
Chapter 5
Fractal Basin Boundaries

Dissipative dynamical systems often possess multiple coexisting attractors. The set
of initial conditions leading to trajectories landing on an attractor is the basin of
attraction of this attractor. Each attractor thus has its own basin, which is invariant
under the dynamics, since images of every point in the basin still belong to the same
basin. The basins of attraction are separated by boundaries. We shall demonstrate
that it is common for nonlinear systems to have fractal basin boundaries, the dy-
namical reason for which is nothing but transient chaos on the boundaries. In fact,
fractal basin boundaries contain one or several nonattracting chaotic sets.

We will describe the basic dynamical properties of basin boundaries and intro-
duce the main types of fractal basin boundaries. In general, a basin boundary can
be characterized by its box-counting dimension and the predictability of the final
state; the latter is quantified by the uncertainty exponent. The issue of how frac-
tal basin boundaries can arise as a system parameter changes will be discussed.
Topics such as Wada basin boundaries (common fractal basin boundaries among at
least three basins of attraction) and sporadically fractal basin boundaries (boundaries
consisting of smooth curves or surfaces and nondifferentiable components) will be
addressed. Attention will also be paid to riddled basins in symmetrical dynami-
cal systems, an extreme type of basin structure that practically defies predictability
of the final state. The consequences of symmetry-breaking perturbations will be
discussed.

A primary goal of science is to make predictions based on a set of physical laws.
A question of natural concern, due to the inevitable error in the specification of the
initial condition, is whether the final state of a trajectory can be predicted from an
initial condition chosen in the vicinity of a basin boundary. The various situations
to be discussed in this chapter illustrate that the prediction of the final state can be
extremely difficult and sometimes practically impossible even for relatively simple
deterministic systems.
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148 5 Fractal Basin Boundaries

5.1 Basin Boundaries: Basics

To gain intuition, we consider the following simple physical system in which a
particle of unit mass moves under conservative force determined by a one-
dimensional potential function V (x). In the two-dimensional phase space (x,v ≡
dx/dt), the equations of motion are

dx
dt

= v,
dv
dt

= −γv− dV
dx

, (5.1)

where we assume that there is a frictional force proportional to the velocity of the
particle and γ > 0 is a dissipation parameter. To create multiple coexisting attractors,
consider the class of symmetric double-well potentials, as schematically illustrated
in Fig. 5.1a. The two potential wells are located at x± = ±a, and there is a potential
barrier at xb = 0. For a particle in the vicinity of a well, if the initial velocity is small
such that the initial energy of the particle is not large enough for it to overcome the
potential barrier, it will approach asymptotically the bottom of the well, due to the
friction. Each well is thus an attractor and there are two attractors in the phase space,
located at (x,v) = (±a,0). To understand the structure of the basins of attraction and
the basin boundary, we notice that if a still particle sits precisely on the top of the

Fig. 5.1 (a) Double-well
potential V (x), (b)
Hyperbolic point O = (0,0)
and a linear segment of its
stable manifold belonging to
the boundary between the
basins of attraction of the two
attractors located at
(x,v) = (±a,0). (c)
Schematic illustration of the
basin boundary and the two
basins of attraction
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barrier, it will remain there forever, although an arbitrarily small perturbation, either
in its position or velocity, or a combination of the two, can move the particle to
one of the wells. Thus the point O ≡ (0,0) is an unstable fixed point on the basin
boundary.

Now consider a particle initially located in the right well but near O. If it is
given a small initial velocity in the −x direction, it may or may not overcome the
potential barrier. There then exists a velocity for which the particle stops precisely
at O. Likewise, for a particle initially in the left well but near O, there exists a
small initial velocity in the +x direction that lands the particle precisely at O. In the
two-dimensional phase space, there then exists a set of initial conditions lying on
a one-dimensional curve that is approximately linear1 near O, which approaches
O asymptotically, as shown schematically in Fig. 5.1b. In the terms of dynamical
systems, the one-dimensional curve is the stable manifold of the saddle point O.
Since points on the curve do not approach any of the two attractors, it is the basin
boundary. The reasoning thus suggests that in situations in which multiple attractors
coexist in invertible systems, the basin boundary is the stable manifold of some
unstable invariant set on the boundary.

While the basin boundary is approximately linear near the unstable fixed point O,
it curves away from O, due to nonlinearity. For the simple example in Fig. 5.1, the
boundary crosses the x-axis an infinite number of times. This can be seen by noticing
that away from an attractor, say from the one on the right well in the +x direction, the
force becomes attractive. There then exists a set of x̄ values, where x̄ > a, for which
the amount of force is just right to place an initially still particle right at the top of
the potential barrier. The points (x̄,0) are thus on the basin boundary. This leads to
basins consisting of strips near the x-axis for |x| large, as shown schematically in
Fig. 5.1c. A basin of attraction typically possesses an infinite phase-space volume.2

The simple mechanical example in Fig. 5.1 illustrates that when the invariant set
on the basin boundary is simple, e.g., an unstable periodic orbit, the boundary is
smooth. One can imagine the situation that there is a nonattracting chaotic set on
the basin boundary. Since the stable manifold of the chaotic set is a fractal set, the
boundary becomes fractal.

5.2 Types of Fractal Basin Boundaries

In typical dynamical systems, i.e., systems whose behaviors are not due to any
special properties such as symmetry, there are at least three known types of frac-
tal basin boundaries, [294] described in the subsequent subsections.

1 Near O, we have V ≈−s2x2/2. The solution to (5.1) is x(t) = c+eλ+t +c−eλ−t with λ± =−γ/2±
(s2 + γ2/4)1/2

. Thus, for c+ = 0, we have v(t) = λ−x(t) ∼ eλ−t and x(t) → 0, v(t) → 0 as t → ∞,
along the line v = λ−x
2 Choose a phase-space region R of nonzero volume that encloses an attractor. That the system
is dissipative means that the inverse dynamics is volume-expanding. Since R is completely in the
basin of attraction, all its preimages are in the basin as well. In the limit t →−∞, the volume of
the preimage becomes infinite.
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Fig. 5.2 Basins of attraction for the forced damped pendulum (5.2) on the stroboscopic surface of
section (θ , θ̇) defined by t = 2nπ (n = 0,1, . . .). (a) For γ = 0.1, f0 = 1.2, there is a fixed-point
attractor at θ = −2.2055 and θ̇ = 0.3729. Black regions denote initial conditions that go to this
attractor. There is another attractor in the blank region. (b) For f0 = 2.0, the attractor in the black
basin of attraction is located at θ = −0.8058 and θ̇ = 0.9375 [296] (with kind permission from
Elsevier Science)

5.2.1 Filamentary Fractal Boundaries

Filamentary fractal boundaries are boundaries locally consisting of a Cantor set
of smooth curves or surfaces. This situation typically occurs in invertible dynam-
ical systems, where the asymptotic invariant sets on the boundary contain a chaotic
saddle [491,794]. Examples are shown in Fig. 5.2a, b for the following periodically
forced damped pendulum [296]:

d2θ
dt2 + γ

dθ
dt

+ sinθ = f0 cost, (5.2)

where γ is a frictional coefficient and f0 is the forcing amplitude. Such boundaries
may also contain nonfractal parts, e.g., in regions about the attractors. In certain
systems, these two types of boundary behaviors are intertwined on arbitrarily fine
scales. For any area that contains a fractal part of the boundary, there is a subarea
that contains only smooth parts of the boundary. Such fractal boundaries are called
intertwined boundaries.

5.2.2 Continuous Fractal Boundaries

Continuous fractal boundaries are boundaries that are a continuous but nowhere
differentiable curve or surface. An illustrative example is the following class of
noninvertible two-dimensional maps: [511, 564]:
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Fig. 5.3 For the
two-dimensional map (5.3),
the basin boundary between
the y = ±∞ attractors. The
parameters are a = 3 and
λ = 1.5. The boundary is
continuous but nowhere
differentiable, as represented
by a Weierstrass curve [511]
(with kind permission from
Elsevier Science)

xn+1 = axn mod (1), (5.3)

yn+1 = λ yn + cos(2πxn),

where a > λ > 1 and a is an integer. Since λ > 1, almost all initial conditions
lead to trajectories that go to y = ±∞, which can be regarded as two attractors.
The term cos(2πxn) in the y-equation entails that the basin boundary near y = 0
can be complicated. Indeed, an explicit expression for the boundary curve can be
obtained [511, 564]:

y = g(x) = −
∞

∑
j=1

λ− j cos(2πa j−1x). (5.4)

A direct substitution into (5.3) shows that y = g(x) is an invariant curve, i.e., yn =
g(xn) and yn+1 = g(xn+1). The curve thus contains an invariant set, a chaotic repeller.
The curve y = g(x) is continuous but nowhere differentiable because dy/dx diverges
for every value of x. The curve in (5.4) in fact has the box-counting dimension
D0 = 2− (lnλ )/(lna), and is called a Weierstrass curve. An example is shown
in Fig. 5.3.

5.2.3 Sporadically Fractal Boundaries

In a two-dimensional map, basin boundaries of the sporadically fractal type can
be described by a function g(x) that is smooth except for a set of x values of zero
measure (i.e., zero length), but nevertheless has a box-counting dimension larger
than 1. An illustrative example is [346, 651]

xn+1 = f (xn), (5.5)

yn+1 = λ yn + sin(2πxn),
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Fig. 5.4 Example of a
sporadically fractal basin
boundary from the
two-dimensional map (5.5)
[346] (Copyright 1999, the
American Physical Society)

where λ > 1 and f (x) is a noninvertible one-dimensional map. Part of the basin
boundary is shown in Fig. 5.4. It can be seen that the boundary consists mostly of
smooth parts but with sporadic “spikes” along the curve. Sporadically fractal basin
boundaries can arise in the context of chaotic phase synchronization in continuous-
time dynamical systems.

If a dynamical system possesses a special property such as simple symmetry, the
topology of the basins of attraction can be quite different from those seen in typical
systems.

