
Chapter 9
Transient Chaos in Spatially Extended Systems

Chaos is not restricted to systems without any spatial extension: it in fact occurs
commonly in spatially extended dynamical systems that are most typically described
by nonlinear partial differential equations (PDEs). If the patterns generated by such
a system change randomly in time, we speak of spatiotemporal chaos, a kind of tem-
porally chaotic pattern-forming process. If, in addition, the patterns are also spatially
irregular, there is fully developed spatiotemporal chaos. In principle, the phase-
space dimension of a spatially extended dynamical system is infinite. However, in
practice, when a spatial discretization scheme is used to solve the PDE, or when
measurements are made in a physical experiment with finite spatial resolution, the
effective dimension of the phase space is not infinite but still high.

Transient chaos is common in dissipative spatiotemporal systems. The basic
reason is that spatial coupling is typically diffusive. The asymptotic attractors are
therefore often temporally periodic, or even time-independent. It is the approach
toward these attractors that is chaotic. In this sense, spatiotemporal chaos often
collapses after some time, and a regular behavior then takes over. If the lifetime
increases rapidly with the system size, the transients are supertransients. An impor-
tant physical context in which supertransients arise is fluid dynamical turbulence
in pipe flows, where the well-known stationary laminar solution is the only asymp-
totic attractor, and the observed turbulent behavior appears to be a kind of transient
chaos only. Motivated by this example, we shall sometimes call the fully developed
chaotic behavior of other spatiotemporal systems “turbulent.”

In systems exhibiting supertransients, a general picture emerges: In a large
system, it is not possible to determine whether the observed “turbulence” is tran-
sient unless an asymptotic time regime is reached. If the transient time is much
longer than any physically realizable time, the system is effectively “turbulent,” re-
gardless of the nature of the asymptotic attractor. The transients mask in this case the
real attractor, and pose a fundamental difficulty for observing the asymptotic state
of the system. In this sense, attractors are irrelevant to “turbulence.” Supertransients
are thus perhaps the most surprising applications of the concept of transient chaos
to high-dimensional dynamical systems.

In this chapter, we first introduce several paradigmatic models of spatially
extended dynamical systems and discuss supertransients in different models.
Scaling laws with the system size are derived. We then address the effect of noise
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and of nonlocal couplings on supertransients, discuss various crisis phenomena in
spatially extended systems, and characterize the fractal properties of supertransients.
Finally, turbulence in pipe flows, which represents an important physical situation
in which supertransients can be observed experimentally, is discussed.

9.1 Basic Characteristics of Spatiotemporal Chaos

9.1.1 Paradigmatic Models

There are several classes of models of spatially extended systems that can be used
to study transient spatiotemporal chaos [775].

Coupled map lattices (CML), introduced by Kaneko [378], provide the simplest
models for spatiotemporal dynamics of continuous variables. In a CML, the local
building blocks of the dynamics are in the form of low-dimensional maps, and they
are coupled to their neighbors according to some rule with a coupling of strength ε .
In this model, both time and space are discrete, but the dynamical variables are
continuous. The dynamics does depend on the boundary conditions. Often periodic
boundary conditions are assumed, but absorbing boundary conditions have also been
used. In one dimension, the typical form of a CML defined on N sites with diffusive
local coupling is

xi
n+1 = (1− ε) f (xi

n)+
ε
2

[
f (xi+1

n )+ f (xi−1
n )

]
, i = 0, . . . ,N −1, (9.1)

where x is the dynamical variable, f (x) is a map describing the local dynamics, and n
and i denote discrete time and space, respectively. For periodic boundary conditions
we have x0

n = xN−1
n , while for absorbing boundary conditions we have x0

n = xN−1
n = 0

for any time instant n. The size of the system is N.
In a cellular automaton (CA) [833] even the dynamical variable is discrete.

By coarsening the x variable of a CML, the dynamics is mapped onto that of a CA
[609]. If, for example, the new variable is chosen to be 0 (1) for x smaller (larger)
than a threshold, a two-state CA is obtained from (9.1).

The Kuramoto–Shivashinsky (KS) equation is a simple PDE exhibiting interest-
ing spatiotemporal dynamics. It was derived to describe propagating patterns in
plasmas, in chemistry and in cellular flames [85]. The KS equation governs the dy-
namics of a continuous scalar field u(x,t) according to a nonlinear equation whose
dimensionless form can be written as

∂u
∂ t

= −u
∂u
∂x

− ∂ 2u
∂x2 − ∂ 4u

∂x4 . (9.2)

It is remarkable that there are no free parameters in the model, and hence the system
size L serves as the only control parameter. Alternatively, one can fix the size and,
after appropriate rescaling, convert (9.2) to
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∂u
∂ t

= −u
∂u
∂x

− ∂ 2u
∂x2 −ν

∂ 4u
∂x4 , (9.3)

where ν ∼ L−2 is a dimensionless parameter.
The complex Ginzburg–Landau (cGL) equation governs the spatiotemporal evo-

lution of a complex field ψ(r,t). It is the normal form of spatiotemporal systems in
the vicinity of Hopf bifurcations [85]. In its most commonly used two-dimensional
version, the cGL equation is

∂ψ
∂ t

= μψ − (1 + iα)Δψ +(1 + iβ )|ψ |2ψ , (9.4)

where Δ denotes the Laplacian. The system has three dimensionless parameters:
μ , α , and β . When the dimensionless system size is fixed, the parameter μ charac-
terizes the size dependence.

Reaction–diffusion (RD) equations describe the coupled dynamics of chemical
concentrations, or interacting populations. Their general form for two concentra-
tions a(r, t) and b(r,t) is

∂a
∂ t

= ra(a,b)+ Δa,
∂b
∂ t

= rb(a,b)+ δΔb, (9.5)

where the functions ra, rb govern the nonlinear reaction equations in the homoge-
neous case, and the dimensionless parameter

δ = Db/Da

is the ratio of the diffusion coefficients.
The Navier–Stokes (NS) equation describes the dynamics of the velocity and the

pressure fields, v(r, t) and p(r,t), respectively, of a viscous fluid. For incompressible
flows not subject to any external force the dimensionless form of the NS equation is

∂v
∂ t

+ v∇v = −∇p +
1

Re
Δv, ∇ ·v = 0, (9.6)

where Re is the Reynolds number. Note that there is no dynamical equation for the
pressure. It is the incompressibility equation ∇ · v = 0 that provides a condition of
self-consistency to make the pressure unique.

Figure 9.1 presents several typical complex patterns in spatiotemporal systems.

9.1.2 Phase Spaces of Spatiotemporal Systems

The phase space of a spatiotemporal system is high-dimensional. In a CML, it
is spanned by all the variables xi at different sites i = 0, . . . ,N − 1. In a system
described by nonlinear PDEs, the infinite-dimensional phase space is spanned by the
set of all possible spatial distributions of the fields, compatible with a given bound-
ary condition. In the KS and cGL equations, these are the functional spaces u(x)
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Fig. 9.1 Upper left: space-time diagram of a CML. Black (white) dots correspond to sites in a
laminar (chaotic) regime. Horizontal (vertical) axis represents time (space) [797] (with kind per-
mission from Elsevier Science). Upper right: space-time diagram of a solution of the KS equation
(9.2). The distribution of the field variable u(x) is plotted at an instant of time [715] (copyright
1986, the American Physical Society). Lower left: space-time diagram of an RD problem in one
spatial dimension. The third axis represents the difference between the two concentrations [812]
(with kind permission from the Institute of Physics). Lower right: instantaneous spatial pattern of
an excitable medium in two dimensions. Shading corresponds to the concentration of one sub-
stance. The pattern is similar to that from the cGL equation [741] (copyright 1998, the American
Physical Society)

and ψ(r) respectively. In RD problems and fluid dynamics, two functions define the
phase space: the set of all possible concentrations a(r) and b(r) for the former and
the set of all possible velocity and pressure fields v(r) and p(r) for the latter, where
the forms of the functions are determined by the boundary conditions. For example,
for a fluid system described by the NS equation, all velocity fields vanish on walls
at rest but take on the values of the velocities of moving walls.
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A given spatial distribution of the field variable represents a point of the phase
space. Any of them can be a possible initial condition. The time evolution of the
system corresponds to a motion among different phase-space points, and traces out
a continuous curve emanating from the point representing the initial state. The time
evolution is unique, and the phase-space description is thus complete.

