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Physiologic changes with age – immune system

Parameter Change with age Functional impact of change

T-cells Increased susceptibility to acute viral infections; increased latent herpesvirus 
reactivation along with clonally expanded CD8+ T-cellsMemory T cells Increase

Thymus gland Decrease (involutes)
Naïve T cells Decrease
DTH Decrease
IL-2 production Decrease
Proliferation Decrease
Cytotoxicity Decrease

B-cells Increased autoantibodies; decreased antibody production  
following vaccinationNumber Decreased

High-affinity antibodies Decreased
Non-specific antibodies Increased

Inflammation Increased morbidity and mortality; may play a role in age-related diseases  
(Alzheimer’s, Parkinson’s, osteoporosis, atherosclerosis,  
and type-2 diabetes)

Low-grade inflammation
Circulating IL-6 Increased
Circulating TNF-a Increased
CRP Increased
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Effects of Aging on Immune Function
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In this chapter we describe changes in the immune system 
that are thought to be related to age per se. We subsequently 
review the clinical implications of these changes, including 
the effects of surgical trauma on immune function (see the 
physiology table at beginning of chapter). We then discuss 
how stress modifies many of these changes. We also describe 
recent information on persistent infections, in particular 
latent viral infections and how they may be partly responsi-
ble for shaping the aging immune system. We conclude with 
a discussion of some of the latest research on ways to restore 
or stimulate immune function in the elderly.

Changes in Immune Cell Function with Age

T Lymphocytes

Quantitative changes in T cell populations in aging humans 
and experimental animals include declines in “virgin” (reac-
tive) T cells and increases in “memory” (primed) T cells 
[1–5]. It is not clear which subpopulations account for the 
accumulation of memory cells. Some studies have described 
increases in the population of CD4+ T-helper memory cells 
[6] and others reported increases in CD8+ T suppressor mem-
ory cells as well [1]. Although the number of naive T cells 
declines in old animals, they appear to produce larger 
amounts of interleukin-2 (IL-2) than naive cells from young 
animals [7]. Memory T cells normally produce IL-2; and 
although aged animals have larger proportions of memory 
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cells, many studies have described decreased IL-2 produc-
tion by aged memory lymphocytes. This paradox of low pro-
duction of IL-2 despite increased proportions of 
IL-2-producing cells may be related to a lack of other regula-
tory cytokine signals, such as IL-4 [8].

A decrease in the proliferative response of lymphocytes to 
specific antigens or nonspecific mitogens was one of the ear-
liest age-related changes in immune function to be reported 
[9–12]. Decreased responsiveness to mitogens is due to a 
number of variables, including reduced numbers of mitogen-
responsive cells and decreased vigor of the proliferative 
response [10]. A smaller percentage of T splenocytes from 
old mice respond to mitogenic stimulation by entering active 
phases of cell replication, a defect noted with CD4+ T-helper 
cells and to a lesser extent with CD8+ T suppressor/cytotoxic 
cells [13]. Some studies suggest that the type of stimulus 
may affect the degree of decreased proliferation of lympho-
cytes from old animals [14]. T-helper cells from old mice 
generate fewer cytotoxic effector cells involved in delayed 
hypersensitivity skin reactions [15].

The ability of T cells to support antibody production 
changes with increasing age. Lymphocytes from old subjects 
display increased helper activity in vitro for nonspecific 
 antibody production [16, 17], and they proliferate more to 
nonspecific stimulation [14]. Studies comparing suppressor 
cells from young and old mice have shown that cells from 
aged animals have more difficulty in recognizing and exert-
ing suppressive effects against specific antigens from self 
and other old animals [17–20]. The increased incidence of 
autoantibodies seen during aging (antibodies directed against 
parts of the self) may be related to a failure of tonic inhibi-
tion by suppressor T cells [21] and has been correlated with 
the decreased proliferation of T cells to mitogen [22] (i.e., 
the lower the proliferation of T cells to mitogens, the higher 
was the level of autoantibodies).

One mechanism that is believed to contribute to the 
decline in T cell immunity is involution of the thymus, which 
precedes the age-related decline in T cell function and 
decreased thymic hormone levels (Fig. 4.1). Thymic function 
gradually starts declining from the first year of life [23, 24]. 
The thymic epithelial space, in which thymopoiesis occurs, 
shrinks to less than 10% of the total thymus tissue by age 70. 
Despite the reduction in functional thymic area, the aging 
thymus still demonstrates T-cell output although at a lesser 
rate [25]. The continual presence of T-cell receptor excision 
circle-positive T-cells, which represent recent thymic emi-
grants, were found in the peripheral blood of elderly adults 
[26]. Thymic atrophy has been speculated to be the result of 
aging of the T-cell progenitor population [27], loss of self-
peptide expressing thymic epithelium [28], defects in TCRb 
gene rearrangement [29], and aging of the thymic microenvi-
ronment with loss of trophic cytokines such as IL-7 [30].

Another mechanism contributing to T cell immunosenes-
cence is “replicative senescence” [31]. Senescent T cells 

in vitro exhibit a loss of CD28, a costimulatory molecule 
critical to the outcome of antigen recognition and signal 
transduction induced by the T-cell receptor [32]. Similarly, 
during aging, there is a progressive accumulation of memory 
CD8 T cells that are CD28-negative, with some elderly adults 
having more than 50% of their total CD8 T cells being CD28-
negative [33, 34]. Notably, CD28 is involved in a number of 
critical T-cell functions such as lipid raft formation, IL-2 
gene transcription, apoptosis, stabilization of cytokine 
mRNA, and cell adhesion [35–37].

Another observation of CD28-negative T cells is their 
inability to proliferate, even when using phorbol esters to 
bypass cell-surface receptors and directly signal prolifera-
tion [38]. Extensive research on a variety of cell types have 
attributed this to the irreversible nature of the proliferative 
block, which is linked to the upregulation of cell-cycle inhib-
itors and p53 checkpoints [39]. Once generated, these T cells 
do not disappear, but show increased expression of bcl2 and 
are resistant to apoptosis ex vivo [40]. Moreover, increased 
CD8+CD28− T cells are often present as a result of oligoclo-
nal expansions that may reduce the overall spectrum of anti-
genic specificities within the T cell pool [31, 41].