5.2.4 Riddled Basins

If the symmetry leads to an invariant subspace in the phase space, where there is a
chaotic attractor, the basin of attraction of this chaotic attractor can be riddled with
holes that belong to the basin of another attractor, provided that such an attractor
exists outside the invariant subspace [11]. A riddled basin thus contains no open
sets (e.g., areas in two dimensions or volumes in three dimensions), in contrast to
fractal basins. Physically, the presence of a riddled basin means that for every initial
condition that goes to the chaotic attractor in the invariant subspace, there are initial
conditions arbitrarily nearby that lead to trajectories to the other coexisting attrac-
tor. Prediction of the asymptotic attractor for a given initial condition thus becomes
practically impossible. An example of a riddled basin has been found experimen-
tally, as shown in Fig. 1.18. A numerically obtained riddled basin can be seen in
Fig. 5.5, in which a particle of unit mass moves in a planar potential given by

V (x) = (1− x2)2 +(y2 −a2)2(x−d)+ b(y2−a2)4,
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Fig. 5.5 Riddled basins. (a) Solution of (5.6) with parameters f0 = 2.3, γ = 0.05, ω = 3.5, a = 0.8,
b = 0.008, and d =−0.19. Black dots represent points in the basin of the attractor at y = a, vy = 0.
(b) A magnification of part of (a) near the invariant subspace at y = −a and vy = 0. One can see
that arbitrarily close to the attractor at y = −a there are points belonging to the attractor at y = a
[448] (Copyright 1995, the American Physical Society)

where a, b, and d are parameters. The particle is also subject to friction and periodic
forcing. The equation of motion is

d2x
dt2 = −γ

dx
dt

−∇V (x)+ f0 sin(ωt)ex, (5.6)

where x ≡ (x,y), γ is the frictional coefficient, and ex is the unit vector in x. There
are two invariant subspaces determined by y = ±a and vy = 0 in which the dynam-
ics are governed by the forced double-well problem (Duffing’s equation). For proper
choices of the parameters a, b, and d, the basins of the chaotic attractors in the sym-
metric invariant subspaces are both riddled, as shown in Fig. 5.5. When all basins
are riddled by the rest, as is the case here, the basins are said to be intermingled
[448]. Note, however, that riddled basins rely on the symmetry of the system. A
small amount of symmetry-breaking leads to a catastrophic bifurcation whereby a
riddled basin immediately becomes fractal with open areas.

A recent review by Aguirre et al. [7] on fractal basin boundaries gives a
comprehensive treatment of the topic and presents a large number of applications.
Our focus here will be on the interplay between fractal basin boundaries and
transient chaos.

5.3 Fractal Basin Boundaries and Predictability

The box-counting dimension Db0 can be used to characterize the boundary. Let D
be the dimension of the phase space. Since the boundary divides the phase space, we
have D−1 ≤ Db0 ≤ D. A question of interest in a practical situation is, what are the
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physical meaning and consequences of having fractal basin boundaries of dimension
Db0? In particular, suppose we have two D-dimensional dynamical systems with

basin boundaries of dimensions D(1)
b0 and D(2)

b0 , where D− 1 < D(1)
b0 < D(2)

b0 < D.
What are the physical manifestations of the difference in the dimensions?

The answer to the question concerns the predictability of the asymptotic attractor,
or the final state, given an initial condition and a set of parameters, specifications of
which inevitably contain uncertainties. One is thus interested in how the predictabil-
ity can possibly be improved when the uncertainties are reduced. For concreteness,
consider the situation in which parameters of the system are fixed and the major
uncertainty in specifying the system state occurs in the initial condition. Let ε be
this uncertainty and let f (ε) be the probability of making an error in the prediction
of the final state, which depends on ε . As ε is reduced, one expects to be able to
predict the final state more accurately, so f (ε) will decrease. Of interest is thus the
scaling relation between f (ε) and ε . In general, we have [289, 511, 528]

f (ε) ∼ εα , (5.7)

where the scaling exponent α > 0 is called the uncertainty exponent [289, 511].
For fractal boundaries, α satisfies the inequality

α < 1, (5.8)

and α = D−Db0.
For a smooth basin boundary of dimension Db0 = D− 1 in the D-dimensional

phase space, the scaling law (5.7) can be observed straightforwardly, as follows.
Since an initial condition is specified with precision ε , we can associate each initial
condition with a D-dimensional ball of radius ε , centered at the initial condition.
If a ball is located completely in the basin of attraction of an attractor, the fates of
all initial conditions in the ball are certain: they all go to this attractor. Only when
the ball crosses a boundary is a wrong prediction of the final state possible, be-
cause initial conditions contained in the ball can now go to different attractors. The
probability of making an error in prediction is thus proportional to the phase-space
volume contained within ε of the boundary, which is S0ε ∼ ε , where S0 is the
(D−1)-dimensional volume of the basin boundary. We thus have

f (ε) ∼ ε,

which gives α = 1 = D−Db0.
For a fractal basin boundary Σ of dimension D− 1 ≤ Db0 ≤ D, let V (ε) be the

volume of all points within distance ε of Σ . To derive a relation between the un-
certainty exponent and the dimension Db0, one can estimate the upper and lower
bounds of V (ε) using different covering schemes [511]. Specifically, imagine that
we cover the phase space with a grid of boxes of edge length ε . Each boundary point
x of Σ is in a box that typically has 3D−1 neighboring boxes, points in which can be
within ε of x. That is, a point y within ε of x can be in one of the 3D boxes (including
the box that contains x itself), as shown schematically in Fig. 5.6. An upper bound
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Fig. 5.6 A grid of boxes
of size ε covering basin
boundary Σ . In two
dimensions, each box
containing a boundary point x
has 32 −1 = 8 neighboring
boxes, which contains points
that can be within ε of x. Any
point y within x can be in one
of the 32 boxes. In a
D-dimensional phase space,
the number of boxes
satisfying this requirement
is 3D

ε

ε

x
y

Σ

to V (ε) is a coverage using 3DN(ε) boxes, where N(ε) is the number of ε-boxes
needed to cover the boundary:

V (ε) ≤ 3DN(ε)εD. (5.9)

Now let us choose a smaller grid covering Σ such that any two points in a box
are separated by a distance at most ε , which can be achieved using boxes of edge
length ε/

√
D. The number of such boxes required to cover the entire boundary

is N(ε/
√

D). In this case, every box in the coverage is within distance ε to the
boundary Σ . Therefore, we have

V (ε) ≥ (ε/
√

D)DN(ε/
√

D). (5.10)

The number N(ε) of boxes needed to cover Σ scales (see (1.19)) with ε as N(ε) ∼
ε−Db0 . We thus have, from (5.9) and (5.10),

V (ε) ∼ εD−Db0 . (5.11)

Since f (ε) ∼V (ε), we have f (ε) ∼ εα with

α = D−Db0. (5.12)

The uncertainty exponent is the difference between the dimension of the phase space
and that of the boundary.

The physical interpretation of the scaling relation (5.7) is as follows. Suppose
one wishes to reduce the probability of error in the prediction of the final state by
improving the precision in the specification of the initial conditions. If the basin
boundary is smooth so that α = 1, a reduction in ε results in an equal amount
of reduction in f (ε). For fractal basin boundaries, where α < 1, a more precise
specification of the initial conditions results in a much smaller improvement in the
probability of predicting the final attractor correctly. In the extreme case in which
α ≈ 0, a vast reduction in the uncertainty of specifying the initial conditions will



156 5 Fractal Basin Boundaries

result in almost no improvement in one’s ability to determine the final state, which
can occur, for example, with riddled basins. In this sense, prediction is more difficult
for basin boundaries whose dimension values Db0 are larger [830].

The uncertainty exponent can be expressed in terms of the properties of the
nonattracting chaotic set embedded in the boundary. In invertible systems, fractal
basin boundaries typically contain both smooth parts and the stable manifold of
a chaotic saddle. Since the dimension of the union of two sets is that of the set
with higher dimension, we have Db0 = Ds0, where Ds0 denotes the box-counting
dimension of the stable manifold. For two-dimensional maps (D = 2), we have

Ds0 = 1+D(1)
0 , where D(1)

0 is the partial box-counting dimension along the unstable
direction. These considerations lead to

α = 1−D(1)
0 ≈ κ

λ1
. (5.13)

The approximate equality follows from (2.76) and the estimate D(1)
0 ≈ D(1)

1 , and
states that the uncertainty exponent can be approximated by the ratio of the es-
cape rate and the largest Lyapunov exponent of the chaotic saddle embedded in the
boundary. For the case of sporadic and riddled basins, see (5.22) and (5.29).

Numerically, the uncertainty exponent α can be calculated as follows. Given a
phase-space region containing some basin boundaries, we randomly choose a pair
of initial conditions x0 and x0 + εεε , where εεε is a small perturbation. We then de-
termine whether these two initial conditions go to the same attractor. If yes, x0

is called certain with respect to the perturbation ε . Otherwise, x0 is uncertain.
The probability f (ε) of making an error in the prediction of the final attractor can
be estimated by choosing a large number N0 of initial conditions in the phase-space
region according to some smooth probability distribution. For example, if Nu is the
number of uncertain initial conditions with respect to ε , we have f (ε)≈Nu/N0. The
uncertainty exponent is approximated by the slope of a linear fit in the plot of f (ε)
versus ε on a logarithmic scale.

To illustrate the computation of the uncertainty exponent, we take the two-
dimensional map [511]:

θn+1 = θn + 1.32sin(2θn)−0.9sin(4θn)− xn sin(θn), (5.14)

xn+1 = −J0 cos(θn),

where x can be regarded as the radial distance from the center of an annulus, θ is
an angle variable such that θ and θ +2π are equivalent, and J0 is a parameter. (It is
this model whose quasipotential is shown in Fig. 4.6 and which has been used for
the illustration of noise-induced chaos in Fig. 4.10.) The system is invariant under
the symmetry θ → 2π−θ . The determinant of the Jacobian matrix is J0 sin2 (θ ) < 1
(for J0 < 1). There are two attractors, located at x =−J0, θ = 0 (denoted by A−) and
x = J0, θ = π (denoted by A+), respectively. The boundaries separating the basins of
attraction of the two attractors are fractal, as shown in Fig. 5.7a for J0 = 0.3, where
black dots represent the basin of attraction of A+. To compute the fraction f (ε) of
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Fig. 5.7 (a) Fractal basin boundaries for the map (5.14) with J0 = 0.3. The two point attractors
are denoted by A− and A+, respectively. (b) Plot of f (ε) versus ε on a logarithmic scale. The
uncertainty exponent is estimated to be α ≈ 0.2 [511] (with kind permission from Elsevier Science)

uncertain initial conditions, we fix a line segment θ ∈ [0,π ] at x = 0, choose a pair
of initial conditions at ε-distance apart randomly from this line, and numerically
determine whether the two initial conditions approach different attractors. For every
ε-value the number N0 of the initial-condition pairs is increased until the number
of uncertain initial conditions reaches 1,000, so that f (ε) ≈ 1,000/N0. Figure 5.7b
shows the algebraic scaling between f (ε) and ε . A least-squares fit gives a slope of
about 0.2, which is the uncertainty exponent α . The dimension of the basin bound-
ary is thus Db0 = 2−α ≈ 1.8.

To appreciate the value of the uncertainty exponent, say we make efforts to
reduce the uncertainty in the specification of the initial condition by five orders
of magnitude. Then α ≈ 0.2 means that the probability of making an error in pre-
dicting the final attractor is reduced only by a factor of (10−5)0.2 = 0.1. Thus the
presence of the fractal basin boundaries makes predicting the final state difficult.