A convenient way of representing an infinite-dimensional phase space is to
expand the field variable(s) in terms of a complete set of orthonormal basis
functions. The expansion coefficients ai, i = 1, . . . , can also be considered phase-
space variables. This expansion can be truncated at some index N if variables ai

with i = N + 1,N + 2, . . . are negligible with respect to global dynamics. Thus,
even systems described by PDEs can be represented as high-dimensional systems
with a finite number of degrees of freedom. In a finite-dimensional phase space,
stationary solutions correspond to fixed points of the phase space. Stable stationary
solutions are thus fixed-point attractors. Homogeneous periodic solutions or waves
correspond to limit cycles. Complicated chaotic solutions can be associated with
chaotic attractors or chaotic saddles. The phenomenon of long transients is naturally
related to situations in which the chaotic set is a saddle, and in addition, this saddle
is rather dense (although not entirely space-filling) in the phase space.

9.1.3 Spatiotemporal Intermittency

There is a large literature on the phenomenon of spatiotemporal intermittency (STI)
[120,121,375,376,378,379,404]. Here we briefly review this phenomenon, in order
to distinguish it from concepts appearing later in this chapter. The concept of STI
applies to spatiotemporal systems in which any space-time point can be classified as
either laminar or turbulent. By “laminar” we mean a regular pattern (whose tempo-
ral dynamics might be both regular and chaotic), while “turbulent” regions have no
apparent regularity either in space or in time. Spatiotemporal intermittency implies
that there are intervals in both space and time in which one of the phases dominates.
Domains of a given type of behavior have well-defined boundaries. An example is
provided by the upper left panel of Fig. 9.1. There were many experiments on STI
(for recent examples, see [269, 478, 659]).

Spatiotemporal intermittency is not the only possible manifestation of spatiotem-
poral chaos, but it is certainly a typical one. It can be considered as state of transition
between laminar and fully turbulent phases. This does not imply that STI must
evolve to be more and more complicated. Spatiotemporal intermittency can very
well provide an asymptotic state, a spatiotemporally chaotic attractor. The usual sta-
tistical measures of STI consider long-time averages of spatial characteristics, such
as the distributions of the size of laminar regions and of the “turbulent” regions
[120, 121]. In a spatiotemporally intermittent state both distributions are exponen-
tially decaying. The decay constants are related to the sizes of the average laminar or
turbulent phases. A difference between the characters of these distributions typically
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appears at the onset of STI. Here the distribution of the laminar domains follows a
power law, indicating the lack of any characteristic sizes. The onset is, therefore,
similar to a phase transition.

We wish to emphasize that STI can also characterize long transients [376, 619,
831]. In fact, many transients in spatiotemporal systems are of this type. We shall
see that the lifetime can be sufficiently long to make statistical properties stationary
(similar to, e.g., the statistics needed to determine the average Lyapunov exponent
on a chaotic saddle in low-dimensional systems).

9.2 Supertransients

9.2.1 Transient Chaos in Coupled Map Lattices

Perhaps the first indication of complex spatiotemporal patterns appearing as long-
lived transients was found in the thermal convection experiments by Ahlers and
Walden, as early as 1980 [9]. For a detailed investigation of these transients, how-
ever, CMLs have proven to be convenient model systems, initiated by the seminal
paper of Crutchfield and Kaneko [146].

The CML (9.1) has been studied extensively for different types of map f . The ini-
tial conditions are most frequently taken as random numbers at each site. When
the map is strictly contracting, the asymptotic behavior is always spatially regu-
lar and temporally periodic (often homogeneous and steady). The transients toward
this state are, however, typically chaotic. For map f that produces transient chaos
on its own with positive topological entropy but possesses periodic attractors, the
asymptotic behavior can often be spatially regular and temporally periodic. The
CML built on the map f with chaotic attractors generates permanent spatiotempo-
ral chaos if the coupling is weak, but transient chaos leading to a simple attractor
is common for intermediate and strong couplings [831]. These results are summa-
rized in Table 9.1. An observation is that diffusive coupling can generate chaos
even from nonchaotic maps, and it often converts permanent local chaos into global
transients.

A question is how the average transient lifetime τ ≈ 1/κ depends on the sys-
tem size L. For weak coupling ε < ε0, practically no size-dependence is found.
For slightly stronger coupling, however, the lifetime increases rapidly with the

Table 9.1 Dynamics of the map f and of the corresponding CML

Map f CML

Nonchaotic Transiently chaotic [146, 228, 387, 487, 609, 610]
Transiently chaotic Transiently chaotic [377]
Permanently chaotic Transiently chaotic [465, 619, 831]

Permanently chaotic [619, 831]
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Fig. 9.2 Typical space-time pattern of type-I supertransients [377] (with kind permission from
Elsevier Science)

system size. These are the supertransients [146]. There are two distinct types of
supertransients. Type-I supertransients are characterized by a power-law scaling

κ(L) ∼ L−β (9.7)

with a positive exponent β . Type-II supertransients are characterized by an
exponential scaling:

κ(L) ∼ exp(−aLγ), (9.8)

where γ is a positive exponent and the coefficient a in general depends on the system
parameters.

The patterns associated with the two types of supertransients are qualitatively
different. For type-I supertransients, the basic features are defects whose density
decreases gradually with time, as shown in Fig. 9.2. This can also be considered as a
kind of aging process. Correspondingly, dynamical invariants such as the Lyapunov
exponents and entropies also decrease with time.

Type-II supertransients are, in contrast, statistically steady over a long period of
time, i.e., averages are time-independent in the chaotic state, and the transition to
an attractor is rather abrupt, as exemplified by Fig. 9.3. If the maximum Lyapunov
exponent is positive, a chaotic saddle is expected to exist in the high-dimensional
phase space.

9.2.2 Origin of Supertransient Scaling

The different scaling rules can be traced back to the different patterns that are
characteristic of the two classes of supertransients.

Type-I supertransients: The dominant process is that the defects, as indicated in
Fig. 9.2, undergo a kind of random walk, and when they meet, they annihilate. For an
anomalous random walk, the variance of the displacement scales with time as t1/β ,
where β is a positive number (β = 2 corresponds to normal diffusion). Estimating
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Fig. 9.3 (a) Typical space-time pattern of type-II supertransients. From [377] (with kind permis-
sion from Elsevier Science). (b) Time-dependence at a single site illustrating that the crossover to
the nonchaotic behavior is abrupt [465] (copyright 1995, the American Physical Society)

the average lifetime τ as the time needed to reach a displacement variance of the
order of the system size, we obtain τ ∼ Lβ , which is equivalent to (9.7).

Type-II supertransients: Let x∗(i) denote the coordinate corresponding to the
regular spatiotemporal attractor at site i. A basin size r can be found that is much
smaller than the system size in the following sense: if |x0(i)−x∗(i)|< r for all sites,
the system reaches the attractor without chaotic excursions, but if the difference is
larger than r, irregular transients appear. This basin size is a measure of the extension
of the attractor’s basin, restricted to a single dimension. The probability P that a
randomly chosen initial condition at some of the sites falls within the basin size is
proportional to this size: P ∼ r � 1.