A clinically important implication of large expansions of 
antigen-specific CD8 T cells in the elderly is that they appear 
to function as suppressor T cells and affect a number of 
immune parameters. Poor antibody responses to influenza 
vaccination in the elderly were significantly correlated with 
high proportions of CD8+CD28− T cells [42, 43]. High levels 
of CD8+CD28− T cells also correlate with greater disease 
severity in patients with ankylosing spondylitis [44]. 
CD8+CD28− T cells have been implicated as the critical subset 
in allogeneic organ transplant tolerance, whereby donor- 
specific CD8+CD28− T cells can be found in peripheral blood 
of stable transplant recipients but not in patients with acute 
rejection [45]. Notably, CD8+CD28− T cells have been shown 
to induce antigen-presenting cells to become tolerogenic to 
helper T cells with cognate antigen specificity [45]. Importantly, 
increased numbers of CD8+CD28− T cells (along with low 
CD4 and poor proliferative responses) were found to predict 
higher 2-year mortality in a Swedish longitudinal study [46].

B Lymphocytes

Age-related quantitative changes in B cells have become 
apparent more recently than those described in T cells. The 
absolute number of B cells does not appear to change appre-
ciably with age [47]. Studies in aged mice have shown a 
decrease in bone marrow B-cell precursors [48–50] and 
structural changes in B-cell membranes [51]. B cells from 
old individuals proliferate less efficiently in response to 
mitogen stimulation, similar to what has been described for 
T cells [21]. Also similar to T cells [52], activation of PKC 
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and protein tyrosine kinases is reduced in B cells from old 
humans [53]. The expression of PKC was not reduced in B 
cells in this study [54].

The generation of antibody responses by B cells does 
change with age [55], although much of it is related to changes 
in T cell function. The distinction between antibody responses 
to T cell-dependent and T cell-independent antigens is made 
on the basis of whether there is an absolute requirement for T 
cell help in the antibody response. The decrease in T cell-
dependent antibody responses is obvious in experimental ani-
mals, with 80% fewer antibody-forming cells in older animals 
[2]. The accumulation of anti-idiotypes (antibodies directed 
against other antibodies) with increasing age may interfere 
with the production of specific antibody [56].

The ability to respond to specific antigenic challenge 
with specific antibody production decreases with age [55].  

This phenomenon has been described in studies of both pri-
mary and secondary antibody responses. When subjects of 
different ages were immunized with the primary antigen 
flagellin, similar levels of anti-flagellin antibody were found 
in both old and young subjects, but the older subjects were 
unable to maintain the response [57]. In contrast, De Greef 
et al. immunized old and young subjects with the primary 
antigen Helix pomatia hemocyanin. Compared to young sub-
jects, old subjects had similar numbers of antibody-producing 
cells after in vitro stimulation with the antigen [58].

Although most investigators agree that changes in anti-
body production with age are primarily the result of declines 
in T lymphocyte function, there is also evidence for a decline 
in intrinsic B cell function. Some studies suggest a dimin-
ished ability of purified human B cells to respond to purified 
T-helper cells, or to T cell-derived helper factors [59, 60]. 

Figure 4.1 The human thymus across the lifespan. (a) Representative 
views of human thymus morphology throughout aging. All tissue  
was formalin-fixed, paraffin-embedded, and sections stained with 
haematoxylin and eosin and anti-keratin antibody [brown] to deter-
mine the percentage thymic epithelial space [each panel, ×25]. C, 

cortex; M, medulla; P, perivascular space. (b) Graphical depiction of 
the impact of age on human thymus morphology. Thymic epithe-
lial space, pink; perivascular space, white (reprinted with permis-
sion from [267], copyright 2000, The American Association of 
Immunologists, Inc).
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Studies with murine cells have shown that certain subsets of 
B cells from old animals function at a much lower level than 
the same cells from young mice, whereas other subsets pro-
duce comparable levels of antibody [61]. Cerny et al. found 
that the antiphosphorylcholine antibody produced by aged 
mice did not protect animals against lethal doses of 
Streptococcus pneumoniae, although old animals produced 
levels of antibody comparable to those in young animals 
[62]. The genes encoding the variable heavy portions of the 
antibody molecule were different in the old mice. The result-
ing antibody had lower affinity for the bacterial antigen and 
conferred less protection [62, 63].

Macrophage Function

Macrophage function during aging is particularly relevant to 
the theme of this book, suggesting that “old” macrophages 
are comparable to “young” macrophages in terms of produc-
ing similar levels of cytokines. Differences in function 
appeared to be modulated through changes in T and B cell 
responses to the cytokines [64, 65]. Studies of human mono-
cytes have shown decreased secretion of IL-1 with mitogen 
stimulation [66]. Bone marrow stem cells from senescence-
accelerated mice are defective in their ability to generate 
granulocyte/macrophage precursor cells [67]. In vivo func-
tion of macrophages illustrated by cutaneous wound healing 
in mice, showed that wounds in aged control animals took 
twice as long to heal as in young ones [68]. When peritoneal 
macrophages from animals of different ages were added to 
wounds on old mice, healing was accelerated regardless of 
the age of the source animal, although, macrophages from 
young mice accelerated the healing process to the greatest 
degree [68].

Studies of macrophage function in aged mice and humans 
suggest defects in macrophage–T cell interactions. Antigen-
sensitized macrophages from old mice stimulated signifi-
cantly lower levels of T cell proliferation than sensitized 
macrophages from young mice [14]. Dendritic cells are tis-
sue-fixed macrophages that stimulate formation of germinal 
centers in lymph follicles where B cell memory develops; 
they thus play an important role in the secondary immune 
response. Szakal et al. described serious age-related compro-
mise in this pathway [69]. When macrophages were replaced 
with other sources for activation (e.g., IL-2, or an activator 
such as phorbol-12-myristate-13-acetate), T cells from old 
adults displayed enhanced responses [70]. Macrophages 
from young adults were able to restore old T cell responses 
to the level seen in young adults in 70% of the subjects stud-
ied. Because the “old” macrophages effectively supported 
“young” T cells, the authors postulated that the defect resulted 
from impaired macrophage–T cell communication [70].  

In other studies, monocytes from old adults displayed less 
cytotoxicity against certain tumor cell lines, decreased  
production of reactive oxygen intermediates (H

2
O

2
 and NO

2
), 

and lower IL-1 secretion than monocytes from young adults 
[66, 71].

