Chapter 3
Model Checking Agent Communication

J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Abstract Model checking is a formal and automatic technique used to verify com-
putational systems (e.g. communication protocols) against given properties. The
purpose of this chapter is to describe a model checking algorithm to verify com-
munication protocols used by autonomous agents interacting using dialogue games,
which are governed by a set of logical rules. We use a variant of Extended Compu-
tation Tree Logic CTL* for specifying these dialogue games and the properties to
be checked. This logic, called ACTL*, extends CTL* by allowing formulae to con-
strain actions as well as states. The verification method uses an on-the-fly efficient
algorithm. It is based on translating formulae into a variant of alternating tree au-
tomata called Alternating Biichi Tableau Automata (ABTA). We present a tableau-
based version of this algorithm and provide the soundness, completeness, termina-
tion and complexity results. Two case studies are discussed along with their respec-
tive implementations to illustrate the proposed approach. The first one is about an
agent-based negotiation protocol and the second one considers a modified version
of the NetBill protocol.
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3.1 Introduction

Model checking is a formal verification method widely used to check complex sys-
tems involving concurrency and communication protocols by verifying some desir-
able properties. Deadlock-freedom (it is false that two or more processes are each
waiting for another to release a resource), safety (some bad situation may never
occur), and reachability (some particular situation can be reached) are examples
of such properties. Model checking techniques offer the possibility of obtaining an
early integration of verification in the design process and reducing the verification
time. However, they are only applicable for finite state systems and they generally
operate on system models and not on the actual system. In fact, the system is rep-
resented by a finite model M and the specification is represented by a formula ¢
using an appropriate logic. The verification method consists of computing whether
the model M satisfies ¢ (i.e. M | ¢) or not (i.e. M £ ¢).

Recently, model checking Multi-Agent Systems (MASs) has seen an increasing
interest [33, 61, 62,232, 266, 267, 337, 354, 356, 440]. However, although research
in agent communication has received much attention during the past years, only
few research works tried to address the verification of agent protocols [4, 24, 163,
195,244,430]. Several dialogue game protocols have been proposed for specifying
agent communication interactions [37,304,307,381]. These games aim at offering
more flexibility by combining different small games to construct complete and more
complex protocols. Dialogue games can be thought of as interaction games in which
each agent plays a move in turn by performing utterances according to a pre-defined
set of rules.

The verification problem of agent communication protocols is fundamental for
the MASs community. Endriss et al. [163] have proposed abductive logic-based
agents and some means of determining whether or not these agents behave in con-
formance with agent communication protocols. Baldoni et al. [24] have addressed
the problem of verifying that a given protocol implementation using a logical lan-
guage conforms to its AUML specification. Alberti et al. [4] have considered the
problem of verifying on the fly the compliance of the agents’ behavior to protocols
specified using a logic-based framework. These approaches are different from the
technique presented in this chapter in the sense that they are not based on model
checking techniques and they do not address the problem of verifying if a proto-
col satisfies given properties. Giordano et al. [195] have addressed the problem of
specifying and verifying agent interaction protocols using a Dynamic Linear Time
Temporal Logic (DLTL). The authors have addressed three kinds of verification
problems: 1) the compliance of a protocol execution to its specification; 2) the sat-
isfaction of a property in the protocol; 3) the compliance of agents to the protocol.
They have shown that these problems can be solved by model checking DLTL. This
model checking technique uses a tableau-based algorithm for obtaining a Biichi au-
tomaton from a formula in DLTL and the construction of this automaton uses proof
rules. However, the protocols are only specified in an abstract way in terms of the
effects of communicative actions and some precondition laws.
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In this chapter, we describe model checking-based verification of dialogue game
protocols for agent communication using an action and temporal logic (ACTL¥*)
based on the Extended Computation Tree Logic CTL*. Using a model checking
technique for this verification is motivated by the fact that model-checking is a suc-
cessful technique for automatically and computationally verifying protocol specifi-
cations using a suitable logic. This technique can be used to verify the protocol cor-
rectness in the sense that the protocol satisfies the expected properties. It allows us
to verify agent communication properties specified using ACTL* logic. Therefore,
we can specify the protocol in a logical way and verify its correctness in terms of
the satisfaction of the expected properties. The definition of a new logic is motivated
by the fact that dialogue game protocols should be specified using not only tempo-
ral properties, but also action properties. In addition, in these protocols, actions that
agents perform by communicating are expressed in terms of “Social Commitments”
(SCs) and arguments. These protocols are specified as transition systems (TSs) us-
ing ACTL* logic and Commitment and Argument Network (CAN) [38]. These TSs
are labeled with actions that agents perform on SCs and SC contents [115,182,404].

The model checking technique we describe in this chapter is based on the trans-
lation of the formula expressing the property to be verified into a variant of al-
ternating tree automata called Alternating Biichi Tableau Automata (ABTA). This
technique is an extension of the ABTA-based algorithm for CTL* proposed in [44].
The choice of this technique is motivated by the fact that unlike other model check-
ing techniques, this technique allows us to check temporal and action formulas. In
addition, this technique is one of the most efficient techniques proposed in the lit-
erature. The translation procedure uses a set of inference rules called tableau rules.
Like automata-based model checking of Linear Temporal Logic LTL, our technique
is based on the product graph of the model and the automaton representing the for-
mula to be verified (Fig. 3.1). This technique allows us to verify not only that the
dialogue game protocol satisfies a given property, but also that this protocol respects
the decomposition rules of the communicative acts. Consequently, if agents respect
these protocols, then they also respect the decomposition semantics of the commu-
nicative acts. Thus, we have only one procedure to verify both:

1. the correctness of the protocols relative to the properties that the protocols should
satisfy;

2. the conformance of agents to the decomposition semantics of the communicative
acts.

The rest of this chapter is organized as follows. Section 3.2 presents an overview
of model checking MASs. Section 3.3 introduces tableau-based algorithms for
model checking, which we use in the verification procedure. Section 3.4 presents
the ACTL* logic: syntax, semantics and associated tableau rules. In Section 3.5, we
use this logic to define the TS that we use to specify dialogue game protocols. The
problem of verifying these protocols is addressed in Section 3.6. The ABTA’s defi-
nition that we use in our verification technique along with some running examples
of the model checking steps are presented in this section. Section 3.7 presents two
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Dialogue Game Protocol to be |: Property expressed in ACLT*
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Fig. 3.1 The model checking approach

case studies and Section 3.8 concludes the chapter by discussing open challenges in
the area of verifying MASs and identifying some directions for future work.

3.2 Brief Overview of Model Checking Multi-Agent Systems

3.2.1 Extending and Adapting Existing Model Checkers

Bordini and his colleagues [61, 62, 73] have addressed the problem of verify-
ing MASs specified using the AgentSpeak(F) language (a simplified version of
AgentSpeak) against BDI specifications. They have shown how programs written
in AgentSpeak(F) can be automatically transformed into Promela and into Java and
how the BDI specifications are transformed into LTL formulae. The Spin model
checker! based on Promela [236] and Java PathFinder 2 (JPF2) model checker?
based on translating Java to Promela [211] are then used to verify the MAS speci-
fications. The idea behind using AgentSpeak(F) instead of the original AgentSpeak
is to make the system to be checked finite in terms of state space, which is a fun-
damental condition of using model checking techniques. To this end, the maximum
sizes of types, data structures and communication channels are specified. Exam-
ples of these maximum sizes are: Mr.,,,: maximum number of terms in a predicate
or an action; Mc,,;j: maximum number of conjuncts (literals) in a plan’s context;

! The Spin model checker can be downloaded from:
http://spinroot.com/spin/Man/README .html

2 The JPF2 model checker is open source and can be downloaded from:
http://javapathfinder.sourceforge.net/
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My,,: maximum number of different variables in a plan; Mp,;: maximum number
of beliefs an agent can have at any moment in time in its belief base; and M yg,:
maximum number of messages (generated by inter-agent communication) that an
agent can handle at a time.

The main constructs in a Promela program are Promela channels and in order to
translate AgentSpeak(F) into Promela, the following channels are used to capture
the data structures used in an AgentSpeak(F) program: (1) channel b for the agent’s
belief base with Mp,; messages as maximum size and each message has M7y + 1
as maximum size; (2) channel p for the environment’s percepts where the maximum
size is the same as for channel b; (3) channel m for sending agent communication
messages where the bound is My, messages; (4) channel e for events, which are
related to intentions; (5) channel i for scheduling intentions; and channel a for stor-
ing actions. Promela inline procedures are used to code the bodies of agents’ plans.
The environment is implemented as a Promela process type defined by the user.

Channel m is used to handle messages when the agent interpretation cycle starts,
and channels p and b are used by the agent to run its belief revision. Events are
handled according to FIFO policy: when new events are generated, they are inserted
in the end of channel e, and the first message in that channel is selected as the event
to be handled in the current cycle. Translating a formula that appears in a plan body
is done as follows: basic actions are appended to channel a; addition and deletion
of beliefs is translated as adding or removing messages to/from channel b; and test
goals are simply an attempt to match the associated predicate with any message
from channel b.

To check BDI properties, BDI modalities are interpreted in terms of Promela data
structures associated to an agentSpeak(F) agent. For instance, an AgentSpeak(F)
agent believes a formula ¢ iff it is included in the agent’s belief base, and this agent
intends ¢ iff it has ¢ as an achievement goal that currently appears in its set of
intentions, or ¢ is an achievement goal that appears in the (suspended) intentions
associated with the set of events.

