
Chapter 6

Correctness of Multi-Agent Programs: A Hybrid
Approach

M. Dastani and J.-J. Ch. Meyer

Abstract This chapter proposes a twofold approach for ensuring the correctness of
BDI-based agent programs. On the one hand, we advocate the alignment of the se-
mantics of agent programming languages with agent specification languages such
that for an agent programming language it can be shown that it obeys specific desir-
able properties expressed in the corresponding agent specification language. In this
way, one can guarantee that specific properties expressed in the specification lan-
guage are satisfied by any program implemented in the programming language. On
the other hand, we introduce a debugging framework to find and resolve possible
defects in such agent programs. The debugging approach consists of a specifica-
tion language and a set of debugging tools. The specification language allows a
developer to express cognitive and temporal properties of multi-agent program ex-
ecutions. The debugging tools allow a developer to verify if a specific multi-agent
program execution satisfies a desirable property.

M. Dastani, J.-J. Ch. Meyer
Utrecht University, The Netherlands e-mail: {mehdi,jj}@cs.uu.nl

M. Dastani et al. (eds.), Specification and Verification of Multi-agent Systems, 161
DOI 10.1007/978-1-4419-6984-2 6, c© Springer Science+Business Media, LLC 2010

{mehdi,jj}@cs.uu.nl

162 M. Dastani and J.-J. Ch. Meyer

6.1 Introduction

A promising approach to develop computer programs for complex and concur-
rent applications are multi-agent systems. In order to implement multi-agent sys-
tems, various agent-oriented programming languages and development tools have
been proposed [64, 65]. These agent-oriented programming languages facilitate
the implementation of individual agents and their interactions. A special class of
these programming languages aims at programming BDI-based multi-agent sys-
tems, i.e., multi-agent systems in which individual agents are programmed in terms
of cognitive concepts such as beliefs, events, goals, plans, and reasoning rules
[63, 122, 224, 343, 433].

There is a whole range of approaches to the correctness of multi-agent pro-
grams. While some of them are abstract verification frameworks for agent pro-
grams [60, 372], a majority of these approaches fall under the heading of either
model checking [21, 61, 371] or theorem proving [6–8] methods. This chapter con-
cerns the correctness of BDI-based multi-agent programs by proposing two tech-
niques that are complementary to those of model-checking and theorem proving.
These two approaches are somewhat dual to each other, and are the following: (1)
we show how to prove properties that are general in the sense that they hold for any
execution of any program written in the agent programming language at hand, and
(2) we show how to verify the correctness of specific execution of specific program
written in the agent programming language at hand by proposing a debugging ap-
proach with which it is possible to check whether run-time executions of programs
are still in line with the specification, so still according to certain desirable prop-
erties (what we may call a ‘so far so good?’ approach of verification). Moreover,
as we will see, both approaches are particularly targeted at programs written in a
BDI-style programming language.

So let us first turn to the issue of proving certain properties that do not depend on
the particular program but rather on the agent programming language and its inter-
pretation. To this end we define the semantics of the programming language as well
as an agent specification language such that we can express these general properties
and prove them with respect to the semantics of the programming language. We
will establish this such that the semantics of the specification language is aligned
with that of the programming language in a systematic and natural way! We show
that an agent programming language obeys some desirable properties expressed in
an agent specification language, i.e., that any individual agent implemented by the
programming language satisfies the desirable property expressed in the specifica-
tion language. Note that this is an important issue raised in the literature of agent
program correctness. As many other approaches to the correctness of agents are
based on rather abstract agent (BDI-like) logics [110, 360, 385], it is not always
clear how the abstract BDI notions appearing in these logics, often treated by means
of modal operators, relate to notions rooted in actual computation. This is referred
to by Wooldridge as the problem of ungrounded semantics for agent specification
languages [439].

6 Correctness of Multi-Agent Programs: A Hybrid Approach 163

There is a number of proposals in the literature to ground agent logics in the
actual computation of agents (e.g., [130, 219]). In these approaches, it is attempted
to ground agent logics by rendering the notions that occur in these logics such as
beliefs and goals less abstract and more computational, so that reasoning about these
notions becomes relevant for reasoning about agent programs. In the current paper,
we follow the line of [130] by connecting the semantics of agent logics directly
to the operational semantics of agent programming languages. More precisely, the
modal accessibility relations in Kripke models of an agent logic are associated with
the (operational) semantics of the programming language at hand. Furthermore, it is
important to realize that this problem is different from the model checking problem.
In model checking, the problem is to verify if a certain property, expressed in a
specification language such as the language of a BDI logic, holds for all executions
of one specific agent program (and not for every agent program written in the same
programming language). Thus, in contrast to model checking, where one verifies
that all executions of a particular agent program satisfy a property expressed in a
specification language, we are here interested only in certain general properties of
individual agents such as such as commitment strategies, e.g., an agent will not drop
its goals until it believes it has achieved them.

Secondly in this chapter we propose a debugging approach to check the correct-
ness of a specific execution of a specific agent program. Debugging is the art of find-
ing and resolving errors or possible defects in a computer program. Here, we will fo-
cus on the semantic bugs in BDI-based multi-agent programs and propose a generic
approach for debugging such programs [63, 84, 114, 121, 122, 343, 345, 346, 425].
In particular, we propose a specification language to express execution properties
of multi-agent programs and a set of debugging actions/tools to verify if a specific
program execution satisfies a specific property. The expressions of the specification
language are related to the proposed debugging actions/tools by means of special
programming constructs. Using these constructs in a multi-agent program ensures
that the debugging actions/tools are performed/activated as soon as their associated
properties hold for the multi-agent program execution at hand. In order to illustrate
how a developer can debug both cognitive and temporal aspects of the (finite) exe-
cutions of multi-agent programs we discuss a number of examples. They show how
the debugging constructs allow a developer to log specific parts of the cognitive state
of individual agent programs (e.g., log the beliefs, events, goals, or plans) from the
moment that specific condition holds, stop the execution of multi-agent programs
whenever a specific cognitive condition holds, or check whether an execution trace
of a multi-agent program (a finite sequence of cognitive states) satisfies a specific
(cognitive/temporal) property.

Interestingly, if we compare the two approaches in this chapter we will see that
although we use temporal logic for both, there are notable differences. The two
most important ones being: (1) In the ’general’ program-independent approach we
use branching-time temporal logic, since we have to reason about behaviour in gen-
eral, i.e. all possible executions of all programs, including explicit representations of
agents’ choices, while in the debugging approach we use linear-time temporal logic,
since we are only interested in a particular execution, viz. the execution at hand, of

164 M. Dastani and J.-J. Ch. Meyer

one particular program. (2) In the ’general’ approach we use temporal models with
infinite branches/paths, as usual in the temporal reasoning about programs, while in
the debugging approach we use temporal models with only finite paths, reflecting
the fact that we are looking at run-time (mostly unfinished) executions.

The structure of this chapter is as follows. First we present a simple but extend-
able BDI-based agent-oriented programming language that provides constructs to
implement concepts such as beliefs, goals, plans, and reasoning rules. The syntax
and semantics of this programming language is presented in section 6.2. In the rest
of the chapter we focus on the correctness of programs of this programming lan-
guage. We start by treating the ’general’ approach of verifying program-independent
(but semantics-dependent) properties, i.e., properties of the semantics of the pro-
gramming language, and not of any specific program. To this end, we present in
section 6.3 an agent specification language which is closely related to well-known
BDI specification languages. This specification language consists of (modal) oper-
ators for beliefs, goals, and time such that properties such as commitment strategies
can be expressed. In section 6.4 we show that all agents that are implemented in
the proposed agent programming language satisfy the desirable properties that are
specified in the specification language. Then we turn to the ’specific’ approach of
verifying execution-dependent properties by presenting a debugging approach for
the same simple programming language. We first define a temporal specification
language to express execution properties that we aim to verify. Special attention is
given to the (non-standard) semantics of the specification language since its formula
are evaluated on (finite) execution paths of multi-agent programs. Next we present
our proposal of a tool set for debugging multi-agent programs. Finally, we discuss
some related works on debugging multi-agent programs and conclude the chapter.

6.2 An agent-oriented Programming Language APL

In this section, we propose the syntax and operational semantics of a simple but
prototypical logic-based agent-oriented programming language that provides pro-
gramming constructs to implement agents in terms of cognitive concepts such as
beliefs, goals, and plans. In order to focus on the relation between such a program-
ming language and its related specification language and without loss of generality,
we ignore some aspects that may be relevant or even necessary for the practicality
and effectiveness of the programming language. The presented programming lan-
guage is thus not meant to be practically motivated, but rather to illustrate how such
a logic- and BDI-based programming language can be connected to logical spec-
ification languages and how to examine the correctness of the related programs.
This aim is accomplished by defining the syntax and semantics of the programming
language similar to those of the existing practical agent-oriented programming lan-
guages (e.g., 2APL, 3APL, GOAL, and Jason [64, 122, 129, 224]). This makes our
approach applicable to the existing logic- and BDI-based agent programming lan-

6 Correctness of Multi-Agent Programs: A Hybrid Approach 165

guages. A concrete extension of this agent-oriented programming language is stud-
ied in [130].

6.2.1 Syntax of APL

A multi-agent program comprises a set of individual agent programs, each of which
is implemented in terms of concepts such as beliefs, goals, and plans. In this section,
we focus on a programming language for implementing individual agents and as-
sume that a multi-agent program is a set of programs, each of which implements an
individual agent. The presented agent-oriented programming language provides pro-
gramming constructs for beliefs, goals, plans, and planning rules. We use a propo-
sitional language to represent an agent’s beliefs and goals while plans are assumed
to consists of actions that can update the agent’s beliefs base. It is important to note
that these simplifications do not limit the applicability of the proposed model.

The idea of an agent’s belief is to represent the agent’s information about the
current state of affairs. The idea of an (achievement) goal is to reach a state that
satisfies it. An agent is then expected to generate and execute plans to achieve its
goal. The emphasis here is that the goal will not be dropped until a state is reached
that satisfies it. An example of an achievement goal is to have fuel in car (fuel)
for which the agent can generate either a plan to fuel at gas station 1 (gs1) or a
plan to fuel at gas station 2 (gs2). The achievement goal will be dropped as soon as
the agent believes that it has fuel in its car, i.e., as soon as it believes fuel. In our
running example, a car driving agent believes he is in position 1 (pos1) and has the
goal to fuel (fuel).

