
Chapter 8
Transient Chaos in Higher Dimensions

This chapter is devoted to transient chaos in higher-dimensional dynamical systems.
The defining characteristic of high-dimensional transient chaos is that the underly-
ing chaotic set has unstable dimension more than one, in contrast to most situations
discussed in previous chapters, where chaotic sets have one unstable dimension. We
shall call nonattracting chaotic sets with one unstable dimension low-dimensional,
while those having unstable dimension greater than one high-dimensional. The in-
crease in the unstable dimension from one represents a highly nontrivial extension
in terms of what has been discussed so far about transient chaos. For instance,
the PIM-triple algorithm, which is effective for finding an approximate continuous
trajectory on a low-dimensional chaotic saddle, is generally not applicable to high-
dimensional chaotic saddles. In a scattering experiment in high-dimensional phase
space, the presence of a chaotic saddle cannot guarantee that chaos can be physi-
cally observed. In particular, if the box-counting dimension of the chaotic saddle is
low, its stable manifold may not intersect a set of initial conditions prepared in the
corresponding physical space; only when the dimension is high enough can chaotic
scattering be observed.

First we present a prototypical example, the three-dimensional baker map, for
which a basic property of high-dimensional hyperbolic systems can be seen ex-
plicitly: different numbers of the expanding and the contracting dimensions. Next
we show how the escape rate and the metric entropy can be expressed in terms of
the Lyapunov exponents in high-dimensional maps, present derivations for the di-
mension formulas of the stable and the unstable manifolds for high-dimensional
chaotic saddles, and address their applicability and the concept of typicality using
particular examples. An efficient algorithm, the stagger-and-step method, is then
described for computing high-dimensional chaotic saddles. Chaotic scattering in
three-degree-of-freedom systems is presented, the conditions for the observability
of chaotic scattering are formulated, and new features of the scattering dynamics
are discussed. The phenomenon of superpersistent chaotic transients and applica-
tions are also treated in this chapter.
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266 8 Transient Chaos in Higher Dimensions

8.1 Three-Dimensional Open Baker Map

Three-dimensional invertible maps arise on stroboscopic or Poincaré sections of
four-dimensional flows. There are two classes of hyperbolic maps: (1) maps with
one unstable and two stable directions (type I) and (2) maps with two unstable and
one stable direction (type II). The escape dynamics in these two cases are generally
different.

The open three-dimensional baker map is the spatial extension [165] of the pla-
nar baker map treated in Sect. 2.5. Because of the odd dimensionality of the map,
the number of unstable directions is different from that of stable directions. Con-
sequently, such maps, even if they preserve volume, cannot describe Hamiltonian
systems. Nonetheless, in the volume-preserving case they can be used to model the
advection by three-dimensional time-periodic flows (see [165] and Chap. 10). The
map, denoted by M, is defined on the unit cube, and its action is shown in Fig. 8.1a.

Fig. 8.1 (a) Illustration of the action of one iteration of the three-dimensional open baker map
M on the unit cube (the restraining region Γ ) for type-I dynamics. For simplicity the parameters
are chosen to be b = c ≡ λ and a = 1/λ 2 (volume-preserving case). Note that the drawing is not
to scale. (b) For λ = 0.35, surviving points after two iterations of the map with initial conditions
chosen randomly from the cube. (c) The same as (b), but for the inverse map M−1 (type-II dynam-
ics). (d) For λ = 0.35, intersection with a horizontal plane of the set of surviving points after two
iterations of the map [771] (with kind permission from Elsevier Science)
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One iteration of the map consists of two actions. Firstly, the x and y directions are
contracted by factors b and c, respectively, where b,c < 1/2, while the z direction
undergoes an expansion by a factor a > 4. Under the transformation, the cube turns
into a long, thin rectangular slab with its long edge along the z-axis, as shown in
Fig. 8.1a. Secondly, four pieces of unit height of this slab are selected and placed
in the four corners of the cube. The pieces of the slab that are not selected are dis-
carded and are regarded as having escaped (Fig. 8.1a). The map has two contracting
directions and one expanding direction, and is therefore of type I. For the inverse
map M−1, stable directions turn into unstable ones, and vice versa. As a result, M−1

has one stable and two unstable directions, and is of type II. The two generic types
of three-dimensional hyperbolic maps can thus be conveniently studied using the
baker map. Since hyperbolic systems are structurally stable, generality is not lost by
assuming any particular form for M.

Because the contracting and the expanding directions of M (and also M−1) are
aligned with the x-, y-, and z-axes, it is not difficult to visualize the stable and the
unstable manifolds: the stable manifold of M is a Cantor set of planes parallel to
the horizontal (x,y)-plane, and the unstable manifold is a Cantor set of vertical seg-
ments. We can visualize these manifolds by iterating M forward a given number of
times for many initial conditions chosen randomly within the unit cube. The dis-
tribution of points that have not escaped approximate the unstable manifold of M,
which is the stable manifold of M−1. Conversely, iterating backward (or iterating
M−1 forward) in time gives the stable manifold of M (or the unstable manifold of
M−1). These results are shown in Fig. 8.1b, c.

Consider now the unstable manifold of M, as shown in Fig. 8.1b. Since it is made
up of vertical line segments, and since the expansion and the contraction rates are
uniform, we can restrict attention to the intersection of the unstable manifold with
a horizontal plane. This is depicted in Fig. 8.1d, where the intersection of the set of
surviving points after two iterations of M with a horizontal plane is shown. In the
limit of an infinite number of iterations, a double Cantor set in the plane is formed

with partial box-counting dimensions D(2)
0 = ln2/ ln(1/b) and D(3)

0 = ln2/ ln(1/c)
along the stable manifolds. The unstable manifold is the product of this Cantor set
and a one-dimensional line segment; its dimension is

Du,0 = 1 + ln2

(
1

ln(1/b)
+

1
ln(1/c)

)
. (8.1)

Similar reasoning can be applied to the stable manifold. The partial box-counting
dimension along the unstable direction is set by the stretching factor a. Since in each

step a factor 1/a of the slab remains in the unit cube, we have D(1)
0 = ln4/ lna. The

stable manifold is the product of this Cantor set with a plane. We obtain

Ds,0 = 2 +
ln4
lna

. (8.2)
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The manifold dimensions satisfy

1 < Du,0 < 3, 2 < Ds,0 < 3. (8.3)

The chaotic saddle is the intersection of the stable and the unstable manifolds, and
its box-counting dimension is

D0 =
3

∑
j=1

D( j)
0 = Du,0 + Ds,0 −3. (8.4)

The baker map has one positive Lyapunov exponent λ +
1 = lna and two negative ones

of magnitudes λ−
1 = ln(1/b) and λ−

2 = ln(1/c). The escape rate is κ = ln(a/4), and
the topological entropy is K0 = ln4.

The inverted map has two positive Lyapunov exponents, λ +
1 = ln(1/b) and

λ +
2 = ln(1/c), and a negative exponent of magnitude λ−

1 = lna. The topology of
the escaping process in the inverted map is different from that of M, which is also
reflected by the difference in the values of the escape rate (for the inverted map it is
κ = − ln(4bc)). The manifold dimensions can be obtained from (8.1) and (8.2) by
interchanging the indices u and s.

In general, the structures of the stable and the unstable manifolds for the two
types of generic maps are topologically similar to those shown in Fig. 8.1. In par-
ticular, for type-I maps, the stable manifold is a Cantor set of surfaces, and the
unstable manifold is a Cantor set of one-dimensional curves (vice versa for type-II
maps). Also, the inequalities (8.3) hold in general for type-I maps.

Based on (8.3), we observe that for type-II maps, the dimension Ds,0 of the stable
manifold may be less than 2. In this case, the stable manifold has generically a
null intersection with a one-dimensional curve (see (8.52)), and thus the lifetime
distribution along a line is a smooth function, even though there is a fractal invariant
set. For Ds,0 > 2, however, a typical lifetime function has a fractal set of singularities
that is similar to that in Fig. 1.5. The transition point defined by Ds,0 = 2 is given
for the map M−1 by the condition 1/ lnb+1/ lnc =−1/ ln2. If the map is of type I,
however, this transition does not occur. This is a nontrivial difference between the
dynamics of the two types of map. We will consider a similar problem in the context
of high-dimensional chaotic scattering in Sect. 8.5.1.

8.2 Escape Rate, Entropies, and Fractal Dimensions for
Nonattracting Chaotic Sets in Higher Dimensions

8.2.1 Escape Rate and Entropies

Consider an open dynamical system described by an N-dimensional map. For a
general chaotic saddle in the N-dimensional phase space, there are U positive and
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S negative average Lyapunov exponents, where U + S = N. The exponents can be
ordered as follows

λ +
U ≥ λ +

U−1 ≥ ·· · ≥ λ +
1 > 0 ≥−λ−

1 ≥ ·· · ≥ −λ−
S−1 ≥−λ−

S . (8.5)

Thus all quantities λ +,−
j are positive, and smaller values of the subscripts j corre-

spond to Lyapunov exponents that are closer to zero in magnitude. Analogous to
the low-dimensional cases, one can define partial box-counting and information di-

mensions D( j)
0 and D( j)

1 , respectively, for any direction j along which an average
Lyapunov exponent exists. The total dimension Di (i = 0,1) of the nonattracting set
is the sum of the partial dimensions:

Di = ∑
j

D( j)
i , i = 0,1. (8.6)

General expressions for the escape rate and the metric entropy follow from the ex-
tension of the information-theoretic arguments in Sect. 2.6.3 for two-dimensional
maps [380].

Along the stable directions particles cannot escape. Along an unstable direction,

they cannot escape either if the partial information dimension is D( j)
1 = 1 (more

precisely, the escape is slower than exponential). Exponential escape is possible only

along unstable directions for which D( j)
1 < 1. Since escapes in different directions j

are independent of each other, and the mean velocity of the information flow is λ +
j ,

the escape rate is the sum of contributions from all unstable directions:

κ =
U

∑
j=1

λ +
j (1−D( j)

1 ). (8.7)

The metric entropy, as discussed in Sect. 2.6.3, is the rate at which information
stored in the insignificant digits of the initial condition flows toward the significant
ones. This flow occurs along the unstable directions only. Since the information di-
mension and the Lyapunov exponent characterize the density of information and the
mean velocity of the flow, respectively, we have

K1 =
U

∑
j=1

λ +
j D( j)

1 . (8.8)

Using (8.7), one can write K1 as

K1 =
U

∑
j=1

λ +
j −κ . (8.9)

This relation implies that the degree of unpredictability of the dynamics on the
nonattracting set, measured by K1, is only a fraction of the total flux ∑U

j=1 λ +
j of dig-

its, because of the loss of information due to escape. Formula (8.9) is an extension
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of Pesin’s relation [564], according to which the metric entropy is the sum of all
positive Lyapunov exponents for closed N-dimensional maps.

In invertible systems, the same amount of information flows in along the stable
directions as the amount flowing out along the unstable directions, i.e.,

S

∑
j=1

λ−
j D( j)

1 =
U

∑
j=1

λ +
j D( j)

1 . (8.10)

A special case of this rule has been observed in (2.80) for two-dimensional maps.
The relations (8.7), (8.8), and (8.9) are valid for noninvertible and nonhyperbolic

cases as well. For example, two-dimensional maps with two positive Lyapunov
exponents are covered by these formulas, such as the repellers of the complex
quadratic map, the Julia sets shown in Fig. 1.3b, which are topologically a cir-
cle. Due to the symmetry, both Lyapunov exponents and both partial information
dimensions are equal. Equations (8.7) and (8.8) then imply, with the notation
λ +

1 = λ +
2 ≡ λ , that

κ = λ (2−D1), K1 = λ D1. (8.11)

Since the natural measure of the connected Julia set is known to have information
dimension D1 = 1 [84], we have κ = λ = K1. This is to be contrasted with the prop-
erties of isolated repeller points of the complex quadratic maps for which D1 = 0
and hence, κ = 2λ with K1 = 0.

