
Chapter 11
Controlling Transient Chaos and Applications

Besides the occurrence of chaos in a large variety of natural processes, chaos may
also occur because one may wish to design a physical, biological, or chemical ex-
periment, or to project an industrial plant to behave in a chaotic manner. That chaos
may indeed be desirable is further evidenced by the fact that it can be controlled
using small perturbation of some accessible parameter or dynamical variable of the
system.

The key ingredient for the control of chaos is the observation that any chaotic set
has embedded within it a large number of unstable periodic orbits of low periods.
Because of ergodicity, the trajectory visits or accesses the neighborhood of each
one of these periodic orbits. Some of these periodic orbits may correspond to de-
sired system performance according to some criterion. The second ingredient is the
realization that chaos, while signifying sensitive dependence on small changes to
the current state, thereby rendering the system state unpredictable over long times,
implies that the system’s behavior can be altered using small perturbations. The ac-
cessibility of the chaotic system to many different periodic orbits combined with
its sensitivity to small perturbations allows for the control and manipulation of the
chaotic process. Specifically, the Ott–Grebogi–Yorke (OGY) approach [566] is as
follows. One first determines some of the unstable low-period periodic orbits that
are embedded in the chaotic attractor. One then examines the locations and the sta-
bilities of these orbits and chooses one that yields the desired system performance.
Finally, one applies small controls to stabilize this desired periodic orbit. A partic-
ularly appealing feature of the OGY approach is that control can be achieved based
on data using nonlinear time series analysis for the observation and understand-
ing of the system. This is important, since chaotic systems can be complicated and
equations of the process are often unknown.

Since the seminal paper on the OGY paradigm there has been a tremendous
amount of research on controlling chaos. The focus of this chapter is on control-
ling transient chaos. We shall present the basic idea and methodology of controlling
the dynamics on nonattracting chaotic sets. The existence of transient chaos makes
a new type of control possible, i.e., to convert transient chaos into permanent chaos
via small and infrequent perturbations. The methods of maintaining chaos will
be reviewed. We will then consider applications: voltage collapse and prevention,
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and how to prevent species extinction. An algorithm for maintaining chaos in the
presence of noise will also be presented, as well as a method of encoding digital
information using transient chaos.

11.1 Controlling Transient Chaos: General Introduction

11.1.1 Basic Idea and Method

It is possible to control motion on a nonattracting chaotic set to convert transiently
chaotic dynamics into periodic dynamics by stabilizing one of the infinite number
of unstable periodic orbits embedded in the set. The feature of this type of control
is that it stabilizes an orbit that is not on the actual attractor of the system. One thus
selects an atypical behavior that cannot be revealed by a long-time observation of
the unperturbed motion. This type of control is effectively stabilizing a metastable
state. To be specific, we shall discuss the control method in the OGY paradigm [566]
because it leads to an algorithm capable of carrying out the finest possible selection
of the target orbit to be stabilized and applying the weakest possible perturbation.
Other methods [79,123,667,694,785], e.g., the delayed feedback-control method of
Pyragas [617], are also applicable. To be concrete, we focus on invertible dynamical
systems.

To achieve control of transient chaos, one has to use an ensemble of trajectories
[767] because any randomly chosen initial point leads to a trajectory that escapes
any neighborhood of the saddle in finite time. This ensemble is typically chosen
to start from a compact region having intersections with the stable manifold of the
chaotic saddle. One also selects a target region I containing a predetermined unsta-
ble periodic orbit on the chaotic saddle. Then the ensemble of trajectories start to
evolve, and one waits until a trajectory enters the target region to activate control.
The control perturbation is adjusted with time so as to stabilize the periodic orbit.
Only small local perturbations are allowed, smaller in size than some value δ , the
maximum allowed perturbation. In general, δ is proportional to the linear extension
of the target region [566].

To illustrate the OGY method, we shall use a two-dimensional map with p as an
externally accessible control parameter [767]. We restrict parameter perturbations
to be small, i.e., |p− p| < δ , where p is some nominal parameter value, and δ � 1
defines the range of parameter variation. We wish to program the parameter p so that
a chaotic trajectory is stabilized when it enters an ε-neighborhood of the target peri-
odic orbit. Without loss of generality, we assume that the target orbit is an unstable
fixed point embedded in the chaotic saddle, denoted by xF(p). The location of the
fixed point in the phase space depends on the control parameter p. Upon application
of a small perturbation Δp, we have p = p+Δp. Since Δp is small, we expect xF(p)
to be close to xF(p), and write

xF(p) ≈ xF(p)+ gΔp, (11.1)
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where g is a vector given by

g ≡ ∂xF

∂ p
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∣

p=p
≈ xF(p)−xF(p)

Δp
. (11.2)

The vector g needs to be determined before a control law can be applied to stabiliz-
ing the fixed point xF(p).

To formulate a control law, we make use of the fact that the dynamics of any
smooth nonlinear system is approximately linear in a small neighborhood of a fixed
point. Thus, near xF(p), we have

xn+1 −xF(p) ≈ J[xF(p)] · (xn −xF(p)) , (11.3)

where J[xF(p)] is the 2×2 derivative matrix of the map f(x, p) evaluated at the fixed
point xF(p), defined as
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Δp. (11.4)

Note that Δp∼ ε and |xn−xF(p)| ∼ ε , where ε is the size of the small neighborhood
in which the linear approximation (11.3) is valid. Substituting (11.1) and (11.4) into
(11.3), and keeping only terms that are of first order in ε , we obtain

xn+1 −xF(p) ≈ gΔp + J[xF(p)] · [xn −xF(p)−gΔp] . (11.5)

Since xF(p) is embedded in the chaotic saddle, it has one stable and one unstable
direction. Let es and eu be the stable and the unstable unit eigenvectors at xF(p),
respectively, and let fs and fu be two unit vectors that satisfy fs ·es = fu ·eu = 1 and fs ·
eu = fu ·es = 0 (relations by which the vectors fs and fu can be determined from the
eigenvectors es and eu), which are the contravariant basis vectors associated with the
eigenspaces es and eu [566]. The derivative matrix J[xF(p)] can then be written as

J[xF(p)] = λueufu + λsesfs, (11.6)

where λs and λu are the stable and the unstable eigenvalues in the eigendirections
es and eu, respectively.

When the trajectory point xn falls into the small ε-neighborhood of the desired
fixed point xF(p), (11.3) becomes valid. A small parameter perturbation Δpn can
there be applied at time n to make the fixed point shift slightly so that at the next
iteration (n + 1), xn+1 falls on the stable direction of xF(p):

fu · [xn+1 −xF(p)] = 0. (11.7)
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For sufficiently small xn−xF(p) we can substitute (11.5) into (11.7) to obtain Δpn =
cn, where cn is given by

cn =
λufu · [xn −xF(p)]

(λu −1)fu ·g ≡ C · [xn −xF(p)] . (11.8)

We assume in the above that the generic condition g · fu �= 0 is satisfied, so cn can be
calculated. Once xn+1 falls on the stable direction of xF(p), we can set the control
perturbation to zero, and the trajectory for subsequent time will approach the fixed
point at the geometrical rate λs.

The considerations above apply only to a local small neighborhood of xF(p).
Globally, one can specify the parameter perturbation Δpn by setting Δpn = 0 if |cn|
is too large, since the range of the parameter perturbation is limited to be small.
Thus, practically, we have

Δpn =

{

cn, if |cn| < δ ,

0, if |cn| ≥ δ .
(11.9)

In this way, in the definition of cn in (11.8), it is unnecessary to restrict the quantity
|xn −xF(p)| to be small.