In experimental situations or in high-dimensional systems it is often difficult to
determine the initial conditions. One can then attempt to evaluate the uncertainty
exponent using random variations in the parameter space. A question is whether
the value of the uncertainty exponent so obtained is the same as that obtained us-
ing random perturbations in initial conditions. The answer is affirmative because a
parameter variation can be regarded as being equivalent to a perturbation in the ini-
tial conditions. Specifically, consider a D-dimensional map xn+1 = f(xn,p), where
p denotes a set of parameters. Assume that the system under the initial condition
x0 and parameter value p0 goes to one attractor. The standard approach is to take
a slightly different initial condition x′0 = x0 + Δx at fixed parameter p0. The image
point is then f(x′0,p0). Alternatively, one can take a slightly different set of parame-
ter values p′

0 = p0 +Δp, at the same initial condition, which leads to f(x0,p′
0). The

image points are identical if ∂ f/∂p|x0,p0 ·Δp = ∂ f/∂x|x0,p0 ·Δx. We expect then the
uncertainty exponents computed with respect to perturbations in the parameter and
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in the phase space to be identical. In fact, one of the first determinations of frac-
tal basin boundaries [528] was done using parameter perturbations. This parameter
and phase-space equivalence was also used to study basin structures in coupled-map
lattice systems [462–464].

5.4 Emergence of Fractal Basin Boundaries

5.4.1 Basin Boundary Metamorphoses and Accessible Orbits

The typical dynamical mechanism that creates fractal basin boundaries from a
smooth boundary is homoclinic or heteroclinic tangencies, as schematically illus-
trated in Fig. 5.8, where p is a bifurcation parameter. Throughout the bifurcation
there is an unstable periodic orbit (e.g., a saddle fixed point), denoted by S. The
stable manifold of S is the basin boundary between an attractor to its right (shown)
and another attractor (not shown). As p is changed through the bifurcation point pc,
both the basin boundary and the attractor evolve. For p < pc, the basin boundary is
smooth (Fig. 5.8a). Homoclinic tangencies between the stable and the unstable man-
ifolds of S occur at pc, as shown in Fig. 5.8b. For p > pc, the homoclinic crossings
between the stable and the unstable manifolds of S imply a Smale horseshoe-type
dynamics (Sect. 1.2.2.1) in the vicinity of S. As a result, a chaotic saddle is created
that contains the set of intersecting points between the stable and the unstable man-
ifolds. The stable foliation, and equivalently the basin boundary, becomes fractal.
The bifurcation from smooth to fractal basin boundaries is called a smooth-to-fractal
basin boundary metamorphosis [296].

A basin boundary metamorphosis is typically accompanied by a change in the un-
stable periodic orbits on the basin boundary that is accessible to the attractor [296].
A boundary point P is accessible from a region if there is a curve of finite length
that connects P to a point in the interior of the region such that no point on the curve
belongs to the boundary except point P. From Fig. 5.8, we see that the saddle fixed
point S is accessible to the attractor for p < pc. However, for p > pc, the fractal
foliations of the stable manifold entail that it is not possible to connect S to a point
on the attractor through a curve of finite length. The fixed point S is thus inacces-
sible to the attractor for p > pc. Instead, a new unstable periodic orbit, one of the
infinite number of those embedded in the chaotic saddle, becomes accessible to the
attractor.

The change in the accessible unstable periodic orbits can be demonstrated [296]
using the Hénon map with a positive Jacobian J. The map has one attractor at in-
finity. For fixed J, as the bifurcation parameter a is increased through the value
a1 = −(J + 1)2/4, a saddle-node bifurcation occurs, creating an attracting fixed
point and a saddle point, which separate from each other for a > a1. For a slightly
above a1, the map has two attractors: one at the attracting point and another at infin-
ity. The basin boundary is the stable manifold of the saddle, as shown in Fig. 5.9a for
a = 1.150. The saddle point is accessible to the period-1 attractor. As a is increased
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Fig. 5.8 Dynamical
mechanism that creates
fractal basin boundaries.
(a) Smooth basin boundary
for p < pc, (b) homoclinic
tangencies for p = pc, and
(c) homoclinic crossings for
p > pc. The stable foliations
and, equivalently, the basin
boundaries, become fractal
for p > pc
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further, a metamorphosis occurs, which converts the smooth boundary into a fractal.
An example of the fractal basin boundary is shown in Fig. 5.9b for a = 1.395. We
see that, because of the fractal foliation of the basin boundary, the original saddle
fixed point is no longer accessible to the attractor, which for this parameter value has
already evolved into a period-2 attractor through a period-doubling bifurcation. The
accessible orbit on the boundary becomes a hyperbolic periodic orbit of period 4.

We can imagine that as the parameter is varied further, this new accessible
unstable periodic orbit can also have homoclinic tangencies, after which it becomes
inaccessible. The subsequent homoclinic intersections mean that the basin bound-
ary must necessarily undergo another metamorphic change to a fractal one that is
distinct from the original boundary. This is a fractal-to-fractal basin boundary meta-
morphosis, after which a different unstable periodic orbit on the boundary becomes
accessible, as illustrated in Fig. 5.9c for a = 1.405. We see that the fractal bound-
ary appears to be quite distinct from that in Fig. 5.9b, and the originally accessible
period-4 orbit in Fig. 5.9b is replaced by a period-3 orbit in Fig. 5.9c.
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Fig. 5.9 Basin boundary metamorphosis. For the Hénon map (xn+1,yn+1 = (a− x2
n − Jyn ,xn) for

J = 0.3, (a) smooth basin boundary for a = 1.150, where the accessible orbit on the boundary is the
saddle fixed point created at a saddle-node bifurcation. (b) Fractal basin boundaries for a = 1.395
after a smooth-to-fractal basin boundary metamorphosis. The accessible orbit on the boundary is
now a period-4 orbit. (c) Qualitatively different fractal basin boundaries after a fractal-to-fractal
boundary metamorphosis with a new period-3 accessible orbit for a = 1.405. The numerals in
(b) and (c) denote the accessible periodic orbits in the sequences of iterations [296] (with kind
permission from Elsevier Science)

5.4.2 Dimension Changes at Basin Boundary Metamorphoses

As the basin boundary changes characteristically, e.g., from smooth to fractal or
from fractal to fractal, we expect the dimension of the boundary to change abruptly.
This can be seen qualitatively from Fig. 5.9a–c. Let asf and aff denote the parameter
values for the smooth-to-fractal and the fractal-to-fractal boundary metamorphoses
that create the fractal basin boundaries in Fig. 5.9b and c, respectively. For a < asf

(Fig. 5.9a), the boundary is a smooth curve in the two-dimensional phase space, so
its box-counting dimension is Db0 = 1. For asf < a < aff (Fig. 5.9b), the boundary
is locally a Cantor set of smooth curves, so Db0 is between one and two. For a >
aff (Fig. 5.9c), the dimension is also a fractional (but distinct) value between one
and two.
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Fig. 5.10 One-dimensional map xn+1 = f (xn) with a positive peak at x = −1/2, which is always
above 1 ( f (−1/2) > 1), and a negative peak at x = 1/2. As the bifurcation parameter p changes
from p1 to p2, the negative peak moves from f (1/2)>−1 at p = p1 (dashed lines) to f (1/2) <−1
at p = p2 (solid lines). A smooth-to-fractal basin boundary metamorphosis occurs at p = psf when
f (1/2) = −1

To understand the abrupt dimension change associated with a basin boundary
metamorphosis, an analyzable, piecewise linear, one-dimensional map f (x) was in-
troduced [578], as shown schematically in Fig. 5.10. The map has a positive peak at
x = −1/2, which remains above one, f (−1/2) > 1, and a negative peak at x = 1/2
whose height varies as a bifurcation parameter p changes. In particular, say for
p = p1 the negative peak is above −1 (dashed line). As p is increased from p1 to
p2, the negative peak moves to below −1 (solid line). The map has three unstable
fixed points: U at x = −1, U1 at x = 1, and U2 in the vicinity of x = 0. As p varies
in the interval [p1, p2], U and U1 are fixed, but the location of U2 can shift about
x = 0. In this parameter interval of interest, the map has two attractors: one at −∞
and another at x = +∞. Since all points in x < −1 map to the attractor at −∞ and
all points in x > +1 go to the attractor at +∞, the basin boundary must lie in the
interval [−1,1].

Let psf denote the parameter value for which f (1/2) =−1, where p1 < psf < p2.
For p < psf, since the negative peak at x = 1/2 stays within the square in Fig. 5.10,
the basin of the attractor at −∞ is x < −1. The basin of the attractor at +∞ consists
of the interval x > 1 and almost all points in (−1,1) except a Cantor set of measure
zero. Let I+ be the primary escape interval in (−1,1) such that f (x) > 1, which
maps to +∞. All preimages { f−n(I+)} (n = 1, . . . ) also map to +∞. What is left
in (−1,1) is a chaotic repeller. Despite the presence of the repeller, for p < psf the
basin boundary between the basins of the ±∞ attractors is a single point: x = −1.

As p increases through psf, the negative peak of f (x) pokes through f = −1.
Let I− be the primary escape interval in x∈ (−1,1) such that f (x) <−1, which maps
to the attractor at −∞. In addition, all preimages of I− also map to −∞. The basin of



162 5 Fractal Basin Boundaries

attraction of the −∞ attractor now consists of x < −1 and all preimages of I−. The
preimages of I+ and I− intertwine in a complicated way, and the chaotic repeller in
(−1,1) that maps neither to −∞ nor to +∞ becomes the new basin boundary, which
is a fractal. We see that there is a smooth-to-fractal basin boundary metamorphosis
at p = psf, after which the basin boundary, which was originally the point x = −1,
jumps far into the interior of the +∞ basin. For p slightly larger than psf, there are
subintervals of the −∞ basin in (−1,1), which for p < psf were entirely in the +∞
basin. At the metamorphosis, the dimension of the basin boundary changes abruptly
from zero to a fractional value. In particular, as p approaches psf from above, the
box-counting dimension of the basin boundary is the dimension Dsf

b0 of the invariant
Cantor set in the limit of p’s approaching psf from below. As p increases further,
the dimension decreases as the Cantor set becomes “thinner” in the interval [−1,1].
The behavior of the dimension of the basin boundary through the metamorphosis is
schematically illustrated in Fig. 5.11.