Definition 6.1. (belief and goal languages) Let Lp be a propositional language. The
belief language is denoted by Lσ ⊆ Lp and the goal language is denoted by Lγ ⊆ Lp.

For the purpose of this chapter, we assume a set of plans Plan each of which is
executed atomically, i.e., a plan can be executed in one computation step. Moreover,
agents are assumed to generate their plans based on their beliefs and goals. The
planning rules indicate which plans are appropriate to be selected when the agent
has a certain goal and certain beliefs. A planning rule is of the form β,κ⇒ π and
represents the possibility to select plan π for the goal κ, if the agent believes β.
In order to be able to check whether an agent has a certain belief or goal, we use
propositional formulas from Lp to represent belief and goal query expressions.

Definition 6.2. (planning rule) Let Plan be the set of plans that an agent can use.
The set of planning rules RPL is defined as:

RPL = {β,κ⇒ π | β ∈ Lσ, κ ∈ Lγ,π ∈ Plan}

166 M. Dastani and J.-J. Ch. Meyer

In the rest of the paper, Goal(r) and Bel(r) are used to indicate, respectively, the
goal condition κ and the belief condition β of the planning rule r = (β,κ ⇒ π).
In the running example, the agent has two planning rules pos1,fuel⇒gs1 and
pos2,fuel⇒gs2. The first (second) planning rule indicates that the agent should
fuel at gas station 1 (2) if he wants to fuel and believes that he is in position pos1
(pos2). Given these languages, an agent can be implemented by programming two
sets of propositional formulas (representing the agent’s beliefs and goals), and one
set of planning rules. For the purpose of this chapter, we assume that agents cannot
have initial plans, but generate them during their execution.

Definition 6.3. (agent program) Let Id be the set of agent names. An individual
agent program is a tuple (ι,σ,γ,PL), where ι ∈ Id, σ ⊆ Lσ,γ ⊆ Lγ and PL ⊆ RPL. A
multi-agent program is a set of such tuples, i.e., {(ι,σ,γ,PL) | ι ∈ Id,σ ⊆ Lσ,γ ⊆
Lγ,PL ⊆ RPL}.

The individual agent program for our running example is the tuple (c,σ,γ,PL),
where c is the name of the car agent, σ = {pos1}, γ = {fuel}, and PL = {pos1,
fuel⇒gs1, pos2,fuel⇒gs2}. Note that the agent believes it is in position 1 and
has the goal to fuel.

6.2.2 Semantics of APL

The operational semantics of the multi-agent programming language is presented
in terms of a transition system. A transition system is a set of derivation rules for
deriving transitions. A transition is a transformation of one state into another and it
corresponds to a single computation step. For the semantics of the multi-agent pro-
gramming language a transition is a transformation of one multi-agent configuration
(state) into another. The operational semantics of the multi-agent programming lan-
guage is directly defined in terms of the operational semantics of individual agent
programming language.

6.2.2.1 Agent Configuration

An agent’s configuration denotes the state of the agent at one moment in time. It
is determined by its mental attitudes, i.e., by its beliefs, goals, plans, and reasoning
rules. A multi-agent configuration denotes the state of all agents at one moment in
time.

Definition 6.4. (configuration) Let |=p be the classical propositional entailment re-
lation (used also in the rest of the chapter). Let Σ = {σ | σ ⊆ Lσ,σ 6|=p ⊥} be the set
of possible consistent belief bases and Γ = {φ | φ ∈ Lγ,φ 6|=p ⊥} be the set of goals.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 167

A configuration of an agent is a tuple 〈ι,σ,γ,Π,PL〉, where ι is the agent’s identi-
fier, σ ∈ Σ is its belief base, γ ⊆ Γ is its goal base, Π ⊆ (Lγ × Lγ ×Plan) is its plan
base, and PL ⊆ RPL includes its planning rules. The set of all agent configurations
is denoted by A. A multi-agent configuration is a subset of A, i.e., a multi-agent
configuration is a set of individual agent configurations.

In the sequel, we use 〈σι,γι,Πι,PLι〉 instead of 〈ι,σ,γ,Π,PL〉 to keep the represen-
tation of agent configurations simple. In the above definition, it is assumed that the
belief base of an agent is consistent since otherwise the agent can believe every-
thing which is not a desirable property. Also, each goal is assumed to be consis-
tent since otherwise an agent should achieve an impossible state. Finally, the ele-
ments of the plan base are defined as 3-tuples (Lp × Lp ×Plan) consisting of a plan
and two goals (propositional formulas) that indicate the reasons for generating the
plan. More specifically, (φ,κ,π) is added to an agent’s plan base if the planning rule
β,κ⇒ π is applied because κ is a subgoal of the agent’s goal φ. Note that the plan-
ning rule can be applied only if κ is a subgoal of an agent’s goal φ. This means that
we have ∀(φ,κ,π) ∈ Π : φ |=p κ. This information will be used to avoid applying a
planning rule if it is already applied and the generated plan is not fully executed.
In our running example, the agent can apply both planning rules (depending on the
agent’s beliefs) since the goals of these rules (i.e., fuel) is a subgoal of the agent’s
goal fuel, i.e., since fuel|=fuel. Note that these rules could also be applied if the
agent had more complex goals such as fuel∧cw; cw stands for car wash.

The initial configuration of an individual agent is based on the individual agent
program (definition 6.3) that specifies the initial beliefs, goals, and planning rules.
As noted, for the purpose of this chapter, we assume that an agent does not have
initial plans, i.e., the initial plan base is empty. The initial multi-agent configuration
is the set of initial configurations of individual agents.

Definition 6.5. (initial configuration) Let {(1,σ1,γ1,PL1), . . . , (n,σn,γn,PLn)} be a
multi-agent program. Then, the initial configuration of the multi-agent program is
{〈σ1,γ1,Π1,PL1〉, . . . , 〈σn,γn,Πn,PLn〉}, where Πi = ∅ for i = 1, . . . ,n.

In the following, we assume that all agents use one and the same set of planning
rules PL (i.e., all agents use the same planning rule library) and that the set of plan-
ning rules does not change during the agent executions. For this reason, we do not
include the set PL in the individual agent configurations and use 〈σ,γ,Π〉 instead of
〈σ,γ,Π,PL〉. This means that an APL program specifies only the initial beliefs and
goals of an agent.

6.2.2.2 Transition System T

This subsection presents the transition system T which consists of transition rules
(also called derivation rules) for deriving transitions between configurations. Each

168 M. Dastani and J.-J. Ch. Meyer

transition rule has the following form indicating that the configuration C can be
transformed to configuration C′ if the condition of the rule holds.

condition
C→C′

We first present three transition rules that transform the configurations of individual
agent programs, followed by a transition rule that transform multi-agent configura-
tions. The first three transition rules capture the successful execution of plans, the
failed execution of plans, and the application of planning rules, respectively.

In order to define the transition rule for the application of planning rules, we
define the notions of relevant and applicable planning rules w.r.t. an agent’s goal
and its configuration. Intuitively, a planning rule is relevant for an agent’s goal if
it can contribute to the agent’s goal, i.e., if the goal that occurs in the head of the
planning rule is a subgoal of the agent’s goal. A planning rule is applicable to an
agent’s goal if it is relevant for that goal and its belief condition is entailed by the
agent’s configuration.

Definition 6.6. (relevant, applicable) Let C = 〈σ,γ,Π,PL〉 be an agent configura-
tion. Given configuration C containing goal φ ∈ γ, the set of relevant and applicable
planning rules are defined as follows:
• rel(φ,C) = {r ∈ PL | φ |=p Goal(r)}
• app(φ,C) = {r ∈ rel(φ,C) | σ |=p Bel(r)}

In the following transition rules we write app(φ)
C→C′ instead of app(φ,C)

C→C′ .

When executing an agent, planning rules will be selected and applied based on
its beliefs, goals and plans. The application of planning rules generates plans which
can subsequently be selected and executed. Before introducing the transition rules
to specify possible agent execution steps, we need to define what it means to execute
a plan. The execution of a plan affects the belief and goal bases. The effect of plan
execution on the belief base is captured by an update operator update, which takes
the belief base and a plan and generates the updated belief base. This update operator
can be as simple as adding/deleting atoms to/from the belief base. We assume a
partial function update : (Plan×Σ)→ Σ that takes a plan and a belief base, and
yields the belief base resulting from the execution of the plan on the input belief
base (if the update is not successful, the update operation is undefined).

The first transition rule (R1) captures the case where the plan π is successfully
executed. The resulting configuration contains a belief base that is updated based on
the executed plan, a goal base from which achieved goals are removed, and a plan
base from which plans with associated achieved goal are removed.

Rule R1 (Plan execution 1)

(φ,κ,π) ∈ Π & update(σ,π) = σ′

〈σ,γ,Π〉 → 〈σ′,γ′,Π ′〉

6 Correctness of Multi-Agent Programs: A Hybrid Approach 169

where
γ′ = γ \ {ψ | σ′ |=p ψ} and Π ′ = Π \ ({(φ,κ,π)}∪ {(φ′, κ′,π′) ∈ Π | σ′ |=p φ

′}).

The second transition rule (R2) captures the case that the performance of the plan
has failed, i.e., the update operation is undefined. In this case, the failed plan (φ,ψ,π)
will be removed from the plan base.

Rule R2 (Plan execution 2)

(φ,κ,π) ∈ Π & update(σ,π) = unde f ined
〈σ,γ,Π〉 → 〈σ,γ,Π \ {(φ,κ,π)}〉

Plans should be generated to reach the state denoted by goals. If the generated
and performed plans do not achieve the desired state, then the corresponding goal
remains in the goal base. The first transition rule below (called R3) is designed to
apply planning rules in order to generate plans the execution of which may achieve
the subgoals of the goals. A planning rule can be applied if the goal in the head of
the rule is not achieved yet, if there is no plan for the same subgoal in the plan base
(in order to avoid applying rules if it is already applied), and if the subgoal is not
achieved yet. The application of a planning rule will add the plan of the planning
rule to the plan base.

