 1,000 times larger than those of the electrified jets of PEO in water. The upper
panel in each pair depicts the results for the electrified PEO jets in [22]. The lower panels show the
similar patterns produced by the syrup jets in [20]. The symbols in the lower right corner of each
panel are the figure number found in [20] (Courtesy of Elsevier)

[22]) as Fig. 2.6 demonstrates. The buckling frequency ® predicted by the linear
stability theory of Yarin et al. [1, 17]
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is in reasonable agreement with the experimental data for w evaluated from the
images similar to those in Fig. 2.6 (d, denotes the initial cross-sectional jet diame-
ter, Q is the volumetric flow rate in the jet, and g is the gravity acceleration).

Bending Instability of Electrified Liquid Jets

The electrified jets of concentrated polymer solutions move in air with low speeds
of the order of 1 m/s. However, they bend due to the Coulombic interactions
discussed above in relation with the electric bending force (2.20). Such jets emerge
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in electrospinning of polymer nanofibers, one of the nanotechnological processes
[9-11, 23, 24]. Comparison of the expressions for the bending forces q in the
aerodynamic and electric cases, (2.18) and (2.20), respectively, reveals that in the
electrically driven bending instability the factor ey’In(L/ag)/may> plays the role of
the factor ng2 in the aerodynamic bending. Accounting for this analogy, it is easy
to see that the electrospinning process is enabled by the fact that the viscoelastic
stresses dominate the surface tension and prevent capillary breakup when the
electric analog of (2.23)

nu?

pe2in(L/ao) > 1 (2.29)
holds (ey denotes the initial electric charge per unit length of a straight jet). If
polymer concentration is too low, capillary perturbations grow on the background
of the bending perturbations, since the inequality does not hold, and nanofibers with
beads are formed, which is also of interest in certain applications [11]. In the case of
electrospinning, the stabilizing role of the viscoelastic stresses in the jet is the key
element of the process, since it aims at production of intact nanofibers, in distinction
from electrospraying, the process where liquid is fully atomized by the electric
forces, which enhances capillary instability.

Several images of bending polymer jets in electrospinning are shown in Fig. 2.7.

The electrospinning jets typically have an almost straight section of the order of
several cm followed by a number of bending loops shown in Fig. 2.7. The region
near the vertex of the envelope cone about the bending loops in this figure was
imaged at 2,000 frames per second. The stereographic images in Fig. 2.7 show the
jet shape in three dimensions. The expanding spiral in this figure is a simple
example of the kinds of paths that were observed in [9]. After a short sequence of
unstable bending back and forth, with growing amplitude, the jet followed a
bending, winding, spiraling, and looping path in three dimensions. The jet in each
loop grew longer and thinner as the loop diameter and circumference increased.
After some time, segments of a primary loop suddenly developed a new bending
instability (secondary loops), similar to, but at a smaller scale than, the first

10 mm 2 mm

Fig. 2.7 Left: Stereographic images of an electrically driven bending instability. The exposure time
was 0.25 ms. The arrow marks a maximum lateral excursion of a loop. Right: An enlarged image of the
end of the straight segment of the jet. The exposure time was 0.25 ms (After [9]. Courtesy of AIP)
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(cf. the smaller loops on the right-hand side image in Fig. 2.7, where the secondary
loops superimposed on the primary ones are clearly seen). Each cycle of bending
instability can be described in three steps. (1) A smooth segment that was straight or
slightly curved suddenly developed primary bending loops. (2) The segment of the
jet in each bend elongated and became a part of spiraling loops with growing
diameters. (3) As the loop length increased, the cross-sectional diameter of the jet
forming the loop grew smaller, the conditions for step (1) re-established on a
smaller scale, and the next cycle of bending instability began resulting in the
secondary loops. This cycle of instability was observed to repeat at an even smaller
scale resulting in a fractal-like jet. The length of such a fractal jet increased
enormously creating nanofibers. In a while, the polymer solution jet lost most of
its solvent due to evaporation in flight, solidified as it dried, and electrospun
nanofibers were collected at some distance below the envelope cone.

The instability mechanism that is relevant in the electrospinning context is
illustrated by the Coulombic interaction of three point-like material elements,
each with charge e, moving on a jet and originally in a straight line at A, B, and
C as shown in Fig. 2.8. (It is emphasized that charge transport in such a jet is
practically purely convective [11]). Two Coulomb forces having magnitudes F =
¢*/r* (in the Gaussian units) push against charge B from opposite directions. If a
bending perturbation causes the charged material element B to move off the line by
a distance & to B’, a net force F| = 2F cos 0 = (2¢/r)é acts on charge B in the
direction perpendicular to the line. This net force tends to cause B to move further
in the direction of the bending perturbation away from the line between fixed
charges, A and C. Then, the growth of the small bending perturbation that is
characterized by 0 is governed in the linear approximation by the second law of
Newton according to the equation

d*s  2é?
jet axis

Fig. 2.8 Tllustration of the
instability, leading to

bending of an electrified jet
(After [9]. Courtesy of AIP)
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where m is the mass, and / is the initial separation between charges A and B in the
straight jet.

The growing solution of this equation, 6 = g exp[(2¢2/ml3)'/%1], shows that
small perturbations increase exponentially. The increase is sustained because the
electrostatic potential energy of the system shown in Fig. 2.8 decreases as ¢°/r when
the perturbations, characterized by ¢ and r, grow.

A detailed theory of the bending instability of the electrified polymer jets in
electrospinning was given in [9, 10] (see also the reviews [11, 23, 24] and refer-
ences therein). Recasting the inequality (2.22) for the onset of the aerodynamic
bending reveals that the destabilizing electric force overcomes the stabilizing effect
of the surface tension if

L
esIn (%> > nayo (2.31)

The equation for the growth rate of small aerodynamic bending perturbations
(2.21) is recast in the following equation for the electrically-driven bending [9, 10]
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The corresponding wavenumber k. and the growth rate 7, of the fastest growing
electrically-driven bending perturbation are given by
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with In(L/ao) = In(1/k,) [10].

The nonlinear stage of the electrically-driven bending instability in electrospin-
ning was studied numerically in [9, 10] using the general quasi-one-dimensional
equations of the dynamics of thin liquid jets described in Section “General Quasi-
One-Dimensional Equations of Dynamics of Free Liquid Jets.” In addition, in [10],
the dynamic equations were supplemented by the equations describing solvent
evaporation, jet solidification, and the effect of these processes on the rheological
behavior of polymeric liquid. Figure 2.9 illustrates the predicted evolution of an
electrospun jet.

The fact that strongly stretched polymeric jets are stable relative to bending
perturbations demonstrated in [9] means that the electrospun jets possess an initial
straight section. It also means that transversal waves can propagate over a stretched
jet as over a string [25, 26] (Fig. 2.10). The widening of a lateral displacement pulse
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Fig. 2.9 Bending instability of a single jet. Only the jet axis is shown at the dimensionless time
moments: (a) 0.19, (b) 0.39, (c) 0.59, (d) 0.79, and (e) 0.99 (After [9]. Courtesy of AIP)
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Fig. 2.10 Propagation and widening of a single lateral displacement pulse on an electrically-
driven jet of a concentrated polymer solution [26]. The interelectrode distance L = 5.5 cm,
potential difference of U = 3 kV, and the electric current / = 100 nA. The jet was straight before
the lateral displacement pulse was applied by a plastic impactor (Courtesy of Elsevier)
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W between t = 0 and t = Ar can be measured from such images. Then, the
longitudinal stress in the polymeric jet is recovered as

w 2

An elongational rtheometer developed in [26] based on this principle revealed
that the initial longitudinal stress created by the electric stretching of a polymeric jet
as it transforms from the modified Taylor cone to a thin jet, is of the order of 10-100
kPa. These values are one or two orders of magnitude larger than those measured
for the uncharged viscoelastic jets. The rheometer also allows evaluation of the
modulus of elasticity and relaxation time of concentrated polymer solutions and
melts.
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Chapter 3
Instability of Liquid Sheets

N. Ashgriz, X. Li, and A. Sarchami

Abstract This chapter relates to the liquid sheets and their instability. Liquid sheet
instability is due to the interaction between the liquid and its surrounding fluid.
When the amplitude of a perturbation grows and reaches a critical value, sheet is
disintegrated forming liquid ligaments. Here, the linear and nonlinear instability of
an inviscid and viscous liquid sheet is discussed, showing the effect of the aero-
dynamic forces on the growth rate of the initially small perturbations. Other effects,
such as the effect of initial velocity profile on the instability are also discussed.

Keywords Liquid sheet instability - Nonlinear sheet instability - Sinuous and
dilational disturbances of a liquid sheet - Thinning liquid sheet - Three dimensional
instability of liquid sheets - Viscous sheets

Introduction

In many spray nozzles, the bulk liquid is first transformed into a liquid sheet prior
to the atomization process. The liquid sheet exiting a nozzle may go through certain
oscillations, which result in the formation of liquid ligaments. The ligaments are
then broken into small droplets, forming the spray. The spray droplet sizes are
generally in the same order as the liquid sheet thickness. Therefore, by forming a
thin liquid sheet one can generate small droplets out of relatively large orifice
nozzles. This chapter discusses the mechanism of sheet instability and its breakup
as a prerequisite to the understanding of the atomization process.