In the same line of research, Rao and Georgeff [356] have proposed an adapta-
tion of CTL and CTL* model checking to verify BDI (beliefs, desires and inten-
tions) logics. Furthermore, van der Hoek and Wooldridge [232] have reduced the
problem of model checking knowledge for multi-agent systems to linear temporal
logic model checking using the logic of local propositions [165]. The Spin model
checker is then used to check temporal epistemic properties. In [440], Wooldridge et
al. have presented the translation of the MABLE language for the specification and
verification of MASs into Promela. MABLE is an imperative and agent-oriented
programming language where agents have mental states consisting of beliefs, de-
sires and intentions and communicate using request and inform performatives. The
inputs of the MABLE compiler are the MABLE system and associated claims ex-
pressed in MORA, a BDI logic. As output, MABLE generates a description of
the MABLE system in Promela and a translation of the claims into LTL. In another
work, Huget and Wooldridge [244] have used a variation of the MABLE language to
define a semantics of agent communication and have shown that the compliance to
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this semantics can be reduced to a model checking problem. In [430], Walton has ap-
plied model checking techniques in order to verify the correctness of agent protocol
communication using the SPIN model checker. Benerecetti and Cimatti [33] have
proposed a general approach for model-checking MASs together with modalities
for BDI attitudes by extending symbolic model checking and using NuSMV? [98],
a model checker for computation tree logic CTL. In [355], Lomuscio et al. have in-
troduced a methodology for model checking multi-dimensional temporal-epistemic
logic CTLK by extending NuSMV. The methodology is based on reducing the
model checking of CTLK to the problem of model checking ARCTL, an extension
of CTL with action labels and operators to reason about actions [335].

3.2.2 Developing New Algorithms and Tools

To model MASs, the authors in [354,355] use the formalism of interpreted systems
[205]. This formalism is defined as follows. Assume a set of agents Ag = {1,...,n},
where each agent i is characterized by a finite set of local states L; and possible
actions Act; together with a protocol P; : L; — 24¢ti Theset S =Ly X--XL,XLg
represents global states for the system where L is the set of local states associated
to the environment. Agents’ local states evolve in time according to the evolution
function t; : L; X Lg X Act — L;, where Act = Act; X --- X Act,,. Given a set of initial
global states I C S, the set of reachable states Rs C S is generated by the possible
runs of the system using the evolution function and the protocol. An interpretation
system is then a tuple: IS = ((L;,Act;, Pj,1;)ieag, I, V), where V : S — 247 s the eval-
uation function over the set of atomic propositions AP. The MAS is analyzed using
a logic combining epistemic logic S5, with CTL logic. The syntax is as follows:
pu=pl-eleVe | EXe| EGe| E[pUg¢] | Kip.

K;p means i knows ¢. The meanings of the other operators are as in CTL, where E
is the existential path quantifier, X is the next operator, G is the globally operator
and U is the until operator.

To evaluate the formulae, a Kripke model M;s = (Rs,I,R;,~1,...,~p, V) is as-
sociated with a given interpreted system IS . The temporal relation R; C Rs X Rs is
obtained using the protocols P; and the evolutions functions #;, and the epistemic
relations ~1,...,~, are defined by checking the equality of the i-th local component
of two global states (i.e., (I1,...,0,) ~i (I},...,1;) iff [; = I!). The semantics is defined
in Mg in the standard way.

To check the desired properties, the authors use symbolic model checking based
on ordered binary decision diagrams (OBDDS). The model and formula to be
checked are not represented as automata, but symbolically using boolean func-
tions. This makes the technique efficient to deal with large systems. NuSMV [98] is

3 The NuSMV2 model checker is open source and can be downloaded from:
http://nusmv.fbk.eu/NuSMV/download/getting-v2.html
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the most popular symbolic model checker based on OBDDS. The MCMAS model
checker* proposed in [355] is an extension of NuSMYV for the epistemic properties.
The idea is to represent the elements of the interpreted system M;s by means of
boolean formulas and then develop a propositional satisfiability solver (SAT) based
on this representation for the verification of the properties associated with the inter-
preted system.

Agents’ local states and actions are encoded as boolean vectors, which are iden-
tified by boolean formulae. Protocols and evolutions functions associated with local
states and actions are also represented via boolean formulae. The SAT algorithm is
an extension of CTL SAT solver for the knowledge operator K; whose semantics
is defined using the accessibility relation ~;. Let R; be the boolean function repre-
senting ~;, the SAT component of this operator is defined as follows:

SATx(p,
X =SAT(—yp)

Y ={s|Ri(s)N X = 0}
return Y NRs

}

The idea of the algorithm is to compute the set of global states X in which the
negation of ¢ holds. Then, the set Y of states of which the ~; accessible states are
not in X is computed. This means that these states satisfy the semantics of Kjp.
Among these states, the algorithm returns those are reachable (i.e. those in Rs).

MCMAS model checker takes as input an interpreted system, which is parsed
using Lex and Yacc parser. OBDDs are then built for the input parameters. The
formula to be checked is then parsed and the SAT algorithm is executed to compute
the set of states in which the formula holds, which is then compared with the set of
reachable states. The tool is developed in C++.

In the same research direction, Penczek and Lomuscio [337] have developed
a bounded model checking algorithm for branching time logic for knowledge
(CTLK). In a similar way, Kacprzak et al. [266] have investigated the problem
of verifying epistemic properties using CTLK by means of an unbounded model
checking algorithm. Kacprzak and Penczek [267] have addressed the problem of
verifying game-like structures by means of unbounded model checking. Recently,
Cohen et al. [108] have introduced a new abstraction-based model checking tech-
nique for MASs aiming at saving representation space and verification time. The
MAS is defined in the interpreted systems framework and the abstraction is per-
formed by simplifying and collapsing the local states, local protocol and local evo-
Iution function of each agent in the system. Thus, the set L; of local states of agent
i is partitioned into equivalence classes called abstract local states of agent i. Sim-
ilarly, the set ACT; of possible actions of agent i is partitioned into equivalence
classes called abstract actions of agent i. Local protocols and local evolution func-
tions are abstracted by uniformly replacing any local state with its equivalence class

4 The MCMAS model checker can be downloaded from:
http://www-lai.doc.ic.ac.uk/mcmas/download.html
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and replacing any action with its equivalence class. The authors have shown that
the resulting abstract system simulates the concrete system so that if a temporal-
epistemic specification holds on the abstract system, the specification also holds on
the concrete one.

3.3 Tableau-based Model Checking Dialogue Games

Unlike traditional proof systems which are bottom-up approaches, tableau-based
algorithms used for model checking work in a top-down or goal-oriented fash-
ion [106]. In the tableau-based approach, tableau rules are used in order to prove a
certain formula by inferring when a state in a Kripke structure satisfies such a for-
mula. According to this approach, we start from a goal (a formula), and we apply a
tableau rule and determine the sub-goals (sub-formulae) to be proven. The tableau
rules are designed so that the goal is true if all the sub-goals are true. The advan-
tage of this method is that the state space to be checked is explored in a need-driven
fashion [44]. The model checking algorithm searches only the part of the state space
that needs to be explored to prove or disprove a certain formula. The state space is
constructed while the algorithm runs. This kind of model checking algorithms is
referred to as on-the-fly or local algorithms [44,45,106,408].

The tableau decision algorithm that we use in our verification technique provides
a systematic search for a model which satisfies a particular formula expressed using
ACTL* logic. It is a graph construction algorithm. Nodes of the graph are sets of
ACTL* formulae and tableau rule names. The interpretation of vertex labeling is
that for the vertex to be satisfied, it must be possible to satisfy all the formulae in
the set together. Each edge in the graph represents a satisfaction step of the formula
contained in the starting vertex. These steps correspond to the application of a set of
tableau rules. These rules express how the satisfaction of a particular formula (the
goal) can be obtained by the satisfaction of its constituent formulae (sub-goals).

3.4 ACTL* Logic

3.4.1 Syntax

In this section, we present ACTL* logic that we use to specify dialogue game pro-
tocols and express the properties to be verified (See Fig. 3.1). This specification will
be addressed in Section 3.5. ACTL* is a simplification of our logic for agent com-
munication [38]. ACTL* extends CTL* by allowing formulae to constrain actions
as well as propositions. The difference between ACTL* and CTL* is that the former
contains action formulae and two new operators: S C for social commitments and ..
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for arguments. The set of atomic propositions is denoted I"p. The set of action labels
is denoted I'a. In what follows we use p, p, p2,... to range over the set of atomic
propositions and 6,61,6,,... to range over action labels. The syntax of this logic is
as follows:

S:=p|-S|ISAS|SVS|AP|EP|SC(Ag1,Ags,P)

Pi=0|~P|S|PAP|PVP|XP | PUP|P - P
|ACT (Ag1,SC(Ag1,Ag2,P)) | ACT2(Ag>,SC(Ag1,Ag2,P))
| ACT (Ag1,SC(Ag1,Ag2,P),P) | ACT; (Ag2,S C(Ag1,Ag2,P),P)

ACT | ::=Cr | Wit|Sat| Vio
ACTy ::=Ac|Ref | Ch
ACT{ ::=Def | Jus

ACT; = At

The formulae generated by S are called state formulae, while those generated
by P are called path formulae. We use ¥, ¢1,¢2,... to range over state formulae
and ¢,¢1,¢2,... to range over path formulae. The formula A¢ (respectively E¢)
means in all paths (resp. some paths) starting from the current state ¢ is satis-
fied. The formula SC(Ag1,Ag2,¢) means that agent Ag; commits towards agent
Agy that the path formula ¢ is true. Committing to path formulae is more expres-
sive than committing to state formulae since state formulae are path formulae. In
fact, by committing to path formulae, agents can commit to state formulae and ex-
press commitments toward the future, for example committing that X¢ (¢ holds
from the next state), @1 Uy (¢1 holds until ¢, becomes true) and EF¢ (there is
a path such that in its future ¢ holds)’. Ag; and Ag, are respectively called the
debtor and creditor of the commitment. The formula ¢, .. ¢, means that ¢; is an
argument for ¢,. We can read this formula: ¢y, so ¢,. This operator introduces argu-
mentation as a logical relation between path formulae. Action(Ag,S C(Ag1,Ag2,¢))
and Action™ (Ag,S C(Ag1,Ag2,9),¢1), where Action corresponds to ACT and ACT;
and Action™ corresponds to ACT, and ACTS, indicate the action an agent Ag
(Ag € {Ag1,Ag>}) performs on SC(Agy,Ag2,¢). The actions we consider are: Cr
(create), Wit (withdraw), S at (satisfy), Vio (violate), Ac (accept), Ref (refuse), Ch
(challenge), At (attack), Def (defend) and Jus (justify).