Natural Killer Cells

Natural killer (NK) cells are cytotoxic cells with the ability 
to lyse targets without the need for antigenic sensitization, 
a characteristic that distinguishes them functionally from 
cytotoxic T cells. Lymphokine-activated killer (LAK) cells, 
thought to be highly activated NK cells, are able to lyse 
certain cell lines that are resistant to NK cells. NK cells 
from mice display a declining ability to lyse spleen cells 
with increasing age [72, 73]. Most studies using old human 
subjects have shown little or no change in NK cell cyto-
toxic ability [74]. There do appear to be differential require-
ments for maximal activation of NK cells by interferon-a 
(IFNa). Young NK cells show maximal responses when 
stimulated with low concentrations of IFNa [75]. The 
activity of LAK cells from old humans appears to be 
reduced compared to that of LAK cells from young humans 
[74, 75].

Changes in Production and Response  
to Regulatory Factors

Prostaglandins

Prostaglandin E
2
 (PGE

2
), a metabolite of cell membrane 

arachidonic acid, is a feedback inhibitor of T cell prolifera-
tion in humans [76]. T cells from adults over 70 years of age 
are a magnitude more sensitive to inhibition by PGE

2
 than 

those from adults less than 40 years of age [9, 77]. Thus 
PGE

2
 may interfere with expansion of antigen-specific 

T-helper cell clones. T cells from aged mice are not only 
more sensitive to inhibition by PGE

2
, their splenocytes 

appear to produce more PGE
2
 than splenocytes from young 

mice [78]. Meydani et al. have continued to provide evidence 
that macrophage production of excess PGE

2
 is a significant 

mechanism in the suppression of T cell proliferation and 
IL-2 production in old mice [79].

Delfraissey et al. found that PGE
2
 suppressed the primary 

antibody response to trinitrophenylated polyacrylamide 
beads by lymphocytes from old adults [65]. Removing the 
monocytes that were the source of PGE

2
 production or add-

ing drugs that blocked production of PGE
2
, partially reversed 
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the depressed response [9, 65]. Using a different system of 
lipopolysaccharide-stimulated versus unstimulated lympho-
cytes, other investigators have not found increased PGE

2
 pro-

duction in old versus young donors [80]. Polyclonal antibody 
production was not suppressed by PGE

1
 when added to lym-

phocytes from donors of any age [80].
The increased sensitivity to PGE

2
 with age does not appear 

to be part of a general increase in sensitivity to all immuno-
modulators. Lymphocytes from subjects over 70 years of age 
are less sensitive to inhibition by substances such as hista-
mine and hydrocortisone [77].

Interleukins

Interleukins-1 and -2 play a primary role in activation, 
recruitment, and proliferation of T lymphocytes. Activated T 
cells then go on to produce a variety of growth and differen-
tiation factors. T-helper (Th) cells can be classified based on 
the profile of the cytokines they produce and by distinct sur-
face receptors. Th1 cells elaborate IFN-g, IL-2, IL-12, and 
tumor necrosis factor-b (TNF-b), leading to the induction of 
cytotoxic T cells and cellular immunity; Th2 cells elaborate 
IL-4, IL-5, IL-6, IL-10, and IL-13, which ultimately results 
in antibody production [81, 82].

A decreased response to IL-2 has been studied exten-
sively as a potential mechanism underlying the age-related 
defect in cellular immunity. Work from various investigators 
has demonstrated decreased production of IL-2 after mito-
gen stimulation, decreased density of IL-2 receptor expres-
sion, and decreased proliferation of T cells in response to 
IL-2 [83–88]. The picture is complicated by variable sensi-
tivity to IL-2 depending on the activation signal [3, 89]. 
Human memory T cells generally produce low levels of IL-2 
when stimulated by mitogen, in contrast to high IL-2 pro-
duction by young memory T cells [8]. However, production 
of IL-2 by old cells was greater when a different stimulus 
was employed [8]. Studies from Nagelkerken’s group found 
no differences in T cell proliferation or IL-2 production 
when memory T cells from old and young humans were 
stimulated with a variety of activation signals [3]. CD4+ T 
cells from old mice accumulate similar levels of IL-2 tran-
scripts, though secretion of IL-2 is lower than that seen in 
cells from young mice [90].

Increasing evidence has been accumulating that there are 
age-related declines in lymphocyte production and response 
to cytokines other than IL-2 [2, 91]. Monocytes from aged 
humans produce levels of IL-1 precursor comparable to 
monocytes from young humans, although they secrete less 
IL-1 [67]. Lymphocytes from old individuals produce higher 
levels of IL-1, IL-2, and TNF-a than those from healthy 
young individuals in mixed lymphocyte culture [92].

Li and Miller found a threefold decline in IL-4 production 
with age when activated murine T cells were immobilized 
with antibody to the T cell receptor, CD3, and cultured with 
anti-CD3 and IL-2 [93]. Memory T cells from old donors dis-
played a sixfold deficit in IL-4 production compared to cells 
from young donors [93]. In a similar system, CD4+ T cells 
from young mice were more sensitive to stimulation with 
exogenous IL-4, producing much higher levels of IL-2 than 
old CD4+ T cells [8]. Blocking endogenous IL-4 boosted 
“old” lymphocyte production of specific anti-influenza IgM 
and IgG1 to levels seen in young animals during a primary 
antibody response [94]. A similar effect was achieved by 
blocking endogenous IFN-g and IL-10 [94]. We have shown 
that lymphocytes from old adults produce less IL-4 when 
stimulated with specific antigen than lymphocytes from young 
adults [95]. When IL-4 is added early during the course of 
stimulation, old lymphocytes are less inhibited to produce 
specific antibodies [95], similar to findings described earlier 
in mice [8].

Other investigators have found no differences between 
lymphocytes from old and young adults in terms of their 
ability to produce IL-4 or IL-6 when stimulated with the 
mitogen phytohemagglutinin [96]. In this system, lympho-
cytes from old adults produced significantly less IFN-g [96]. 
With variation in the activating signals, old human T cells 
produce larger amounts of IL-4 and IFN-g [3, 97].

Proinflammatory Cytokines

Aging is associated with elevated levels of circulating inflam-
matory cytokines such as TNF-a, IL-6, IL-1ra, and the acute 
phase protein CRP [98–100]. The plasma levels of TNF-a 
were positively correlated with IL-6, sTNF-RII, and CRP in 
126 centenarians indicating an interrelated activation of the 
entire inflammatory cascade [101]. However, the increased 
proinflammatory cytokines in healthy elderly adults is not 
very marked and far from levels observed during acute infec-
tion. Thus, aging is associated with chronic low-grade 
inflammation.