There have been numerous studies on the temporal and spatial instability of
liquid sheet [1—40]. This chapter is mainly on the temporal instability. Among
these, Dombrowski and his coworkers [8—16] conducted extensive studies on
the factors influencing the breakup of sheets and obtained information on the
wave motions of high velocity sheets. More recent analyses are provided by
Senecal et al. [20], and Rangel and Sirignano [21]. This chapter provides only
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the basic sheet instability theories which are being used to model the atomization
process. More detailed review of this topic is provided by Sirignano and Mehring
[22] and Lin [24].

Linear Instability of a Liquid Sheet

In a two-dimensional liquid sheet, the sheet instability is mainly due to the
aerodynamic interactions between the liquid and its surrounding gas. Contrary to
the cylindrical liquid jets, surface tension forces tend to stabilize a planar liquid
sheet. Here the instability analysis of a two-dimensional, viscous, incompressible
liquid sheet of thickness 2a moving with velocity U; through a gaseous medium
moving with velocity U,, having a relative velocity of Uy is considered. The
surrounding gas is considered to be inviscid and incompressible. The liquid and
gas have densities of p; and p,, respectively, and the viscosity of the liquid is L. The
gravitational effects are neglected. The coordinate system is shown on Fig. 3.1. The
x-axis is parallel to the direction of the sheet relative velocity, U,. The y-axis is
perpendicular to the x-axis and its origin is located at the mid-plane of the sheet.
The undisturbed sheet has a uniform thickness 2a, throughout. It is then subject
to small disturbances of the following form: { = {, exp(ikx + wr) on its upper and
lower interfaces (y = a + &1,y = —a + &,, respectively) which deform the sheet.

Fig. 3.1 Schematic of a
(a) sinuous (antisymmetric)
disturbance and a

(b) dilational (symmetric)
disturbance

\ .
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Generally, two modes of oscillations are considered: symmetric and antisymmetric.
In the symmetric mode, also referred to as the dilational mode or varicose waves,
the middle plane is undisturbed. In the antisymmetric mode, also referred to as
sinuous waves, the free surfaces move in the same direction and with the same
magnitude. Squire [3] and Hagerty and Shea [4] showed that for the case of inviscid
sheets, the antisymmetric mode is the dominant mode of disturbance. However,
later studies have revealed that this is not generally the case [22].

Inviscid Liquid Sheet

For an inviscid irrotational flow, u = V¢, where ¢ = ¢, for —a <y < a, and
@ =, fory > a and y < —a. The following solution for ¢ is considered:

¢ = [A cosh(ky) + B sinh(ky)] exp(ikx — wt) (3.1

where k and w are the disturbance wave number and frequency, respectively. For
antisymmetric mode, A = 0, and for symmetric mode, B = 0. The boundary
conditions, similar to the jet instability problem in Chap. 1, includes the kinematic
(normal component of the surface velocity is continuous) and dynamic conditions
(balance of interface stresses).

The complex frequency, w has two components: real and imaginary: o =
o + iw;. The real part represents the growth or damping rate of the disturbances,
whereas the imaginary part represents the wave velocity of the disturbance. The
growth rate is found to be:

1/2
eK ka 1

(e+K)? Wee+K

Wr

(3.2)

kU,

where K = tanh(ka) for the sinuous mode (antisymmetric) and K = coth(ka) for
the dilational mode (symmetric), We = p,Ula/c, and & = pg/py- Figure 3.2,
adopted from [22], provides the growth rate for various wave numbers for both
sinuous (antisymmetric) and dilational (symmetric) waves and for different
Weber numbers and density ratios. The results also show that the varicose mode
is more unstable for density ratios near unity. It is clear that for the low Weber
number case, the growth of sinuous waves dominate the growth of varicose waves
due to the higher growth rates throughout the range of instability.

Sirignano and Mehring [22] summarized the results of the linear sheet insta-
bility theory as follows: “For all density ratios, the growth rate for both sinuous
and dilational waves increases as the Weber number We is increased. The maxi-
mum growth rate for the sinuous disturbances does not significantly change
with changes in the density ratio €. However, the maximum growth rate for the
dilational case increases significantly as € is increased. For low-density ratios,
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Fig. 3.2 Dimensionless growth rate as a function of ka for different We and density [22 Fig. 9]
(Courtesy of Elsevier)

the maximum growth rate for the sinuous case is always higher than that for
dilational waves. As ¢ is increased beyond a certain value, the maximum growth
rate for dilational waves eventually overcomes the value for sinuous growth.
For all density ratios, there exists a region of wave numbers, in which dilational
waves are more unstable than the sinuous ones; the latter might even be stable in
that region. (6) The disturbance wavelength with maximum growth rate decreases
as the density ratio is increased. This is true for both sinuous and dilational
waves”.

Senecal et al. [20] reduced equation (3.2) to simpler forms for long and short
waves. For long waves & is small and K = tanh(ka) = ka. Therefore, equation (3.2)
for sinous mode becomes:

1/2
w; cka ka 1
=l T (3.3)
kU, (¢ + ka) We &+ ka
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If € < ka, then:

w € 1712
P 4
kU, [ka We} 34

For short waves, K = tanh(ka) = coth(ka) ~ 1, and equation (3.2) reduces to:

1/2
o I _ki 1 (3.5)
kU, (e4+1)" We (¢+1) ’
which reduces to the following for ¢ < 1:
1/2
w; ka
=le—— 3.6
kU, (& We> (36)

Equation 3.2 for the sinuous and varicose growth rates are shown in Figs. 3.3 and
3.4 for gas Weber numbers We, = ng()za/ o of 0.5 and 5.0, respectively. Each
figure also shows the results for the long wave (Equation 3.4), that tanh(ka) =~ ka
and short wave (equation 3.6) approximation. Long wave approximation is similar
to that of Hagerty and Shea [4]. For a We, = 5.0, the dimensionless growth rate
curves are very similar, except at low values of the dimensionless wave number £a,
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Fig. 3.3 Inviscid dimensionless growth rates wa/Uy as functions of dimensionless wave number
ka for a gas Weber number of We, = 0.5 [20 Fig. 3] (Courtesy of Elsevier)
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Fig. 3.4 Inviscid dimensionless growth rates wa /Uy as functions of dimensionless wave number
ka for a gas Weber number of We, = 5 [20 Fig. 4] (Courtesy of Elsevier)

suggesting that the two modes are indistinguishable or that the wave growth on one
interface is independent of the growth on the other.

Viscous Liquid Sheets

For a viscous liquid sheet, assuming to have the same pressure distribution as the
inviscid liquid, the liquid velocity components can be described as: u; = uy + uy
and v; = v + vy. The potential and stream functions that satisfy the continuity
equations may have the following forms: ¢ = @(y)exp(ikx + wt), v, = ®1(y)
exp(ikx + wt), and ¥ = ¥(y) exp(ikx + wt). Similar analysis is completed on the
gas phase. After substitution, a relation between the complex growth rate and the
disturbance wave number £ is obtained. Senecal et al. [20] provided the following
relation for the growth rate for the sinuous mode:

WK AR — UK — (K + &) (eUk2 + k3 /py)]
w, = — + 3.7)
K+e¢ K+e¢
For long waves in the limit of ¢ << ka, (3.7) reduces to
U Zk k2 1/2
o = —2mk? + |4+ 208 T (3.8)

ap
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Fig. 3.5 Viscous and inviscid dimensionless growth rates wa/Uy as functions of dimensionless
wave number ka for a gas Weber number of We, = 0.5 [20 Fig. 7] (Courtesy of Elsevier)

If short waves are assumed for the high speed sheets and ¢ << 1, then

k3 1/2
or = 20k + |42k + eUg?k> — “p— (3.9)
1

which would also be obtained from the dispersion relation for the varicose mode
for the same assumptions. Equations (3.8) and (3.9) are presented in Figs. 3.5 and
3.6 with their inviscid counterparts for a We, of 0.5 and 5.0, respectively [20].
Figure 3.6 shows that the inclusion of viscosity reduces both the maximum growth
rate and the corresponding wave number, without altering the instability range of ka
< We. In addition, the effect of viscosity is minimal for Squire’s regime (i.e., for We
< 27/16 or long wave growth), while the inclusion of the viscous terms are
necessary to accurately predict the wave growth of short waves.

Force Balance Model on a Wavy Sheet

Dombrowski and John [12] combined a linear model for temporal instability and a
sheet breakup model for an inviscid liquid sheet in a quiescent inviscid gas, to
predict the ligament and droplet sizes after breakup. The schematic of their wavy
sheet is reproduced in Fig. 3.7. The equation of motion of the neutral axis mid-way
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between the two gas/liquid interfaces is obtained for a sheet moving with velocity
Uy through stationary gas. The equation of motion is obtained by considering
the forces due to gas pressure, surface tension, liquid inertia, and viscosity on an
element of a sheet. The element is defined as (2a)zdx, as shown on Fig. 3.7. The four
forces are determined as follows:

The total air pressure force on the sheet is obtained by adding the pressure force
on the upper and the lower surface of the sheet.

Fp = 2kp,Ugyzdx (3.10)

where k is the wave number. Force caused by the surface tension along the same
element is,

0%y
F, = ZGdeX (3.11)

where the surface tension forces on the top and the bottom surfaces of the sheet are
added together. The inertial force can be calculated as,

9 a\ Py  9(2a) dy
F; = ~ 5 (p,z(Za)de) = —p,< aW+ 5 Br zdx (3.12)
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Fig. 3.7 Wave instability of a thinning liquid sheet [12, Fig. 4] (Courtesy of Elsevier)

The viscous force acting upon the sheet is,

_ ik 0(2a) Oh
U 0t o

F, = w(2a)k* % sin(kx + 0)
where £ is the wave amplitude (i.e., # = a + &) which is a function of time and 0 is
the phase angle. For a constant velocity thinning sheets: 2a = C;t~!, where C, is a
constant.