Rule R3 (apply planning rules)

φ ∈ γ & (β,κ⇒ π) ∈ app(φ) & @π′ ∈ Plan : (φ,κ,π′) ∈ Π & σ 6|=p κ

〈σ,γ,Π〉 → 〈σ,γ,Π ∪{(φ,κ,π)}〉

We consider an execution of a multi-agent program as an interleaved execution
of the involved individual agent programs. The following transition rule captures
the parallel execution

Rule R4 (multi-agent execution)

Ai→ A′i
{A1, . . . ,Ai, . . . ,An} → {A1, . . . ,A′i , . . . ,An}

In this and next sections, we focus on the semantics of individual agent programs
as the semantics of multi-agent programs is a composition of the semantics of indi-
vidual agent programs.

6.2.2.3 Agent Execution

In order to define all possible behaviours of an agent program and compare them
with each other, we need to define what it means to execute an agent program. Given

170 M. Dastani and J.-J. Ch. Meyer

a transition system consisting of a set of transition rules, the execution of an agent
program is a set of transitions generated by applying the transition rules to the initial
configuration of the program (i.e., initial beliefs and goals). Thus, the execution of
an agent program starts with its initial configuration and generates subsequent con-
figurations that can be reached from the initial configuration by applying transition
rules. The execution of an agent program forms a graph in which the nodes are the
configurations and the edges indicate the application of a transition rule (i.e., execu-
tion of a plan, or the application of a planning rule). In the following, we define the
execution of an agent program A by first defining the set of all possible transitions
RT for all possible agents given a transition system T , and then take the subset of
those transitions that can be reached from the initial configuration of agent A.

Definition 6.7. (agent execution) Recall thatA be the set of all agent configurations.
Then, the set of transitions that are derivable from a transition system T , denoted as
RT , is defined as follows:

RT = {(ci,c j) | ci→ c j is a transition derivable from T & ci,c j ∈ A}

Given an agent program A with corresponding initial configuration c0, the execution
of A is the smallest set ET (A) of transitions derivable from T starting from c0, i.e.,
it is the smallest subset ET (A) ⊆ RT such that:

• if (c0,c1) ∈ RT , then (c0,c1) ∈ ET (A), for c1 ∈ A

• if (ci,c j) ∈ ET (A) and (c j,ck) ∈ RT , then (c j,ck) ∈ ET (A), for ci,c j,ck ∈ A

6.3 CT Lapl: A Specification Language for Agent Programs

In the area of agent theory and agent-oriented software systems, various logics have
been proposed to characterize the behavior of rational agents. The most cited logics
to specify agents’ behavior are the BDI logics [110, 315, 360, 385]. These logics
are multi-modal logics consisting of temporal and epistemic modal operators. In the
BDI logics, the behaviour of an agent is specified in terms of the temporal evolution
of its mental attitudes (i.e., beliefs, desires, and intentions) and their interactions.
These logics are characterized by means of axioms and inference rules to capture
the desired static and dynamic properties of agents’ behaviour. In particular, the
axioms establish the desired properties of the epistemic and temporal operators as
well as the rational balance between them. For example, the axioms to capture the
desired static properties of beliefs are KD45 (the standard weak S 5 system), for
desires and intentions are KD, and for the rational balance between beliefs and
desires are various versions of realism. Moreover, some desired dynamic properties
of agents’ behaviour are captured through axioms that implement various versions
of the commitment strategies. These axioms are defined using temporal operators
expressing when and under which conditions the goals and intentions of agents can

6 Correctness of Multi-Agent Programs: A Hybrid Approach 171

be dropped. For example, an agent can be specified to either hold its goals until it
has achieved it (blindly-committed agent type), or drop the goal if it believes that it
can never achieve it (single-minded agent type) [110, 360].

A main concern in designing and developing agent-oriented programming lan-
guages is to provide programming constructs in such a way that their executions
generate the agent behaviours having the same desirable properties as in their spec-
ifications. This implies that the semantics of the programming languages should
be defined in such a way to satisfy the desirable properties captured by means of
the axioms in the BDI logics. The main issue addressed in this part of the chapter
is how agent specification logics, which are used to specify the agents’ behaviour,
can be related to agent-oriented programming languages, which are used to imple-
ment agents. We study this relation by proposing an instantiation of the BDICT L
logic [360, 385] with a declarative semantics that is aligned with the operational
semantics of the programming language APL as proposed in section 6.2. We then
show that this alignment enables us to prove that certain properties expressed in the
specification language are satisfied by the programming language. The specification
language is a multi-modal logic consisting of temporal modal operators to spec-
ify the evolution of agents’ configurations (the agents’ execution) through time and
epistemic modal operators to specify agents’ mental state (beliefs and goals) in each
configuration. In order to relate the specification and programming languages, we
do not allow the nesting of epistemic operators. This is because the beliefs and goals
in the agent programming language APL, presented in section 6.2, are propositional
rather than modal formulas. This is, however, not a principle limitation as the repre-
sentation of beliefs and goals in agent programming languages can be extended to
modal formulas [437].

In the rest of this section and in section 6.4, we only consider the specification
and properties of single agent programs. The proposed specification language can
be extended for multi-agent programs in an obvious way because individual agent
programs do not interact. The individual agent programs do not communicate or
share an environment as their actions are limited to local belief and goal changes.

6.3.1 CT Lapl Syntax

The behaviour of an agent, generated by the execution of the agent, is a temporal
structure over its mental states. In order to specify the mental state of agents, we
will define the language L consisting of non-nested belief and goal formulas.

Definition 6.8 (specification language L). The language L for the specification of
agents’ mental attitudes consists of non-nested belief and goal formulas, defined as
follows: if φ ∈ Lp, then B(φ), G(φ) ∈ L.

We then use the standard CT L∗ logic [158] in which the primitive propositions are
formulas from the language L. The resulting language will be called CT Lapl defined
as follows.

172 M. Dastani and J.-J. Ch. Meyer

Definition 6.9 (specification language CT Lapl). The state and path formulas are
defined by the following S and P clauses, respectively.

• (S1) Each formula from L is a state formula.

• (S2) If φ and ψ are state formulas, then φ∧ψ and ¬φ are also state formulas.

• (S3) If φ is a path formula, then Eφ and Aφ are state formulas.

• (P1) Any state formula is a path formula.

• (P2) If φ and ψ are path formulas, then ¬φ, φ∧ψ, Xφ, �φ, and φ U ψ are path
formulas.

Using the CT Lapl language, one can for example express that if an agent has
a goal, then it will not drop the goal until it believes the goal is achieved, i.e.,
G(φ)→ A(G(φ) U B(φ)).

6.3.2 CT Lapl Semantics

The semantics of the specification language CT Lapl is defined on a Kripke struc-
ture MT = 〈C,R,V〉, where the set of states C is the set of configurations of agents
implemented in the agent programming language APL (definition 6.4), and the tem-
poral relation R is specified by the transition system T of the agent programming
language APL (definition 6.7). In particular, there exists a temporal relation between
two configurations in the Kripke structure if and only if a transition between these
two agent configurations is derivable from the transition system T . Finally, the valu-
ation function V = (Vb,Vg) of the Kripke structure is defined on agent configurations
and consists of different valuation functions each with respect to a specific mental
attitude of agents’ configurations. More specifically, we define a valuation function
Vb that valuates the belief formulas in terms of agents’ beliefs and a valuation func-
tion Vg that valuates the goal formulas in terms of the agents’ goals. The belief
valuation function Vb maps an agent configuration c to a set of propositions Vb(c)
that are derivable from the agent’s belief base. An agent believes a proposition if
and only if the proposition is included in Vb(c). The valuation function Vg for goals
is defined in such a way that all subgoals of an agent’s goal are also considered as
a goal. The valuation function Vg maps an agent’s configuration to a set of sets of
propositions. Each set contains all subgoals of a goal. An agent wants to achieve a
proposition if and only if the proposition is included in a set. The semantics of the
CT Lapl expressions are defined as follows.

Definition 6.10. Let MT = 〈C,R,V〉 be a Kripke structure specified by the execution
of the transition system T , where:

• C is a set of configurations (states) of the form 〈σ,γ,Π〉.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 173

• R ⊆ C ×C is a serial binary relation such that for each (c,c′) ∈ R we have
(c,c′) ∈ RT or c = c′.

• V = (Vb,Vg) are the belief and goal evaluation functions, i.e.,

– Vb : C→ 2Lp s.t. Vb(〈σ,γ,Π〉) = {φ | σ |=p φ},

– Vg : C→ 22Lp s.t. Vg(〈σ,γ,Π〉) = {{φ′ | φ |=p φ
′} | φ ∈ γ}.

A fullpath is an infinite sequence x = c0,c1,c2, . . . of configurations such that
∀i : (ci,ci+1) ∈ R. We use xi to indicate the i-th state of the path x.

• (S1) MT ,c |= B(φ) ⇔ φ ∈ Vb(c)

• (S1) MT ,c |=G(φ) ⇔ ∃s ∈ Vg(c) : φ ∈ s

• (S2) MT ,c |= φ∧ψ ⇔ MT ,c |= φ and MT ,c |= ψ

• (S2) MT ,c |= ¬φ ⇔ MT ,c 6|= φ

• (S3) MT ,c |= Eφ ⇔ ∃ fullpath x = c,c1,c2, . . . ∈ MT : MT , x |= φ

• (S3) MT ,c |= Aφ ⇔ ∀ fullpath x = c,c1,c2, . . . ∈ MT : MT , x |= φ

• (P1) MT , x |= φ ⇔ MT , x0 |= φ for φ is a state formula

• (P2) MT , x |= Xφ ⇔ MT , x1 |= φ

• (P2) MT , x |= �φ ⇔ MT , xn |= φ for some n ≥ 0

• (P2) MT , x |= φ U ψ ⇔
a) ∃k ≥ 0 such that MT , xk |= ψ and for all 0 ≤ j < k : MT , x j |= φ, or,
b) ∀ j ≥ 0 : MT , x j |= φ

Note that the two options in the last clause capture two interpretations of the until
operator. The first (strong) interpretation is captured by the option a and requires
that the condition ψ of the until expression should hold at once. The second (weak)
interpretation is captured by the option b and requires the formula φ can hold forever.