In agreement with low-grade inflammation in aging, 
aged T cells produce much higher levels of the proinflam-
matory cytokines TNF-a and IL-6 [102]. Increased pro-
duction of TNF-a by unstimulated mononuclear cells has 
been shown [103]. Increased production of IL-6 and IL-1ra 
by unstimulated mononuclear cells was demonstrated, but 
no difference was found in levels of TNF-a and IL-1b 
[104]. However, cells in tissues other than peripheral blood 
may also contribute to the increased levels of circulating 
proinflammatory cytokines such as endothelial cells, adi-
pose cells, and macrophage-derived cells in CNS and 
peripheral tissues.
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Clinical Implications of Age-Related  
Immune Changes

All-Cause Mortality

We have described a variety of immunologic changes with 
aging. What are the implications of these changes for the 
occurrence of disease and maintenance of health in older 
adults? There is little direct causal evidence linking specific 
changes in immunity to specific clinical diseases or mortality. 
Most authorities simply assume that a decline in immune func-
tion is deleterious, or use theoretic arguments to support this 
belief. The question of whether decreased immune responses 
contribute to morbidity and mortality in elderly persons has 
been addressed mostly by cross-sectional studies looking for 
associations between a particular abnormal immune response 
and general health status [105]. For example, the Baltimore 
Longitudinal Aging Study found that declines in absolute lym-
phocyte counts predicted mortality after 3 years in aging men 
[106]. Ferguson et al. found that the presence of two or more 
suppressed immune parameters predicted poor 2-year survival 
in a group of adults over the age of 80 [46].

The response to delayed-type hypersensitivity skin tests 
has been associated with mortality in a number of studies. 
Delayed-type hypersensitivity skin testing is thought to be the 
in vivo correlate of in vitro mitogen-stimulated proliferation. 
Elderly subjects who respond poorly or not at all to a battery 
of antigens placed intradermally (anergy), have an increased 
risk of mortality compared to elderly subjects who respond 
well to one or more antigens [12, 107]. We found a twofold 
higher mortality rate and incidence of pneumonia during 10 
years of follow-up in the one-third of healthy elderly indi-
viduals who were anergic at initial testing [107, 108].

We and others have examined mitogen-stimulated lympho-
cyte proliferation in community-dwelling adults over age 65 
years [46, 105, 108, 109]. One study found that 18% of adults 
seen in an outpatient geriatric clinic had lymphocytes that did 
not respond to any of the three mitogens [109]. These nonre-
sponders had a 26% mortality rate at 3-year follow-up versus 
13% mortality in those whose lymphocytes proliferated to at 
least one mitogen. The increase in all-cause mortality remained 
significant after controlling medication use, an indirect indica-
tor of health status. Our own studies showed slightly higher 
all-cause mortality in old adults with low  proliferative 
responses to the mitogen phytohemagglutinin [105].

Response to Immunization and Infections

Adults over the age of 65 experience greater morbidity and mor-
tality in association with common infections, providing a basis 
for targeting this population with preventive immunization. 

Unfortunately, elderly people respond less well to preventive 
immunizations against common infections compared with 
young individuals because of the waning of immunity. 
Epidemiologic evidence suggests that despite decreased effi-
cacy in the elderly, immunizations do reduce morbidity and 
mortality. The next section focuses on influenza, pneumococcal 
pneumonia, tetanus, tuberculosis, and herpes zoster, because 
information is available on disease epidemiology and aging 
immune responses specific to these entities.

Influenza

Influenza is a common viral respiratory illness that becomes 
clinically important when complicated by bacterial pneumo-
nia, or when it occurs in debilitated or elderly patients (reviewed 
by Burns et al.) [110] Individuals who suffer from one or more 
chronic, systemic illnesses (e.g., chronic obstructive pulmo-
nary disease, diabetes, chronic renal insufficiency) experience 
a 40- to 150-fold increase in the basal incidence rate for influ-
enzal pneumonia of four cases per 100,000 persons per year. 
More than 80% of deaths related to influenza epidemics occur 
in the elderly [111], and the risk of developing influenzal 
pneumonia or superimposed bacterial pneumonia increases 
with increasing age. Individuals living in long-term care facili-
ties are at particularly high risk of morbidity and mortality.

After vaccination with influenza, old mice display impaired 
cytotoxic T cell function and ineffective antibody generation 
against the virus [112]. When an intranasal viral load is 
administered after vaccination, old animals are more likely to 
develop influenzal pneumonia than young animals [112]. 
Studies in humans have described impaired production of 
anti-influenza antibodies and impaired influenza-specific 
cytotoxic activity in old adults compared to that in young 
adults [113]. Some of the mechanisms mediating this response 
include reduced IL-2 production and T cell activation in vivo 
and in vitro [85]. NK cell cytotoxicity is unchanged in old 
adults after vaccination against influenza, in contrast to 
increased NK cell activity in young adults [114]. Elderly 
individuals who do display a significant response to influenza 
vaccine have increased numbers of T cells capable of respond-
ing to the specific viral stimulus, whereas nonresponders 
have low numbers of such cells [115]. After immunization, 
IgG and IgG1 antibody production and agglutinating ability 
were decreased in the elderly compared to that in young sub-
jects [116]. The investigators were able to restore the 
responses of the elderly subjects to the levels seen in young 
subjects by doubling the dose of vaccine [116].

Although influenza vaccination is less effective in the 
higher risk population of old adults, the incidence and sever-
ity of influenza infections is clearly reduced by annual usage 
of the standard preparation [117]. The vaccine confers the 
highest degree of protection when the epidemic strains are 
similar to those in the vaccine [118]. Even when the antigenic 
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determinants of the wild virus have drifted over the course of 
a year, vaccine utilization can still have a substantial impact 
on morbidity and mortality [117].

Pneumococcal Pneumonia

An increased incidence of morbidity and mortality due to 
pneumonia has been recognized in the elderly for years [110]. 
Hospitalization necessitated by a diagnosis of pneumonia is 
most often caused by bacteria, primarily (about two-thirds of 
cases) S. pneumoniae. High mortality rates result from the 
increased incidence of bacteremia and  meningitis seen in old 
adults. Similar to influenza, patients with one or more chronic 
systemic diseases are at increased risk of complications and 
mortality from pneumococcal infection.