3 Operator F (in the future) is an abbreviation defined from operator U: F¢ = trueU¢
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3.4.2 Semantics

Semantically, this logic is interpreted with respect to the model M defined as fol-
Acty .
lows: M =(S,,, Lab,Act,,, C—t>,Agt,RSC, Smy) Where: S, is a set of states; Lab : S, —

277 s the labeling state function; Act,, is a set of actions; Aﬂg S XAct, XS, is the
transition relation; Agt is a set of communicating agents; Ry : S,, X Agt X Agt — 27
with o is the set of all paths in M is an accessibility modal relation that associates to
a state s, the set of paths along which an agent can commit towards another agent;
Smg 18 the start state. The paths that path formulae are interpreted over have the form

X = Smy ﬂ) Smy ﬁ Sy - where x € o, Smg>Smy » - - - Ar€ states and ap,as,... are ac-
tions. x' = sy, o Smyy, --- 18 the suffix of the path x starting from the ith state. The
set of paths starting from a state s,, is denoted o,. x[i] is the ith state in the path x.
In the rest, = stands for implies.

smEm piff p € Lab(sy)

sm Em @ iff not(sm Eum ¥)

Sm EM W1 AU AT 55 a1 and s, Ep Yo

Sm EM Y1 Vi iff s, Em Y or sy Eum 15}

A state s, satisfies A¢ (E¢) if every path (some path) emanating from this state
satisfies ¢. Formally:
smEmM At Vxeo, xEy ¢
SmEMEQMf Axeo, xEp @

A state s, satisfies SC(Ag1,Ag2, @) if every accessible path to Ag; towards Ag»
from this state using Ry satisfies ¢. Formally:
smEM SC(Ag1,Ag2,¢) iff VX € Rye(51m,Ag1,A82) X Em .

A path satisfies a state formula if the initial state in the path does. Formally:

xXEm Y il sy Em ¥

To define the satisfiability of action labels over paths, we introduce the notation
6> a; where i > 1 to indicate that the action label 6 becomes true when perform-
ing the action «;, that is @; brings about 6 (for example, by performing the action
of opening the door the action label “door is open” becomes true. If not, we write
0% «;. A path x satisfies an action label 6 if 6 is in the label of the first transition
on this path and this path is not a deadlocked path. A path is deadlocked if it has no
transitions. A path satisfies -6 if either 6 is not in the label of the first transition on
this path or this path is a deadlocked path. Formally:

x Ep 0iff 6>y and x is not a deadlocked path
xEp -0 iff 0% a1 or x is a deadlocked path
where the action «; is the label of the first transition on the path x.

xEu —¢ iff not(x Ey ¢)
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XEM 1 AP iff x Iy @1 and x a2
XEM o1V iff xEpy é1 or xEy ¢

X represents the next time operator and has the usual semantics when the path
is not deadlocked. On a deadlocked path, X¢ holds if the current state satisfies ¢.
Formally:

x Em X iff (x is not a deadlocked path = ey ¢) and
(x is a deadlocked path = x[0] Ep @)

In the rest, the path x is supposed non-deadlocked. Along this path, ¢; U, holds
if ¢1 remains true along this path until ¢, becomes true (strong until). Formally:
xEMd1Ug iff Ji>0: x|y ¢p and Vi< i, x/ |y 1

Along a path x, ¢1 .. ¢ holds if ¢ is true and at next time if ¢; is true then ¢, is
true. Formally:
xEu 1 o iff xEu g1 and X Ep ¢1 = 2
Because the semantics of .. operator is defined using existing operators, it is intro-
duced here as a useful abbreviation, which will be used to define the semantics of
some actions performed on SCs.

To specify dialogue game protocols in this logic according to the CAN frame-
work, we use a set of actions performed by the communicating agents on SCs and
SC contents. The idea behind the CAN framework is that agents communicate by
performing actions on SCs (for example creating, accepting and challenging SCs)
and by supporting these actions by argumentation relations (attack, defense, and
justification). Such an approach, called the social approach [318] is considered as
an alternative to the private approach based on the agents’ mental states like beliefs,
desires, and intentions [109]. The semantics of the action formulae is defined as fol-
lows:
xFEu Cr(Ag1,SC(Ag1,Ag2,¢)) iff @y = Crand s, Em S C(Ag1,Ag2,9)

x Em Wit(Ag1,S C(Ag1,Ag2,¢)) iff @y = Wit and s, Ep S C(Ag1,AL2,4)
xEm Sat(Ag1,SC(Ag1,Ag2,¢)) iff @y = Sat and s, Fy ¢

xEpm Vio(Ag1,S C(Ag1,Ag2,¢)) iff a1 = Vio and s, Epr —¢

xEm Ac(Agr,SC(Ag1,Ag2,¢)) iff a1 = Ac and s, Fyr S C(Ag2,Ag1,9)

xEum Ref(Ag2,SC(Ag1,Ag2,9)) iff @y = Ref and s, Eyr S C(Ag2,Ag1, )
xEm Ch(Ag:,SC(Ag1,A82,¢)) iff @1 = Chand s, Fm S C(Ag2,Ag1,7¢)

xEmAH AL, SC(Ag1,Ag2,¢1),¢2) iff a1=At and s, FuS ((Ag2,Ag1, 2 .. =d1)
xEmDef(Ag1,S C(Ag1,Ag2,¢1),¢2) iff ay=Def and s, FmS C(Ag1,Ag2,$2.". 1)
xEmJus(Ag1,S C(Ag1,Ag2,¢1), @) iff a1=Jus and s, FuS C(Ag1,Ag2, 2 .. ¢1)

Cr(Ag1,SC(Ag1,Ag2,¢)) is satisfied along the path x iff the first transition is la-
beled by Cr and the underlying commitment holds in the next state on that path.
The semantics of the other formulae is defined in the same way. The commitment
is withdrawn iff after performing the action, the commitment does not hold in the
next state. It is satisfied (resp. violated) iff after the action, the content becomes true
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(resp. false) in the next state. When Ag, accepts (resp. refuses) the commitment
content, it becomes committed to the same content (resp. the negation of the same
content) in the next state. For simplification reasons, the semantics of challenge is
defined by introducing a syntactical construct “?” to indicate that the debtor Ag, of
the resulting commitment S C(Ag2,Ag1, 7¢) does not have an argument supporting ¢
or —¢. For the purpose of model checking dialogue games, this syntactical construct
is useful for the tableau-based verification technique we will present in Section 3.6.
The content ¢; of Ag;’s commitment is attacked by Ag> using ¢, iff after perform-
ing the attack action, Ag,’s commitment about ¢, .. =¢; holds in the next state. Ag
defends its commitment (against an attack) and justifies it (against a challenge) iff
after performing the action, the Ag;’s commitment about ¢, .". ¢ holds in the next
state.

ACTL* logic is the fusion of CTL* logic and a logic for commitments. The logic
for commitments has the following properties, where — is the classical implication:

1. Ry is serial (axiom D);

2. Ry is reflexive (axiom M) because accessible paths start from the current state
where the commitment has been made and a formula is satisfied along a path if
it is satisfied in the initial state of this path, which means on an accessible path
we have SC(Ag1,Ag2,9) = ¢

3. Ry is transitive (axiom 4): SC(Ag1,Ag2,$)— SC(Ag1,Ag2,SC(Ag1,Ag2, ).

This makes the logic an S4 system.

3.4.3 Tableau Rules

In this section, we present the tableau rules that we use to translate the ACTL*
property to be verified to an ABTA (see Fig. 3.1). The definition of ABTA and
the translation procedure will be presented in Sections 3.6.1 and 3.6.2. The tableau
rules allow us to build the ABTA representing the formula to be verified. These
rules [106] are specified in terms of the decomposition of formulae to sub-formulae.
They enable us to define top-down proof systems. The idea is: given a formula (the
top part of the rule), we apply a tableau rule and determine the sub-formulae (the
down part of the rule) to be proven (see Section 3.3). Tableau rules are inference
rules used in order to prove a formula by proving all the sub-formulae. The labels of
these rules are the labels of states in the ABTA constructed from the given formula
(Section 3.6.1). These rules are presented in Table 3.1. In these rules, @ is any set of
path formulae. The symbol “,” indicates a conjunction. For example, E(®, ) means
that, there is a path along which the set of path formulae @ and the state formula
are true. Adding the set @ to these rules allows us to deal with any form of formulae
written under the form of any set of path formulae and a formula of our logic. We
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Table 3.1 Tableau rules
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also recall that we use y,1,¥>, ... to range over state formulae and ¢, ¢, d»,... to
range over path formulae.

Rule R1 labeled by “A” indicates that ; and ¢, are the two sub-formulae of
Y1 A, This means that, in order to prove that a state labeled by “A” satisfies the
formula 1 Ay, we have to prove that the two children of this state satisfy ¢ and
Yy respectively. According to rule R2, in order to prove that a state labeled by “v”
satisfies the formula i1 V ¢, we have to prove that one of the two children of this
state satisfies /; or 5. R3 labeled by “V” indicates that ¢ is the sub-formula to be
proved in order to prove that a state satisfies E(i). E is the existential path-quantifier.
According to R4, the formula —y is satisfied in a state labeled by “=" if this state
has a successor representing the sub-formula ¢, which is not satisfied. RS is defined
in the usual way.

The label “<Cr>" (R6) is the label associated with the creation action of a social
commitment. According to this rule, in order to prove that a state labeled by “<Cr>"
satisfies Cr(Ag;,SC(Ag1,Ag2,®)), we have to prove that the child state satisfies the
sub-formula S C(Ag1,Ag2,¢). The idea is that by creating a social commitment, this
commitment becomes true in the child state. In the model representing the dialogue
game protocol, the idea behind the creation action is that by creating a social com-
mitment, this commitment becomes true in the accessible state via the transition
labeled by the creation action. The label “< Wit>" (R7) is the label associated with
the withdrawal action of a social commitment. According to this rule, in order to
prove that a state labeled by “< Wit >" satisfies Wit(Ag1,S C(Ag1,Ag2,¢)), we have
to prove that the child state satisfies the sub-formula -S C(Ag1,Ag2,¢). Rules R8 to
R15 are defined in the same way. For example, the idea of rule R11 is that by accept-
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ing a social commitment whose content is ¢ by an agent Ag», this agent commits
about this content in the child state. In this state, the commitment of Agy becomes
true. In rule R10, we use the syntactical construct “?” introduced in Section 3.4.2
meaning that the debtor Agy does not have an argument supporting ¢ or —¢. The
idea of this rule is that by challenging a social commitment, Ag, commits in the
child state that it does not have an argument for or against the content ¢. Because
“?” is only a syntactical construct, ?¢ does not have a sub-formula, so there is no
rule for “?”.