In the above definition, the CT Lapl state formulas are evaluated in the Kripke
model MT with respect to an arbitrary configuration c consisting of beliefs, goals,
and plans. In the following, we model the execution of a particular agent program
A (i.e., the execution of an agent with the initial configuration A1) based on the
transition system T as the Kripke model MA

T
= 〈CA

T
,RA
T
,V〉 on which the CT Lapl

expressions (i.e., properties to be checked) can be evaluated. The accessibility re-
lation RA

T
is defined as the set of executions (based on transition system T) of the

agent program A (i.e., traces that can be generated by applying planning rules and
executing plans starting at the configuration specified by A) extended with a reflex-
ive accessibility for all end configurations. This is to guarantee the seriality property
of the accessibility relation RA

T
. Moreover, the set CA

T
of configurations will be de-

fined in terms of configurations that occur in the execution of the agent A.

1 An agent’s initial configuration is determined by the corresponding agent program which speci-
fies the initial beliefs and goals. It is assumed that there are no initial plans.

174 M. Dastani and J.-J. Ch. Meyer

Definition 6.11. (agent model) Let A be an agent program and let ET (A) be the
execution of A. Then the model corresponding with agent program A, which we call
an agent model, is defined as MA

T
= 〈CA

T
,RA
T
,V〉, where the accessibility relation RA

T

and the set of configurations CA
T

are defined as follows:

RA
T
= ET (A) ∪{(cn,cn) | ∃(cn−1,cn) ∈ ET (A)&¬∃(cn,cn+1) ∈ ET (A)}

CA
T
= {c | (c,c′) ∈ RA

T
}

Note that agent models are Kripke structures in the sense of Definition 6.10.

As we are interested in expressing that a certain property holds for all executions
of a particular agent program A, we will define the notion of satisfaction in an agent
model.

Definition 6.12. (satisfaction in model) A formula φ is satisfied in the model
MA
T
= 〈CA

T
,RA
T
,V〉 if and only if φ holds in MA

T
with respect to all configurations

c ∈CA
T

, i.e.,
MA
T
|= φ ⇔de f ∀c ∈CA

T
: MA

T
,c |= φ

In section 6.4, we prove that certain properties hold for any agent program that is
implemented in the APL programming language. As the above definition of model
MA
T

is based on one specific agent program A, we need to quantify over all agent
programs. Since the binary relation RA

T
(derived from the transition systemT , which

is the semantics of the agent programs) has to be the same in all Kripke models, a
quantification over agent programs means a quantification over models MA

T
. This

implies that we need to define the notion of validity of a property as being true for
all agent programs and thus for all models MA

T
.

Definition 6.13. (validity) A property φ ∈ CT Lapl holds for the execution of an ar-
bitrary agent A based on the transition system T , expressed as |=T , if and only if φ
holds in all agent models MA

T
, i.e.,

|=T φ ⇔de f ∀A : MA
T
|= φ

Note that this notion of validity is the same as the notion of validity in modal
logic since it is defined at the level of frames, i.e., at the level of states and relation
and not valuations, which is in our case defined in terms of specific agents.

Finally, we would like to explain our motivation for choosing a variant of CT L
instead of other formalisms such as for example the linear time temporal logic LT L.
Such a choice may not be trivial as one might argue that linear time temporal logic
would be enough to specify and verify an agent’s behavior. The idea would be to
consider the execution behavior of the corresponding agent program as a set of lin-
ear traces. However, our consideration to use a variant of CT L is based on the fact
that agents have choices (e.g., to select and execute plans from their plan library) and
that these choices are essential characteristic of their autonomy. The computational

6 Correctness of Multi-Agent Programs: A Hybrid Approach 175

tree logic CT L with its branching time structure enables the specification and veri-
fication of such choices. In order to illustrate the characterising difference between
CT L and LT L that is essential for capturing an agent’s choices, consider the two ex-
ecution models illustrated in Figure 6.1. While these two execution models include
the same set of linear traces, the execution models A and B differ in the choices
available to the agent. This is reflected by the fact that the CT L formula AXE�p
is true in state s0 of model B, while this is not the case for state s0 of model A. In
other words, we have A, s0 6|= AXE�p and B, s0 |= AXE�p. In the next section, we
will present an agent property which is related to the agent’s choices. This property
justifies the choice for using a variant of CT L for our specification and verification
of agent programs.

Fig. 6.1 Two execution models with two different choice moments.

6.4 Properties

Given the semantics of the programming language APL and the specification lan-
guage CT Lapl, we can prove that certain properties expressed in CT Lapl hold for
agents programmed in APL. Other properties for an extension of the APL language
are provided in [130].

6.4.1 Proving the Properties

In this section, we present a number of desired properties and prove that they hold
for arbitrary agent programs implemented in the APL language.

First, since the accessibility relation RTA of MA
T

is based on the transition system
T , we present some properties of the accessibility relation with respects to spe-
cific subsets of the transition system. In particular, the following proposition shows

176 M. Dastani and J.-J. Ch. Meyer

persistence of unachieved goals through transitions that are derived based on tran-
sition rule R1. Note that this transition rule modifies an agent’s beliefs and remove
achieved goals.

Proposition 6.1. If ci−1→ ci is a transition derived based on transition rule R1 ∈ T ,
MA
T
,ci−1 |=G(φ), and MA

T
,ci 6|= B(φ), then MA

T
,ci |=G(φ).

Proof. Following Definition 6.10 and using notation sub(ψ) = {ψ′ | ψ |=p ψ
′}, we

have Vg(ci) = {sub(ψ) | ψ ∈ γi} where γi is the goal based of configuration ci.
Following the definition of transition rule R1 ∈ T for determining γi, we have
{sub(ψ) | ψ ∈ γi} = {sub(ψ) | ψ ∈ γi−1 \ {ψ

′ | σi |=p ψ
′}}, where σi is the belief base of

configuration ci. Using Definition 6.10 again, we have {sub(ψ) | ψ ∈ γi−1 \{ψ
′ |σi |=p

ψ′}} = {sub(ψ) | ψ ∈ γi−1 \Vb(ci)} = {sub(ψ) | ψ ∈ γi−1} \ {sub(ψ) | ψ ∈ Vb(ci)} =
Vg(ci−1) \ {sub(ψ) | ψ ∈ Vb(ci)}. Suppose now that sub(φ) ∈ Vg(ci−1) and φ < Vb(ci).
Then, from the above equations we have sub(φ) ∈ Vg(ci), which proves the proposi-
tion.

We can now generalize this proposition by showing the persistence of unachieved
goals through all transitions.

Proposition 6.2. If ci−1 → ci is a transition, MA
T
,ci−1 |= G(φ), and MA

T
,ci 6|= B(φ),

then MA
T
,ci |=G(φ).

Proof. This is the direct consequence of the following facts: 1) an agent’s goals
persist through transitions that are derived based on transition rules R2 and R3 as
these transition rules do not modify the agent’s goals, 2) an agent’s goals persists
through reflexive transitions, and 3) unachieved goals of an agent persist through
transitions derived based on transition R1 (Proposition 6.1).

The next property satisfied by the programs implemented in APL language is a
variant of what has been termed “blind commitment” in [360], and what are called
“persistent goals” in [110]. This property expresses that the execution of an APL
agent program should not drop a goal before it is believed to be achieved.

Proposition 6.3. (blind commitment) |=T G(φ)→ A(G(φ) U B(φ))

Proof. Using Definitions 6.13 and 6.12, we have to to prove that for any agent mod-
els MA

T
and all its configurations c:

if MA
T
,c |=G(φ) then MA

T
,c |= A(G(φ) U B(φ)).

Using Definition 6.10, we have to prove:
if MA

T
,c |=G(φ) then ∀ fullpath x = c,c′,c′′, . . . ∈ MA

T
: MA
T
, x |=G(φ) U B(φ).

We prove that for arbitrary MA
T

and configuration c0, it holds:
if MA

T
,c0 |=G(φ) then ∀ fullpath x = c0,c′,c′′, . . . ∈ MA

T
: MA
T
, x |=G(φ) U B(φ).

Assume MA
T
,c0 |=G(φ) and take an arbitrary path c0,c1,c2, . . . starting with c0. We

have to prove that MA
T
,c0,c1,c2, . . . |= G(φ) U B(φ). Following definition 6.10, we

6 Correctness of Multi-Agent Programs: A Hybrid Approach 177

have to prove the following:
a) ∃k ≥ 0 such that M,ck |= B(φ) and for all 0 ≤ j < k : M,c j |=G(φ), or
b) ∀ j ≥ 0 : M,c j |=G(φ)
For the path c0,c1,c2, . . ., we distinguish two cases. Either for all consecutive states
ci−1 and ci in the path it holds that the transition ci−1→ ci is such that MA

T
,ci 6|= B(φ),

or there exists consecutive states ck−1 and ck such that transition ck−1→ ck is the first
with MA

T
,ck |= B(φ). The first case (formulation of clause b above) is proven by in-

duction as follows:
(Basic case) Given MA

T
,c0 |= G(φ) (assumption), MA

T
,c1 6|= B(φ), Proposition 6.2

guarantees that MA
T
,c1 |=G(φ).

(Inductive case) Let MA
T
,ci−1 |= G(φ). Using Proposition 6.2 together with the fact

MA
T
,ci 6|= B(φ), we have MA

T
,ci |=G(φ).

The second case (formulation of clause a above) is proven as follows. As ck−1→ ck−1
is the first transition such that MA

T
,ck |= B(φ), we have ∀0 < i < k : MA

T
,ci 6|=

B(φ). Since MA
T
,c0 |= G(φ), we can apply Proposition 6.2 to all transitions c0 →

c1 , . . . , ck−2 → ck−1 to show that MA
T
,ck−1 |= G(φ). This is exactly the formulation

of clause a above.