Obtaining an expression for the topological entropy is more complicated. As
generalizations of (2.22) and (2.81), we have [380]

K0 =
U

∑
j=1

λ +
j −κ +

1
2

U

∑
j,k

Q+
2, j,k + · · · (8.12)

and

κ =
U

∑
j=1

λ +
j (1−D( j)

0 )+
1
2

U

∑
j,k

(1−D( j)
0 )(1−D(k)

0 )Q+
2, j,k + · · · , (8.13)

where Q+
2, j,k represents the cumulant of the Lyapunov exponents from expanding

directions j and k [380].

8.2.2 Dimension Formulas for High-Dimensional Chaotic
Saddles

For high-dimensional chaotic saddles, dimension formulas for the entire stable and
unstable manifolds can be derived. Our treatment here follows that of Hunt et al.
[347]. Imagine normalizing the size of the chaotic saddle so that it can be enclosed
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by a cube of unit length. This cube is considered the restraining region. For a
hyperbolic saddle, the cube can be regarded as having edges parallel to directions
of stretching and contraction as defined by the Lyapunov exponents λ +

j and −λ−
i .

Now uniformly sprinkle a large number of points in the cube and iterate them
forward n times. The resulting trajectory points will be distributed to slabs within
the cube of dimensions

1×1×·· ·×1× e−λ−
1 n × e−λ−

2 n ×·· ·× e−λ−
S n, (8.14)

where there are U slab edges of unit length in the U unstable directions. Let N(sl)(n)
be the number of slabs at time n. Since trajectory points within these slabs remain
in the cube for at least n iterates, the total content of the slabs is proportional to
exp(−κn), where κ is the escape rate from the chaotic saddle. Since the density of

points has increased by a factor of exp
[(

∑S
j=1 λ−

j −∑U
j=1 λ +

j

)
n
]
, we have

N(sl)(n)e−λ +
U n × e−λ +

U−1n ×·· ·× e−λ +
1 n = N(sl)(n)exp

(
−

U

∑
j=1

λ +
j n

)
∼ exp(−κn).

(8.15)

Using (8.9), we see that (8.15) implies

N(sl)(n) ∼ eK1n. (8.16)

Since at time n, trajectory points that have not left the restraining region are dis-
tributed in the vicinity of the unstable manifold, we need to examine the set of
N(sl)(n) in (8.14). Say we wish to cover them using small N-dimensional cubes.
A natural choice for the edge length of such a cube is that set by the contraction
of the dynamics. Since there are several contracting directions, we have different
choices. Take

εi = exp(−λ−
i+1n) (8.17)

with index i between 0 and S−1. The required number of cubes is then

N(u)(εi) =
(

1
εi

)U
(

e−λ−
1 n

εi

)(
e−λ−

2 n

εi

)
· · ·
(

e−λ−
i n

εi

)
N(sl)(n) (8.18)

∼
(

1
εi

)U+i

exp [−(λ−
1 + λ−

2 + · · ·+ λ−
i )n + K1n],

where (8.16) has been used.
The information dimension of any invariant measure can be considered as the

box-counting dimension of regions containing most of the measure, i.e., regions
covering typical sets taken with respect to the measure (see, e.g., [773]). Applying
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this to the c-measure of the unstable manifold, represented by the slabs at time n,
we find an approximation to the information dimension of the unstable manifold for
large n:

Du,1(i) =
lnN(u)(εi)
ln(1/εi)

= U + i+
K1 − (λ−

1 + λ−
2 + · · ·+ λ−

i )
λ−

i+1

. (8.19)

The covering by the set of εi-cubes may not be optimal, so Du,1(i) is an upper bound
of Du,1: Du,1 ≤ Du,1(i). It is thus necessary to minimize Du,1(i) over i to obtain the
true dimension. A convenient way to find the minimum of Du(i) is to examine the
quantity Du,1(i+ 1)−Du,1(i), which is

Du,1(i+ 1)−Du,1(i) =

(
1

λ−
i+1

− 1

λ−
i+2

)
× [(λ−

1 + λ−
2 + · · ·+ λ−

i + λ−
i+1)−K1].

Since λ−
i+1 ≤ λ−

i+2, we see that Du,1(i + 1)− Du,1(i) is positive (negative) if the
term in the square brackets is positive (negative). Thus, if there exists a value I of i
such that

λ−
1 + λ−

2 + · · ·+ λ−
I + λ−

I+1 ≥ K1 ≥ λ−
1 + λ−

2 + · · ·+ λ−
I , (8.20)

then Du,1(I + 1)−Du,1(I) is positive or zero but Du,1(I)−Du,1(I − 1) is negative
or zero. That is, we have Du,1(I) ≤ Du,1(I + 1) and Du,1(I) ≤ Du,1(I − 1) simulta-
neously, indicating that the value of I chosen in (8.20) is the optimal choice of the
index i that yields the true dimension Du,1:

Du,1 = U + I +
K1 − (λ−

1 + λ−
2 + · · ·+ λ−

I )
λ−

I+1

, (8.21)

where I is the largest index for which the numerator of (8.21) is still positive.
The information dimension of the natural measure of the stable manifold can be

obtained in a similar manner. To see where the slabs of size (8.14) (whose number is
N(sl)(n)) come from within the cube, we iterate them backward n times and obtain
N(sl)(n) slabs of initial conditions, each of dimension

e−λ +
U n × e−λ +

U−1n ×·· ·× e−λ +
1 n ×1×·· ·×1, (8.22)

where for each slab there are S edges of unit length. Since initial conditions leading
to trajectories that remain in the restraining region for at least n iterates are found
in the slabs of size given by (8.22), we can cover them by small cubes of properly
chosen edge length ε j = exp(−λ +

j+1n) and obtain an upper bound Ds,1( j) for the
true dimension Ds,1. Reasoning similar to that in the derivation of Du,1 yields the
following optimal choice of the index J:
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λ +
1 + λ +

2 + · · ·+ λ +
J + λ +

J+1 ≥ K1 ≥ λ +
1 + λ +

2 + · · ·+ λ +
J , (8.23)

which gives

Ds,1 = S + J +
K1 − (λ +

1 + λ +
2 + · · ·+ λ +

J )
λ +

J+1

, (8.24)

where J is the largest index for which the numerator of (8.24) is still positive.
The information dimension of the chaotic saddle, which is the intersection of its

stable and unstable manifolds, is

D1 = Du,1 + Ds,1 −N = (I + J)+
K1 −∑I

i=1 λ−
i

λ−
I+1

+
K1 −∑J

j=1 λ +
j

λ +
J+1

. (8.25)

This is a generalization of (8.4) for the information dimension of the invariant set to
any N-dimensional map.

In the case of a chaotic attractor, we have κ = 0, so K1 is the sum of all positive
Lyapunov exponents. This leads to the information dimension D1 of the attractor,
since D1 = Du,1 with (8.21), which is the Kaplan–Yorke formula in higher dimen-
sions [564]. Note that the index I in Du,1 is then such that (∑U

j=1 λ +
j −∑I

i=1 λ−
i ) is

positive but (∑U
j=1 λ +

j −∑I+1
i=1 λ−

i ) is negative. Furthermore, from (8.23) we see that
J = U −1 and thus Ds,1 = S +U = N, i.e., the stable manifold is space-filling, as it
should for a basin of attraction.

A special case is high-dimensional maps derived from Hamiltonian flows. Due to
the symplectic structure of the dynamics, positive and negative Lyapunov exponents
arise in pairs: λ +

j = λ−
j . The manifold dimensions in Hamiltonian systems therefore

coincide:

Du,1 = Ds,1 = (D1 + N)/2. (8.26)

For a chaotic saddle of a two-dimensional map with one positive Lyapunov ex-
ponent λ1 ≡ λ +

1 > 0 and one negative exponent λ2 ≡−λ−
1 < 0, we have U = 1 and

S = 1. In dissipative or area-preserving systems, we have λ1 + λ2 ≤ 0. As a result,
λ1 + λ2 −κ < 0. Thus K1 ≤ |λ2|, and we have I = 0 and J = 0, which leads to the
corresponding formulas derived in Sect. 2.6.2.

Readers should keep in mind that the dimension formulas (8.21), (8.24), and
(8.25) are derived heuristically under the assumption that the chaotic saddle is hy-
perbolic. While there is numerical evidence for a class of open systems (see, e.g.,
[745,746]) with nonhyperbolic high-dimensional chaotic saddles, there has been no
systematic numerical study to validate these formulas, although they are conjectured
to apply to typical systems [347]. This can be seen heuristically by noting that for
such a system, small perturbations cannot change its properties and dynamical in-
variants. Atypical systems, on the other hand, are those whose dynamical invariants
change under small perturbations. In the next section we will consider specific ex-
amples to contrast typical versus atypical systems with respect to their dimensions.
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8.3 Models Testing Dimension Formulas

Because of the heuristic nature in the derivation of the dimension formulas, it is
insightful to examine representative models for which the quantities involved in the
formulas can be obtained analytically or numerically. The following two models,
due to Sweet and Ott [746], will be used: (1) an analytic two-dimensional, nonin-
vertible expanding map, and (2) a three-dimensional billiard scatterer.

8.3.1 Two-Dimensional Noninvertible Map Model

8.3.1.1 Natural Measure and Lyapunov Exponents

The map is of the form

xn+1 = 2xn mod(1), (8.27)

yn+1 = α(xn)yn +
η
2π

sin(2πxn),

where α(x) > 1 and the map is defined in the region −∞ ≤ y ≤ +∞ and 0 ≤ x ≤ 1.
The variable x can be considered as an angle-like variable, so the map is defined on
a cylinder. The following piecewise constant function was chosen for α(x):

α(x) =

{
α1, 0 < x < 1/2,

α2, 1/2 < x < 1,
(8.28)

where 1 < α1 ≤ α2. Because α(x) > 1, almost all initial conditions go either to
y = +∞ or to y =−∞, which can be regarded as two attractors, and there is a bound-
ary between the two basins of attraction near y = 0. The boundary is an invariant
set, which is ergodic because of the chaotic dynamics in x. In fact, the invariant set
is a chaotic repeller with two positive Lyapunov exponents. The Jacobian matrix of
(8.27) is

J(x) =
[

2 0
η cos(2πx) α(x)

]
, (8.29)

so the two Lyapunov exponents of the chaotic repeller are

λa = p lnα1 +(1− p) lnα2 and λb = ln2, (8.30)

where p is the measure of the region x < 1/2. Note that for the one-dimensional
map xn+1 = 2xn mod(1) alone, we have p = 1/2 because a random initial con-
dition leads to a trajectory that visits the intervals [0,1/2] and [1/2,1] with equal
probabilities. However, the presence of the y-dynamics changes the natural measure
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of the x-intervals. To calculate p, consider the strip −K ≤ y ≤ K on the cylinder
and sprinkle a large number of initial conditions uniformly in the strip with density
ρ0. A vertical line segment of length 2K at x = x0 and centered at y0 = 0 iter-
ates to x = x1, and its center will be at y1 = (η/2π)sin(2πx0). This line segment
will at the same time be stretched vertically by a factor of α(x0). The endpoints
of the segment will then be at (η/2π)sin(2πx0)±α(x0)K. In order for the seg-
ment to span the initial strip −K ≤ y ≤ K, it is necessary to choose K such that
(η/2π)sin(2πx0)−α(x0)K < −K (if y1 > 0) or (η/2π)sin(2πx0)+ α(x0)K > K
(if y1 < 0). In either case, it is necessary to have

K > (η/2π)|sin(2πx0)|/[α(x0)−1],

which can be satisfied if we choose

K > (η/2π)/(α1 −1).

Since the map stretches a region uniformly in the x-direction by a factor of two and
in the y-direction by a factor of either α1 or α2, after one iterate the density will still
be uniform in the initial strip, and it is ρ1 = [(α−1

1 + α−1
2 )/2]ρ0. After n iterations,

the density in the strip becomes

ρn =
[

1
2
(α−1

1 + α−1
2 )
]n

ρ0,

which decays exponentially with time (ρn = ρ0 exp(−κn)) with escape rate

κ = ln
2α1α2

α1 + α2
. (8.31)

Since both Lyapunov exponents are positive, the chaotic repeller formally coincides
with its stable manifold. It suffices thus to calculate the natural measure of the stable
manifold. To do so, note that in the x-direction, an interval of length 2−n maps to the
unit interval after n iterates. It is thus useful to divide the initial strip −K ≤ y ≤ K

into 2n vertical substrips. In substrip i, we have x ∈ s(n)
i = [(i− 1)/2n, i/2n] (i =

1, . . . ,2n). For a uniform distribution of N0 = 2Kρ0 points in the strip −K ≤ y ≤ K,

N0/2n will be in s(n)
i and we ask how many of those there are whose trajectories do

not leave the strip at time n. Assume that in n iterates, the substrip s(n)
i experiences

n1(i) and n2(i) vertical stretches by α1 and α2, respectively, where n1(i)+n2(i) = n.