The dimension Db0 of the fractal basin boundary for p ≥ psf can be calculated as
follows. Let N(ε) be the number of intervals of size ε needed to cover the boundary.
As specified in Fig. 5.10, let A, B, and C denote the subintervals [−1,−1/2− ε2/2],
[−1/2 + ε2/2,1/2− ε1/2], and [1/2 + ε1/2,1], and let NA(ε), NB(ε), and NC(ε) be
the number of boxes of size ε needed to cover the subsets of boundary points in
these subintervals, respectively. We have

N(ε) = NA(ε)+ NB(ε)+ NC(ε). (5.15)

Self-similarities stipulate

NA(ε) = N

[
ε

1/4− ε2/4

]
, (5.16)

NC(ε) = N

[
ε

1/4− ε1/4

]
,

NB(ε) = N

[
ε

(1/4− ε2/4)+ (1/4− ε1/4)

]
.

Fig. 5.11 Schematic
dependence of the
box-counting dimension Db0
of the basin boundary through
a smooth-to-fractal boundary
metamorphosis
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Substituting these into (5.15) and making use of the scaling N(ε)∼ ε−Db0 , we obtain

(
1
4
− ε1

4

)Db0

+
(

1
2
− ε1 + ε2

4

)Db0

+
(

1
4
− ε2

4

)Db0

= 1. (5.17)

As p → psf from above, ε1 → 0, and hence the value of the box-counting dimension
Dsf

b0(ε2) for p = psf + 0 follows from (5.17) with ε1 = 0. For p slightly above psf,
so that ε1 > 0 is small, we can write Db0 = Dsf

b0 −η , where η is small. Substituting
this into (5.17) and expanding for small ε1 and η yields

Db0 = Dsf
b0 −K(ε2)ε1, (5.18)

where K(ε2) is a smooth function of ε2 [578]. Assuming smooth dependencies
of ε1 and ε2 on the system parameter p for p > psf, we see from (5.18) that
Db0 varies smoothly with p. For instance, suppose ε1 has a power-law depen-
dence on p: ε1(p) ∼ (p − psf)γ , where γ > 0. Then this dependence is reflected
in Dsf

b0 −Db0 ∼ (p− psf)γ , for p > psf.

5.4.3 A Two-Dimensional Model

The structure of fractal basin boundaries and basin boundary metamorphoses in
two dimensions can be understood by constructing invertible-map models based
on the horseshoe dynamics [578], such as the one shown schematically in Fig. 5.12.
Consider the rectangle ABFE, outside which there are two attractors, denoted by
L and R. All initial conditions to the left of the vertical line AB lead to trajecto-
ries approaching the attractor L, and all initial conditions to the right of EF go to
the attractor R. In ABFE, there are three unstable periodic orbits, denoted by S1, S2,
and S3. The action of the dynamics is that of a double horseshoe, i.e., the rectan-
gle is squeezed vertically, stretched horizontally, and placed back into the original
rectangular region, forming a double S-shape. As a system parameter p changes
from p1 (Fig. 5.12a) to p2 (Fig. 5.12b) and to p3 (Fig. 5.12c), a smooth-to-fractal
basin boundary metamorphosis occurs for psf (p1 < psf < p2), and a fractal-to-
fractal basin boundary metamorphosis occurs for pff (p2 < pff < p3). Throughout
the parameter range, the stable and the unstable manifolds of S3 cross each other
homoclinically. As can be argued below, the smooth-to-fractal boundary metamor-
phosis at psf is induced by the homoclinic tangencies between the stable and the
unstable manifolds of S1, while the fractal-to-fractal boundary metamorphosis is
induced by those between the stable manifold of S2 and the unstable manifold of S3.

In Fig. 5.12a, the unstable manifolds of S2 and S3 cross the stable manifold of S3,
so there is a vertical bar UR that maps to the region DR located to the right of the
vertical line EF. As a result, all initial conditions in the rectangle CDFE, except
for a set of measure zero, map asymptotically to the right of EF and approach the
attractor R. We also see that the unstable manifolds of S1 and S2 cross the stable
manifold of S2, and hence the vertical strip VR maps to the region CR to the right of
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Fig. 5.12 A two-dimensional horseshoe model, where L and R are two attractors, and S1,2,3 are
saddle points. The double S-shaped band represents the image of rectangle ABFE under the map.
(a) For p = p1 < psf, the vertical line AB is the smooth basin boundary and S1 is then accessible to
the attractor R. (b) For psf < p = p2 < pff , the basin boundary consists of a Cantor set of vertical
lines in the rectangle ABDC and the accessible orbit to R is replaced by S2. (c) For p = p3 > pff,
the basin boundary is a Cantor set of vertical lines in the larger rectangle ABFE. In this case, S2 is
no longer accessible to R. The newly accessible orbit on the basin boundary is S3 [578] (with kind
permission from World Scientific Publishing Co.)

the vertical line CD. The consequence is that all initial conditions in ABDC, except
for a set of measure zero, map to the right of CD. Combining the dynamics on the
rectangles CDFE and ABDC so described, we see that all initial conditions in the
larger rectangle ABFE, except for a set of measure zero, result in trajectories that
asymptotically go to the attractor R. In this case p = p1 < psf, and the boundary
between the basins of attraction of L and R is AB, the stable manifold of S1, which
is smooth. Furthermore, S1 is an unstable periodic orbit on the basin boundary that
is accessible to the attractor R.

For p = psf (not shown), homoclinic tangencies between the stable and the unsta-
ble manifolds of S1 occur, resulting in subsequent homoclinic crossings for p > psf,
as shown in Fig. 5.12b. In this case, the vertical strip VL maps to the region CL to
the left of AB and goes to the attractor L. However, the vertical strip VR still maps



5.5 Wada Basin Boundaries 165

to the right of CD, which eventually goes to the attractor R. In ABDC, all initial
conditions (except for a set of measure zero) go either to the attractor R or to the
attractor L. The vertical strips that approach asymptotically R and L define two hor-
izontal Cantor sets that intertwine in a fractal manner. The basin boundary is thus
fractal with a dimension between 1 and 2. Because of the fractal boundary, S1 is no
longer accessible to R for p > psf. The newly accessible periodic orbit to R is S2.

As p increases further, we can imagine that for p2 < p = pff < p3, the unsta-
ble manifold of S3 becomes heteroclinically tangent to the stable manifold of S2

(the vertical line CD). As shown in Fig. 5.12c, the subsequent heteroclinic cross-
ings stipulate that the vertical bar UL in CDFE maps to the region DL to the left
of CD. As a result, not only a set of vertical strips in ABDC but also such a set in
CDFE map to the attractor L. However, there are vertical strips in ABDC and CDFE
that map to the attractor R. We see that as p increases through pff, the fractal basin
boundary originally confined to the small rectangle ABDC extends suddenly into
the rectangle CDFE, causing a sudden increase in the box-counting dimension of
the basin boundary from one fractional value to another between 1 and 2. After the
heteroclinic tangencies, S2 is no longer accessible to the attractor R. For p > pff, the
accessible orbit to R on the basin boundary is S3.

5.5 Wada Basin Boundaries

Our discussion so far has been restricted to situations in which there are two
coexisting basins of attraction. When a dynamical system possesses more than two
coexisting attractors, a type of fractal basin boundary, namely Wada basin bound-
aries [406, 558–561, 613], can arise. For such a case, every boundary point of one
basin of attraction is simultaneously a boundary point of the other basins.

To imagine a Wada basin boundary, take the map of the continental United States
and consider the boundaries between the states. Almost all boundary points are
common to two states, but there are a few dozen of points that are common to
three states, and there exists a single boundary point that is shared by four states
(the Four-State Corner bordering Arizona, Utah, Colorado, and New Mexico). In the
realm of nonlinear dynamical systems, more complicated situations can arise: the set
of boundary points that are common to more than two basins of attraction can be
fractal. The history and the topology of Wada basins are presented in detail in the
review of Aguirre et al. [7].

To give an example, we examine the forced Duffing’s oscillator for parame-
ters where on the stroboscopic map, there are two fixed-point attractors, and an
attractor at infinity. The basins of attraction of these three attractors are shown in
Fig. 5.13 in three different colors. The Wada property of the basin boundaries can be
seen, since successive magnifications of any region containing the boundary exhibit
all three colors. Another example from the forced damped pendulum is shown in
Fig. 5.14.
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Fig. 5.13 Wada basin boundary for the forced Duffing’s oscillator ẍ + 0.1ẋ + x − x2 =
0.06sin(0.8t) on the stroboscopic section (x,y ≡ ẋ), where (b) is a magnification of the box in
(a), and (c) is the magnification of the box in (b) (Figure by Y. Do.)

For two-dimensional invertible maps, or equivalently, three-dimensional flows,
the mechanism for Wada basin boundaries is well understood, due to the work
of Kennedy, Nusse, and Yorke [406, 558–561]. In particular, Kennedy and Yorke
proved a theorem [406] stating that if p is a periodic point on the basin boundary,
and if the following two conditions are satisfied, (1) its unstable manifold intersects
every basin, and (2) its stable manifold is dense in each of the basin boundaries, then
the basins have the Wada property. This can be intuitively understood by referring to
Fig. 5.15, where there are K coexisting basins, denoted by B1,B2, . . . ,BK . Suppose
p is a periodic point on the boundary of B1 that is accessible to B1. Let W s(p)
and W u(p) be the stable and the unstable manifolds of p, where W s(p) is the basin
boundary of B1. Now arbitrarily choose a point x ∈ W s(p) and imagine a circle
Cε(x) of radius ε centered at x. Since W u(p) intersects every basin, Cε(x) must
contain points of every basin, which can be seen by considering a one-dimensional
curve segment Dk in the basin Bk that intersects W u(p), for k = 1, . . . ,K. Under
inverse iterations of the map, the images of the curves will be arbitrarily close to
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Fig. 5.14 Wada basin boundary for the forced damped pendulum γ = 0.2, f0 = 1.66 in (5.2), on
the stroboscopic section (x,y ≡ ẋ). At these parameters, three attracting limit cycles coexist. Panels
(b, c, d) are successive magnifications of boxes in (a, b, c), respectively (Figure by Y. Do)

Fig. 5.15 Schematic
illustration of the setting for
establishing the Wada
property. See text for details
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the stable manifold of p and therefore be in Cε (x) [547]. Thus, the boundary of B1

must be the boundaries of all other basins. Since W s(p) is dense in each of the basin
boundaries, all boundaries are common to all basins, and hence the Wada property
is fulfilled.

Computationally, to verify condition (1), one can plot a piece of the unstable
manifold, trace it under the dynamics, and determine whether it intersects all
basins of interest. Condition (2) is more difficult to verify from numerical traces
of the stable manifold. To overcome these difficulties, Nusse and Yorke pro-
posed the construction of basin cells, which leads to numerically verifiable
conditions guaranteeing that the boundary of a basin is a Wada basin boundary
[559, 560].