Figure 11.1 shows an example [767] of controlling a fixed point on the Hénon
chaotic saddle in comparison with the uncontrolled trajectory. We see that the con-
trolled motion is not a part of the asymptotic dynamics [605, 606, 792].

11.1.2 Scaling Laws Associated with Control

There are scaling laws characterizing the ensemble of trajectories in the limit of
a small allowed perturbation δ . Many of the trajectories approach the asymptotic
attractor before entering the target region enclosing the periodic orbit to be stabilized
on the chaotic saddle. Short transients are therefore irrelevant for the controlling
process, but trajectories with lifetimes significantly larger than 1/κ are unprobable.
As a result, the average time τc needed to achieve control is independent of δ and is
limited from above by the chaotic lifetime τ ≈ 1/κ for some values of δ :

τc ≤ 1/κ . (11.10)

Because of the escape, only a small portion of all trajectories can be controlled.
When the target region is a disk, the number of controlled trajectories N(δ ) de-
creases with decreasing δ according to the power law [767]:

N(δ ) ∼ δ γ(κ), (11.11)

where the exponent γ(κ) depends on the escape rate of the saddle. The number of
controlled trajectories is proportional to the c-measure μc(I) of the target region I.
The c-measure is smooth along the unstable direction, so the measure μc of a region
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Fig. 11.1 For the Hénon map at parameters a = 1.45, b = 0.2, where the attractor is a period-5
cycle, (a) a transiently chaotic time series. The trajectory ceases to be chaotic at about the 38th
time step, where it enters the neighborhood of the period-5 attractor. (b) Controlled signal started
from the same initial point. The Hénon map has the form given in the caption of Fig. 5.9 with
a = 1.45+ pn, J = −b, where the maximum allowed perturbation is δ = 0.1. The fixed point is at
xF = yF = 0.868858. Control sets in at the 26th step, and the fixed point on the saddle is stabilized
[767] (with kind permission from Institute of Physics)

of size l1 and l2 along the unstable and the stable direction, respectively, scales
according to (2.89). For l1 ∼ l2 ∼ δ , the scaling exponent is given by

γ(κ) = 1 + α2(κ), (11.12)

where α2(κ) is the crowding index along the stable direction. In the particular case
in which the target region contains a fixed point, the exponent γ(κ) is (2.91):

γ(κ) = 1 +
λ ∗

1 −κ
| λ ∗

2 | , (11.13)
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where λ ∗
i (i = 1,2) are the local Lyapunov exponents of the fixed point to be

stabilized (λ ∗
1(2) = ln | λu(s) |).

When applying the OGY method to controlling permanent chaos, the scaling
properties of an ensemble of N0 trajectories are different. The average time τc

needed to achieve control is a function of the linear size of the target region, which
is proportional to the maximum allowed perturbation δ . It was pointed out [566]
that τc(δ ) increases algebraically as δ is decreased,

τc(δ ) ∼ δ−γ , for δ � 1, (11.14)

where γ > 0 is a characteristic exponent. This scaling law shows that the dynam-
ics of reaching the target region is itself a kind of transient chaos. The process of
control can be interpreted as leaking a closed chaotic system at the target region
(Sect. 2.7). The time needed to achieve control is thus the average lifetime of the in-
variant chaotic saddle of the leaked system. For small leak sizes the lifetime scales
as the inverse of the natural measure μ of the leak. We have

γ = 1 + α2, (11.15)

where α2 = λ ∗
1 / | λ ∗

2 | is the crowding index along the stable direction of the
chaotic set in the closed system.1 However, the number N(δ ) of controlled trajec-
tories is fixed, N(δ ) = N0, since all N0 trajectories of the ensemble are controlled
sooner or later.

The scaling laws in the control of permanent and transient chaos thus appear to
be the two extremes of a general process, where for the former, N(δ ) is constant,
but for the latter, τc(δ ) is constant. There exists a unifying relation between N(δ )
and τc(δ ) that holds in both cases [769]. The key observation is that the number of
controlled trajectories in the entire process is proportional to the average number of
trajectories controlled per unit time multiplied by the average time needed to achieve
control. The average number of trajectories controlled per time step is proportional
to the probability of falling in the target region. For small regions this is proportional
to the c-measure of the target region in the uncontrolled system. Since the latter
scale as δ γ or δ γ(κ), the number of trajectories controlled per time step follows the
scaling law

N(δ )
τc(δ )

∼ δ γ(κ), (11.16)

which is valid for both permanent (κ = 0) and transient (κ > 0) chaos.

1 For a larger target region, the exponent γ depends strongly on the location of I even if μ(I) is
kept constant [101, 103, 571, 572, 574]. From the general theory of leaked systems (cf. Sect. 2.7),
this can be understood as being due to the complicated overlap of the leak with its preimages.
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11.1.3 Remarks

11.1.3.1 Controlling Fractal Basin Boundaries

An immediate application is the control of motions on a fractal basin boundary
[418, 434, 706], which contains a chaotic saddle whose stable manifold constitutes
the boundary. One can then control a desirable periodic orbit in the saddle. By ap-
plying weak control perturbations, a hyperbolic orbit on the basin boundary can be
converted into an attracting orbit [418]. The methodology is potentially important in
applications where periodic driving can result in a catastrophic failure of the system.
A particular example is ship capsizing, where the method of controlling motion on
fractal basin boundaries was computationally tested to prevent chaos-induced ship
capsizing even in cases where the driving due to environmental influences (e.g.,
waves) is not periodic but has a substantially irregular (chaotic) component [195].

An alternative method for steering most trajectories to a desirable attractor is to
build a hierarchy of paths to it and then stabilize trajectories around one of the paths
in the hierarchy [434]. A pronounced improvement in the probability for a random
trajectory to approach a desirable attractor can be achieved when there are fractal
basin boundaries or riddled basins.

11.1.3.2 Controlling Chaotic Scattering

A feature of chaotic saddles in Hamiltonian systems is that they typically contain a
nonhyperbolic component where the local Lyapunov exponents are arbitrarily close
to zero (Sect. 6.4). A problem is to investigate the influence of the nonhyperbolic
component on the control process. If one selects a periodic orbit close to a KAM
surface, the time to achieve control is usually long due to the stickiness effect.
Numerical investigation showed [453] that the average time to achieve control could
be an order of magnitude longer than the average chaotic lifetime on the hyperbolic
component.

In general, controlling a collisional scattering process means stabilizing the inter-
mediate complexes of a reaction that would otherwise be of finite lifetime. Although
KAM surfaces can be important for the controlling process, the qualitative behavior
of the controlled ensemble is similar to that of a fully hyperbolic system.

11.1.3.3 Improved Method of Controlling a Chaotic Saddle

As we have seen, a major difference between stabilizing unstable periodic orbits
embedded in a chaotic attractor and in a chaotic saddle is that for the attractor, the
probability that a chaotic trajectory enters the neighborhood of the desired unstable
periodic orbit is one, while for transient chaos, only a small set of initial conditions
can be controlled, since most trajectories will have already left the chaotic saddle
before entering the neighborhood of the target periodic orbit. An issue is how to
maximize this probability of control of transient chaos. A useful observation is that
there exists a dense chaotic orbit in the saddle that comes arbitrarily close to any
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target unstable periodic orbit. Such a dense orbit is the complement of the set of
all unstable periodic orbits in the saddle, and can be numerically obtained by the
PIM-triple method (Sect. 1.2.2.4). The probability that a trajectory approaches this
orbit can be significantly larger than the probability that the trajectory enters the
neighborhood of the target unstable periodic orbit, if the reference orbit is long. By
stabilizing a trajectory about the reference orbit first, and then switching to stabilize
it about the target periodic orbit after the trajectory comes close to it, we can increase
substantially the probability that a trajectory can be controlled [447, 461]. This can
indeed be achieved, since there exist stable and unstable directions at each point of
the reference orbit on the chaotic saddle. Hence in principle, controlling a trajectory
near the reference orbit is equivalent to stabilizing a long unstable periodic orbit.
The longer the length of the reference orbit, the larger the probability of controlling
periodic orbits.