It should be noted that blind commitment in [360] is defined for intentions, rather
than goals. Goals are also present in their framework, but are contrasted with in-
tentions in that the agent is not necessarily committed to achieving its goals (but is
committed in some way to achieving its intentions).

We now proceed to give a definition of intention, and show how intentions de-
fined in this way are related to an agent’s goals. We define that an agent intends
κ, if κ follows from the second component of one of the plans in an agent’s plan
base. The second component of a plan specifies the subgoal for which the plan was
selected, and it is these subgoals for which the agent is executing the plans, that we
define to form the agent’s intentions. This is analogous to the way the semantics of
intention is defined in [77].

Definition 6.14. (intention) Let Vi : C→ 22Lp be defined as Vi(〈σ,γ,Π〉)= {{κ′ | κ |=p
κ′} | (φ,κ,π) ∈ Π}. Then M,c |= I(κ) is defined as ∃s ∈ Vi(c) : κ ∈ s.

Given this definition, we prove that an agent’s intentions are a “subset” of the
agent’s goals, i.e., we prove the following proposition.

Proposition 6.4. (intentions)

|=T I(κ)→G(κ)

Proof. The proof is based on induction by showing that for arbitrary agent model
MA
T

and initial state c0 the proposition holds for the initial state (basic case), and if
it holds for a state of the model, then it holds for the next state of the model as well.

178 M. Dastani and J.-J. Ch. Meyer

(Basic case) MA
T
,c0 |= I(κ)→ G(κ) for the initial state c0. Since agents are as-

sumed to have no plans initially, we have @s ∈ Vi(c0) : k ∈ s. Using the definition of
I(κ) we conclude that MA

T
,c0 6|= I(κ) and thus MA

T
,c0 |= I(κ)→G(κ).

(Inductive case) Suppose MA
T
,c |= I(κ)→ G(κ) and there is a transition c→ c′.

We show that MA
T
,c′ |= I(κ)→ G(κ). We distinguish two cases for the assumption

MA
T
,c |= I(κ)→G(κ): 1) MA

T
,c |= I(κ), and 2) MA

T
,c 6|= I(κ).

(Case 1) Suppose MA
T
,c |= I(κ)→ G(κ), MA

T
,c |= I(κ), and thus MA

T
,c |= G(κ). We

show MA
T
,c′ |= ¬G(κ)→¬I(κ) (contraposition), i.e., we show if MA

T
,c′ 6|=G(κ) then

MA
T
,c′ 6|= I(κ). By Definition 6.10, MA

T
,c |=G(κ)⇔∃s ∈ Vg(c) : k ∈ s. Given MA

T
,c |=

G(κ) and MA
T
,c′ 6|=G(κ)⇔ @s ∈ Vg(c′) : κ ∈ s, we conclude that the transition c→ c′

is derived based on transition rule R1 (as this is the only transition rule that modifies
the agent’s goals) and therefore ∀ψ,π : (ψ,κ,π) <Πc′ . Note that if ∃s ∈ Vg(c′) : ψ ∈ s
would be the case, then we should also have k ∈ s (because ψ |= κ), which contradict
the assumption @s ∈ Vg(c′) : κ ∈ s. Since ∀ψ,π : (ψ,κ,π) < Πc′ we conclude @s ∈
Vi(c′) : κ ∈ s and thus MA

T
,c′ 6|= I(κ).

(case 2) Suppose MA
T
,c |= I(κ)→ G(κ), MA

T
,c 6|= I(κ), and thus MA

T
,c 6|= G(κ). We

show then MA
T
,c′ |= I(κ)→G(κ), i.e., if MA

T
,c′ |= I(κ), then MA

T
,c′ |=G(κ). Assume

MA
T
,c′ |= I(κ). Given MA

T
,c 6|= I(κ) we can conclude that the transition c → c′ is

derived based on transition rule R3 by applying a planning rule. MA
T
,c′ |= I(κ)⇔

∃s ∈ Vi(c′) : κ ∈ s⇔∃(φ,κ′,π) ∈Πc′ : κ′ |= κ and φ |= κ′. The fact that a planning rule
is applied means that MA

T
, s |=G(φ) and therefore MA

T
, s |=G(κ).

Intuitively, this property holds since “intentions” or plans are generated on the basis
of goals such that a plan cannot be created without a corresponding goal. Moreover,
if a goal is removed, its corresponding plans are also removed. Note that while the
commitment strategies were defined for intentions in [360] and hold for goals in our
framework, the property of the BDI logic that relates goals and intentions does map
directly to goals and (what we have defined as) intentions in our framework. Note
also that the opposite of Proposition 6.4 does not hold, as it can be the case that an
agent has a goal for which it has not yet selected a plan.

Finally, we present a property related to the choices of an agent, implemented
by an APL program. This property shows our motivation for choosing a variant of
CT L as the specification language. The property states that an agent can choose to
commit to one of its goals and generate an intention, if the agent has appropriate
means.

Proposition 6.5. (intention = choice + commitment) Assume an agent program A
with a planning rule β,κ⇒ π. Let T be the transition system generated by the tran-
sition rules R1, . . . ,R3 based on this agent program.

|=T (B(β)∧G(κ)∧¬I(κ))→ EX I(κ)

6 Correctness of Multi-Agent Programs: A Hybrid Approach 179

Proof. We prove that for arbitrary MA
T

and configuration c0, it holds:
if MA

T
,c0 |= B(β)∧G(κ)∧¬I(κ), then MA

T
,c0 |= EX I(κ). Following definition 6.10,

we have to prove that if MA
T
,c0 |= B(β)∧G(κ)∧¬I(κ), then ∃ fullpath x= c0,c1,c2, . . . ∈

MA
T

: MA
T
, x |= X I(κ). Assume MA

T
,c0 |= B(β)∧G(κ)∧¬I(κ). Then, following defi-

nitions 6.10 and 6.14, we have β ∈ Vb(c0), ∃s ∈ Vg(c0) : k ∈ s, and ∀s ∈ Vi(c0) : κ < s.
Note that definition 6.14 ensures that ∀φ @π′ ∈ Plan : (φ,κ,π′) ∈ Πc0 (where Πc0 is
the plan base that corresponds to configuration c0). This means that the transition
rule R3 is applicable in c0, which in turn means that a transition c0 → c1 is deriv-
able in the transition system T such that (φ,κ,π) ∈ Πc1 for some φ ∈ Vg(c1). By
definition 6.14, we conclude that M,c1 |= I(κ). This ensures the existing of a path
x = c0,c1, . . . : M, x |= X I(κ).

6.5 Debugging Multi-Agent Programs

In previous sections, we showed how a BDI-based agent-oriented programming lan-
guage can be related to a BDI specification language. The relation allows us to prove
that certain generic properties expressed in the specification language hold for the
agent programming language, and thus for all executions of all agent programs that
are implemented using this agent programming language.

However, one may want to verify properties for a specific execution of a spe-
cific multi-agent program. Of course, model-checking and theorem proving are two
verification approaches that can be used to check properties of specific programs.
The problem with these verification approaches is that they are often less effective
for complex and real application programs. In order to check properties of such
complex programs, one may consider a debugging approach and check a specific
execution of a specific program. Thus, in contrast to model checking and theorem
proving that analyze all possible full execution traces of a program at once, the de-
bugging approach analyzes one specific execution trace of a specific program. It is
important to emphasize that model-checking and theorem proving can therefore be
used to prove the correctness of programs, while debugging can only be used to find
possible defects of programs (as displayed in particular runs).

In the following sections, we propose a debugging approach that can be used
to check temporal and cognitive properties of specific BDI-based multi-agent pro-
grams, e.g., if two or more implemented agents2 can have the same beliefs, whether
the number of agents is suited for the environment (e.g. it is useless to have a dozen
explorers on a small area, or many explorers when there is only one cleaner that can-
not keep up with them.), whether the protocol is suited for the given task (e.g. there
might be a lot of overhead because facts are not shared, and therefore, needlessly
rediscovered), whether important beliefs are shared and adopted, or rejected, once

2 In the following, we write ’agents’ and ’implemented agents’ interchangeably since we focus on
programs that implement agents.

180 M. Dastani and J.-J. Ch. Meyer

they are received. We may also want to check if unreliable sources of information
are ignored, or whether the actions of one agent are rational to take based on the
knowledge of other agents.

6.5.1 Debugging Modes

Ideally one would specify a cognitive and temporal property and use it in two dif-
ferent debugging modes. In one debugging mode, called continuous mode, one may
want to execute a multi-agent program and get notified when the specified prop-
erty evaluates to true during its execution. In the second debugging mode, called
post mortem, one may want to execute a multi-agent program, stop it after some
execution steps, and check if the specified property evaluates to true for the per-
formed execution. For both debugging modes, the specified properties are evaluated
in the initial state of the multi-agent program execution trace generated thusfar. For
the post mortem debugging mode, the generated execution trace thusfar is the trace
generated from the start of the program execution until the execution is stopped.
However, for the continuous debugging mode, the specified properties are evaluated
after each execution step and with respect to the execution trace generated thusfar,
i.e., the execution trace generated from the start of the program execution until the
last execution step. This is because during a program execution a trace is modified
and extended after each execution step. It should be noted that subsequent execution
steps generate new program states and therefore new traces.

In the continuous debugging mode, the evaluation of a specified property during
the execution of a multi-agent program means a continuous evaluation of the prop-
erty on its evolving execution trace as it develops by consecutive execution steps.
This continuous evaluation of the property can be used to halt the program execution
as soon as a trace is generated which satisfies the property. It is important to know
that properties are evaluated in the initial state of the execution trace so that the
trace properties should be specified as temporal properties. A developer of multi-
agent programs is assumed to know these aspects of our debugging framework in
order to debug such programs effectively. Similar ideas are proposed in Jadex [343].