Rule R16 indicates that E(¢) is the sub-formula of E(SC(Ag1,Ag2,¢)). Thus, in
order to prove that a state labeled by “[S C4,, 1 satisfies formula E(S C(Ag1,Ag2,9)),
we have to prove that the child state satisfies the sub-formula E(¢). According to the
semantics of social commitments (Section 3.4), the idea of this rule is that if an agent
commits about a content along a path, this content is true along this path (we recall
that the commitment content is a path formula).

Rules R17, R18, and R19 are straightforward. According to rule R20 and in ac-
cordance with the semantics of “X”, in order to prove that a state labeled with “X”
satisfies E(X¢), we have to prove that the child state satisfies the sub-formula E(¢).
According to R21 and in accordance with the semantics of “..”” (Section 3.4), in
order to prove that a state labeled with “ A satisfies E(¢; .. ¢2), we have to prove
that the child state satisfies the sub-formula E(¢; A X(—¢1 V ¢7)). This mean that the
support is true and next if the support is true then the conclusion is true. Finally, rule
R22 is defined in accordance with the usual semantics of until operator “U”.

3.5 Dialogue Game Protocols as Transition Systems

In Section 3.4, we presented ACTL* logic and CAN-based actions. In this section,
we specify the dialogue game protocols to be checked as models for this logic (see
Fig. 3.1). This specification uses CAN-based actions and the labels of the tableau
rules that we will present in Section 3.4.3. Dialogue game protocols are specified
as a set of rules describing the entry condition, the dynamics and the exit condition
[37]. These rules can be specified as CAN-based actions.

Dialogue game protocols are defined as TSs. The purpose of these TSs is to
describe not only the sequence of the allowed actions (classical TSs), but also the
tableau rules-based decomposition of these actions (Section 3.4.3). The states of
these systems are sub-TSs (that we call decomposition TSs) describing the tableau
rules-based decomposition of the actions labeling the entry transitions. Defining
TSs in such a way allows us to verify: (1) The correctness of the protocol (if the
model of the protocol satisfies the properties that the protocol should specify); (2)
The compliance to the decomposition semantics of the communicative actions (if
the specification of the protocol respects the decomposition semantics). In Section
3.6, we present a model checking procedure in order to verify both (1) and (2) at
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the same time. The definition of the TSs of dialogue game protocols is given by the
following definitions:

Definition 3.1 (Decomposition TSs). A decomposition transition system (D7) de-
scribing the tableau-rules-based decomposition semantics of a CAN based-action

formula is a 7-tuple (S’,Lab’,F, L’,R,i),s(’)) where: S’ is a set of states; Lab’ :
S’ — 217 is the labeling state function; F is a set of ACTL* formulae; L’ : S’ — 2F
is a function associating a set of formulae to a state; R € {A,V,—,<=>,X,5Cyg}is a
tableau rule label (without the rules for CAN-based action formulae) (see Section

R . .. . .
3.4.3); —C S’ XRx S’ is the transition relation; s6 is the start state.

Intuitively, states S’ contain the sub-formulae of the CAN-based action formu-
lae, and the transitions are labeled by operators associated with the formula of the
starting state. Decomposition TSs enable us to describe the decomposition seman-
tics of formulae by sub-formulae connected by logical operators. Thus, there is a
transition between states S’ and § ; iff L' (S ;.) is a sub-formula of L'(S7).

Definition 3.2 (TSs for Dialogue Game Protocols). A transition system 7 for a

dialogue game protocol is a 7-tuple (S ,Lab,g),L,Act,g,m} where: S is a set of
states; Lab : S — 2P is the labeling state function; g is a set of decomposition TSs
with € € p is the empty decomposition TS; L: § — g is the function associating to a
state s € § a decomposition transition system DT € ¢ describing the tableau-based
decomposition of the CAN-based action labeling the entry transition; Act is the set

. Act . .. . .
of CAN-based actions; —C>g S X Act xS is the transition relation; s is the start state
with L(sg) = €.

We write s —s s instead of < s, e, >eﬂ> where o € Act. Fig. 3.2 illustrates a
part of a TS for a dialogue game protocol. According to this protocol, if Ag; plays
a creation game (al), Ag, can, for instance, play a challenge game (a2). Thereafter,
Ag must plays a justification game (a3), etc.

States S1, §2, and §3 are decomposition TS associated respectively with cre-
ation, challenge, and justification actions. For example, for the creation action (S 1),
the first state (s1.0) is associated with the S C formula according to the rule R6 (Ta-
ble 3.1, Section 3.4.3). The next state is associated with the SC content according
to the rule R16 (Table 3.1). The transition is labeled with the label of this rule. An
example of the properties to be verified in this protocol is:

AG(Ch(Ag2,S C(Ag1,Ag2,¢1)) = F(Jus(Ag1,S C(Ag1,A82.41).42)))  (3.1)

This property says that in all paths (A) globally (G)°, if an agent Ag, challenges
(Ch) the content of a SC made by an agent Ag1, then in the future (F), Ag justifies
(Jus) the content of its SC. In the rest of this chapter, we refer to this formula as
Formula 1.

6 Operator G (globally in the future) is an abbreviation defined from operator F: G¢ = ~F—¢
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Fig. 3.2 A part of a transition system for a dialogue game protocol

3.6 Verification of Dialogue Game Protocols

In previous sections, we presented the elements needed for the verification of di-
alogue game protocols: the logic along with the associated tableau rules and the
specification of dialogue game protocols. In this section, we present the verification
technique, which is based upon (1) the ABTA for ACTL* logic (Section 3.6.1); and
(2) the translation of the property to be verified to an ABTA (Section 3.6.2) (see Fig.
3.1). This translation is the step 1 of Fig. 3.1. The step 2, which is the construct of
the product graph of the model and the ABTA is addressed in Section 3.6.3. Finally,
the model checking algorithm acting on the product graph (step 3) is presented in
Section 3.6.4. Examples illustrating each step are also presented.

3.6.1 Alternating Biichi Tableau Automata (ABTA) for ACTL*

As a kind of Biichi automata, ABTAs [44] are used in order to prove properties of
infinite behavior. These automata can be used as an intermediate representation for
system properties. Let I'p be the set of atomic propositions and let R be a set of
tableau rule labels defined as follows: ’

R ={AV,1JURA:UR 4 URgc URg,; where: Ry = {<Cr>,<Wit>,<Sat>
,<Vio>,<Ch>,<Ac>,<Ref > < Jus> <At> < Def >}, Rsc = {[SCagl}, and
Riser = (<=, X}.

We define ABTAs for ACTL* logic as follows:

7 The partition of the set of tableau rule labels is only used for readability and organizational
reasons.
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Definition 3.3 (ABTA). An ABTA for ACTL* is a 5-tuple (Q,l,—,qo, F), where:
Q is a finite set of states; [ : Q — I'pU R is the state labeling; —»C Q X Q is the
transition relation; g is the start state; F C 29 is the acceptance condition®.

ABTAs allow us to encode “top-down proofs” for temporal formulae. Indeed, an
ABTA encodes a proof schema in order to prove, in a goal-directed manner, that a
TS satisfies a temporal formula. Let us consider the following example. We would
like to prove that a state s in a TS satisfies a temporal formula of the form F| A F,
where F'| and F; are two formulae. Regardless of the structure of the system, there
would be two sub-goals. The first would be to prove that s satisfies F|, and the
second would be to prove that s satisfies F». Intuitively, an ABTA for F; A F, would
encode this “proof structure” using states for the formulae F| A F, F1, and F5. A
transition from F; A F» to each of F| and F, should be added to the ABTA and
the labeling of the state for F; A F» being “A” which is the label of a certain rule.
Indeed, in an ABTA, we can consider that: 1) states correspond to “formulae”, 2)
the labeling of a state is the “logical operator” used to construct the formula, and 3)
the transition relation represents a “sub-goal” relationship.

3.6.2 Translating ACTL* into ABTA (Step 1)

The procedure for translating an ACTL* formula p = E(¢) to an ABTA B uses goal-
directed rules in order to build a tableau from this formula. Indeed, these proof rules
are conducted in a top-down fashion in order to determine if states satisfy properties.
The tableau is constructed by exhaustively applying the tableau rules presented in
Table 3.1 to p. Then, B can be extracted from this tableau as follows. First, we
generate the states and the transitions. Intuitively, states will correspond to state
formulae, with the start state being p. To generate new states from an existing state
for a formula p’, we determine which rule is applicable to p’, starting with R1, by
comparing the form of p’ to the formula appearing in the “goal position” of each
rule. Let rule(q) denote the rule applied at node g. The labeling function / of states
is defined as follows. If ¢ does not have any successor, then /(g) € I'p. Otherwise,
the successors of g are given by rule(q). The label of the rule becomes the label
of the state ¢, and the sub-goals of the rule are then added as states related to g by
transitions.

A tableau for a ACTL* formula p is a maximal proof tree having p as its root
and constructed using our tableau rules (see Section 3.4.3). If p’ results from the
application of a rule to p, then we say that p’ is a child of p in the tableau. The
height of a tableau is defined as the length of the longest sequence < pg, p1,...>,
where p;1 is the child of p; [106].

8 The notion of acceptance condition is related to the notion of accepting run that we define in
Section 3.6.3.



84 J. Bentahar, J.-J. Ch. Meyer, and W. Wan

Example 3.1. In order to illustrate the translation procedure and the construction of
an ABTA from an ACTL* formula, let us consider our formula Formula 1 given
in Section 3.5. Table 3.2 is the tableau to build for translating Formula 1 into an
ABTA. The form of Formula 1 is: AG(p = q)(= AG(—p V q)) (the root of Table
3.2). The first rule we can apply is RS labeled by — in order to transform all paths
to exists a path. We also use the equivalence (F(p) = -G(—p)). We then obtain the
child number (2). The next rule we can apply is R22 labeled by V because F is an
abbreviation of U (F(p) = True U p). Consequently, we obtain two children (3) and
(4). From the child (3) we obtain the child (5) by applying the rule R10, and from the
child (4) we obtain the child (2) by applying the rule R20 etc. The ABTA obtained
from this tableau is illustrated by Fig. 3.3. States are labeled by the child’s number
in the tableau and the label of the applied rule according to Table 3.2.