11.2 Maintaining Chaos: General Introduction

The conversion of transient chaos into permanent chaos is called chaos maintenance
or preservation, and the basic ideas date back to the work of Yang et al. [840],
Schwartz and Triandaf [697], and Kapitaniak and Brindley [383]. The term partial
control of chaos is also in use [849], since the algorithms do not determine exactly
where the trajectory goes around a nonattracting chaotic set. The practical relevance
of this approach is due to the fact that there are systems that require chaos in order to
function properly. Notable examples are mechanical systems in which the avoidance
of resonance via chaos is desirable [697], advection in fluids where complete stirring
can be achieved only via permanent chaos (cf. Chap. 10), and biological systems in
which the disappearance of chaos may signal pathological phenomena (see point (2)
of Sect. 4.4.3). Under certain conditions, simple regular attractors may appear, and
it is then important to intervene in order to maintain chaos. Later in this chapter we
shall investigate two examples in detail in which maintenance of chaos is useful:
preventing voltage collapse (Sect. 11.3) and species extinction (Sect. 11.4).

11.2.1 Basic Idea

The aim is to intervene the dynamics in such a way as to keep chaotic behavior alive
in situations in which it would naturally be absent. In fact, stabilizing a trajectory
about a reference orbit on a chaotic saddle, which can enhance the probability of
converting a transiently chaotic behavior into a periodic one, as described in the last
subsection, can be considered as an attempt to maintain chaos if the reference orbit is
long. Other types of algorithms are based on the observation that systems exhibiting
transient chaos have special regions in their phase spaces, called loss regions or
escape regions. They are identified by the property that after the orbit enters such
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a region, it immediately ceases its chaotic motion, i.e., it is rapidly drawn to some
simple attractor. Examples of loss regions are the primary escape interval I0 of open
one-dimensional maps (see Fig. 2.1) and the area bounded by the outermost branch
of the chaotic saddle’s unstable manifold and the outermost branch of its stable
manifold (cf. the shaded area AB in Fig. 3.12).

The strategy can be formulated straightforwardly for map f(xn, p), where p de-
notes the parameter whose temporal change will be used to maintain chaos. After
identifying a loss region L, one considers the preimages Lm of this region under the
unperturbed map f(xn, p̄), where p̄ is the nominal parameter value. The set Lm is
thus the set of points mapped onto the loss region in m iterates, and the width of
Lm decreases exponentially along the unstable direction(s) as m increases. Yang et
al. [840] suggested the following approach. Pick a large value M of m and consider
the preimages of the loss region up to level M + 1. If the unperturbed orbit lands in
LM+1 on iterate n, one applies a control parameter pn (different from p̄) in order to
kick the orbit out of LM on the next iterate. Since LM is thin, the required change
Δpn = pn − p̄ is small. After the orbit is kicked out of LM , it is likely to execute a
chaotic motion. Due to the fractal structure of the nonattracting set, the orbit falls
with probability one outside this chaotic set, i.e., in a region Lr with r > M. Long
chaotic sequences are expected if r happens to be much larger than M. After some
time, the orbit falls again in LM+1 when a small control is activated, and so on.

The amount of the control parameter shift Δpn at the nth step can be estimated
by using the sensitivity vector (11.2) evaluated in the loss region and its preimages.
By assuming that this vector is approximately a constant ḡ over these regions, and
using the maximum width dM of region LM , one finds that

Δpn ≈ dM

| ḡ | , (11.17)

which is a small number for M 
 1. These ideas were successfully applied to main-
taining chaos in different models [840], and also in an experiment in which the
intermittent signal of a megnetomechanical ribbon [350] was converted into a nonin-
termittent chaotic signal. This means that chaos was maintained on a chaotic saddle
lying outside a marginally stable periodic orbit.

11.2.2 Maintaining Chaos Using a Periodic Saddle Orbit

The method proposed by Schwartz and Triandaf [697] (see also [698]) can be ap-
plied to situations in which the chaotic attractor of an invertible system has been
destroyed in a crisis (Chap. 3). (The parameter whose change leads to crisis is not
necessarily the same as the parameter p that will be used in the control process.)
The system may then exhibit transient chaos until it reaches the periodic saddle
point mediating the crisis. If the trajectory happens to fall on one side of the stable
manifold of this mediating orbit, it directly approaches a periodic attractor. On the
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other side of the stable manifold, however, it has chances to return to the chaotic
saddle appearing there as the remnant of a former chaotic attractor. We shall call
this side of the manifold the chaotic side. Once the trajectory enters a neighborhood
of the saddle orbit, a small perturbation in parameter p is applied to ensure that the
trajectory falls on the chaotic side in the next step.2 To optimize chaos maintenance,
one can use the distribution of lifetimes to select a target point xtar lying close to the
mediating orbit with a particularly long lifetime, which ensures that perturbations
should be applied only rarely.

In a two-dimensional map, the local dynamics around a saddle point can be ap-
proximated by equations (11.5) and (11.6). Note, however, that the hyperbolic fixed
point xF is now the mediating orbit and not an unstable point inside the saddle as in
Sect. 11.1. The required amount of control Δpn at time instant n when the trajectory
happens to be close to the mediating orbit can be obtained from these equations by
requiring xn+1 = xtar. After a multiplication of (11.5) by fs, one obtains

Δpn =
fs · [λs(xn −xF(p))− (xtar −xF(p))]

(λs −1)fs ·g . (11.18)

The required control is thus proportional to λs[xn −xF(p)− (xtar −xF(p))].
The method can be extended to higher dimensions and has successfully been

applied by In et al. [351] to maintain chaos in a magnetoelastic ribbon experiment,
as shown in Fig. 1.22. The perturbation leads to permanent chaos in a system in
which the natural attractor would be periodic.

11.2.3 Practical Method of Control

In [185], a practical method was suggested for converting transient chaos into sus-
tained chaos, based on measured time series. In contrast to the situation of chaotic
attractors, these time series consist of short segments of chaotic oscillations ex-
hibiting a number of local maxima and minima. Let en (n = 1, . . . ,L) be the set
of extrema (maxima or minima) from one measured segment of one dynamical
variable x(t). In order to detect the underlying dynamics, an ensemble of tran-
sient chaotic trajectories from a large number of random initial conditions can be
used, each yielding a number of points in the en+1 versus en plot. As a crude ap-
proximation, the dynamics of the underlying system can be represented by a map
en+1 = M(en), where if the underlying dynamics is approximately one-dimensional,
M(e) is a one-dimensional smooth curve. For higher-dimensional dynamics, the plot
M(e) typically exhibits some complicated structure. It is possible to identify regions
of the plane en = (en,en+1) in which the chaotic saddle lies, and a loss region where

2 If the perturbation is chosen so that the trajectory falls on the other side, one can speed up the
escape process to the simple attractor and can reduce the average lifetime of chaos [383].
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escape from the chaotic saddle occurs. Thus, by applying a small perturbation to
an accessible set ({en}) of dynamical variables at a time when the trajectory is in
the escape region, chaotic motion can also be maintained for a finite period of time.
The difference between this approach and that of the previous subsections is that the
region is identified here only in the two-dimensional plane (en,en+1), and not in the
full phase space. Because of this, information about target points in this method is
incomplete. The situation can be improved if more dynamical variables are experi-
mentally accessible [185].

