
Chapter 1
Introduction to Transient Chaos

In numerical or experimental investigations one never has infinitely long time
intervals at one’s disposal. In fact, what is needed for the observation of chaos is
a well-defined separation of time scales. Let t0 denote the internal characteristic
time of the system. In continuous-time problems, t0 can be the average turnover
time of trajectories on a Poincaré map in the phase space. In a driven system, it
is the driving period. In discrete-time dynamics, t0 can be the time step itself.

Suppose one observes signals that appear random for an average lifetime τ . Since
chaos is characterized by a sensitive dependence on initial conditions, which is
meaningful only on sufficiently long time scales, the appearance of chaotic signals
requires that τ be much greater than the internal characteristic time:

τ � t0 . (1.1)

The difference between sustained and transient chaos lies in the actual value of τ:
for the former, τ is infinite, but it is finite for the latter. As a matter of practicality,
one cannot exclude the possibility that a system apparently exhibiting a chaotic at-
tractor may turn out to be transiently chaotic if a much longer period of observation
is allowed. It is therefore useful to consider an additional time scale: the observa-
tion time TO. The sustained or transient nature of chaos then depends on how τ is
compared with TO. We can speak of transient chaos if

τ < TO . (1.2)

In the numerical investigation of attractors, a general habit is to discard a long
sequence of the trajectory in order to concentrate on the asymptotic properties.
A much richer dynamics may be observed, however, if one follows the trajecto-
ries from the beginning, i.e., if transients are not thrown out. One often finds then
complex dynamics over some time, different from the dynamics governed by the
attractor. The lifetime of a chaotic transient depends on the initial condition. An ex-
ample can be seen in Fig. 1.1, where transiently chaotic trajectories are shown from
the Hénon map [325, 564] at a parameter set where the attractor is a limit cycle.

Such signals can also be observed in experiments. An example is shown in
Fig. 1.2, where the measured quantity is the temperature difference between two
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Fig. 1.1 Transient chaotic signals from the Hénon map xn+1 = 1 − ax2
n + byn, yn+1 = xn for

parameters a = 1.25 and b = 0.3, with a period-7 attractor. For clear visualization, only every
seventh iterate is shown. (a) Trajectory initiated at x0 = 0.738816, y0 = 0.893088 exhibits chaotic
behavior over 441 iterates. (b) The initial condition is shifted by 2 ·10−19 in the x direction and the
length of the chaotic transient is only 126

Fig. 1.2 Transient chaotic signal of the temperature difference observed between two points of
an experimental loop of fluid heated from below with a constant heat flux (see Sect. 1.3 for more
details). In this run, chaotic oscillations last up to nearly 40 min [823] (with kind permission from
Elsevier Science)
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points in a fluid loop. Over some time chaotic temperature oscillations are observed,
which are accompanied by chaotic velocity oscillations of the laminar flow in the
loop, and then, rather suddenly, a crossover takes place towards a nearly constant
temperature difference corresponding to a uniform rotation of the fluid motion.
(For a list of other representative experiments, see Sect. 1.3.)

Based on these and many other examples, one concludes that transiently chaotic
signals (whose precise characterization will be discussed in Sect. 1.2) have the fol-
lowing characteristic properties:

1. For a fixed initial condition the signal appears chaotic up to certain time and then
switches over, often quite abruptly, into a different, often nonchaotic, behavior
that governs all the rest of the signal. The average lifetime, τ , can be obtained
from an ensemble of such observations, although for individual observations,
the actual lengths of transients depend sensitively on initial conditions: nearby
trajectories typically have drastically different lifetimes.

2. The probability distribution, P(t), of finding lifetimes longer than t is a smooth
function, which satisfies P(t) → 0 for t → ∞.

3. There exist infinitely long transients. Mathematically, however, the set of ini-
tial conditions leading to infinite transients has zero volume in the phase space
(has Lebesgue measure zero). Physically, this means that such infinite tran-
sients cannot be realized by initial conditions chosen randomly. In fact, for a
typical (i.e., randomly chosen) initial condition, the transient lifetime is finite.
Nonetheless, it is the presence of the measure-zero set of the initial conditions
with infinite transients which causes the random distribution of the transient life-
times for typical initial conditions.

4. It is known [564] that in a parameter region where chaotic attractors arise,
periodic windows are dense. That is, for a specific parameter value that leads to
a chaotic attractor, an arbitrarily small perturbation in the parameter can lead to
a periodic attractor. In this sense, chaotic attractors are not structurally stable.
Transient chaos is, however, robust against small parameter perturbations.

Similar to the fact that sustained chaotic signals are due to chaotic attractors
in the phase space, there exist chaotic invariant sets that are responsible for tran-
siently chaotic signals. Globally, such a chaotic set does not attract trajectories from
its neighborhood, and hence it is nonattracting. Nonattracting chaotic sets (chaotic
saddles or repellers; see Sect. 1.1.2) are therefore the phase-space objects that un-
derly transient chaos. We thus accept the following definition: transient chaos is the
form of chaos due to nonattracting chaotic sets in the phase space.

This chapter serves as a “first acquaintance” with transient chaos. The basic
properties of nonattracting chaotic sets will be described. The average lifetime and
the escape rate from these sets will then be introduced. Different methods for nu-
merically constructing nonattracting chaotic sets will be given. The construction of
the natural probability distribution on these sets will also be discussed, and an im-
portant related distribution, the conditionally invariant measure (c-Measure), will be
introduced, from which characterizing quantities such as the Lyapunov exponents
of the transients and dimensions of the nonattracting chaotic sets can be defined
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and calculated. To underline the scientific relevance of transient chaos, a list of
experiments taken from different disciplines will be presented, which also illustrate
different aspects of transient chaos. Finally, a brief history of transient chaos will
be given.

1.1 Basic Notions of Transient Chaos

1.1.1 Dynamical Systems

Dynamical systems are usually described by a set of ordinary differential equations:

dx
dt

= F(x, p), (1.3)

where x(t) is the vector characterizing the state of the system at time t and p repre-
sents a set of parameters. Alternatively, discrete-time dynamical systems, or maps,
of the form

xn+1 = f(xn, p) (1.4)

can be investigated, where xn is the state vector at discrete time n. Unless otherwise
stated, the map is assumed to be autonomous, i.e., f does not depend explicitly on n.
Maps can always be deduced from flows (1.3) by taking an appropriately defined
Poincaré surface of section or stroboscopic map [564], the latter corresponding to
repeatedly taking snapshots of the system at the multiples of some characteristic
time t0. Using such maps, the phase-space dimension is reduced effectively by one,
facilitating visualization and analysis. In fact, Poincaré or stroboscopic maps have
been used commonly in numerical and laboratory experiments on transient chaos
(see Sect. 1.3). In order to have a consistent terminology, maps will be used for the
rest of the chapter to illustrate the basic dynamical properties of transient chaos, but
the main results apply also to flows (see also [398]).

1.1.2 Saddles and Repellers

The actual form of a nonattracting chaotic set depends on whether the dynamics is
invertible. A dynamical system is invertible if its motion can be uniquely followed
when time is reversed. This does not imply, however, that the time-reversed dy-
namics can actually occur in reality (although this is true for Hamiltonian systems,
which are invariant under time reversal if no external magnetic field or Corio-
lis effect is present). Dynamical systems described by differential equations are
typically invertible due to the uniqueness of solutions. Invertible dynamical sys-
tems are thus physically relevant. Noninvertible systems such as those described
by one-dimensional maps can, however, be quite useful models for understanding
specific features of transient chaos, and we shall consider them as well.
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In an invertible dynamical system, a typical nonattracting chaotic set repels
trajectories only along some special hypersurface in the phase space, which is called
the unstable manifold. Along a different invariant hypersurface, or the stable man-
ifold, the set can actually attract nearby trajectories. Usually, the local phase space
at a point in the chaotic set can be decomposed into the stable and the unstable
subspaces. For this reason, nonattracting chaotic sets in invertible dynamical sys-
tems are called chaotic saddles. Because differential equations are, in general,
invertible, and many real-life phenomena are described by differential equations,
transient chaos in experiments is typically related to chaotic saddles.