Most of the information on the immunologic response to 
pneumococcal vaccination derives from murine studies. After 
vaccination with phosphocholine, old mice produced levels of 
antibody similar to those in young mice, but with a molecular 
shift in the antibody repertoire [62]. The antibody produced by 
old animals has a lower affinity for its target and is less effec-
tive in preventing infection [62]. In old mice, many of the anti-
bodies produced after pneumococcal vaccination cross-react 
with self-antigens [62]. In humans, serum antibody levels fade 
more rapidly in old individuals, prompting recommendations 
to re-vaccinate after 6 years in elderly patients [119]. The vac-
cine has been estimated to be about 70% effective for reducing 
morbidity and mortality in the elderly [120].

Tuberculosis and Intracellular Infections

For more than 20 years the risk of active tuberculosis in the 
Western world is increasingly confined to two populations: 
those with immunocompromising diseases (e.g., AIDS) and 
the very elderly [121, 122]. Animal studies show that old 
mice display increased susceptibility to infection with 
Mycobacterium tuberculosis [123]. The infection contain-
ment rate in old mice is similar to that in young animals; but 
once pulmonary infection is established, there is increased 
hematogenous spread to other organs [123]. Old animals dis-
play decreased CD4+ T cell function, significantly lower lev-
els of IL-12 in the lung [123], and delayed emergence of 
protective, IFN-g-secreting CD4+ T cells [124]. The protec-
tive cells from old animals were slower to express surface 
adhesion markers necessary for migration across endothelial 
linings to sites of active infection [124]. The increased spread 
of disease in old animals may also be related to alterations in 
other cytokine levels [123]. Orme has shown that CD4+ cells 
from young mice protect old mice from infection, suggesting 
that old macrophages function adequately and the major 
defect lies in the T cell population [123, 124].

Herpes Zoster

There is a clear positive correlation between age and the inci-
dence of herpes zoster, with an annual incidence rate of 400 
cases per 100,000 adults over age 75 [125]. Other surveys 
suggest an even higher overall incidence [126]. The vari-
cella-zoster virus (VZV) is harbored in dorsal root ganglia 
for many decades following childhood illness; and when it is 
reactivated it causes a cutaneous, varicella-type vesicular 
eruption involving the dermatome of the involved dorsal root 
ganglion.

Cellular immunity, measured by cutaneous delayed hyper-
sensitivity to varicella zoster, wanes with increasing age, 
although other factors may be involved in controlling viral 
latency [127]. Cutaneous zoster is often an indication of 
immune-compromised status in young persons and those 
with early recurrence [126], but is not associated with occult 
malignancy in old adults [128].

Stress, Immunity, and Aging (Table 4.1)

Physical Stress

A number of studies have described the effects of physical 
stress on the immune system, although most have not analyzed 
outcomes by age. Time-limited physical stress, such as hypoxia, 
head-up tilt challenge (approximating conditions of acute hem-
orrhage), hyperthermia, and exercise, tend to enhance measures 
of immunity on a transient basis (e.g., increased lymphocyte 
numbers and increased NK cell activity) [129]. Physical stress 
associated with tissue injury (e.g., trauma, burns, surgery) is 
generally characterized by suppressed immune function. CD4+ 

Table 4.1 Immunologic changes during stress

Type of stress Parameter
Functional impact  
of change

Physical (e.g., surgical, 
trauma, burns)

↓ T-cell number  
and function

↑ Post-op infections

↓ NK cell number  
and function

Delayed wound healing

↓ PMN function
↑ Inflammatory 

cytokines

Psychological (e.g., 
academic exams, 
major life events, 
caregiving, 
spaceflight)

↓ T-cell function ↑ Herpesvirus 
reactivation

↓ NK cell function Delayed wound healing
↓ Th1 cytokines  

(e.g., IL-2)
↓ Vaccine responses

↑ Th2 cytokines  
(e.g., IL-10)
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and CD8+ cells have been reported to decrease in number 
[130–132], and T cell activation is decreased [133]. Mitogen-
induced lymphocyte proliferation is decreased after surgery 
and trauma [134–136], and anergy is increased [137]. The pres-
ence of anergy has been associated with an increased incidence 
of postoperative infections [137]. Neutrophil function is 
adversely affected by surgery, with decreased chemotaxis [137, 
138], decreased intracellular killing [139], and disruption of 
superoxide release [138, 139].

One of the most consistently demonstrated findings is 
decreased cytotoxicity of NK cells [129, 130, 140–142]. In 
murine studies, decreased NK activity following surgery is 
associated with increased tumor metastases [143]. Levels of 
IL-2, mRNA for IL-2, IFN IL-10, and IL-12 are decreased 
[131, 135, 137, 144], whereas IL-4 and IL-6 levels are gener-
ally increased [131, 133, 136, 137, 144], although some 
investigators have reported decreased IL-6 [133, 145]. Of 
clinical relevance are observations that the degree of immune 
suppression correlates positively with the duration of surgery 
and volume of blood loss [137, 139].

The mechanisms underlying immune suppression with 
physical stress are slowly becoming elucidated. Tissue damage 
results in release of inflammatory substances, including TNF, 
IL-1, and IL-2 [146–148]. Hypothalamic production of corti-
cotropin-releasing hormone (CRF) and arginine vasopressin 
(AVP) is stimulated by the locally produced cytokines and by 
afferent nerve signals from the site of injury. CRF and AVP 
stimulate pituitary adrenocorticotropic hormone (ACTH) 
release and subsequent adrenal glucocorticoids, the latter two 
of which are also directly stimulated by the cytokines from the 
site of injury [149, 150]. Activation of the hypothalamic–pitu-
itary–adrenal (HPA) axis stimulates transformation of uncom-
mitted Th cells to Th2 cells and inhibits transformation to Th1 
cells [151]. The cellular immune responses are thus suppressed 
partly due to a lack of Th1 cells. The cytokines secreted by the 
Th2 cells (e.g., IL-1, IL-6, TNF-a) further stimulate the HPA 
axis and glucocorticoid production [152] and subsequently 
cause immune suppression [153, 154]. Given the extensive 
age-related changes in immunity, it is not surprising that old 
age in surgical patients has been associated with increased 
postoperative immune suppression and septic complications 
[139]. It is interesting to speculate that postsurgical immune 
suppression might be less pronounced in the elderly than 
expected because of decreased sensitivity to glucocorticoids 
[76], as mentioned previously.

Psychological Stress

In addition to physical stress from trauma or surgery, psy-
chological stress can have a significant impact on immune 
system function. Complex and direct links have been 
described between the immune system and the perceptual 

capabilities of the central nervous system. Ader and Cohen 
demonstrated that it was even possible to condition specific 
immune responses with sensory cues [47]. In a series of 
taste-aversion learning experiments in rats, saccharin water 
was initially administered to the animals along with a dose of 
cyclophosphamide. The rats were subsequently injected with 
sheep red blood cells with or without readministration of the 
saccharin solution. Animals who received the saccharin 
along with the injection had profound suppression of the 
hemagglutinin response to sheep red blood cells [47].