The ratio of the maximum value of the first term to the maximum value of the
second term in equation (3.13) is k. Thus, for a sufficiently large wave numbers the
second term may be neglected. The total force on the length, dx, is

cos(kx + 0) (3.13)

82
Fp+F;+F+F,= ZpgkU2yzdx+ 20'—yzdx

Ox?
@y | 0(2a) Oy 1 (2a)(0y)
_p1<2aW+ o1 E)de—i_ D102 zdx
-0 (3.14)
Then,
&y Py 9(2a) dy\ | w(2a)(@y)
2 gr_ Zz7 s ! —
29Uy +20 55— p, <2a S+ 8t) s =0 (1)

or in terms of A,
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2
2p kU — 26K — p, <2 Oh | 9Qa) 8}1) ~ ear

now, substituting / by hpexp(f), equation (3.16) will become

of 2 82f 0(2a) Of of
2~ 12 a7 g g\ 29 _
2p,kU” =20k p,<(2a)< t> +2a t2+ o w(2a)k ” 0 (3.17)

The variable, f, is defined here as breakup parameter and it is f = In(h/hg). It
determines when the breakup occurs. The pioneering investigation on this parame-
ter is by Weber [26], who obtained a value of 12 using jet breakup experiments:

f:ln(}?) =12 (3.18)

0

Other researchers have reported different but similar numbers. Grant and
Middleman [27] proposed a value of 13.4 for jet of glycerol/water solution and
Kroesser and Middleman [28] proposed a value of 11 for viscous Newtonian
liquid with Ohnserge numbers between 0.28 and 1.03. The latest investigation
by Sarchami et al [29] has suggested a correlation for the breakup parameter
rather than a constant value. The correlation is based on Reynolds and Weber
numbers:

[ =Re"We*Y (3.19)

where the Weber and Reynolds numbers are based on injection velocity from
the nozzle, nozzle diameter and liquid properties. The final droplet size can be
calculated based on, ligament sizes which are produced as a result of the sheet
disintegration. The main cause of disintegration is assumed to be the wave instabil-
ity. Wave amplitude grows until it reaches a critical point which causes the sheet to
break. At this point, the tears appear and fragments of sheet (equal to one-half
wavelength) are broken; then, the surface tension, forces these fragments to become
unstable ligaments which finally will break into droplets. Assuming attenuating
sheet (2a = C,t_l), the estimate for diameter of a cylindrical ligament is

1 %6 :
4\?( cra? Cip*U
dp = 2<—) 1 +2.6p¢ ( g ) (3.20)
3f <pgsz2 V\erpiod
where C,, for a radiating sheet of uniform velocity, is:
l't r
Ct:ht:C—:C— (3.21)
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Dombrowski [12] has shown that symmetrical waves are mainly responsible for
ligaments break down. Weber et al. [26] have analyzed these waves and assuming
that here their results can be applied, we use equation 1.41 to estimate breakup
wavenumber:

kpdp, = (3.22)

-1

1 31 §

2 )
2(pyodL)

where k; = k.« representing the wavenumber corresponding to the wave with the
maximum growth rate. If it is assumed that the waves grow until their amplitude
reaches the ligaments radius, one drop per wave length will be produced. Consid-
ering a mass balance, the relation between the drop size and the wave number is
given by:

3nd?
&3 =0 (3.23)
k.
which, combining with (3.22) gives
15 Y6
3 3
dp = [—”] dp |1+ #1] (3.24)
V(2) (p,ody) ™

where d is the ligament diameter given by (3.20). After simplification we have

—

dp = 1.882d;[1 + 30h] (3.25)

where Oh is Ohnserge number and is defined based on sheet thickness: Oh =

1/ +/piod.

Effect of Initial Velocity Profile

Ibrahim [19] developed a power series mathematical solution for the problem of
instability of an inviscid liquid sheet of parabolic velocity profile emanated from a
nozzle into an inviscid gas. The results show that for both antisymmetrical and
symmetrical disturbances departure from uniformity of the velocity profile
causes the instability to be reduced. It has been suggested that jet instability may
be affected by the relaxation of the velocity profile that takes place once the liquid
exits the nozzle and is no longer constrained by its wall. The variation of the growth
rate with wave number at We = 10,000, p = 0.01, f =0, 0.1,0.3, 0.4, and n = 96 are
shown in Fig. 3.8 for antisymmetrical disturbances. The results of Fig. 3.8 indicate
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Fig. 3.8 Effect of the S00

velocity profile parameter f§ —_— g = g:?
on instability at We = 10,000 e g = 3'§
and p = 0.01 [19, Fig. 2], 400 e @ = 0.4

(Courtesy of AIP)
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Wave number, k

that a sheet of uniform velocity, f = 0, is more unstable than one with parabolic
profile. Both the maximum growth rate and the cutoff wave number of unstable
disturbances are reduced. Increasing the parameter 5 produces a parabolic profile
with a higher maximum velocity along the centerline of the sheet and a lower velocity
at the liquid—gas interface for a constant mean flow. It is the reduction in the
liquid—gas relative velocity across the interface that is thought to be the reason for
the decrease in aecrodynamic instability as B is increased. Since a uniform velocity
profile produces the maximum relative velocity at the liquid gas interface for the
same mean flow, it is the most unstable. Therefore, such non-uniformity in the
velocity profile (e.g., parabolic) would lead to a reduced instability.

Nonlinear Sheet Instability

The linear theory does not provide a means for the liquid sheet to breakup, because
during the sinuous mode of instability, the distance between the two sides of the
sheet remains a constant value. Therefore, it is not possible to predict the breakup
length of a sheet.

Jazayeri and Li [41] developed up to the third order nonlinear analysis of a liquid
sheet to determine the breakup length of the sheet. A typical result of their solution
for the surface deformation as a function of distance is shown in Fig. 3.9. This case
is for the initial disturbance amplitude of 0.1, the Weber number of 40 and the gas-
to-liquid density ratio of 10, which approximates the situation of liquid water in
ambient air. The wave number of 0.02 is almost equal to the dominant wave number
for the sinuous disturbance of the linear theory. It is seen that the surface wave
grows in time, and maintains its sinuous character for the majority of its growth
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Fig. 3.9 Evolution of the dimensionless surface deformation y as a function of dimensionless
distance x for We =40, ¢ = 0.001, k = 0.02, and {, = 0.1. The dimensionless time t is specified on
the figure [41 fig. 3] (Courtesy of Cambridge University Press)

time. As well, the deviation from the linear theory is small, and the distance between
the two interfaces is kept almost constant along the wavelength up to the time of
1,000. After that time, the nonlinear effect becomes significant and the waveform is
distorted considerably. Att = 1,298, the distance between the two interfaces vanishes
near the half and full wavelength., which is different from the conclusions reached by
Clark and Dombrowski [13] and also Dombrowski and Hooper [10] who found that
the sheet breakup occurred at positions corresponding to 3/8 and 7/8 of the length of
the fundamental wave. However, the liquid sheet breaks off at half-wavelength
intervals, a result consistent with that of Clark and Dombrowski.
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Figure 3.10 shows the effect of the gas-to-liquid density ratio on the surface
wave development for We =40 and {;, = 0.1. The wave number used for each value
of the density ratio is the dominant wave number under the given conditions
according to the linear theory. The results for ¢ = 10~ are given in Fig. 3.10c,
whereas Fig. 3.10a—c presents the results for ¢ = 0.01, 0.02 and 0.05, respectively.
As expected, the liquid sheet breaks up considerably earlier for density ratios of
large values than for those of small values.
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Fig. 3.10 Evolution of the dimensionless surface deformation y as a function of dimensionless
distance x for We = 40, k = 0.02, and {y = 0.1 and gas-to-liquid density ratio of ¢ (a) 0.01,
(b) 0.02, (c) 0.05 [41 Fig. 6] (Courtesy of Cambridge University Press)
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It is observed that the breakup time is reduced as the Weber number is increased,
which is expected. It is now evident that the liquid sheet breakup occurs at half-
wavelength intervals, as observed earlier, and this parcel of liquid is expected to
contract into a ligament under the force of surface tension. There does not exist any
indication of “satellite” ligament formation from the liquid sheet breakup.

By replacing the time ¢ by the distance x from the nozzle exit, the present
temporal development of the surface wave is transformed into the spatial evolution,
and a typical result is shown in Fig. 3.11a for We = 280.78, ¢ = 0.00129, and k =
0.183. This figure is contrasted with two other results from directly solving the
Navier—Stokes equations in two dimensions. Figure 3.11b shows a result of spatial
instability of a 2D sheet with We = 300 and density ratio of ¢ = 0.001 [42]. The
results are quite different from the analytical results showing fluid accumulations
on the peaks of the sinuous wave. Figure 3.11c is a sheet instability at very high
relative velocities, We = 11,400 [43]. When the relative velocity increases, the liquid
is sheared from the surface of the sheet forming small ligaments. These small ligaments
generate secondary vorticities as shown in Fig. 3.11d [43], which change the behavior
of the sheet even more. Therefore, although sheet instability models are useful in

) :vawwﬂ‘

Fig. 3.11 Comparison of spatial surface deformation from analytical (a) and numerical (b—d)
results. (a) We = 280.78, k = 0.183, ¢ = 0.00129, and {, = 0.05 [41 Fig. 9]. (b) We = 300,
& =0.001, and Oh = 1 [42]. (¢) We = 11,400, ¢ = 0.0015, and Oh = 0.015 [43]. (d) Vorticity plot
of (¢) but a different time [43]
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predicting the fastest growing wavelengths, they cannot by themselves be used to
provide information on the droplet sizes in sprays. These models are used as a first
estimate of ligament sizes, and other models (as will be discussed in chapter 9) are used
to estimate spray size from these ligament sizes.