To explain the idea of basin cells, consider an invertible dissipative map f in the
plane. Traditionally, the basin of attraction of an attractor is defined to be the set
of points that approach the attractor asymptotically. Since there has been no rigor-
ous way to determine whether an attractor is chaotic or whether there are multiple
coexisting attractors, this concept of “basin” is in principle ill defined. Nusse and
Yorke redefined a “basin” as the set of points that enter a trapping region [559,560].
A compact region Q is a trapping region if f(Q) ∈ Q and f(Q) �= Q. These two
conditions guarantee that a trajectory entering a trapping region does not leave the
region, and there must then be at least one attractor inside. The basin of the trap-
ping region Q is the set of points that map into the interior of Q. A trapping region
may contain invariant sets such as chaotic saddles; that is, there can be points in
the region whose trajectories do not converge to an attractor. Trapping regions of
practical importance are those having piecewise smooth boundaries that consist of
finitely many smooth curve segments. If a trapping region Q is constructed such that
(1) there is an unstable periodic orbit on its boundary and (2) the boundary consists
of pieces of the stable and the unstable manifolds of the periodic orbit, then Q is
a basin cell. Although there is an infinite number of unstable periodic orbits on a
fractal basin boundary, only a few may be “qualified” to generate a basin cell. Thus,
in order to have a basin cell, the unstable periodic orbit on the cell boundary needs
to be chosen carefully [559, 560].

Figure 5.16 illustrates two types of basin cells that are topologically equivalent to
some basin cells that can be explicitly constructed from the system of forced damped
pendulum in parameter regions with Wada basin boundaries shown in Fig. 5.14a–d.
Let P denote the unstable periodic orbit that generates a basin cell CP. As shown
in Fig. 5.16, for a periodic point p of P, its unstable manifold can form an arc that
starts from p and ends at a corner point, an intersection point between the stable
and the unstable manifolds of p. Such an arc is outside the basin cell (except the
endpoints). The union of all supporting arcs, one for each periodic point p of P,
is called the scaffolding of the basin cell CP [559, 560]. For instance, for the cell
in Fig. 5.16a, the scaffolding consists of the union of two supporting arcs, while
in Fig. 5.16b, the scaffolding is the union of three supporting arcs. With such a
geometric construction, Nusse and Yorke proved the result that if the scaffolding of
CP intersects at least two other basins, the boundary of the basin cell CP is a Wada
basin boundary. This result is remarkable because all the quantities and conditions
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Fig. 5.16 Schematic illustration of two types of basin cells that can be constructed from three-
dimensional flows with Wada basin boundaries. In (a), the basin cell is generated by an unstable
periodic orbit of period 2. In (b), the cell-generating periodic orbit has period 3. See [559, 560]

are numerically verifiable. Using this result, one can prove that the basin boundaries
such as those in the forced Duffing’s oscillator (Fig. 5.13) and in the forced damped
pendulum (Fig. 5.14) are Wada basin boundaries [559, 560].

A natural question is how Wada basin boundaries can arise as a system parameter
changes. One route was discovered by Nusse et al. [558], which is by a saddle-node
bifurcation on a fractal basin boundary. Specifically, if the system under consid-
eration already has two coexisting attractors with a fractal basin boundary, then
a saddle-node bifurcation on the boundary can create a third attractor and a third
basin of attraction. In this case, if a basin cell can be constructed that contains the
third attractor and if the scaffolding of an unstable periodic orbit on the boundary of
the cell intersects the original two basins, the fractal basin boundary becomes Wada.

Saddle-node bifurcation on a fractal basin boundary can in fact result in
an extreme form of indeterminacy in dynamical systems, as pointed out by
Thompson [780–782], who asked what happens to an orbit initially placed on a
periodic attractor (node) when it is destroyed via slow variation of a parameter
through a saddle-node bifurcation. He discovered that if there are at least two other
attractors (in addition to the periodic attractor to be destroyed through the saddle-
node bifurcation) with a fractal basin boundary between their basins of attraction,
and if the saddle is located on the boundary (in fact Wada), then the bifurcation
can be indeterminate in the following sense. After the system drifts through the
bifurcation, to which attractor the orbit goes depends sensitively on small effects
such as noise, computer roundoff, and the way the parameter is changed. From our
discussion, we see that this extreme type of indeterminacy is closely related to the
occurrence of a Wada basin boundary. In particular, say μ is the bifurcation param-
eter, and as μ is decreased through the critical value μ0, a saddle-node bifurcation
occurs. Assume that two other attractors exist in a parameter interval about μ0 with
a fractal basin boundary. Thus for μ0 − ε1 < μ < μ0 there are three attractors with
a Wada basin boundary, where ε1 > 0 is a small constant. Now imagine that μ
increases from this situation through μ0. For μ0 < μ < μ + ε2, where ε2 > 0 is
small, there are only two attractors with a fractal basin boundary. Thompson’s result
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indicates that in a situation in which random perturbations or computational errors
are present, as μ adiabatically increases through μ0, it is fundamentally impossible
to determine where an orbit placed on the node (attractor) for μ0 − ε1 < μ < μ0

would go.

5.6 Sporadically Fractal Basin Boundaries

Sporadically fractal basin boundaries have the character of a bounded curve, say
y = g(x), such that g(x) is a differentiable (or smooth) function except for a set of x
values of zero measure. Furthermore, the nondifferentiable set of x values is a fractal
set with dimension less than one. The curve thus has a dimension between one
and two. This type of basin boundary was discovered by Rosa et al. [651, 652] and
was subsequently analyzed rigorously by Hunt et al. [346]. It was conjectured that
sporadically fractal basin boundaries exist in typical dynamical systems of phase-
space dimension at least two for noninvertible maps, at least three for invertible
maps (thus at least four for flows).

In order to highlight the relevance of sporadically fractal basin boundaries to
physical situations, in what follows we describe the occurrence of this type of
boundary in the context of chaotic phase synchronization in systems described by
differential equations. We then discuss a mathematical model to understand the dy-
namical origin and properties of these exotic basin boundaries.

5.6.1 Chaotic Phase Synchronization

Chaotic phase synchronization was discovered by Rosenblum, Pikovsky, and Kurths
in 1996 [653] and has since become an active area of research (see [80,602]). If one
examines a chaotic attractor from a three-dimensional flow, such as the Rössler
oscillator, one finds that trajectories on the attractor exhibit rotation-like motions
around the z-axis, as shown in Fig. 5.17. The motions have a well-defined center of
rotation and a unique direction (counterclockwise in Fig. 5.17b). Using the center
of rotation and an arbitrary reference line, a rotational angle φ can be defined, as
shown schematically in Fig. 5.18.

For the Rössler attractor in Fig. 5.17, it is convenient to use cylindrical coor-
dinates: (x,y,z) → (r,φ ,z), where r =

√
x2 + y2 and φ = tan−1 (y/x) (within one

rotation). For a chaotic trajectory, from a reference point corresponding to the ini-
tial condition, the phase variable φ(t) is a monotonically increasing function of t.
In cylindrical coordinates, the Rössler equations can be conveniently written as
dx/dt = R(x), where x ≡ (r,φ ,z). The question Rosa et al. asked [652] was whether
the phase variable can be locked with respect to an external periodic driving. One
can imagine that if the periodic driving is weak, the phase will be chaotic, but under
strong driving, it is likely that the chaotic rotation would follow more or less that of
the external periodic pattern. In this case the phase variable of the chaotic oscillator
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Fig. 5.17 (a) Chaotic attractor from the Rössler oscillator: ẋ = −(y + z), ẏ = x + 0.25y, and ż =
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is said to have been synchronized (paced) with the phase of the external periodic
signal. To address this question, consider the following general system:

dx
dt

= S(x,s)R(x)+ AP(t), (5.19)

where S(x,s)= 1+s(r2− r̄2), P(t)= [0,sin(2πt/T),0], s and r̄ are parameters of the
modulating function S(x,s) (r̄ can be chosen to be the average value of r(t) for s = 0
and A = 0), and A is the amplitude of the external periodic driving. To search for
synchronization, it is convenient to use θ = φ(t)−2πt/T , the phase difference be-
tween the chaotic oscillator and the external periodic signal. Phase synchronization
is defined by the locking of θ within 2π : −π < θ < π . For a given T , phase synchro-
nization was found to occur for sufficiently large values of A [652]. In fact, there is
a region of finite area in the two-dimensional parameter space (T,A) in which phase
synchronization occurs. To understand the fundamental dynamical mechanism for
the synchronization, Rosa et al. suggested to define the angle variable θ on the
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real line, −∞ < θ < +∞, rather than on the circle, −π ≤ θ ≤ π . The angle thus
becomes lifted. The phase-synchronized state corresponds to an attractor confined
within −π < θ < π . The attractor is chaotic because the amplitude dynamics re-
mains chaotic even when its phase is locked. Due to the invariance of the system
under the transformation θ → θ ± 2π , there is an infinite array of such attractors
spaced by 2π in θ .

Imagine for a fixed T , as A increases through a critical value Ac, phase syn-
chronization occurs so that for A > Ac, an infinite array of attractors is formed.
For A < Ac, there is no phase locking so that θ cannot be confined in any of the
2π intervals. A trajectory can thus move across the entire θ -axis. However, for A
slightly below Ac, the trajectories will be confined within one of the 2π intervals for
long time before moving to an adjacent 2π interval. There is thus transient chaos
corresponding to the temporal phase locking. The time it takes for a trajectory to
escape an attractor and to move to an adjacent one is typically much smaller than
the time that the trajectory stays on the attractor. What can be expected is thus the
confinements of θ values within 2π for long stretches of time and rapid jumps of
magnitude 2π amid the long confinements. This 2π-jump phenomenon has indeed
been observed numerically and experimentally [80]. The point is that the transition
to chaotic phase synchronization can be regarded as crisis-like transition whereby
isolated chaotic attractors are formed from transient chaos.

Rosa et al. found that after the onset of phase synchronization, the basin bound-
aries between the chaotic attractors in two adjacent 2π cells are sporadically fractal.
The boundaries are in fact similar to those from the two-dimensional map (5.5), as
shown in Fig. 5.4.

