
Chapter 8

A Verification Logic for G Agents

K.V. Hindriks

Abstract Although there has been a growing body of literature on verification of
agents programs, it has been difficult to design a verification logic for agent pro-
grams that fully characterizes such programs and to connect agent programs to
agent theory. The challenge is to define an agent programming language that defines
a computational framework but also allows for a logical characterization useful for
verification. The agent programming language G has been originally designed to
connect agent programming to agent theory and we present additional results here
that G agents can be fully represented by a logical theory. G agents can thus
be said to execute the corresponding logical theory.
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8.1 Introduction

As technology for developing agent systems is becoming more mature, the avail-
ability of techniques for verifying such systems also becomes more important. Such
techniques do not only complement tools for debugging agent systems but may also
be used to supplement the techniques available for debugging agents. For example,
model checking techniques may be used to find counter examples that show that an
agent system does not satisfy a particular property. A counter example produces a
run of a system that violates a property and as such indicates what is wrong with
an agent. Program model checking discussed in [66] is an approach that supports
this type of verification. It involves the construction of a semantic model M that
correctly represents an agent’s execution and that can be used to check satisfaction
of a property ϕ, i.e. M |= ϕ. The key problem that needs to be solved to be able to
use model checking for verification concerns the efficient construction of (part of) a
model M from a given agent system that is sufficient for verifying this system.

Model checking is one approach to verifying agents. An alternative approach
to verifying agents involves the use of deduction. This approach assumes that a
logical theory of an agent is available. The task of verifying that an agent satisfies a
particular property ϕ amounts to deducing ϕ from the given theory T , i.e. T ` ϕ. The
key problem that needs to be solved to be able to use deduction as a verification tool
concerns the construction of a corresponding logical theory T from a given agent
system. It is the goal of this chapter to introduce such a theory for the G agent
programming language [221].

Verification techniques based on deduction have been widespread in Computer
Science and have been provided for a broad range of programming languages. The
programming constructs and the structure of programs in a programming language
often naturally give rise to an associated programming logic. This has been partic-
ularly true for imperative programming languages but also for concurrent program-
ming languages [23, 296, 298].

The verification approach presented here for G consists of two parts. First,
an operational semantics that provides a model for executing agent programs is
defined. This provides a computational framework that specifies how G agents
are to be executed. Second, a logic for verification is introduced and it is shown that
the logical semantics corresponds with the operational semantics. It is our aim in
this chapter to stay as close as possible to the actual implementation of the G
language, although we do abstract away a number of features that are present in
the interpreter for the language and focus on single agents. In particular, we have
provided a semantics for logic programs as part of the operational semantics to
model the Prolog engine that is used in the implementation. Similarly, we have
aimed for a verification logic which semantics corresponds in a precise sense with
the operational semantics and can be used to fully characterize agent programs. As
we will show, basic G agent programs discussed here may be mapped into a
corresponding logical theory by means of a straightforward translation scheme that
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fully characterizes the runs of these programs. This result shows that G agent
programs may be perceived as executing the corresponding logical theory.

8.2 Related work

There is a growing body of literature on deductive verification of rational agents and
agent programs that are based on the Belief-Desire-Intention metaphor. The work
related most to our approach concerns logics for the languages 3APL [223] and its
successor 2APL [122], and work on ConGolog [193] - a closely related language
to 3APL (cf. [225]). The CASL framework [395], also discussed in this volume,
that can be viewed as an extension of the situation calculus, also aims at defining a
logical framework for specifying rational agents.

Early work on designing a verification logic for 3APL is reported in [216] and
introduces a dynamic logic to reason about 3APL programs without self-modifying
reasoning rules. The logic assumes that such programs terminate, which derives
from the use of a dynamic logic [210], but also accounts for the use of free variables
in the execution of 3APL programs. In [6], a logic for reasoning about agent pro-
grams in a simplified version of 3APL is introduced, called SimpleAPL. [6] presents
a propositional logic to reason about the core features of 3APL, including beliefs
and goals, which is proven sound and complete. Finally, [7] discusses a logic for
reasoning about the deliberation cycle of an agent in 3APL. This paper addresses
reasoning at another level, the execution strategy of the interpreter, rather than the
execution of actions and action selection by the agent itself.

[288] presents a Hoare-style proof system for verifying Golog programs, a sub-
set of the ConGolog language, which is proven sound and complete. The work is in
many ways similar to that discussed in the previous paragraph. The logic and aims
are similar in various respects, but agents in Golog do not have explicit beliefs and
goals. The latter restriction has motivated the extension of the basic Golog frame-
work with explicit knowledge and goal operators in CASL [395]. CASL extends the
situation calculus with a semantics for such operators using situations in a way sim-
ilar to how modal worlds are used in classical modal logic. The approach, however,
is very expressive allowing for quantification over formulas (as terms) and it is less
clear what the computational properties of the framework are.

In previous work on G [60], a verification framework for G agents has
been introduced that consists of two parts: A Hoare-style logic for reasoning about
actions and a temporal logic for reasoning about runs of such agents. This frame-
work allows for the verification of G agents and has been related to Intention
Logic [217]. The work presented here differs in various ways from [60]. First, here
we use a temporal logic for reasoning about actions and do not introduce Hoare-style
axioms. Second, we show that the resulting logic can be used to fully characterize
G agents. Third, the logic allows for quantification and is a first-order verification
logic.
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8.3 The Agent Programming Language G

The agent programming language G is presented here by defining its operational
semantics. The section is organized as follows. In 8.3.1 we very briefly informally
introduce the key concepts that make up a G agent program. G agents derive
their choice of action from their beliefs and goals and need a knowledge representa-
tion language to represent these which is introduced in 8.3.2. As G agents derive
what to do next from their mental state, we then continue by introducing the seman-
tics of mental states in 8.3.3. Using the mental state semantics, the meaning of a
G agent program is specified using structural operational semantics [340]. The
operational semantics determines which transitions from one mental state to another
can be made. It makes precise how the mental state of a G agent changes when
it performs an action.

8.3.1 G Agent Programs

A G agent program consists of the agent’s knowledge, beliefs, its goals, a set of
action rules and a set of action specifications. Other features present in the language
for e.g. percept handling, modules and communication are not discussed here. For a
more thorough and comprehensive introduction to the language see [221].1

The knowledge, the beliefs and the goals of an agent are specified declaratively
by means of a knowledge representation language, which facilitates the design of
agent programs at the knowledge level [321]. The knowledge of a G agent is as-
sumed to be static and does not change over time. The knowledge, beliefs and goals
of an agent define the agent’s mental state. G does not commit to any particular
knowledge representation technology but for purposes of illustration we will use a
variant of PDDL here [192].2 This has the additional benefit that PDDL action spec-
ficiations with conditional actions are supported, and this variant of G is able to
support the full expressivity of ADL action specifications [336]. A G agent de-
rives its choice of action from its beliefs and goals. It does so by means of action
rules of the form ifψ then a(t) where ψ is a condition on the mental state of the agent
and a(t) is an action the agent can perform. Whenever the mental state condition ψ
holds the corresponding action a(t) is said to be an option. At any time, there may
be multiple options from which the agent will select one nondeterministically.

1 The reader is referred to [215] for a semantics of modules and [220] for a semantics of commu-
nication.
2 The first-order logic variant of PDDL that we will discuss includes so-called axioms for derived
predicates. This variant has been implemented as one of the options for choosing a knowledge rep-
resentation language in G. A programmer can also choose to use Prolog, for example. Although
the first-order language presented is richer than that of Prolog, the fragment discussed here can be
compiled into Prolog (cf. [289]).
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8.3.2 Knowledge Representation Language

We will use a first-order language L0 for representing the knowledge, beliefs and
goals of an agent.3 L0 is built using a vocabulary that consists of a finite sets of
predicates P with typical elements p, function symbols F with typical elements f ,
constant symbols C with typical elements a,b,c, and an infinite supply of variables
V with typical elements x,y,z. We also assume that L0 includes equality =. The
set of predicates P consists of two disjoint sets of so-called basic predicates B and
derived predicates D, such that P = B∪D and B∩D = ∅. The distinction is used
to differentiate predicates that may be updated by actions from those that cannot
be updated so. The idea is that basic predicates may be updated whereas derived
predicates may only be used to define additional concepts that are defined in terms
of the more basic predicates.