It is seen that although the wave remains sinuous for most of the sheet length,
nonlinear effects cause the sheet thinning and pinching that lead to the eventual
breakup of the sheet. As observed earlier, the breakup time decreases for each initial
amplitude {; until it reaches a minimum value and then approaches infinity when
the wave number approaches the cut-off wave number k..

The effect of the Weber number on the breakup time (and length) is shown in
Fig. 3.12 for several values of initial disturbance amplitude and two values of the
density ratio ¢. It can be seen that breakup time decreases as the Weber number is
increased. This is because the bigger the Weber number, the larger the aerodynamic
interactions between the liquid sheet and the surrounding gas, and the latter is what
enables the growth of the surface waves and the eventual disintegration of the sheet.
In addition, the breakup time is reduced by a larger value of the initial disturbance
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Fig. 3.12 Effect of Weber number on the liquid sheet breakup time for We = 40, gas-to-liquid
density ratio of ¢ =0.001, and 0.005 and {, of 0.1, 0.2, and 0.4 [41 Fig. 12] (Courtesy of
Cambridge University Press)
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Fig. 3.13 Results of Rangel and Sirignano [21 figs. 13 and 14] for the (a) sinuous and (b)
dilational modes, respectively, in the case where gas and liquid densities are equal and the initial
sheet thickness is one quarter of the wavelength of the disturbance (Courtesy of AIP)

amplitude and the density ratio. The breakup time is reduced significantly for an
increase in the density ratio when ¢ is small, and then almost approaches an asymptotic
value for larger values of ¢.

Rangel and Sirignano [21] assumed periodic spatial behavior on an infinitely
long liquid stream and calculated the temporal behavior for both the sinuous and
dilational modes. Figure 3.13 is a typical result from Rangel and Sirignano [21] for
the sinuous and dilational modes, respectively, in a case where gas and liquid
densities are equal and the initial sheet thickness is one quarter of the wavelength
of the disturbance.

Three-Dimensional Sheet Instability

Lozano et al. [44] conducted three-dimensional vortex dynamics methods to model
instability growth leading to the breakup of a water sheet surrounded by an air
co-flow. Figure 3.14 presents the initial and final stages of a case with antisymmetric
perturbations (with an amplitude of 25% of the sheet thickness, corresponding to 5%
of the wavelength) both in the longitudinal and transverse directions, where surface
tension has been included. Both air/liquid interfaces end up touching each other.
However, in this case, the first contact does not occur simultaneously on a whole line
transverse to the sheet, but in single points of this line. Figure 3.14 represents one of
their cases for the Atwood number of A = (p; — p,)/(p; + p,) = 50.99 corresponding
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Fig. 3.14 Initial and later
stages of a case with
antisymmetric perturbations
both in the longitudinal and
transverse directions, where
surface tension has been
included [44] (Courtesy of
AIP)

to the water/air case. It can be seen that the model reproduces correctly the expected
evolution of the Kelvin-Helmholtz instability as described in previously reported 2D
simulations. When entering the nonlinear deformation regime, points far away from
the axis of symmetry, which will be denoted as maxima, accelerate following the
surrounding air, while points close to the axis, which will be denoted as minima,
move more slowly. At the same time, there is vorticity advection from minima
to maxima, resulting in the generation of rollers in the maxima points that cause
the sheet to convolute. As time evolves, the vortex centers assume a saw-tooth
configuration. As the vortices rotate, the sheet grows thinner at the initial minima
locations. In the final stage, the thinning tends to a limit where the upper and lower
interfaces finally touch. As the sheet thickness tends to zero in these points, any
perturbation in a real case would cause the sheet to tear. The tear would generate a
hole with regions of high curvature, where the effects of surface tension would be
very intense. This mechanism explains the generation of span-wise ligaments,
oriented parallel to the nozzle.

Figure 3.15 illustrates a case when the initial vortex sheet strength forms an
angle of 45° with two perturbations, whose initial amplitudes in this case were 1%
of the wavelength (5% of the sheet thickness). This case results in a final situation
where the transverse section shows a sinusoidal undulation of finite amplitude.
Simulations with initial longitudinal and transverse sinusoidal perturbations indi-
cate that the sheet eventually collapses at discrete points in a transverse cross
section. Tearing along these points helped by surface tension effects would explain
the formation of the longitudinal filaments. Initial symmetric or antisymmetric
transverse perturbation result in very similar final configurations. The presence of
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Fig. 3.15 Initial and later
stages of a case with
antisymmetric perturbations
oriented at £ 45° with the
flow direction. Flow direction
is towards the viewer [44
Fig. 6] (Courtesy of AIP)

in-phase oblique waves may explain the growth of the transverse wave starting
from an infinitesimal perturbation. Edge effects have also been studied, to explain
the sack-like structures that can be observed for low air/water velocity ratios.

Three-dimensional dilational and sinuous wave propagation on infinite or semi-
infinite thin planar sheets flowing into a gas of negligible density is also given
by Kim and Sirignano [45]. The assumption of thin sheets allows the reduction of
the problem dimensionality by integration across the sheet thickness. For finite-
amplitude disturbances, the strongest nonlinear effects occur when the cross-sectional
wave number (/) is close to the stream-wise wave number (k). For, dilational wave
propagation, when / is close to & for infinite sheets, higher harmonics are generated in
the stream-wise direction, and the standing wave with finite amplitude in the cross-
sectional plane becomes flat. As time passes, the waves return to the initial wave shape.
This process is repeated in a cycle. A similar phenomenon is found in semi-infinite
sheets with low Weber number. When / is close to & for semi-infinite sheets and Weber
number is high, fluid accumulates into fluid lumps interspaced by one wavelength in the
cross-sectional direction as well as in the stream-wise direction. This leads to the
formation of initially non-spherical ligaments or large droplets from the liquid sheet.
For, sinuous wave propagation, when / is close to & for semi-infinite sheets and Weber
number is high, fluid agglomerates in the edge of the sheet interspaced by half a
wavelength in the cross-sectional direction as well as in the stream-wise direction.
A three-dimensional visualization of the computational results shows that the distur-
bance at the nozzle exit induces fluid to agglomerate into half-spherical lumps, which
indicate the formation of ligaments or large droplets from the liquid sheet. A similar
phenomenon is found in the case of infinite sheets.
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Chapter 4
Dynamics of Liquid Droplets

A. Mashayek and N. Ashgriz

Abstract In this chapter the basic physics and methods of calculation of the
effective drag forces acting on drops in isolated-drop and multidrop configurations
relevant to sprays are provided. The effect of various physical phenomena such as
drop deformation, nonuniformity of the incoming flow, drop—drop interactions,
drop—gas interactions, and evaporation on the drag coefficient on the drop, with
special focus on the underlying physics, is highlighted.

Keywords Drag coefficient - Drag of deformed drops - Droplet motion - Evaporat-
ing droplets - Flow past a droplet - Interacting drops

Droplet Drag Coefficients

Introduction

Lagrangian-Eulerian models, which simulate the motion of drops in different
physical configurations, usually employ a drag model to predict the aerodynamic
(or hydrodynamic) force acting on the drops. Once the forces on a drop are known,
its motion can be calculated by virtue of Newton’s second law. Hence, the correct
knowledge of the forces interacting between the drop and the surrounding medium
is of crucial importance. To model the forces acting on the interface of the two
phases, one has to solve (either analytically or numerically) the distribution of the
stresses on both sides of the interface. From that, one can calculate the drag and lift
forces acting on the drop along with the effect of the drop on the surrounding
medium. In multiphase flow simulations, correct calculation of the drag force is a
measure of the accuracy of the simulation. Since the mathematical problem of the
time evolution of the fully coupled drop-medium system is very complicated,
analytical solutions are not possible unless for very limiting cases. Experimental
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studies have been employed by following the motion of particles and inferring the
effective forces leading to their particular motion. These studies have led to
empirical correlations for drag and lift forces acting on particles. However, the
physical processes at the interface of the two phases often occur or are initiated at
such small time and length scales that experimental apparatus are not capable of
fully observing them. Therefore, numerical simulations have become a common
practice and probably the best way to gain insight into the details of the small scale
physics in interfacial multiphase flows.

It is known that a spherical drop can undergo significant deformation and
acceleration and become flattened due to the drag forces. This deformation affects
the motion of the drop by increasing the drag forces due to both the larger frontal area
and an increase of the drag coefficient. For the cases of drops moving in a stationary
medium, the increase in drag due to its deformation slows it down, which decreases
the drag force in return. Therefore, predicting the motion of a drop is an inherently
time-dependent problem and one that should not be treated as a steady one. Hence,
the drag coefficients based on correlations for spheres in steady flows, which are still
being used in many multidimensional spray simulations, need to be revised.

Apart from considerations in regard to drop deformation, many empirical and
theoretical correlations have been obtained in an isolated-drop configuration. These
correlations can be used for simulation of drop motion in very dilute sprays, where
each drop can be assumed isolated. In dense sprays, however, the drop spacings
are small enough that isolated drop assumption is no longer valid. Therefore, in
order to calculate the drop motion in such sprays a group of drops has to be
considered as a whole.