In contrast, for noninvertible dynamical systems in which the inverse is not
unique, nonattracting chaotic sets are often chaotic repellers, objects that are re-
pellent in all possible directions of the phase space. Chaotic repellers possess only
unstable manifolds. These considerations are summarized in Table 1.1. The geomet-
rical appearances of chaotic saddles and chaotic repellers can be quite different, as
Fig. 1.3 illustrates.

The dynamical difference between chaotic repellers and saddles is that long-lived
trajectories can start only from a neighborhood of the repeller, but for saddles

Table 1.1 Types of typical
nonattracting chaotic sets in
nonlinear dynamical systems

Dynamics Nonattracting chaotic set

Invertible Chaotic saddle
Noninvertible Chaotic repeller
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Fig. 1.3 Comparison of a chaotic saddle and a chaotic repeller. (a) A chaotic saddle from a
periodically kicked harmonic oscillator. On a stroboscopic plane the position xn and the veloc-
ity yn of the oscillator evolve according to the map [773] xn+1 = yn, yn+1 = 1− 3.2y2

n − 0.49xn.
(b) A chaotic repeller of the quadratic map zn+1 = zn

2 +0.2 in the complex plane z = x+ iy, which
is in fact a Julia set [824]. The saddle in (a) appears as a fractal set of points, which is in fact the
direct product of two Cantor-like sets, while the repeller in (b) is a complicated but nonetheless
continuous curve in the plane
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they can also start from a neighborhood of the stable manifold, a typically much
larger set. If a chaotic repeller and saddle coexist,1 transient chaos is primarily gov-
erned by the chaotic saddle.

Because a nonattracting chaotic set is invariant, trajectories starting from points
on the set never leave the set and in fact exhibit chaotic motion for infinitely long
time. However, because the Lebesgue measure of the set is zero, the probability
that a randomly chosen point of the phase space is in the set is zero. What is
observable is not the nonattracting set but a a small neighborhood of it. In par-
ticular, trajectories can originate from points in the vicinity of the set and can then
stay in the neighborhood of the set for a long but finite amount of time, and they
eventually leave the nonattracting chaotic set. These are the trajectories that gener-
ate transiently chaotic signals. The phenomenon of transient chaos thus illustrates
that the existence of a set of Lebesgue measure zero can be observed via finite-time
properties. As a consequence, we shall also see that the fractal features of a nonat-
tracting chaotic set are different from those of a chaotic attractor.

A related point is that the natural measure, a special invariant distribution char-
acterizing the dynamics on a nonattracting chaotic set, not only exists but can
be obtained approximately in numerical or actual experiments. In particular, the
distribution can be approximately specified on a small neighborhood of the set.
The approximate natural measure can then be used to perform ensemble averages of
physical quantities of interest, similar to the situation with chaotic attractors. Since
the distribution is only approximate, any ensemble average will contain errors, but
they can be controlled.

Transient chaotic dynamics can also be classified according to whether the
process is dissipative or conservative. In a strictly dissipative system where the
local phase-space volume contracts everywhere, the asymptotic states of the sys-
tem are attractors that may be regular, but transient chaos provides a “platform” for
approaching the attractors. In such a case the transient dynamics before the final
state of the system is reached is chaotic. In dissipative systems, transient chaos ap-
pears in the form of chaotic transients. In conservative or Hamiltonian systems, the
phase-space volume is constant under time evolution. As a result, there are no attrac-
tors, but some simple asymptotic states of the system can still be defined. Consider,
for example, a particle-scattering experiment in which the underlying dynamics is
Hamiltonian. Particles coming from far away approach the scattering region, and af-
ter a finite amount of time, they leave the region and escape to “infinity.” There can,
however, be qualitatively different exit routes to infinity. In this case, the different
exit routes can be regarded as asymptotic states (but not attractors) of the system.
The dynamics in the scattering region can, however, be regular or chaotic, where
the latter, i.e., transient chaos in Hamiltonian systems, defines the phenomenon of
chaotic scattering. Hamiltonian systems are invertible, so the nonattracting set un-
derlying chaotic scattering is typically a saddle.

1 For instance, in the time-reversed dynamics of an invertible system possessing a chaotic attractor
and a coexisting chaotic saddle.
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It should be noted that nonchaotic transients may also exist in dynamical
systems. An example is provided by trajectories that approach an attractor but are
far away from any nonattracting chaotic set. These transients are typically short and
do not exhibit chaotic features, although the actual asymptotic state may be chaotic.
Thus, transients to chaos can be quite different from chaotic transients, since the
latter, but not the former, are due to an underlying nonattracting chaotic set.

1.1.3 Types of Transient Chaos

According to the type of attractor(s) with which a nonattracting chaotic set coex-
ists, we can distinguish two main types of transient chaos. The first type is for the
case in which the coexisting attractor is simple, e.g., a periodic attractor. While the
asymptotic behavior of the system is relatively simple, the transients are chaotic.
Transient chaos arising in situations in which there is an attractor at infinity, and in
open Hamiltonian systems in which attractors are replaced by different exit routes
also exhibit this type of transient chaos.

The second type occurs when a nonattracting chaotic set coexists with a chaotic
attractor. In this case, there are two distinct forms of chaotic behavior. A signal
from the system typically exhibits one form of chaotic behavior, the one due to the
nonattracting set, on time scale τ , and then switches over to another form of chaos
asymptotically. A common situation is that the motion determined by the nonat-
tracting set is more chaotic than that due to the chaotic attractor (for more detail see
Fig. 1.16 and Chap. 3). Thus, focusing on the asymptotic properties will “miss” the
dominant chaotic part of the full complex dynamics that contains important infor-
mation about the underlying dynamical system.

1.2 Characterizing Transient Chaos

Having introduced the basic concepts of transient chaos in a qualitative manner,
we now discuss its quantitative characterization. A natural question is whether
there is actually chaos in the seemingly chaotic signals observed over finite time
scales. There are different levels of characterization of increasing complexity, as
follows:

1. Measurement of the lifetime distribution, the escape rate, and the average life-
time.

2. Construction of nonattracting chaotic sets in the phase space.
3. Construction of invariant measures on the chaotic set.
4. Determination of dynamical invariants such as the Lyapunov exponents and the

fractal dimensions of the nonattracting chaotic set and its natural measure.
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Following this hierarchy, one can find criteria to address the question of whether
the system is indeed chaotic and if so, to calculate some measure of the strength of
chaoticity. In the following we discuss these levels of characterization.

1.2.1 Escape Rate

In transient chaos, typical trajectories, i.e., trajectories initiated from random initial
conditions, escape any neighborhood of the nonattracting chaotic set. A quantity
measuring how quickly this occurs is the escape rate [824]. To define the escape
rate, imagine distributing a large number N0 of initial points according to some
initial density ρ0 in a phase-space region R that does not contain any attractor
or asymptotic state of the system. The density ρ0 is often chosen to be uniform,
and the geometry of R can be chosen to be simple, e.g., a rectangle in a two-
dimensional phase space. Many trajectories from the initial points may come close
to the nonattracting chaotic set at some later time. We define a restraining region Γ
as a bounded, compact region containing the nonattracting set. Once a point leaves
the restraining region, it cannot return to it. After visiting a neighborhood of the
set, almost all trajectories eventually leave Γ . Let N(n) denote the number of trajec-
tories remaining inside Γ after n steps, and choose N0 to be sufficiently large that
N(n) � 1. As n is increased, one observes in general an exponential decay in the
number of trajectory points that are still in Γ (surviving points) [373, 596, 843]:

N(n) ∼ e−κn for n � 1, (1.5)

where κ is called the escape rate.2 A small value of κ implies weak “repulsion” of
typical trajectories by the nonattracting chaotic set. The escape rate turns out to be
independent of the distribution ρ0 of the initial conditions, of its support R, and of
the choice of the restraining region Γ . The escape rate κ is thus a property solely
of the nonattracting chaotic set. However, the prefactor of the exponential form in
(1.5), and the behavior of the system preceding the exponential decay do depend on
details such as the choices of ρ0, R, and Γ .