The initial subregion in s(n)
i that can survive at least n iterates has vertical height

2Kα−n1(i)
1 α−n2(i)

2 . There are then

2Kα−n1(i)
1 α−n2(i)

2

2K
· N0

2n = 2−nα−n1(m)
1 α−n2(m)

2 N0
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such initial conditions. The measure of the stable manifold in s(n)
i is

μ (n)
i =

2−nα−n1(i)
1 α−n2(i)

2 N0

ρn2K
=

2−nα−n1(i)
1 α−n2(i)

2 N0

[(1/2)(α−1
1 + α−1

2 )]nN0
=

αn2(i)
1 αn1(i)

2

(α1 + α2)n . (8.32)

We have

μ([0,1]) =
2n

∑
i=1

μ (n)
i = 1.

The measures of the intervals [0,1/2] and [1/2,1] are given by

p = μ (1)
1 =

α2

α1 + α2
, 1− p = μ (1)

2 =
α1

α1 + α2
, (8.33)

which gives

λa =
α2

α1 + α2
lnα1 +

α1

α1 + α2
lnα2. (8.34)

It can be checked that
λa ≤ κ , (8.35)

where the equality holds if the vertical stretching is uniform across the unit interval
in x: α1 = α2.

8.3.1.2 Dimension Formulas

For a general two-dimensional map with two positive Lyapunov exponents, 0 <
λ +

1 ≤ λ +
2 , we have, from Sect. 8.2.2, U = 2 = N, I = 0, and S = 0, so that Du,1 = 2

and Ds,1 = D1. Depending on the value of κ relative to those of λ +
2 and λ +

1 , there
are two cases in which the dimension formula for D1 is different. The first case is
λ +

1 < K1 < λ +
2 , so J = 1 and we have

D1 = Ds,1 = 1 +
K1 −λ +

1

λ +
2

= 2− κ
λ +

2

. (8.36)

The second case is K1 < λ +
1 , so J = 0. In this case, the dimension is

D1 = Ds,1 =
K1

λ +
1

= 1 +
λ +

2

λ +
1

− κ
λ +

1

. (8.37)

Because of the inequality (8.35), there are three distinct cases: (i) λb > κ > λa,
(ii) κ > λb > λa, and (iii) κ > λa > λb, which should be treated separately. For
illustrative purpose, we set α2 = rα1 and calculate how the dimension D1 varies
with the parameter α1. We have
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κ = ln2 + lnα1 − ln(1 + r−1),
λa = lnα1 +(1 + r)−1 lnr,

λb = ln2. (8.38)

For case (i), the condition λb > κ > λa stipulates that lnα1 < ln(1 + r−1) ≡ lnαa.
The order of the Lyapunov exponents is then λ +

2 = λb > λ +
1 = λa. We have λ +

1 <
K1 < λ +

2 so that J = 1. Application of formula (8.36) gives

D1 = 1 +
ln(1 + r−1)− lnα1

ln2
, for α1 < αa. (8.39)

For case (ii), the defining condition κ > λb > λa is equivalent to lnαa < lnα1 <
ln2− (1 + r)−1 lnr ≡ lnαb. The order of the Lyapunov exponents is the same as
in case (i). However, we now have K1 = λ +

2 + λ +
1 − κ < λ +

1 so that J = 0. The
corresponding formula (8.37) thus gives

D1 =
(1 + r)−1 lnr + ln(1 + r−1)

lnα1 +(1 + r)−1 lnr
, for αa < α1 < αb. (8.40)

For case (iii), we have J = 0 and lnα1 > lnαb. The order of the Lyapunov exponents
is λ +

2 = λa > λ +
1 = λb, and (8.37) yields

D1 =
ln(1 + r−1)+ (1 + r)−1 lnr

ln2
, for α1 > αb. (8.41)

Results (8.39), (8.40), and (8.41) are summarized schematically in Fig. 8.2. We see
that D1 > 1 for α1 < αa but D1 < 1 for α1 > αa. In fact, for α1 < αa, the chaotic re-
peller, which is the basin boundary between the y =±∞ attractors, is a fractal curve,
as shown in Fig. 8.3. Numerical computation indicates [746] that for the repeller,

Fig. 8.2 For map (8.27), dimension of the chaotic repeller versus parameter α1. For α1 < αa, the
information dimension D1 and the box-counting dimension D0 of the chaotic repeller are greater
than 1 and are equal. For α1 > αa, D1 < 1, but D0 = 1. Geometrically, there is a transition from a
fractal to a nonfractal behavior in the basin boundary as α1 is increased through αa



278 8 Transient Chaos in Higher Dimensions

Fig. 8.3 For map (8.27), basins of attraction of the y = +∞ (blank) and y = −∞ (black) attractors
for α1 = 1.1 and r = 3. The basin boundary, a chaotic repeller, is apparently a fractal curve. Both its
box-counting and information dimensions are D ≈ 1.28 [746] (with kind permission from Elsevier
Science)

the box-counting dimension D0 and the information dimension D1 are equal. For
α1 > αa, however, the repeller is a smooth curve with D0 = 1. Geometrically, there
is thus a transition from fractal to nonfractal behavior as α1 is increased through
αa. Numerically obtained values of the information dimension of the repeller agree
with those predicted by the formulas (8.40)–(8.41) [746]. For α1 > αa the natural
measure is rather irregular in spite of the fact that the support of the measure is a
smooth curve.

8.3.1.3 The Issue of Typicality

The dimension formulas (8.21)–(8.25) were conjectured to apply for typical systems
[347]. The two-dimensional map (8.27) provides a good example through which
the notions of typicality and atypicality can be understood. In particular, consider
η = 0. In this case, the line y = 0 is invariant in that a trajectory starting from
this line remains on it forever. This invariant subspace, which is the x-axis, is the
basin boundary in which the chaotic repeller resides. The natural measure is thus
distributed on the x-axis. Dividing the x unit intervals into 2n subintervals of width

2−n, the measure contained in each subinterval is given by μ(n)
i in (8.32). The infor-

mation dimension of the natural measure for large n is (see (1.22))

D1 =
∑2n

i=1 μi(n) ln1/μ (n)
i

ln2n . (8.42)

Utilizing (8.32) and the fact that for large n, the typical (most probable) values of
n1, n2 are

n1

n
=

α2

α1 + α2
,

n2

n
=

α1

α1 + α2
, (8.43)
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we obtain the same expression for D1 as in case (iii), (8.41). Thus for η = 0, the
information dimension is a constant for all α1 and α2 > 1. The dimension formulas
yield, however, different results for different ranges of α1. In particular, for λa < λb,
they provide larger values than the exact information dimension (8.41). The situation
η = 0 is thus atypical. However, as soon as we set η �= 0, no matter how small, the
dimension formulas are recovered and (8.41) becomes valid for α1 > αb only. This
is so because the value of η �= 0 can always be scaled to one by the change of
variable y → y/η .

8.3.2 A Chaotic Billiard Scatterer

We consider a three-dimensional billiard scattering system with dynamics similar to
those seen in the map example in the preceding discussion. As shown in Fig. 8.4a,
the system consists of an ellipsoid placed in an infinite tube in the z-direction with
cross section as shown in Fig. 8.4b. A free particle moving in the tube experiences
elastic bounces off the walls of the tube and off the surface of the ellipsoid as well.
Depending on the initial position and the initial velocity of the particle, it approaches
either z = +∞ or z = −∞. The boundaries between these two exit basins are lo-
cated near z = 0. Since the particle motion has three degrees of freedom, which
corresponds to a phase-space dimension of five (due to energy conservation), the
system represents a physical example in which high-dimensional chaotic scattering
can arise and the dimension formulas can be tested in the typical setting whereby
the ellipsoid is tilted slightly with respect to the z-axis. The symmetric system, in
which the major axis of the ellipsoid is the z-axis, represents an atypical situation

Fig. 8.4 (a) Billiard system consisting of an ellipsoid placed at z = 0 in an infinite tube in the
z-direction. (b) Cross sections of the tube and of the billiard at z = 0. The parameters are R = 25,
d = 10, and the radius of the ellipsoid at z = 0 is 5 [745, 746] (with kind permission from Elsevier
Science)
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whereby the dimension formulas could fail. This billiard system thus also represents
an example in which the mathematical notions of typicality versus atypicality can
be understood intuitively in physical terms.

To study the scattering dynamics, it is convenient to focus on bounces from the
ellipsoid. Setting particles at the unit speed and utilizing cylindrical coordinates
(z,φ) and (vz,vφ ), Sweet and Ott derived a four-dimensional map relating these co-
ordinates at a bounce to the previous one from the ellipsoid [745,746]. If the particle
goes over the top (bottom) of the ellipsoid with vz > 0 (vz < 0), it continues toward
z = +∞ (z = −∞). Due to the inward wall curvature of the tube, there is a sensi-
tive dependence on initial conditions in the particle dynamics, signifying chaotic
scattering. This can be seen explicitly by considering the symmetric case in which
there is an invariant manifold Λ defined by z = 0 and vz = 0 in the four-dimensional
phase space, since particles started in Λ never leave it. The dynamics in the invari-
ant manifold Λ is that of a two-dimensional billiard shown in Fig. 8.4b, which is
hyperbolic and ergodic in the sense that almost every orbit comes arbitrarily close
to any point in the phase space. The invariant set Λ is nonattracting in the four-
dimensional phase space because almost all initial conditions in the vicinity of Λ
lead to trajectories that go to z = ±∞. In particular, if a cloud of initial conditions
is sprinkled in a region containing Λ , the fraction of trajectories that remain in this
region up to n bounces decreases exponentially with time as ∼ exp(−κn), where
κ is the escape rate. For typical trajectories with respect to the natural measure on
Λ , there are two pairs of Lyapunov exponents, ±λφ and ±λz, which characterize
motions on the chaotic set and toward or away from it, respectively. The scattering
dynamics is thus chaotic with two positive Lyapunov exponents, and numerically
the inequality λφ > λz has been found [745, 746]. In this special configuration, the
full manifold Λ is a chaotic saddle.

For the case in which the ellipsoid is slightly tilted, the saddle survives, but its
geometry becomes more complicated. The Lyapunov exponents for typical trajecto-
ries with respect to the natural measure on the saddle are, however, approximately
the same as those in the untilted case.

The stable manifold of the saddle is physically important because it separates
the space of initial conditions into two regions that yield trajectories approaching
z =±∞, respectively. These regions, the exit basins, can be determined numerically,
as shown in Fig. 8.5a, b for the untilted and slightly tilted cases, respectively, which
represent two-dimensional cross sections in the four-dimensional map. A straight-
forward application of the dimension formulas (8.21) and (8.24) with U = S = 2 in
this typical case yields

Ds,1 = Du,1 = 4− κ
λφ

, D1 = 4−2
κ
λφ

, for λφ > κ , (8.44)

where J = 1. For λφ < κ so that J = 0, we have

Ds,1 = Du,1 = 3− κ −λφ

λz
, D1 = 2−2

κ−λφ

λz
. (8.45)
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Fig. 8.5 Examples of regions of initial conditions (exit basins) that yield trajectories to z → +∞
(white) and z →−∞ (black) in the two-dimensional cross section (x, z) defined by y = 5.1, vx = 0,
and vz = 0.1 for (a) the untilted case and (b) a small tilt of 2π/100 [745,746] (with kind permission
from Elsevier Science)

Note that in this second case the information dimension of the manifold (saddle) is
less than 3 (2). When plotting these dimensions as a function of κ/λφ one would
see a break at 3 (2), similar to that seen in Fig. 8.2 at αa.