11.3 Voltage Collapse and Prevention

We present an example of application of maintaining chaos: voltage collapse in
electrical power systems and prevention. We shall describe a model system and
demonstrate that voltage collapse is typically preceded by transient chaos. A prac-
tical control method will then be discussed to convert transient chaos into sustained
chaos, thereby preventing voltage collapse while at the same time preserving the
natural dynamics of the system.

11.3.1 Modeling Voltage Collapse in Electrical Power Systems

Electrical power systems are essentially nonlinear dynamical systems. Most major
power-system failures in the past were reported to be caused by the dynamic re-
sponse of the system to disturbances [132, 200]. Voltage collapse occurs when the
system is heavily loaded. In such a case, dynamical variables of the system, such as
various voltages, fluctuate randomly for a period of time before collapsing to zero
suddenly, leading to a complete blackout of the system. Due to an ever-increasing
demand for electrical power, there is an interest in operating the power system near
the edge of its stability boundary. As a consequence, the system becomes highly
nonlinear and can exhibit chaotic behaviors. One possible mechanism for voltage
collapse is then as follows. The system operates in a parameter region where there
is a chaotic attractor. A disturbance or a temporal overload causes a shift in a system
parameter so that a boundary crisis occurs, after which the system exhibits transient
chaos, leading to a voltage collapse. To understand the phenomenon of voltage col-
lapse, Dobson and Chiang [132, 200] introduced a model power system consisting
of a generator, an infinite bus, a nonlinear load, and a capacitor in parallel with the
nonlinear load. Subsequently, Wang and Abed pointed out that the presence of the
capacitor could cause an increase in the reactive power demand of the load to almost
practically unreachable values even in normally encountered parameter regimes.
A modified model was proposed [818, 819], which is mathematically described by
the following set of differential equations:
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δ̇m = ω , (11.19)

0.01464ω̇ = −0.05ω + 1.0−5.25V sin(δm − δ ),
−0.03δ̇ = −2.1V 2 + 2.8V + Q(δm,δ ,V )−0.3−Q1,

−0.0765V̇ = 0.84V 2 −1.204V −0.03 [P(δm,δ ,V )−0.6]
−0.4[Q(δm,δ ,V )−0.3−Q1],

where the dynamical variables δm, ω , δ , and V are from circuit analysis, Q1, the
load, is a bifurcation parameter, and P(δm,δ ,V ) and Q(δm,δ ,V ) are the real and
reactive powers supplied to the load by the network, which are nonlinear functions
of their variables [818, 819]. A bifurcation analysis indicated [185] that there is a
period-doubling cascade to chaos, and a crisis occurs at Q1c ≈ 2.56037833, after
which the chaotic attractor is converted into a chaotic saddle. The range for the
attractor is relatively small. Suppose the system operates at some value of Q1 before
the crisis. A small change in Q1 can push the system over the crisis where there is
transient chaos. A voltage collapse can then occur. Figure 11.2 shows a time series
V (t) for Q1 = 2.5603784 > Q1c, where V (t) goes to zero suddenly after about 80
time units.

How to prevent voltage collapse? A possible approach is to reduce the load Q1

to bring the system back into the parameter regime where there is an attractor. In
a practical situation, however, it may not be feasible to change the load of an elec-
trical power system in a relatively short time. One viable strategy is then to control
transient chaos.

Fig. 11.2 A typical example of voltage collapse in the power system (11.19) [185] (copyright
1999, the American Physical Society)
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11.3.2 Example of Control

Figure 11.3a shows the return map obtained from the local minima of V (t) for
Q1 = 2.5603784 > Q1c. There is a primary escape interval below which V (t) goes
to zero quickly, as shown in Fig. 11.3b. The vertical lines denote the regions from
which target points are chosen. The escape interval corresponds to an escape re-
gion on the chaotic saddle. In contrast, before the crisis, there is no such gap in
the return map. To achieve control in the regime of transient chaos, a set of 3,000
target points was selected [185] in the vicinity of the escape interval with long
lifetime. Figure 11.4 shows the lifetime versus the value of local minima. The
plot is not smooth and contains an infinite number of singularities correspond-
ing to points on the stable manifold of the chaotic saddle. This singular structure
renders selection of desired target points possible. Each target point contains the

Fig. 11.3 Return map constructed from the local minima of V (t): (a) after the crisis for Q1 =
2.5603784; and (b) a magnification of part of (a) near the cusp. There is a primary escape interval,
enclosed between lines II and III, through which a trajectory approaches asymptotically the state
with V = 0 (voltage collapse). Two regions to the left (I – II) and to the right (III – IV) of the
gap are the regions from which target points can be chosen for control [185] (copyright 1999, the
American Physical Society)
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Fig. 11.4 Lifetime versus the local minima of V (t) in the return map. The plot contains an infinite
number of singularities corresponding to points on the stable manifold of the chaotic saddle [185]
(copyright 1999, the American Physical Society)

values of the four dynamical variables in (11.19), although V (t) is always at a
local minimum. The set of target points is then stored for computing the control
perturbation. When an actual trajectory falls into the escape interval, the computer
selects a target point such that the required perturbation to kick the trajectory onto
the target point is minimal. Perturbations can be applied to the dynamical variables
x directly. Or if there is an accessible system parameter p that can be adjusted,
perturbations can be applied to the parameter based on the difference between the
trajectory point in the escaping window and the target point: Δp = (∂x/∂ p)|targetΔx.
In the power-system model (11.19), since all four dynamical variables can be per-
turbed, it is convenient to apply control directly to these variables. An example
of control is shown in Fig. 11.5a, a controlled voltage signal V (t). The required
control perturbations are shown in Fig. 11.5b. In the time interval shown, only
four small perturbations are required to sustain transient chaos. In general, the
average time interval for applying perturbations is approximately the average life-
time of the chaotic saddle. Perturbations are required only when the system drifts
into the regime of transient chaos, since transient chaos is the culprit of voltage
collapse.

A key question in any scheme of controlling transient chaos concerns the proba-
bility of a typical trajectory being controlled.3 Since the system performs normally
before the collapse and since control is activated only when V (t) falls into the escape

3 We address initial conditions only in the original basin of the attractor because, before the col-
lapse, the system performs normally and operates in the precrisis regime. We are not concerned
with initial conditions outside the basin, although they usually yield trajectories leading to V = 0.
A voltage collapse can thus be regarded as a catastrophic event. Our control method is applicable
to preventing this type of catastrophe.
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Fig. 11.5 An example of controlling transient chaos to prevent voltage collapse: (a) a controlled
time series V (t); and (b) required control perturbations. Apparently, only infrequent perturbations
are needed to prevent voltage collapse [185] (copyright 1999, the American Physical Society)

interval, almost all trajectories can be controlled [185]. This implies that voltage col-
lapse can be effectively prevented by controlling transient chaos.