Definition 8.1. (Syntax of L0)

t ∈ T ::= x | c | f (t)
φ ∈ L0 ::= t = t | p(t) | φ∧φ | φ∨φ | ¬φ | ∀x(φ)

A term t is either a variable x ∈ V, a constant c ∈ C, or a function symbol f
applied to a vector t of terms of the appropriate arity. Vectors of variables and terms
are denoted by bold face x respectively t. Formulas p(t) with p ∈ P are called atoms.
Atoms p(t) or their negations ¬p(t) are also called literals. Literals l and ¬l are said
to be complementary. As usual, φ→ φ′ is an abbreviation for ¬φ∨ φ′, and ∃x(φ)
abbreviates ¬∀x(¬φ). We write φ[x] to indicate that all free variables of φ occur
in the vector x. A formula that does not contain free variables is said to be closed.
Closed formulas without quantifiers, i.e. formulas without any variables, are also
said to be ground. The set of all ground atoms of the form p(t) is denoted by F.
The subset Fb ⊆ F consists of all atoms of the form p(t) with p ∈ B, and, similarly
Fd ⊆ F consists of all atoms p(t) with p ∈ D. Elements from Fb (Fd) are also called
basic (derived) facts, and basic (derived) facts and their negations are called basic
(derived) literals. Finally, we use ∀(φ) to denote the universal closure of φ.

The distinction between basic and derived predicates that is made here is used to
distinguish basic facts about an environment from conceptual or domain knowledge
that can be defined in terms of these basic facts. The use of such defined predicates
facilitates programming and reduces the size of the program. We adopt the definition
of derived predicate axioms and related definitions below from [413].

Definition 8.2. (Derived Predicate Axiom)
A derived predicate axiom is a formula of the form ∀x(φ[x]→ d(x)) with d ∈ D.4

3 This language is referred to as a knowledge representation language traditionally, even though it
is also used to represent the goals of an agent.
4 We do not allow terms in the head of a derived predicate axiom here, mainly because it simplifies
the presentation and definition of completion below.
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In our setting, the antecedent φ of such an axiom may not contain occurrences
of other derived predicates that “depend on” the definition of d.5 Technically, the
requirement is that a set of derived predicate axioms needs to be stratified. Before
we define stratification it is useful to introduce the notion of a negated normal form.
A formula φ is in negated normal form if all occurrences of negations occur directly
in front of atoms. For example, ∀x(¬p(x)∨ (q(x)∧ r(x))) is in negated normal form
but ¬∃x(¬(p(x)∧ q(x))) is not because negation occurs in front of the existential
quantifier and in front of a conjunction. We remark here that this definition assumes
that all implications → have been expanded into their unabbreviated form. That
is, occurrences of, for example, (p(x)∧ q(x))→ r(x) are not allowed and must be
replaced with the negated normal form of, in this case, ¬(p(x)∧ q(x))∨ r(x), i.e.
¬p(x)∨¬q(x)∨ r(x). It is clear that each formula φ ∈ L0 can be transformed into
an equivalent formula in negated normal form and we write NNF(φ) to denote this
formula.

Definition 8.3. (Stratified Derived Predicate Axiom Set)
A set of derived predicate axioms is called stratified iff there exists a partition of
the set of derived predicatesD into (non-empty) subsets {Di,1 ≤ i ≤ n} such that for
every di ∈ Di and every axiom ∀x(φ[x]→ di(x)) we have that:

• if d j ∈ D j occurs positively in NNF(φ), then j ≤ i.

• if d j ∈ D j occurs negated in NNF(φ), then j < i.

The semantics of L0 is defined relative to a state S of basic facts and a set of
derived facts D. We first present this semantics and then show how the set D of
derived facts can be obtained from a set of basic facts and a stratified axiom set. The
closed world assumption applies, so any ground positive literal not in S is assumed
to be false.

Definition 8.4. (Truth conditions) Let S ⊆ Fb be a set of basic facts and D ⊆ Fd be
a set of derived facts. The truth conditions of closed formulas from L0 are defined
by:

〈S ,D〉 |= p(t) iff p(t) ∈ S ∪D
〈S ,D〉 |= ¬φ iff 〈S ,D〉 6|= φ
〈S ,D〉 |= (φ1∧φ2) iff 〈S ,D〉 |= φ1 and 〈S ,D〉 |= φ2
〈S ,D〉 |= (φ1∨φ2) iff 〈S ,D〉 |= φ1 or 〈S ,D〉 |= φ2
〈S ,D〉 |= ∀x(φ) iff 〈S ,D〉 |= φ[t/x] for all ground t ∈ T
〈S ,D〉 |= ∃x(φ) iff 〈S ,D〉 |= φ[t/x] for some ground t ∈ T

We have assumed that all terms refer to different objects, which is also known as
the unique names assumption. In addition, it is assumed that all objects are named by
some term. These are common assumptions in logic programming, and in PDDL.
By making these assumptions a substitutional interpretation of quantifiers can be
used as we have done in Definition 8.4.
5 More precisely, recursion through negation is not allowed.
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Formulas with free variables may be used to compute answers, i.e. substitutions.
Substitutions are used to instantiate variables to values in the domain, i.e. bind vari-
ables to closed terms.

Definition 8.5. (Substitution)
A substitution is a mapping from variablesV to closed terms in T .

For details of what it means to apply a substitution θ to an expression e with
result eθ see [289]. eθ is also called an instance of e. We use θ[t/x] to denote the
substition σ such that σ(x) = t and σ(y) = θ(y) for all y , x in the range of θ.

The semantics of open formulas φ ∈ L0 is defined by 〈S ,D〉 |= φ iff there is a
substitution θ such that φθ is closed and 〈S ,D〉 |= φθ.

In the definition of the semantics of L0 we have assumed that the set of derived
facts D was given. Intuitively, we can derive d(t) using axiom a = ∀x(φ→ d(x)) if
we have 〈S ,D〉 |= φ[t], and add d(t) to D if not already present; we write [[a]](S ,D)=
{d(t) | 〈S ,D〉 |= φ[t], t is ground} to denote these consequences. [[a]](S ,D) yields all
immediate consequences of a stratified axiom set given that a pair 〈S ,D〉 has been
fixed.

Then the set of consequences of an axiom set A can be computed as follows,
assuming that we have a stratification {Ai,1 ≤ i ≤ n} of A:

[[A]]0(S ) = ∅, and, for all 1 ≤ i ≤ n:

[[A]]i(S ) =
⋂{

D |
⋃

a∈Ai

[[a]](S ,D)∪ [[A]]i−1(S ) ⊆ D
}

The set of all derived facts, written [[A]](S ), that can be obtained from A then is
defined as [[A]]n(S ). Using this set we can define the consequences of a (belief) state
S relative to a set of derived predicate axioms A as follows.

Definition 8.6.
S |=A φ iff 〈S , [[A]](S )〉 |= φ

The semantics of axioms has been defined as a fixed point above. It is well-
known, however, that this semantics corresponds with a logical semantics of the
completion of an axiom set. See, for example, the discussion of logic programming
for ”unrestricted” programs in [289]. As this equivalence is useful for showing that
the verification logic introduced below can be used to characterize G agents, we
briefly discuss the key results that we need. Details can be found in the Appendix.

We first introduce the completion comp(A) of a finite stratified axiom set A. Intu-
itively, the completion comp(A) replaces implications with equivalences [17, 289].
We assume that with each derived predicate d ∈ D at least one axiom is associated.
Then, in our setting, completion can be defined as follows.

Definition 8.7. (Completion)
Let A be a finite stratified axiom set. Then the completion comp(A) of that set is
obtained by applying the following operations to this set:
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1. For each derived predicate d ∈ D, collect all associated axioms of the form
∀x(φ1→ d(x)), . . . ,∀x(φn→ d(x)). Replace these axioms by:

∀x((φ1∨ . . .∨φn)→ d(x))

Note that variables may need to be renamed to ensure that all axioms for d have
d(x) as their head with unique variables x.

2. For each of the formulas obtained in the previous step, replace → with ↔, i.e.
replace each formula ∀x(φ→ d(x)) by ∀x(φ↔ d(x)).

It is well-known that the completion of a stratified axiom set is consistent [289].

Definition 8.8. (Answer, Correct Answer)
Let S be a set of ground atoms and A be a stratified axiom set. A substitution θ
is an answer for φ with respect to S and A if θ is a substitution for free variables
in φ and S |=A ∀(φθ). A substitution θ is a correct answer with respect to S and
A if comp(A)∪ S |=c ∀(φθ) and θ is an answer for φ. Here, |=c refers to the usual
consequence relation for classical first-order logic.

The completion of a stratified axiom set defines the meaning of such a set in terms
of classical first-order semantics. It shows that a declarative reading can be imposed
on a stratified axiom set. It may moreover be used to verify that the semantics of
Definition 8.4 is well-defined.

Theorem 8.1. (Correctness)
Let S be a set of basic facts, A be a stratified axiom set, and θ be an answer for φ
with respect to S and A. Then θ is a correct answer. That is, we have:

S |=A ∀(φθ) iff comp(A)∪S |=c ∀(φθ)

Proof. See the Appendix.