Carefully controlled experiments with rodents and pri-
mates have demonstrated the neurohumorally mediated 
effects of stress on the immune system [155, 156]. Similar 
findings are seen in cross-sectional studies with humans, 
though it is impossible to achieve the same degree of control 
as in the animal studies. Clusters of illness, from the common 
cold to cancer, have been reported to occur around the time of 
major life changes [157]. Strong negative correlations have 
been seen between loneliness and the proliferative response 
of lymphocytes to mitogens, NK cell activity, and DNA splic-
ing and repair [157, 158]. We found that healthy old adults 
with a strong social support system had greater total lympho-
cyte counts and a stronger mitogen-induced proliferation of 
lymphocytes than those without a close confidant [159].

Studies of individuals in “naturally occurring” stressful 
situations have also demonstrated links to suppressed 
immune function and illness. Mitogen-induced lymphocyte 
proliferation is suppressed after bereavement [160] and with 
depression [161]. The stress of taking final examinations has 
been correlated with recurrence of cold sores, rises in serum 
antibody titers against herpes simplex type I virus [162], and 
decreased proliferation of memory T cells [163]. Caregiving 
for a demented spouse is associated with a poor response to 
influenza vaccination [164]. Lymphocytes from the caregiv-
ers produced less IL-1b and IL-2 when stimulated with influ-
enza virus in vitro compared to age-matched, non-care-giving 
controls [164]. Caregivers displayed slower wound healing 
after skin biopsy than did matched controls [165].

Spaceflight

Many studies have reported similarities between spaceflight 
and aging. The average age of NASA astronauts is early to 
mid 40s [166–169]. In 1998, however, former Senator John 
Glenn flew on STS-95 at the age of 77 as a payload specialist 
(PS2). This afforded a unique opportunity to compare the 
effects of stress and microgravity in an aged individual to 
those of six younger astronauts under identical spaceflight 
conditions. After the 9-day mission, blood and urine samples 
were collected and neuroendocrine and immune responses 
were compared to those before flight. As shown in Fig. 4.2, 
variable levels of plasma and urinary cortisol were observed 
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after spaceflight for all seven crew members. However, PS2 
had the greatest increase in both plasma and urinary cortisol. 
Little change was found in ACTH for the younger astronauts, 
but once again a significant increase was found in PS2. 
Postflight levels of urinary epinephrine were mostly increased 
for the seven astronauts. Again, the aged astronaut had one 
of the highest epinephrine levels.

Given prior studies of psychological and physical stress on 
circulating leukocytes and lymphocytes, it would be expected 
that spaceflight would also result in significant changes in 
these white blood cell populations. As expected, significant 
increases in neutrophils were found postflight for all seven 
astronauts [170]. Excluding PS2 from data analysis, there was 
a significant increase in circulating B-cells (Fig. 4.3). A non-
significant decrease was found in NK cells at landing, while 
significant increases were found in CD3+ T-cells and CD4+ 
T-cells. Notably, the magnitude (³20% difference) and the 
direction of the shift in lymphocyte subsets for PS2 was oppo-
site from that of the other six crew members. Given the recent 
explosion in commercial spaceflight and associated opportu-
nities for adults (both young and old) to fly in space, this will 
be an important area of future research.

Reactivation of Latent Herpesviruses:  
A Potential Role in Shaping the Aged 
Immune System

Herpesviruses commonly establish latent infections in the 
majority of adults. The best known members of this family 

include herpes simplex virus (HSV), VZV, cytomegalovirus 
(CMV), and Epstein-Barr virus (EBV). Herpesviruses are 
medically important viruses; HSV-1 infects 70–80% of all 
adults and is classically associated with oropharyngeal 
lesions such as cold sores, pharyngitis, and tonsillitis [171]. 
EBV infects over 85% of the adult population and is the 
causative agent of infectious mononucleosis, Burkitt’s lym-
phoma, undifferentiated nasopharyngeal carcinoma, and dif-
fuse polyclonal B-cell lymphoma [172]. Most CMV 
infections in adults are asymptomatic, but may result in an 
infectious mononucleosis-like syndrome, central nervous 
system infections, and febrile illnesses [173]. Notably, CMV 
infections can be severe in immunocompromised individuals 
such as AIDS and post transplant patients [174]. VZV causes 
chicken pox on primary infection and remains latent thereaf-
ter; VZV may reactivate resulting in episodes of zoster or 
“shingles” [175].

Recent work on has focused on herpesviruses, in particu-
lar CMV. Numbers of CD8+CD28− T cells have been found 
to positively correlate with CMV seropositivity independent 
of age [176]. This correlation was also found in the OCTO 
study [177] as well as the subsequent NONA study [178].

The recent development of MHC tetramers, which allows 
direct detection of T cells carrying receptors for single peptide 
epitopes [179], has yielded new information on the way that 
CMV shapes the immune system. Using tetramers, numerous 
studies have demonstrated detectable levels of CMV-specific 
CD8+ T cells present in both healthy and diseased individuals 
[180–184]. Notably, studies of CMV tetramer-positive cells 

PCort ACTH UCort UEPI

−100

−50

0

50

100

150
P

er
ce

nt
 C

ha
ng

e 
at

 L
an

di
ng

 

Figure 4.2 Postflight change in plasma cortisol (PCort), ACTH, urinary 
cortisol (UCort) and urinary epinephrine (UEPI). Filled circles indicate 
values for PS2. Open circles indicate individual values for the remaining 
six STS-95 crewmembers. Data are expressed as the percent change at 
landing as compared to L-10 values.
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Figure 4.3 Postflight change in circulating lymphocytes. Filled circles 
indicate values for PS2. Open circles indicate individual values for the 
remaining six STS-95 crewmembers. Data are expressed as the percent 
change at landing as compared to L-10 values.
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have demonstrated the following: (a) CMV tetramer-positive 
cells are mainly pp65-specific, owing to the fact that pp65 is the 
most abundant structural protein throughout CMV infection 
and it is regarded as the dominant antigen recognized by CD8 
T cells [185, 186]; (b) the frequency of pp65 tetramer-positive 
cells can reach 25–50% in healthy individuals and are often 
present as oligoclonal expansions as determined by TCR-Vb 
analysis [181, 187–189]; (c) CMV-specific T cells increase in 
direct proportion with age [189, 190]; and (d) pp65-positive 
cells are CD28−CD57+ indicating a fully differentiated effector 
T cell [178, 181, 187, 188, 191].