A practical issue concerns about the choice of the support R of the initial density.
In a noninvertible system, R should overlap with the chaotic repeller, while in an in-
vertible system it is sufficient to choose R so that it overlaps with the stable manifold
of the chaotic saddle. In any case, if an exponential decay is found, its rate should
be given by the escape rate κ . In practice, the initial density is often distributed on
the restraining region, implying R = Γ .

In a realistic physical system, the exponential decay can be observed with high
accuracy after a finite, often short, time n∗, i.e.,

N(n) = Ne−κn for n ≥ n∗, (1.6)

2 There are situations in which the decay follows a power law for certain types of nonhyperbolic
chaotic sets, which will be treated in Sect. 2.4 and Chap. 6. Such decays cannot be characterized
by escape rates.
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Fig. 1.4 Survival in the Hénon map xn+1 = 1− ax2
n + byn, yn+1 = xn for parameters a = 2.0 and

b = 0.3. Number N(n) of surviving trajectory points in the square defined by Γ : |xn|, |yn| ≤ 1.0,
obtained from N0 = 106 initial points distributed uniformly in the same square (R = Γ ). The fitted
dashed line has slope approximately −0.36, giving κ ≈ 0.36. The value of n∗ is approximately 4.
The survival probability P(n) is approximately N(n)/N0

where the value of n∗ and the prefactor N may also depend on ρ0, R, and Γ .3

An example is shown in Fig. 1.4, where we see that the value of n∗ is relatively
small.

The definition of the escape rate indicates that the number of surviving points
is decreased by a factor of 1/e after about 1/κ time steps. This implies that most
trajectories do not live longer than 1/κ in the restraining region. It is thus reasonable
to estimate the average lifetime τ of the chaotic transient as

τ ≈ 1
κ

. (1.7)

Since the escape rate can be obtained by following the decay law over a finite
time interval, cf. (1.5), transient chaos of short average lifetime may be difficult to
identify. A condition for the practical observability of transient chaos is thus that κ
be small.

In a more general context, for any initial distribution on R and choice of Γ , we can
define the probability P(n) of finding survival times larger than n ≥ 1. The survival
probability P(n) is thus the probability of finding initial points that have not escaped
Γ up to time n, which can be approximated by N(n)/N0 for large N0. In view of
(1.6), the decay of P(n) is exponential:

P(n) = ge−κn for n ≥ n∗. (1.8)

3 The prefactor N yields what the number of initial points would be if the decay were exponential
from the very beginning. Therefore N is different from N0.
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A related probability is the escape-time distribution, p(n), the probability that a
particle escapes region Γ exactly in the nth iterate. This quantity can be estimated
as [N(n− 1)−N(n)]/N0 and is therefore the “density” of the cumulative distribu-
tion P(n). We have

P(n) =
∞

∑
n′=n+1

p(n′). (1.9)

Being the “derivative” of an exponential function, the long-time behavior of p(n) is
also exponential and can be written in the form of (1.8) (with a different n∗, but the
same escape rate).4

The average lifetime τ is defined as the average escape time, i.e.,

τ ≡ n̄ =
∞

∑
n=1

np(n). (1.10)

Since the distribution is not exponential for n < n∗, the exact average lifetime τ
does depend on the choices of ρ0, R, and Γ . Note that the estimate (1.7) does not
reflect this property.5 Since the average lifetime depends on many details, the escape
rate κ is a more appropriate characteristic of the decay process than τ . The escape
rate is a unique property of the underlying nonattracting chaotic set, in contrast to
the average lifetime, which also contains information about, e.g., the initial distri-
bution of particles. While the values of τ and 1/κ are typically different even for
slow decays, their scaling properties in terms of, for example, parameter changes
are usually the same.

There can be situations in which two (or more) nonattracting chaotic sets coex-
ist with different escape rates κ1 and κ2. In such a case, the number of surviving
trajectory points in a given restraining region Γ is the sum of two exponentials for
large n:

N(n) ∼ N1e−κ1n + N2e−κ2n, (1.11)

and the prefactors Ni depend on the choices of ρ0, R, and Γ .
It should be emphasized that the existence of a positive escape rate κ for

transients does not at all imply their chaoticity. One should also measure, for ex-
ample, the Lyapunov exponents on time scale 1/κ [714] and check whether at least
one of the exponents is positive. A complication is that even simple nonattracting
sets, for instance a single, regular saddle point (also called a hyperbolic point) are
at least partially repelling. Trajectories deviate from them exponentially. Regular

4 For continuous-time systems, (1.5)–(1.8) remain valid under the transform n → t . The escape-
time distribution becomes then a probability density, and the sum in (1.9) is replaced by an integral.
The escape rate in the corresponding continuous-time system is κ/t0, where t0 denotes the internal
characteristic time mentioned in the introduction to this chapter. Analogously, the average lifetime
can be estimated as t0/κ .
5 Equation (1.7) is a rough estimate, since even in the ideal case of n∗ = 1, when p(n) =
(exp (κ)− 1)exp (−κn), we obtain τ = (1− exp (−κ))−1 from (1.10) [147], which is consistent
with (1.7) for κ � 1 only.
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Fig. 1.5 Lifetime function:
dependence of the lifetime n
on the initial position x along
the interval defined by
y = −1.5 and |x| ≤ 1 in the
Hénon map at the parameters
of Fig. 1.4. (For the
corresponding phase-space
patterns, see Figs. 1.7 and
1.9.) The fractal irregularity
of this lifetime function is a
sign of transient chaos
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nonattracting sets are therefore characterized by a positive Lyapunov exponent,
although the dynamics about them are not chaotic. The positivity of at least one
Lyapunov exponent is thus not sufficient for the chaotic behavior of transients. This
is why we accept the definition, used throughout the book, that transient chaos is the
dynamics associated with nonattracting chaotic sets.

To determine whether the transients are truly chaotic, one therefore needs more
information than the mere positivity of the Lyapunov exponent. Qualitatively, the
visual appearance of the signal can be helpful: about chaotic nonattracting sets
trajectories should be complicated. This is, nonetheless, only a hint. A property
uniquely indicating the chaotic nature of the transients is the irregular dependence
of lifetimes on initial conditions, as illustrated by Fig. 1.5. Suppose one starts tra-
jectories along a smooth curve in the phase space that intersects a chaotic repeller
or the stable manifold of a chaotic saddle. One then finds that for some points the
lifetimes are large. In principle, points of infinitely large lifetimes belong to a fractal
subset of initial conditions, since these must be points of the chaotic repeller or of
the saddle’s stable manifold. A fingerprint in a finite-accuracy numerical simulation
is large lifetimes separated by small values in between.

1.2.2 Constructing Nonattracting Chaotic Sets

Repellers are straightforward to construct, since they are the attractors of the in-
verted dynamical systems. Noninvertibility is generally due to the existence of more
than one inverted branch. When following the time-reversed dynamics, all possible
inverses should be taken into account.

For an invertible dynamical system, the calculation of chaotic saddles is more
delicate. While such a system can be inverted, the inverted dynamics still results in a
chaotic saddle. This feature can in fact be viewed as an illustration of the robustness
of the hyperbolic structure that is often seen for chaotic saddles. Roughly, a chaotic
saddle is the set of intersections between the stable and the unstable manifolds, and
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in hyperbolic cases, the angles at the intersecting points are bounded away from
zero. In what follows, we will describe an intuitive numerical procedure for calcu-
lating chaotic saddles, which serves to further illustrate their dynamical structures.
More practical numerical methods will then be introduced.

1.2.2.1 Horseshoe Construction

The intuitive method is based on the observation that a chaotic saddle has typically
embedded within itself a dense set of unstable periodic orbits, a property of any
chaotic set. Imagine that we choose an unstable periodic orbit in an invertible two-
dimensional map and plot its stable and unstable manifolds, which are the curves
along which the orbit is attracting in the direct and in the inverted dynamics, re-
spectively. If these curves cross each other once at a point (a homoclinic point),
they must do so infinitely many times, since the images and the preimages of such
an intersection are of the same type. All the homoclinic points form a homoclinic
orbit. Since it belongs simultaneously to the stable and the unstable manifolds of
the original periodic orbit, a homoclinic orbit approaches asymptotically, but can
never reach, the periodic orbit. As a result, the stable and unstable manifolds exhibit
a complex, intertwined structure, as shown schematically in Fig. 1.6. The horse-
shoe structure of the manifolds and the existence of homoclinic orbits have been
known since the works of Smale [300, 721]. Thus, mathematically, chaotic saddles
are closed, bounded, and invariant sets with dense orbits. They are the “soul” of
chaotic dynamics [721]. Similar to the formation of homoclinic orbits, the stable
(unstable) manifold of a periodic orbit can intersect with the unstable (stable) man-
ifold of a different orbit, forming a heteroclinic orbit. The stable and the unstable
manifolds of different periodic orbits of a chaotic saddle are usually close to each
other in the phase space, and all the resulting homoclinic and heteroclinic orbits
belong to the chaotic saddle.