11.4 Maintaining Chaos to Prevent Species Extinction

We consider the problem of species extinction in ecological systems, which can
occur as a consequence of deterministic transient chaos even in the absence of
external disturbances. Controlling transient chaos by applying small, ecologically
feasible perturbations to the populations at appropriate but rare times thus provides
a possibility for preventing species extinction.
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11.4.1 Food-Chain Model

Extinction of species has been a mystery in nature [604]. A common belief about
local extinction is that it is typically caused by external environmental factors such
as sudden changes in climate. For a species of small population size, small random
changes in the population (known as “demographic stochasticity”) can also lead to
extinction. How species extinction occurs is extremely complex, since each species
typically lives in an environment that involves interactions with many other species
(e.g., through competition for common food sources, predator–prey interactions,
etc.) as well as physical factors such as weather and environmental disturbances.
From a mathematical point of view, a dynamical model for the population size of
a species is complex, involving temporal and spatial variations, external driving,
and random perturbations. Such a system should, in general, be modeled by nonlin-
ear partial differential equations with random and/or regular external driving forces.
A difficulty associated with this approach is that the analysis and numerical solution
of stochastic and/or driven nonlinear partial differential equations present a chal-
lenging problem.

Nonetheless, in certain situations the mathematical model for species extinc-
tion can become simpler. For example, it was suggested by McCann and Yodzis
[510] that deterministic chaos in simple but plausible ecosystem models, mathe-
matically described by coupled ordinary differential equations, can provide a hint
as to how local species extinction can arise without the necessity of considering
temporal or spatial variations and external factors. The key observation is that the
population dynamics of a large class of ecosystems can be effectively modeled by
deterministic chaotic systems [317,339,507,508]. It was shown [510] that transient
chaotic behavior responsible for species extinction can indeed occur in a simple
three-species food-chain model that incorporates biologically reasonable assump-
tions about species interactions [316]. The model involves a resource species, a prey
(consumer), and a predator [510], and is given by

dR
dt

= R

(

1− R
K

)

− xCyCCR
R + R0

, (11.20)
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(
yCR

R + R0
−1

)

− xPyPPC
C +C0
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dP
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= xPP

(
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yPC

C +C0

)

,

where R, C, and P are the population densities of the resource, the consumer, and
the predator, respectively; K is the resource carrying capacity; and xC, yC, xP, yP,
R0, and C0 are parameters.

The biological assumptions of the model are as follows: (1) the life history
of each species involves continuous growth and overlapping generations, with no
age structure, permitting the use of differential equations; (2) the resource pop-
ulation R grows logistically; (3) each consumer species (immediate consumer C,
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predator P) without food dies off exponentially; (4) each consumer’s feeding rate,
e.g., xCyCR/(R+R0), saturates at high food levels. The resource population R, grow-
ing alone, equilibrates at its carrying capacity K. The resource population and the
intermediate consumer, without the predator, either settles to a stable equilibrium
or a stable limit cycle, a kind of “biological oscillator.” The oscillations are gener-
ated by the saturating feeding response, which permits the resource to periodically
“escape” control by the consumer. With the top predator, there are in a sense two
coupled oscillators in the food chain. A system of coupled oscillators can typically
give rise to chaotic dynamics.

11.4.2 Dynamical Mechanism of Species Extinction

How species extinction can occur in the model can be revealed by a bifurcation anal-
ysis [510]. In particular, a chaotic attractor can arise via the period-doubling route
and is then destroyed through boundary crisis, say at K = Kc. None of the popu-
lations corresponding to trajectories on the chaotic attractor is extinct, because the
attractor is located in a phase-space region away from the origin, (R,C,P)= (0,0,0).
In this parameter range, however, there is also a limit-cycle attractor, located in the
plane P = 0, which coexists with the chaotic attractor. Trajectories on the limit-cycle
attractor correspond to the situation in which the predator population is extinct. For
K slightly less than Kc, depending on the choice of the initial condition, the system
either approaches the chaotic attractor or the limit cycle with P = 0. For K slightly
below Kc, there is still a finite distance from the tip of the chaotic attractor to the
basin boundary. Thus, for any initial condition chosen in the basin of the chaotic
attractor, the population of the predator P(t) behaves chaotically in time but never
decreases to zero, because the attractor lives in a region where P(t) �= 0. In this case,
the predator never becomes extinct.

As the carrying capacity K increases through the critical value Kc, the predator
will eventually become extinct for almost all initial conditions. This is quite coun-
terintuitive, but it can be understood from the dynamics. At K = Kc, the tip of the
chaotic attractor touches the basin boundary (as in Fig. 3.2), creating “holes” on the
basin boundary through which trajectories can now leak and enter the basin of the
limit-cycle attractor with P = 0. Species extinction can thus occur as the result of
transient chaos.

11.4.3 Control to Prevent Species Extinction

One way to prevent extinction is to decrease the resource carrying capacity K so
that the sustained chaotic motion on the attractor is restored. But ecologically, it
may not be feasible to adjust the carrying capacity of an environment, and even
if this can be done, it may take some time to accomplish after detecting that the
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predator population is in danger. The predator may already have become extinct
before the carrying capacity can be changed. An alternative approach was proposed
to restore sustained chaotic motions without the need to vary the carrying capacity
of the environment but instead, by making use of the idea of maintaining chaos via
small feedback controls (Sect. 11.2).

One can identify the “dangerous” escape regions surrounding the collision points
between the chaotic attractor and the basin boundary by monitoring the populations
of R, C, and P. If it is determined that the populations are close to a dangerous re-
gion, small but judiciously chosen perturbations to the populations are applied to
guarantee that no immediate exit from the hole occurs. By targeting a set of points
in the escape region for which the trajectory maps back to the region of recurrent
chaotic motion, one can compute the required perturbations. Usually the perturba-
tions need to be applied only rarely. This technique may be of practical use: by
applying small but occasional adjustments to the population at appropriate times
estimated from time series, species extinction can be prevented. From an ecologi-
cal point of view, it may be more feasible to make small adjustments to the local
populations than to change the carrying capacity of the environment.

A potential problem in designing the control algorithm based on the map derived
from a Poincaré surface of section is that a substantial fraction of trajectories escape
and approach the limit cycle at P = 0 without even being controlled. The reason is
that it usually takes a long time for a trajectory to return to the surface of section.
In the case of transient chaos, a trajectory, because of its finite lifetime, may never
pierce through the surface of section before exiting. The following approach was
proposed [716] to maintain sustained chaotic motion for almost all transient chaotic
trajectories. A critical two-dimensional plane in the three-dimensional phase space
(R,C,P) is identified: P = Pcrit = constant, which separates the region of recurrent
chaotic motions from the region in which the dynamics is such that the population
P(t) goes directly to zero. This plane need not be the basin boundary, nor is it a
Poincaré surface of section. The criteria for choosing this plane are these: (1) eco-
logically, it is chosen with respect to the population that can become extinct; and
(2) dynamically, it should be sufficiently close to the originally recurrent chaotic
region. The plane P = Pcrit thus represents a critical level of the endangered popu-
lation at which human intervention must be introduced to prevent the extinction of
the species P. The concept of a “threshold population size” may provide a useful
rule of thumb for manipulating the dynamics, and similar ideas were actually used
in conservation theory [270]. That the critical plane is chosen close to the recurrent
chaotic region indicates that arbitrarily close to but above the critical plane, there ex-
ists an infinite number of points in the phase space, trajectories starting from which
can resume recurrent chaotic motions for at least a finite amount of time. These con-
siderations are illustrated [716], for example, in Fig. 11.6, where the lifetime span
is plotted for trajectories resulting from a grid of 500× 500 points chosen from a
two-dimensional region in the (R,P) plane at C = 0.5. Here, the lifetime is defined
to be the time that the trajectory spends in the phase-space region with P(t) > Pcrit.
For this example, a simple search procedure leads to the choice of a critical plane
at Pcrit = 0.57. In Fig. 11.6, the yellow and red spots represent points with greater
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Fig. 11.6 Lifetime plot of trajectories resulting from a grid of 500× 500 points chosen from a
two-dimensional region in the (R,P) plane at C = 0.5, where the lifetime is defined to be the
time that the trajectory spends in the phase-space region with P(t) > Pcrit = 0.57. Brighter col-
ors indicate longer lifetime. Model parameters are xC = 0.4, yC = 2.009, xP = 0.08, yP = 2.876,
R0 = 0.16129, and C0 = 0.5 [510]. The bifurcation parameter is set to be K = 1.02 > Kc so that
there is transient chaos [716] (with kind permission from Elsevier Science)

lifetimes than the blue spots. It can be seen that the distribution of the lifetime is
highly nonuniform, due to the fractal structure of the natural measure of the chaotic
saddle.