In order to calculate the drag force acting on a drop, the stresses on its surface
need to be determined and integrated to give the effective forces. In this chapter, we
introduce basic concepts on the drag on particles and drops, starting with flows past
nondeforming spheres at low Reynolds numbers for which analytical solutions are
available. Next, we will consider high Reynolds number flows over solid spheres
and liquid drops, which involve flow separation with great implications for the drag
force. Effect of small deformation, followed by those with large deformation, on the
drag force is discussed next. Finally, a short discussion on the effect of the
interaction of drops in multidrop systems is presented.

Flow Around Nondeforming Drops

Consider a flow around a solid nondeforming sphere, as shown in Fig. 4.1a. This
case can be relevant to flows around drops which largely do not deform due to high
surface tension. When the surface tension on the drop—fluid interface is strong
enough to resist the tendency of the aerodynamic force to deform the drop, the
drop may either deform very little or have small amplitude oscillations around its
spherical shape. For these scenarios, approximating the drop with a solid sphere
would be reasonable.
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Fig. 4.1 (a) Schematic view of a flow past a sphere; (b) Streamlines of a Stokes flow past a sphere

For a solid sphere moving through a fluid (or a flow moving past a sphere), the
aerodynamic or hydrodynamic force can be broken down into two different parts
called the form drag and the skin friction. The form drag is a resultant of the pressure
variations along the sphere’s surface induced by its profile. A very thin flat plate
parallel to the flow does not experience a considerable amount of form drag. The form
drag is also called pressure drag or profile drag. The second type of force acting on the
sphere is the skin friction, which is the result of the friction between the surface of
the sphere and the adjacent fluid flow. As one can expect, the flow past a flat surface
parallel to the flow would experience this type of resistance as the dominant one.

Let us consider a flow past a sphere with radius a, such as the one shown in
Fig. 4.1a. Whether the pressure drag is dominant or the skin drag depends on the
relative velocity of the flow with respect to the sphere, U, the diameter of the
sphere, d = 2a, and the density and dynamic viscosity of the fluid (p, u). These
parameters form the Reynolds number Re = pUd/ .

For very small Reynolds numbers, the shear stresses at the surface of the sphere
dominate and hence, skin friction is the main contributor to the drag force. For Re < 1,
the flow falls in the well-known range of Stokes flows, and the drag force on the sphere
can be calculated analytically. For very large Reynolds numbers on the other hand, the
form drag will be dominant, with the skin friction making a very small contribution.
For flows in the mid-range of Reynolds number, both effects have to be accounted for.

When the radius of the particle is very small, or the fluid viscosity is very large,
or the relative velocity is very small, or the fluid density is very low, the Reynolds
number becomes very small and the flow satisfies the conditions of the Stokes or
creeping flow. In this limit, the inertial forces near the particle are small and can be
neglected in the Navier-Stokes equations. The pressure distribution on the drop in
this limit takes the form

a

p= (N eos 0 +c, “.1)

N W
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where c is a constant of integration. The traction on the sphere can be written in the
form of

f - Trr(r - a)ér + ’C,~9(i’ = a)é9 (42)

where 1, and 7,9 are the normal and tangent to surface components of the traction
and are expressed by

L ov B _é ey _

T.(r=a)= <—p + 2,u—ar>r_a =5 cos 0—c 4.3)
(.0 (ov 1 Ou _3uU .

Tolr = a) = ( or (a_) t %) Ty s 4.4)

where u and v are the velocity components in the r and 6 directions, respectively.
Substituting these into (4.2) results in

A 3 uU
f=—2Be (4.5)
2 a

which can be integrated over the surface of the sphere to give the force on it

2n 2n 2n 27
Fp = J J fds = J J fa*sin0d0dy = —6nUaé,. (4.6)
00 00

This is known as the Stoke’s law and gives the drag force exerted on a particle
with radius a, which is moving with velocity U in a stationary fluid. The negative
sign shows that the drag force opposes the motion of the sphere. The drag coeffi-
cient Cp is defined as [1]:

Fp

o = 02y p0ea

4.7)

where A is the frontal area of the object. For our case of the spherical drop, A = na?

and so, using (4.7) and the definition of the Reynolds number, we can write

24

=_ 4.
Co = (4.8)

Stoke’s drag ignores inertial terms in the governing equations. Oseen [2]
obtained the first inertial correction to the drag force in the form of
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24 3

which is valid for Re < 5, and reduces to Stoke’s drag coefficient for Re < 1. Other
approximations are also available with higher order corrections to the Stokes drag.
For example, the Voloshuk and Sedunow [3] approximation is

24 3 9 5 (Re
which is again valid for Re < 5.

At high Re numbers, flow separation occurs when the boundary layer formed on
the sphere’s surface travels far enough against an adverse pressure gradient (caused
by the shape of the sphere) that the speed of the boundary layer becomes almost
zero and the fluid becomes detached from the surface. Turbulent boundary layers
are known to be more resistant to the adverse gradient and so they separate further
downstream compared to laminar boundary layers for the same flow geometries.
The wake region (the region behind the point of separation) is characterized as a
region with high pressure and low velocity. So, if one integrates the pressure
over the surface of the object which experiences flow separation, an enhanced
form drag is obtained due to the relative higher pressures on the downstream side
of the object.

Figure 4.2a and 4.2b show flows past spheres at relatively low Reynolds num-
bers (from Van Dyke [4]). They show that after Re passes a critical value, the
streamlined flow pattern around the sphere (as shown in 4.2a) changes and a
doughnut-shaped ring forms behind the sphere (as shown in 4.2b). For Reynolds
numbers larger than ~130, the ring vortex behind the drop starts to oscillate while
the flow is still laminar. This leads to small vortices being separated from its tail in
the form of vortex loops. With further increase in the Reynolds number the length
of the recirculating regions and the scales of the detached eddies change consider-
ably. Figure 4.2c shows an instantaneous flow past a sphere at Re = 15,000.
The formation of vortex rings and further breakup of those into smaller structures
can be clearly seen in the picture. Figure 4.2d also illustrates the time-averaged
streamlines of the same flow, which shows that the flow still possesses a doughnut-
shaped structure behind the sphere, in a time-average sense.

Figure 4.3 taken from Kundu and Cohen [5] shows that C, changes with Re for
flows past a solid sphere. As the figure shows, when the Reynolds number is
increased beyond unity, Stokes and Oseen’s drags cannot properly predict the
drag coefficient because of the formation of small recirculating regions in the
wake of the drop, which grow in size with the Reynolds number.

Up to the point of Re ~ 5 x 10° in Fig. 4.3, the boundary layer formed on the
surface of the sphere is laminar even though the wake of the separated flow can be
turbulent. The variations in Cp are smooth in this interval, with the drag coefficient
having a value close to 4/9. At this point however, a transition of the laminar
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Fig. 4.2 Visualization of an instantaneous flow past a sphere at Re = 26.8 in (a), Re = 73.6 in
(b), Re = 15,000 in (c), and visualization of the time-averaged streamlines behind the same sphere
as panel (c) in (d). (a) and (b) from Taneda (1956) [50], reprinted by permission. (c) and (d)
Copyright: ONERA The French Aerospace Lab/Werlé

Fig. 4.3 Drag coefficient for
a flow past a smooth sphere. 100 +
The Stokes and the Oseen
drags are given by (4.8) and
(4.9). From “Fluid 10 ¢
Mechanics” by Kundu and
Cohen [5] Copyright (2008),
Elsevier Inc. Reprinted by
permission
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boundary layer to a turbulent regime occurs. The turbulent boundary layer can
overcome a larger adverse pressure gradient due to its larger energy. Hence, the
point of separation is moved further downstream due to this transition and the wake
of the sphere becomes thinner. This translates to a sudden decrease in the drag
coefficient and is often referred to as the “drag crisis.” As the Reynolds number is
increased beyond this critical point, the turbulent boundary layer becomes thinner
and the separation point slowly moves back upstream, leading to a smooth increase
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in the drag coefficient. The sudden decrease at the critical Re followed by the
smooth increase leads to the “dip” in the curve of the drag coefficient shown in
Fig. 4.3.

Close inspection of Fig. 4.3 shows that the drag coefficient changes very little for
Reynolds numbers greater than 2 x 10* and smaller than 5 x 10° and is almost
equal to 4/9. There have been various correlations offered for the drag coefficient
for flows past solid spheres, each derived for a particular range of the Reynolds
number. Some of these relations are

24
Cp=— for 0.1<Re<03 4.11)
Re
26.5
Cp = Re09 for 03 <Re<5 4.12)
18.5
Cp :m for 7 <Re <70 4.13)
4 4
Cp = ) for Re >2 x 10 4.14)

These relations all form tangents to the curve in Fig. 4.3 in their effective range.
Kelbaliyev and Ceylan [6] came up with a single correlation, which would fit the
drag curve very nicely for Reynolds numbers smaller than that of the drag crisis.
Their relation is in the form of

1/30

Re\ " 4  Re'’
1+18.5Re3'6+<—e> 1 e (4.15)

C - .
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Flow Around Liquid Drops

One of the earliest works on the flow past a slightly deforming viscous drop in a
flow with a large density ratio is that of Hadamard [7], which considers Stokes
flows. They offered the following expression for the drag coefficient:

8 (3u.+2
Cp=— : 4.16
P Re(,u,ﬂrl) (4.16)

where p, = 4/ ¢ is the ratio of the viscosity of the drop (u4) to the viscosity of the
free stream (). Another theoretical prediction of the drag coefficient for Re < 1 is
given by Taylor and Acrivos [8]:
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8 2+3 Re?2+3 1 /2+3u\>/Re\* R
Cp=— =t “f<1+—e T “r+—< * ”f) (—e> 1n76> 4.17)
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The drag coefficients in (4.16) and (4.17) tend to 24/Re for p, — oo, which is the
Stokes drag for flow past a sphere. For u, — 0, Cp tends to 16/Re, corresponding to
flow past a bubble.