For the untilted (atypical) case, a detailed analysis [746] gives that the dimension
is

Ds,1 = Du,1 = 4− λz + κ
λφ

, D1 = 4−2
λz + κ

λφ
, for λφ > λz + κ . (8.46)

The meanings and relationship between the above two dimension formulas can
be understood as follows. Suppose one uses some algorithm to compute the dimen-
sion with refining accuracy ε . Then for an infinitesimal amount of tilt the true value
of the dimension as given by (8.44) can be obtained only when ε is small, e.g., for
ε < ε∗. For resolution size greater than ε∗, the small amount of tilt has no effect, so
that the value of the dimension extracted for ε > ε∗ would agree with that given by
(8.46). Around ε∗, the scaling with ε is expected to show a crossover from the form
given by (8.46) to that given by (8.44). In a physical experiment with a finite resolu-
tion of distance scales, if the amount of tilt is small, the measured dimension may be
that given by (8.46). The true dimension can be recovered only in the ε → 0 limit.

Note that since the stable manifold of the saddle divides the four-dimensional
phase space, its box-counting dimension is at least three. Numerically, it was found
[746] that in the tilted and untilted configurations the stable manifold’s box-counting
dimensions are close to the information dimensions predicted by formulas (8.44)
and (8.46), respectively, insofar as these dimensions are larger than 3, as shown in
Fig. 8.6. Otherwise, the box-counting dimensions were found to remain at 3. The
two dimensions deviate here drastically, similar to the situation in the α > αa range
of Fig. 8.2.
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Fig. 8.6 Numerical verification of the stable manifold’s dimension for the tilted case (variable
κ/λφ ) and the untilted case (variable (κ +λz)/λφ ). The linear curve corresponds to formulas (8.44)
and (8.46) for Ds,1 > 3. Dots (stars) represent numerically determined values of the box-counting
dimension Ds,0 for the tilted (untilted) case

8.4 Numerical Method for Computing High-Dimensional
Chaotic Saddles: Stagger-and-Step

8.4.1 Basic Idea

In applications involving transient chaos, it is often useful and desirable to detect and
compute chaotic saddles. Several methods have been described in Chap. 1, but they
are applicable to systems with one unstable direction only. To numerically construct
chaotic saddles in higher dimensions with more than one unstable direction, two
methods are presently available. One is the “PIM-simplex” method by Moresco
and Dawson [529] and another is the “stagger-and-step” method by Sweet et al.
[744]. The PIM-simplex method is relatively sophisticated, and its applicability is
somewhat limited [529, 744]. The stagger-and-step method is, however, relatively
straightforward to implement and it is generally applicable to chaotic saddles that
are unstable in several dimensions. Here we focus on this method.

Consider an N-dimensional continuous map f, where N ≥ 2, and assume that a
chaotic saddle exists within a restraining region Γ that does not contain any attractor.
The transient lifetimes for initial conditions in Γ can be defined as follows. For
initial condition x, the escape time T (x) is the minimum n ≥ 0 for which the nth
iterate is in Γ but the (n + 1)th iterate of x is not in Γ . For points x on the stable
manifold of the chaotic saddle in Γ , the escape time is T (x) = ∞. If T (x) is finite but
large, x is close to the stable manifold. That is, all points with escape time at least n,
where n is large, belong to a small neighborhood of the stable set. This observation
is the main idea behind the stagger-and-step method.

A stagger is a perturbation r to a point x that results in a new point x + r such
that T (x + r) > T (x). The stagger method generates sequences {xn} of the form
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xn+1 = xn + rn, where rn is a stagger, such that T (xn+1) > T (xn). Such sequences
are called stagger trajectories. The purpose is to find a point or a small set of points
that are sufficiently close to the stable manifold. To do so, one can specify some rela-
tively large δ > 0. Starting from n = 0, for each n, random perturbations r of magni-
tude less than δ are repeatedly chosen using some specified probability distribution
until one with T (xn +r)> T (xn) is found. One can then set rn = r. The process stops
as soon as T (xn+1) > T ∗, where T ∗ is a predetermined (large) time. Sometimes δ
may be too small so that no stagger can be found. In this case, one should increase δ .

In order to guarantee that stagger trajectories can be found in an efficient way,
the probability distribution from which r is chosen is important. A uniform distri-
bution, for instance, is not a good choice because the fraction of perturbations that
are staggers goes to zero exponentially fast as the escape time increases. This is
a consequence of the general exponential decay of transiently chaotic systems. To
overcome this difficulty, Sweet et al. suggested using an “exponential stagger distri-
bution” for choosing r, which can be realized as follows. Write 10−a = δ and let s
be a uniformly distributed random variable between a and b, where 10−b is the ac-
curacy of double precision in digital computers (typically b = 15). The choice of r is
thus r = 10−su, where u is a random directional unit vector. In so doing, the fraction
of staggers decreases much more slowly than exponentially, and hence the proba-
bility of finding a stagger can be enhanced significantly as compared with the case
of uniform distribution, thereby reducing the computation time.

After a stagger trajectory is found, a point x0 can be picked up for which T (x0) >
T ∗. One can then generate a trajectory {xn} using the map f. The basic idea is to
apply the map only when xn has escape time T (xn) > T ∗. If T (xn) ≤ T ∗, then one
finds a nearby stagger point xn + rn with a higher escape time using δ = ε (say
10−10). The trajectory {xn} is of the form

xn+1 =

⎧⎨
⎩

f(xn) if T (xn) > T ∗ (a step),

f(xn + rn) if T (xn) ≤ T ∗ (rn is a stagger),
(8.47)

where |rn| ≤ ε and T (xn + rn) > T (xn). (Note that T [f(xn)] = T (xn)− 1.) Such
a trajectory is called a stagger-and-step trajectory. By construction, any stagger-
and-step trajectory {xn} satisfies |f(xn)− xn+1| < ε , so that {xn} is a numerical
trajectory with precision of order ε = 10−10, and it is close to the chaotic saddle
after a few iterates. From a stagger-and-step trajectory, dynamical invariants such as
the Lyapunov exponents of the saddle can be computed.

To give an example, Sweet et al. [744] considered the following four-dimensional
map:

xn+1 = A− x2
n + Byn + k(xn −un),

yn+1 = xn,

un+1 = C−u2
n + Dvn + k(un − xn),

vn+1 = un, (8.48)
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Fig. 8.7 Stagger-and-step method. (a) An example of the probability of finding a stagger versus
the escape time, (b, c) projections of a trajectory of 105 points of the chaotic saddle, for the four-
dimensional map (8.48) at the set of parameter values given in the text [744] (copyright 2001, the
American Physical Society)

where A, B, C, D, and k are parameters. For A = 3.0, B = 0.3, C = 5.0, D = 0.3,
and k = 0.4, there is transient chaos. The restraining region Γ was chosen to be
(−4,4)× (−4,4)× (−4,4)× (−4,4) and δ to be the length of the diagonal of Γ
(δ = 16). To find a stagger required about 50 choices of perturbed points r, the
probability of which is approximately 0.02, at least for a range of the escape time,
as shown in Fig. 8.7a. It can be seen that for escape time T0 between 5 and 29, this
probability is indeed approximately constant. The projections of a stagger-and-step
trajectory of 105 points on the chaotic saddle in the (x,y)-plane and in the (x,u)-
plane are shown in Fig. 8.7b and c, respectively, where ε = 10−10 and T ∗ = 30.
From this trajectory the Lyapunov exponents of the chaotic saddle were computed
to be λ +

2 ≈ 1.33, λ +
1 ≈ 0.77, λ−

1 ≈ 1.97, and λ−
2 ≈ 2.54.

The stagger-and-step method slows down with increasing dimensionality due to
the exponential growth of phase-space volume with dimension. A recent method
due to Bollt [87] replaces the random choice by a deterministic search for larger life-
times. To this end, one determines the lifetime function in the phase space. For any
point one can then find the direction along which the lifetime increases the fastest.
This gradient-search algorithm leads to solving an ordinary differential equation,
which essentially follows the unstable foliation toward the stable manifold of the
chaotic saddle. The method has been shown to be efficient for maps of dimension at
least eight.

8.4.2 Invariant Sets Constrained to Slow Manifolds

In high-dimensional systems one is often faced with the problem of the separa-
tion of time scales. In such multiscale systems the fast, high-frequency components
damp out rapidly due to dissipation, and the dynamics becomes restricted to a lower-
dimensional manifold embedded in the full phase space. This manifold is called the
slow manifold, the dynamics on which may turn out to be transiently chaotic. Mor-
gan, Bollt, and Schwartz [530] worked out a method to determine invariant sets in
slow manifolds.
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A paradigmatic form of multiscale systems is given by the differential equations

ẋ = F(x,y; μ),

μ ẏ = G(x,y; μ), (8.49)

where μ � 1 is a small parameter characterizing the separation in time scales, and
the vector y denotes the fast variables. In the limit of extreme separation, μ = 0,
(8.49) reduces to an algebraic constraint: G(x,y,0) = 0. Solving the constraint for y
yields an expression y = H0(x). The graph of H0 is the slow manifold in this limit,
assumed to be single-valued for simplicity. The dynamics on the slow manifold is
obtained from (8.49) as

ẋ = F[x,H0(x);0]. (8.50)

For nonzero but small values of μ , the slow manifold is expected to persist. It is
given by the graph of a function labeled as y = Hμ(x), which can be obtained as an
expansion in powers of μ starting with H0(x). The dynamics on this slow manifold
can also be obtained from a perturbation expansion starting with (8.50). For a suit-
ably defined map, the full dynamics can be written as (xn+1,yn+1) = f(xn,yn), and
the form of the slow manifold is yn = Hμ(xn).

In order to construct the chaotic saddle on the slow manifold, Morgan et al. [530]
applied the stagger-and-step method with the following modifications. The restrain-
ing region Γ is chosen as a neighborhood of the slow manifold. Since orbits can
enter this region, one looks for the first escape time from Γ . The step-and-stagger
iterations are chosen as

(xn+1,yn+1) =

⎧⎨
⎩

f[xn,Hμ(xn)] (a step),

f[xn + rn,Hμ(xn + rn)] (a stagger),
(8.51)

and the iterate yn+1 is projected back onto the slow manifold, so that the resulting
stagger-and-step trajectory lies near the slow manifold. In addition, since the slow
manifold is determined with finite precision (typically a power of μ), the parameter
δ that sets the modulus of the stagger perturbation cannot be chosen to be less than
this accuracy.

The method has been successfully applied to a structural mechanical system in
[530] with two slow variables ψ1,ψ2. Figure 8.8 shows the chaotic saddle projected
on the plane of the slow variables.

A more complete picture can be obtained by plotting the slow manifold along
with the stable and unstable foliations on it. In the spirit of the sprinkler method
(Sect. 1.2.2.3), an approximation of these manifolds can be obtained by searching
for trajectories that remain near the slow manifold (and do not approach any attrac-
tor) for sufficiently long times. The initial points of such trajectories approximate the
stable manifold. The unstable manifold can be obtained, e.g., by applying the same
procedure to the time-reversed dynamics. The algorithm is called the constrained
invariant-manifold method. Figure 8.9 shows a case in which for simplicity, there is
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Fig. 8.8 Result of the modified stagger-and-step algorithm (8.51) applied to the problem of a
pendulum coupled to a viscoelastic rod. The chaotic saddle is shown on a stroboscopic map in the
plane of the slow variables ψ1,ψ2. The time-scale parameter is μ = 0.05, and the slow manifold is
specified with an accuracy of μ2 [530] (copyright 2003, the American Physical Society)

Fig. 8.9 The slow manifold z1,n = Hμ (ψ1,n,ψ2,n) (blue) in the problem of a pendulum coupled
to a viscoelastic rod as it appears on a stroboscopic map at the parameters of Fig. 8.8. The stable
(unstable) manifold is plotted in green (red) [530] (copyright 2003, the American Physical Society)

a single fast variable z1. The slow manifold is a smooth surface in the phase space of
one fast and two slow variables. The invariant manifolds are given both in the slow
manifold and in the plane of the slow variables.
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8.5 High-Dimensional Chaotic Scattering

As a physical manifestation of high-dimensional transient chaos, we discuss a class
of three-degree-of-freedom, time-independent open Hamiltonian systems that ex-
hibit chaotic scattering. Issues to be addressed are the dimension requirement for
chaotic scattering to be physically observed and the topology of high-dimensional
chaotic scattering. While there have been attempts to address chaotic scattering in
higher-dimensional systems [124,366,444,745–748,829], the topic is relatively un-
explored and much research is needed.