The following intuitive argument can be used to explain the scaling with the
system size [228, 377, 619, 812]. In a spatially extended system there exists a
correlation length ξ , within which neighboring sites move in a coherent manner.
Conversely, only sites farther apart than ξ move independently. The system can thus
be divided into L/ξ subunits that behave independently. For a random initial con-
dition, the probability Π of falling into all the local basins is P raised to the power
of the number of independent units, i.e., Π ∼ PL/ξ . Time needed to reach the hole
is the phase space of the basin size is proportional to 1/Π , and thus the average
lifetime is estimated as

τ(L) ∼ Π−1 ∼ P−L/ξ ∼ r−L/ξ ∼ eaL, (9.9)
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where a = (ln1/r)/ξ is a positive constant. Here we have assumed that the basin
size is independent of the system size. A strong dependence of r on L can modify
the result. If, for example, r = r(L) ∼ exp(−Lγ−1), we have τ(L) ∼ exp(Lγ/ξ )
(cf. (9.8)). Numerical computations often support, however, a linear length-
dependence in the exponent, indicating a weak dependence of the basin size on L.

Finally, we note that the problem of supertransients is effectively the high-
dimensional analogue of chaos in well-stirred chemical reactions in closed con-
tainers. In the absence of any material flux, the final state can be only in thermal
equilibrium governed by a fixed-point attractor. With initial conditions far away
from the thermal equilibrium, one brings the system into a regime whereby long
chaotic transients can arise, as pointed out by Scott, Showalter, and coworkers (see
Fig. 1.15). The novel feature in spatiotemporal systems is that nearly all initial con-
ditions are far away from the attractor, since the probability of falling into the basin
of attraction is extremely small.

9.2.3 Supertransients with Exponentially Long Lifetimes
in Other Systems

It is remarkable that supertransients, mainly of type II, appear in a large number of
systems other than CMLs. Typically, the lifetime scales with the system size as

κ(L) ∼ exp(−aL). (9.10)

Evidence for this behavior has been found in a number of systems, as follows.

Kuramoto–Shivashinsky equation. The investigations of Shraiman [715] and of Hy-
man, Nicolaenko, and Zalesky [348] on phase turbulence in the one-dimensional
KS equation (9.2) provided the first examples of supertransients in a PDE system,
discovered earlier than those in CMLs. The upper right panel of Fig. 9.1 shows a
typical transient pattern.

Complex Ginzburg–Landau equation. After a detailed numerical analysis of long-
lasting spatiotemporal turbulence in the two-dimensional cGL equation by Bohr and
coworkers [85, 86, 344], Braun and Feudel [98] and Houghton and coworkers [340]
provided numerical evidence for an exponential scaling of the average transient life-
time with the system size.

Reaction–diffusion systems. The first example of type-II supertransients in RD sys-
tems of the type (9.5) in one spatial dimension was found by Wacker, Bose, and
Schöll [812]. A typical concentration distribution in the transient phase can be seen
in the lower left panel of Fig. 9.1. A decomposition of patterns during the transients
into eigenmodes indicates that there exist no preferred modes [516–518]. Transient
patterns are thus shown to be uncorrelated, a feature underlying the argument lead-
ing to type-II supertransient scaling. The study of RD systems was extended by
Wackerbauer, Showalter, and coworkers [813–815, 842].
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Two-dimensional excitable medium. The model investigated by Strain and
Greenside [741] differs slightly in structure from (9.5), but exhibits similar dy-
namical behavior, although with different types of patterns in two dimensions
(lower right panel of Fig. 9.1). This is the first PDE model in which the fractal
properties of a high-dimensional chaotic saddle were investigated (Sect. 9.5).

Complex networks. An observation of Zumdieck, Timme, Geisel, and Wolf [858]
was that in a randomly diluted set of coupled oscillators, the transients toward a
limit-cycle attractor are chaotic and exhibit the scaling (9.10), with the number of
oscillators replacing the length L. The average lifetime of the transients depends
also on the network connectivity, and reaches a maximum at as intermediate level of
dilution. Irregular and exponentially long transients were also observed in different
neural network models [178,428,855,856]. Supertransients with exponentially long
lifetimes were also observed in social networks [51, 52].

Turbulent shear flow. The Theoretical work of Eckhardt and coworkers (see, e.g.,
[229,231]) based on the Navier–Stokes equation (9.6) predicted the long-lived tran-
sient nature of turbulence in pipes. Recent experiments by Hof et al. [334, 336]
provided evidence for a type-II (or even stronger) supertransient scaling, where the
quantity in (9.10) is replaced by the Reynolds number (for more detail see Sect. 9.6).

9.2.4 Stable Chaos

A peculiar feature of type-II supertransients is that the maximum Lyapunov
exponent is in certain cases negative even during the transients, although the
transient patterns are as irregular as otherwise. This phenomenon has been called
stable chaos [609,610] and provides an example whereby linear stability can coexist
with nonlinear instability in the transient phase. Following the definition of Politi
and coworkers [856], stable chaos means transients that (1) have a negative or zero
maximum Lyapunov exponent and (2) appear stationary for long times, the average
of which scales with the system size exponentially. The phenomenon is robust also
in the sense that it can be present in finite regions of the parameter space [609].

Stable chaos was first found in CMLs for which the local map f is piecewise lin-
ear, is discontinuous at certain points, and possesses a simple periodic attractor. The
map f can be contracting [146,228,857] or can have expanding pieces [62,148,609].
The transients are in any case random, illustrated by an exponential decay in both
the temporal and the spatial correlations. These features are not due to the discon-
tinuity in f , because a continuous variant of the map, in which the discontinuity is
replaced by a steep continuous line, has been shown to exhibit the same behavior
[228,609]. The supertransients as such maps are nonchaotic in the sense of sensitive
dependence on initial conditions, but are chaotic in the sense of positive topological
entropy.

The irregular behavior of stable chaos cannot be related to a local production
of information, due to the lack of a positive Lyapunov exponent. Investigations
[118, 264, 610, 784] led to the conclusion that the irregularity associated with stable
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chaos is produced by transport, i.e., by the nonlinear propagation of finite distur-
bances. The so-called damage spreading analysis [833] can therefore be used to
understand the phenomenon of stable chaos. In particular, one is interested in the
effect produced by finite localized perturbations. Indeed, in systems exhibiting sta-
ble chaos [118, 264, 610, 784], initially perturbed regions in space spread with a
constant front velocity v. Disturbances can thus travel through the system without
damping. It is this velocity that plays in some sense the role of a positive Lyapunov
exponent.

Stable chaos often appears in a certain range of a control parameter, e.g., the
coupling constant ε in (9.1). Outside this range, there are no long transients and the
system rapidly reaches a synchronized, periodic state, in which the front velocity v
is zero. The transition is, however, not a single point in the parameter space. It occurs
in an extended interval [118], where ordered and chaotic dynamics characterized by
v = 0 and v �= 0, respectively, alternate in a quite irregular manner.

Stable chaos is not restricted to CMLs. Bonaccini and Politi [91] considered
coupled nonchaotic oscillators in continuous time. The oscillators are subject to a
synchronous periodic forcing over a period T , which is suddenly changed to an
unforced state of length T ′, and this mechanism is repeated periodically. For suf-
ficiently rare active driving where T/T ′ small, the largest Lyapunov exponent of
the coupled-driven system is negative, and the system exhibits properties of stable
chaos. The diluted neural network model [856] mentioned in Sect. 9.2.3 was shown
to follow the scaling (9.10) in a certain range of parameters, where all Lyapunov
exponents are negative during the transients.