The setting of a critical plane and the fact that there exists an infinite number
of “hot” spots with long chaotic lifetimes provide us with a feasible way to de-
sign intervention or control. Say the population P(t) falls slightly below the critical
level at time t. Let (R−,C−,P−) be the values of the state variables at this time,
where P− is slightly less than Pcrit, and let (R+,C+,P+) be the values of the state
variables a little before t, where P+ is slightly above Pcrit. At time t, arbitrarily
small random adjustments [δR(t),δC(t),δP(t)] are made to all the populations
in the phase space within a small neighborhood centered at (R+,C+,P+), so that
the trajectory collapses to a point. With a nonzero probability, the trajectory will
be close to one of the hot spots contained in the neighborhood so that chaotic
motion can occur for a finite amount of time. Note that it is not meaningful to
kick the trajectory back directly to the point (R+,C+,P+), since this point maps
to (R−,C−,P−) immediately. Figure 11.7a shows a controlled population P(t) for
K = 1.02, which indicates a sustained, sizable population of the predator through a
long time. Figure 11.7b shows the magnitude of the applied perturbations δX(t) ≡
√

[δR(t)]2 +[δC(t)]2 +[δP(t)]2 versus time. It can be seen that the required per-
turbations [δR(t),δC(t),δP(t)] are indeed small (δX(t) < 0.04, compared with the
size of the population, which is about one) and rare (only about 100 perturbations
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Fig. 11.7 (a) A controlled population P(t) for K = 1.02, which indicates a sustained, sizable
population of the predator through a long time. (b) Magnitude of the applied perturbations δ X(t)
versus time [716] (with kind permission from Elsevier Science)

are applied in a time interval of (0,10000)). Numerical computations reveal [716]
that the chaotic population P(t) can be maintained practically indefinitely through
the use of occasional and small adjustments to all the populations, for almost all
initial conditions chosen in the original basin of the chaotic attractor.

An issue of practical interest is how often small adjustments need to be applied
so that finite species populations can be maintained. To address this question, we
observe that the time intervals for successive adjustments of the populations are in
fact the times that the trajectory stays in the region where P > Pcrit. Their average is
the average lifetime τ of the chaotic saddle. For the parameter setting in Fig. 11.6,
it was found [716] that τ ≈ 209, which means that roughly 50 adjustments to the
populations need to be made in a time interval of length of 10,000. This estimate is
consistent with the result in Fig. 11.7b.

The model discussed has incorporated within itself biologically and ecologi-
cally reasonable assumptions [510]. Even then, the neglected degrees of freedom
would show up as small corrections, and there is always random noise present
in any environment. It thus becomes important to assess the influence of ran-
dom noise. The simplicity embedded in the control method makes it evident that
control is robust against the influence of weak noise. The reason is that in the al-
gorithm, deliberate effort is made to avoid the need to utilize detailed and more
accurate information about the dynamics, such as the derivative matrices and the
stable and the unstable eigenvalues associated with target points. As such, if de-
terministic transient chaos is the main culprit for the extinction of a species for
a particular system, it is possible to control transient chaos to effectively prevent
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extinction even in noisy environments, regardless of the details of the system dy-
namics. This may be of value to the important environmental problem of species
preservation.

11.5 Maintaining Chaos in the Presence of Noise, Safe Sets

The presence of weak environmental noise may drastically decrease the efficiency
of the algorithms used to maintain chaos. The dynamics is then described by the
stochastic map xn+1 = f(xn, pn) + σξξξ n, where σ is the noise amplitude, and we
assume that pn is chosen according to one of the chaos-maintaining scenarios de-
scribed in the previous sections. The destructive effect of noise can be weakened or
even eliminated by introducing an additional control variable rn, applied under the
influence of noise. The overall dynamics is then described as

x′n+1 = f(xn, pn)+ σξξξ n,

xn+1 = x′n+1 + rn. (11.21)

We assume that the noise is bounded, | ξξξ n |≤ 1, and weak, σ � 1. An interesting
question is how the magnitude r of the control variable should be chosen in order to
ensure maintenance of chaos despite the presence of noise.

The presence of noise implies that trajectories fall, in general, a distance of or-
der σ away from points with long-lived chaotic transients. The amount of control
needed to compensate this shift is therefore at least r = σ . This strategy therefore
does not work for a control weaker than the noise amplitude: r < σ . A remark-
able recent observation of Sanjuán, Yorke, and coworkers [4,661,848,849] was that
there is a strategy for maintaining chaos even if the original control parameter p
is unchanged (it is kept at its nominal value p̄) and even if noise is stronger than
control.

The problem can also be considered as a mathematical game between two players
called the “protagonist” and the “adversary.” The adversary chooses the amount ξξξ n
of noise, knowing xn and the map f(x)≡ f(x, p̄). The protagonist’s goal is to survive
around the chaotic saddle, and he/she can choose the response to the adversary’s
action, namely the amount rn of control. The initial condition can also be chosen
by the protagonist. This game was also called Yorke’s game of survival [4]. The
probability that the protagonist will survive in the vicinity of the chaotic saddle is
zero, even without noise, because of escape. This fact makes the survival of the
protagonist nontrivial, in particular if the adversary is allowed to act more strongly
than the protagonist: r < σ .

The idea ensuring survival is based not directly on the chaotic saddle, but rather
on a related concept, the existence of a horseshoe map (cf. Sect. 1.2.2.1) around it.
The action of this map implies that there is a particular set of points, the safe set,
that lies outside but close to the saddle, and the strategy ensures that points of the
map (11.21) remain on the safe set forever.
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Fig. 11.8 Schematic diagram showing the construction of safe sets Sk. The set S0 (thick line)
consists of a vertical segment that divides Q into two halves and lies outside the horseshoe shape
of f−1(Q), marked by dashed lines. Safe sets S1 (thin black line) and S2 (thin gray line) are the
preimages of S0 and S1, respectively [849] (copyright 2008, the American Physical Society)

Different safe sets are needed for different values of σ . Therefore, a family of
safe sets {S j} is defined based on the horseshoe construction. Figure 11.8 shows
how these sets are generated on a topological square, denoted by Q, containing
the chaotic saddle. The action of the inverse map f−1 deforms this square into a
horseshoe. The safe set S0 of level 0 is chosen as a vertical line segment that divides
the square Q into two halves. Points of S0 are in the primary escape region of Q, i.e.,
they leave the square in one iteration. The preimage of S0 within Q contains two
vertical segments. They form the safe set S1 of level 1. Following this procedure,
one defines the set Sk for any k > 1 as the preimage of Sk−1 in Q (see Fig. 11.8).