5.6.2 Dynamical Mechanism

To understand how sporadically fractal basin boundaries can arise in dynamical
systems, Hunt et al. [346] proposed a class of two-dimensional maps (5.5), where
the x-dynamics is governed by the following one-dimensional map:

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9x/(4−5x), for x ≤ 0,

9x/4, for 0 ≤ x ≤ 4/9,

(81/4)(x− x2), for 4/9 ≤ x ≤ 5/9,

(9/4)(1− x), for x ≥ 5/9,

(5.20)

as shown in Fig. 5.19.
This map has two invariant sets: a stable fixed-point attractor at x = −1 with a

negative Lyapunov exponent and a “middle ninth” Cantor set in 0 ≤ x ≤ 1, the set
of initial conditions in the unit interval that do not approach the attractor. The Can-
tor set is in fact a repeller with a positive Lyapunov exponent ln(9/4) because the
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Fig. 5.19 One-dimensional map (5.20) as f (x) in (5.5)

slopes of the map about the Cantor set are ±9/4. For the two-dimensional map (5.5),
at each iterate every vertical line segment is expanded by the factor λ > 1. Thus al-
most all initial conditions approach asymptotically either y = +∞ or y = −∞, which
can be regarded as the two attractors of the system. The boundary between the two
basins of attraction is a function y = g(x), the dynamics on which are determined by
f (x). Since f (x) has two invariant sets and since the y-dynamics is unstable, on the
basin boundary there are two invariant sets as well: a saddle point (at x = −1) with
one positive and one negative Lyapunov exponent, and a chaotic repeller with two
positive Lyapunov exponents. Numerical experiments revealed that g(x) is smooth
for almost all x values but nondifferentiable for a set of x values constituting the
middle-ninth Cantor set in the one-dimensional map f (x). The box-counting di-
mension of the curve y = g(x) turns out for λ = 1.1 to be Db0 ≈ 1.75 [346].

How is it that the basin boundary curve can be smooth at all x except for a set
of measure zero, yet has a box-counting dimension greater than 1? To understand
this property, Hunt et al. [346] considered the Hölder exponent H(x) at x of the
function g(x): |Δy| ∼ |Δx|H(x), where Δx is infinitesimal and Δy = g(x +Δx)−g(x).
If H(x) < 1, g(x) is not differentiable at x, but if g(x) is differentiable at x, then
H(x) = 1. Points on y = g(x) with H(x) < 1 exhibit a cusplike, spiked behavior.
Now consider two nearby points (x0,y0) and (x0 +Δx0,y0+Δy0) on the basin bound-
ary and iterate them n times under the map (5.5). Since they are on the basin
boundary, their images (xn,yn) and (xn + Δxn,yn + Δyn) must also be on the basin
boundary. For n not too large, Δxn and Δyn can still be regarded as small quantities.
Since the nth iterate of the map (5.5) provides a smooth transformation of the
neighborhood of (x0,y0) to the neighborhood of (xn,yn), the Hölder exponents are
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the same for (x0,y0) and (xn,yn): |Δy0| ∼ |Δx0|H and |Δyn| ∼ |Δxn|H . From (5.5),
we have Δxn ∼ exp(λ1n)Δx0, where λ1 is the Lyapunov exponent of the one-
dimensional map f (x). If H < 1, |Δy| is much greater than |Δx|, so the effect of
Δx on the y-dynamics is negligible. We have Δyn ∼ exp(λ2n)Δy0, where λ2 = lnλ .
The Hölder exponent is thus given by H = λ2/λ1 if λ1 > λ2. Otherwise, we have
H = 1 because the assumption H < 1 is contradicted. Since there are two possible
values for the Lyapunov exponent λ1 in the one-dimensional map f (x) (correspond-
ing to the two invariant sets), and particularly λ1 = ln(9/4) for trajectories on the
middle-ninth Cantor set, we see that H < 1 if λ < 9/4. For randomly chosen x on
the basin boundary (with Lebesgue measure one), the trajectory goes to the attractor
at x = −1 that has λ1 < 0. For these points H = 1, and the boundary is smooth.

The relationship between the Hölder exponent and the Lyapunov exponents can
be used to obtain the box-counting dimension of the basin boundary curve y = g(x).
Suppose we cover the (x,y)-plane with square boxes of linear size ε � 1. If the
boundary curve contained in a column of width ε is smooth, i.e., no points of the
middle-ninth Cantor set lie in it (H = 1), the number of boxes required to cover
the curve segment is of order 1. If the boundary curve in a column of boxes contains
points of the Cantor set so that H < 1, the variation of the curve in the y-direction is
|Δy| ∼ εH (because Δx = ε). The number of boxes required to cover the boundary
curve in this column is thus of order εH/ε = εH−1. Since the total number of boxes
needed to cover the Cantor set (the chaotic repeller of f (x)) of dimension Dx is ε−Dx ,
the number of boxes necessary to cover the spiked parts of the basin boundary curve
is ε−(1+Dx−H). This implies that the box-counting dimension of the chaotic repeller
embedded in the basin boundary is D0 = 1 + Dx −H. Taking into account the fact
that the number of boxes required to cover the smooth parts of the boundary is of
order ε−1, we see that if 1+Dx−H < 1, then ε−1 is much greater than ε−(1+Dx−H),
so in this case the number of boxes needed to cover the whole boundary curve is of
order ε−1. Conversely, this number is of order ε−(1+Dx−H) if 1+Dx −H > 1. These
estimates yield the box-counting dimension of the boundary curve y = g(x) as

Db0 = max{1,1 + Dx−H}. (5.21)

An interesting observation is that the basin boundary’s being spiky, i.e., H < 1, is not
sufficient to make Db0 > 1, i.e., to make the boundary sporadically fractal. To have
Db0 > 1 requires H < Dx, i.e., that the dimension D0 of the repeller be larger than 1.
This means that the spiked behavior should be sufficiently intense for sporadically
fractal boundaries to arise. The uncertainty exponent is thus

α = 2−Db0 = 1−Dx + H = 2−D0 < 1. (5.22)

For the model described by (5.5) and (5.20), we have Dx = ln2/ ln(9/4) and H =
lnλ/ ln(9/4), so Db0 = D0 = 2− α = 1 + ln(2/λ )/ ln(9/4) > 1 for λ < 2 and
Db0 = α = 1, D0 < 1, for λ > 2.
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5.7 Riddled Basins

We have seen up to now several types of complicated basins. Despite differences, a
common feature among them is open sets (volumes) contained in a basin. In this
section we discuss riddled basins, basins that do not contain any open sets but
nonetheless have a positive Lebesgue measure. Because a riddled basin has no open
sets, for every initial condition that approaches the attractor with a riddled basin
asymptotically, there are initial conditions arbitrarily nearby that go to another
coexisting attractor. Thus, an arbitrarily small uncertainty in the initial condition
can lead to a completely different attractor. Riddled basins are therefore space-
filling. In a D-dimensional phase space, Db0 = D, riddled basins are fat fractals
[234, 564, 773]. In fact, the uncertainty exponent associated with a riddled basin is
close to zero, which means that a vast reduction in the error in specifying the initial
conditions results in hardly any improvement in one’s ability to predict the final at-
tractor. As a consequence, prediction of attractors for specific initial conditions and
parameters becomes practically impossible. Because of this serious consequence,
there has been much effort devoted to riddled basins (for a review and historical
comments, see [7]).

The dynamical conditions for riddling to occur were first described by Alexander
et al. [11]. They offered the following definition for a riddled basin: The basin
of attraction of an attractor is riddled if its complement intersects every disk in
a set of positive measure. Roughly, the term “disk” here refers to D-dimensional
phase-space volumes of all sizes. In order to argue that the basin of a chaotic at-
tractor is riddled, the following two conditions need to be established: (1) a set
of positive measure is attracted to the attractor; and (2) sufficiently many points
near the attractor are repelled from it. In particular, to prove condition (1), one can
compute the transverse Lyapunov exponent (to be defined below) and show that
it is negative [11]. To prove condition (2), it is necessary to show that there ex-
ists an open dense set near the attractor where points approach another coexisting
attractor. In contrast, a fractal basin is open and it is defined with respect to the basin
boundary: a basin is fractal if its boundary is a fractal set. The mathematical feature
that distinguishes a riddled basin from a fractal one is then that the former is a closed
set of positive measure, while the latter is open.

A necessary condition for riddling is the existence of an invariant subspace,
which often results from a symmetry of the system. An example is the following
system of N coupled chaotic oscillators:

dxi

dt
= Fi(xi)+ K∑

j

H(xi −x j), i = 1, . . . ,N, (5.23)

where Fi(xi) is the velocity of oscillator i when uncoupled, and the coupling is
represented by strength K and the function H(xi − x j) that satisfies the condi-
tion H(0) = 0. When the individual oscillators are identical, i.e., Fi = F j, the
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synchronous state xi(t) = x j(t) (i, j = 1, . . . ,N) is a solution to (5.23). In this case,
the dynamical equations are identical for each oscillator, so oscillators starting syn-
chronized remain so forever. The subspace defined by xi(t) = x j(t) (i, j = 1, . . . ,N)
is therefore invariant. The existence of such an invariant subspace was the start-
ing point for analyzing the dynamics of coupled chaotic oscillators in most existing
works in the area of chaotic synchronization [602,711]. In fact, the first experimen-
tal evidence for riddled basins was found in this context (see Fig. 1.18).

5.7.1 Riddling Bifurcation

How does a riddling bifurcation occur that creates a riddled basin? The answer
was provided in [455]. In a two-dimensional phase space, the invariant subspace
is a line. In this case, the onset of riddling is determined by a saddle-repeller bifur-
cation [294, 295]. In particular, the chaotic attractor A in the invariant subspace is
one-dimensional. Before the bifurcation, A attracts all points in some neighborhood
of itself, and all the periodic orbits embedded in the chaotic attractor are saddles in
the full phase space. At the riddling bifurcation, one of the periodic orbits, usually
of low period, becomes transversely unstable. Since this periodic orbit is already
unstable in the attractor, it becomes a repeller in the two-dimensional phase space.
To be concrete, let xp be an unstable fixed point embedded in the chaotic attractor in
the invariant subspace. The point is stable transversely to this subspace for p < pc,
as shown in Fig. 5.20a. Riddling occurs when xp loses its transverse stability as a
parameter p passes through a critical value pc. For such systems, the loss of trans-
verse stability is induced by the collision at p = pc of two point repellers r+ and r−,
located symmetrically with respect to the invariant subspace, with the saddle at xp

(a saddle-repeller bifurcation). These two repellers exist only for p ≤ pc, as shown
in Fig. 5.20a. For p > pc, the saddle xp becomes a repeller, and the two repellers r+
and r− off the invariant subspace no longer exist.

Due to nonlinearity, a “tongue” opens at xp, allowing trajectories near the
invariant subspace to escape for p > pc, as shown in Fig. 5.20b. Each preimage of
xp also develops a tongue simultaneously. Since preimages of xp are dense in the
invariant subspace, an infinite number of tongues open up simultaneously at p = pc,
indicating that initial conditions arbitrarily close to the invariant subspace can go to
another attractor.