In all the continuous-time examples, the dynamics is associated with the presence
of discontinuities, or with being close to such singularities. In the oscillator model
there is a sudden change in the driving mechanism, and in the neural-network model
the discontinuity is connected with changes in the spike ordering. Thus one can
conclude [172,856] that discontinuities or rapid changes in the dynamical equations
are a necessary condition for the onset of stable chaos. A detailed review of stable
chaos can be found in [611], which also presents an additional realistic system with
stable chaos: a diatomic gas of hard-point particles.

9.3 Effect of Noise and Nonlocal Coupling on Supertransients

Numerical results on the effect of noise on supertransients in spatially extended
dynamical systems were obtained in [433] for a CML system. The diffusive cou-
pling constant ε in (9.1) was replaced by a random variable ε → ε + σξn, where ξn

is a random number taken at time instant n, and σ represents the noise intensity. This
choice of noise is homogeneous over the full system, i.e., ξn does not depend on the
site index i. The average lifetime was found to depend little on the noise intensity σ
in the weak-noise regime, suggesting that supertransients are robust [850].

A more recent investigation of Wackerbauer and Kobayashi [814] considered the
effect of spatially inhomogeneous noise as well. They studied an RD system (9.5)
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in one spatial dimension with periodic boundary condition. The continuous space
dependencies in the concentrations a(x,t) and b(x, t) are approximated by a dis-
crete set [a(i)(t),b(i)(t)] of variables for N 	 1 sites (i = 1, . . . ,N). Correspondingly,
the diffusive coupling term is also discretized. This chain of variables can be con-
sidered to be arranged around a circle. Additive noise σξ (i)(t) is included in the
chemical kinetic equation governing the concentration b(i). The chain is divided into
k blocks such that N/k neighboring sites are subject to the same realization of noise.
The noise terms acting on neighboring blocks are chosen to be independent. Any
value k > 1 corresponds to a spatially inhomogeneous noise – the more inhomoge-
neous, the larger the value of k. The results show that spatially inhomogeneous weak
noise tends to decrease the escape rate of supertransients up to a certain strength at
which a minimum of the escape rate is reached, as shown in Fig. 9.4. The effect in-
tensifies with the degree of the inhomogeneity parameter k. The scenario is similar
to what occurs in a class of low-dimensional systems (Fig. 4.2). Qualitatively, weak
inhomogeneous noise makes the system more random and reduces the chance of
finding the small basin of the attractor. In this model, homogeneous noise (k = 1)
has a destructive effect on the transients: it leads to a monotonic increase in the
escape rate for increasing noise strength. However, type-II supertransient scaling
remains valid in that the lifetime increases exponentially with the size even in the
presence of noise.

In search of a method to control the length of supertransients, an approach is to
investigate the effect of nonlocal coupling in the noise-free problem. Yonker and
Wackerbauer [842] studied the consequence of adding a few nonlocal connections
(shortcuts). At sites coupled not only to the nearest neighbors but to a third, more
distant, site, they modified the discrete Laplacian so that all three sites are included
in a way that ensures the same perturbation, the same as in the locally coupled
model. The length s of the shortcuts is a basic parameter, which is defined as the
minimal number of sites between the two end sites of the shortcut divided by the
number N of sites in the ring. The longest shortcut connecting two opposite sites
along the circle corresponds to length s = 1/2. For a single shortcut of small length,

Fig. 9.4 Dependence of the average lifetime τ on the noise intensity σ in an RD system. The de-
gree of spatial noise inhomogeneity k decreases from k = 20 (stars) to k = 4 (diamonds) to spatially
homogeneous noise k = 1 (squares) [814] (copyright 2007, the American Physical Society)
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the average lifetime increases, reaches a maximum at about s = 0.05, then decreases,
finally leading to a reduced lifetime compared to that in the locally coupled system.
The overall dependence is similar to that of the upper curves in Fig. 9.4. In any case,
the type-II supertransient scaling remains valid for any s with a slightly s-dependent
prefactor a(s) in (9.10).

Adding more shortcuts can have a drastic effect on the transients. For example,
two can have the local effect of stabilizing spatiotemporal chaos for arbitrarily long
times, effectively preventing its collapse. Whether this can actually happen depends
on the locations of the shortcuts and the initial conditions. For example, in a large
ensemble of cases with randomly chosen shortcut locations, the probability for spa-
tiotemporal chaos to be permanent is about 70%. Three shortcuts can increase the
likelihood of permanent chaos even more. A further increase in the number of short-
cuts, however, seems to weaken the effect, and the likelihood of transient chaos
increases again.

Control of spatiotemporal transients via nonlinear feedback was suggested in
[619], where it was demonstrated for a CML system that proper control can shorten
the lifetime of the transients by several orders of magnitude. These developments
illustrate that adding weak noise, or taking over methods from the physics of net-
works, has the potential to provide some effective ways to harness transient chaos
in spatially extended systems.

9.4 Crises in Spatiotemporal Dynamical Systems

9.4.1 Boundary Crises: Supertransients Preceding Asymptotic
Spatiotemporal Chaos

When there is an asymptotic spatiotemporal chaotic attractor, or asymptotic
“turbulence,” long chaotic transients typically occur in a parameter range pre-
ceding the permanently chaotic regime. Suppose the latter is in the parameter range
p > p1. Chaotic transients are then present for p < p1. Intuitively, their average
length should increase on approaching the critical value p1. For supertransients,
one expects a power-law divergence in the exponent of the average lifetime, i.e., a
decay of the escape rate as

κ(p,L) ∼ exp [−c(L)(p1 − p)−δ ], (9.11)

where δ > 0 and the coefficient c > 0 depends on the system size L. Combining this
with the size dependence of (9.8) or (9.10), we see that the coefficient a changes
with the parameter p as

a(p) ∼ (p1 − p)−δ . (9.12)

A detailed investigation of the two-dimensional cGL equation (9.4) led to the
conclusion [85, 86, 344] that permanent spatiotemporal chaos is present in a region
of the parameter plane (α,β ) (μ fixed). When approaching the boundary of this
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Fig. 9.5 For the cGL
equation (9.4), the largest
average Lyapunov exponent
λ1 of the chaotic sets as a
function of the parameter α .
Spatiotemporal chaos is
permanent for α > α1.
For αc < α < α1, only
chaotic transients are present
[86] (copyright 1990, the
American Physical Society)

region from outside, the scaling relation (9.11) was found with exponent δ = 2,
which is similar to that for low-dimensional supertransient systems (cf. (8.60)), but
here the exponent δ is larger than unity, and a size-dependence is also present.

When the largest average Lyapunov exponent λ1 of the attractor is plotted as a
function of the parameter p≡α , it is positive in the range α > α1. This curve can be
merged smoothly with the curve of the Lyapunov exponent for the transient regime,
as shown in Fig. 9.5, illustrating that the spatiotemporal chaotic saddle is converted
at α1 into a chaotic attractor. The critical parameter value α1 can thus be viewed
as a point of crisis in the cGL system. The Lyapunov exponent vanishes at some
α < αc, so the transients are not chaotic for α < αc. For α slightly larger than αc,
the exponent scales as λ f (α) ∼ (α −αc)1/2 [85, 86].