In the following, we introduce a specification language, called MDL (multi-agent
description language), to specify the cognitive and temporal behavior (i.e., execu-
tion traces) of the BDI-based multi-agent programs. The MDL description language
is taken to be a variant of LTL (Linear Temporal Logic) because execution traces
of multi-agent programs, which are used to debug3 such programs, are assumed
to be linear traces. Note that this assumption is realistic as the interpreter of most
(multi-agent) programs performs one execution step at a time and thereby generates
a linear trace. An MDL expression is evaluated on the (finite) execution trace of a

3 In contrast to debugging that analyzes one linear execution trace of a program, other verification
techniques such as model checking and theorem proving analyze all possible execution traces of a
program at once.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 181

multi-agent program and can activate a debugging tool when it is evaluated to true.
The debugging tools are inspired by traditional debugging tools, extended with the
functionality to verify a multi-agent program execution trace. One example of such
a debugging tool is a multi-agent version of the breakpoint. The breakpoint can halt
the execution of a single agent program, a group of agent programs or the complete
multi-agent program. This multi-agent version of the breakpoint can also have an
MDL expression as a condition, making it a conditional breakpoint.

6.5.2 Specification Language for Debugging: Syntax

In this section, we present the syntax of the MDL written in EBNF notation. An
expression of this language describes a property of an execution of a multi-agent
program in APL and can be used to perform/activate debugging actions/tools. In
the following, 〈group id〉 is a group identifier (uncapitalized string), 〈agent id〉 an
agent identifier (uncapitalized string), 〈query name〉 a property description name
(a reference to a specified property used in the definition of macros; see later on
for a discussion on macros), 〈Var〉 a variable (Variables are capitalized strings),
[all] indicates the group of all agents, and 〈agent var〉 an agent identifier, a group
identifier, or a variable. Finally, we use Bquery, Gquery, and Pquery to denote an
agent’s Beliefs, Goals, and Plans, respectively.

〈group de f 〉 : := “
[
” 〈group id〉“

]
”“ = ” 〈agent list〉

〈agent list〉 : := “
[
” 〈agent id〉 (“,” 〈agent id〉)∗ “

]
”

〈mdl pd〉 : := 〈query name〉“{” 〈mdl query〉“}”
〈mdl query〉 : := “{” 〈mdl query〉“}”

| 〈agent var〉“@Beliefs (”〈Bquery〉“)”
| 〈agent var〉“@Goals (”〈Gquery〉“)”
| 〈agent var〉“@Plans (”〈Pquery〉“)”
| 〈UnOp〉 〈mdl query〉

| 〈mdl query〉 〈BinOp〉 〈mdl query〉

|“?” 〈query name〉

〈BinOp〉 : := “and” | “or” | “implies” | “until”
〈UnOp〉 : := “not” | “next” | “eventually” | “always”
〈agent var〉 : := 〈Var〉 | 〈agent id〉 | 〈group id〉 | “[all]”

Note that 〈mdl pd〉 is a specified property that describes the (temporal and cog-
nitive) behavior of a multi-agent program execution.

182 M. Dastani and J.-J. Ch. Meyer

In order to specify that either all agents believe that there is a bomb at position
2,3 (i.e., bomb(2,3)) or all agents believe that there is no bomb at that position
(i.e. not bomb(2,3)), we can use the following MDL expression.

[all]@Beliefs(bomb(2,3)) or

[all]@Beliefs(not bomb(2,3))

Since specified properties in our framework are always evaluated in the initial
state of the program execution trace (and thus specified by the multi-agent program),
the above property will evaluate to true if it holds in the initial state. Therefore, if
this property is evaluated to true in a program execution trace, then it will evaluate
to true for the rest of the program execution. Note that if this property should hold
in all states of the program execution, then it should be put in the scope of the ’al-
ways’ operator. Moreover, if the property should hold in the last state of the program
execution, then it should be put in the scope of the ’eventually’ operator.

We can generalize the above property by assigning a name to it and parameter-
izing the specific beliefs (in this case bomb(X,Y)). This generalization allows us to
specify a property as a macro that can be used to define more complex properties.
For example, consider the following generalization (macro) that holds in a state of a
multi-agent program if and only if either all agents believe the given belief φ or all
agents do not believe φ.

isSharedBelief(φ){
[all]@Beliefs(φ) or
[all]@Beliefs(not φ)

}

Note that isSharedBelief(φ) can now be used (e.g., in other property speci-
fications) to check whether or not φ is a shared belief. In general, one can use the
following abstract scheme to name an MDL expression. Parameters Var1, Var2,
and Var3 are assumed to be used in the MDL expression.

name(Var1, Var2, Var3, ...) { MDL expression }

The following example demonstrates the use of macros. To use an MDL expres-
sion inside another one, the macro’s names should be preceded by a “?” mark. We
now define a cell as detected when agents agree on the content of that cell. We define
detectedArea(R) as follows.

detectedArea(X, Y) { ?isSharedBelief(bomb(X,Y)) }

The next example shows an MDL expression that can be used to verify whether
the gridworld will eventually be clean if an agent has the goal to clean it. In par-
ticular, the expression states that if an agent A has the goal to clean the gridworld
then eventually that agent A will believe that the gridworld is clean.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 183

cleanEnvironment(A) {

A@Goals(clean(gridworld))

implies

eventually A@Beliefs(clean(gridworld))

}

It is important to note that if this property evaluates to false for an execution
thusfar, it may not continue to be false for the rest of the execution (cf. Definition
6.15). This is due to the evaluation of the eventually operator in the context of
finite traces. In particular, if the above property evaluates to false for a finite program
execution trace, then it may not evaluate to false for a suffix of that trace. One
particular use of the eventually operator is therefore to check and stop the execution
of a multi-agent program when it reaches a state with a specific property.

The following MDL expression states that an agent A will not unintentionally
drop the bomb that it carries. More specifically, the expression states that if an agent
believes to carry a bomb, then the agent will believe to carry the bomb until it has
a plan to drop the bomb. It is implicitly assumed that all plans will be successfully
executed.

doesNotLoseBomb(A) {

always (A@Beliefs(carry(bomb))

implies

(A@Beliefs(carry(bomb))

until

A@Plans(dropped_bomb)

)

)

}

6.5.3 Specification Language for Debugging: Semantics

The semantics of the MDL language describes how a property is evaluated against
a trace of a BDI-based multi-agent program. In the context of debugging, we con-
sider finite traces generated by partial execution of multi-agent programs (a partial
execution of a program starts in the initial state of the program and stops after a
finite number of deliberation steps). A finite trace is a finite sequence of multi-agent
program states in which the state of each agent is a tuple consisting of beliefs, goals,
and plans.

An MDL expression is evaluated with respect to a finite multi-agent program
trace that results from a partial execution of a multi-agent program. In the following,
we use t to denote a finite trace, |t| to indicate the length of the trace t (a natural
number; a trace consists of 1 or more states), st to indicate a trace starting with state

184 M. Dastani and J.-J. Ch. Meyer

s followed by the trace t, |st|= 1+ |t|, and functions head and tail, defined as follows:
head(st) = s, head(t) = t if |t| = 1, head(t, i) = Ai if head(t) = {A1, . . . ,Ai, . . . ,An},
tail(st) = t and tail(t) is undefined if |t| ≤ 1 (tail is a partial function). Moreover,
given a finite trace t = s1s2 . . . sn, we write ti to indicate the suffix trace si . . . sn.

Definition 6.15. Let si = {A1, . . . ,An} be a multi-agent program configuration and
let t = s1s2 . . . sn be a finite trace of a multi-agent program such that |t| ≥ 1. Let
also the evaluation functions Vb,Vg, and Vi be as defined in Definitions 6.10 and
6.14, respectively. The satisfaction of MDL expressions by the trace t is defined as
follows:

t |= i@Beliefs(φ)⇔ φ ∈ Vb(head(t, i))

t |= i@Goals(φ)⇔∃s ∈ Vg(head(t, i)) : φ ∈ s

t |= i@Plans(φ)⇔∃s ∈ Vi(head(t, i)) : φ ∈ s

t |= φ and ψ⇔ t |= φ and t |= ψ

t |= φ or ψ⇔ t |= φ or t |= ψ

t |= φ implies ψ⇔ t |= φ implies t |= ψ

t |= not φ⇔ t 6|= φ

t |= next φ⇔ tail(t) |= φ and |t| > 1

t |= eventually φ⇔∃i ≤ |t| (ti |= φ)

t |= always φ⇔∀i ≤ |t| (ti |= φ)

t |= φ until ψ⇔∃i ≤ |t| (ti |= ψ and ∀ j < i (t j |= φ))

Based on this definition of MDL expressions, we have implemented some debug-
ging tools that are activated and updated when their corresponding MDL expression
holds in a partial execution of a multi-agent program. These debugging tools are
described in the next section. This definition of the satisfaction relation can behave
different than the standards definition of satisfaction relation of LTL which is defined
on infinite traces. For example, some LTL properties such as ¬nextφ = next¬φ are
valid only for infinite traces. However, the validity of such properties is not relevant
for our debugging framework as debugging is only concerned with the execution
thusfar and therefore with finite traces. We would like to emphasize that different
LTL semantics for finite traces of program executions have been proposed. See [28]
for a comparison between different proposals.

6.6 Multi-Agent Debugging Tools

A well-known technique often used for debugging single sequential and concurrent
programs is a breakpoint. A breakpoint is a marker that can be placed in the pro-
gram’s code. Breakpoints can be used to control the program’s execution. When

6 Correctness of Multi-Agent Programs: A Hybrid Approach 185

the marker is reached program execution is halted. Breakpoints can be either condi-
tional or unconditional. Unconditional breakpoints halt the program execution when
the breakpoint marker is reached. Conditional breakpoints only halt the program ex-
ecution when the marker is reached and some extra condition is fulfilled. Another
(similar) functionality, that can be used to re-synchronize program executions, is
called a process barrier breakpoint. Process barrier breakpoints are much like nor-
mal breakpoints. The difference is they halt the processes that reached the barrier
point until the last process reaches the barrier point. A different debugging tech-
nique used for traditional programming practices is called the watch. The watch is a
window used to monitor variables’ values. Most watch windows also allow the de-
veloper to type in a variable name and if the variable exists the watch will show the
variable’s value. In the IDEs of most high-level programming languages the watch is
only available when the program’s execution is halted. Other traditional debugging
techniques are logging and visualization. Logging allows a developer to write some
particular variable’s value or some statement to a logging window or a file. Visual-
ization is particularly helpful in the analysis and fine tuning of concurrent systems.
Most relevant in light of our research is the ability to visualize the message queue.