Happer and Moore [9] also studied the hydrodynamic forces acting on a
spherical viscous drop for Reynolds numbers large enough for boundary layer
theory to hold but small enough for surface tension to keep the drop near spherical
Re o 100). They assumed that the densities of the drop and the incoming flow
are comparable and that the surface tension is strong enough to keep the drop’s
shape near-spherical. They considered the zeroth order flow to be inviscid,
corresponding to the Hill’s spherical vortex inside the drop (see Fig. 4.4) and a
potential flow outside the interface. Then, they considered two boundary layers on
each side of the interface as a first approximation and used asymptotic methods to
match the exterior solution to that of the interior solution. Using this method they
obtained first and second approximations to the drag coefficient and the rate of
internal circulation of the drop. Their first order approximation for the drag
coefficient is:

Fig. 4.4 Streamlines (top half of each figure) and vorticity field (bottom half of each figure) for
(@) u = 7 and Re = 10; (b) u, = 7 and Re = 100; (¢) 1, = 7 and Re = 500. From Feng and
Michaelides [12], Reprinted by permission, Copyright (2001) ASME
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48 ( 3
CDRe<1+2M) (4.18)

Rivkind and Ryskin [10] have estimated the drag coefficient as a function of Re
and p, to be:

1 24 4 14.9

Oliver and Chung [11] performed numerical simulations and recommended
(4.19) for 2 < Re < 50 and

2
2+3“> (4.20)

= 0.40
Cp = Cpo + ( T u

T

for Re < 2 where Cp, is the drag coefficient for Stokes’ flow.

Apart from the asymptotic analysis such as those by Happer and Moore [9],
numerical methods have been commonly used to resolve the flow structures in
the interior and outside of a drop. Even for a nondeforming viscous drop,
numerical simulations have helped in understanding the effects of the internal
circulation of the drop (which is what makes it different from a rigid sphere) on
the drag force it experiences. Moreover, simulations help in investigating the
effect of the viscosity ratio and the density ratio on the hydrodynamic force
experienced by the drop.

Figure 4.4 from Feng and Michaelides [12] shows the stream function on the top
half of each panel and the contours of the vorticity on the bottom half. The viscosity
ratio is constant and equal to 7 for all three cases while the Reynolds number is
increased from a value of 10 in (a) to 500 in (c). The stream function shows the
internal circulation inside each drop (Hill’s Vortex) with the strength of
the circulation increasing with Reynolds number. For case (a) with a small Re,
the exterior flow follows the profile of the drop smoothly. As the Reynolds number
is increased to 100, a recirculating region appears in the wake of the drop as shown
in panel (b). As expected, the length of this region increases with Re as shown in
panel (c). The vorticity fields in the three cases show the formation of the external
boundary layer at the upstream stagnation point. Comparing the three cases clearly
shows the boundary layer becomes thinner as the Reynolds number is increased.
It was found by Feng and Michaelides [12] that the density ratio does not play an
important role in their calculation performed for a nondeforming interface. Their
study shows that as the viscosity ratio decreases from infinity (for a solid sphere) to
zero (for a bubble), the drag coefficient also decreases, which is in agreement
with (4.19).
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Droplet Motion

The equation of motion for a particle or droplet using the steady-state drag coeffi-
cient can be expressed as

d
md—‘; = 3. Df (1 — v) + mg 4.21)

where g is the acceleration due to gravity and f'is the drag factor or the ratio of the
drag coefficient to Stokes drag coefficient:

_CDRer
f==0 (4.22)

Obviously f — 1 for Stokes flow. Assuming a spherical droplet with material
density of py, (4.22) can be rewritten as

v f
A URIRT" (4.23)

where T, is the velocity response time,

(4.24)

There are several correlations available in the literature for f as a function of
Reynolds number. One correlation (Schiller and Naumann [13]) that is reasonably
good for Reynolds numbers up to 800 is

f = (140.15Re™%%7) (4.25)

This correlation yields a drag coefficient that has less than 5% deviation from the
standard drag coefficient. A correlation suitable to higher Reynolds numbers has
been proposed by Putnam [14],

1
f=1+ 6R62/3 Re < 1,000 (4.26)

f=0.0183Re 1,000 <Re <3 x 10° 4.27)

The advantage of this correlation is that the equation for particle motion can be
integrated analytically. A shortcoming is the discontinuity in the value for f at
Re =1,000. A more accurate correlation over the entire subcritical Reynolds
number range is that of Clift and Gauvin [15] which is an extension of Schiller
and Naumann’s equation.
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)y ! (4.28)

This correlation provides a fit for f within 6% of the experimental value over
the entire subcritical Reynolds number range. The terminal velocity of a particle is
the ultimate velocity a particle achieves in free fall; that is, when the acceleration is
zero. From (4.24), for a particle falling in a quiescent environment (¥ = 0), the
terminal velocity is

. gn

f

Vi

(4.29)

In Stokes flow, the terminal velocity is simply gt,. Otherwise, the value for f has
to be obtained iteratively.

Compressibility and Rarefaction Effects

For high Reynolds number gaseous flows around a droplet, the compressibility of
the gas phase can play an important role in the drop deformation, the flow structures
around the drop, and consequently in the drag force on the drop. To incorporate
these effects into drag correlations, the Mach number is often used. The Mach
number, M,, is defined as the ratio of the velocity of the drop relative to its
surrounding medium to the speed of sound in that medium.

At a high Reynolds number, the drag coefficient shows an increase with Mach
number reaching a maximum value for light supersonic flow. This increase is due to
the formation of shock waves on the particle and the attendant wave drag (essentially
form drag). Mach number effects become significant for a Mach number of 0.6,
which is the critical Mach number; that is, when sonic flow first occurs on the sphere.

At a low Reynolds number, the drag coefficient uniformly decreases with
increasing Mach number and does not display a maximum value near unity. This
is due to the prevalence of rarefied flow.

The importance of rarefaction effects are assessed by the magnitude of the
Knudsen number, which is the ratio of the mean free path of the molecules to
the particle diameter,

R
A

D

kn = (4.30)

where / is the mean free path of the molecules. If the Knudsen number is large, the
flow cannot be regarded as a continuum. The wave drag due to a shock wave would
no longer appear for particles with Knudsen numbers of the order of unity because
the thickness of the shock wave would be comparable to the particle size and so, the
particles would be engulfed by the wave.
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The Knudsen number can be related directly to the Mach number (Ma) and
Reynolds number. The viscosity of a gas is proportional to

Rg ™~ CPA 4.31)
where c is the speed of sound in the gas. Thus, the Knudsen number can be written as

Mg _Ma

A
K}’[ = — v =
D p,eD  Re

4.32)

There is no analytic nor numerical model available, which provides the particle
drag coefficient for particles over all the regimes of rarefied flows. The earlier
methods to correct for rarefied flow effects were based on a correction to Stokes
drag, derived by Basset to account for velocity slip at the surface. In that case, the
drag coefficient can be expressed as

Cp 1
Cpswokes 1 +Kn[2.49 + 0.84 exp(—1.74 /Kn)]

(4.33)

which can be regarded as an extension of the Basset correction. This equation has
been used for many years as the correction for rarefied flow effects and is com-
monly referred to as the Cunningham correction factor. For large Mach numbers,
this equation reduces to

CD‘Stokes

Cp ~ 434
P Ma/Re (4-34)
SO
Cp o (4.35)
D Ma .

and as Ma — oo the drag coefficient approaches zero. Analytic results available for
free molecule flows (Schaaf and Chambre [16]) show that the sphere drag coeffi-
cient approaches 2 as the Mach number approaches infinity. This is a shortcoming
of the Cunningham correction factor but it is still useful for low Mach numbers.

The following empirical equation for drag coefficient proposed by Crowe et al.
[17] and simplified by Hermsen [18] has been used extensively in the numerical
analysis of the flow in solid propellant rocket nozzles.

h(M. R
Cp =2+ (Cpy=o — 2 exp( 307\/1 ) \/(_Aji P(—ﬁ)
(4.36)
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where £ is the ratio of specific heats and g and % are the two functions;

14 Re(12.278 4 0.548Re)

8(Re) 1+ 11.278Re (4.37)
and
5.6 T4
h(Ma) = 1.7,/ 4.
(Ma) R T (4.38)

and where T is the particle temperature and T is the temperature of the gas. Cp y—o
is the drag coefficient for a Mach number of zero, or the steady-state (standard) drag
curve. Note that for large Knudsen numbers (large M,/Re), the drag coefficient
approaches the “standard” drag curve. The model is not valid beyond the Reynolds
number where critical Reynolds number effects begin to appear (reduction in drag
coefficient).