9.4.2 Interior Crises in Spatially Coherent Chaotic Systems

An investigation of different types of crisis phenomena in the KS equation was
carried out by Chian, Rempel, and coworkers [126, 631, 632, 634]. These authors
used the form (9.3) of the equation in which the length is fixed but the parame-
ter ν contains the size of the original system. A parameter range was chosen for
which the dynamics is chaotic in time but remains coherent in space. A Fourier
decomposition of (9.3) with N = 16 modes appeared to be sufficient to illustrate
the crisis phenomenon. In particular, in a parameter range of ν , a periodic window
was found, as seen by plotting the long-time values of the sixth Fourier component
a6 as a function of ν . The window is bounded by an interior crisis and a saddle-
node bifurcation at its two ends (Fig. 9.6a). Inside the window the attractor is a
period-3 orbit or is localized in three narrow bands. In both cases it is surrounded
by an extended chaotic saddle. The concept of basic components, introduced in
Sect. 3.3 to characterize low-dimensional crises, thus becomes applicable to high-
dimensional problems. This surrounding chaotic saddle (SCS) was determined by
the PIM-triple method (Sect. 1.2.2.4), and its projection on the a6 variable is also
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Fig. 9.6 Interior spatiotemporal crisis. (a) Bifurcation diagram of mode amplitude a6 as a func-
tion of parameter ν in the KS equation (9.3). Gray dots indicate points on the surrounding chaotic
saddle (SCS). IC and SNB denote interior crisis and saddle-node bifurcation, respectively. (b) A
three-dimensional projection of the SCS for ν = 0.029925 [631] (with kind permission from
Elsevier Science)

Fig. 9.7 Part of the phase
space projected on the
(a5,a6)-plane for
ν = 0.0299211, before
interior crisis (IC). CA:
chaotic attractor, SM: stable
manifold of the mediating
period orbit denoted by a
cross. Gray dots mark the
stable manifold of the SCS
[631] (with kind permission
from Elsevier Science)

shown in the bifurcation diagram. In the full phase space the chaotic saddle turns out
to be extended but low-dimensional, as can be seen in a three-dimensional projection
close to the saddle-node bifurcation, where no chaotic attractor exists. The saddle is
practically a single line segment, but gaps are visible along this line (Fig. 9.6b).

In the middle of the window the attractor undergoes a period-doubling bifur-
cation, after which a small-size chaotic attractor (CA), the three-band attractor,
appears. The surrounding chaotic saddle, SCS, coexists now with the chaotic attrac-
tor. In a projection onto the plane of two Fourier components, the stable manifold
of the mediating periodic orbit separating the attractor from the saddle can be seen,
as shown in Fig. 9.7. The saddle’s stable manifold appears to be dense.

At the crisis, the small-size chaotic attractor collides with the mediating orbit
or with its stable manifold, and thus with the chaotic saddle as well (Fig. 9.8a).
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Fig. 9.8 Phase-space projection on the (a5,a6)-plane at IC, ν = 0.02992021 (a), and slightly
beyond crisis (b) [631] (with kind permission from Elsevier Science)

Fig. 9.9 (a) Bifurcation diagram as in Fig. 9.6 containing only the band chaotic attractor, which is
converted into a band chaotic saddle (BCS, plotted in gray) beyond the interior crisis. (b) Chaotic
saddles forming the backbone of the extended chaotic attractor projected on the (a5,a6)-plane at
the postcrisis parameter value ν = 0.02992006 [631] (with kind permission from Elsevier Science)

The large gaps present along the surrounding saddle just before the crisis become
filled up by the newly generated orbits (see Sect. 3.4), and the extended chaotic
attractor to appear contains the previous attractor, the saddle, and the filled-up gaps
(Fig. 9.8b). After the crisis, points of the extended attractor that remain forever on
the three bands occupied by the small attractor in the precrisis regime are connected
to a saddle situated in this region, the band chaotic saddle (BCS). This saddle can
be represented both on the bifurcation diagram (Fig. 9.9a) and on a projection of
the plane of two variables (Fig. 9.9b). Similarly, points never leaving the region of
the former surrounding chaotic saddle form a postcrisis chaotic saddle (SCS) that
can be considered the continuation of the precrisis SCS. These two saddles are the
main building blocks of the extended chaotic attractor arising from the interior crisis.
The situation is thus similar to that for low-dimensional maps (Chap. 3).
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9.4.3 Crises Leading to Fully Developed Spatiotemporal Chaos

In another series of papers, Rempel, Chian, and coworkers [633, 638] aimed to
understand crises underlying spatiotemporal inhomogeneities [320]. For this pur-
pose they used a one-dimensional PDE model of regularized long waves for a field
φ(x,t) driven sinusoidally both in space and time. With all other parameters fixed,
the main control parameter is the driving amplitude f . A Fourier decomposition of
φ(x,t) into N = 32 spatial modes was used. As f is changed, the dynamics exhibit
three qualitatively different types of behavior. For the lowest value of f the pattern
is regular in space and quasiperiodic in time (Fig. 9.10a). For higher values of f ,
spatial regularity remains but the pattern becomes temporally chaotic (Fig. 9.10b),
as indicated by the appearance of a positive Lyapunov exponent. The correspond-
ing attractor is called a temporally chaotic attractor (TCA). A further increase in f
leads to the appearance of fully developed spatiotemporal chaos (Fig. 9.10c). This
occurs suddenly and is accompanied by an increase in the maximum Lyapunov
exponent to a much larger value. The new attractor is a spatiotemporally chaotic
attractor (STCA) that possesses a larger dimension value than the previous one
(the TCA).

To follow these changes in the phase space, Rempel and Chian projected the
invariant sets on the plane defined by the real parts of the second and the third
Fourier modes, after taking an appropriate Poincaré map. The quasiperiodic torus
attractor appears to be associated with a few closed curves (Fig. 9.11a). The authors

Fig. 9.10 Spatiotemporal patterns of the field φ for different values of the driving amplitude f :
(a) spatially regular, temporally quasiperiodic; (b) spatially regular, temporally chaotic; and
(c) spatially irregular, temporally chaotic [633] (copyright 2007, the American Physical Society)
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Fig. 9.11 Phase-space projection of various invariant sets on the plane of two modes. (a) A
quasiperiodic attractor (QPA, black) and a spatiotemporally chaotic saddle (STCS, gray dots),
(b) Temporally chaotic attractor (TCA), (c) a spatiotemporally chaotic attractor (STCA) after cri-
sis, which occupies the regions where the former STCS and TCA reside, and (d) decomposition of
STCA into a postcrisis STCS and a temporally chaotic saddle TCS after the crisis [633] (copyright
2007, the American Physical Society)

pointed out that already here an extended chaotic saddle exists surrounding the at-
tractor. The corresponding transients carry irregular spatiotemporal patterns, and
therefore the saddle is called the spatiotemporally chaotic saddle (STCS). When
the spatially regular dynamics becomes chaotic, the torus attractor breaks, but the
new temporally chaotic attractor (TCA) remains localized around the former torus
(Fig. 9.11b). The TCA is area-filling in the projection, but is of small size. The
surrounding saddle, STCS, does not change appreciably. When permanent spa-
tiotemporal chaos occurs, the chaotic attractor suddenly broadens and becomes
a spatiotemporally chaotic attractor (STCA); Fig. 9.11c. It is remarkable that the
extension of the STCA is practically the same as that of the spatiotemporal sad-
dle (STCS) earlier. At this crisis the temporally chaotic attractor collides with the
surrounding saddle, and the latter becomes embedded in the new attractor. In this
postcrisis regime, Rempel and Chian were also able to identify a chaotic saddle in
the region occupied by the temporal attractor earlier. This saddle is called the tem-
porally chaotic saddle (TCS); Fig. 9.11d. In the projection, it fills a slightly smaller
area than the TCA.