Table 3.2 The tableau of Formula 1
= AG(=Ch(Ag2,S C(Ag1,Ag2,$1)) V F(Jus(Ag1,S C(Ag1,A82,$1),$2))) €))]
V:EF(Ch(Ag2,S C(Ag1,Ag2,61)) NG(=Jus(Ag1,S C(Ag1,A82,91),¢2))) (2)
<Ch>: E(Ch(Ag2,S C(Ag1,Ag2,d1))A <X>: EX(F(Ch(Ag2,SC(Ag1,Ag2,d1)A
G(=Jus(Ag1,S C(Ag1,A22,41),¢2))) (3)|G(~Jus(Ag1,S C(Ag1,Ag2,01),42)))) (4)
[SCag,]: E(SC(Ag2,Ag1,791)A EF(Ch(Ag2,SC(Ag1,A82,$1)A
G(=Jus(Ag1,SC(Ag1,Ag2,¢1),¢2))) (5)|G(=Jus(Agi,SC(Ag1,Ag2,¢1),¢2)) (2)
<=: E(?¢1 AG(=Jus(Ag,,S C(Ag1,Ag2,

$1),$2))) (6)
21 (D] : E(G(=Jus(Ag1,SC(Ag1,Ag2,¢1).42)) 8)
<—~Jus>: E(—~Jus(Ag1,S C(Ag1,Ag2.¢1),¢2),
XG(~Jus(Ag1,S C(Ag1,A82,91),92)) ()]
[SCag 1: E(SC(Ag1,Ag2,¢1 - $2),
XG(~Jus(Ag1,SC(Ag1,A82,91).92)) (10)
A E(pr . 01, XG(=Jus(Ag1,S C(Ag1,Ag2,91),92))) (€8))

<=1 E(¢2, X(=¢2 V ¢1), XG(=Jus(Ag1,S C(Ag1,A82,41),¢2))  (12)
$2 (A3)| X : EX (=2 V1), XG(—Jus(Ag1,S C(Ag1,Ag2,¢1).42))) (14)
<=>: E((=¢2 V $1), XG(~Jus(Ag1,S C(Ag1,Ag2.41).¢2))) (15)
V1 (16) | X EXG(~Jus(Ag1,S C(Ag1.Ag2.41).¢2))) (A7)
Vv E(G(~Jus(Ag1,SC(Ag1,Ag2.61).42))  (8)

The termination proof of the translation procedure is based on the finiteness of
the tableau. This proof is based on the length of formulae and an ordering relation
between these formulae. The proof is detailed in [35].

3.6.3 Run of an ABTA on a Transition System (Step 2)

Like the automata-based model checking of LTL, in order to decide about the satis-
faction of formulae, we use the notion of the accepting runs. In our technique, we
need to define accepting runs of an ABTA on a TS. Firstly, we have to define the
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Fig. 3.3 The ABTA of Formula 1

notion of ABTA’s run. For this reason, we need to introduce two types of nodes: pos-
itive and negative. Intuitively, nodes classified positive are nodes that correspond to
a formula without negation, and negative nodes are nodes that correspond to a for-
mula with negation. Definition 3.4 gives the definition of this notion of run. In this
definition, elements of the set S of states are denoted s; or ¢;.

Definition 3.4 (Run of an ABTA). A run of an ABTA B =(Q,l,—,qo,F) on a

Ac
transition system 7 = (S ,Lab,g),L,Act,—t>,s0> is a graph in which the nodes are
classified as positive or negative and are labeled by elements of O xS as follows:

1. The root of the graph is a positive node and is labeled by <gg, so> .
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2. For a positive node ¢ with label < g, s;>:

a.

If I(g) = — and g — ¢’, then ¢ has one negative successor labeled <¢’, s;> and
vice versa.

. If I(q) € I'p, then ¢ is a leaf.
dfl(g) e {N,<=>}and {¢'lg — ¢’} = {q1,- - -.qm}, then @ has positive successors

@1,...,m With ¢; labeled by <g;,5;> (1 < j<m).

. If l(g) = Vv, then ¢ has one positive successor ¢’ labeled by <¢’, s; > for some

q €{q'lqg > q'}).

.Ifl(g) =X and g — ¢’ and {s'|s; = s’} ={t1,...,t,} where e € Act, then ¢ has

positive successors ¢1,...,¢, with ¢; labeled by <¢’,¢;> (1 < j<m).

. If [(q) =<e> where e € Act and ¢ — ¢’, and s; = si+1, then @ has one positive

successor ¢’ labeled by <¢’, si+1,0> where s;.10 is the initial state of the
decomposition TS of s;41.

.If l(g) =< e > where e € —=Act and g — ¢’, and s; N si+1 Where e # o" and

o’ € Act, then ¢ has one positive successor ¢’ labeled by <¢’, s;4+1 >.

3. For a negative node ¢ labeled by <g, s; >:

a. If l(g) € I'p, then ¢ is a leaf.

A l(g) e{V,<=}and {¢’lg — ¢’} ={q1,- - -, qm}, then ¢ has negative successors

®1,...,¢m With ¢; labeled by <g;,s;> (1 < j<m).

. If I(g) = A, then ¢ has one negative successor ¢’ labeled by <¢’, s; > for some

q €lq'lq—>q'}.

Ifl(g) =X and ¢ —> ¢ and {s'|s; —> s’} = {#1,...,t,n} where ® € Act, then ¢ has

negative successors ¢, ..., ¢, with ¢; labeled by <¢’,t;> (1 < j<m).

. Ifl(q) =<e> where e € Act and g — ¢’, and s; SN si+1, then ¢ has one negative

successor ¢’ labeled by < ¢’, si+1,0> where s;.1 is the initial state of the
decomposition TS of s;;.

. If I(q) =< e> where e € —Act and ¢ — ¢’, and s; N si+1 Where e # o’ and

o’ € Act, then ¢ has one negative successor ¢’ labeled by <¢’, si+1>.

4. Otherwise, for a positive (negative) node ¢ labeled by <g, s; ; >:

a.

If I(q) =<=> and {¢'|lq — ¢’} = {q1,92} such that g is a leaf, and s;; has a
successor s; j.1, then ¢ has one positive leaf successor ¢’ labeled by <q1, 5; ;>
and one positive (negative) successor ¢’ labeled by <q», s; j+1>.

. If I(q) =<=> and {¢’lg — 4’} = {q1,92} such that g; is a leaf, and s; ; has no

successor, then ¢ has one positive leaf successor ¢’ labeled by <g¢1,s; ;> and
one positive (negative) successor ¢’ labeled by < g3, s;>.
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c. If llg) €{A,V,X,[SCyl} and {¢’lg — ¢’} = {q1}, and s; BN s j+1 such that r =
I(g), then ¢ has one positive (negative) successor ¢’ labeled by <q1, s; j+1>.

The notion of run of an ABTA on a TS is a non-synchronized product graph of
the ABTA and TS (see Fig. 3.1). This run uses the label of nodes in the ABTA (I(g)),

transitions in the ABTA (¢ — ¢’), and transitions in the TS (s; s 7). The product
is not synchronized in the sense that it is possible to use transitions in the ABTA
while staying in the same state in the TS (this is the case for example of clauses
2.a,2.c, and 2.d).

The clause 2.a in the definition says that if we have a positive node ¢ in the
product graph such that the corresponding state in the ABTA is labeled with — and
we have a transition g — ¢’ in this ABTA, then ¢ has one negative successor labeled
with <¢’, s; >. In this case we use a transition from the ABTA and we stay in the
same state of the TS. In the case of a positive node and if the current state of the
ABTA is labeled with A, all the transitions of this current state of the ABTA are used
(clause 2.c). However, if the current state of the ABTA is labeled with V, only one
arbitrary transition from the ABTA is used (clause 2.d). The intuitive idea is that in
the case of A, all the sub-formulae must be true in order to decide about the formula
of the current node of the ABTA. However, in the case of V only one sub-formula
must be true.

The cases in which a transition of the TS is used are:

1. The current node of the ABTA is labeled with X (which means a next state in the
TS). This is the case of clauses 2.e and 3.d. In this case we use all the transitions
from the current state s; to next states of the TS.

2. The current state of the ABTA and a transition from the current state of the TS
are labeled with the same action. This is the case of clauses 2.f and 3.e. In this
case, the current transition of the ABTA and the transition from the current state
s; of the TS to a state s;,10 of the associated decomposition TS are used. The
idea is to start the parsing of the formula coded in the decomposition TS.

3. The current state of the ABTA and a transition from the current state of the TS
are labeled with different actions where the state of the ABTA is labeled with a
negative formula. This is the case of clauses 2.g and 3.f. In this case, the formula
is satisfied. Consequently, the current transition of the ABTA and the transition
from the current state s; of the TS to a next state s;;; are used. Finally, clauses
4.a, 4.b, and 4.c deal with the case of verifying the structure of the commitment

r

formulae in the sub-TS. In these clauses, transitions s; ; — s; j+1 are used. We
note here that when s; ; has no successor, the formula contained in this state is an
atomic formula or a boolean formula whose all the sub-formulae are atomic (for
example p A g where p and g are atomic).

Example 3.2. Fig. 3.4 illustrates an example of the run of an ABTA. This figure
illustrates a part of the automaton Bg resulting from the product of the TS of Fig.
3.2 and the ABTA of Fig. 3.3. According to the clause 1 (Definition 3.4), the root is
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a positive node and it is labeled by <—, 5o > because the label of the ABTA’s root is
- (Fig. 3.3). Consequently, according to the clause 2.a, the successor is a negative
node and it is labeled by <V, 5o >. According to the clause 3.5, the second node has
two negative successors labeled by << Ch>,sp> and < X, 50 > etc.

W A
- \
<Ch>s( )= —{ ) Xuso
N g
v
SN T
Vs - )
T S
T " .
/// R ~
4 -
e
<Ch>s5() - =) X1
I \
- A Ay
[S’(/ /]gz]m.\-z’[] — _ ,( \’ v, §s \\
s i \
ey 3
// \\\4 \
<=>,8 - N N |
TR <O ) - - (%o |

¢ O - Vs ./l"\ ‘
820 152 - Y o
‘\-.—/J V.83 /

Fig. 3.4 An example of an ABTA’s run

In an ABTA, every infinite path has a suffix that contains either positive or nega-
tive nodes, but not both. Such a path is referred to as positive in the former case and
negative in the latter. Now we can define the notion of accepting runs (or successful
runs). Let p € I'p and let s; be a state in a TS T. Then s; 7 p iff p € Lab(s;) and
si Er —~p iff p ¢ Lab(s;). Let s; ; be a state in a decomposition TS of a TS T'. Then
Sij Erpiffpe Lab’(s,;j) and Sij Er—piffp¢ Lab’(s,;j).