Importantly, high levels of CMV pp65-specific T cells 
may downregulate immune responses to other herpesviruses. 
Recently, Khan and coworkers [192] who found that CMV 
infection in the elderly impaired the CD8 T cell immunity 
against EBV, another important member of the herpesvirus 
family that is known to cause numerous diseases including 
carcinomas and lymphomas. The authors found aged related 
increases in the number of EBV-specific T-cells. However, 
the frequency of EBV-specific CD8+ T cells never exceeded 
3% in CMV seropositive individuals, whereas in CMV sero-
negative individuals it was a high as 14%. Additionally, they 
also found that the proportion of functional EBV-specific 
CD8+ T cells was significantly lower than for CMV-specific 
CD8+ T cells. This study confirmed an earlier report that also 
demonstrated reduced IFN-g production by EBV-specific 
CD8+ T cells in the elderly [193]. Subsequently, Vescovini 
and coworkers [194] showed that several elderly subjects 
had a predominance of CD8+ T cells specific for EBV latent 
epitopes rather than lytic epitopes typically found in younger 
subjects. Collectively, these observations suggest a lack of 
immune control over EBV in the elderly.

It was not known until recently whether the clonally 
expanded herpesvirus-specific T-cells represented increased 
viral reactivation or simply reflected an accumulation over 
time. We showed for the first time direct evidence of increased 
viral reactivation in the elderly which included increased 
antiviral antibodies and increased viral load (EBV) in periph-
eral blood B-cells [195]. In addition, we found plasma vire-
mia (EBV DNA), which was supported by a program of viral 
gene transcription (e.g., LMP-1, gp350) similar to that found 
in patients with infectious mononucleosis. CMV DNA was 
not found in peripheral blood mononuclear cells; however, 
we did frequently detect CMV DNA in urine. These results 
were accompanied by clonal expansions of CD8+ and CD4+ 
T-cells directed against EBV (Fig. 4.4) and CMV (Fig. 4.5).

Notably, recent reports have suggested a link between 
herpesviruses and inflammation. Elevated levels of CMV 
antibodies have been associated with increased IL-6 and 
TNF-a levels in older adults [196–198]. The EBV-encoded 
dUTPase has also been shown to upregulate TNF-a, IL-1b, 
and IL-6 [199, 200]. EBV and CMV infection also result in 
a clonal expansion of virus-specific CD8+ T-cells [181, 187, 

192, 195, 201]. Thus, activation or an increase in the  numbers 
of virus-specific CD8+ T-cells, as well as direct interaction 
with viral antigens, may result in increased levels of circulat-
ing inflammatory cytokines. Consistent with this notion, we 
found increased urinary IL-6 levels in elderly subjects with 
plasma viremia as compared to those without viremia 
(Fig. 4.6, unpublished data).

The increased levels of proinflammatory cytokines associ-
ated with herpesvirus infection may have important health 
consequences. CMV, and more recently, EBV have been impli-
cated in the development of coronary artery disease [202, 203]. 
Strandberg and coworkers [204] found that HSV and CMV 
were associated with cognitive impairment in elderly adults 
with cardiovascular disease. A subsequent study identified 
CMV as a predictor of cognitive impairment even after con-
trolling for numerous covariates including age, education, and 
health conditions [205]. In perhaps the most striking study, 
Wikby et al. [197] found that the immune risk phenotype, char-
acterized in part by co-infection with EBV and CMV, was sig-
nificantly associated with cognitive impairment; the individuals 
with cognitive impairment were all deceased at follow-up, 
which was attributed to allostatic overload due in part to mul-
tiple herpesvirus infections. Future studies are needed to inves-
tigate the role of herpesvirus reactivation in healthy aging.

Reversal of Age-Related Declines  
in Immune Function

When considering physiologic changes of aging it is important 
to keep in mind that the changes described do not appear to be 
synchronized with each other [2, 206]. Defects occur to varying 
degrees in different systems within a given individual, and 
immune modulatory substances may affect some systems and 
not others. It is increasingly clear that there are complex interac-
tions between the nervous, endocrine, and immune systems, 
although no “global” mechanism has been found that might be 
the common underlying cause of immune senescence [207]. We 
conclude with a brief discussion of potential ways to stimulate 
a failing immune system in elderly persons and review a num-
ber of investigations reporting attenuation or reversal of surgi-
cally induced immune suppression in animals and humans.

One of the most obvious organ changes that occur with 
aging is involution of the thymus, loss of thymic hormones, 
and a subsequent decline in T cell function [208]. In humans 
and experimental animals, involution begins during adoles-
cence; and the lymphatic mass, particularly in the cortical 
area, decreases with age [209]. These observations stimulated 
a number of experiments attempting to enhance lymphocyte 
function by reestablishing “young” levels of thymic hormone. 
Exposing lymphocytes of old individuals to thymic hormones 
in vivo or in vitro, or transplanting young thymic tissue into 
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old animals has resulted in at least partial restoration of 
immunity on a temporary basis [210–216]. IL-7 therapy alone 
in old mice can rejuvenate the thymus, but never to the point 
of the thymic size and output observed in young mice [217, 
218]. Although production of IL-7 by thymic epithelial cells 
and dendritic cells clearly plays a role in murine thymocyte 
proliferation, attempts to show an age-related change in IL-7 
in human studies have failed [219]. Other growth factors 
have been studied including IL-12, which appears to slow 
down thymic involution [220], while keratinocyte growth 
factor may provide critical survival signals for the thymic 
 epithelium [221].

Other hormonal substances being studied for their poten-
tial to reverse age-related declines in immunity include mela-
tonin, growth hormone, and adrenal androgens. The pineal 
hormone melatonin has free-radical-scavenging properties, 
and its production declines with age [222]. When melatonin 
has been administered to individuals with a variety of can-
cers, improved measures of immunity after surgery have 
been observed (increased number of lymphocytes, T cells, 
and Th cells) [223] as have partial tumor regression and 
enhanced 1-year survival of patients with metastatic solid 
tumors [224]. When melatonin is injected into old mice, it 
enhances antibody production and increases Th cell activity 
and IL-2 production [225].