If a trajectory on the extended attractor comes to the vicinity of the TCS, a regular
pattern appears in the space, which changes chaotically in time. After some time,
the trajectory deviates from this saddle, and comes close to the chaotic saddle that
exists outside the TCS, a postcrisis STCS that governs the spatiotemporally chaotic
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dynamics. After escaping from the STCS, the trajectory returns to the vicinity of the
TCS and the pattern becomes regular again, etc. The average lifetime of the spatially
regular phases can, in principle, be estimated as the average lifetime on the TCS. The
full process is intermittent [131], and the situation is the high-dimensional analogue
of crisis-induced intermittency discussed in Sect. 3.3. A similar phenomenon was
observed in the damped KS equation [635].

The spatiotemporal intermittency (STI) mentioned in Sect. 9.1.3 is not the kind
of intermittency treated here, since regular and irregular phases extend in STI over
finite regions of the real space only. It may be useful to study spatiotemporal in-
termittency in terms of the underlying chaotic saddles. At present, little is known
about the scaling with system size of the lifetimes associated with the intermittent
dynamics discussed here.

9.5 Fractal Properties of Supertransients

9.5.1 Dimensions

Supertransients have specific fractal properties, as emphasized in [462–465]. It has
been observed that chaotic saddles underlying long transients typically have a stable
manifold whose dimension is close to that of the phase space. The basin of attraction
of the regular asymptotic attractor can be determined on a plane of initial conditions
of just a few variables (Fig. 9.12a). In a long observation time only a few points con-
verge to the attractor; the others remain away from it. These points represent initial
conditions that stay close to the chaotic saddle’s stable manifold. Alternatively, in a

Fig. 9.12 (a) Stable manifold of a chaotic saddle (black dots) in the plane of two variables of
a CML described by (9.1) [465] (copyright 1995, the American Physical Society). (b) Transient
lifetime as a function of the initial condition taken from a one-dimensional line in the phase space of
the cGL equation in its supertransient state [98] (copyright 1996, the American Physical Society).
The dimension of the set of points with long lifetimes is denoted by ds
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plot of the lifetime function, the lifetimes needed to reach the attractor as a function
of a single initial coordinate also appear to be dense (Fig. 9.12b). It is useful to in-
troduce, as in scattering problems (Sect. 6.2), the box-counting dimension ds as the
dimension of the set of points where the lifetime is formally infinite along such a
segment. Since infinite lifetime values belong to the stable manifold of the saddle,
this ds is the dimension of the intersection of a line with the stable manifold of the
saddle.

As a quantitative measure of the fractality, the uncertainty exponent (Sect. 5.3)
can be determined. The numerical value of α was found to be as small as 10−3

(cf. Fig. 9.13), indicating that ds is quite close to unity. It was also shown [462–464]
that the largest Lyapunov exponent computed at fixed finite time is extremely sen-
sitive to small changes in the parameters. Supertransients are thus characterized by
riddled structures in the parameter space.

A simple formula for the partial dimension ds was conjectured in [465].
In particular, escape occurs mostly along the direction of the largest positive
Lyapunov exponent λmax. The system is therefore expected to behave effectively
as a two-dimensional system with positive Lyapunov exponent λmax. Utilizing the
Kantz–Grassberger relation (2.76), one obtains the following information dimension
ds,1 of the set of singularities:

ds,1(L) = 1− κ(L)
λmax

. (9.13)

Taking into account that the dimension of a set resulting from the intersection of
two sets follows from the rule according to which the codimensions are additive,
(8.52), one finds for an N-dimensional map that the information dimension Ds,1 of
the stable manifold is given by

Ds,1(L) = N + ds−1 = N − κ(L)
λmax

. (9.14)

Fig. 9.13 Plot of the fraction
of uncertain initial conditions
f (ε) versus uncertainty ε .
With the value of the
uncertainty exponent α , the
box-counting dimension ds is
ds = 0.9985, a quantity that is
hardly distinguishable from
unity [465] (copyright 1995,
the American Physical
Society)
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We see that since κ is small, the dimension of the stable manifold is close, for type-II
supertransients exponentially close, to the dimension of the phase space.

Equation (9.14) in fact follows directly from the general dimension formulas
in Sect. 8.2.2. In particular, consider an (N 	 1)-dimensional map with a small
escape rate. When κ is nearly zero, the only possibility for the left-hand side of
(8.23) to be larger than K1 is that all the positive Lyapunov exponents appear on the
right-hand side, i.e., J + 1 = U . The numerator in the ratio in (8.24) then contains
λ +

U −κ = λmax −κ . Since S + J = S +U −1 = N −1, we recover (9.14).
The dimension formula (8.21) for the unstable manifold can also be applied.

For spatiotemporal systems with small escape rate, observe first that the condition
(8.20) requires that the sum of all Lyapunov exponents (with signs taken into ac-
count) up to index I be greater than κ , but up to index I + 1 be smaller than κ . For
near-zero values of κ , the sums should practically be positive and negative, respec-
tively. This is the condition in the Kaplan–Yorke formula (see (8.21) with κ = 0)

D1 = U + I +
λ +

1 + · · ·+ λ +
U − (λ−

1 + · · ·+ λ−
I )

λ−
I+1

(9.15)

for chaotic attractors. One can then imagine a chaotic attractor with the same
Lyapunov exponent spectrum as the saddle, and denote its information dimension
by Dattr,1. Given a discrete set of Lyapunov exponents, a small κ does not change
the value of I, and we can write

Du,1(L) = Dattr,1 − κ(L)
λ−

I+1

. (9.16)

For the saddle’s dimension we then obtain, from (9.14),

D1(L) = Dattr,1 −κ(L)

(
1

λmax
+

1

λ−
I+1

)

= Du,1(L)− κ(L)
λmax

. (9.17)

Equations (9.14), (9.16), and (9.17) illustrate that a supertransient chaotic saddle
is a quasiattractor in the sense that its dimension is close to that of an attractor
(with almost identical Lyapunov spectrum), its stable manifold is nearly space-
filling (close to forming a basin of attraction), and its unstable manifold has nearly
the same dimension as the chaotic saddle (for an attractor, Du,1 and D1 coincide).
These observations indicate that the dimension of supertransient chaotic saddles can
be approximated by the Kaplan–Yorke formula, and explain why statistical averages
are so well defined on supertransient chaotic saddles. The validity of relations (9.14)
and (9.16) was recently illustrated for various high-dimensional reaction–diffusion
systems [734].

It is worth mentioning that although the stable manifold is nearly space-filling,
the unstable manifold’s dimension can take on any value. It is the number U of posi-
tive Lyapunov exponents and the index I that essentially determine the value of Du,1.
In principle, it can assume a small value even in a high-dimensional phase space.
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9.5.2 Dimension Densities

In high-dimensional systems it is useful to define dimension densities [85,487,831],
i.e., quantities expressing the dimension falling on a single degree of freedom.
For supertransients, the dimension density δs ≡ Ds/N of the stable manifold is close
to unity. Little is known, however, about the dimension densities δu = Du,1/N and
δ = D1/N of the unstable manifold and of the saddle, respectively. The question
so far has been addressed in a few cases only. In particular, for a model of ex-
citable media, Strain and Greenside [741], and for different RD systems, Stahlke
and Wackerbauer [734], found the dimension density of the chaotic saddle to be of
order a few percent. This is also consistent with the observation [516] that the num-
ber of positive Lyapunov exponents is small even in large systems (although the
number increases with the system size).