At the riddling bifurcation a single periodic orbit becomes transversally unstable.
As the parameter p is increased further, more and more periodic orbits become un-
stable until, for another critical parameter p0

c(> pc), the full attractor in the invariant
subspace becomes transversely unstable. This occurs when the average transverse
Lyapunov exponent λT becomes positive. This bifurcation is called the blowout
bifurcation [30, 435, 727].
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Fig. 5.20 Riddling
bifurcation at pc. (a) Unstable
saddle fixed point in the
invariant subspace and two
repellers off the invariant
subspace for p < pc (before
the saddle-repeller
bifurcation). (b) Tongue
structure formed for p > pc,
after the onset of riddling.
Trajectories originated from
initial conditions inside the
tongues escape the invariant
subspace to +∞ [455]
(Copyright 1996, the
American Physical Society)

5.7.2 An Example

To make these ideas more concrete, we use the following map [455]:

xn+1 = 4xn(1− xn), (5.24)

yn+1 = pe−b(xn−xp)2
yn + y3

n,

where y = 0 defines the invariant subspace as a trajectory with y0 = 0 will have
yn = 0 and b > 0 is a parameter. In this system, A is the fully developed chaotic
attractor of the logistic map, and xp = 3/4 denotes the nontrivial unstable fixed point
of the logistic map.

The two eigenvalues of the unstable fixed point xp = (xp = 3/4,y = 0) are
(Λx,Λy) = (−2, p). Thus, xp is stable in the y direction for p < 1 and unstable for
p > 1. This fixed point is a saddle for p < 1. For p < 1, there are two other unstable
fixed points located at r± ≡ (xp,±

√
1− p), which have eigenvalues (−2,3− 2p),

both being repellers for p < 1, as shown in Fig. 5.20a. The repellers collide with
each other and with the saddle at p = pc = 1 in a saddle-repeller bifurcation, and
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they do not exist for p > 1. Thus, beyond the riddling bifurcation (for p > 1), two
tongues, symmetrically located with respect to the invariant subspace, open up at
x = xp, allowing trajectories near y = 0 to escape to |y| = ∞. Observe that the cubic
term in the y-dynamics guarantees that if |yn|> 1, then |yn+1|> |yn|> 1. Once a tra-
jectory reaches |y| = 1, its y value tends to infinity rapidly. As a result, y = ±∞ can
be regarded as coexisting attractors, A±, of (5.24) with A , fulfilling the condition
for riddling.

The transverse Lyapunov exponent is the average of the logarithms of the stretch-
ing rates of the y-dynamics at y = 0 along a trajectory of the x-dynamics. That is,

λT =
〈

ln

∣∣∣∣dyn+1

dyn

∣∣∣∣
〉

|y=0
, (5.25)

where the angled brackets denote an average taken with respect to the natural
measure of the attractor A . Since dyn+1/dyn = pexp [−b(xn − xp)2] at y = 0, we
have λT = ln p− b(〈x2〉 − 2〈x〉xp + x2

p). Substituting the averages for the chaotic
attractor of the x-dynamics, we obtain

λT = ln p−3b/16. (5.26)

The blowout bifurcation takes place at p0
c = exp(3b/16) > 1.

5.7.3 Scaling Relation

A quantity characterizing the degree of riddling of a basin is the ratio between the
sizes of the basins of the attractors A+ (or A−) and A , which can be computed
as follows. Take a line parallel to the invariant subspace at distance y0 � 1 and
determine the fraction F(y0) of the length of this line in the basin of A+ or (A−).
The fraction typically obeys the following scaling law [567]:

F(y0) ∼| y0 |η , (5.27)

where η is a positive exponent. As y0 → 0, the fraction of the basin of A± ap-
proaches zero, but for any finite | y0 | this fraction is nonzero. For p values close to
the blowout bifurcation point p0

c, a stochastic model by Ott et al. [567] predicts the
exponent η to be

η =
| λT |

Q
, (5.28)

where Q represents the diffusion coefficient characterizing the variance of the finite-
time transverse Lyapunov exponents (the analogue of Q2 introduced in Sect. 2.2.2
and in Appendix A). Close to but below the blowout bifurcation point, λT is negative
and small.

Another measurable quantity is the uncertainty exponent α , defined by
f (ε)∼εα , where f (ε) is the probability of finding two points within distance ε
along a line at distance y0 from the invariant plane, which belong to different basins
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(to those of A and of A+ (or A−)). The stochastic theory predicts, for p close to p0
c ,

that

α =
λT

2

4Qλ1
, (5.29)

where λ1 is the Lyapunov exponent of attractor A . Since λT is small, the uncertainty
exponent is small, signifying a fundamental obstacle to prediction. Due to the fat-
fractal nature of the boundary (5.12) does not hold. In this case, we have Db0 = D
but α �= 0.

5.8 Catastrophic Bifurcation of a Riddled Basin

While symmetry and invariance are common in mathematical models of physical
systems, the notion of symmetry and invariance is nongeneric, because in physi-
cal reality, imperfections or perturbations that destroy system symmetry are always
present. In the coupled-oscillator system (5.23), a typical type of imperfection is
parameter mismatches among oscillators. The presence of heterogeneity among the
vector fields Fi, no matter how small, immediately destroys the originally invariant
subspace defined by the synchronous state. A key question is thus, can a riddled
basin be physically observed? Investigation along this line [438, 441] has indicated
that riddling is typically destroyed by symmetry-breaking perturbations and is con-
verted into a fractal basin, no matter how small the perturbations are. This has been
called catastrophe of riddling [438]. However, for small perturbations, the resulting
fractal basin may appear similar to a riddled one.

5.8.1 An Example

We consider the following noninvertible two-dimensional map [441]:

xn+1 = T (xn) =

⎧⎨
⎩

2xn, 0 ≤ x < 1/2,

2(1− xn), 1/2 ≤ x ≤ 1,
(5.30)

yn+1 = f (xn,yn) =

⎧⎨
⎩

pxnyn + ε, | y |< 1

λ yn, | y |≥ 1,

where T (x) is the tent map, p and λ > 1 are parameters, and ε is the symmetry-
breaking parameter. The phase-space region of interest is {0≤ x ≤ 1, −∞ < y < ∞}.
For ε = 0, the system possesses a one-dimensional invariant subspace y = 0, which
is caused by the reflection symmetry y →−y. Because λ > 1, the map has two other
attractors: A± at y =±∞. The chaotic attractor A of the tent map in y = 0 can be the
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third attractor of the full system if it is transversely stable. Since dyn+1/dyn = pxn at
y = 0, we have λT = ln p+ 〈lnx〉= ln p−1. A blowout bifurcation occurs at p0

c = e.
As ε is increased from zero, no matter how little, the chaotic attractor of the tent

map is no longer an attractor of the whole system. A catastrophe of riddling occurs
for p < p0

c as |ε| is increased from zero, in which the riddled basin of A for ε = 0
is replaced by the fractal basin either of A+ or of A−, depending on the sign of ε .
For p > p0

c , the basins of the y = ±∞ attractors are y > 0 and y < 0, respectively if
ε = 0. In this case, as |ε| is increased from zero, a smooth-to-fractal basin boundary
metamorphosis occurs because the two simple basins (y > 0 and y < 0) are replaced
by fractal ones. Because of the simplicity of (5.30), these bifurcations can in fact be
understood analytically to a certain extent.

The replacement of the riddled basin by a fractal one in the presence of a
symmetry-breaking perturbation can be seen qualitatively as follows. As discussed
above, for ε = 0, the basin of the chaotic attractor A is a closed set with positive
measure, which is the complement of two symmetric open dense sets belonging to
the attractors A±, respectively. While initial conditions with y0 > 0 or y0 < 0 can
go to A , they cannot cross the invariant line y = 0. For ε �= 0, the dense set of un-
stable periodic orbits originally embedded in A in y = 0 spread out in the vicinity
of y = 0, converting A into a nonattracting chaotic set. Because of this spread of
unstable periodic orbits, a trajectory initiated in y > 0 can penetrate the originally
invariant line y = 0 and go to the y = −∞ attractor, and vice versa. The basin of the
y = −∞ attractor in y > 0 must be open and therefore is fractal.3 The same holds
for the basin of the y = +∞ attractor in y < 0. Thus, as soon as ε becomes nonzero,
the riddled basin of A is destroyed, and simultaneously, two fractal basins arise.
In what follows we analyze how unstable periodic orbits embedded in the original
chaotic attractor in A are perturbed by the symmetry-breaking, based on which we
can establish the existence of open, but not dense, sets that belong to the basins of
the attractors at infinities.

For concreteness, we consider the map (5.30) with ε < 0 around the blowout
bifurcation, i.e., for p less than but close to p0

c. Since unstable periodic orbits are
structurally stable, we expect that they shift to a small neighborhood about the orig-
inally invariant subspace y = 0 for ε �= 0. For example, the original fixed point
xp = (xp,0) (a repeller with an unstable direction in both x and y, where xp = 2/3 is
the nontrivial unstable fixed point of the tent map) is shifted to (xp,yp), where yp is

yp =
−|ε|

1− pxp
. (5.31)

3 Consider an open neighborhood B of one of the attractors at infinity. Choose a point p in its
basin and evolve it forward in time. Eventually, the resulting trajectory will approach the attractor,
which means that at some finite time, the trajectory will enter B, say at point p′. The point p′ in B
must then have an open neighborhood. Since p′ is iterated from p in finite time, p must also have
an open neighborhood in the basin.
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For p ≈ p0
c , we have pxp ≈ 2e/3 > 1 and hence yp > 0. The eigenvalues of the

perturbed fixed point (xp,yp) are Λx = −2 and Λy = pxp > 1. Thus, under the
symmetry-breaking perturbation, the shifted fixed point is still a repeller. Consider

now the period-2 orbit of the tent map: (x(2)
1 = 2/5,0) and (x(2)

2 = 4/5,0). The eigen-

values of the twice iterated map at these points are Λx = −4 and Λy = p2x(2)
1 x(2)

2 .
The latter is smaller than unity for p < 1.77. The two-cycle is then a saddle in the
full phase space. For ε �= 0, the y-coordinates of the orbit become

y(2)
1 =

−|ε|(px(2)
2 + 1)

1− p2x(2)
1 x(2)

2

and y(2)
2 =

−|ε|(px(2)
1 + 1)

1− p2x(2)
1 x(2)

2

.

Altogether, we observe that (1) an orbit is shifted upward (downward) from y = 0
if it is a repeller (saddle), and (2) the eigenvalues of the orbit remain unchanged.
In general, this is valid for any periodic orbit. Since all repellers are located in y > 0,
a trajectory starting in y < 0 cannot cross y = 0, but since all saddles are located in
y < 0, a trajectory starting in y > 0 can move across the x-axis and go to the y = −∞
attractor. Thus, due to the symmetry-breaking, the y =−∞ attractor acquires a basin
in y > 0.