Thus the safe set Sk of level k has the following properties:

• Sk consists of 2k vertical segments.
• Any vertical segment of Sk has two adjacent segments of Sk+1 that are closer to

it than any other segments of Sk.
• The maximum distance, denoted by δk, between any of the 2k segments of Sk and

its adjacent segments of Sk+1 goes to zero as k → ∞.

The safe set is thus always outside the chaotic saddle, but it is close to the saddle
for k 
 1. The key idea of the strategy for ensuring survival, and thus maintaining
chaos, is to place the initial condition on one segment of an adequate safe set Sk.
Then one just has to apply the control rn to make point xn+1 of (11.21) lie on the
original segment or another segment of Sk.
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The adequate safe set Sk corresponds to a level k for which δk−1 < σ . For small
σ , k is always large. If the initial condition x0 is on such an Sk, its unperturbed image
f(x0) lies on a segment of Sk−1 that has two adjacent segments of Sk. The perturba-
tion ξξξ 0 due to noise leads to a point x′1 = f(x0)+σξξξ 0. If this point lies in the region
between the aforementioned two segments of Sk, there exists a control variable r0,
smaller than or equal to δk−1 < σ in modulus, which puts the trajectory on a seg-
ment of Sk. If point x′1 is outside the region between the two curves of Sk, its distance
from the segment of Sk−1 is at most σ , and a perturbation smaller than σ can put
the point on the closest segment of Sk. Thus, the image point x1 lies on a segment of
Sk. The same strategy can be applied at any iteration step. One thus always finds a
constant r such that with | rn |≤ r < σ the trajectory xn for any n lies on Sk (with the
same k as the initial condition), and the system is maintained to remain close to the
chaotic saddle forever. The lower bound for the ratio r/σ was shown [4, 848, 849]
to be 1/2, which means that in some cases, chaos can be maintained with a control
as weak as half of the strength of noise. Whether this optimal limit can be reached
depends on the noise amplitude and the properties of the original map f.

11.6 Encoding Digital Information Using Transient Chaos

Developments in nonlinear dynamics and chaos have led to the idea of encoding
digital information using chaos [88–90, 318, 319, 354, 650]. In particular, it was
demonstrated both theoretically and experimentally by Hayes et al. [318, 319] that
a chaotic system can be manipulated, via arbitrarily small time-dependent per-
turbations, to generate controlled chaotic orbits whose symbolic representations
correspond to the digital representation of a desirable message. Imagine a chaotic
oscillator that generates a large-amplitude signal consisting of an apparently random
sequence of positive and negative peaks. A possible way to assign a symbolic repre-
sentation to the signal is to associate a positive peak with a one, and a negative peak
with a zero, thereby generating a binary sequence. The use of small perturbations
to an accessible system parameter or variable can then cause the signal to follow
the orbit whose binary sequence encodes a desirable message that one wishes to
transmit. One advantage of this type of message-encoding strategy is that the non-
linear chaotic oscillator that generates the waveform for transmission can remain
simple and efficient, while all the necessary electronics controlling the encoding of
the signal can remain at a low-powered microelectronic level.

The basic principle that makes the above scheme of digital encoding with chaos
possible lies in the link between chaos and information (Sects. 2.6.3, 8.2.1). The
fundamental unpredictability of chaos implies that chaotic systems can be regarded
as sources that naturally generate digital communication signals. By manipulating a
chaotic system in an intelligent way, digital information can be encoded. A central
issue in any digital communication scheme is channel capacity [71,708], a quantity
that measures the amount of information that can be encoded. For a chaotic system,
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channel capacity is equivalent to the topological entropy (Sect. 1.2.3.3) because it
defines the rate at which information is generated by the system.

In a digital communication scheme, it is desirable to have the channel capacity
as large as possible to maximize the amount of information that can be encoded. For
nonlinear digital communication, it is generally advantageous to use transient chaos
as information sources from the standpoint of channel capacity. The orbital com-
plexity associated with trajectories on a chaotic saddle can be greater than that of
trajectories on a chaotic attractor, because crisis is generally a complexity-increasing
event (Sect. 3.1.1). For a symbolic dynamics of two symbols, the maximally allowed
value of the topological entropy, ln2, is often realized in a parameter regime in
which there is transient chaos (see, e.g., Fig. 3.10). Thus, it is desirable to design a
chaotic system operating in a transient chaotic regime for digital encoding.

11.6.1 The Channel Capacity

For illustrative purpose, we demonstrate how transient chaos can be utilized to en-
code digital information using the one-dimensional logistic map xn+1 = f (xn) =
rxn(1− xn). A symbolic dynamics for the logistic map can be defined by setting
the symbolic partition at the critical point xc = 0.5. A trajectory point x bears the
symbol 0 if x < xc and the symbol 1 if x > xc. A trajectory in the phase space thus
corresponds to a sequence in the symbolic space. The topological entropy K0 quan-
tifies how random such a symbol sequence can be. Its value is obtained from the
number Ωm of possible symbol sequences of length m as given by (1.25). In prac-
tice, one can plot lnΩm versus m for, say, 1 ≤ m ≤ 16. The slope of such a plot is
approximately K0.

As r is increased toward rc = 4, the topological entropy K0 continuously in-
creases from zero to ln2 except when r falls in one of the infinite number of periodic
windows. The topological entropy of the chaotic repeller remains constant in the
window, where the constant is the value of K0 at the beginning of the window. Since
ln2 is the maximally realizable value of the topological entropy for a symbolic dy-
namics of two symbols, and since a crisis occurs at rc, the entropy remains at ln2 for
r > rc, as shown in Fig. 11.9. This can be advantageous because message encod-
ing becomes quite straightforward for hyperbolic transient chaos, since there are
no forbidden words associated with the symbolic dynamics. In the communication
terminology, such a channel is unconstrained.

11.6.2 Message Encoding, Control Scheme, and Noise Immunity

To encode an arbitrary binary message into a trajectory that lives on a nonattracting
chaotic set, it is necessary to use small perturbations to an accessible system pa-
rameter or a dynamical variable. For the logistic map we choose to perturb the state
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Fig. 11.9 For the logistic map, the topological entropy K0 versus r for 3.5 < r < 4.1. After the
devil-staircase, for r > 4, K0 remains at ln2, the maximum possible value for a symbolic dynamics
of two symbols [439] (with kind permission from World Scientific Publishing Co)

variable x. Say we wish to apply only small perturbations of order 2−m. A viable
procedure is as follows. First, we convert the message into a binary sequence using
the ASCII code and store the sequence in a symbol register. Next, we choose an ini-
tial condition whose trajectory stays near the chaotic repeller for a certain number
nc (nc > m) of iterations. This is practically feasible, since one can run the system
and predetermine the phase-space regions where initial conditions yield trajectories
whose lifetimes are at least nc. We then determine all m symbols corresponding to
m points on the trajectory starting from x0 and check to see whether the mth symbol
agrees with the first message bit in the symbol register. If yes, we iterate x0 once to
get x1 and determine the mth symbol from x1 (equivalently, the (m + 1)th symbol
from x0) to see whether it matches the second message bit in the symbol register.
If not, we apply a small perturbation to x0 so that the mth symbol from it matches
the first message bit. This process continues until all the message bits in the symbol
register are encoded into the chaotic trajectory.