8.5.1 Dimension Requirement for Chaotic Saddles
to be Observables

Due to the high dimensionality of the phase space, an issue of concern is whether
chaotic scattering can be observed even if there is a chaotic saddle of low dimen-
sion in the scattering region. In particular, suppose in a scattering experiment, one
measures a scattering function for particles launched from a one-dimensional line
segment. If the dimension of the chaotic saddle is not sufficiently high, its stable
manifold may not have generic intersections with the line. Such intersections, and
consequently a set of singularities in the scattering function, can be observed only
when the dimension of the chaotic saddle is sufficiently high.

To address this observability issue, we recall a basic mathematical statement con-
cerning the dimension of the intersection between two sets. Let S1 and S2 be two
subsets of an N-dimensional manifold with dimensions D(S1) and D(S2), respec-
tively. The dimension of the set of intersection between S1 and S2 is denoted by
D(S1

⋂
S2). The question is whether the sets S1 and S2 intersect generically in the

sense that the intersection cannot be removed by small perturbations. The natural
approach is to look at the dimension DI :

DI = D(S1)+ D(S2)−N.

If DI ≥ 0, the intersection is generic, and the dimension of the set of intersection is
[232]

D(S1

⋂
S2) = DI = D(S1)+ D(S2)−N. (8.52)

If DI is negative, then S1 and S2 do not have a generic intersection. For example,
consider the intersection between two one-dimensional curves in a two-dimensional
plane: D(S1) = D(S2) = 1 and N = 2. We obtain DI = 0, which means that the
intersecting set consists of points, and the intersections are generic because small
perturbations cannot remove them. If, however, N = 3, then DI < 0, which means
that two one-dimensional curves do not intersect generically in a three-dimensional
space. If they intersect at a point, small perturbations in the positions of the lines
typically remove the intersection. These two cases, together with an additional one
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a
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Fig. 8.10 Illustration of generic and nongeneric intersections of simple geometric sets: (a) D1 =
D2 = 1 and N = 2 (generic intersection), (b) D1 = D2 = 1 and N = 3 (nongeneric intersection),
and (c) D1 = 1, D2 = 2, and N = 3 (generic intersection)

(D(S1) = 1, D(S2) = 2, and N = 3), are illustrated in Fig. 8.10. It can also be said
that the codimension D−N is additive for generically intersecting sets. Formula
(8.52) is valid for both the box-counting and the information dimensions.

To apply these arguments to chaotic scattering, we consider a continuous-time
autonomous scattering system of phase-space dimension N +2. Due to energy con-
servation, the corresponding continuous-time flow is (N + 1)-dimensional, so the
scattering map is N-dimensional. The box-counting dimensions of the stable and the
unstable manifolds in the map are denoted by Ds,0 and Du,0. The symplectic nature
of the dynamics stipulates Du,0 = Ds,0. The box-counting dimension of the chaotic
saddle is

D0 = Ds,0 + Du,0 −N = 2Ds,0 −N, (8.53)

since dynamically, the chaotic saddle is the intersecting set between the stable and
the unstable foliations. Let 0 < ds ≤ 1 be the box-counting dimension of the singu-
larities probed by a scattering function. This is the set of intersecting points between
the stable manifold of dimension Ds,0 and a one-dimensional line segment from
which particles are initiated in the N-dimensional map. Equation (8.52) implies

ds = Ds,0 + 1−N, (8.54)
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or Ds,0 = ds + N − 1. Utilizing (8.53) gives the following formula relating the
dimension of the chaotic saddle to ds:

ds =
D0 −N + 2

2
. (8.55)

Scattering singularities can be seen if ds > 0, which is fulfilled only if

D0 > N −2. (8.56)

For a two-degree-of-freedom autonomous Hamiltonian system, one obtains a two-
dimensional map, N = 2, so the condition is always satisfied. In contrast, in a
three-degree-of-freedom system, N = 4, and D0 must be larger than 2 for chaotic
scattering to be observable. In this case, if the box-counting dimension of the saddle
in the map is smaller than 2, the set of singularities will not be observable, and as a
result, any measured scattering function will typically exhibit only smooth features.
This implies that by examining the scattering functions only, no chaotic behavior
can be revealed, even when there is a chaotic saddle in the phase space and the
scattering dynamics is chaotic.

8.5.2 Normally Hyperbolic Invariant Manifolds
in High-Dimensional Chaotic Scattering

For high-dimensional scattering systems, hyperbolic periodic orbits and their stable
and unstable manifolds often do not have the necessary dimensionality to partition
the phase space on the energy shell. In search of higher-dimensional structures with
features of periodic orbits of low-dimensional scattering, Wiggins and coworkers
[808, 811, 829] suggest the geometrical objects of normally hyperbolic invariant
manifolds [828]. On such a manifold, the expansion and contraction rates for the
invariant motion are dominated by those transverse to the manifold. Like a sad-
dle point, a normally hyperbolic invariant manifold has its own stable and unstable
manifolds. In Hamiltonian systems, normally hyperbolic invariant manifolds can
exist about equilibrium points of saddle-center- · · · -center type. In an n-degree-of-
freedom time-continuous system, such an equilibrium point possesses a pair of real
eigenvalues of opposite signs (say ±λ ) and 2n−2 purely imaginary eigenvalues oc-
curring in complex conjugate pairs (±iω j, j = 2, . . . ,n). In the (2n−1)-dimensional
energy shell, the normally hyperbolic invariant manifold is a (2n− 3)-dimensional
sphere around the saddle-center- · · · -center type of fixed point.

Normally hyperbolic invariant manifolds are typical in systems with internal
degrees of freedom where some basic “transformation” can take place during the
scattering process. Chemical reactions provide a natural example in this context.
The basic transformation is then that reactants form products. The normally hyper-
bolic invariant manifold is the energy surface of an unstable invariant subsystem
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with one degree of freedom less than that of the full system. In the terminology
of chemistry, this subsystem is an activated complex, or an unstable supermolecule
[808]. This unstable subsystem is thus a proper generalization of the basic hyper-
bolic periodic orbits in two-degree-of-freedom systems (e.g., the orbits bouncing
between two disks in the three-disk scattering system; see Fig. 6.4). The activated
complex or the normally hyperbolic invariant manifold is located between reactants
and products. More precisely, around the normally hyperbolic invariant manifold
the phase space has the “bottleneck” property that facilitates the construction of a
dividing surface. This surface has the property of “no-recrossing” and therefore sep-
arates the phase-space region of reactants and products. The dividing surface is of
dimension 2n−2 and contains as an invariant set the intermediate complex.

The stable and the unstable manifolds of the intermediate complex are (2n−2)-
dimensional, which is one dimension less than that of the energy surface. These
manifolds can therefore act as separatrices, i.e., they enclose volumes of the energy
shell. Their key dynamical significance is that the only way for trajectories to lead
to reactions is for them to be in certain volumes enclosed by the stable and the
unstable manifolds. Note that any Poincaré section of the continuous dynamics in
the (2n− 1)-dimensional energy shell defines an (N = 2n− 2)-dimensional map.
The normally hyperbolic invariant manifold is an (N−2)-dimensional object in this
map. Its stable and unstable manifolds have dimension N −1.

The stable and the unstable manifolds of the intermediate complex can cross each
other. The homoclinic and heteroclinic intersections, as well as such intersections
of subsets of the normally hyperbolic invariant manifolds, can then form a high-
dimensional chaotic saddle.

If the chaotic saddle is formed by the intersections of the separatrix manifolds
of the intermediate complex, the scattering functions are similar to those in low-
dimensional systems. The locally (N − 1)-dimensional manifolds have, with finite
probability, intersections with any line of initial conditions: applying (8.52) with
D(S1) = N − 1, D(S2) = 1 to get D(S1

⋂
S2) = 0, we see that the typical intersec-

tions are points. Furthermore, in such cases the chaotic saddle’s full stable (unstable)
manifold has box-counting dimension > N − 1. As a consequence, the saddle, that
is the intersection of these manifolds, is of dimension D0 > N −2. Equation (8.55)
gives then ds > 0, implying that the set of singularities is always observable if the
saddle is formed by normally hyperbolic invariant manifolds. The intersections of
the stable manifold with a line yield the endpoints of intervals of continuity in
the scattering function. They can thus be used to define scattering cross sections
(Appendix D).

Besides chemical reactions, normally hyperbolic invariant manifolds have been
applied to problems of celestial mechanics [806, 807] and to escape problems from
multidimensional potential wells [809]. It is likely that the concept can have a broad
range of potential applications in other contexts. A recent review of both the classi-
cal and quantum aspects of such transition-state theories can be found in [810].
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8.5.3 Metamorphosis in High-Dimensional Chaotic Scattering

A prototype system for investigating high-dimensional chaotic scattering is the
configuration in which scattering centers are located at the vertices of a regular tetra-
hedron [124, 444, 747, 748]. When the centers are hard-wall spheres [58, 124, 415,
535, 817], the problem corresponds to a light beam bouncing back and forth among
reflecting balls that can be found, for instance, in holiday decorations. This type of
chaotic scattering can be readily observed, and experiments have been carried out,
generating fractal images [747,748]. While the hard-wall system is illuminating for
demonstrating the fractal structure associated with chaotic scattering in high dimen-
sions, the topology of the scattering is fixed, analogous to the planar three-hard-disk
scattering system. Basic issues such as bifurcations cannot be addressed using the
hard-wall systems.

Because of this difficulty, scattering systems consisting of physically realistic soft
potentials were considered [421, 444], which are relevant to the scattering of parti-
cles by molecules in the three-dimensional physical space. It was found [444] that
(1) the chaotic-scattering topology can undergo a sudden change (metamorphosis)
as a system parameter (e.g., energy) changes continuously, (2) at the metamorphosis,
the behavior of the box-counting dimension of the chaotic saddle changes charac-
teristically, and (3) chaotic scattering can occur in energy regimes for which it is not
possible in the corresponding planar scattering system. An exemplar system con-
sists of four potential hills located at the four vertices of a regular tetrahedron of
unit side length, as shown in Fig. 8.11. To mimic physical situations such as particle
scattering by nonrotating diatomic molecules, the Morse potential was chosen for
each hill [444]. The total potential of the scattering system is

V (x) =
4

∑
j=1

VM(x,x j), (8.57)

Fig. 8.11 A schematic illustration of the scattering system: four Morse potential hills located at
the vertices of a regular tetrahedron [444] (copyright 2000, the American Physical Society)
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Fig. 8.12 Surfaces of equal energy for potential (8.57), for energies above and below the critical
energy Ec. (a) Isoenergy surface for E = 4 (E > Ec); (b) Isoenergy surface for E = 1 (E < Ec)
[444] (copyright 2000, the American Physical Society)

where VM(x,x j) is given by (6.19), x j ( j = 1, . . . ,4) denote the vertices of the tetra-
hedron, and r j =

√
(x− x j)2 +(y− y j)2 +(z− z j)2 is the distance to vertex j. The

particle energy E is a convenient bifurcation parameter.
The region of the three-dimensional physical space classically inaccessible to

particles of energy E is given by V (x) > E . In order to have chaotic scattering,
the particle energy needs to be below the maximum energy Em of the potential
hills. For energy values larger than a critical energy Ec (and lower than Em), the
inaccessible part of the physical space consists of four disconnected regions, each
surrounding one vertex of the tetrahedron, as shown in Fig. 8.12a. The regions
are approximately spherical in shape, but are not perfectly spherical because their
shapes are distorted by the other hills. As the energy decreases toward Ec, the inac-
cessible regions grow in radius, and for E = Ec, the previously disconnected regions
begin to connect with each other. For E ≤ Ec, the inaccessible regions are thus fully
connected, as shown in Fig. 8.12b. As E is decreased from Ec, a whole family of
orbits in the invariant set is destroyed. These are orbits that bounce back and forth
between each pair of forbidden regions an arbitrary number of times, including the
six unstable periodic orbits that connect each pair of hills existing for E > Ec. As
these orbits are destroyed, however, another family of orbits is created at E = Ec;
these orbits bounce off the newly created forbidden regions connecting each pair
of hills. This topological change in the dynamics of the system at Ec can cause a
metamorphosis in the scattering dynamics [444].