8.3.3 Mental States

The knowledge representation languageL0 is used by G agents to represent their
knowledge, beliefs and goals. We first discuss knowledge and beliefs. The difference
between knowledge and beliefs is based on the distinction between derived and
basic predicates discussed above. Knowledge is assumed to be static and concerns
conceptual and domain knowledge which is defined using derived predicate axioms.
Beliefs may change and represent the basic facts the agent believes to be true about
the environment. Accordingly, the knowledge base maintained by a G agent is a
set of stratified derived predicate axioms as defined above, and the belief base is a
set of ground atoms that only use basic predicates.
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Although it is common in planning to allow complex goal descriptions, in con-
trast with typical planning problems [192] the goals maintained by a G agent
may change over time. Moreover, a G agent needs to be able to inspect its goals
and therefore it is important that the goal base can be efficiently queried. For these
reasons, the goal base consists of conjunctions of ground atoms here. For exam-
ple, p(a)∧ q(b) and r(a)∧ r(b)∧ r(c) may be part of a goal base but ¬p(c) and
∃x(q(x)→ r(x)) may not. It is clear that a conjunction of ground atoms can be iden-
tified with the set of corresponding atoms and we will abuse notation here and will
also denote the corresponding set of ground atoms by means of a conjunction. This
will allow us to write p(a)∧ q(b) ⊆ F to denote that p(a) and q(b) are in the set F
of facts. We will make use of this below in the definition of the semantics of mental
state conditions.

Definition 8.9. (Mental State)
A mental state is a triple 〈K,Σ,Γ〉 where K is a finite, stratified derived predicate
axiom set, called a knowledge base, Σ ⊆ Fb is a belief base that consists of a finite
set of basic facts, and Γ ⊆ 2Fb is a goal base that consists of a finite set of finite
subsets (or, conjunctions) of basic facts. Finally, the following rationality constraint
is imposed on mental states:

∀γ ∈ Γ : Σ 6|=K γ

This constraint excludes mental states where a goal in the goal base is believed to
be achieved. This constraint imposed on mental states is motivated by the principle
that agents should not invest resources into achieving goals that have already been
achieved. Goals thus are viewed as achievement goals, i.e. states that the agent wants
to realize at some future moment.

It is usual to impose various rationality constraints on mental states [60]. These
constraints typically include that (i) the knowledge base combined with the belief
base is consistent, that (ii) individual goals are consistent with the knowledge base,
and that (iii) no goal in the goal base is believed to be (completely) achieved. Con-
straint (iii) is part of the definition of a mental state but we do not need to impose the
first two constraints explicitly as these follow by definition; both the belief base and
goal base consist of basic facts only, and the knowledge base only consists of rules
for derived predicates. Note that although goals cannot be logically inconsistent it is
still possible to have conflicting goals, e.g. on(a,b) and on(b,a) in a Blocks World
where one block cannot be simultaneously on top of and below another block.

In order to select actions an agent needs to be able to inspect its mental state. In
G, an agent can do so by means of mental state conditions. Mental state condi-
tions are conditions on the mental state of an agent, expressing that an agent believes
something is the case, has a particular goal, or a combination of the two. Special op-
erators to inspect the belief base of an agent, we use bel(ϕ) here, and to inspect the
goal base of an agent, we use goal(ϕ) here, are introduced to do so. In addition,
a special operator o-goal(φ) will be useful later and represents that φ is the “only
goal” of an agent. This operator will allow us to introduce ’successor state axioms’
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for goals below. We allow boolean combinations of these basic conditions but do
not allow the nesting of operators. Basic conditions may be combined into a con-
junction by means of ∧ and negated by means of ¬. For example, goal(ϕ)∧¬bel(ϕ)
with ϕ ∈ L0 is a mental state condition, but bel(goal(ϕ)) which has nested operators
is not.

Definition 8.10. (Syntax of Mental State Conditions)
The language LΨ of mental state conditions, with typical elements ψ, is defined by:

φ ::= any element from L0
ψ ∈ LΨ ::= bel(φ) | goal(φ) | o-goal(φ) | ψ∧ψ | ¬ψ

Note that we allow variables in mental state conditions, i.e. a mental state condi-
tion ψ does not need to be closed. A mental state condition with free variables can
be used in an agent program to retrieve particular bindings for these free variables.
That is, mental state conditions can be used to compute a substitution.

The next step is to define the semantics of mental state conditions. The meaning
of a mental state condition is derived from the mental state of the agent. A belief
condition bel(φ) is true whenever φ follows from the belief base combined with
the knowledge stored in the agent’s knowledge base. The meaning of a goal condi-
tion goal(φ) is slightly different from that of a belief condition. Instead of simply
defining goal(φ) to be true whenever φ follows from all of the agent’s goals (com-
bined with the knowledge in the knowledge base), we will define goal(φ) to be true
whenever φ follows from one of the agent’s goals (and the agent’s knowledge). The
intuition here is that each goal in the goal base has an implicit temporal dimension
and two different goals need not be achieved at the same time. Goals are thus used
to represent achievement goals. Finally, o-goal(φ) is true iff all goals of the agent
are logically equivalent with φ; that is, the only goal present is the goal φ.

Definition 8.11. (Semantics of Mental State Conditions)
Let m = 〈K,Σ,Γ〉 be a mental state. The semantics of closed mental state conditions
ψ is defined by the following semantic clauses:

m |=Ψ bel(φ) iff Σ |=K φ,
m |=Ψ goal(φ) iff ∃γ ∈ Γ : γ |=K φ,
m |=Ψ o-goal(φ) iff m |=Ψ goal(φ) and ∀φ′(m |=Ψ goal(φ′)⇒|=c φ↔ φ′),
m |=Ψ ψ1∧ψ2 iff m |=Ψ ψ1 and m |=Ψ ψ2,
m |=Ψ ¬ψ iff m 6|=Ψ ψ.

As before, for open formulas ψ ∈ LΨ we define m |=Ψ ψ iff there is a substitution
such that ψθ is closed and m |=Ψ ψθ.

Note that in the definition of the semantics of mental state conditions we have
been careful to distinguish between the consequence relation that is defined, denoted
by |=Ψ , and the consequence relation |= defined in Definition 8.4. The definition
thus shows how the meaning of a mental state condition can be derived from the
semantics of the underlying knowledge representation language.
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Proposition 8.1. Let m = 〈K,Σ,Γ〉 be a mental state. Then we have:

m |=Ψ ¬bel(φ) iff Σ |=K ¬φ

Proof. We have: m |=Ψ ¬bel(φ) iff m 6|=Ψ bel(φ) iff Σ 6|=K φ iff 〈Σ, [[K]](Σ)〉 6|= φ iff
〈Σ, [[K]](Σ)〉 |= ¬φ iff Σ |=K ¬φ. ut

Proposition 8.1 is a direct consequence of the closed world assumption. That is,
when φ is not believed to be the case, by the closed world assumption it then follows
that ¬φ. In other words, we have that ¬bel(φ) is equivalent with bel(¬φ).

P1 if ψ is an instantiation of a classical tautology, then |=Ψ ψ.
P2 if |=c φ, then |=Ψ bel(φ).
P3 |=Ψ bel(φ→ φ′)→ (bel(φ)→ bel(φ′)).
P4 |=Ψ ¬bel(⊥).
P5 |=Ψ ¬bel(φ)↔ bel(¬φ).
P6 |=Ψ ∀x(bel(φ))↔ bel(∀x(φ)).
P7 6|=Ψ goal(>).
P8 |=Ψ ¬goal(⊥).
P9 if |= φ→ φ′, then |=Ψ goal(φ)→ goal(φ′).
P10 |=Ψ goal(∀x(φ))→∀x(goal(φ)).

Table 8.1 Properties of Beliefs and Goals

We briefly discuss some of the properties listed in Table 8.1. The first property
(P1) states that mental state conditions that instantiate classical tautologies such
as bel(φ)∨¬bel(φ) and goal(φ)→ (bel(φ′)→ goal(φ)) are valid with respect to |=Ψ .
Property (P2) corresponds with the usual necessitation rule of modal logic and states
that an agent believes all validities of the base logic. (P3) expresses that the belief
modality distributes over implication. This implies that the beliefs of an agent are
closed under logical consequence. Property (P4) states that the beliefs of an agent
are consistent. In essence, the belief operator thus satisfies the properties of the sys-
tem KD (see e.g. [314]). Although in its current presentation, it is not allowed to nest
belief or goal operators in mental state conditions in G, from [314], section 1.7,
we conclude that we may assume as if our agent has positive bel(φ)→ bel(bel(φ))
and negative ¬bel(φ)→ bel(¬bel(φ)) introspective properties: every formula in the
system KD45 (which is KD together with the two mentioned properties) is equiva-
lent to a formula without nestings of operators. Property (P7) shows that ¬goal(>)
can be used to express that an agent has no goals. Property (P8) states that an agent
also does not have inconsistent goals, that is, we have |=c ¬goal(⊥). Property (P9)
states that the goal operator is closed under implication in the base language. That
is, whenever φ→ φ′ is valid in the base language then we also have that goal(φ)
implies goal(φ′). This is a difference with the presentation in [60] which is due to
the more basic goal modality we have introduced here. It is important to note here
that we do not that bel(φ)∧goal(φ) is inconsistent. Finally, property (P10) is valid,
but the implication cannot be reversed: ∀x(goal(φ))→ goal(∀x(φ)) is not valid.
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It is clear from the properties discussed that the goal operator does not corre-
spond with the more common sense notion of a goal but instead is an operator
mainly introduced for technical reasons. The reason for using the label goal is to
clearly differentiate it from the bel operator and make clear that this operator is
related to the motivational attitudes of an agent. The goal operator is a primitve
operator that does not match completely with the common sense notion of a goal
that needs to be achieved in the future. The goal operator, however, may be used to
define so-called achievement goals that usually require effort from an agent in order
to realize the goal. The main characteristic which sets an achievement goal apart
from “primitives” goals thus is that they are not believed to be achieved already. As
noticed, it is possible to define the concept of an achievement goal and to introduce
an achievement goal a-goal operator using the primitive goal operator and the belief
bel operator. It is also useful to be able to express that a goal has been (partially)
achieved. We therefore also introduce a “goal achieved” goal-a operator to be able
to state that (part of) a goal is believed to be achieved. This operator can also be
defined using the goal and bel operator.