Growth hormone (GH) and its precursor insulin-like 
growth factor-I (IGF-I) have immune-enhancing effects, 

including stimulation of phagocyte activity and cytokine 
production, both of which may help protect against bacte-
rial infection [226]. Elderly patients with GH deficiency 
have low NK cell activity, but it can be at least partially 
restored in vitro by exposing NK cells to IGFI [227]. 
However, healthy old women who were not GH-deficient 
did not display changes in immune parameters after receiv-
ing 6 months of daily supplements [228]. VaraThorbeck 
et al. gave hypocaloric parenteral nutrition with or without 
growth hormone supplements to patients undergoing the 
stress of open cholecystectomy [229]. Those receiving GH 
had improved responses to delayed hypersensitivity skin 
testing, a lower incidence of wound infection, and shorter 
duration of hospital stay than the nonsupplemented group 
[229, 230]. In a series of experiments by Hinton et al., rats 
were given total parenteral nutrition with or without IGF-I 
and were subjected to the stress of a surgical incision or 
treatment with the synthetic glucocorticoid dexamethasone 
[231]. IGF-I treatment was associated with restoration of 
splenic B cell numbers in surgically stressed animals and 
increased mitogen-stimulated thymocyte proliferation and 
lymphyocyte-produced IL-6 in the dexamethasone-stressed 
animals [231].

The adrenal androgen dehydroepiandrosterone (DHEA) 
has been evaluated as a potential immune stimulant because 
it antagonizes the actions of cortisol, stimulating increased 
production of IL-2 and IFN-g [153]. In vivo administration 
also augments antibody production by upregulating T cell 
subsets that are associated with increased antibody produc-
tion [232]. When aged mice are primed with DHEA, the 
response to hepatitis B surface antigen vaccination and influ-
enza vaccination is enhanced [233, 234], and the animals are 
more resistant to infection with influenza [234]. Old humans 
who received oral DHEA supplements before receiving 
influenza vaccine displayed a fourfold increase in hemag-
glutinin inhibition titers compared to elderly individuals who 
did not take supplements [235].

A few studies in mice have explored the effect of administer-
ing cytokines to animals after surgical or burn trauma. In one 
study, administration of the recombinant cytokine IL-1a 20 h 
after surgery showed restoration of suppressed NK and LAK 
cell activity [236]. In another study, mice with 20% burn inju-
ries were treated in vivo with IL-12, which increased splenocyte 
production of IFN and significantly decreased mortality [144].

The 1990s saw a rapid accumulation of studies investigat-
ing links between nutrition and immune function (reviewed 
by Chandra [237] and Burns and Goodwin) [238]. Work on 
the effects of nutritional deprivation showed that starvation 
of experimental animals at young ages results in preservation 
of normal immune function into old age [238]. It is now 
known that caloric restriction rather than starvation can 
achieve the same results [239, 240]. The possibility that 
lesser amounts of caloric restriction supplemented with 
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essential nutrients might have similar beneficial effects in 
humans is being formally tested in primate models [241].

In contrast to findings in the experimental setting, nutri-
tional deficiencies in the clinical setting are generally associ-
ated with poor immune responses [237]. In both nutritionally 
deficient and healthy elderly adults caloric, vitamin, and 
trace element supplementation has been associated with 
enhanced immune responses, better responses to vaccines, 
and fewer days of infectious illness [242, 243]. NK cell activ-
ity correlates negatively to the level of polyunsaturated fatty 
acids in the diet, but there was no effect on NK activity in 
men who ingested high levels of polyunsaturated fatty acids 
for 5 weeks [244]. Nutritional supplements given by the 
enteral or parenteral route have been associated with 
improved surgical outcomes, but the effects on immune func-
tion are not well characterized. Rats receiving total paren-
teral nutrition display deficits in gut immunity and lymphocyte 
proliferation [245–249]. In humans, most studies have 
focused on the role of lipid additives in depressing immune 
function [247, 249–253]. In contrast to the immune suppres-
sion associated with surgery, patients with closed head 
trauma who receive early parenteral nutrition have preserved 
or increased CD4+ cell counts and improved lymphocyte 
proliferation to mitogen stimulation [254].

Antioxidants such as vitamins C (ascorbic acid) and E 
(tocopherol) have been studied intensively as potential “anti-
aging” treatments [255, 256]. When healthy elderly subjects 
were supplemented with 400–800 IU of vitamin E, delayed-
type hypersensitivity skin testing and in vitro lymphocyte 
production of IL-2 increased [257, 258]. Vitamin E may cause 
these effects via inhibition of PGE

2
 or other suppressive fac-

tors [255] (see below). In vitro exposure of T cells from mice 
to another antioxidant, glutathione, enhanced T cell prolifera-
tion at all ages owing at least in part to blockade of eicosanoid 
production [259]. A placebo-controlled, double-blind trial of 
vitamin E and b-carotene supplementation in healthy old 
adults was associated with marked increases in various 
parameters of immunity, 50% fewer days with infection, and 
40% fewer days taking antibiotics during the 1-year trial 
[242]. Although there is concern over the findings of a higher 
incidence of lung cancer in heavy smokers, taking b-carotene 
[260, 261], supplementation with vitamin E was not associ-
ated with an increased incidence of lung cancer [260].

Administering drugs or vaccines that in one way or 
another stimulate immune function are other potential ways 
of preventing age-related declines in immunity. Nonsteroidal 
antiinflammatory drugs (NSAIDs) inhibit cyclooxygenase 
and reduce production of PGE

2
, thus stimulating immune 

responses in vitro and in vivo [76]. For example, an early 
case report of two anergic patients with an acquired immu-
nodeficiency state showed restoration of the response to 
delayed-type hypersensitivity skin testing after treatment 
with indomethacin [262]. The proportion of adults over age 

75, displaying a fourfold rise in anti-A/Beijing antibody after 
influenza immunization was significantly increased by aspi-
rin supplementation [263]. The use of NSAIDs might be 
especially relevant to elderly persons because their T cells 
are more sensitive to inhibition by PGE

2
 [9].

Cyclooxygenase inhibitors might also reduce the excess 
autoantibody production that occurs with age [264] and 
stimulate primary antibody responses to new antigens [22]. 
Unfortunately, the use of NSAIDs is not without risk, and 
older adults are at greater risk for experiencing the potential 
adverse effects of medications.

Suppression of immunity due to psychological stress has 
been reversed with psychological interventions. Simple 
relaxation exercises and writing about traumatic events 
enhanced the measured immune response compared to that 
in control subjects [265, 266]. The duration of these effects 
and the mechanisms that underlie them are not fully 
understood.
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