Despite numerous proposals for BDI-based multi-agent programming languages,
there has been little attention on building effective debugging tools for BDI-based
agent-oriented programs. The existing debugging tools for BDI-based programs en-
able the observation of program execution traces (the sequence of program states
generated by the program’s execution) [63,114,121,122,343] and browsing through
these execution traces, allowing to run multi-agent programs in different execution
modes by for example using breakpoints and assertions [63, 114, 122, 343], observ-
ing the message exchange between agents and checking the conformance of agents’
interactions with a specific communication protocol [84,114,343,345,346,425]. Al-
though most proposals are claimed to be applicable to other BDI-based multi-agent
programming languages, they are presented for a specific multi-agent platform and
the corresponding multi-agent programming language. In these proposals, debug-
ging multi-agent aspects of such programs are mainly concerned with the interac-
tion between individual agents and the exchanged messages. Finally, the temporal
aspects of multi-agent program execution traces are only considered in a limited
way and not fully exploited for debugging purposes.

This section presents a set of Multi-Agent Debugging Tools (MADTs) to illus-
trate how the MDL language can be used to debug multi-agent programs. In order to
use the debugging tools, markers are placed in the multi-agent programs to denote
under which conditions which debugging tool should be activated. A marker con-
sists of an (optional) MDL expression and a debugging tool. The MDL expression
of a marker specifies the condition under which the debugging tool of the marker
should be activated. In particular, if the MDL expression of a marker evaluates to
true for a given finite trace/partial execution of a multi-agent program, then the de-
bugging tool of the marker will be activated. When the MDL expression of a marker
is not given (i.e., not specified), then the associated debugging tool will be acti-
vated as soon as the multi-agent program is executed. Besides an MDL expression,
a marker can also have a group parameter. This group parameter specifies which

186 M. Dastani and J.-J. Ch. Meyer

agents the debugging tool operates on. The general syntax of a marker is defined as
follows:

〈marker〉 : := “MADT(” 〈madt〉 [“,” 〈mdl query〉][“,@” 〈group〉]“)”
〈group〉 : := “[” 〈group id〉“]”| 〈agent list〉

The markers that are included in a multi-agent program are assumed to be pro-
cessed by the interpreter of the corresponding multi-agent programming language.
In particular, the execution of a multi-agent program by the interpreter will gener-
ate consecutive states of a multi-agent program and, thereby, generating a trace. At
each step of the trace generation (i.e., at each step where a new state is generated)
the interpreter evaluates the MDL expression of the specified markers in the initial
state of the finite trace (according to the definition of the satisfaction relation; see
definition 6.15) and activates the corresponding debugging tools if the MDL ex-
pressions are evaluated to true. This means that the trace of a multi-agent program
is verified after every change in the trace. This mode of processing markers corre-
sponds to the continuous debugging mode and does not stop the execution of the
multi-agent program; markers are processed during the execution of the program.
In the post mortem debugging mode, where a multi-agent program is executed and
stopped after some deliberation steps, the markers are processed based on the finite
trace generated by the partial execution of the program. It is important to note again
that MDL expressions are always evaluated in the initial state of traces as we aim at
debugging the (temporal) behavior of multi-agent programs and thus their execution
traces from the initial state. The following example illustrates the use of a marker in
a multi-agent program:

MADT(breakpoint_madt ,

eventually cleaner@Beliefs(bomb(X,Y))

)

This marker, which can be placed in the multi-agent program, activates a break-
point as soon as the cleaner agent believes that there is a bomb in a cell of the
gridworld. It is important to note that if no MDL expression is given in a specified
marker, then the associated debugging tool will be activated after each update of the
trace. Removing the specified MDL expression from the abovementioned marker
means that the execution of the multi-agent program will be stopped after each trace
update. This results in a kind of stepping execution mode. Furthermore, if no group
parameter is given in the marker, the “[all]” group is used by default.

In the rest of this section, we illustrate the use of a set of debugging tools that
have shown to be effective in debugging software systems. Examples of debugging
tools are breakpoint, logging, state overview, or message list. The behavior of these
debugging tools in the context of markers are explained in the rest of this section.
The proposed set of debugging tools is by no means exhaustive and can be extended
with other debugging tools. We thus do neither propose new debugging tools nor

6 Correctness of Multi-Agent Programs: A Hybrid Approach 187

evaluate their effectiveness. The focus of this chapter is a framework for using (ex-
isting) debugging tools to check cognitive and temporal behavior of multi-agent
program. Our approach is generic in the sense that a debugging tool can be associ-
ated with an MDL expression by means of a marker and that markers can be used
in two debugging modes.

6.6.1 Breakpoint

The breakpoints for multi-agent programs are similar to breakpoints used in concur-
rent programs. They can be used to pause the execution of a single agent program, a
specific group of agent programs, or the execution of the entire multi-agent program.
Once the execution of a program is paused, a developer can inspect and browse
through the program execution trace generated so far (including the program state
in which the program execution is paused). The developer can then continue the
program execution in a stepping mode to generate consecutive program states. An
attempt to further execute the program continuously (not in stepping mode) pauses
immediately since the MDL expression associated to the breakpoint will be eval-
uated in the initial state of an extension of the same trace. In general, if an MDL
expression evaluates to true in a state of a trace, then it will evaluate to true in the
same state of any extension of that trace.

The example below demonstrates the use of a conditional breakpoint on the
agents explorer1 and explorer2. The developer wants to pause both agents as
soon as agent cleaner has the plan to go to cell (5, 5).

MADT(breakpoint_madt,

eventually cleaner@Plans(goto(5, 5)) ,

@[explorer1, explorer2]

)

Note that it is possible to use the cognitive state of more than one agent as the
break condition. The next example demonstrates how a developer can get an indi-
cation about whether the number of explorer and cleaner agents are suitable for a
certain scenario. In fact, if there are not enough cleaners to remove bombs, or when
all explorers are located at the same area, then all explorers will find the same bomb.

MADT(breakpoint_madt,

eventually [explorers]@Beliefs(bomb(X,Y))

)

The breakpoint tool is set to pause the execution of all agents, once all agents that
are part of the “explorers” group have the belief that a bomb is located at the same
cell (X,Y). Note that it need not be explicitly defined to pause the execution of all

188 M. Dastani and J.-J. Ch. Meyer

agents. The breakpoint is useful in conjunction with the watch tool to investigate the
mental state of the agent. Other agent debugging approaches, e.g., [114], propose
a similar concept for breakpoints, but for a single BDI-based agent program. Also,
Jason [63] allows annotations in plan labels to associate extra information to a plan.
One standard plan annotation is called a breakpoint. If the debug mode is used and
the agent executes a plan that has a breakpoint annotation, execution pauses and the
control is given to the developer, who can then use the step and run buttons to carry
on the execution. Note that in contrast with other approaches, the condition in our
approach may contain logic and temporal aspects.

6.6.2 Watch

The watch can display the current mental state of one or more agents. Furthermore,
the watch allows the developer to query any of the agents’ bases. The developer
can, for example, use the watch to check if a belief follows from the belief base. It
is also possible to use an MDL expression in the watch; if the expression evaluates
to true, the watch will show the substitution found. The watch tool can also be
used to visualize which agents have shared or conflicting beliefs. The watch tool is
regularly used in conjunction with a conditional breakpoint. Once the breakpoint is
hit, the watch tool can be used to observe the mental state of one or more agents.
In general, the watch tool should be updated unconditionally and for all agents in
the system. Adding MADT(watch madt) to a multi-agent program will activate the
watch on every update of its execution trace. In Jason and Goal [63, 224], a similar
tool is introduced which is called the mind inspector. This mind inspector, however,
can only be used to observe the mental state of individual agents. Jadex [343] offers
a similar tool called the BDI-inspector which allows visualization and modification
of internal BDI-concepts of individual agents.

6.6.3 Logging

Logging is done by the usage of probes which, unlike breakpoints, do not halt the
multi-agent program execution. When a probe is activated it writes the current state
of a multi-agent program, or a part of it, to a log screen or a file (depending on
the type of probe). Using a probe without an MDL expression and without a group
specification is very common and can be done by adding MADT(probe madt) in
multi-agent programs. The probe will be activated on every update of the program
trace such that it keeps a log of all multi-agent program states. The next example
saves the state of the multi-agent program when the cleaner agent drops a bomb in
a depot, but there is still some agent who believes the bomb is still at its original
place.

6 Correctness of Multi-Agent Programs: A Hybrid Approach 189

MADT(probe_madt,

eventually(cleaner@Plans(dropBomb(X,Y))

and

A@Beliefs(bomb(X,Y))

)

)

This means that the probe madtwill be activated directly after an execution step
that generates a trace on which the MDL expression evaluates to true. A developer
can thus use such expressions (of the form eventuallyφ) in order to be notified at
once and as soon as the program execution satisfies it. Once this expression evaluates
to true, the developer should know that any continuation of the program execution
will evaluates it to true. Thus, from a developer’s perspective, properties specified
by expressions of the form eventuallyφ can be used to get notified (or stop the
execution) only once and as soon as it is satisfied. Similar work is done in Jadex
[410] where a logging agent is introduced to allow collection and viewing of logged
messages from Jadex agents. It should be noted that the probes in our approach offer
the added functionality of filtering on a cognitive condition of one ore more agents.

6.6.4 Message-list

Another visualization tool is the message-list, which is one of the simplest forms of
visualization. The message-list keeps track of the messages sent between agents, by
placing them in a list. This list can be sorted on each of the elements of the mes-
sages. For example, sorting the messages on the “sender” element can help finding
a specific message send by a known agent. Besides ordering, the list can also be
filtered. For example, we could filter on “Senders” and only show the message from
the sender with the name “cleaner”. To update the message-list on every update of
the trace, we can place the marker MADT(message list madt) in the multi-agent
program. Another use of the message-list could be to show only the messages from
within a certain group, e.g., MADT(message list madt, @[explorers]) can be
used to view the messages exchanged between the members of the explorers group.
Finally, in our proposal one can also filter exchanged messages based on condi-
tions on the mental states of individual agents. For example, in the context of our
gridworld example, one can filter useless messages, i.e., messages whose content
are known facts. Exchanging too many useless messages is a sign of non-effective
communication. The example below triggers the message list when an agent A, who
believes there is a bomb at coordinates X,Y, receives a message about this fact from
another agent S.