Definition 8.12. (Achievement Goal and Goal Achieved Operators)
The achievement goal a-goal(φ) operator and the goal achieved goal-a(φ) operator
are defined by:

a-goal(φ)
d f
= goal(φ)∧¬bel(φ),

goal-a(φ)
d f
= goal(φ)∧bel(φ).

Both of these operators are useful when writing agent programs. The first is use-
ful to derive whether a part of a goal has not yet been (believed to be) achieved
whereas the second is useful to derive whether a part of a goal has already been
(believed to be) achieved. It should be noted that an agent can only believe that part
of one of its goals has been achieved but cannot believe that one of its goals has
been completely achieved as such goals are removed automatically from the goal
base. That is, whenever we have γ ∈ Γ we must have a-goal(γ), or, equivalently,
goal(γ)∧¬bel(γ) since it is not allowed by the third rationality constraint in Def-
inition 8.9 that an agent believes γ in that case (see also (P21) and (P22) in Table
8.2).

Table 8.2 lists some properties of the a-goal, goal-a, and o-goal operators.6 The
main difference between the a-goal and goal-a operators concern Properties (P12)
and (P17) and Properties (P15) and (P20), respectively. Property (P12) expresses
that an achievement goal φ∧ (φ→ φ′) does not imply an achievement goal φ′. This
property avoids the side effect problem. The goal-a operator, however, is closed
under such effects as any side effect of a goal that has been achieved also is realized
by implication. Properties (P15) and (P20) highlight the key difference between
achievement goals and goals achieved: achievement goals are not believed to be
achieved, whereas goals achieved are believed to be achieved.

6 The properties of the a-goal operator are the same as those for the G operator listed in Lemma
2.4 in [60].
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P11 6|=Ψ a-goal(φ→ φ′)→ (a-goal(φ)→ a-goal(φ′)).
P12 6|=Ψ a-goal(φ∧ (φ→ φ′))→ a-goal(φ′).
P13 6|=Ψ (a-goal(φ)∧a-goal(φ′))→ a-goal(φ∧φ′).
P14 if |= (φ↔ φ′), then |=Ψ a-goal(φ)↔ a-goal(φ′).
P15 |=Ψ a-goal(φ)→¬bel(φ).
P16 6|=c goal-a(φ→ φ′)→ (goal-a(φ)→ goal-a(φ′)).
P17 |=Ψ goal-a(φ∧ (φ→ φ′))→ goal-a(φ′).
P18 6|=Ψ (goal-a(φ)∧goal-a(φ′))→ goal-a(φ∧φ′).
P19 if |= (φ↔ φ′), then |=Ψ goal-a(φ)↔ goal-a(φ′).
P20 |=Ψ goal-a(φ)→ bel(φ).
P21 |=Ψ o-goal(φ)→ goal(φ).
P22 |=Ψ o-goal(φ)→¬bel(φ).
P23 6|=Ψ o-goal(φ→ φ′)→ (o-goal(φ)→ o-goal(φ′)).

Table 8.2 Properties of Achievement Goals, Goals Achieved, and Only Goals

8.3.4 Actions and Action Selection

A G agent derives its choice of action from its goals and beliefs (in combination
with its knowledge). Action selection is implemented by means of so-called action
rules that inspect the mental state of the agent. Actions are performed to change
the environment. An agent keeps track of such changes by updating its beliefs. The
updates asscociated with the execution of an action are provided by so-called action
specifications. Actions may have conditional effects [336].7 For example, the result
of performing the action of switching the light button depends on the current state
and may result in the light being either on or off. The effect of the light switching
action thus depends on the state in which the action is executed.

We present a formal, operational semantics for G with actions with condi-
tional effects and use Plotkin-style transition semantics [340] to do so. This seman-
tics is a computational semantics that provides a specification for executing a G
agent on a machine.

We distinguish between two types of actions: user-specified actions and built-in
actions. Built-in actions are part of the G language and include an action for
adding and deleting beliefs and for adopting and dropping goals. The insert(φ)
action, where φ should be a conjunction of basic literals, adds facts that occur pos-
itively in φ to the belief base and removes facts that occur negatively in φ from the
belief base. This action can always be performed and has a precondition >. The
adopt(φ) action, where φ should be a conjunction of basic facts, adds a goal to the
goal base. The adopt(φ) action can only be performed if φ is not believed to be
the case; that is, the precondition of adopt(φ) is ¬bel(φ).8 Finally, the drop(φ) ac-

7 This is an extension of G as presented in [60] introduced in [228].
8 The condition that φ or a logically equivalent formula is not already present in the goal base may
be added but is less important in this context but is relevant for efficiency reasons to avoid having
to evaluate multiple times whether one and the same goal has been achieved.
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tion, where φ should again be a conjunction of basic facts, removes any goal in the
goal base that implies φ. The precondition of drop(φ) is > and thus can always be
performed.

The semantics of these actions is formally defined by means of a mental state
transformer function M. This function maps an action a(t) and a mental state m
to a new mental state m′ that is the result of performing the action. It is useful to
introduce some notation here. We use pos(φ) and neg(φ) to denote the set facts that
occur positively respectively negatively in a conjunction of literals φ.

Definition 8.13. (Semantics of Built-in Actions)
Let m = 〈K,Σ,Γ〉 be a mental state. The mental state transformer function M is
defined as follows for the built-in actions insert(φ), adopt(φ), and drop(φ), where
φ needs to be of the appropriate form: 9

M(insert(φ),m) = 〈K, (Σ \neg(φ))∪ pos(φ),Γ〉.

M(adopt(φ),m) =
{
〈K,Σ,Γ∪{φ}〉 if m |=Ψ ¬bel(φ),
undefined otherwise.

M(drop(φ),m) = 〈K,Σ,Γ \ {φ′ ∈ Γ | φ′ |=c φ}〉.

To enable a programmer to add user-specified actions to an agent program we
need a language for specifying when an action can be performed and what the ef-
fects of performing an action are. Actions are written as a(t) where a is the name
of the action and t are the parameters of the action. Preconditions specify when
an action can be performed. These conditions can be specified using the knowl-
edge representation language L0. The effects of an action may be conditional on
the state in which the action is performed. To express such conditional effects we
use statements of the form φ⇒ φ′ where φ is called the condition and φ′ the ef-
fect. Intuitively, an action with conditional effect φ⇒ φ′ means that if the action is
performed in a state where φ is true, then the effect of the action is φ′. When the
condition φ is > we also simply write φ′ to denote the effect. Free variables in a
conditional effect may be bound universally and we write ∀x(φ⇒ φ′). Finally, mul-
tiple conditional effects may be associated with an action and in that case we write
∀x1(φ1⇒ φ′1)∧ . . .∧∀xn(φn⇒ φ′n). Finally, for specifying the preconditions and ef-
fects of an action a(t) we use a Hoare-triple-style notation. That is, we use triples
consisting of a precondition, an action and a conjunction of conditional effects to
specify the precondition and effects of a particular action. Note, however, that al-
though conditional effects are part of the postcondition of an action, the conditions
of such effects need to be evaluated in the state where the action is executed and
in this respect is similar to a precondition. The following definition summarizes the
previous discussion.

Definition 8.14. (Conditional Effect, Action Specification)

9 Note that since goals are conjunctions of basic facts, the formal semantics given here for the drop
action that uses |=c is easily replaced by an efficient computational mechanism.
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• A conditional effect statement is an expression of the form ∀x(φ⇒ φ′), where
φ ∈ L0 and φ′ is a conjunction of basic literals. The quantor ∀x may be absent
and whenever φ is > we also write ∀x(φ′).