The basic physics associated with the topological metamorphosis can be under-
stood in terms of the structural change in the “holes” on each side plane of the
tetrahedron potential configuration as the particle energy is decreased. Each side
plane of the tetrahedron potential (see Fig. 8.13) is similar to the two-dimensional
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Fig. 8.13 Energy contours of the Morse potential in the (x,y)-plane at z = 0. The contours belong
to the energy values E = 4 (red), E = 3 (blue), E = 2 (green), and E = 1 (black). Other parameters
are α = 6 and re = 0.68. The value of the critical energy is Ec = 2.25 [444] (copyright 2000, the
American Physical Society)

system treated in Sect. 6.3.4. The critical energy Ec is close to the value of E0 deter-
mined in the two-dimensional case. It was found numerically [444] that Ec ≈ 2.25.
For E < Ec, the forbidden regions are connected, and an incoming particle can pen-
etrate the interior of the tetrahedron only through the holes on the side planes. The
holes in the central regions of the side planes are always present, because of the at-
tractive parts of each Morse hill. This allows particles to enter the scattering region
inside the tetrahedron at low energies. For E slightly below Ec, the holes are rela-
tively large, and hence the range of initial conditions with which particles can enter
the holes are appreciable. The holes, however, become smaller as E is decreased
further from Ec. For E slightly below Ec, the size of the hole can be estimated as

s ≈ s0 −C(Ec −E), (8.58)

where s0 = (
√

3− 1)/2 is the size for E = Ec and C is a positive constant. Thus,
to observe chaotic scattering at low energies in an experimental setting, initial con-
ditions have to be prepared carefully so that particles can enter the holes, since the
scattering will not be chaotic if the particles do not enter the holes. In fact, no un-
stable periodic orbit can be formed outside the holes for E < Ec.

To explore the scattering function, we note that, since the physical space is three-
dimensional, there are two angles characterizing the momentum of a scattering
particle: the azimuthal angle φ and the polar angle θ . Figure 8.14a, b show, for E = 4
and E = 1 respectively, φ after the scattering versus b, where particles are launched
upward with vx0 = vy0 = 0, vz0 =

√
2E from z0 = −10.0, and the deflection angle

φ(x0) is recorded when the particles exit the scattering region. A Cantor set of sin-
gularities in the scattering dynamics implies the presence of a chaotic saddle whose
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Fig. 8.14 Deflection function: azimuthal angle φ as a function of the impact parameter for (a)
E = 4, and (b) E = 1 [444] (copyright 2000, the American Physical Society)

box-counting dimension in the underlying four-dimensional map is larger than two.
The dynamical and physical natures of the scattering observed at these energies are,
however, quite different, because of the topological change in the structure of the
invariant set. A computation of the dimension ds of the set of singularities in the
scattering function leads, by (8.55) to the box-counting dimension D0 of the chaotic
saddle. It was found [444] that for E = 4, the dimension is D0 = 3.33± 0.02, and
for E = 1, D0 = 2.83±0.02. Figure 8.15 shows the dimension D0 of the saddle ver-
sus E for 1 ≤ E ≤ 4. For E > Ec, the dimension remains roughly constant. This is
due to the structural stability of the chaotic saddle in this energy regime, where the
potential hills remain isolated and hence there is no exponential change in the num-
ber of unstable periodic orbits. For E < Ec, D0 appears to decrease as E is lowered
from Ec.

The reason that the box-counting dimension decreases as the energy is decreased
from Ec can be understood heuristically as follows. Consider initial conditions on
a line that contains a Cantor set of singularities. The Cantor set corresponds to par-
ticle trajectories that can enter the holes in the side planes of the tetrahedron and
stay in the scattering region forever. Those that cannot enter the holes or enter the
holes but escape in finite time correspond to gaps, also called intervals of continuity,
between points in the Cantor set. Decreasing the size of the holes is equivalent to
enlarging these gaps. For a binary self-similar Cantor set of primary gap size Δ , its
box-counting dimension is
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Fig. 8.15 Box-counting dimension D0 of the chaotic saddle versus the energy E. The dimension
remains practically constant for E > Ec and decreases as E is decreased through Ec ≈ 2.25 [444]
(copyright 2000, the American Physical Society)

ds =
ln2

ln2− ln(1−Δ)
.

Assuming that 1−Δ is proportional to s, the size of the holes, we obtain, using
(8.58),

ds ∼ [A−B ln(s0 −C(Ec −E))]−1, (8.59)

for E slightly below Ec, where A and B are positive constants. This scaling rela-
tion indicates that the dimension of the chaotic saddle decreases as the energy E is
decreased from the critical value Ec, due to the shrinkage of the holes in the side
planes of the potential configuration.

Notice that for energies about E < E0 ≈ Ec, chaotic scattering does not occur
if the system has only two degrees of freedom, due to the fact that the inaccessi-
ble regions are connected. Thus, for two-degree-of-freedom Hamiltonian systems
(corresponding to two-dimensional area-preserving maps), no particle coming from
outside the scattering region can enter the bounded, triangular-like region formed
at the center of the potential hills. The dynamics in the bounded triangular-like re-
gion is typically made up of chaotic seas mixed with KAM tori. Although there is
bounded chaos in this case, it is not accessible to particles from outside, and hence
there is no chaotic scattering (Fig. 6.20a). In the case of three-degree-of-freedom
systems (four-dimensional maps), in the same energy range, the corresponding clas-
sically allowed bounded region in the center of the potential hills is accessible to
scattering particles coming from outside. Chaotic scattering is thus possible, which
for this class of scattering systems is uniquely a high-dimensional phenomenon.
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8.5.4 Topological Change Accompanying the Metamorphosis

The topology of chaotic scattering can be studied by examining the structure of exit
basins. For the tetrahedron configuration, there are four side planes through which
particles can exit. Suppose a large number of particles is launched toward the scat-
tering region from a two-dimensional area in an (x-y)-plane at some large negative
z position. After the scattering, the particles in the initial plane can be color-coded,
depending on through which side plane they exit the system. Figure 8.16a shows,
for E = 4, the basin structure in the area defined by (−0.4 ≤ x0,y0 ≤ 0.4) in the
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Fig. 8.16 Exit basins of scattering trajectories for (a) E = 4, and (b) E = 1. In (a), the basin
boundaries common to the four colors consist of completely isolated points only. In (b), the part of
the basin boundary common to the four colors is connected and it is Wada. See text for the meaning
of the color coding [444] (copyright 2000, the American Physical Society)
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plane located at z0 = −10.0, where 500×500 particles uniformly distributed in the
initial area are launched toward the scattering region along the +z-direction [444].
If a particle exits through the plane defined by vertices (1,2,4) shown in Fig. 8.11
(or (1,3,4), or (1,2,3), or (2,3,4)), its location in the initial two-dimensional area
is marked by red (or yellow, or blue, or green). As can be seen from Fig. 8.16a,
the boundary contains isolated points where the four colors meet, but for almost all
points on the boundary only two colors meet. The basin boundary is the set of in-
tersecting points between the stable manifold of the chaotic saddle with the initial
plane. For this energy, then, the common boundary points with different colors are
isolated. As the energy is lowered, the previously classically forbidden regions be-
come connected, and extended parts of the basin boundary points are now common
to the four colors, as shown in Fig. 8.16b for E = 1. This is the Wada property of
basins (Sect. 5.5). The topology of the basin undergoes a sudden change (metamor-
phosis) from being disconnected to being Wada at the critical energy value Ec.

For E > Ec, when the forbidden regions are disconnected (Fig. 8.12a), a scat-
tering trajectory will typically enter the scattering region, bounce off the forbidden
regions a number of times, and leave. As the particle leaves the scattering region, it
crosses one of the side planes shown in Fig. 8.11. For typical trajectories, one can
continuously change the initial conditions so as to cause a continuous change in the
trajectory (this is not true if the initial condition lies on the stable manifold of the
saddle, but such points have zero measure in the phase space). That is, there are paths
in the space of initial conditions for which the escape parameters (such as escape
angles, lifetime, etc.) change continuously, and these paths contain all initial condi-
tions except for a set of measure zero. Now consider a subspace M in the full space
of initial conditions, which can be chosen to have dimension two or higher. Consider
one such path, denoted by C, that connects two points a and b in M belonging to two
different escape basins, denoted by S1 and S2. Distinct side planes defining the dif-
ferent escapes are separated by segments that connect two adjacent triangular faces
(Fig. 8.11). For E > Ec, parts of these segments lie outside the forbidden regions.
Therefore, the path C in M can be chosen such that the corresponding trajectories go
from one escape to a neighboring one continuously, without going through any other
escape; in other words, all points in C belong to either S1 or S2. This corresponds
to a basin boundary that separates only two escapes, and therefore to a non-Wada
basin.

The picture described above completely changes when the energy goes below Ec.
The forbidden regions are now connected into one single region, and the boundaries
between the side planes that define the different escapes lie entirely within it. One
can no longer go smoothly from one escape to another by a continuous change of
initial conditions, due to the presence of forbidden regions separating the escape
routes.

The change in the topological structure of the escape basin described above
is possible only in three-dimensional physical space: it does not happen for two-
degree-of-freedom systems, in which the basin boundaries in systems with three or
more escapes typically have the Wada property (Sect. 5.5). The reason is that the for-
bidden regions separating distinct escapes can never be bypassed from one escape
channel to another.
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8.6 Superpersistent Transient Chaos: Basics

The type of transient chaos discussed so far, such as that induced by a boundary cri-
sis, is characterized by the familiar algebraic scaling law (3.2) of its escape rate κ as
a function of parameter variations in p. There exists, however, another distinct class
of transient chaos: superpersistent transient chaos, characterized by the following
scaling law:

κ ∼ exp [−C(p− pc)−χ ], p > pc, (8.60)

where C > 0 and χ > 0 are constants. As p approaches the critical value pc from
above, the transients become superpersistent in the sense that the exponent in the
average transient lifetime

τ ≈ 1
κ
∼ exp [C(p− pc)−χ ], p > pc,

diverges in an exponential-algebraic manner. This type of transient chaos is quite
common in high-dimensional systems. Its origin can, however, be understood in
simple models. For illustrative purposes we therefore shall again use here low-
dimensional maps.

Superpersistent transient chaos was conceived to occur through the dynamical
mechanism of unstable–unstable pair bifurcations. The same mechanism causes
a riddling bifurcation that creates a riddled basin, so superpersistent chaotic tran-
sients can be expected at the onset of riddling [711]. It was shown that noise can
also induce superpersistent chaotic transients under certain conditions. For a recent
review, see [440].

8.6.1 Unstable–Unstable Pair Bifurcation

Unstable–unstable pair bifurcation represents a generic mechanism for superpersis-
tent chaotic transients [294,295,455]. One can imagine two unstable periodic orbits
of the same period, one on the chaotic attractor and another on the basin boundary,
as shown in Fig. 8.17a. As a bifurcation parameter p reaches a critical value pc, the

Chaotic transient

a b

Chaotic attractor

Basin boundary

Unstable−unstable
pair

Fig. 8.17 Schematic illustration of an unstable–unstable pair bifurcation. (a) Invariant sets for
p < pc: a chaotic attractor, the basin boundary, and the pair of unstable periodic orbits. (b) For
p > pc, an escaping channel is created by an unstable–unstable pair bifurcation that converts the
originally attracting motion into a chaotic transient
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two orbits coalesce and disappear simultaneously, leaving behind a “channel” in the
phase space through which trajectories on the chaotic attractor can escape, as shown
in Fig. 8.17b. The chaotic attractor is thus converted into a nonattracting chaotic set,
but the channel created by this mechanism is typically supernarrow [294, 295, 455].
Suppose that on average, it takes time T (p) for a trajectory to travel through the
channel in the phase space. We expect the tunneling time T (p) to be infinite for
p = pc, but for p > pc, the time becomes finite and decreases as p is increased from
pc. For p above but close to pc, the tunneling time can be long.