An important dynamical property in high-dimensional systems is the existence
of a Lyapunov density [85]. It implies that the set of the Lyapunov exponents λ±

j ,
defined by (8.5), as a function of x ≡ j/N converges for N → ∞ to a well-defined
function Λ±(x), as exemplified by Fig. 9.14. In such a case the number U of positive
(or negative) Lyapunov exponents scales with the dimension of the phase space, and
U/N converges to a constant. As a result, the metric entropy (8.9) can be written as

K =
∫ U/N

0
Λ+(x)dx−κ . (9.18)

Similarly, the sums defining the indices J and I, (8.23) and (8.20), more precisely the
ratios J/N and I/N, can also be expressed as integrals, which depend on the value
of the escape rate. For small escape rates, however, the dependencies are weak, and

Fig. 9.14 Spectrum of Lyapunov exponents λ j associated with chaotic transients for a CML of
size N = 50 (crosses) and N = 100 (triangles), as a function of x = j/N. The convergence to a
limiting Lyapunov density can be seen [487] (with kind permission from Elsevier Science)
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we have J/N = (U − 1)/N → U/N. Since the fraction appearing in the general
expression of Ds,1 and Du,1 is always less than one, it does not contribute to the di-
mension density. Supertransients are thus characterized by the following dimension
densities:

δs =
S +U

N
= 1, δ = δu =

U + I
N

. (9.19)

It is worth defining the signed Lyapunov density Λ(x), as shown in Fig. 9.14. Since,
as stipulated by (8.5), Λ(x) = Λ+(U/N−x) for 0 ≤ x ≤U/N and Λ(x) =−Λ−(x−
U/N) for 1 ≥ x ≥ U/N, the nontrivial dimension density δu = δ also satisfies the
equation

∫ δu

0
Λ(x)dx = 0. (9.20)

When considering the integral of the signed Lyapunov density between zero and
some value x, the dimension density is the x value for which the integral vanishes.
In fact, (9.20) is valid for spatiotemporal chaotic attractors as well [262]. We con-
clude that the picture based on the Lyapunov and dimension densities suppresses
the role of the finite lifetime of chaos, and emphasizes the quasiattractor character
of supertransients.

The problem of stable chaos (Sect. 9.2.4) deserves special attention. Although
these systems appear to exhibit fractal features, dimension formulas (8.21) and
(8.24) are not applicable. In fact, these relations are valid for generic chaotic saddles,
but that is not the case here. There is a possibility for strange nonchaotic saddles to
arise in analogy with strange nonchaotic attractors [241]. (For strange nonchaotic
repellers of one-dimensional maps, see Sect. 2.4.) A strange nonchaotic spatiotem-
poral saddle might have a box-counting dimension that does not increase linearly
with the system size, i.e., with a density δu = δ = 0.

9.6 Turbulence in Pipe Flows

9.6.1 Turbulence Lifetime

The transition to turbulence in pipe flows has long been a fascinating problem in
fluid dynamics (for reviews, see [216, 217, 299]). Investigations of the phenomenon
began in the second part of the nineteenth century with the milestone experiments of
Reynolds in 1883. He pointed out that in a pipe of fixed length the flow changes from
smooth (laminar) to irregular (turbulent) at sufficiently large flow velocities. A good
dimensionless measure of the flow velocity is the Reynolds number Re = UD/ν ,
with U and D chosen as the mean flow speed across the pipe and the diameter,
respectively. When the flow velocity slowly increases in a given setting, the transi-
tion from laminar flow to turbulence occurs abruptly at a critical Reynolds number
Rec of order 2,000. Early experiments indicated, however, that under controlled con-
ditions the laminar flow can be maintained up to Reynolds numbers much larger
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than 2,000. It was recognized later that the roughness of the wall’s surface plays an
important role: the rougher the wall, the smaller the critical Reynolds number. More
recent investigations have led to the observation that perturbations to the laminar
flow such as those caused by surface roughness are needed to trigger turbulence, and
the critical Reynolds number Rec depends on the type and the strength of the pertur-
bation. Thus the onset of turbulence is determined not only by the Reynolds number
but also by the perturbation. To trigger turbulence, the flow has to be sufficiently
fast and the perturbation has to be sufficiently strong. The required perturbation is,
however, smaller for larger values of the Reynolds number. Therefore, in any ex-
perimental setting in which small perturbations cannot be avoided, turbulence will
always appear at sufficiently large values of the Reynolds number.

The steady laminar solution, such as the parabola profile in a pipe of circular
cross section, is linearly stable for all Reynolds numbers [299]. In dynamical-system
terms, this implies the existence of a fixed-point attractor in the infinite-dimensional
phase space, with a relatively small basin of attraction. In addition, there is no ev-
idence for the existence of any stable state with simple spatial or temporal pattern,
e.g., traveling waves, which would be the analogues of limit cycle attractors. The
turbulent state can be considered a high-dimensional chaotic state associated with
either a chaotic attractor or a chaotic saddle.

The first indication of the transient character of pipe turbulence appeared about
20 years ago [99,299], based on investigations of the stability of the laminar profile.
There has been increasing experimental evidence since then indicating that even
if the turbulent state is established for not too large Reynolds numbers, this state
can suddenly decay, without any apparent precursor, toward the laminar state. This
implies that the chaotic sets for not too large values of the Reynolds number are
nonattracting. Research has then been concentrated on the average lifetime τ of the
chaotic saddle. The classical experiments suggest that the lifetime is rather large,
for otherwise, the turbulence would not have appeared to be permanent to earlier
investigators. The use of long pipes and efficient numerical methods have made
more detailed investigations possible. Figure 1.23 shows the experimental findings
of Peixinho and Mullin on the exponential decay in time. The value of the escape
rate appears to be independent of the details of the initial perturbation, but depends
on the Reynolds number only. The exponential decay sets in only after some time t0
in any experimental run.

When plotting the actual lifetime as a function of the perturbation amplitude A
to trigger the turbulence in numerical simulations, a more detailed picture can be
obtained. A slight change in the amplitude can lead to drastically different lifetimes
if the amplitude is above a threshold (Fig. 9.15). The irregular part of the lifetime
distribution is fractal. Furthermore, the average Lyapunov exponent during the tur-
bulent phase was shown to be strictly positive [231]. These features indicate that
the high-dimensional saddle underlying the turbulence has all the characteristics of
low-dimensional chaotic saddles and of transient chaos in many other spatiotempo-
ral systems.

A basic question is the dependence of the turbulent escape rate on the Reynolds
number. In the class of functions exhibiting a rapid decrease with the Reynolds
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Fig. 9.15 Turbulence lifetime versus perturbation amplitude A in a pipe at Reynolds number
Re = 2,000 obtained numerically. The bottom panel is a magnification of the box indicated in
the top panel. At the edge of chaos, at the value marked by two vertical bars, the function turns
from smooth to fractal-like, indicating that chaotic transients are triggered by sufficiently large
amplitudes [231] (with kind permission from Cambridge University Press)

number, a choice is some functions that approach zero for a finite value of Re. This
form can retain one aspect of the original picture, namely that beyond a threshold
Reynolds number, permanent turbulence can be present. The laminar fixed-point
attractor would then coexist with the chaotic attractor of the turbulence. Another
choice is some monotonically decreasing functions of Re with nonzero values for
any Re. Using a pipe of length 30 m, experiments by Hof, Westerweel, Schneider,
and Eckhardt [336] provided a firm answer to the question. In a set of experiments
covering more than two decades of lifetimes, they showed that the escape rate is
nonzero up to large values of Re. This suggests that turbulence remains a transient,
a feature also observed in superfluid turbulence [693] and magneto hydrodynamical
turbulence [639]. By measuring time in units of D/U , the dimensionless escape rate
was found in [160, 217, 336] to scale with Re as