• An action specification is a triple written as:

{ φ } a(t) { ∀x1(φ1⇒ φ′1)∧ . . .∧∀xn(φn⇒ φ′n) }

where φ is a formula fromL0 called the precondition, a(t) is an action with name
a and parameters t, and ∀x1(φ1 ⇒ φ′1)∧ . . .∧∀xn(φn ⇒ φ′n) is a conjunction of
conditional effect statements, which is also called postcondition. All free vari-
ables in the postcondition must occur free in either the precondition or the action
parameters. Finally, the postcondition is required to be consistent (see Definition
8.15 below).

Note the condition on free variables in the definition of an action specification.
The free variables that occur in the postcondition need to occur free in the precondi-
tion or action parameters in order to ensure they are instantiated. An action can only
be performed when all free variables in the action parameters and the postcondition
have been instantiated.

In G, a precondition is evaluated on the belief base of the agent. This means
that an agent believes it can perform an action if the agent believes the associated
precondition of that action. An action may affect both the beliefs and goals of an
agent. An agent’s knowledge base is static and does not change since it is used to
represent conceptual and domain knowledge that does not change. The postcondi-
tion of an action specifies how the belief base of an agent should be updated. Intu-
itively, for each conditional effect φ⇒ φ′ if φ is believed then the facts that occur
positively in φ′ are added to the belief base and the facts that occur negatively in φ′

are removed from the belief base.

Definition 8.15. (Positive and Negative Effects of an Action, Consistency)
Let { φ } a(t) { φ′ } be an instantiation of an action specification such that φ and
a(t) are ground, which implies that φ′ = ∀x1(φ1 ⇒ φ′1)∧ . . .∧∀xn(φn ⇒ φ′n) is also
ground. Then the positive effects respectively the negative effects in a mental state
m are defined by:

Eff+(φ′,m) =
⋃
i
{ at ∈ pos(φ′i ) | m |=Ψ bel(φi)}

Eff−(φ′,m) =
⋃
i
{ at ∈ neg(φ′i ) | m |=Ψ bel(φi)}

A postcondition φ′ is said to be consistent if for all mental states m and all instan-
tiations of an action specification the set Eff+(φ′,m)∪¬Eff−(φ′,m) is consistent, i.e.
if this set does not contain complementary literals.10

10 Where ¬T denotes the set {¬φ | φ ∈ T }, with T ⊆ L0.
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After updating the beliefs, an agent also needs to check whether any of its
goals have been realized and can be removed from its goal base. A G agent
only removes goals that have been completely achieved. A goal such as on(a,b)∧
on(b, table) is not removed or replaced by on(b, table) since the goal has been
achieved only when at the same time block a is on block b and b is on the table.
The semantics of user-specified actions is again defined by means of the mental
state transformer functionM.

Definition 8.16. (Semantics of User-Specified Actions)
Let m= 〈K,Σ,Γ〉 be a mental state, and { φ } a(t) { φ′ } be an instantiation of an action
specification such that φ and a(t) are ground. Then the mental state transformer
functionM is defined as follows for action a(t):

M(a(t),m) =
{
〈K,Σ′,Γ′〉 if m |=Ψ bel(φ)
undefined otherwise

where:

• Σ′ = (Σ \Eff−(φ′))∪Eff+(φ′).

• Γ′ = Γ \ {φ ∈ Γ | Σ |=K φ}.

Note that the formula φ′ in Definition 8.16 is closed since any free variables in
a postcondition φ′ need to be free in either the precondition φ or action parameters
a(t).

G agents derive their choice of action from their beliefs and goals. They do so
by means of action rules of the form if ψ thenα. Here ψ is a mental state condition
and α an action, either built-in or user-specified. An action rule specifies that action
α may be selected for execution if the mental state condition ψ and the precondition
of action α hold. In that case, we say that action α is an option. At runtime, a G
agent non-deterministically selects an action from the set of options to perform. This
is expressed in the following transition rule, describing how an agent’s mental state
changes from one to another.11

Definition 8.17. (Action Semantics)
Let m be a mental state, and if ψ then α be an action rule, and θ a substitution. The

transition relation
αθ
−→ is the smallest relation induced by the following transition

rule.
m |=Ψ ψθ M(αθ,m) is defined

m
αθ
−→M(αθ,m)

A G agent (program) consists of the knowledge, initial beliefs and goals, ac-
tion rules and action specifications.

11 A transition rule is an inference rule for deriving transitions or computation steps. The statements
above the line are called the premises of the rule and the transition below the line is called the
conclusion. See also [340].



8 A Verification Logic for G Agents 241

Definition 8.18. (G Agent Program)
A G agent program is a tuple 〈K,Σ,Γ,Π,A〉 with:

• 〈K,Σ,Γ〉 a mental state,

• Π a set of action rules, and

• A a set of action specifications.

Below we will assume that there is exactly one action specification associated
with each action name a. Although it is possible to use multiple action specifications
in a G agent, this assumption is introduced to somewhat simplify the presentation
below.

The execution of a G agent results in a run or computation. We define a com-
putation as a sequence of mental states and actions, such that each mental state can
be obtained from the previous by applying the transition rule of Definition 8.17. As
G agents are non-deterministic, the semantics of a G agent is defined as the
set of possible computations of the G agent, where all computations start in the
initial mental state of the agent.

Definition 8.19. (Run)
A run or computation of an agent Agt = 〈K,Σ,Γ,Π,A〉, typically denoted by r, is an
infinite sequence of mental states and actions m0,α0,m1,α1,m2,α2, . . . such that:

• m0 = 〈K,Σ,Γ〉, and

• for each i we have either that:

– mi
αi
−→ mi+1 can be derived using the transition rule of Definition 8.17, or

– for all j > i, m j = mi and mi 6 α−→m′ for any α and m′, and αi = skip.12

We also write rm
i to denote the ith mental state and ra

i to denote the ith action. The
meaning RAgt of a G agent Agt is the set of all possible runs of that agent.

Observe that a computation is infinite by definition, even if the agent is not able
to perform any actions anymore from some point in time on. In the latter case, the
agent is assumed to perform no action at all, which is represented by skip. Also note
that the concept of a computation is a general notion in program semantics that is
not particular to G. The notion of a computation can be defined for any (agent)
programming language that is provided with a well-defined operational semantics.

12 Implicitly, this also defines the semantics of skip. The label skip denotes the action that does
not change the mental state of an agent.
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8.4 Verifying Goal Agent Programs

The verification logic for G that we present here is an extension of linear tem-
poral logic (LTL) with an action, belief and goal operator. It is similar to the verifi-
cation framework presented in [60]. However, the verification framework presented
here does not consist of two different components, a Hoare logic component and a
linear temporal logic component, as in [60]. Instead, the Hoare logic for reasoning
about actions in [60] is replaced by an action theory represented in the temporal
verification logic.

A second difference with [60] is that the verification framework presented here is
less abstract. In particular, the verification logic presented here incorporates Reiter’s
solution to the frame problem [364].

The differences with the very generic approach presented in [60] have important
implications. The approach presented here introduces a deductive approach to the
verification of agents that is obtained by a direct translation of an agent program
into the logic. We will discuss in more detail what this means in section 8.4.2.

8.4.1 Verification Logic

To obtain a verification logic for G agents temporal operators are added on top
of mental state conditions to be able to express temporal properties over runs and an
action operator done(α) is introduced.

Definition 8.20. (Temporal Language: Syntax)
The temporal language LG, with typical elements χ,χ′, is defined by:

χ ∈ LG ::= ψ ∈ LΨ | done(α) | ¬χ | χ∧χ | ∀x(χ) | ©χ | χ until χ

Using the until operator, other temporal operators such as the ”sometime in the
future operator” ^ and the ”always in the future operator” � can be introduced as
abbreviations for ^ψ ::= > until ψ and �ψ ::= ¬^¬ψ.

Although the language LG is intended for verification of runs of G agents,
the semantics of LG is defined more generally relative to a trace t. Each time point
(t, i) denotes a state of the agent and is labeled with the action performed at that state
by the agent. Instead of databases to model the mental state of an agent, moreover,
we use sets of Herbrand interpretations as models of the agents’ beliefs and goals.
A Herbrand interpretation is a set of ground atoms [22].

Definition 8.21. (Trace)
A trace is a mapping from the natural numbers N (including 0) to triples 〈B,G,α〉,
where B consists of a set of Herbrand interpretations, G is a set of sets of Herbrand
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models, and α is an action (including possibly skip). A pair (t, i) is called a time
point. We use tb

i to denote B, tg
i to denote G, and ta

i to denote α in t(i) = 〈B,G,α〉.
We use

⋃
tg
i to denote the union of all sets in tg

i (which yields a set of Herbrand
interpretations).

The trace semantics introduced above is an approximation of a more general
modal semantics, and only includes those elements strictly needed in our setting.
The B and G components of a time point correspond respectively to the belief and
goal base of an agent, modeled as (sets of) sets of Herbrand models. This setup
allows us to use a classical first-order semantics (where models have admittedly
been restricted to Herbrand models). Also note that the set of traces does not need
to correspond with the set of runs of a particular agent, but - as we will show - we
do have that any set of runs generated by an agent may be viewed as a subset of the
set of all traces.