From Fig. 8.17a, we see that if the phase space is two-dimensional, the periodic
orbit on the attractor is a saddle and that on the basin boundary is a repeller. This can
arise only if the map is noninvertible. Thus, the unstable–unstable pair bifurcation
can occur in noninvertible maps of at least dimension two, or in invertible maps of
at least dimension three (or in flows of dimension at least four).

Let λ1 > 0 be the largest average Lyapunov exponent of the chaotic attractor.
After an unstable–unstable pair bifurcation the opened channel is locally transverse
to the attractor. A trajectory that spends time T (p) in the channel opened up at an
unstable periodic orbit on the attractor, the mediating orbit involved in the unstable–
unstable pair bifurcation, must come to within distance of about exp [−λ1T (p)] from
this orbit. The probability for this to occur is proportional to exp[−λ1T (p)]. The av-
erage time for the trajectory to remain on the earlier attractor, or the average transient
lifetime, can be related to the tunneling time as

τ(p) ∼ exp [λ1T (p)],

or equivalently,
κ(p) ∼ exp [−λ1T (p)]. (8.61)

The tunneling time thus determines the scaling of the escape rate with the parameter
variation.

Since the escaping channel is extremely narrow, the dynamics in the channel
is approximately one-dimensional along the direction from the mediating periodic
orbit to the orbit on the basin boundary, as schematically shown in Fig. 8.17. The
basic dynamics can be captured through the following simple one-dimensional map:

xn+1 = xk−1
n + xn + p, (8.62)

where x denotes the dynamical variable in the channel, k ≥ 3 is an odd integer to
generate two real fixed points, and p is a bifurcation parameter with critical point
pc = 0. For p < pc = 0, the map has a stable fixed point xs = −|p|1/(k−1) and an
unstable fixed point xu = |p|1/(k−1), which collide at pc and disappear for p > pc,
mimicking an unstable–unstable pair bifurcation. Since for 0 < p � 1, T (p) is large
(see Sect. 2.4), the map (8.62) can be approximated by the following differential
equation:

dx
dt

= xk−1 + p. (8.63)
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Suppose the root of the channel is x = 0 and its length is l. The tunneling time is
then

T (p) ≈
∫ l

0

dx
xk−1 + p

∼ p−
k−2
k−1 . (8.64)

Substituting (8.64) into (8.61) gives

κ(p) ∼ exp
(
−Cp−

k−2
k−1

)
, (8.65)

where C > 0 is a constant. We see that as p approaches the critical value pc = 0
from above, the average transient lifetime diverges in an exponential-algebraic way,
giving rise to superpersistent transients. The exponent χ in the scaling law (8.60)
thus assumes the value (k−2)/(k−1) < 1.

To give a concrete example, we use the class of noninvertible two-dimensional
maps considered by Grebogi, Ott, and Yorke [294, 295]:

θn+1 = 2θn mod 2π , zn+1 = azn + z2
n + β cosθn, (8.66)

where a and β are parameters. Because of the z2
n term in the z-equation, for large zn

we have |zn+1| > |zn|. There is thus an attractor at z = +∞. Near z = 0, depending
on the choice of the parameters, there can be either a chaotic attractor or none. For
instance, for 0 < β � 1, there is a chaotic attractor near z = 0 for a < ac = 1−2

√
β ,

and the attractor becomes a chaotic repeller for a > ac [294]. The chaotic attractor,
its basin of attraction, and part of the basin of the infinity attractor are shown in
Fig. 8.18.

Fig. 8.18 Phase space of the two-dimensional map model (8.66): a chaotic attractor near z = 0
(black), its basin of attraction (blank), and the basin of the attraction of the attractor at z = +∞
(black) for a = 0.5 and β = 0.04, before the unstable–unstable pair bifurcation (ac = 0.6). The
fixed points z± are marked [294] (copyright 1983, the American Physical Society)
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Following the argument leading to the scaling law (8.65), one can see that
the map (8.66) allows for superpersistent transients for a > ac. In particu-
lar, for a < ac there are two fixed points: (0,z+) and (0,z−), where z± =(

1−a±√(1−a)2−4β
)

/2, on the basin boundary and on the chaotic attrac-

tor, respectively. They coalesce at a = ac. For a > ac, a channel is created through
which trajectories on the original attractor can escape to the attractor at infinity. At
the location of the channel where θ = 0, the z-mapping becomes

zn+1 = azn + z2
n + β .

Letting δ = z− z∗, where z∗ = (1−a)/2, we obtain

δn+1 = δ 2
n + δn + b, (8.67)

with b =
√

β (a−ac)− [(a−ac)/2]2. For a≈ ac, we have b≈√β (a−ac). Equation
(8.67) is identical to (8.62) with k = 3. The integral (8.64) then yields T ≈ πb−1/2/2.
The Lyapunov exponent is determined by the θ -dynamics: λ1 = ln2. Using (8.61),
we obtain the scaling of the escape rate for a > ac as

κ(a) ∼ e−T ln2 ≈ e(−π ln2/2)b−1/2 ≈ e−C(a−ac)−1/2
, (8.68)

where C = π(ln2)β−1/4/2 is a positive constant.

8.6.2 Riddling Bifurcation and Superpersistent
Chaotic Transients

In Sect. 5.7, the phenomenon of riddling, or riddled basins in dynamical systems
with symmetry, is described. The presence of symmetry often leads to an invariant
subspace. In the absence of symmetry-breaking or random perturbations, a trajec-
tory originated in the invariant subspace remains there forever. Situations can also
be expected whereby a chaotic attractor lies in the invariant subspace. As discussed,
one such example is the system of coupled, identical chaotic oscillators. The syn-
chronization manifold is naturally a low-dimensional invariant subspace in the full
phase space that can be high-dimensional if the number of oscillators is large. If an-
other attractor exists outside the invariant subspace, riddling can occur in the sense
that the basin of the chaotic attractor in the invariant subspace is riddled with holes of
all sizes that belong to the basin of the other attractor. Imagine the situation in which
all unstable periodic orbits embedded in the chaotic attractor are stable with respect
to perturbations in the direction transverse to the invariant subspace. In this case, al-
most all initial conditions in the vicinity of the invariant subspace lead to trajectories
that end up asymptotically on the chaotic attractor. Riddling bifurcation refers to
the situation in which when a system parameter changes, an unstable periodic orbit
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(usually of low period) embedded in the chaotic attractor becomes transversely
unstable. An immediate physical consequence of the riddling bifurcation is that
when there is a small amount of symmetry-breaking, an extraordinarily low fraction
of the trajectories in the invariant subspace diverge, as shown in Fig. 5.21.

Due to nonlinearity, a “tongue” opens at xp, allowing trajectories near the invari-
ant subspace to escape for p > pc, as shown in Fig. 5.20b. Each preimage of xp also
develops a tongue simultaneously. Since preimages of xp are dense in the invariant
subspace, an infinite number of tongues open up simultaneously at p = pc, indicat-
ing that initial conditions arbitrarily close to the invariant subspace can approach
another attractor. Trajectories in the chaotic attractor remain there even for p > pc,
since the subspace in which the chaotic attractor lies is invariant and each tongue has
zero width there. But trajectories near the chaotic attractor have a finite probability
of being in the open and dense set of tongues. Trajectories having initial conditions
in the tongues approach asymptotically the other attractor. The basin of attraction
of the chaotic attractor is thus a Cantor set of leaves of positive Lebesgue measure
(a fat fractal), signifying riddling. Physically, since the onset of riddling induces the
creation of these supernarrow tongues near the invariant subspace, it leads to su-
perpersistent chaotic transient behavior in the vicinity of the chaotic attractor. For
points chosen at random at a small distance d from the attractor, the probability of
not being attracted depends on the distance d as

P(d) ∼ exp [−Kd−γ ], (8.69)

where γ > 0 is a positive exponent, and K > 0 is a constant. In the presence of
symmetry-breaking as characterized by the parameter ε , a similar argument leads to
the escape rate

κ(ε) ∼ exp [−Kε−γ ], (8.70)

for initial conditions in the original invariant subspace.
To make these ideas more concrete, it is convenient to use the following extension

of the noninvertible two-dimensional map (5.24) [455]:

xn+1 = rxn(1− xn), (8.71)

yn+1 = ε + pe−b(xn−xp)2
yn + y3

n,

where for ε = 0, y = 0 defines the invariant subspace, r, b > 0 are parameters, and
p is the bifurcation parameter. The broken symmetry is with respect to y → −y.
The dynamics in the invariant subspace is described by the logistic map xn+1 =
rxn(1− xn), for which chaotic attractors can arise.

In the symmetric case (ε = 0), the two eigenvalues of the unstable fixed point xp

(xp = 1−1/r, y = 0) are (2− r, p). Thus, xp is stable in the y direction for p < 1 and
unstable for p > 1. This fixed point is a saddle for r > 3 and p < 1. For p < 1, there
are two other unstable fixed points located at r± ≡ (xp,±

√
1− p). These two fixed

points have eigenvalues (2− r,3− 2p), both pure repellers for r > 3 and p < 1, as
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shown in Fig. 5.20a. The two repellers collide with each other and with the saddle
at p = pc = 1 in a saddle-repeller bifurcation. They do not exist for p > 1. Thus, for
p > 1, two tongues, symmetrically located with respect to the invariant subspace,
open up at x = xp, allowing trajectories near y = 0 to escape to |y| = ∞, since the
cubic term in the y−dynamics guarantees that if |yn| > 1, then |yn+1| > |yn| > 1.
Once a trajectory reaches |y| = 1, its y value approaches infinity rapidly. So |y| = ∞
can be regarded as the second attractor of (8.71) besides the chaotic attractor in the
y = 0 plane (invariant subspace), which exists for r > 3.6.

When there is symmetry-breaking (ε > 0), trajectories can leave the original
chaotic attractor at y = 0 (y = 0 is no longer an invariant subspace), and hence
the attractor is converted into a chaotic saddle. Simulation of (8.71) showed that
only an exceedingly small fraction of the points at y = 0 diverges toward the |y|= ∞
attractor. The transient time can easily be longer than, say, 105 iterations even for
ε = 0.014. To obtain the scaling of the escape rate with the symmetry-breaking pa-
rameter, the first step is to estimate, for ε ≥ 0, the size δ of the tongue at y = 0 for a
trajectory of transient time T (ε). Since the y = 0 attractor is chaotic, its maximum
Lyapunov exponent λ1 is positive. Let Lu = eλ1 > 1, which is the stretching factor
for an infinitesimal vector in the x direction. That the transient time, the time needed
to reach a distance of order unity, is T implies δLT

u ≈ 1, which gives

δ ≈ Lu
−T . (8.72)

The next step is to examine the probability that a trajectory falls into the tongue of
size δ at y = 0 for ε ≥ 0, which is proportional to δ . The average time for a trajectory
to fall into the tongue is

τ ∼ δ−1 ≈ Lu
T = exp(λ1T ). (8.73)

The final step is to evaluate T , the time it takes for the trajectory to exit once
it has fallen into the tongue. Near xp, we have exp [−b(xn − xp)2] ≈ 1. For initial
conditions chosen at y0 = 0, the trajectory satisfies yn ≥ ε for n ≥ 1. For small ε it
takes many iterations for a trajectory to reach y = 1. Thus, the y-dynamics within
the tongue can be approximated by the differential equation

dy
dt

= ε + y3.

This gives

T =
∫ 1

0

dy
ε + y3 = ε−2/3

∫ ε−1/3

0

dz
1 + z3 . (8.74)

For ε → 0 the integral converges to C = π/33/2. Substitution of this expression into
(8.73) and using κ ≈ 1/τ yields the following scaling of the escape rate:

κ ∼ exp [−Cλ1ε−2/3], (8.75)
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Fig. 8.19 Mushroom-shaped phase-space regions (tongues) through which trajectories escape the
y = 0 chaotic attractor (r = 3.8) at p = 1.18 > pc = 1 and ε = 0.005 in (8.71) [455] (copyright
1996, the American Physical Society)

which is the scaling law (8.70) with K ≡ Cλ1. In (8.75), the exponent 2/3 is a
consequence of the y3 term in the y-dynamics. If this term is replaced by, say, a y2

term, the exponent will be 1/2. Thus, the exponent 2/3 in (8.75) is specific to the
two-dimensional map model (8.71). However, the scaling relation (8.70) is general,
with the exponent γ being positive.