Fig. 1.6 Horseshoe
structure: schematic
illustration of horseshoes
formed by the stable and the
unstable manifolds of a fixed
point (period-1 orbit) denoted
by the dot. The set of
intersection points
(homoclinic points) between
the manifolds belongs to the
chaotic saddle
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Fig. 1.7 A horseshoe
construction: a few branches
of the stable and the unstable
manifolds of the fixed point
H+ of the Hénon map
xn+1 = 1−2.0x2

n +0.3yn,
yn+1 = xn
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The above discussion suggests the following procedure for numerically calculat-
ing a chaotic saddle. One first finds a simple hyperbolic orbit, such as a fixed point
or a periodic orbit of low period, and then calculates its stable and unstable mani-
folds. In particular, the unstable (stable) manifold can be obtained by distributing a
large number of initial points in a small neighborhood of the hyperbolic orbit and
iterating them under the forward (inverted) dynamics. The set of intersecting points
between the manifolds is part of the chaotic saddle. Since in practice, only a finite
number of branches of the manifolds can be constructed, the intersections provide
an approximate representation of the saddle. If the number of initial points used in
the calculation is reasonably large, the fractal nature of the saddle and its stable and
unstable manifolds can be revealed. An example is shown in Fig. 1.7. In general,
the appearance of a fractal geometry along both the stable and the unstable mani-
folds and the existence of a horseshoe type of structure are indications that a chaotic
saddle exists in the phase space of interest. Note that if the manifolds of the hyper-
bolic orbit chosen do not intersect each other, the orbit does not belong to a chaotic
saddle. In this case, it is necessary to choose a different periodic orbit to start with.

1.2.2.2 Ensemble Method

The idea of this method, introduced by Kantz and Grassberger [380], is to follow
an ensemble of trajectories and select the pieces that remain in the vicinity of the
saddle. In particular, one first chooses a region R close to the suspected chaotic
saddle but not containing any attractor, distributes uniformly a large number N0

of points in R, and iterates these initial conditions under the forward dynamics.
A criterion is needed for deciding when a trajectory is away from the saddle, which
can simply be that the trajectory moves out of a restraining region Γ surrounding the
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saddle (regions R and Γ can be the same as the respective ones used for computing
the escape rate). Another criterion can be [380] to calculate the effective Lyapunov
exponents over a finite number of time steps and examine whether they are close
to the corresponding exponents characterizing an attractor. In the case of a point
attractor, it is simply the negativity of all local Lyapunov exponents that can be used
as an indicator of the trajectory’s having left the saddle. All trajectories leaving the
saddle earlier than n0 steps are discarded, and trajectories of lifetime longer than
or equal to n0 are kept. The choice of the value of n0 can be somewhat arbitrary,
but some large value should be chosen if the lifetime τ of the chaotic saddle is
large. (Experience indicates that choosing n0 a few multiples of 1/κ is proper.)
One can then select long-lived trajectories in the neighborhood of the saddle to
approximate it. For example, if the desirable number of trajectories whose lengths
are not less than n0 is M0, the number N0 of initial points should be of the order of
n0M0 exp(κn0), which can be a few orders of magnitude larger than M0. To ensure
that trajectories close to the saddle are selected, the long-lived trajectories need to be
truncated at both the beginning and the end. For example, for a trajectory of length
larger than n0, one can discard the first n1 and the last n2 points so that the resulting
trajectory is close to the saddle but not close to its stable and unstable manifolds,
respectively, where n1 and n2 are each a fraction of n0. A representative example is
shown in Fig. 1.8.
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Fig. 1.8 Chaotic saddle in the Hénon map (a = 2.0, b = 0.3) obtained by the ensemble method,
where N0 = 106 initial points are distributed uniformly in the interval R = (| y0 |< 0.5, x0 = 0).
The restraining region is Γ =| xn |≤ 1.2. The first 10 and the last 20 steps of long-lived trajectories
are discarded (n0 = 30). Observe that the pattern is practically the same as the one formed by the
set of homoclinic points in Fig. 1.7. The direct product structure of two Cantor-like sets is a generic
characteristic of chaotic saddles of two-dimensional maps
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1.2.2.3 Sprinkler Method

A variant of the ensemble method, the sprinkler method [341], can be used to
calculate not only a chaotic saddle but also its stable and unstable manifolds [453].
Again, one starts from N0 � 1 trajectories distributed uniformly over a region R en-
closing at least a part of the saddle. One then chooses an iteration number n0 that is
several times larger than the estimated lifetime (1.7) of the saddle, and follows the
time evolution of each initial point up to exactly time n0. Only trajectories that do
not escape R in n0 steps are kept, whose number is approximately N0e−n0κ . If n0κ
is sufficiently large (but not so large that only a few points remain inside R), trajec-
tories with this long lifetime come close to the saddle in the course of dynamical
evolution, implying that their initial points will be in the immediate vicinity of the
stable manifold of the saddle, or of the saddle itself, and that their end points will be
close to the unstable manifold of the saddle. The latter is so because most points still
inside after n0 steps might already be in the stage of leaving the region. The points
from the middle of these trajectories (with n ≈ n0/2) are then in the vicinity of the
saddle. In general, the initial, middle, and end points of trajectories of lifetimes of
at least n0 approximate the stable manifold, the saddle, and the unstable manifold,
respectively, within the region R, as exemplified by Fig. 1.9. In order to obtain the
full saddle, R should be chosen to fully contain the saddle (which corresponds to
the choice R = Γ in the ensemble method). An advantage of the sprinkler method is
that it is computationally fast and is easy to apply to high-dimensional cases.

1.2.2.4 Single-Trajectory (PIM-Triple) Method

The PIM-triple method, proposed by Nusse and Yorke [557], sets out to find a single
and arbitrarily long trajectory very much near the chaotic saddle. The procedure is
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Fig. 1.9 Sprinkler method: an example of finding the chaotic saddle and its manifolds for the
Hénon map in Figs. 1.7 and 1.8 by the sprinkler method. Region R = Γ is a square of size 2× 2
centered at the origin, N0 = 107, κ = 0.36. Parts (a), (b), and (c) show points of trajectories with a
minimum lifetime n0 = 16 at iteration numbers n = 0, n = 8, and n = 16, well approximating the
stable manifold, the saddle, and the unstable manifold, respectively. Note that the stable manifold
here shows a more detailed structure than in Fig. 1.7
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based on the observation that trajectories starting close to the stable manifold of the
saddle stay for a long time in the vicinity of the saddle. The closer they start out
to the stable manifold, the longer their lifetime is. One begins by taking an interval
AB somewhere in a restraining region Γ so that it intersects the stable manifold of
the chaotic saddle. One next chooses initial points uniformly distributed on AB and
measures their lifetimes in Γ . A triplet of points, i.e., three points on AB such that
the midpoint has a lifetime longer than those of the two neighboring points, can then
be identified. Such a triplet is called a PIM-triple, where “PIM” stands for proper
interior maximum. For the PIM-triple whose middle point has the maximum life-
time, the two external points are expected to lie on two different sides of a branch of
the stable manifold. These two points then define a new interval A′B′ that intersects
the stable manifold. One can then repeat this refining procedure to find a PIM-triple
whose size is smaller than a prescribed value δ � 1. The triple can then be iter-
ated forward under the dynamics. Points on the triple approach the saddle along the
stable manifold but simultaneously move apart along the unstable manifold. When
the size of the evolving triplet becomes larger than δ , the refining procedure is ac-
tivated to reduce the size of the triple to within δ , and the new triple is iterated
forward again, and so on. One thus finds a set of PIM-triples of size less than δ ,
and the set of middle points can be taken as an approximation of a typical trajectory
on the chaotic saddle. While the PIM-triple procedure is computationally expensive
(as compared with the previous methods), it is applicable to chaotic saddles even
with relatively short lifetimes. The desirable feature of the PIM-triple method is that
it enables a long trajectory near the saddle to be found, facilitating characteriza-
tions of the saddle by dynamical invariants such as the Lyapunov exponents and the
fractal dimensions.