Definition 8.22. (Temporal Language: Semantics)
The truth conditions of sentences from LG are provided relative to a time point (t, i)
and are inductively defined by:

t, i |=G bel(φ) iff ∀M ∈ tb
i : M |=c φ,

t, i |=G goal(φ) iff ∃g ∈ tg
i : ∀M ∈ g : M |=c φ,

t, i |=G o-goal(φ) iff ∀M : M ∈
⋃

tg
i ⇔ M |=c φ,

t, i |=G done(α) iff ta
i = α,

t, i |=G ¬χ iff t, i 6|=G χ,
t, i |=G χ∧χ′ iff t, i |=G χ and t, i |=G χ′,
t, i |=G ∀x(χ) iff t, i |=G χ[t/x] for all t ∈ T ,
t, i |=G ©χ iff t, i+1 |=G χ,
t, i |=G χ until χ′ iff ∃ j ≥ i : t, j |=G χ′ and ∀i ≤ k < j : t,k |=G χ

We write t |= χ for t,0 |= χ.

8.4.2 Logical Characterization of Agent Programs

An issue in the verification of agents is whether the behavior of an agent program
can be fully characterized in a verification logic. A verification logic should not only
enable proving properties of some of the possible runs of an agent but should also
enable to conclude that certain properties hold on all possible runs of the agent. This
is important because a verification logic that does not allow to fully characterize the
behavior of an agent cannot be used to guarantee that certain properties are never
violated, for example. We explore this issue in more detail in this section.

In order to show that a G agent program can be fully characterized logically
we transform a program into a set of corresponding axioms. To prove formally that
this set of axioms fully characterizes the G agent we need to show that the traces
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that are models of these axioms correspond with the runs of the G agent. A basic
G agent program 〈K,Σ,Γ,Π,A〉 as discussed above consists of the knowledge
contained in K, the initial beliefs Σ and goals Γ, a set of action rules Π , and action
specifications A. Each of these components will be transformed in a set of corre-
sponding axioms of the language LG. It turns out that providing axioms that fully
characterize the agent is possible by using the o-goal operator introduced in section
8.3.3 and imposing a restriction on the goal base of an agent.

Providing the appropriate axioms that fully characterize the knowledge and be-
liefs in our setting is relatively straightforward. The knowledge base represents what
the agent knows about derived predicates and captures the agent’s conceptual and
domain knowledge. Since knowledge does not change, intuitively, we must have that
�bel(K) is true on all runs of the agent program. This does not yet fully characterize
the agent’s knowledge with respect to derived predicates, however, as it does not ex-
clude that the agent believes more than bel(K). A full characterization of the agent’s
knowledge can be provided using the completion comp(K) as defined in Definition
8.7. The knowledge of the agent about derived predicates is characterized by the
following axiom.

�bel(comp(K)) (8.1)

Similarly, we have that bel(Σ) is true in the initial (mental) state as the belief base Σ
contains the initial beliefs of the agent. Again this is not sufficient to fully character-
ize the agent’s beliefs about basic predicates and to exclude that the agent believes
basic facts that are not included in the initial state. We have assumed that the base
language L0 contains a finite number of basic predicates and the belief base is finite
as well. In addition, a closed world assumption was made. It is therefore possible to
finitely characterize an agent’s beliefs about basic facts by axioms of the following
form, where we need one axiom for each basic predicate b ∈ B.

∀x(bel(b(x))↔ (x = t1∨ . . .∨x = tn)) (8.2)

The particular form that the expression (x = t1 ∨ . . .∨ x = tn) can be determined by
inspecting all occurrences of the b predicate in the initial belief base of the agent
program. The number of disjuncts needed corresponds with the number of ground
basic facts of the form b(t) in the initial belief base. If the predicate b does not occur
in the belief base, then instead of the axiom above the axiom ∀x(¬bel(b(x)) should
be used.

A set of axioms to fully characterize the initial goal base of the agent cannot be
constructed similarly to those for the initial beliefs. Although it is clearly true that
goal(φ1)∧ . . .∧goal(φn) holds for any agent with an initial goal base that consists of
the goals φ1, . . . ,φn, it is not so easy to provide an axiom that excludes the possibility
that the agent may have any other goals. Although the axiom above may be sufficient
for proving that the behavior of the agent will satisfy some specific properties, it
is not sufficient to exclude behavior that leads to the violation of certain desired
properties. In particular, it is not sufficient to prove that an agent does not have
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certain goals. Conditions of the form ¬goal(φ), which are often used in practice in
G programs, cannot be derived from a specification goal(φ1)∧ . . .∧ goal(φn) of
goals that are pursued by the agent. We will postpone the discussion of this issue
and propose a solution below.

Action rules of the form if ψ then a(t) provide an agent with the capability to
select actions. An action a(t) can only be performed when its precondition pre(a(t))
holds and when the mental state condition ψ of one of the action rules for a(x) holds.
We introduce the notion of enabledness to express that an action can be performed.

Definition 8.23. (Enabled)
Suppose that if ψ1 then a(t1), ..., if ψn then a(tn) are all action rules for a user-
specified action a(x) in program 〈K,Σ,Γ,Π,A〉 and the variables in x do not occur
in any of the conditions ψi. The definition of action a(x) being enabled, written
enabled(a(x)), is the following:

enabled(a(x))
d f
= pre(a(x))∧ ((x = t1∧ψ1)∨ . . .∨ (x = tn∧ψn))

For the built-in actions insert, adopt and drop, the following axioms are provided,
where we suppose again that if ψ1 then α, ..., if ψn then α are all action rules for the
built-in action α:

enabled(insert(φ))
d f
= ψ1∨ . . .∨ψn

enabled(adopt(φ))
d f
= ¬bel(φ)∧ (ψ1∨ . . .∨ψn)

enabled(drop(φ))
d f
= ψ1∨ . . .∨ψn

These axioms express that the action insert and drop can always be performed
when the mental state conditions of the action rules in which they occur hold. For
the action adopt, additionally, the formula φ to be adopted as a goal may not be
believed to be the case.

We can use the notion of enabledness to introduce an axiom that characterizes
action selection in G. The following axiom represents that a(x) can only be per-
formed if one of the mental state conditions ψi holds (where variables have been
appropriately substituted to obtain a ground action):

∀x�(©done(a(x))→ enabled(a(x)) (8.3)

This axiom is sufficient to express that an action is only performed when the
right conditions are true. The semantics of actions in Definition 8.17 guarantees that
a single action may be executed at any time (it is an interleaving model of action
execution). This property is also built into the trace semantics for linear temporal
logic above and we do not need an axiom to ensure this. In other words, the follow-
ing axiom, which excludes that any two actions happen simultaneously, is valid on
traces (by Definition 8.21).
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∀x�((done(a(t))∧done(a′(t′)))→ a(t) = a′(t′))

We need to specify that skip is performed in case no other action can be performed.
Using the enabled predicate introduced above, we obtain the following axiom:

∀x1, . . . ,xn�(©done(skip)↔ (¬enabled(a1(x1))∧ . . .∧¬enabled(an(xn)))) (8.4)

Finally, we need to state that an agent always performs some action, or otherwise
performs the skip action.

∀x1, . . . ,xn�© (done(a1(x1))∨ . . .∨done(an(xn))∨done(skip)) (8.5)

The last component of a G agent program that we need to translate consists
of action specifications of the form {φ} a(t) {φ1⇒ φ′1∧ . . .∧φn⇒ φ′n}. Note that the
action preconditions have already been captured in the axioms above that translate
the action rules of a program. What remains is to represent the action effects. The
effects on the beliefs of an agent are represented here by a temporal logic encoding
of Reiter’s successor state axioms [305, 364]. The basic idea of Reiter’s solution
to the frame problem is that a propositional atom p(t) may change its truth value
only if an action is performed that affects this truth value. Two cases are distin-
guished: (i) actions that have p(t) as effect and (ii) actions that have ¬p(t) as effect.
For each atom p(x) the first set of actions a1(t1), . . . ,am(tm) is collected and a dis-
junction is formed of the form (©done(a1(t1)1)∧φ1)∨ . . .∨ (©done(am(tm))∧φm)
denoted by A+p , where the φi are the corresponding conditions of the conditional
effects that need to hold to establish p(t), and, similarly, the second set of ac-
tions am+1(tm+1), . . . ,an(tn) is collected and a disjunction is formed of the form
(©done(am+1(tm+1))∧φm+1)∨ . . .∨ (©done(an(tn))∧φn) denoted by A−p , where φi

denote the conditions associated with the effects.13

Then, for each proposition p(x) a successor state axiom of the form

∀x�(©bel(p(x))↔ (A+p ∨ (bel(p(x))∧¬A−p))) (8.6)

is introduced. Intuitively, such formulas express that at any time, in the next state
bel(p(x)) holds iff an action is performed that has p(x) as effect (i.e. A+p holds) or
p(x) is true in the current state and no action that has ¬p(x) as effect is performed
(i.e. ¬A−p holds). Note that this axiom is consistent if the postconditions are consis-
tent in the sense of Definition 8.15.