The escaping behavior of trajectories, once they have fallen into the tongue, can
be seen by monitoring their traces in the phase space before they reach y = 1. Since
the tongues are supernarrow at p = pc, it is numerically convenient to examine the
case of p > pc, but for p close to pc. Figure 8.19 shows the last 50 points of 600
trajectories before they reach y = 1. There is a “mushroom-shaped” (tongue) crowd
of trajectory points in the phase space located above the fixed point xp ≈ 0.7368. The
solid curves in Fig. 8.19 indicate the envelope of the tongue, which can be derived
analytically by considering the escaping dynamics in the vicinity of xp. Specifically,
after a trajectory falls into the escaping channel located at xp, its dynamics can be
approximated by

(xn+1 − xp) ≈ (2− r)(xn − xp), yn+1 ≈ ε + pyn + y3
n.

By introducing zn ≡ |xn −xp|, the x-dynamics becomes zn+1 = |2− r|zn = (r−2)zn.
For p close to pc and ε small, it takes an extremely large number of iterations for a
typical trajectory to escape due to the long chaotic transient. We thus have

dz/dt = (r−3)z, dy/dt = ε +(p−1)y + y3. (8.76)
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This implies that for ε ≈ 0, we have dz/dy = (r−3)z/[(p−1)y+y3], which leads to

z(y) =

(
y√

(p−1)+ y2

)(r−3)/(p−1)

, for p > pc = 1. (8.77)

The solid curves in Fig. 8.19 are [xp ± z(y)], respectively. They represent the enve-
lope of the tongue reasonably well.

8.7 Superpersistent Transient Chaos: Effect of Noise
and Applications

8.7.1 Noise-Induced Superpersistent Chaotic Transients

In the general setting, in which an unstable–unstable pair bifurcation can occur,
noise can induce superpersistent transients preceding the bifurcation. Consider, in
the noiseless case, a chaotic attractor in its basin of attraction (p < pc). When noise
is present, there can be a nonzero probability that two periodic orbits, one belonging
to the attractor and the other to the basin boundary, can get close and coalesce tem-
porally, giving rise to a nonzero probability that a trajectory on the chaotic attractor
crosses the basin boundary and moves toward the basin of another attractor. Tran-
sient chaos thus arises even for p < pc. Due to weak noise, the channels through
which trajectory escapes the chaotic attractor open and close intermittently in time.
Escaping through the channel requires the trajectory to stay in a small vicinity of
the opening of the channel for a finite amount of time, which occurs with extremely
small probability. The creation of the channel by noise and the noisy dynamics in
the channel are thus the key ingredients to the noise-induced transient behavior.

For a two-dimensional phase space, the situation described above is schemati-
cally illustrated in Fig. 8.17a, b for the cases in which noise is respectively absent
and present. If the attractor is close to the basin boundary, noise of strength σ can in-
duce an unstable–unstable pair bifurcation, creating a narrow channel through which
trajectories can escape, as shown in Fig. 8.17b even for p < pc. As (8.61) suggests,
the escape rate can be expressed in terms of the tunneling time T (p,σ) as

κ(p,σ) ∼ exp [−λ1T (p,σ)], (8.78)

where λ1 > 0 is the largest Lyapunov exponent of the original chaotic attractor.
Again, since the escaping channel is extremely narrow, for T (p,σ) large, the dy-
namics is approximately one-dimensional in the channel along which the periodic
orbit on the attractor is stable but the orbit on the basin boundary is unstable for
p < pc (Fig. 8.17a). This feature can thus be captured through the stochastic version
of the map (8.62):

xn+1 = xk−1
n + xn + p + σξn, (8.79)
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Fig. 8.20 Dynamics of the map (8.79), for k = 3 (a) in the subcritical cases (p < 0), and (b) in
the supercritical case (p > 0). Upper graph: deterministic map (σ = 0), lower graph: quasipoten-
tial Φ(x)

where σ � 1 is the noise amplitude and ξn is a Gaussian random variable of zero
mean and unit variance. For T  1, (8.79) can be approximated by the Langevin
equation

dx
dt

= xk−1 + p + σξ (t)≡−1
2

dΦ
dx

+ p + σξ (t), (8.80)

where the function

Φ(x) = −2(xk/k + px) (8.81)

is the associated quasipotential of the one-dimensional problem (see Sect. 4.2).
For p < 0, the underlying deterministic system for (8.80) has a stable fixed point
xs = −|p|1/(k−1) and an unstable fixed point xu = |p|1/(k−1). For p > 0, there are
no fixed points, as shown in Fig. 8.20. It is convenient to define the opening xr

of the channel at the stable fixed point xr = xs when it exists, i.e., for p < 0, and
set xr = 0 otherwise. A properly formulated first-passage-time problem for this
one-dimensional stochastic process can yield the scaling of T (p,σ) [198, 199] as
follows.
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Let P(x, t) be the probability density function of the stochastic process described
by (8.80) that satisfies the Fokker–Planck equation:

∂P(x,t)
∂ t

= − ∂
∂x

[(xk−1 + p)P(x,t)]+
σ2

2
∂ 2P
∂x2 . (8.82)

Let l be the effective length of the channel in the sense that a trajectory with x > l is
considered to have escaped the channel. The tunneling time T (p,σ) required for a
trajectory to travel through the channel is equivalent to the mean first passage time
from the opening xr of the channel to l. For an escaping trajectory, once it falls
into the channel through xr, it will eventually exit the channel at x = l without even
going back to the original chaotic attractor. This is so because the probability for a
trajectory to fall into the channel and then to escape is already exponentially small,
(8.78), and hence the probability for any “second-order” process to occur, whereby
a trajectory falls into the channel, moves back to the original attractor, and falls
back in the channel again, is negligible. For trajectories in the channel there is thus
a reflecting boundary condition at x = xr,

[
(xk−1 + p)P(x,t)− σ2

2
∂P
∂x

]∣∣∣∣
x=xr

= 0, (8.83)

and an absorbing boundary condition at x = l,

P(l,t) = 0. (8.84)

Assuming that trajectories initially are near the opening of the channel (but in the
channel), we have the initial condition

P(x,xr) = δ (x− x+
r ). (8.85)

Under these boundary and initial conditions, the solution to the Fokker–Planck
equation yields the following mean first-passage-time [256, 640] for the stochastic
process (8.80):

T (p,σ) =
2

σ2

∫ l

xr

dyexp

[
Φ(y)
σ2

]∫ y

xr

exp

[−Φ(y′)
σ2

]
dy′. (8.86)

The double integral in (8.86) can be carried out [198,199] for the three distinct cases
critical (p = 0), supercritical (p > 0), and subcritical (p < 0).

In the weak-noise regime (σ � σc ∼ |p|k/(2(k−1))), the results can be summa-
rized as

T (p,σ) ∼

⎧⎪⎪⎨
⎪⎪⎩

p−(k−2)/(k−1), p > 0,

σ−(2−4/k), p = 0,

|p|−(k−2)/(k−1) exp(|p|k/(k−1)/σ2), p < 0.

(8.87)
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These laws imply the following scaling laws for the escape rate of the chaotic
transients in various regimes (substituting the expressions of T (p,σ) in (8.78)):

κ(p,σ) ∼

⎧⎪⎪⎨
⎪⎪⎩

exp [−Cp−(k−2)/(k−1)], p > 0,

exp [−Cσ−(2−4/k)], p = 0,

exp
(
−C|p|−(k−2)/(k−1) exp[|p|k/(k−1)/σ2]

)
, p < 0.

(8.88)

The general observation is that different behaviors arise depending on the bifur-
cation parameter p: independent of noise for the supercritical regime, normally
superpersistent for the critical case, and extraordinarily superpersistent for the sub-
critical regime in the sense of scaling in (8.88) (for p < 0). Numerical support for
these distinct scaling behaviors was obtained [198, 199].

8.7.2 Application: Advection of Inertial Particles in Open
Chaotic Flows

We will see in Chap. 10 that the inertia of the advective particles alters the advective
dynamics, and the underlying dynamical system becomes dissipative so that attrac-
tors can arise, and hence particles can be trapped permanently in some region in
the physical space. The possibility that toxin particles can be trapped in physical
space is particularly worrisome. It is thus interesting to study the structural stability
of such attractors. In particular, can chaotic attractors so formed be persistent under
small noise? It was found [197] that in general, the attractor is destroyed by weak
noise and replaced by a chaotic transient, which is typically superpersistent. For
weak noise, the extraordinarily long trapping time makes the transient particle mo-
tion practically equivalent to an attracting motion with similar physical or biological
effects.

Noise in the context of particle advection can be due, for example, to the diffusiv-
ity of the advected particles [143]. Diffusion can be generated by, e.g., microscopic
interactions (molecular diffusion). The dimensionless equation of motion of an in-
ertial particle will be detailed in Chap. 10. The noisy version of this equation in a
two-dimensional incompressible flow u(x,y,t) in the horizontal plane is

r̈(t) = A [u(r(t),t)− ṙ(t)]+
3
2

R
d
dt

u(r(t), t)+ σξξξ(t), (8.89)

where ξξξ (t) = (ξx(t),ξy(t)), and ξx(t) and ξy(t) are independent Gaussian random
variables of zero mean and unit variance, and σ is the noise amplitude. Parameters
A and R are the inertial parameter and the density ratio, respectively, as defined
in (10.29). The noise-free dynamics in a given time-periodic flow, the so-called
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von Kármán vortex street around a cylinder, will be described in Sect. 10.7. There
are three attractors [53]: two chaotic ones about the cylinder and a regular one at
x = ∞. We present here the main effect due to noise because of its close relation to
superpersistent chaotic transients.

Because of the explicit time dependence in the flow velocities, the attractors
and their basins move oscillatorily around the cylinder. The remarkable feature is
that in the physical space, there are time intervals during which the attractors come
close to the basin boundaries. Thus, under noise, we expect permanently trapped
motion on any one of the two chaotic attractors to become impossible. In particular,
particles can be trapped near the cylinder, switching intermittently on the two origi-
nally chaotic attractors, but this can last only for a finite amount of time: eventually
all trajectories on these attractors escape and approach the x = ∞ attractor. That is,
chaos becomes transient if one takes into account the effect of noise, or equivalently,
of diffusivity.

To understand the nature of this noise-induced transient chaos, one can distribute
a large number of particles in the original basins of the chaotic attractors and ex-
amine the channel(s) through which they escape to the x = ∞ attractor under noise.
Figure 8.21a–c show, for three dimensionless instants of time (1, 1/4, and 1/2 mod
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Fig. 8.21 (a)–(c) At three different instants of time, 1/4 time units apart, locations of the tem-
porally trapped and escaping inertial particles in the von Kármán vortex street in the presence of
noise [197] (copyright 2000, the American Physical Society)
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(1), respectively), locations of an ensemble of particles in the physical space. While
there are particles still trapped in the original attractors, many others are already
away from the cylinder. Since this is a two-dimensional projection of the full par-
ticle dynamics, some fractal-like features overlap. The escaping channels through
which particles escape form a set of thin openings surrounding the cylinder and
extending to one of the von Kármán vortices in the flow. After wandering near the
vortex, particles go to the x = ∞ attractor. In the physical space the locations of these
openings vary in time, but the feature that they are narrow is common.

For a fixed noise amplitude, the lifetimes of the particles near the cylinder obey
an extremely slow decaying distribution. A least-squares fit gives [197] the escape
rate as a function of the noise amplitude σ as

κ ≈ 1
τ
≈ exp(−3.3σ−0.55). (8.90)

Note that for σ = 0, there is an attracting motion, so that κ vanishes. The way that
κ goes to zero follows the superpersistent transient scaling law as σ is decreased.

Theoretically, the observed noise-induced superpersistent chaotic transient be-
havior can be explained using the approach in Sect. 8.7.1. The result implies that it
may be possible to observe superpersistent chaotic transients in physical space. The
flow system used for experimental study of advective chaotic scattering by Som-
merer and coworkers (Fig. 8.19) is a possible candidate.
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