The required parameter perturbation can be computed using the coding function
[318, 319]. First divide the unit interval in x into N bins of size δx = 1/N, where
δx� 1/2m and 1/2m is the maximally allowed perturbation. We then choose a point
from each bin, iterate it m times, and determine the corresponding symbol sequence
of length m: S1S2 . . .Sm, where Si can be either zero or one. Any point leaving the
unit interval in fewer than m iterations is disregarded. For those points x for which
a symbol sequence of length m can be defined, the following is computed:

R =
m

∑
i=1

Si/2i, (11.22)
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Fig. 11.10 Coding function R(x) for the logistic map at r = 4.1, where R can assume any value
between 0 and 1, but there are many gaps on the x-axis, due to the fact that the chaotic repeller is a
fractal Cantor set [439] (with kind permission from World Scientific Publishing Co)

where 0 ≤ R ≤ 1. This gives the value of the coding function R(x) for points on the
chaotic repeller. Since the chaotic repeller has topological entropy ln2, R can in
principle have any value between 0 and 1. Figure 11.10 shows the coding function
for the logistic map at r = 4.1, where δx = 2×10−4.

With the coding function, the determination of the state perturbations becomes
straightforward. Let the natural m-bit symbol sequence from x0 be a1a2 . . .am−1am

(produced by iterating the map directly) and let the first message bit to be encoded
be b1. We compare the natural symbol sequence a1a2 . . .am−1am with the desirable
symbol sequence a1a2 . . .am−1b1 and compute δR = (am−b1)/2m. From the coding
function R(x), we can then compute the perturbation δx. This is done by locating
pairs of points with the same value of δR in the computer representation of the
coding function R(x) and choosing the one that yields the smallest value of δx. Thus,
by applying δx to the initial condition x0, the trajectory point after m iterations is
associated with the symbol that is the first message bit. Note that if am is identical
to the message bit b1, no perturbation is necessary. To encode the next message bit,
we iterate the perturbed initial condition once to obtain x1. Let x′0 = x1. The natural
m-bit symbol sequence of x′0 is a′1a′2 . . .b1a′m, where a′1 = a2, a′2 = a3, . . . , and a′m is
the binary symbol corresponding to the trajectory point f (m)(x′0). We now compare
a′m and b2 to determine the next perturbation to be applied to x′0. Continuing this
procedure, we can encode an arbitrary message into the chaotic trajectory {xn}.

An example of encoding a specific piece of information [439] is shown in
Fig. 11.11a, where the English word “TIGER” is encoded into a trajectory on the
chaotic repeller of the logistic map for r = 4.1. The binary (ASCII) representation
of the word is shown at the top of the figure. Assuming that perturbations of magni-
tude 2−8 are to be applied, we generate a set of initial conditions whose lifetimes in
the unit interval under the map are at least 8. Shown in Fig. 11.11a is a time series
for which the first binary bit of the message is encoded into the trajectory at n = 8.
Time-dependent perturbations are applied at subsequent iterations so that the entire
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Fig. 11.11 Encoding the English word “TIGER” into a trajectory on the chaotic repeller at r =
4.1 for the logistic map. The binary representation of the word is shown at the top of the figure.
Shown in (a) is a time series where small control is initiated at n = 1 and the first binary bit of the
message is encoded into the trajectory at n = 8. The dashed–dotted lines represent the endpoints
of the primary escape interval. Time-dependent perturbations are applied at subsequent iterations
so that the entire message “TIGER” can be encoded into the trajectory. The magnitudes of the
control perturbations required are shown in (b) [439] (with kind permission from World Scientific
Publishing Co)

message “TIGER” can be encoded into the trajectory. Figure 11.11b shows the mag-
nitude of the control perturbations applied at different time steps. We see that the
perturbations required are small. No control perturbation is required for the first six
time steps because for this initial condition, the natural symbols corresponding to
the trajectory points from n = 8 to n = 13 happen to coincide with the first six bits
of the message.

Some features of the control scheme are as follows. Since the channel capacity
of the chaotic repeller is ln2, there are no forbidden symbol sequences. Thus, in
the encoding scheme, any binary sequences can be produced by a typical trajectory
near the chaotic repeller. Since we use the coding function R(x) to compute the
perturbation δx, once the perturbation is turned on, the trajectory is automatically
confined in the vicinity of the chaotic repeller because the coding function is defined
with respect to trajectories on the repeller. Suppose that small perturbations on the
order of 2−m are to be applied. To encode a message, we need only identify a set of
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initial conditions that can stay near the chaotic repeller for m iterations. Since the
typical value of m is, say, 10, it is fairly straightforward to identify a large number
of such initial conditions. In practice, before encoding, we can run the system to
produce a set of initial conditions whose lifetimes are greater than m. Together with
the coding function that also needs to be determined beforehand, one can in principle
encode any binary sequence into a dynamical trajectory on the chaotic repeller.

Besides possessing the maximum topological entropy ln2, the chaotic repellers
of the logistic map for r > 4 also have the property of strong noise immunity. To
see this, we contrast a chaotic repeller with the chaotic attractor at r = 4. For the
chaotic repeller, we see that there is a primary escape interval of size ∼ √

s, where
s = r/4−1, about the partition point xc = 1/2. For the chaotic attractor there is no
such gap. A trajectory on the chaotic attractor can then come arbitrarily close to the
partition point. In a noisy environment, this may cause a bit error. Say the trajectory
point is to the immediate right of xc. This point thus has the symbol 1. Due to noise,
the trajectory can be kicked through xc, and it thus assumes the wrong symbol 0.
For a trajectory on the chaotic repeller, this situation is improved. Insofar as the
noise amplitude is smaller than the size of the primary escape interval across the
partition point xc, the symbolic dynamics is immune to noise. This may be of value
to practical implementation of communication with chaos [89, 90].4

Since all chaotic repellers for r > 4 in the logistic map have the same topological
entropy ln2, it appears that it is more advantageous to use chaotic repellers at large
r because they possess larger gaps across xc, and thus their corresponding symbolic
dynamics are more robust against noise. However, as r increases, the average life-
time of transient chaos decreases. In general, in choosing an optimal chaotic repeller
for digital encoding, there is a trade-off between the ease of generating a trajectory
near the chaotic repeller and the noise immunity [89, 90].

Although our discussion has been focused on one-dimensional maps, similar
ideas apply to transient chaos in two-dimensional maps [443].

4 The stability of transient chaos against noise has been discussed in Chap. 4.


	Chapter 11 Controlling Transient Chaos and Applications

	11.1 Controlling Transient Chaos: General Introduction
	11.1.1 Basic Idea and Method
	11.1.2 Scaling Laws Associated with Control
	11.1.3 Remarks
	11.1.3.1 Controlling Fractal Basin Boundaries
	11.1.3.2 Controlling Chaotic Scattering
	11.1.3.3 Improved Method of Controlling a Chaotic Saddle


	11.2 Maintaining Chaos: General Introduction
	11.2.1 Basic Idea
	11.2.2 Maintaining Chaos Using a Periodic Saddle Orbit
	11.2.3 Practical Method of Control

	11.3 Voltage Collapse and Prevention
	11.3.1 Modeling Voltage Collapse in Electrical Power Systems
	11.3.2 Example of Control

	11.4 Maintaining Chaos to Prevent Species Extinction
	11.4.1 Food-Chain Model
	11.4.2 Dynamical Mechanism of Species Extinction
	11.4.3 Control to Prevent Species Extinction

	11.5 Maintaining Chaos in the Presence of Noise, Safe Sets
	11.6 Encoding Digital Information Using Transient Chaos
	11.6.1 The Channel Capacity
	11.6.2 Message Encoding, Control Scheme, and Noise Immunity




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