Definition 3.5 (Successful Run). Let r be a run of an ABTA B =(Q,l,—,qo, F) on

aTST =«(S ,Lab,go,L,Act,ﬂ,s()). The run r is successful iff every leaf and every
infinite path in r is successful. A successful leaf is defined as follows:

1. A positive leaf labeled by <g, s;> is successful iff s; =7 I(g) or I(g) =<e> where
e € Act and there is no s; such that s; s -
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2. A positive leaf labeled by < g, s; ;> is successful iff s; ; F7 I(g)

3. A negative leaf labeled by < g, s; > is successful iff s; Fr —l(g) or I(g) =< e >
where o € Act and there is no s; such that s; = s

4. A negative leaf labeled by <g, s; ;> is successful iff s; ; Er —l(q)
A successful infinite path is defined as follows:

1. A positive path is successful iff Vf € F,dq € f such that g occurs infinitely often
in the path. This condition is called the Biichi condition.

2. A negative path is successful iff Af € F,Vq € f,q does not occur infinitely often
in the path. This condition is called the co-Biichi condition.

‘We note here that a positive or negative leaf labeled by <g, s> such that /(g) =<e>

where o € Act and there is no s” such that s —s s’ is considered a successful leaf.
The reason is that it is possible to find a transition labeled by e and starting from
another state s’ in the TS. In fact, if we consider such a leaf unsuccessful, then even
if we find a successful infinite path, the run will be considered unsuccessful, which
is false.

An ABTA B accepts a TS T iff there exists a successful run of B on T'. In order
to compute the successful run of the generating ABTA, we should compute the
acceptance states F. For this purpose we use the following definition.

Definition 3.6 (Acceptance States). Let g be a state in an ABTA B and Q the set
of all states. Suppose ¢ = ¢ U € g °. We define the set Fg as follows: Fg ={q’ €
Oll¢ ¢ ¢’ and X¢ ¢ q') or ¢ € ¢'}. The acceptance set F is defined as follows:
F={Fyl¢p =$1U¢r and Aq € B,¢ € q}.

According to this definition, a state that contains the formula ¢ or the formula
X¢ is not an acceptance state. The reason is that according to Definition 3.4, there
is a transition from a state containing ¢ to a state containing X¢ and vice versa.
Therefore, according to Definition 3.5, there is a successful run in the ABTA B.
However, we can not decide about the satisfaction of a formula using this run. The
reason is that in an infinite cycle including a state containing ¢ and a state containing
X¢, we can not be sure that a state containing ¢, is reachable. However, according to
the semantics of U, the satisfaction of ¢ needs that a state containing ¢, is reachable
while passing by states containing ¢;.

Example 3.3. In order to compute the acceptance states of the ABTA of Fig. 3.3, we
use the formula associated with the child number (2) in Table 3.2:

F(Ch(Ag2,5 C(Ag1,Ag2,¢1)) AG(=Jus(Ag1,S C(Ag1,Ag2,61)¢2)))

9 Here we consider until formula because it is the formula that allows paths to be infinite.
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We consider this formula, denoted ¢, instead of the root’s formula because its form
is E(¢) (see Section 3.6.2). Consequently, state (1) and states from (3) to (17) are
the acceptance states according to Definition 3.6. For example, state (1) is an accep-
tance state because ¢ and X¢ are not in this state, and state (3) is an acceptance state
because ¢, is in this state. States (2) and (4) are not acceptance states. Because only
the first state is labeled by —, all finite and infinite paths are negative paths. Conse-
quently, the only infinite path that is a valid proof of Formula 1 is (1, (2, 4)*). In
this path there is no acceptance state that occurs infinitely often. Therefore, this path
satisfies the Biichi condition. The path visiting the state (3) and infinitely often the
state (9) does not satisfy Formula 1 because there is a challenge action (state (3)),
and globally no justification action of the content of the challenged commitment
(state (9)).

3.6.4 Model Checking Algorithm (Step 3)

Our model checking algorithm (see Fig. 3.5) for verifying that a dialogue game pro-
tocol satisfies a given property and that it respects the decomposition semantics of
the underlying communicative acts is inspired by the procedure proposed by [44].
Like the algorithm proposed by [117], our algorithm explores the product graph of
an ABTA representing an ACLT* formula and a TS for a dialogue game protocol.
This algorithm is on-the-fly (or local) algorithm that consists of checking if a TS is
accepted by an ABTA. This ABTA-based model checking is reduced to the empti-
ness of the Biichi automata [422]. The emptiness problem of automata is to decide,
given an automaton A, whether its language L(A) is empty. The language L(A) is the
set of words accepted by A.

LetT =(S,Lab,p,L,Act, ﬂ, so) be a TS for a dialogue game and let B=(Q,[/,—
,q0, F) be an ABTA for ACTL*. The procedure consists of building the ABTA prod-
uct Bg of T' and B while checking if there is a successful run in Bg. The existence of
such a run means that the language of Bg is non-empty. The automaton Bg is defined
as follows: Bg = (Q X S,—p,,q0B,, FBy). There is a transition between two nodes
<g,s> and <q’, s > iff there is a transition between these two nodes in some run
of B on T. Intuitively, Bg simulates all the runs of the ABTA. The set of accepting
states F'p, is defined as follows: qop, € F'p, iff g€ F.

Unlike the algorithms proposed in [44, 117], our algorithm uses only one depth-
first search (DFS) instead of two. This is due to the fact that our algorithm explores
directly the product graph using the sign of the nodes (positive or negative). In
addition, our algorithm does not distinguish between recursive and non-recursive
nodes. Therefore, we do not take into account the strongly-connected components
in the ABTA, but we use a marking algorithm that directly works on the product
graph.

The idea of this algorithm is to construct the product graph while exploring it.
The construction procedure is directly obtained from Definition 3.4. The algorithm
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uses the label of nodes in the ABTA, and the transitions in the product graph ob-
tained from the TS and the ABTA as explained in Definition 3.4. In order to decide
if the ABTA contains an infinite successful run, all the explored nodes are marked
“visited”. Thus, when the algorithm explores a visited node, it returns false if the
infinite path is not successful. If the node is not already visited, the algorithm tests
if it is a leaf. In this case, it returns false if the node is a non-successful leaf. If the
explored node is not a leaf, the algorithm explores recursively the successors of this
node. If this node is labeled by “ A, and signed positively, then it returns false if
one of the successors is false. However, if the node is signed negatively, it returns
false if all the successors are false. A dual treatment is applied when the node is
labeled by “V .

Example 3.4. In order to check if the language of the automaton illustrated by Fig.
3.4 is empty, we check if there is a successful run. The idea is to verify if Bg contains
an infinite path visiting the state (3) and infinitely often the state (9) of the ABTA
of Fig. 3.3. If such a path exists, then we conclude that Formula 1 is not satisfied by
the TS of Fig. 3.2. Indeed, the only infinite path of Bg is successful because it does
not touch any accepted state and all leaves are also successful. For instance, the leaf

Ci
labeled by (< Ch>,sg) is successful since there is no state s; such that s = Si.
Therefore, the TS of Fig. 3.2 is accepted by the ABTA of Formula 1. Consequently,
this TS satisfies Formula 1 and respects its decomposition semantics.

Soundness and completeness of our model checking method are stated by the
following theorem.

Theorem 3.1 (Soundness and Completeness). Let  be a ACTL* formula and
By the ABTA obtained by the translation procedure described above, and let

A
T =(S,Lab,p, L,Act,—a>,s0) be a TS that represents a dialogue game protocol.
Then, so =1 ¥ iff T is accepted by By,.

Proof. (Direction =). To prove that T is accepted by By, we have to prove that
there exists a run r of By on T such that all leaves and all infinite paths in the run
are successful. Let us assume that so =7 . First, let us suppose that there exists a
leaf <¢g,s> in r such that s 7 —l(q). Since the application of tableau rules does
not change the satisfaction of formulae, it follows from Definition 3.4 that so =7 —
which contradicts our assumption.

Now, we will prove that all infinite paths are successful. The proof proceeds by con-
tradiction. ¢ is a state formula that we can write under the form E®, where @ is a
set of path formulae. Let us assume that there exists an unsuccessful infinite path
Xy in r and prove that x7 =7 =® where xr is the path in 7 that corresponds to x,
(x, is the product of By and T). The fact that x, is infinite implies that R22 occurs
at infinitely many positions in x,. Because x, is unsuccessful, ¢, ¢»,¢; such that
¢1U¢s € g and Vj > i we have ¢, ¢ g;. When this formula appears in the ABTA at
the position g;, we have I(g;) = V. Thus, according to Definition 3.4 and the form
of R22, the current node ¢; of r labeled by < g;, s> has one successor ¢; labeled
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DFS(v =(q, s)): boolean {
if v marked visited {
if (sign(v) = "+" and not accepting(v)) or (sign(v) = "-" and accepting(v))
return false
} // end of if v marked visited
else {
mark v visited
switch(1(q)) {
case (p € I'p):
switch(sign(v)) {
case("+"): if s is a sub-state and 1(q) ¢ L’(s) return false
case("-"): if s is a sub-state and 1(q)) € L’(s) return false
case(""neutral"): return false
} // end of switch(sign(v))

case(A):
if s is a leaf return false
else
switch(sign(v)) {
case(neutral): forall v’ € {v’ /v —pg V'}
if not DFS(v’’) return false
case("+"): forall v’ € {v’' /v —ope V’}
if not DFS(v’’) return false
case("-"): forall v’ e {v’ /v —pe V’'}
if DFS(v’’) return true else return false
} // end of switch(sign (v))
case(Vv):
if s is a leaf return false
else

switch(sign(v)) {
case(neutral): forall v’ € {v’ /v —pg V'}
if DFS(v’’) return true else return false
case("+"): forall v’ € {v’ /v —>pe V’}
if DFS(v’’) return true else return false
case("-"): forall v’ {v’ /v —pe V’}
if not DFS(v’’) return false
} // end of switch(sign (v))
case(<e>):
if s is a leaf return true
else for the v’ € {v’ /v —pg v’} if not DFS(v’’) return false
case(X, SCaq, <=>, ?):
if s is a leaf return false
else for the v’ € {v’ /v —pe v’} if not DFS(v’’) return false
} // end of switch(1(q))
} // end of else
return true }

Fig. 3.5 The model checking algorithm
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by <gii1,5> with ¢1U¢> € g; and {¢1,X(¢1Ueh2)} C gir1. Therefore, l(gir1) = A,
and ¢, has a successor ¢3 labeled by < g2, s> with X(¢1U¢7) € giy2. Using R20
and the fact that /(g;+2) = X, the successor ¢4 of @3 is labeled by < g;.3,s” > with
¢1U¢ € gi13 and 5’ is a successor of s. This process will be repeated infinitely since
the path is unsuccessful. It follows that there is no s in 7 such that s =7 ¢>. Thus,
according to the semantics of U, there is no s in T such that s =7 ¢ U¢,. Therefore,
xr Fr 9.