The picture depicted above, i.e., saddles shifted downward and repellers upward,
is specific to the system (5.30) for the case of ε < 0. For ε > 0, saddles will shift
upward and repellers downward. In general, in two dimensions we expect to observe
saddles and repellers on both sides of the originally invariant subspace when there
is a symmetry-breaking. As a result, there will be fractal basins both above and be-
low the originally invariant subspace. In higher dimensions, unstable periodic orbits
with different unstable dimensions – a type of nonhyperbolicity known as unstable
dimension variability (see also Sect. 4.4.2), – which are originally all located in the
invariant subspace, will be shifted to its neighborhood under a symmetry-breaking
perturbation.

For ε = 0, the “roots” of the open set, i.e., the fixed point (xp,0) and all its
preimages, are located in the invariant subspace y = 0 and are dense (see Fig. 5.21a).
As we have seen, for ε �= 0, these “roots” are shifted and are distributed in the two-
dimensional phase-space region about y = 0, as shown in Fig. 5.21b. Thus, the open
set is no longer dense. The set of initial conditions in the unit square 0 ≤ (x,y) ≤ 1
that go to the y = −∞ attractor is now open. In fact, it is straightforward to see that
the region bounded by the curve xy < |ε|/p in the unit square maps to y < 0 after
one iteration. The basin of the y =−∞ attractor in 0 ≤ (x,y)≤ 1 thus consists of this
bounded region and all its preimages. The boundaries separating the basins of the
y =±∞ attractors are fractal. We remark, however, that in this case, the basin in y > 0
of the y = −∞ attractor may appear indistinguishable from that of a riddled basin
because unstable periodic orbits in the originally invariant subspace are perturbed
only slightly.

We thus see that for p < p0
c and ε �= 0, persistent chaos in the invariant subspace,

together with its riddled basin for ε = 0, is replaced by a chaotic transient and fractal
basins of the attractors at infinities, respectively.
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Fig. 5.21 Schematic illustrations of the dynamics of unstable periodic orbits: (a) for ε = 0, y = 0
is invariant and the roots of the tongues are dense in y = 0, creating a riddled basin; (b) for ε �= 0,
y = 0 is no longer invariant, the locations of the periodic orbits are shifted about y = 0, and the roots
of the tongues are no longer dense, leading to fractal basins [438] (Copyright 1999, the American
Physical Society)

5.8.2 Critical Behavior and Scaling Laws

We have seen that the presence of a small amount of symmetry-breaking causes a
spread of unstable periodic orbits in a neighborhood of size about ε in the vicinity
of the originally invariant subspace. The dynamics outside the neighborhood can be
approximately described by that of a random process. To see this, we rewrite (for
yn > 0) the y-equation in (5.30), as follows:

− lnyn+1 = − lnyn − ln(pxn + ε/yn).

Letting Yn ≡− lnyn, we obtain

Yn+1 = Yn + νn, (5.32)

where νn = − ln(pxn + ε/yn) is a random variable because xn comes from a chaotic
process. For ε ∼ 0, νn is approximately independent of yn most of the time (except
when yn gets close to the original invariant subspace). Equation (5.32) thus describes
a random walk. If the average drift ν ≡ 〈Yn+1 −Yn〉 = 〈νn〉 is small, the random-
walk model can be solved using the diffusion approximation, from which various
scaling relations can be derived. Specifically, since ν is small, the evolution of the
probability as a function of discrete time n can be approximated as an evolution in
continuous time t. Let P(Y,t)dY be the probability of finding the walker in the inter-
val [Y,Y + dY ] at time t. Then P(Y,t) obeys the following diffusion equation [237]:

∂P
∂ t

+ ν
∂P
∂Y

= Q
∂ 2P
∂Y 2 , (5.33)
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where Q is the diffusion coefficient, defined as

2nQ =
〈
(Yn −nν)2〉 . (5.34)

Adopting the above diffusive picture, we see that ν and Q are the two key parame-
ters that determine the dynamics. In fact, the average drift −ν and Q are analogous
respectively to the transverse Lyapunov exponent λT (which can be defined only
when ε = 0) and the diffusion coefficient Q characterizing the degree of the fluc-
tuations of the finite-time transverse Lyapunov exponent, used in Sect. 5.7.3. In the
simple model (5.30), ν < 0 for p > p0

c and ν > 0 for p < p0
c. Thus, we have

ν ∼ (p0
c − p). (5.35)

When there is a symmetry-breaking so that the notions of invariant subspace and
transverse Lyapunov exponent no longer hold, we can still use ν and Q to character-
ize the dynamics in the vicinity of the original invariant subspace. In particular,
regarding the ε-neighborhood of the original invariant subspace as a pseudoin-
variant manifold under a symmetry-breaking, the stability of this manifold can be
quantified by ν and Q. Defining the pseudotransverse Lyapunov exponent

ΛT ≡−ν, (5.36)

we see that if ΛT > 0 (ν < 0), the pseudoinvariant manifold is transversely unstable
because a trajectory leaves the pseudoinvariant manifold exponentially rapidly.
If, however, ΛT < 0 (ν > 0), a trajectory can spend a long time near the pseu-
doinvariant manifold, although the trajectory will eventually leave it. In this sense,
the manifold is quasistable with respect to transverse perturbations. Introducing
the pseudotransverse Lyapunov exponent, with the parameter Q characterizing its
finite-time fluctuations, thus enables us to quantify the dynamical property of the
pseudoinvariant manifold [441].

A detailed discussion about the validity of the diffusion approximation near the
transition point to a chaotic attractor with a riddled basin, at which the average drift
(or the transverse Lyapunov exponent) is nearly zero, can be found in [565, 567].
Here, because of the symmetry-breaking, the range for the validity of the diffusion
approximation is limited. In particular, we note that a trajectory cannot enter the ε-
neighborhood of the original invariant subspace y = 0. However, for | y |>| ε |, the
trajectory experiences both repulsion from and attraction toward the ε-neighborhood
of y = 0 due to the existence of periodic orbits with different unstable dimensions,
namely, repellers and saddles. If ν ≈ 0, the amount of repulsion is approximately
equal to that of attraction, and hence we expect the diffusion picture to be valid for
| ε |<| y |< 1. This corresponds to the range Y ∈ (0,ε), where ε = − ln | ε | � 1.
For clarity of the presentation, we consider the case ε < 0, so that the symmetry-
breaking-induced basin of the y = −∞ attractor lies in y > 0.
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We fix a line segment 0 ≤ x ≤ 1 at y = y0, 0 < y0 � 1, and uniformly choose
a large number of initial conditions from it, which leads to the following initial
condition for the diffusion equation (5.33):

P(Y,0) = δ (Y −Y0), (5.37)

where Y0 = − lny0. Since a trajectory reaching y = 1 quickly goes to the y = +∞
attractor, we have the following absorbing boundary condition at Y = − ln1 = 0:

P(0,t) = 0. (5.38)

Roughly, a trajectory entering the |ε|-neighborhood of y = 0 is lost to the basin of
the −∞ attractor. A realistic picture is that the Y -location of the absorbing boundary
depends on x. For instance, from the model (5.30), we see that a trajectory goes to
the y = −∞ attractor whenever pxnyn < |ε|. Insofar as xn is not too small, this hap-
pens when yn < |ε|/pxn ∼ |ε|. Thus, as a crude approximation, we impose another
absorbing boundary at ε:

P(ε,t) = 0. (5.39)

Let F(|ε|,y0) be the fraction of initial conditions from the line segment at y0 that
go to the y = −∞ attractor A−. As |ε| is increased, we expect F(|ε|,y0) to increase.
For small |ε|, the diffusion equation (5.33) together with the initial and the boundary
conditions (5.37)–(5.39) can be solved to yield the following scaling law [441]:

F(|ε|,y0) =
yν/Q

0 −1

|ε|ν/Q −1
. (5.40)

If ν > 0, we have |ε|ν/Q −1 ≈ −1 for |ε| � 1 and hence F ≈ 1− yν/Q
0 = constant,

a behavior drastically different from that of the symmetric case (5.27) and (5.28).
For ν < 0, |ε|ν/Q −1 ≈ |ε|ν/Q, and hence for any fixed y0, we have

F(|ε|,y0) ∼ |ε|−ν/Q = |ε||ν|/Q for ν < 0. (5.41)

We see that in the parameter regime where ν ≈ 0, the fraction remains roughly
constant, regardless of the amount of symmetry-breaking. This also implies the
catastrophic nature of the symmetry-breaking: riddling is destroyed and a fractal
basin component is immediately induced as the system deviates from the symmetric
one, no matter how small the deviation is.

Consider a trajectory originated from the symmetry-breaking-induced fractal
basin of the y = −∞ attractor in y > 0. After it falls into the negative vicinity of
y = 0, it typically experiences a chaotic transient. In particular, if ν < 0 (ΛT > 0),
the transient time is short. If, however, ν > 0 (ΛT < 0), the time can be extraordi-
narily long [441].

To assess the dimensionality of the boundary between the basin of the y = +∞
attractor and the symmetry-breaking-induced basin, we fix a line segment at y = y0,
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where | ε |� y0 < 1, and examine the set of intersecting points with it of the basin
boundary. Let d0 be the box-counting dimension of this set. We expect 0 < d0 ≤ 1
and the dimension of the boundary to be Db0 = 1 + d0 in the two-dimensional
phase space. For a riddled basin, Db0 is the phase-space dimension. Here, de-
spite the presence of a small amount of symmetry-breaking, Db0 is still close to 2.
Thus, in a practical sense, the symmetry-breaking-induced fractal basin resembles
a riddled one.4

It can be shown, utilizing the solution to the diffusion equation (5.33) [441, 565,
567], that the uncertainty exponent is independent of the symmetry-breaking param-
eter ε and is given by

α =
ν2

4Qλ1
, (5.42)

where λ1 is the Lyapunov exponent on the original attractor A in the invariant
subspace. Thus, in the regime where ν ≈ 0 (but ν �= 0), so that the diffusion approx-
imation is valid, we expect α ≈ 0 and hence d0 ≈ 1, leading to

Db0 = 2− ν2

4Qλ1
.

A fractal basin boundary with dimension close to that of the phase space (or a
near-zero uncertainty exponent) means that the uncertainty probability remains
approximately constant, regardless of how accurately we can specify the initial
condition. Thus, realistically, it is impossible to predict, from a given initial con-
dition, the asymptotic attractor. This fundamental obstacle to prediction is common
for riddled basins and persists even when the riddled basin is replaced by a fractal
one due to symmetry-breaking.

4 Since very close to a boundary arises the chaotic saddles’s stable manifold is nearly space-filling,
the set of initial conditions leading to long transients also exhibits riddled-like behavior [834]
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