MADT(message_list_madt,

eventually(A@Beliefs(bomb(X,Y))

and

190 M. Dastani and J.-J. Ch. Meyer

A@Beliefs(message(S,P,bombAt(X,Y)))

)

)

In this example, it is assumed that a received message is automatically added to
the belief base of the receiving agent, and that the added message has the form
message(S ender,Per f ormative,Content). All existing agent programming plat-
forms offer a similar tool to visualize exchanged messages. The main difference
with our approach is the ability to log when certain cognitive conditions hold.

6.6.5 Causal tree

The causal tree tool shows each message and how it relates to other messages in
a tree form. The hierarchy of the tree is based on the relation between messages
(replies become branches of the message they reply to). Messages on the same hi-
erarchical level, of the same branch, are ordered chronologically. The advantage of
the causal tree (over the message-list) is that it is easier to spot communication er-
rors. When, for example, a reply is placed out of context (not in relation with its
cause) this implies there are communication errors. The causal tree also provides
an easy overview to see if replies are sent when required. The causal tree tool can
be used by adding the marker MADT(causal tree madt) to multi-agent programs.
Another example could be to set the group parameter and only display message
from a certain group, e.g., MADT(causal tree madt, @[explorers]). It should
be noted that for the causal tree to work, the messages need to use performatives
such as inform and reply.

6.6.6 Sequence diagram

The sequence diagram is a commonly used diagram in the Unified Modeling Lan-
guage (UML) or its corresponding agent version (AUML). An instantiation of a
sequence diagram can be used to give a clear overview of (a specific part of) the
communication in a multi-agent program. They can help to find irregularities in the
communication between agents. The sequence diagram tool can be used by adding
the marker MADT(sequence diagram madt) to multi-agent programs. This exam-
ple updates the sequence diagram on every update of the trace. Another example
could be to use the group parameter and only update the sequence diagram for
the agents in a certain group, e.g., MADT(sequence diagram madt, @[cleaner,
explorer2]). Adding this marker to our multi-agent program will show the com-
munication between the agents “cleaner” and “explorer2”. The sequence diagram
tool is useful in conjunction with a conditional breakpoint and the stepwise execu-
tion mode where the diagram can be constructed step by step. The sequence diagram

6 Correctness of Multi-Agent Programs: A Hybrid Approach 191

is also useful in conjunction with the probe. The probe can be used to display de-
tailed information about the messages. Similar tools are proposed in some other
approaches, e.g., the sniffer agent in [32]. However, we believe that the sequence
diagram tool in our approach is more effective since it can be used for specific parts
of agent communication.

6.6.7 Visualization

Sometimes the fact that a message is sent is more important than the actual contents
of the message. This is, for example, the case when a strict hierarchy forbids cer-
tain agents to communicate. In other cases it can be important to know how much
communication takes place between agents. For such situations the dynamic agent
communication tool is a valuable add-on. This tool shows all the agents and rep-
resents the communication between the agents by lines. When agents have more
communication overhead the line width increase in size and the agents are clustered
closer together. This visualization tool, which can be triggered by adding the marker
MADT(dynamic agent madt) to multi-agent program, is shown in figure 6.2.

Fig. 6.2 The dynamic agent communication tool.

Another visualization tool is the static group tool. This debugging tool, which
shows specific agent groups, is illustrated in figure 6.3. The line between the groups
indicates the (amount) of communication overhead between the groups. In addition
the developer can “jump into” a group and graphically view the agents and the
communication between them.

Fig. 6.3 The static group tool.

192 M. Dastani and J.-J. Ch. Meyer

The static group tool can be helpful to quickly check if the correct agents are
in the correct group. It can also be used to check communication between different
groups. If two groups show an unusual amount of communication overhead the
developer can jump into the group and locate the source of the problem. The marker
to activate the static group tool can be specified as follow:

MADT(static_group_madt, @[explorers])

MADT(static_group_madt, @[cleaners])

The above markers update the tool on every change of the multi-agent program
trace. According to these markers, the groups “explorers” and “cleaners” will be vi-
sualized. Generally it is most valuable to have a visualization of all communication
between agents. However, to pinpoint the exact problem in a communication pro-
tocol it can be an invaluable addition to use a condition, which filters the messages
that are shown. These same principles apply to the filtered view. As discussed in the
related works section, other approaches (e.g., [84]) offers similar tools.

6.7 Conclusion and Future Work

In this chapter we have shown two methods for showing the correctness of BDI-
based multi-agent programs that are complementary to the well-known methods
of model checking and theorem proving that are used in the realm of multi-agent
verification. Various chapters in this volume present different model-checking and
theorem proving approaches for multi-agent programs.

The first one is a general one allowing us to prove that certain properties ex-
pressed in a specification language hold for the agent programming language, and
thus for all individual agents that are implemented in this agent programming lan-
guage. To this end we showed how a BDI-based agent-oriented programming lan-
guage can be related to a BDI specification language in a systematic and natural
manner. We used here a very simple agent programming language which can be
extended in many different ways. In [77], a comparable effort is undertaken for the
agent programming language AgentSpeak. The specification language in that work
is, however, not a temporal logic, and the properties proven are different (not related
to dynamics of goals).

The multi-agent programming language and its corresponding logic, presented in
this chapter, are designed to focus on the cognitive aspects and related properties of
individual agent programs. The multi-agent programming language can be extended
with communication actions and shared environments to allow the implementation
of multi-agent systems in which individual agents interact by either sending and
receiving messages or performing actions in their shared environment. Most exist-
ing agent programming languages have already proposed specialized constructs to
implement communication and shared environments. Future research is needed to

6 Correctness of Multi-Agent Programs: A Hybrid Approach 193

propose logical frameworks to specify and verify the interaction properties of multi-
agent programs.

The properties that we have studied in this chapter are general in the sense that
we consider the set of all possible execution traces of multi-agent programs. In prac-
tice, the execution of a multi-agent program is often based on an interpreter that uses
a specific execution strategy. For example, an interpreter may apply one/all plan-
ning rules before executing one/all plans, or executing one/all plans before applying
one/all planning rules. In principle, there are many different strategies that can be
used to execute a multi-agent program. In future work we will study properties that
are related to a specific execution strategy. This enables the verification of properties
of a multi-agent program for a given interpreter.

The second approach to the correctness of BDI-based agent programs we showed
is based on debugging. Our proposal extends previous approaches by debugging the
interaction between implemented agents, not only in terms of the exchanged mes-
sages, but also in terms of the relations between their internal states. A develop-
er/debugger of a multi-agent program is assumed to have access to the multi-agent
program code, which is a realistic assumption, and therefore to the internal state of
those programs. The proposed approach is based on a specification language to ex-
press cognitive and temporal properties of the executions of multi-agent programs.
The expressions of the specification language can be used to trigger debugging tools
such as breakpoints, watches, probes, and different visualization tools to examine
and debug communication between individual agents.

Since the specification language is abstract, our debugging approach is generic
and can be modified and applied to other BDI-based agent programming languages.
The only modification is to align the evaluation function of the specification lan-
guage with the programming language at hand. We have already applied this debug-
ging approach to 2APL [122] platform by modifying its corresponding interpreter
to process debugging markers in both debugging modes. The 2APL interpreter eval-
uates the expressions of the specification language based on the partial execution
trace of the multi-agent programs. We have also implemented the proposed debug-
ging tools that are discussed in this paper for the 2APL platform.

We plan to extend the MDL language by including constructs related to the exter-
nal environments of a multi-agent program. In this way, one can specify properties
that relates agent states to the state of the external environments. Moreover, we plan
to extend our debugging framework with the society aspects that may be involved
in multi-agent programming languages [325]. Recent developments in multi-agent
programming languages [131, 166, 188, 243] have proposed specific programming
constructs enabling the implementation of social concepts such as norms, roles,
obligations, and sanctions. Debugging such multi-agent programs requires there-
fore specific debugging constructs to specify properties related to the social aspects
and facilitate finding and resolving defects involved in such programs.

The presented debugging framework assumes all agents are developed on one
single platform such that their executions for debugging purposes are not distributed
on different platforms. One important challenge and a future work on debugging

194 M. Dastani and J.-J. Ch. Meyer

multi-agent systems remains the debugging of multi-agent programs that run si-
multaneously on different platforms. The existing debugging techniques are helpful
when errors manifest themselves directly to the system developers. However, errors
in a program do not always manifest themselves directly. For mission and indus-
trial critical systems it is therefore necessary to extensively test the program before
deploying it. This testing should remove as many bugs (and possible defects) as pos-
sible. However, it is infeasible to test every single situation the program could be in.
We believe that a systematic integration of debugging and testing approaches can be
effective in verifying the correctness of multi-agent programs and therefore essen-
tial for their developments. A testing approach proposed for multi-agent programs
is proposed by Poutakidis and his colleagues [345, 346].

Acknowledgements

We would like to thank Birna van Riemsdijk for her contribution to work on which
this chapter is partly based.

	6 Correctness of Multi-Agent Programs: A Hybrid Approach
	M. Dastani and J.-J. Ch. Meyer
	6.1 introduction
	6.2 An agent-oriented Programming Language APL
	6.2.1 Syntax of APL
	6.2.2 Semantics of APL

	6.3 CTLapl: A Specification Language for Agent Programs
	6.3.1 CTLapl Syntax
	6.3.2 CTLapl Semantics

	6.4 Properties
	6.4.1 Proving the Properties

	6.5 Debugging Multi-Agent Programs
	6.5.1 Debugging Modes
	6.5.2 Specification Language for Debugging: Syntax
	6.5.3 Specification Language for Debugging: Semantics

	6.6 Multi-Agent Debugging Tools
	6.6.1 Breakpoint
	6.6.2 Watch
	6.6.3 Logging
	6.6.4 Message-list
	6.6.5 Causal tree
	6.6.6 Sequence diagram
	6.6.7 Visualization

	6.7 Conclusion and Future Work