On a given interval, several PIM-triples can usually be found. If one selects from
those the PIM-triple for which the lifetime at the middle is the largest, not only can
the geometry of the saddle be revealed, but such a long trajectory also generates a
good approximation to the natural measure on the saddle [353].

1.2.3 The Invariant Measures of Transient Chaos

1.2.3.1 Natural Measure

The natural measure (or natural invariant distribution) μ characterizes how often
different pieces of a nonattracting chaotic set are visited by a dense trajectory on the
set [380]. This distribution can be obtained from a smooth distribution about the set
by selecting long-lived trajectories on the set. In practice, however, infinitely long
trajectories cannot be found, nor can such trajectories be calculated with arbitrarily
high precision. It is thus necessary to approximate the natural measure. For example,
one can choose a fine but finite coverage of the chaotic set by boxes is the phase
space of dimensionless linear size ε � 1, and consider trajectory points that stay for
a long time close to the set.
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Fig. 1.10 Distribution of the
natural measure μ of the
Hénon chaotic saddle in
Fig. 1.8 in a two-dimensional
region in the phase space,
specified on a grid of size
ε = 1/400 (Picture by M.
Gruiz and Sz. Hadobás)

Let N be the number of such points. All nonempty boxes define a coarse-grained
version of the chaotic set at the resolution ε . The approximate natural measure on
this coarse-grained set is given by the frequencies of visits to different boxes by long
trajectories in the vicinity of the chaotic set. More precisely, the natural measure
Pi(ε) of nonempty box i is

Pi(ε) =
Ni

N
, (1.12)

where Ni is the total number of trajectory points falling into box i. It is desirable to
take N large enough that the condition Ni � 1 is satisfied in all nonempty boxes. The
quantity Pi(ε) is also called the box probability and represents the natural measure
μ inside box i with an accuracy of order ε:

Pi(ε) =
∫

x∈box i
dμ(x). (1.13)

Points of long-lived trajectories can be generated either by the ensemble, the sprin-
kler, or the PIM-triple method. An example of the natural measure of a chaotic
saddle specified with finite resolution is shown in Fig. 1.10.

1.2.3.2 Conditionally Invariant Measure

A concept that is closely related to the natural measure is the c-measure intro-
duced by Pianigiani and Yorke [595, 596]. For a nonattracting chaotic set, this
measure is defined with respect to its unstable manifold. While there can be dif-
ferent c-measures for a given system [400], the “natural” c-measure is particularly
relevant; it can be obtained as the limiting distribution of iterating trajectories start-
ing from a smooth distribution of initial conditions about the chaotic set. In this
sense, the c-measure is the analogue of the SRB measure [564] for attractors. For
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transient chaos, the c-measure also describes how points deviate from the chaotic
set, and can be regarded as being maintained by supplying new points into the re-
gion of interest according to the rate at which trajectories escape from the region
asymptotically. Formally, this can be achieved by multiplying the number of points
everywhere by the constant eκ at each time step. Because of the contraction along
the stable direction (if it exists), the limiting distribution will be nonzero along the
unstable manifold only. This distribution, the c-measure, thus characterizes how
points leave the neighborhood of the underlying nonattracting chaotic set asymp-
totically, and how often certain regions are visited by trajectories in the process of
escaping. The natural measure μ can also be considered as the c-measure μc re-
stricted to a small neighborhood of the nonattracting chaotic set itself.

Under the map f, the region not escaping the restraining region Γ within one
iterate is the preimage f−1(Γ ) of Γ . Since the c-measure characterizes how points
are distributed along the unstable manifold before escaping, from a probabilistic
point of view, it is the c-measure of f−1(Γ ) which is proportional to the number of
trajectory points not escaping in one time step. By normalizing the c-measure of the
restraining region to be unity, μc(Γ ) = 1, one finds, as pointed out by Pianigiai and
Yorke [596], that the compensation factor is the reciprocal of μc[f−1(Γ )], i.e.,

e−κ = μc[f−1(Γ )]. (1.14)

The escape rate is thus uniquely expressed by the c-measure of the nonescaping
points within one iterate. Since the c-measure describes the asymptotic escape pro-
cess, which is purely exponential, in choosing the density ρc of the c-measure as
an initial density ρ0 on Γ , the exponential form of the survival probability (1.8) is
valid by the first time step. We see that ρc is thus the special initial distribution for
which n∗ = 1.

The c-measures of one-dimensional maps will be studied in detail in the next
chapter. Here we briefly describe the construction of the c-measure for invertible
two-dimensional maps. For such a system, the c-measure can be defined as fol-
lows [341]. Since trajectories escape the chaotic saddle along the unstable manifold,
after n� 1 iterations, the surviving trajectory points of number Nn in Γ will be in the
vicinity of the unstable manifold. Let B be a small box within Γ that contains part
of the unstable manifold. The c-measure along the unstable manifold in B is thus

μc(B) =
Nu,n(B)

Nn
, for n � 1, (1.15)

where Nu,n(B) is the number of the Nn points that fall in B at time n. An example of
the c-measure is shown in Fig. 1.11. A comparison with the natural distribution in
Fig. 1.10 indicates that the singular spikes of the c-measure fall outside the saddle,
and that the natural distribution is nothing but the c-measure restricted to the saddle
(with a proper normalization).

The natural measure μ of the chaotic saddle can also be defined based on N(r)
n (B),

the number of trajectory points in B at a time rn between zero and n:
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Fig. 1.11 Conditionally
invariant measure μc of the
Hénon saddle (a = 2, b = 0.3)
on the restraining region
Γ :| x |, | y |≤ 1.5, identified
on a grid of size ε = 1/400.
The support of the c-measure
is the unstable manifold of
the saddle (cf. Fig. 1.7)
(Picture by M. Gruiz and
Sz. Hadobás)

μ(B) =
N(r)

n (B)
Nn

, where 0 < r < 1, n � 1. (1.16)

We have N(1)
n (B) = Nu,n(B). For large N0 and n, trajectories remaining in Γ will

stay near the chaotic saddle for most of the time between zero and n, except at the
beginning, when they are attracted toward the saddle along the stable manifold, and
at the end, when they exit along the unstable manifold. Thus, the measure defined
in (1.16) is independent of r, insofar as r deviates considerably from both 0 and 1.

A measure along the stable manifold can be defined as

μs(B) =
Ns,n(B)

Nn
, for n � 1, (1.17)

where Ns,n(B) is the number of initial conditions in B whose trajectories do not
leave Γ before time n (Fig. 1.12). Formally, this corresponds to evaluating (1.16)
at r = 0. Measure μs can in fact be regarded as the c-measure of the time-reversed
dynamics,6 and a restriction of this measure to the saddle provides the natural mea-
sure of the saddle in the time-reversed dynamics. When plotting the measure of the
two manifolds together, as in Fig. 1.13, one notes the following two features: (1) the
singularities of the c-measure fall outside the saddle, an indication of the hyperbolic
nature of the saddle, and (2) the restriction of the stable manifold measure to the sad-
dle is different from the natural measure (Fig. 1.10, and red columns in Fig. 1.13).
Both restricted measures are defined on the chaotic saddle, but they agree only if the
dynamics is invariant under time reversal (e.g., as in Hamiltonian problems).

Note that the sprinkler method (Sect. 1.2.2.3) for the construction of the saddle

and its manifolds is based on the concept of numbers N(r)
n , and corresponds to the

particular choice r ≈ 1/2 for plotting points of the saddle.