Drag of Deformed Liquid Drops

Drag of a deforming drop was studied numerically by Wadhwa et al. [19]. Their
simulations considered a spherical drop with some initial velocity in a stationary
gas and studied the transient response of the drop and its surroundings. Reynolds
(Re = p, Ud/u,), Weber (We = p,U*d/c), and Ohnesorge (Oh; = pu/(p; ad)'’?)
numbers based on relative velocity between the drop and the flow are used to
describe the drag. The subscript ““;”” denotes the liquid phase. Wadhwa et al. studied
the effect of the Weber number on the drop deformation by keeping O/, constant.
Figure 4.5 shows their result for Oh; = 0.01 and We, = 1. Panel (a) in the figure
shows a snapshot of the streamlines at some fixed time. Panel (b) illustrates the
deformation over time (nondimensional time) and panel (c) shows the transient
variation in the drag coefficient. Noting that the drop is moving from left to right,
the doughnut-shaped vortex is observed behind the drop similar to flow past solid
spheres. The deformation plot shows that for this small value of the Weber number
the drop deformation is very small and the surface tension can keep the drop in a
near-spherical shape. The small oscillations in the drop, however, manifest in the
Cp curve, which shows oscillations about the drag force on a solid sphere deceler-
ating in a gas flow at the same flow conditions.

Once the Weber number is increased from 1 to 10, the relative strength of the
surface tension to the inertial forces decreases. Hence, less pressure difference
across the interface can be tolerated (compared to the We, = 1 case) and the drop
starts to deform, as shown in the left column (panel (a)) of Fig. 4.6. The deformed
drop almost takes the shape of a flat ellipsoid and hence, the drop recirculating
region in the downstream side of the drop grows larger. The enhanced vortex size
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Fig. 4.5 (a) Streamlines and (b) transient drag coefficient compared to that of a solid sphere, for a
viscous drop decelerating in an initially stationary gas. Oh; = 0.01, We, = 1, Re = 150, p; /pg = 50.
Reprinted with permission from Wadha et al., Phys. Fluids, 19, 113301, 2007. Copyright 2007,
American Institute of Physics

induces a velocity field which stretches the fluid elements on the drop surface from
the axis of symmetry towards its tip. This positive feedback leads to further
deformation in the drop. On the other hand, the frontal area of the drop increases
through this mechanism leading to an enhanced drag force which slows the drop
down significantly and decreases the effective Reynolds number. This slow-down
leads to a decrease in the inertial forces. For this particular case with We, = 10, the
inertial forces drop down to a level that the surface tension forces can balance them
and the drop oscillates back to a more bulky irregular shape, as shown in Fig. 4.6.
The transient effect of these processes can be seen in the Cp curve as the drag
coefficient increases by a factor of nearly 2.5 when the drop deformation is large.
This has great implications for the drop displacement and using a constant drag
coefficient (the solid line) for predicting the motion of this drop would lead to an
overestimated drift.

Even further increases in the Weber number can lead to a more pronounced
deformation in the drop. This is shown in Fig. 4.7 for We, = 100. For this case,
there is no returning point and the drop continuously deforms and spreads out into a
sheet-like shape. A drop with this much deformation ultimately breaks up into
smaller pieces by either particles getting pinched off its tip or the whole flat drop
breaking into several pieces. Panel (a) in Fig. 4.7 clearly shows how the enhanced
vortex in the leeward side of the jet helps stretching the drop into a thin shape which
in turn expands the vortex itself. As expected, the continuous deformation leads to a
smooth increase in the drag coefficient.

To investigate the effect of the viscous forces on the drop deformation and the
drag coefficient, Wadhwa et al. [19] also performed simulations at fixed Weber
numbers but for various Ohsenorge numbers. Their drag results for We, = 10* are
presented in Fig. 4.8. An increase in the relative strength of the viscous forces adds
to the damping of the system. Hence, for drops that undergo some oscillations
(reaching a maximum deformation and bouncing back again), this leads to a
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Fig. 4.6 Streamlines for various stages of deformation in (a), drop deformation in (b), and transient
drag coefficient compared to that of a solid sphere in (c) for a viscous drop decelerating in an initially
stationary gas. Oh; = 0.01, We, = 10, Re = 150, p; /ps = 50. Reprinted with permission from Wadha
et al., Phys. Fluids, 19, 113301, 2007. Copyright 2007, American Institute of Physics
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Fig. 4.7 Streamlines (a), drop deformation (b), and transient drag coefficient compared to that of
a solid sphere (c) for a viscous drop decelerating in a initially stationary gas. Oh; = 0.01, We, =
100, Re = 150, p; /pg = 50. Reprinted with permission from Wadha et al., Phys. Fluids, 19,
113301, 2007. Copyright 2007, American Institute of Physics
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Fig. 4.8 Drag coefficient for various Ohsenorge numbers for (a) We, = 10, and (b) We, = 100.
For both cases Re = 150, p; /p, = 50. Reprinted with permission from Wadha et al., Phys. Fluids,
19, 113301, 2007. Copyright 2007, American Institute of Physics

decrease in the oscillation amplitude and the drag coefficient, as shown in Fig. 4.8a.
For a more severe deformation case such as panel (b) in the figure, increase in
viscous forces also decreases the extent to which the drop deforms.

These examples help to illustrate the interplay between the surface tension,
viscous forces, and the inertial forces that manifest in the form of pressure varia-
tions on the surface of the drop. They show the dependence of the drag force on
these parameters through their effects on the drop deformation. In short, they
highlight the importance of transient drop responses on the drag force and so, on
the drop motion. At higher Reynolds numbers suitable for many real applications,
the drop deformation may become more severe and the drop shape can take very
irregular profiles, leading to sharp changes in the drag coefficient.

Similar effects are observed on the drag of two-dimensional (2D) and axisym-
metric deforming droplets by Mashayek and Ashgriz [20]. To further examine (and
emphasize) the importance of extreme drop deformation on the drag force, a set of
high resolution numerical simulations for flows past 2D solid drops is performed.
The choice of 2D simulations is made to merely focus on the effect of elongation.
Moreover, 2D drops are often used as the cross-section of a jet in a flow. We
consider steady flows around various deformation levels. Three aspect ratios (AR =
minor/major axis of the elliptic cross-section) of 1, 0.5, and 0.25 are considered as
shown in Fig. 4.9.

The calculations are performed at equivalent Reynolds numbers (Reeq =
pUsodeq/1t) of 150-8,000, where deq is the equivalent circular diameter for elliptic
cross sections defined by deq = (4ab)'?, where 2a and 2b are the semimajor and
semiminor axes of the ellipse. It is usual to define the Reynolds number based on the
major axis of the ellipse in the form of Re, = pU2a/u whereas the choice of d.q can
correspond to the same drop but at different deformation levels. So, if we consider
the three ellipses of Fig. 4.9(a) as various profiles of the same drop at different times
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Fig. 4.9 (a) Schematic Diagram of the 2D drops with different aspect ratios; (b) Geometry and
boundary conditions of the computational domain

during its evolution, the Reynolds number for all of them is defined based on the
initial diameter of the circular drop.

The simulations are performed for six different Reynolds numbers of 150, 500,
1,000, 2,000, 4,000, and 8,000. As the Reynolds number increases from low
values, steady flow occurs around the body without any vortex shedding. Further
increase in the Reynolds number causes the formation of a pair of symmetrical
counter-rotating vortices about the centerline of the wake for Re.q<46 (for AR = 1).
At Reoq = 46, the flow becomes unstable and the Karman vortex street appears in
the wake of the ellipse. Experimental studies have shown that at the Reynolds
number of 150, the vortex street becomes turbulent in the wake downstream of the
2D drop and at the Reynolds number of 400, the vortices become turbulent. Our
results show that for circles with Re.q = 150, the wake is very organized and the
regular Karman street is observed. As the Reynolds number increases, the separated
shear layer formed on the surface of the ellipse becomes unstable and smaller
vortices form as a result of this instability, which affects the vortex shedding
downstream.

Figure 4.10 shows a close look at the boundary layer for two cases with Re.q =
500, but different aspect ratios and Re, values. Panel (a) shows the start of the
formation of smaller vortices due to the growth of the instabilities in the shear
layer. It is observed that as the Reynolds number increases (for a constant aspect
ratio), the point at which the separated shear layer becomes unstable moves
upstream. Panel (b) shows that the distance between the two points of separation
on the ellipse are located farther in the vertical direction due to the decrease in the
aspect ratio, which creates a wider vortex-shedding area. For AR = 0.25, the shear
layers roll up much closer to the tips of the ellipse and occasional interactions
between the vortices separated from the upper and lower tips are observed, which
is similar to flow past normal plates. At AR = 0.25, shortly downstream of the
flow separation point, the shear layer mixing leads to the reattachment of the
boundary layer, which is similar to that of higher Reynolds number flows past
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Fig. 4.10 Vorticity contours with contour levels from 0 to 20 in steps of 0.5. (a) AR = 1, Re.q =
Re, = 500; (b) AR = 0.25, Re.q = 500, Re, = 1000

] AR=1, Calculated
sy ~ AR=1, Curve fitted

AR=1,Experi it, Achenbach
L] AR=0.5, Calculated
=8 — — — — AR=0.5, Curve fitted 5
~ ' AR=0.25, Calculated

AN s AR=0.25, Curve fitted

5000 10000

Re

Fig. 4.11 Calculated drag coefficients versus Re.q for all the cases plotted and compared with
experiments of Achenbach [22]

circular cylinders with turbulent boundary layers. The formation and separation of
the vortices on the leeward of the drop leads to time variations in the drag
coefficient. Therefore, for all the simulations, the flow has been given the neces-
sary time to pass the transient phase and to develop the proper statistically steady
vortex-shedding pattern. The drag coefficient is then averaged over an adequate
amount of time to obtain a statistically valid value for each test case. The final
results for all the test cases are plotted in Fig. 4.11 and are compared to experi-
mental results of Achenbach [22] for a circular cylinder. Each line is a polynom-
inal fitted to the results for a specific aspect ratio.