(Direction <). The proof proceeds by an inductive construction of x, and an anal-
ysis of the different tableau rules. A detailed proof of this theorem is presented
in [35].

3.7 Case Studies

In this section, we will exemplify the model checking technique presented in this
chapter by means of two case studies: 1) the persuasion/negotiation protocol for
agent-based web services (PNAWS) [36]; and 2) the NetBill protocol, a sys-
tem of micropayments for goods on the Internet [405]. We will also discuss their
implementations using an extension of the Concurrency Workbench of New Cen-
tury (CWB-NC) model checker!'© [107,446], which has been used to check many
large-scale protocols in communication networking and process control systems. As
benchmark, we will show the simulation results of these two case studies using the
MCMAS model checker [355].

3.7.1 Verifying PNAWS

PNAWS is a dialogue game-based protocol allowing web services to interact in
a negotiation setting via argumentative agents. Agents can negotiate their partici-
pation in composite web services and persuade each other to perform some actions
such as joining some existing business communities. In this case, two agents are
used: the Master agent that manages the community and the Slave agent that is in-
vited to join the community. PN AWS is specified using two special moves: refusal
and acceptance as well as five dialogue games: entry game (to open the interaction),
defense game, challenge game, justification game, and attack game. The PN AWS
protocol can be defined as follows using a BNF-like grammar where “|” is the choice
symbol and “;” the sequence symbol:

PNAWS = entry game; defense game; WSDG

10 The CWB-NC model checker can be downloaded from:
http://www.cs.sunysb.edu/ cwb/
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WSDG = acceptance move | CH | ATT
CH = challenge game; justification game; (WSDG | refusal move)
ATT = attack game; (WSDG | refusal move)

Each game is specified by a set of moves using a set of logical rules. Fig. 3.6 illus-

trates the different actions of this protocol using a finite state machine. Many prop-

erties can be checked in this protocol, such as deadlock freedom (a safety property),

and liveness (something good will eventually happen). Deadlock freedom means

that there is always a possibility for an action and can be expressed as follows,

where Ag € {Ag1,Ag}:

AG(Cr(Ag1,5 C(Ag1,Ag2,9)) = AF (Action(Ag,S C(Ag1,A82,9))

VAction®(Ag,S C(Ag1,Ag2,$),41))) (3.2)

An example of liveness can be expressed by the following formula stating that if
there is a challenge, a justification will eventually follow:

AG(Ch(Ag2,SC(Ag1,Ag2,¢1)) = F(Jus(Ag1,S C(Ag1,Ag2.41).42)))  (3.3)

Justify
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Fig. 3.6 Actions of the PN AWS protocol

We have extended the CWB-NC model checker by adding SC and argument op-
erators and implemented this case study. CWB-NC supports GCTL*, which is close
to our logic (without SC and argument operators) and allows modeling concurrent
systems using Calculus of Communicating Systems (CCS) developed in [316]. CCS
is a process algebra language, which is a prototype specification language for reac-
tive systems. CCS can be used not only to describe implementations of processes,
but also specifications of their expected behaviors. To implement this case study,
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CCS is used to describe the model M to be checked by specifying the states and
labeled transitions. ACTL* is used to specify the properties and the extended CWB-
NC tool takes as input the CCS code and the ACTL* property and automatically
builds the dialogue game protocol and checks the property by building the ABTA
and executing the model checking algorithm presented in Fig. 3.5 (see the method-
ology in Fig. 3.1). To use CCS as the design language to describe the PNAWS
protocol, we need first to introduce its syntax. Let A be the set of actions performed
on SC we consider in ACTL* logic. For all a € A, we associate a complementary
action “a. An action a represents the receipt of an input action, while 'a represents
the deposit of an output action. The syntax is given by the following BNF grammar:

P ::=nilla(¢p).P|(P+ P)|(P|P)|proc C = P

“” represents the prefixing operator, “+” is the choice operator, “|” is the parallel
operator and “proc =" is used for defining processes. The semantics can be defined
using operational semantics in the usual way. a(¢).P is the processes of performing
the action a on the SC content ¢ and then evolves into process P. For representation
reasons, we consider only the commitment content and we omit the other argu-
ments. In addition, we abstract away from the internal states and we focus only on
the global states. P+ Q is the process which non-deterministically makes the choice
of evolving into either P or Q. P|Q is the process which evolves in parallel into
P and Q. To implement PN AWS, we need to model the protocol and the agents
using this protocol (the Master and Slave agents). For this reason, four particular
processes should be defined: the states process describing the protocol dynamics;
the two agents processes describing the agents legal decisions; and the communi-
cation synchronization process. The formulae to be checked are then encoded in
CWB-NC input language. A simplified version of the states process is as follows:

proc Spec = create(¢).S1
proc Accept = accept(¢).Spec

proc Accept’ = 'accept(¢).Spec
proc Refuse = refuse(¢).Spec
proc Refuse’ = ’'refuse(¢).Spec
proc S1 = ’'refuse(¢).S2 + Accept’

proc S2 = defend(¢’).S3
proc S3 = ’challenge(¢’).S4 + ’attack(¢’).S6 + "accept(¢’).Spec
proc S4 = justify(¢).S5
proc S5 = ’challenge(¢).S4 + ’'Accept +’Refuse
proc S6 = attack(¢’).S7 + Accept +Refuse
proc S7 = ’attack(¢).S6 + ’'accept(¢’).Spec + ’'refuse(¢’).Spec
set Internals = {create, challenge, justify, accept,
refuse, attack, defend}

The Master agent process has the form:
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proc Master = create(¢).’accept(¢).master
+ create(¢).’refuse(¢).defend(¢) .’ accept(¢) .master
+ create(¢) . ’refuse(¢) .defend(¢) . refuse(¢) .master

The Slave agent process has a similar form except the fact that it does not initi-
ate the communication. The process describing the communication synchronization
activity of an agent is as follows:

proc Ag = ’create(¢).Ag +
create(¢).(’refuse(¢ ).Ag + ’accept(¢ ).Ag) +
refuse(¢).(Ag + 'defend( ¢’).Ag) +
defend(¢’).(’challenge(¢’) .Ag + ’attack(¢).Ag + 'accept(¢’).Ag)

challenge(¢) .’ justify(¢’) .Ag +
justify(¢’).(’challenge(¢’) .Ag + ’accept(¢’).Ag +’refuse(¢’).Ag)

attack(¢’).(attack(¢) .Ag + 'accept(¢’) .Ag+’refuse(¢’).Ag) +
accept(¢) .Ag

The model size is |[M| = |S|+|R|, where |S| is the state space and |R| is the re-
lation space. |S| =[S ag, | XIS ag,| X |S pvaws|, where |S 4| is the number of states
for Ag; and |S pyaws| is the number of states of the protocol. An agent state is
described in terms of the possible actions and each action is described by a set
of states. For example, create action needs 2 states, challenge needs 3 states, and
justify needs 5 states (see Fig. 3.2). Thus, for each agent we have 35 states. The
protocol is described by the legal actions (Fig. 3.6), so it needs 29 states. In to-
tal, the number of states needed for this case study is |S|=35525=3.5- 10*. To
calculate |R|, we have to consider the operators of ACTL* and the actions, where
the total number is 6+ 11 = 17. We can then approximate |R| by 17 - IS|?. So we
have |[M| ~ 17-|S> ~ 2-10'°. This is a theoretically estimated size if all possible
transitions are considered. However, in the implementation, not all these transitions
are used. On the other hand, the system considers additional states for the inter-
nal coding of variable states and actions. Some simulation results on a laptop Intel
Core 2 Duo CPU T6400 2.20 GHz with 3.00 GB of RAM running Windows Vista
Home Premium are given in Table 3.3. Fig. 3.7 shows the results screenshot. In
fact, CWB-NC does not search the whole model, but it proceeds by simplifying the
ABTA, minimizing the sets of accepting states, and computing bisimulation before
starting the model checking.

As benchmark, we use MCMAS [355] that supports agent specifications. As dis-
cussed in Section 3.2.2, MCMAS is a symbolic model checker based on OBDDS,
where the model and formula to be checked are not represented as automata, but us-
ing boolean functions. in MCMAS, models are described into a modular language
called Interpreted Systems Programming Language (ISPL). An ISPL program in-
cludes: 1) a list of agents’ descriptions; 2) an evaluation function indicating the
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Table 3.3 Statistics of verifying PN AWS using CWB-NC

Model size (states/transitions) 35709/77244
Time for building the model (sec) 1.763
Verification time (sec) 5912
Total execution time (sec) 7.675

cwb-nc> load PNAWS.ccs
Execution time (user,system,gc,real):(0.016,0.000,0.016,0.016)
cwb-nc> size Spec
Building automaton
1000

: 35709
Transitions: 77244
Done building automaton.
States: 3570
Tran51t10ns
i system,gc,real):(1.763,0.000,0.172,1.763)
Qpec can deadl k
ABTA From GCTL* formula...done
TA has 6 states.
Simplifying ABTA:
Minimizing sets of accepting states...done
Performing constant propagation...done
Joining operations...done
Shrinking autematon...done
Computing bisimulation.
Done computing bisimulation.
Simplification completed.
Simplified ABTA has 4 states.
Starting ABTA model checker
XK K. K_ K. K K K E_K_KK_K_K__¥_¥_¥,
LR KB R R R R B K E.E.K.E K X_K_KX.E.%.
XXEEK, ¥
Model checking completed.
Expanded state-space 187127 times.
Stored 112953 dependencies.
FALSE, the agent does not satlsfy the
Execution time (user,system,ac,reall):(

Fig. 3.7 PNAWS simulation results with CWB-NC

states where atomic propositions are true; 3) a set of initial states; and 4) a list of
formulae. Each agent is composed by: a set of local states, a set of actions, a rule
(protocol) describing which action can be performed by the agent, and evolution
functions that describe how the local states of the agent evolve based on the current
local states and agent’s actions.