6 Because of the analogy between μc and μs, we can also call the conditionally invariant measure
the measure of the unstable manifold.
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Fig. 1.12 Measure along the
stable manifold (cf. Fig. 1.7)
of the Hénon saddle for a = 2,
b = 0.3, identified on a grid
of size ε = 1/400. The region
Γ is | x |, | y |≤ 1.5 (Picture by
M. Gruiz and Sz. Hadobás)

Fig. 1.13 Measure of the
stable and the unstable
manifolds. The natural
measure of the Hénon saddle
is shown in red. The
distribution in red is the same
as that of Fig. 1.10 but the
spatial view is different. The
restriction of the stable
manifold’s measure to the
saddle differs from the natural
measure. (Picture by
M. Gruiz and Sz. Hadobás)

1.2.3.3 Characterization of the Natural Measure

Both the nonattracting set and its natural measure can possess complicated struc-
tures. To characterize the natural measure by certain numbers or simple functions is
therefore of interest. In fact, such convenient characteristics are used widely in the
study of chaotic attractors. While the characteristics can be worked out for any type
of invariant distributions on the nonattracting set, we discuss here characterization
of the natural measure, since it is physically most relevant. The typical character-
istics are the Lyapunov exponents, the box-counting and information dimensions,
the metric and the topological entropies, which are the dynamical invariants that we
shall focus on in this book. For a more detailed analysis, full spectra of Lyapunov
exponents, dimensions, and entropies can be introduced (see Appendix A). For
simplicity we assume that there is only one expanding direction in the system. More-
complicated cases will be treated in Chap. 8.

Consider first the Lyapunov exponent. Take a small interval of length Δ0 along
the unstable direction in a nonempty box i. It will be mapped after n steps onto a
larger interval of some length Δn. The stretching factor Δn/Δ0 can be written as
exp [Λ1i(n)], where the positive quantity Λ1i(n) is the stretching exponent belonging
to box i. Here Λ1i(n)/n plays the role of a local Lyapunov exponent. The average
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Lyapunov exponent λ1 is simply the average of the stretching exponent with respect
to the natural measure divided by n, i.e.,

λ1 =
1
n ∑

i
Λ1i(n)Pi(ε) for n � 1. (1.18)

It should be noted again that the positivity of the Lyapunov exponent is not a defining
characteristic for transient chaos, since any kind of nonattracting sets, e.g., unstable
fixed points, can have a positive Lyapunov exponent. For an isolated saddle (hyper-
bolic) point one has, e.g., λ1 = κ > 0.

The fractal properties of the nonattracting chaotic set and its natural measure
describe how quantities scale with the box size ε . The box-counting dimension D0

reflects how rapidly the number N(ε) of nonempty boxes of dimensionless size ε
covering the set increases with refining resolution:

N(ε) ∼ ε−D0 for ε � 1. (1.19)

If the set is covered by boxes of different sizes εi, i = 1, . . . ,N(ε), which are all
bounded from above by an ε � 1, then (1.19) can be generalized to yield [45] the
following implicit equation for D0:

N(ε)

∑
i=1

εD0
i = 1 for ε � 1. (1.20)

This dimension characterizes only the geometry of the nonattracting set.
The information dimension is a measure of the inhomogeneity of the natural

distribution. It measures how the information content of the box probabilities Pi(ε)
changes with the resolution:

−
N(ε)

∑
i=1

Pi(ε) ln Pi(ε) = D1 ln(1/ε) for ε � 1. (1.21)

When the coverage consists of unequal small boxes of different sizes εi, but all
bounded from above by some ε � 1, the information dimension D1 can be expressed
[45] by Pi, the probability that box i of size εi is visited, as

D1 = ∑i Pi lnPi

∑i Pi lnεi
for ε � 1. (1.22)

The information dimension in fact belongs to a subset of the nonattracting set, the
one that contributes dominantly to the information −∑i Pi lnPi. It therefore cannot
be greater than the box-counting dimension:

D1 ≤ D0. (1.23)

The equality holds only when the distribution is uniform: Pi(ε) = constant on the
nonattracting set.
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Typically, one can associate a few symbols to different regions containing the
nonattracting set, and assign a symbol when the trajectory visits a given region. This
defines a symbolic representation of trajectories on the set [45,220,564]. By follow-
ing trajectories of length m about the nonattracting set, one can specify how often a
given symbolic sequence {S j}m

1 occurs. These path probabilities P({S j}) provide a
complementary characterization of the chaotic set: entropies.

In particular, the metric entropy K1 is defined as the growth rate of the in-
formation content of the path probabilities with length m of symbolic sequences
[45, 220, 564]:

− ∑
{S j}

P({S j}) lnP({S j}) = K1m for m � 1, (1.24)

where the summation is taken over all symbolic sequences. Since the path proba-
bilities depend on the natural measure, the metric entropy is also a characteristic
of this measure. In terms of an information-theoretic interpretation [283], the metric
entropy is the rate at which information stored in the insignificant digits of the initial
condition flows toward the significant ones with time. The Lyapunov exponent λ1 is
in fact the mean velocity of this flow.

The topological entropy [2] K0 reflects how complicated the organization of the
symbolic encoding is: it is the growth rate of the number Ωm of all allowed symbolic
sequences of length m:

Ωm ∼ eK0m for m � 1. (1.25)

Here the different symbolic sequences are not weighted in terms of the path proba-
bilities, whence the term “topological.” The topological entropy can be also defined
as the growth rate of the number Nm of all points of unstable periodic orbits of
length m:

Nm ∼ eK0m for m � 1. (1.26)

A straightforward method for numerically calculating the topological entropy
is due to Newhouse and Pignataro [548], which is based on the stretching of line
segments in two-dimensional maps. Let Ln denote the length of the nth image of a
line segment of initial length L0 falling within some restraining region Γ enclosing
the nonattracting set. One has

Ln

L0
∼ eK0n for n � 1. (1.27)

Similar to the relation between the fractal and the information dimensions (1.23), we
have the following inequality between the topological and the metric entropies [45]:

K1 ≤ K0, (1.28)

where the equality holds only for the special case in which all the symbolic se-
quences are equally probable.
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An important feature of transient chaos is that there are exact and simple relations
among the escape rate of the underlying nonattracting chaotic set, the information
dimension, the Lyapunov exponents, and the metric entropy. In particular, one has

κ = g(λ1,K1) (1.29)

and
D1 = gD(λ1,K1). (1.30)

The particular forms of the right-hand sides of (1.29) and (1.30) depend on the
dimensionality of the system. For maps of arbitrary phase-space dimensions, ex-
plicit expressions for g and gD can be obtained, which we shall derive in later
chapters.

Summarizing briefly, so far we have given, in terms of the quantities introduced,
the criteria based on which the existence of a nonattracting chaotic set and conse-
quently transient chaos can be established: (1) positivity of the topological entropy
(K0 > 0), and (2) fractality of the nonattracting set (noninteger values for the box-
counting dimension D0 or the information dimension D1).7

That period three implies chaos [483], or equivalently, the existence of unstable
cycles of infinite length, in fact implies the positivity of the topological entropy. It is
then true that period-3 implies transient chaos.

1.3 Experimental Evidence of Transient Chaos

There has been ample experimental evidence of transient chaos. Here we shall
present results from a few such experiments. In terms of quantification, earlier ex-
periments mainly focused on determining the average transient lifetime, while more
recent works have extended to characterizing the nonattracting chaotic set and its
natural measure.

1.3.1 Convection Loop Experiment

The apparatus consists of a loop-shaped reservoir filled with water, which is
heated from below along the lower semicircle and cooled from above, as shown in
Fig. 1.14. The system was investigated from the point of view of chaotic dynamics
by Widmann, Gorman, and Robbins [273, 274, 823], and by Bau and coworkers
[822]. The system is the one-dimensional analogue of the Rayleigh–Bénard con-
vection problem, and its dynamics can be described in certain parameter regimes

7 The positivity of the largest Lyapunov exponent cannot be taken as a criterion because of the
example of an isolated saddle point.
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Fig. 1.14 Schematic diagram of the convection loop experiment. Representative results from the
experiment are shown in Fig. 1.2 [823] (with kind permission from Elsevier Science)

by the Lorenz model [488]. After convection sets in at sufficiently high heat flux,
the velocity of the fluid along the loop changes its sign and magnitude in a chaotic
manner. There is a broad range of system parameters for which the chaotic oscilla-
tions last for a finite amount of time before settling into a state in which the system
ceases to oscillate, as exemplified by Fig. 1.2. The duration of the transient chaotic
oscillations depends sensitively on the initial state of the system.