The change in the flow structure around the 2D drop, induced by increasing the
aspect ratio, leads to considerable variations in the drag coefficient, as shown in
the curves in the figure. Hence, one can expect the change in the drag coefficient
to be pronounced as a real drop deforms into elongated ellipsoidal shapes. It
should be noted that the flow patterns shown in Fig. 4.10 do not truly correspond
to a deforming 2D drop as for each simulation, the drop shape is kept fixed.
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However, these simulations help showing the importance of the effect of drop
deformation on the drag force. In general, as a drop’s deformation becomes larger,
one may expect the drag force to become larger due to the increase in its frontal
area. This is shown in Fig. 4.11 for most of the Re range. However, this is not true
of large Reynolds numbers as the curve for the most elongated ellipse (AR =
0.25) in the simulations dips below that of AR = 0.5. This enforces the importance
of the effect of the deformation level on the flow structures and the corresponding
drag force.

Drag Coefficient for Sprays

Desantes et al. [21] presented a description of how the effects discussed so far can
be incorporated into spray calculations, as also detailed by O’Rourke et al. [23].
The commonly used correlations for drag coefficient used in spray models are

24

Cp = R—(l +0.15R"%7)  for Re < 10°
e

Cp = 0.44 for Re>10°

(4.39)

The distortion parameter y as defined in Fig. 4.12a can be used to modify the drag
coefficient to account for the drop deformation. This can be done using the relation

Cp, = Cp(1 + 2.63y), (4.40)

proposed by Liu et al. [24] where Cp ,, is the drag coefficient for the deformed drop
and Cp is that of the initially spherical drop. In spray models, the droplet distortion,
y, varies between 0 and 1 and the drop is assumed to break down into smaller pieces
if y exceeds unity. The logic behind relation (4.40) is very simple. The drag
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Fig.4.12 (a) Droplet distortion, y, and (b) Various experimental drag curves (from Rudinger [47].
Reprinted by permission, Copyright (1980), Elsevier Scientific Publication Company.)
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coefficient of a circular disk is about 3.6 times larger than that of a spherical drop at
high Reynolds numbers. According to (4.40), as a drop deforms into a flat shape
(i.e., y — 1), its effective drag coefficient becomes 3.6 times its initial drag
coefficient.

Drag Coefficient of Interacting Drops

In dense sprays, when the drop spacings are small, the drag coefficient of each
drop is significantly altered. The droplet interaction has a leading order effect on
the dynamics. Studies on the drag of multiple drops close to each other have
shown that the drag ratio (ratio of the drag force modified due to the presence of
another drop to the drag force acting on a single drop in the same conditions) is
not sensitive to the Reynolds number (for more information see [20—43]). In
general, a reduction in drag coefficients for aligned spheres and an increase in
drag coefficients for adjacent spheres have been reported by various experimental
and numerical studies. Moreover, a decrease in the distance between drops in the
normal direction to the free stream tends to increase the drag coefficients; the
reverse is true of the parallel direction. The interacting effect in the transversal
direction reduces faster than that in the flow direction. The reported numbers
indicate that the interaction effect is insignificant for drop spacing larger than 80d
in the flow direction and larger than 20d in the transverse direction where d is the
drop diameter.

The presence of many drops in a spray can change the effective drag force
acting on the drops to a significant extent. This is mainly due to the effect of the
drops on the surrounding gas flow through momentum exchange. Various experi-
mental studies (such as Giles [44] and Rhee et al. [45]) have shown that in sprays,
some drops move much faster than one would expect if the conventional isolated-
drop drag coefficients are used to calculate the drag force. This is even truer of
smaller drops and is due to the increased velocity of the surrounding gas resulting
from the momentum exchange between the drops and the gas. Hence, the entrain-
ment of the gas flow leads to higher drop velocities. To take this exchange into
account in spray models, two approaches have been commonly adopted. The first
is modifying the gas velocity by adding a correction to the free stream velocity.
The correction is supposed to take into account the momentum exchange between
the spray drops and the gas phase. The second approach has been to modify the
drag coefficient in such a way that the effect of the enhanced entrained gas
velocity is accounted for. This is called the “effective drag” approach. Effective
drag models are designed to also take into account the effects of mutual droplet
interactions in addition to the gas entrainment. To do so, they often modify the
drag coefficient by multiplying it by a function of the local void fraction o in the
form of
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Cpy = Cpyf(a), (4.41)

where Cp,, is the drag coefficient, which only takes the drop deformation into
account and is defined in (4.36), while Cp,, additionally takes the drop interactions
into account. Several commonly used drag coefficients for interacting drops and
bubbles are provided in Table 4.1. As one example of such relations, Rusche and
Issa [46] proposed a linear function of the void fraction in the form of

Cpy = Cpy[exp(Kja) + Koo, (4.42)

with the values for the coefficients K;, K>, and K3 being 2.1, 1.0, and 0.249,
respectively. Figure 4.12b (Rudinger [47]) shows a summary of the resulting drag
curves from various experimental studies performed in wind tunnles and fluidized
beds. Although the physical processes discussed in this article explain some of the
discrepancies shown in the figure, many discrepancies are still unresolved.

Evaporation

If the heat transfer between the drop surface and the surrounding gas is high enough,
the evaporation of liquid from the drop can become an important factor in the
calculation of the drag force. This effect goes hand in hand with the deformation
factor as a deformed and flattened drop has a higher surface-to-volume ratio, which
implies enhanced heat transfer and more evaporation. It is thus necessary for any
effective drag correlation to take both of these effects into account. As one example
of a correlation that modifies the conventional drag coefficient (drag over a sphere)
to take evaporation into account, Eisenklam et al. [48] proposed

Cp

C =
De T 11 By

5 (4.43)

where the subscript “e” denotes “evaporation” and By, is the Spalding mass
transfer number, which accounts for the vapor mass fraction at the drop surface
and is given by

st

By = ,
M Ty

(4.44)

where Yy, is the vapor mass fraction at the drop surface given by
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where py, is the surface pressure, p, is the ambient pressure, and W, and W) are the
molecular weights of the gas and the liquid phases respectively. As suggested by
Desantes et al. [21], combining the three correlations discussed so far leads to the
relation for the comprehensive drag coefficient Cp ¢

1
Cpe = Cpof (Bm) = Cp,lexp(2.1a) + 0.2490] ——. (4.46)
’ ' 1+ Bym

Equation (4.47) takes into account the effects of the drop deformation, gas
entrainment, drop interactions, and evaporation all based on simplified physical
assumptions.

Figure 4.13 (taken from Desantes et al. [21]) plots the variations in the drag
coefficients obtained using equations (4.40), (4.42), and (4.46) by following the
evolution of a group of drops injected from a nozzle in to a spray model. Also
included in the figure is the temperature. As the figure shows, the effects of the drop
deformation and their interactions with each other and with their surrounding gas
are significant. This can be observed by comparing the Cp curve (for spherical
drops) to the Cp, curve. However, comparing the curve for Cp_. to that of Cp,
shows very little effect of evaporation on the drag coefficie, with the effect
becoming more important as the temperature becomes higher. So, for a simulation
like the one from which Fig. 4.13 is taken, the effect of evaporation can be
neglected. However, this is, true for this particular case, which is for hexadecane
drops (used in Diesel engines). For other applications with drops composed of a
fluid with different properties, and/or at higher temperatures, the effect of evapora-
tion can be more pronounced.
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Nomenclature

2a Semimajor axis of ellipse

2b Semiminor axis of ellipse

A Frontal area of the object

a Radius of sphere

By Spalding mass transfer number

C Constant of integration

c Speed of the sound in the gas

Cp Drag coefficient

Cp.o Drag coefficient for Stokes’ flow

Cpy Coefficient of drag, drop interaction accounted
Cp Comprehensive drag coefficient

Cpe Coefficient of drag, evaporation

Cp, M=o Drag coefficient for a mach number of zero
Cpy Drag coefficient for the deformed drop
d=2a Diameter of sphere

deq Equivalent circular diameter, elliptic cross section
Fp Drag Force entered on the particle

f Drag factor, drag coefficient/ Stokes drag
f Traction on the sphere

G Shear rate

g Acceleration due to gravity

k Ratio of specific heats

Kn Knudsen number

Oh Ohnesorge

P Pressure distribution on the drop

P, Ambient pressure

Py Surface pressure

Re Reynolds number

T, Temperature of the gas

Ty Particle temperature

U Relative velocity of flow with respect to sphere
u Velocity components in r direction

v Velocity components in 6 direction

Vy Terminal velocity

W, Molecular weight of a gas

W Molecular weight of a liquid phase

We Weber number

Y Vapor mass fraction at drop surface

y Distortion

c Local void fraction

o Density

Pd Material density of a spherical droplet

e Dynamic viscosity

Ia Viscosity of the drop

i Viscosity of the free stream

JIn Viscosity of the drop/free stream

Normal to surface of the traction

A. Mashayek and N. Ashgriz
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Tr0

Ty

)

Tangent to surface of the traction
Velocity response time
Mean free path of the molecules
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