To implement the PN AWS protocol with ISPL, commitments are encoded as
variables. The Master and Slave agents are specified in two Agent sections along
with the Protocol and its Evolution. The atomic propositions are evaluated in Eval-
uation section. Formulae are then encoded in the same file in the Formulae section.
As example, we show here the form of the Master agent:

Agent Master
Vars:
state : {MO®, M1, M2, ...};

end Vars
Actions = {create, defend, ...};
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Protocol:
-- initiate the contract by creating
state = MO : {create};

end Protocol
Evolution:
state = M1 if state = MO and Slave.Action = reject

end Evolution
end Agent

Some simulation results using the same machine as for CWB-NC are given in Ta-
ble 3.4. Fig. 3.8 shows the results screenshot. This simulation reveals that MCMAS
uses greater number of reachable states, which are needed to encode commitments
and agent local states. The execution time is very close to the previous experiment.

Table 3.4 Statistics of verifying PNAWS using MCMAS

Number of reachable states 39475
Number of BDD and ADD nodes | 152093
Total execution time (sec) 8

$ ./mcmas -bdd_stats PNAWS.ispl
EEKKKKKERKRERERKRKRERR KRR ERRKRKAR KRR KK RRRKRE KR KRR KRR E R R KKK KR KRR KKK KKK

MCMAS v@.9.8.6

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permited by applicable law.

Please check

http: /7www.cs.ucl.ac.uk/staff/f.raimondi MCMAS/

for the latest release.

Report bugs to <hongvang.qulimperial.ac.uk> or <f.raimondi®cs.ucl.ac.uk>

KKK KKK KKK KK KKK KK 0K KKK K K KKK 00K 0K KKK KK KK 300K 0K K KKK K KKK 3K KKK 3K KK KKK K K K K

PNAWS. ispl has been parsed successfully.
lobal syntax checking.

Encoding BDD parameters...
Building partial transition relation...
Building OBDD for initial states...
Building reachable state space...
Building OBDD for group modalities...
Done .
Checking formulae.
Verifying pro erties...
Formula number @: (EG complianceTermination), is TRUE in the model
done, 1 formulae successfully read and checke
execution time =
number of reachable states = 39575
BDD memory in use = 8276116
#%%¥%¥ CUDD modifiable parameters ®x%%
Hard limit for cache size: 5592405
Cache hit threshold for FeSlZlng 30
Garbage collection enabled: ye
Limit for fast unique table growth 3355443
Max imum number of variables sifted per reordering: 1000
Max imum number of wvariable swaps per reordering: 2000000
Maxlmum growth whlle sifting a varlable

Fig. 3.8 PNAWS simulation results with MCMAS
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3.7.2 Verifying NetBill

We consider a modified version of the NetBill protocol where two agents, Customer
(Cus) and Merchant (Mer), are interacting about some goods. The protocol starts
when the Customer requests a quote, which means creating a commitment about a
content ¢;. The merchant can then either reject the request, which means refuse the
commitment and the protocol will end, or accept the request (i.e. accept the commit-
ment) and then make an offer (i.e. create another commitment about a content ¢ ).
The protocol is self-described in Fig.3.9. An example of liveness in this protocol
can be expressed by the following formula stating that if a commitment is created,
then there is a possibility of satisfying it.

AG(Cr(Ag1,SC(Ag1,Ag2,¢1)) = EF (S at(Ag1,S C(Ag1,Ag2,¢1))) (3.4)

Cus: request
Create (¢)

Mer: Offer

Accept(d)

Cus: withdraw within the deadline
Withdraw (¢,)

Cus: pay 4

Satisty (¢)) '\\

Mer: not deliver
Violate (¢,)

Mer: deliver
Satisfy (¢)

Cus| withdraw after the deadline

Violate (¢1)

=1

Mer: reject Mer: refund
Refuse (¢)) Withdraw (&)

Fig. 3.9 Actions of the NetBill protocol

NetBill size is [M| = (IS a¢,| X IS ag, | XIS nessinil) + IR|, where Agy is the Customer
and Ag; is the Merchant. According to the actions the Customer and Merchant are
allowed to perform, we have |S 44,| =9 and |S 44,| = 13. The NetBill protocol is
described by the legal actions, and by considering the size of each action, we obtain
IS Nergin) = 22. In total, the number of states needed for this case study is || =2574 =
2.5-10%. As we did in the previous case study, the theoretical estimation of |R| if
all possible transitions are considered is |R| ~ 17-|S|*. So we have |[M| =~ 100, As
illustrated in Table 3.5, which shows the NetBill simulation results with CWB-NC
using the same machine as in the previous case study, the number of transitions that
are effectively considered is much more smaller. Table 3.6 shows the simulation
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results with MCMAS. Fig. 3.10 shows the results screenshot with the two model
checkers. Because NetBill is 14 times smaller than PNAWS, its execution time is
shorter.

Executlon tlme (user syétem gc,real):(0.016,0.000,2.000,02.016)
fcwb-nc> load formula.gctl
BExecution time (user,svstem,gc,real):(G.BQ@,Q.B@B.@.BBD,G.DQBJ

fTransitions: 1 .
jExecution time (user,system,gc,real):(@.125,0.000,0.000,0.125)
fcwb-nc>
jcwb-nc?
cwb-nc? chk -L gctl Spec can_deadlock
ABTA From GCTL* formula...done
as 6 states.

M1n1m1'1ng sets oF accepting states...done
Performing constant propagation...done
‘|oln1nq operations..

LELKL KKK, KEX
hecking completed.
Expanded state-space 7779 times.
Stored 8504 dependencies.
FALSE, the agent does not satisfy the formula.
Exgcut;on time (user,system,gc,real):(0.359,0.000,0.046,0.359)
cwb-nc

$ ./mcmas -bdd_stats NetBill.ispl
5600000000060 It

MCMAS v@.9.8.6

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permited by applicable law.

Please check
ttp:/Zwww.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/
fcr the latest reiease.
Report bugs to (hnngyang.qu@imperial ac.uk? or <{f.raimondi@cs.ucl.ac.uk>
360006 36 2K 0003 30030 36 30 30036 0 03 30 0 3030 0 30 3 300 0

NetBill.ispl has been parsed successfully.

Global syntax checking...

Done

Encoding BDD parameters...

Bulldlng partial transition relation...

Buildi OBDD for initial states...
reachable state space...

Check1n9 formulae...

Verifying pro erties,
Formula number ©: (AF purchase_violation), is FALSE in the model
Formula number 1: (AF purchase_: compllance} is FALSE in the model

done, 2 formulae successfully read and checked

execution time =

number of reachable states = 2851

BDD memory in use = 6537844

*%%% CUDD modifiable parameters %%%%

Hard limit for cache size: 4

Cache hit threshold for resizing:

Garbage collection enabled: yes

lelt for fast unique table growth:

Fig. 3.10 Simulation results of NetBill
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Table 3.5 Statistics of verifying NetBill using CWB-NC
Model size (states/transitions) 2593/5911
Time for building the model (sec) 0.125
Verification time (sec) 0.359
Total execution time (sec) 0.484

Table 3.6 Statistics of verifying NetBill using MCMAS

Number of reachable states 2851
Number of BDD and ADD nodes | 9332
Total execution time (sec) ~ 0.5

3.8 Discussion and Future Work

Model checking is an effective technique to verify finite state systems. Compared
to classical software systems, model checking multi-agent systems raise new chal-
lenges related to the need of considering: 1) epistemic properties where the seman-
tics is expressed in terms of accessibility relations; and 2) agent communication
protocols that integrate agent properties and message meaning, which make them
more complex than simple message exchanging mechanisms. These two fundamen-
tal issues need new and efficient verification techniques considering computational
interpretations of accessibility relations and message meaning.

In this chapter we described a verification technique for dialogue game protocols.
The proposed model checking algorithm allows us to verify both protocols’ cor-
rectness and agents’ compliance to the decomposition semantics of communicative
acts. This technique uses a combination of automata and tableau-based algorithms
to verify temporal and action specifications. The formal properties to be verified are
expressed in ACTL* logic and translated to ABTA using tableau rules. Our model
checking algorithm that works on a product graph is an efficient on-the-fly proce-
dure.

The field of automatic verification of multi-agent systems has manifested sig-
nificant advances in the past few years, as efficient algorithms and techniques have
been proposed. However, many issues still need investigations. The most challeng-
ing among them are: 1) verifying the compliance of agents’ joint actions to the
norms and rules of the multi-agent system in which they operate; 2) integrating the
verification of mental and social attitudes in the same framework; 3) allowing the
use of expressive logical languages to specify agents and their communication and
coordination, multi-agent environments, and requirements (i.e. desired properties);
and 4) developing tools integrating the whole aforementioned issues.

We plan to extend this work to address some of these issues. In fact, we intend
to use the proposed tableau-based technique to verify MAS specifications and the
conformance of agents to these specifications. We also plan to extend the technique
and logic in order to consider epistemic properties, so that we will have a same
framework for private and social attitudes. We plan to use this technique to specify
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and verify the compliance of agents’ actions to the norms and policies of multi-
agent systems. Although the technique discussed in this chapter is computationally
efficient, it has the problem of state explosion. For this reason, we plan to consider
symbolic and bounded model checking to verify agent commitments and their dia-
logue games. We are investigating the extension of the MCMAS model checker to
integrate LTL logic with commitment modalities and action formulae, so it will be
possible to symbolically model check dialogue games with ACTL* logic.
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