1.3.2 Chemical Reactions Preceding Thermal Equilibrium

Stirred chemical reactions in closed containers cannot be chaotic in a sustained
manner, since the system typically approaches thermal equilibrium after a transient
period of time, corresponding to a fixed-point attractor in the space of the concen-
trations. Scott, Showalter and coworkers conjectured, however, that the approach
toward equilibrium, i.e., the reaction dynamics before settling into the final fixed-
point attractor, can be chaotic [700]. The conjecture was experimentally verified by
Wang, Sorensen, and Hynne [820, 821] using the Belousov–Zhabotinsky reaction.
Chaotic oscillations as the light transmission have been observed (Fig. 1.15) over
several hours before a stage close to thermal equilibrium is reached.

1.3.3 Nuclear Magnetic Resonance Laser Experiment

The high quality of the data from an nuclear magnetic resonance (NMR) laser makes
it appropriate for experimental investigations of a variety of chaotic phenomena. The
laser output is a time-dependent voltage signal, and the control parameter is usually
the modulation amplitude. At a bifurcation called a crisis (see Chap. 3), a chaotic
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Fig. 1.15 Transiently chaotic oscillations (which start after about 1.5 h and continue for about 7 h)
in a closed Belousov–Zhabotinsky reaction ending with small-scale oscillations that ultimately
diminish as the system approaches thermal equilibrium [820] (Copyright 1994 by the American
Chemical Society)

attractor undergoes a sudden explosion in its size. In particular, slightly before the
crisis only a small-size attractor exists. In this regime, before settling into the small
attractor, trajectories started from random initial conditions exhibit chaotic motion
in the region where the postcrisis attractor lives, signifying transient chaos coex-
isting with permanent chaos. Time-series analysis of transient chaos [356] led to a
successful reconstruction of the chaotic saddle responsible for the observed tran-
sient behavior, which was accomplished by considering only the parts of the signals
that do not belong to the small attractor. By combining a number of such truncated
signals, a long time series can be generated that is amenable to chaotic time-series
analysis [382]. In this way, not only can the chaotic saddle be reconstructed, but
also its dynamical characteristics, such as the average Lyapunov exponent, can be
determined (Fig. 1.16).

1.3.4 Driven Pendulum

The parametrically driven damped pendulum is another example in which high-
precision experiments [479, 480] on transient chaos can be carried out. In such
an experiment, the angle and the angular velocity of the pendulum are measured,
with the damping constant as a bifurcation parameter. The chaotic saddle can be
reconstructed using a stroboscopic map. The experiment demonstrates, explicitly,
fractality along both the stable and the unstable manifolds (Fig. 1.17). The box-
counting dimension of the saddle was determined to be about D0 = 1.7. For a more
recent pendulum experiment, see [170]
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Fig. 1.16 Reconstruction of the chaotic sets from a nuclear magnetic resonance (NMR) laser
experiment via time series analysis. (a) Chaotic saddle, (b) coexisting chaotic attractor. Note that
the saddle not only appears larger, it is also more chaotic: its average Lyapunov exponent is about
twice as large as that of the attractor [356] (Copyright 1994 by the American Physical Society)

Fig. 1.17 A chaotic saddle reconstructed from the driven-pendulum experimental data. The double
Cantor set character can be seen through the blank saps amid the points [480] (with kind permission
from Elsevier Science)

1.3.5 Fractal Basin Boundaries

The boundaries between basins of attractions can often be fractal in nonlinear dy-
namical systems, and transient chaos can arise in a phase-space region containing
such boundaries. Experimental observation of fractal basin boundaries can be quite



1.3 Experimental Evidence of Transient Chaos 29

Fig. 1.18 For an electric
circuit system of four coupled
chaotic oscillators: basin of
the synchronous chaotic
attractor in black, and basin
of one of the periodic
attractors in white. The
horizontal and vertical
coordinates are proportional
to the initial deviations of two
coordinates of the oscillators
from a point on their common
chaotic attractor. Points of the
white basin are dense in the
black basin: the black basin is
riddled [322] (copyright
1994, the American Physical
Society)

challenging because of the necessity to choose initial conditions on a fine scale and
to monitor each trajectory until it approaches one attractor. An experimental inves-
tigation of an extreme type of fractal boundaries is due to Heagy et al. [322], who
studied a system of a set of four weakly coupled, nearly identical oscillators. Each
isolated oscillator exhibits a chaotic attractor, and the attractor associated with the
whole coupled system corresponds to a synchronous motion of the chaotic oscilla-
tors. The coupled system also possesses periodic attractors. Figure 1.18 shows the
basins of the synchronized state (set of black points) and of one of the periodic at-
tractors (white regions). The black basin exhibits a rather special property: it is the
riddled basin where every point in the black basin has points of the white basin
arbitrarily nearby.

1.3.6 Advection in the Wake of a Cylinder

In two-dimensional laminar flows around some obstacles, von Kármán vortex streets
are typically formed. Due to the periodic detachment of vortices in the wake, the
flow is periodic in time. The advection of particles is generally chaotic in time-
periodic flows. In particular, since strong time-dependence is restricted to the wake
only, advective chaos is transient, as illustrated in an experiment with a towed cylin-
der by Sommerer, Ku, and Gilreath [725]. The physical space of the fluid motion
happens to coincide with the phase space, rendering directly observable fractal pat-
terns that usually exist in the phase space. Of particular interest is the unstable
manifold of the chaotic saddle in the wake, since dye particles flow away along this
manifold. The experiment not only illustrated that dye (or pollution) often spreads
out along fractal patterns, but also provided an example in which a fractal unstable
manifold can be seen even by the naked eye, as shown in Fig. 1.19.
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Fig. 1.19 For the experiment
of advection in the wake of a
cylinder (black disk), fractal
pattern traced out by
spreading a dye droplet the
unstable manifold of a chaotic
saddle existing in the wake.
The flow is from left to right,
and the droplet is injected into
the upstream of the flow. The
lower panel shows the results
of a numerical simulation of
the same problem [725]
(copyright 1996, the
American Physical Society)

1.3.7 Semiclassical Fluctuations in Chaotic Scattering

Interference effects of the scattering process become important in the semiclassical
regime where wave properties are observable. Chaotic wave scattering, the scatter-
ing of waves from systems for which the underlying classical dynamics is chaotic, is
observable not only in nanoscale electronic devices, but also in microwave scattering
from macroscopic objects. Doron, Smilansky, and Frenkel [204] investigated the re-
flection of microwaves from an elbow-shaped cavity, where the underlying classical
ray dynamics is chaotic with an exponential decay of rate κ in the survival probabil-
ity of particles in the cavity. The basic quantity characterizing the wave-scattering
process is the scattering matrix S(ω) as a function of the frequency. According to
the semiclassical theory, the squared modulus of its Fourier transform S(t) tends to
decay with the classical escape rate κ . This is consistent with the experimental find-
ings, as shown in Fig. 1.20. It can also be seen that the absolute value of the squared
frequency-dependent autocorrelation function is a Lorentzian of half-width κ .
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Fig. 1.20 For microwave scattering from an an elbow-shaped cavity, squared modulus of the
time-dependent S-matrix, | S(t) |2 (oscillating curve), exhibiting an overall decay that agrees with
that of the classical escape-time distribution (curve in background). Inset: squared modulus of the
frequency- (energy-) dependent autocorrelation function from the measured data (continuous line)
and from the semiclassical theory (dashed line). The dimensionless half-width is κ = 0.1 [204]
(copyright 1990, the American Physical Society)