The more difficult part is again to represent the effects of an action on an agent’s
goals. Informally, whenever an agent comes to believe that one of its goals has been
completely achieved, it will drop this goal. The difficult part here is to represent the
fact that a goal has been completely achieved and not just part of it. For this reason
an axiom such as (goal(φ)∧©bel(φ)) → ©¬goal(φ) is not valid; it may be that

13 Note that we assume that© binds stronger than ∧ and©(φ)∧ψ is equivalent to (©(φ))∧ψ.



8 A Verification Logic for G Agents 247

φ = φ1 is part of a larger goal φ1∧φ2 and φ2 has not been achieved yet. In that case
it would be irrational to drop the goal. Note that even when φ in the axiom would
be restricted to conjunctions of basic facts the axiom would still not be valid. The
axiom (goal(φ)∧©¬bel(φ))→©goal(φ) is valid, but does not capture the removal
of a goal when it has been achieved.14

We have encountered two problems with the characterization of goals. The first
concerns the characterization of the initial goals of the agent. The second concerns
the dynamics of goals. One solution to resolve these issues is to use the o-goal
operator to characterize goals. The o-goal operator can be used to fully characterize
the goal base of an agent. This comes at a cost: the class of agents needs to be
restricted to those agents that only have a single goal. As less restrictive solutions
are not apparent in this setting, however, we use the o-goal operator.15 From now
on, it is therefore assumed that agents have a single goal to start with and that the
adopt action has an additional precondition that ensures that an agent never adopts
a second goal if it already has one.

Using the o-goal operator and the assumption that the initial goal base consists of
a single goal φ, the initial goal base of an agent can be characterized by the following
axiom.

o-goal(φ) (8.7)

Using the o-goal operator it is possible to represent the dynamics of goals and to
provide an axiom that captures the removal of goals correctly. Here we use the
fact that ¬goal(>) can only be true if the goal base is empty. Several axioms to
characterize goal dynamics are introduced which each deal with one out of a number
of cases.

∀x�(o-goal(φ)∧©bel(φ))→©¬goal(>) (8.8)

This axiom covers the cases where either a user-specified action or the built-in action
insert is performed. Notice that φ cannot have been believed by the agent in the
state in which the action was performed as we must have o-goal(φ) for this axiom
to apply. Since the beliefs of an agent are not changed by an adopt or drop action,
we therefore can be certain neither of these actions has been performed.

Goals persist when an agent does not believe the goal to be achieved, and the
goal has not been explicitly dropped by a drop action. We thus have:

∀x�(o-goal(φ)∧©(¬bel(φ)∧done(α))→©o-goal(φ) (8.9)

14 It is easy to show that (i) (goal(φ)∧©bel(φ))→©¬goal(φ) is inconsistent with (ii) (goal(φ)∧
©¬bel(φ)) → ©goal(φ). Suppose goal(p∧ q), ©bel(p) and ©¬bel(q) are true at a time point
(t, i). It follows that we have ©¬bel(p∧ q), and, as a consequence of (ii), we then must have
that ©goal(p∧q) is true. Note that this implies that both ©goal(p) and ©goal(q) are true. Using
(i) and©bel(p) we then should also have©¬goal(p), which yields a contradiction.
15 One way to go is to allow temporal formulas in the goal base and define the semantics of goals in
terms of time points (see e.g. [227]). It is outside the scope of this chapter to discuss this solution,
and additional research is needed to address this issue. A similar approach is used in [396].
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where α is either a user-specified action or an insert or adopt action.16

For the case where a drop action is performed, two additional cases need to
be distinguished: (i) the case where the goal of the agent is dropped, and (ii) the
case where the goal is not dropped. A goal φ is dropped by performing drop(φ′)
only if φ |=c φ

′. As we cannot express in our verification logic that φ′ is a logical
consequence of φ, we introduce two inference rules to represent cases (i) and (ii).

φ |=c φ
′

�(o-goal(φ)∧©done(drop(φ′)))→©¬goal(>) (8.10)
φ 6|=c φ

′

�(o-goal(φ)∧©done(drop(φ′)))→©o-goal(φ) (8.11)

Finally, we need to treat the case where the agent did not have any goals. That
is, we need axioms that characterize the persistence of the absence of goals. Only
performing an adopt action can add a goal, and the following axioms characterize
respectively goal adoption and the persistence of the absence of any goals.

∀x�(¬goal(>)∧©done(adopt(φ)))→©o-goal(φ) (8.12)
∀x�(¬goal(>)∧©done(α))→©¬goal(>) (8.13)

where α is either a user-specified action or one of the built-in actions insert or drop.

Definition 8.24. (Logical Representation of an Agent)
The logical representation of a G agent Agt= 〈K,Σ,Γ,Π,A〉, denoted by Rep(Agt),
is the set of axioms listed in Table 8.3.

In order to make precise what we mean by a run that corresponds to a trace, we
introduce the following definitions.

Definition 8.25. (Run Corresponds with Trace)
Let Agt = 〈K,Σ,Γ,Π,A〉 be a G agent. A run r corresponds with a trace t, written
r ≈ t, if for each i ∈ N, with rm

i = 〈K,Σ,Γ〉 and tb
i = B and tg

i =G:

• [[K]](Σ) =
⋂

B,

• ∀γ ∈ Γ : ∃g ∈ tg
i : γ =

⋂
g, and ∀g ∈ tg

i : ∃γ ∈ Γ : γ =
⋂

g, and

• ra
i = ta

i .

We also write R ≈ T for a set of runs R and traces T if for all runs there is a trace
that corresponds with it, and vice versa.

16 In line with our assumption that an agent only has a single goal, an adopt action cannot be
performed when the agent already has a goal.
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For any G agent 〈K,Σ,Γ,Π,A〉 with a goal base Γ with exactly one goal, the following
set of axioms is a logical representation of this agent, in combination with inference rules
(10) and (11). (See also Theorem 8.2.)

knowledge base �bel(comp(K))
belief base ∀x(bel(b(x))↔ (x = t1 ∨ . . .∨x = tn))
goal base o-goal(φ)
action rules ∀x�(©done(a(x))→ enabled(a(x))

∀x1, . . . ,xn�(©done(skip)↔ (¬enabled(a1(x1))∧ . . .∧¬enabled(an(xn))))
∀x1, . . . ,xn�© (done(a1(x1))∨ . . .∨done(an(xn))∨done(skip))

action specs ∀x�(©bel(p(x))↔ (A+p ∨ (bel(p(x))∧¬A−p )))
goal dynamics ∀x�(o-goal(φ)∧©bel(φ))→©¬goal(>)

∀x�(o-goal(φ)∧©(¬bel(φ)∧done(α))→©o-goal(φ)
where α is either a user-specified action or an insert or adopt action

∀x�(¬goal(>)∧©done(adopt(φ)))→©o-goal(φ)
∀x�(¬goal(>)∧©done(α))→©¬goal(>)

where α is either a user-specified action or an insert or drop action.

Table 8.3 Logical Representation of a G Agent

The following theorem states that the set of axioms obtained by means of the
”translation” procedure discussed above characterizes a G agent completely, in
the sense that runs of the agent correspond to traces that are models of the logical
representation.

Theorem 8.2. (Logical Representation Characterizes Agent)
Let Agt = 〈K,Σ,Γ,Π,A〉 be a G agent and R denote the meaning of this agent. Let
Rep(Agt) be the corresponding logical representation of the agent. Then we have:

R ≈ {t | t |=G Rep(Agt)}

Proof. The proof proceeds in three steps and is based on induction. First, we show
that a state representation r(i) in a run corresponds with a time point (t, i) in a trace.
Second, we show that if there is a run in which action α is executed at i then there
is also a corresponding trace that executes α at i. Third, we show that the resulting
state representation at the next point r(i+1) corresponds with the time point (t, i+1).

For the base case, we need to show that the initial mental state rm
0 = 〈K,Σ0,Γ0〉

corresponds with time points (t,0) = 〈B0,G0,α0〉 for arbitrary traces t that are mod-
els of Rep(Agt). We need to show that:

• [[K]](Σ0) =
⋂

B0. Use axiom (2) above to show that basic facts match, and use
axiom (1) and the proof of Theorem 8.1 to demonstrate that derived facts also
match.
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• Γ =
⋂

G0.17 For this case, use axiom (7).

Below, we assume rm
i ≈ (t, i) for all 0 ≤ i ≤ n as induction hypothesis (IH).