κ(Re) = ae−bRe (9.21)

with parameter b between 0.03 and 0.04 (see Fig. 9.16). According to this rule, any
increase in the Reynolds number by 100 implies a multiplication of the escape rate
by a factor of 1/33. Thus, pipe turbulence is a kind of type-II supertransient (with
system size replaced by the Reynolds number).
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Fig. 9.16 Escape rate as a function of the Reynolds number in the experiment by Hof et al. The
straight-line fit corresponds to formula (9.21). The inset shows the same data on a linear scale to
illustrate that the escape rate is asymptotic to zero rather than crossing the horizontal axis at a finite
value of Re [217] (with kind permission from Annual Reviews)

A recent experimental study by Hof, de Lozar, Kuik, and Westerweel [334]
extended the range of turbulent lifetimes by six orders of magnitude by collecting
data from four pipe setups with significantly reduced statistical errors. The extended
data set (which contains, as a subset, the points of Fig. 9.16) suggests a superexpo-
nential scaling with the Reynolds number in the form of

κ(Re) = exp [−exp(c1Re+ c2)] (9.22)

with c1 = 0.0057, c2 = −8.7. This fit is valid in the Reynolds-number range
(1670,2040), where the dimensionless κ changes between 0.2 and 10−8. Note that
a further extension of these results is hardly possible, since due to the rapid increase
in the lifetime, the measurement at Re = 2,100 would already require an estimated
time of 46 years [334, 663].

Due to extended and improved numerical methods, the range of Reynolds
numbers and sample sizes of experiments have become accessible in computer
simulations. The results of [33] were in close quantitative agreement with the
form of (9.22). Similar superexponential scaling of lifetimes was reported in a
Taylor–Couette flow [95].

A possible theoretical explanation of the superexponential scaling was provided
by Goldenfeld and coworkers [267]. The authors argued that the determining factor
for the suppression of a puff is the probability that the largest velocity fluctua-
tions fall below some threshold value. These large-amplitude events follow extremal
statistics. From general results on such statistics the superexponential form of (9.22)
can be derived.
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9.6.2 Other Aspects of Hydrodynamical Supertransients

An interesting feature of the lifetime distribution versus perturbation amplitude, as
shown in Fig. 9.15, is that slowly varying regions are interwoven with intervals of
rapid change. In the smooth regions the transients are short and nonchaotic. The
transition (indicated by two bars in Fig. 9.15) between the extended smooth region
at small amplitudes and the region with fractal fluctuations is rather abrupt. This
point on the border between laminar and chaotic regions is called the edge of chaos
[691, 720], which separates initial conditions that decay directly to the laminar at-
tractor and those that come close to the chaotic saddle first, i.e., exhibit turbulence.
Trajectories starting from the edge of chaos move in a region intermediate between
laminar and turbulent dynamics. The results of [409,520,691,720,803] suggest that
the edge of chaos lies, for any Reynolds number, in the stable manifold of an invari-
ant object, the edge state that resides in the phase space between the fixed point and
the chaotic saddle. The stable manifold is thus a kind of basin boundary between
the laminar and the turbulent dynamics. The latter, of course, cannot have a real
basin of attraction, but only one that appears to be so in finite-time observations (the
quasiattractor character discussed in Sect. 9.5). The dynamics restricted to the edge
of chaos converges to a chaotic state, the edge state, and numerical simulations in
pipe flows indicated that it corresponds indeed to an irregular wavy motion along the
pipe, which is, however, less energetic than the turbulent dynamics itself [691]. This
attractor is only a relative attractor, since it is unstable with respect to perturbations
perpendicular to the edge of chaos.

Low-dimensional chaotic saddles contain an infinite number of unstable periodic
orbits (Sect. 2.6.4). In an analogous way, the chaotic saddle underlying pipe turbu-
lence is expected to contain coherent structures. Both in theory and experiments,
they were shown to be regular traveling waves [229, 335], all unstable, correspond-
ing to hyperbolic states in the high-dimensional phase space. Currently, there is an
intensive search underway for such coherent structures (spatiotemporal patterns)
[213, 263, 303, 690, 800] about which chaos is organized. Over a long-time obser-
vation of turbulence one expects to see different coherent states in different time
intervals. This kind of approach may eventually lead to a periodic-orbit expansion
[153] of the chaotic saddle, in full analogy with low-dimensional problems (see
Appendix A). There is then hope that the statistical properties of the turbulent flow
can be expressed in terms of the properties of the coherent structures.

Finally, we mention that there are other hydrodynamical situations in which the
onset of turbulence is similar to that in pipe flows. Notable examples are plane
Poiseuille flows (pressure-driven flows between two large parallel plates) [816]
and Couette flows (driven by a moving wall) [215, 686, 692]. The common fea-
ture in these shear flows is that the laminar profile is stable.1 One expects therefore
in these situations that turbulence is not permanent and decays eventually toward

1 Plane Poiseuille flows are linearly unstable, but the critical Reynolds number is much above the
value at which turbulence transition occurs [217].
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a laminar profile. Shear-flow turbulence is thus a case of its own, and is present in
the form of high-dimensional chaotic transients. We are thus currently witnessing
the appearance of concepts of transient chaos in the study of classical turbulence.

9.7 Closing Remarks

In this chapter we have focused on supertransients. Although they are quite
common, there are cases in which the distribution of transient lifetimes is not
exponential, or if it is, the average lifetime does not grow rapidly with the system
size. It may, e.g., become saturated (for examples, see [252] and [831]). The type
of coupling plays an important role [797]. It is, nevertheless, an open question at
present whether one can decide from first principles if a system exhibits super-
transients. In fact, the question of how to decide whether a spatiotemporal system
possesses a chaotic attractor has not been answered. A systematic application of
nonlinear stability analysis to different possible asymptotic patterns [517] may pro-
vide insights. A recent investigation [813] showed that the master-stability function
[583], a central tool in the theory of synchronization in dynamical systems, can suc-
cessfully be applied as an indicator for transient versus permanent spatiotemporal
chaos.

A somewhat analogous phenomenon to supertransients was found in Hamiltonian
systems with many degrees of freedom. Any isolated macroscopic system should
eventually relax to a state of thermal equilibrium in which any macroscopic variable
is independent of time. Nevertheless, in systems with global (mean field) coupling,
long relaxations were found whose average time diverges with the number of com-
ponents [14, 21, 607, 839]. More recently, a metastable state was discovered [531],
as characterized by periodic or quasiperiodic oscillations of macroscopic variables
about mean values that are different from the respective equilibrium values. The
lifetime of the metastable state was found to increase linearly with the number of
degrees of freedom. The underlying microscopic dynamics is chaotic, but must have
different characters in the metastable and equilibrium states. Both examples can be
considered as type-I supertransients, which last long in the thermodynamic limit.

In some spatiotemporal problems the linear size may not be freely chosen. Long
transients may, nevertheless, be present (see, e.g., [188, 841]), but it is not apparent
whether they scale at all with some parameter of the problem. It is useful to find a
scaling parameter in such cases and check whether the dependence is power-law or
exponential. In the case of time-delayed systems [841], a natural candidate for some
scaling parameter is the delay time.

It is worth pointing out a difference between the shear-turbulence problem and
the supertransient phenomena in spatially extended systems other than pipe flows.
The scaling in turbulence is not with respect to the length of the pipe, but rather with
the diameter D in the Reynolds number. It would be interesting to understand this
difference better.
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The concept of unstable coherent structures as building blocks for a periodic-orbit
type of expansion of the chaotic saddle, or those of the edge of chaos and
the invariant sets associated with it, can be applied to all systems exhibiting
supertransients. It is quite remarkable that problems ranging from fluid dynamics
and chemistry to population dynamics and biology with quite different underly-
ing mathematical structures all share similar features, dominated by long-lasting
chaotic transients. A unified understanding of the physics underlying this phe-
nomenon deserves further efforts.
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