1.3.8 Emission of Light from Dielectric Cavities

Dielectric cavities of cylindrical or spherical geometry are of technological impor-
tance because they can keep light trapped for a long time. When light circulates
almost tangent to the surface of such a cavity via total internal reflection, it suffers
minimal loss. Slightly deformed cavities emit light of nonnegligible intensity, and
it was observed with surprise that these emissions are peaked in certain directions.
A measurement by Schwefel and coworkers [699] records the light intensity for
billiard-shaped cavities as a function of two angles: the angle Φ along the sidewall
of the billiard, and an angle θ by which the camera is rotated in the far field from
the major axis. Figure 1.21 shows the result for three different shapes with a defor-
mation corresponding to approximately the same major-to-minor-axis ratio. Light
intensity is localized to certain regions of the (Φ,θ ) plane, meaning that light is
emitted at specific points of the sidewall only, and in an approximately predeter-
mined direction. Although the billiard shapes (shown as insets) appear similar in
the last two cases, the emission patterns are rather different: the intensity integrated
over the sidewall angle is peaked, e.g., about 90◦ and 30◦. In the geometrical optics
approximation, the patterns can be explained by the existence of a chaotic saddle
of exceptional light rays that are never transmitted, i.e., they are subject to perma-
nent total internal reflection both forward and backward in time. The form of these
saddles depends sensitively on the shape of the billiard. In addition, the directional-
ity of the light has been shown to be intimately related to the unstable manifold of
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Fig. 1.21 Light emission intensity in false color (color bar at the sides) as a function of the side-
wall angle Φ and of the camera angle θ for three microcavities, whose shapes are drawn as insets
[699] (copyright 2004, the Optical Society of America)

certain unstable fixed points [699], and more rigorously, of the entire chaotic saddle
[15]. This is thus a further example in which the unstable manifold of chaotic saddle
become related to physical observables.

1.3.9 Maintaining Chaos in a Magnetoelastic Ribbon

Since there are systems that require chaos in order to function properly, it is im-
portant that transient chaos be convertible into permanent chaos. The aim of this
procedure, which is called maintenance of chaos, is to intervene in the dynamics in
such a way as to keep chaotic behavior alive in situations in which it would naturally
be absent. A possible realization is to apply properly chosen perturbations to the
signal in order to keep it always on that side of the stable manifold of a hyperbolic
point from which a return to a nonattracting chaotic set is allowed. The method can
be improved by finding a target point on this side from which a transiently chaotic
trajectory of long lifetime is initiated, and trying to direct the signal to the target
point [697]. In an experiment by In et al. [351], chaos in a magnetoelastic ribbon
was successfully maintained at a parameter set where a fixed-point attractor exists;
see Fig. 1.22. The quantity Xn plotted is proportional to the position of a point on the
ribbon measured once every driving period of an applied external magnetic field.

1.3.10 Turbulence in Pipe Flows

In a pipe flow, a steady laminar solution is linearly stable for all Reynolds num-
bers Re ≡UD/ν , where U is the average velocity in a pipe of diameter D, and ν is
the kinematic viscosity. The turbulent state can be considered as a high-dimensional
chaotic state associated with a chaotic saddle. In an experiment, Peixinho and Mullin
followed turbulent puffs downstream and measured their positions along the pipe
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Fig. 1.22 Maintaining chaos in an experiment by In et al. [351]. (a) Projection of the stabilized
chaotic attractor. (b) Blowup of the square shown in (a). The filled circle on the diagonal marks the
hyperbolic point and the filled square marks the target. Small circles 1′–8′ show an unperturbed
sequence and small squares 1–8 illustrate the perturbed sequence (Copyright 1998, the American
Physical Society)

Fig. 1.23 For an experiment
of turbulence in a pipe flow,
probability of observing a
turbulent puff as a function of
the dimensionless
downstream distance from the
point where the puff is
generated. The numbers
associated with different
experimental curves denote
the Reynolds number Re. It
can be seen that the escape
rate decreases with Re [589]
(Copyright 2006, the
American Physical Society)

where the puffs are relaminarized [589]. The distributions exhibit exponential de-
cay, as shown in Fig. 1.23. Normalized by length D and time D/U , the dimensionless
distance and the dimensionless time to reach this distance are proportional to each
other, i.e., the dimensionless velocity is of the order of unity. Turbulence in pipe
flows is thus a high-dimensional chaotic transient with finite lifetime. Recent inves-
tigations indicated that the average lifetime tends to grow extremely rapidly with
the Reynolds number [334, 336].
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1.4 A Brief History of Transient Chaos

The first observation of chaotic transients was part of the prehistory of chaos
science. In the late 1940s, in their early studies of the forced Van der Pol oscillator,
Cartwright and Littlewood [114] and Levinson [482] found signatures of chaotic
transients as the system settles into one of the coexisting attractors (there are in fact
fractal basin boundaries between the basins of attraction). Later, in 1973, Chirikov
and Izraelev identified certain transient features in weakly dissipative systems
[134, 135].

A systematic investigation of transient chaos began in the late 1970s with the
works of Shimizu and Morioka [714], Kaplan and Yorke [386], and Yorke and Yorke
[843] on the dynamics of the Lorenz system in parameter regimes that differ from
the standard one with a chaotic attractor, where the attractors are either limit cy-
cles or fixed points. An important step toward a firm mathematical foundation of
the phenomenon was the introduction of the concept of the conditionally invariant
measure by Pianigiani and Yorke [595, 596]. Subsequently, several theoretical pa-
pers reported this phenomenon in all kinds of nonlinear systems: low-dimensional
maps [141, 184, 500], nonlinear oscillators [337, 338, 512], systems modeled by
time-delayed equations [380], partial differential equations [348, 715], and coupled
oscillators [795].

A comprehensive investigation of transient chaos originated from the discovery
that chaotic transients arise typically in systems passing through a type of global
bifurcation called crisis (Grebogi, Ott, and Yorke in 1983 [293]). The Maryland
Chaos Group has played since then an important role in the understanding of further
transient-chaos-related phenomena, which include fractal basin boundaries, Wada
boundaries [406, 780], and riddled basins [11]. The importance of the natural mea-
sure on nonattracting chaotic sets and of quantities related to it was pointed out by
Kantz and Grassberger in 1985 [380] and later by Hsu, Ott, and Grebogi [73, 341],
generating further interest in the topic (see reviews in [766] and [770]).

Interest in the chaotic aspects of scattering processes dates back to early studies
of classical chemical reactions [56,275,555,622] and point–vortex interactions [25].
A systematic study of the subject began in the late 1980s with the work of Jung
[360], Eckhardt [210, 211], Hénon [326], and Bleher, Ott, and Grebogi [73, 74].
The concept of chaotic advection, coined by Aref [26] and generalized to open
hydrodynamical flows, corresponds to a transiently chaotic spreading of particles
[371]. This is in fact a chaotic scattering process, which has important applications
in pollutant transport. The quantum-mechanical aspects of chaotic scattering were
addressed by Blümel and Smilansky [76], Jung [368], Gaspard and Rice [259], and
Cvitanović and Eckhardt [152].

The work by Crutchfield and Kaneko [146] on transient chaos in spatiotemporal
systems generated a new perspective of research aiming at understanding whether
spatiotemporal complexity, or turbulence, is related in general to attractors or rather
to nonattracting chaotic sets generating long-lived transients.

The first experimental indications of irregular transient behavior were found
in hydrodynamical systems, where transients were followed over days before
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settling down on a periodic attractor [9]. Although in current terminology these
were spatiotemporal chaotic transients, a number of papers appeared afterward
reporting low-dimensional transiently chaotic behavior in systems exemplified by a
compass forced by a magnetic field [145], lasers [23,154,577], electronic oscillators
[22,333,646], and a parametrically forced pendulum [479]. Besides the convection-
loop [273,274] and the pendulum [479,480] experiments (cf. Sect. 1.3), a spin-wave
experiment [110, 111, 113] seemed to have provided high-quality measurements of
chaotic transients. Other investigations included the dynamics of a bouncing ball
[422] and a driven magnetoelastic ribbon [196]. Many experimental systems in
which transient chaos has been observed are in fact systems with fractal basin
boundaries (e.g., [22, 422, 577]). In spite of these experimental works and the
several experiments carried out in the last 20 years, it is possible that due to the
limited awareness of the phenomena of transient chaos even among researchers in
the nonlinear-dynamics community, transiently chaotic signals were considered to
be uninterpretable and were discarded.
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