Next we show that whenever α is executed in r at point i, then it is also executed
at time point (t, i) for some trace t that corresponds for all time points with i ≤ n,
and vice versa. So, suppose that α is executed in the run at point i. This means that
there is an action rule if ψ then α such that rm

i |=Ψ ψ∧bel(pre(α)). It follows that we
also have (t, i) |=G ψ∧bel(pre(α)) by the IH. We have that axiom (3) is also satisfied
if ta

i = α and t is a model of Rep(Agt). The other direction is similar, using axiom
(3) once more in combination with axiom (5). In case α = skip, we need axiom (4)
instead.

Finally, we need to show that the effects of executing an action produce corre-
sponding states in the run and trace. As knowledge does not change, it is sufficient
to show that basic facts are updated correspondingly. It follows using axiom (6) that
the beliefs of an agent in a run correspond with that in the trace. For the single goal
of the agent, use axioms and inference rules (7-13) to show that updates correspond.
ut

Concluding, we have established that G agents can be said to execute particu-
lar logical specifications, i.e. their logical representations. These logical representa-
tions fully characterize a G agent. As a result, any properties that logically follow
from its logical representation are properties of that G agent. A logical represen-
tation can be used and provided as input to a model checker to verify a property χ
or to a theorem prover to deduce χ.

8.5 Conclusion

We have discussed a logic for reasoning about agents with declarative goals. Our
aim has been to provide a logic that facilitates the verification of computational
agents that derive their choice of action from their beliefs and goals. To this end we
have presented a verification logic for G agents based on linear temporal logic.
The agent programming language G enables programming computational agents
that have a declarative beliefs and goals.

It has turned out to be a difficult task to fully characterize a G agent by means
of logic. The main reason is that the logic of goals is hard to capture formally.
Although on the one hand goals seem to have some obvious logical properties, on
the other hand a goal seems to be not much more than a resource that is being used
by an agent. The main issue here is to express that an agent does not have certain
goals, and how to provide a frame axiom for goals. It may be possible to do so by
characterizing goals by temporal formula (see e.g. [227]). The presentation of our

17 Recall we have assumed there is a single goal only, which allows us to simplify somewhat here.
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results is intended to further stimulate research in this area which is so important for
agents with motivational attitudes.

Even though we were able to fully characterize G agents logically, provided
that such agents only have a single goal, we did not prove completeness of the
verification logicLG. Providing a complete axiomatization remains for future work.
A complete axiomatization is important since without it we are still not sure that we
can prove all properties of an agent by means of deduction.

One of the aims of this chapter has been to show that additional research is
needed in order to provide the tools to reason about goals in agent programming.
This is still true for agents that only have achievement goals, the type of goals that
we discussed here. But this is even more true when other types of goals are con-
cerned, such as maintenance goals [129, 152, 227].

Finally, although there is work that deals with verifying multi-agent systems, as
far as we know there is no work that combines multi-agent with cognitive agents.
A considerable challenge thus remains to provide a logic to verify computational
multi-agent systems, and extend work on single-agent logics to multi-agent logics.
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Appendix

This Appendix contains proofs for some additional Propositions and Theorem 8.1
in the main text. We first provide an alternative semantics for stratified axiom sets.
This semantics is more convenient as it allows for the use of induction in the proofs
below.

Alternative Fix Point Semantics

It will be convenient to write F |= φ for a set of facts F = S ∪D instead of 〈S ,D〉 |= φ,
where S is a set of basic facts and D a set of derived facts; F |= φ can be viewed
simply as a notational convenience, as shorthand for 〈S ,D〉 |= φ.

Definition 8.26. Let A be a stratified axiom set, and {Ai,1 ≤ i ≤ n} be a partition
that stratifies A. Let S be a set of basic facts and D a set of derived facts. Then for
0 ≤ i ≤ n define:

Ti(S ,D) = {di(t) | ∀x(φ→ d(x)) ∈ Ai, 〈S ,D〉 |= φ[x← t], t are ground }∪D
T∞0 (S ) = ∅
T 0

i (S ) = T∞i−1(S ) for i > 0
T j

i (S ) = Ti(S ,T
j−1

i (S )) for i, j > 0

where T∞i (S ) =
⋃
j∈N

T j
i (S ) for i > 0.

Proposition 8.2. Let S be a set of basic facts. For 1 ≤ i ≤ n, we have:

T∞i (S ) = [[A]]i(S )

Proof. By induction on i. For the base case i = 1, we need to show that T∞1 (S ) =
[[A]]1(S ). We first show that:⋃

a∈A1

[[a]](S ,T∞1 (S )) ⊆ T∞1 (S )

Or, equivalenty, that {d(t) | 〈S ,T∞1 (S )〉 |= φ[t], t is ground} ⊆ T∞1 (S ) for all axioms
∀x(φ→ d(t)) ∈ A1. If 〈S ,T∞1 (S )〉 |= φ[t], we must have that 〈S ,T j

1(S )〉 |= φ[t] for
some j ∈ N. But then d(t) ∈ T1(S ,T j

1(S )) = T j+1
1 (S ) ⊆ T∞1 (S ), and we are done.

What remains is to show that for any D such that
⋃

a∈A1

[[a]](S ,D) ⊆ D, we have

T∞1 (S ) ⊆ D. Clearly, we have T 0
1 (S ) = ∅ ⊆ D. So, to arrive at a contraduction, sup-

pose that T∞1 (S ) * D. Then there must be a largest j ∈ N such that T j
1(S ) ⊆ D but

T j+1
1 (S ) * D. But this means that Ti(S ,T

j
1(S )) is non-empty, which implies that for
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some axiom a we have that [[a]](S ,D) is non-empty and [[a]](S ,D) ⊆ Ti(S ,T
j

1(S )). A
contradiction.

The case for i > 1 is similar. ut

Proofs

Lemma 8.1. Let A be a stratified axiom set and M be a model for una∪ dca∪ S ∪
comp(A). Then:

1. M is a Herbrand model (up to isomorphism).

2. M satisfies S ∪ [[A]](S ).

Proof.

1. As M = 〈D, I〉 satisfies una∧dca, we must have that D is isomorph with T .

2. By induction on the number of partitions k of A that stratify A. The base case
k = 0 is trivial as in that case [[A]](S ) = ∅. For the inductive case, suppose we
have M |= S ∪[[A]]k(S ). We need to show that M |= [[A]]k+1(S ), or, equivalently (by
Proposition 8.26) M |= T∞k+1(S ). We show M |= T j

k+1(S ) for all j ∈N by induction
on j. The base case, j = 0, is trivial as in that case T 0

k+1(S ) = T∞k (S ). For j > 0,
we assume that M |= T j−1

k+1 (S ) as induction hypothesis. By Definition 8.26 of Tk+1

it follows immediately that M |= T j
k+1(S ) = Tk+1(S ,T j−1

k+1 (S )), and we are done.

ut

Lemma 8.2. S ∪ [[A]](S ) is a Herbrand model for una∪dca∪S ∪ comp(A).

Proof. Clearly, S ∪ [[A]](S ) is a Herbrand model for una∪dca∪S . ut

Theorem 8.3. Let S ⊆ F be a set of basic facts and A be a stratified axiom set. Let φ
be a closed formula. Then we have that if una∪dca∪S ∪comp(A)∪φ is satisfiable,
then S ∪ [[A]](S ) is a Herbrand model for una∪dca∪S ∪ comp(A)∪φ.

Proof. The proof proceeds by induction on the maximum level k of the stratification
of A.

For the base case k = 0 we have that A must be a definite

ut

Lemma 8.3. Let S be a set of ground atoms and A be a stratified axiom set. Then
we have that S ∪ [[A]](S ) is a (minimal) Herbrand model of comp(A).
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Proof. Note that S ∪ [[A]](S ) can be interpreted as a Herbrand model H. Simply
define the domain as the set of closed terms, and define an interpretation that on the
set of terms is the identity function and maps ground atoms to true if and only if they
are an element of S ∪ [[A]](S ). See [289], p. 111. ut

Finally, we can provide the proof for Theorem 8.1. Let S be a set of ground
atoms, A be a stratified axiom set, and θ be an answer for φ with respect to S and A.
Then θ is a correct answer.

Proof. We have to show that:

S |=A ∀(φθ) iff S ∪una∪dca∪ comp(A) |= ∀(φθ)

Let B denote the Herbrand base for L0. We use ¬F to denote the set of all negated
formulas from a set of formulas F, i.e. {¬φ | φ ∈ F}. Let T = S ∪ [[A]](S ). For the
left to right direction, it is sufficient to show that S ∪ una∪ dca∪ comp(A) entails
T ∪¬(B\T ).

For the right to left direction, as above, we use S ∪ [[A]](S ) to construct a corre-
sponding Herbrand model H and show that H is a model of una∪dca∪comp(A)∪S .
By definition, we have H |= una and H |= dca, as the domain of H is the set of terms
T . It is also obvious that H |= S . Finally, using Lemma 8.3 it follows that H is also
a model of comp(A).

ut
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